:: ANPROJ_2 semantic presentation
theorem Th1: :: ANPROJ_2:1
Lemma2:
for b1 being RealLinearSpace
for b2, b3 being Element of b1 st ( for b4, b5 being Real st (b4 * b2) + (b5 * b3) = 0. b1 holds
( b4 = 0 & b5 = 0 ) ) holds
( b2 is_Prop_Vect & b3 is_Prop_Vect & not are_Prop b2,b3 )
theorem Th2: :: ANPROJ_2:2
for
b1 being
RealLinearSpace for
b2,
b3,
b4,
b5 being
Element of
b1 st ( for
b6,
b7,
b8,
b9 being
Real st
(((b6 * b2) + (b7 * b3)) + (b8 * b4)) + (b9 * b5) = 0. b1 holds
(
b6 = 0 &
b7 = 0 &
b8 = 0 &
b9 = 0 ) ) holds
(
b2 is_Prop_Vect &
b3 is_Prop_Vect & not
are_Prop b2,
b3 &
b4 is_Prop_Vect &
b5 is_Prop_Vect & not
are_Prop b4,
b5 & not
b2,
b3,
b4 are_LinDep & not
b4,
b5,
b2 are_LinDep )
Lemma4:
for b1 being RealLinearSpace
for b2, b3, b4 being Element of b1
for b5, b6, b7, b8 being Real holds b5 * (((b6 * b2) + (b7 * b3)) + (b8 * b4)) = (((b5 * b6) * b2) + ((b5 * b7) * b3)) + ((b5 * b8) * b4)
Lemma5:
for b1 being RealLinearSpace
for b2, b3, b4, b5, b6, b7 being Element of b1 holds ((b2 + b3) + b4) + ((b5 + b6) + b7) = ((b2 + b5) + (b3 + b6)) + (b4 + b7)
theorem Th3: :: ANPROJ_2:3
for
b1 being
RealLinearSpace for
b2,
b3,
b4 being
Element of
b1 st ( for
b5 being
Element of
b1 ex
b6,
b7,
b8 being
Real st
b5 = ((b6 * b2) + (b7 * b3)) + (b8 * b4) ) & ( for
b5,
b6,
b7 being
Real st
((b5 * b2) + (b6 * b3)) + (b7 * b4) = 0. b1 holds
(
b5 = 0 &
b6 = 0 &
b7 = 0 ) ) holds
for
b5,
b6 being
Element of
b1 ex
b7 being
Element of
b1 st
(
b2,
b3,
b7 are_LinDep &
b5,
b6,
b7 are_LinDep &
b7 is_Prop_Vect )
Lemma7:
for b1 being RealLinearSpace
for b2, b3, b4, b5 being Element of b1
for b6, b7, b8, b9, b10 being Real holds b6 * ((((b7 * b2) + (b8 * b3)) + (b9 * b4)) + (b10 * b5)) = ((((b6 * b7) * b2) + ((b6 * b8) * b3)) + ((b6 * b9) * b4)) + ((b6 * b10) * b5)
Lemma8:
for b1 being RealLinearSpace
for b2, b3, b4, b5, b6, b7, b8, b9 being Element of b1 holds (((b2 + b3) + b4) + b5) + (((b6 + b7) + b8) + b9) = (((b2 + b6) + (b3 + b7)) + (b4 + b8)) + (b5 + b9)
Lemma9:
for b1 being RealLinearSpace
for b2, b3, b4 being Element of b1
for b5, b6, b7, b8 being Real holds b5 * (((b6 * b2) + (b7 * b3)) + (b8 * b4)) = (((b5 * b6) * b2) + ((b5 * b7) * b3)) + ((b5 * b8) * b4)
Lemma10:
for b1 being RealLinearSpace
for b2, b3, b4, b5, b6 being Element of b1
for b7, b8, b9, b10, b11 being Real st b2 = (b7 * b3) + (b8 * b4) & b4 = ((b9 * b3) + (b10 * b5)) + (b11 * b6) holds
b2 = (((b7 + (b8 * b9)) * b3) + ((b8 * b10) * b5)) + ((b8 * b11) * b6)
theorem Th4: :: ANPROJ_2:4
for
b1 being
RealLinearSpace for
b2,
b3,
b4,
b5 being
Element of
b1 st ( for
b6 being
Element of
b1 ex
b7,
b8,
b9,
b10 being
Real st
b6 = (((b7 * b2) + (b8 * b3)) + (b9 * b4)) + (b10 * b5) ) & ( for
b6,
b7,
b8,
b9 being
Real st
(((b6 * b2) + (b7 * b3)) + (b8 * b4)) + (b9 * b5) = 0. b1 holds
(
b6 = 0 &
b7 = 0 &
b8 = 0 &
b9 = 0 ) ) holds
for
b6,
b7 being
Element of
b1 st
b6 is_Prop_Vect &
b7 is_Prop_Vect holds
ex
b8,
b9 being
Element of
b1 st
(
b6,
b7,
b9 are_LinDep &
b3,
b4,
b8 are_LinDep &
b2,
b9,
b8 are_LinDep &
b8 is_Prop_Vect &
b9 is_Prop_Vect )
theorem Th5: :: ANPROJ_2:5
for
b1 being
RealLinearSpace for
b2,
b3,
b4,
b5 being
Element of
b1 st ( for
b6,
b7,
b8,
b9 being
Real st
(((b6 * b2) + (b7 * b3)) + (b8 * b4)) + (b9 * b5) = 0. b1 holds
(
b6 = 0 &
b7 = 0 &
b8 = 0 &
b9 = 0 ) ) holds
for
b6 being
Element of
b1 holds
( not
b6 is_Prop_Vect or not
b2,
b3,
b6 are_LinDep or not
b4,
b5,
b6 are_LinDep )
:: deftheorem Def1 defines are_Prop_Vect ANPROJ_2:def 1 :
definition
let c1 be
RealLinearSpace;
let c2,
c3,
c4,
c5,
c6,
c7 be
Element of
c1;
pred c2,
c3,
c4,
c5,
c6,
c7 lie_on_a_triangle means :
Def2:
:: ANPROJ_2:def 2
(
a2,
a3,
a7 are_LinDep &
a2,
a4,
a6 are_LinDep &
a3,
a4,
a5 are_LinDep );
end;
:: deftheorem Def2 defines lie_on_a_triangle ANPROJ_2:def 2 :
for
b1 being
RealLinearSpace for
b2,
b3,
b4,
b5,
b6,
b7 being
Element of
b1 holds
(
b2,
b3,
b4,
b5,
b6,
b7 lie_on_a_triangle iff (
b2,
b3,
b7 are_LinDep &
b2,
b4,
b6 are_LinDep &
b3,
b4,
b5 are_LinDep ) );
definition
let c1 be
RealLinearSpace;
let c2,
c3,
c4,
c5,
c6,
c7,
c8 be
Element of
c1;
pred c2,
c3,
c4,
c5,
c6,
c7,
c8 are_perspective means :
Def3:
:: ANPROJ_2:def 3
(
a2,
a3,
a6 are_LinDep &
a2,
a4,
a7 are_LinDep &
a2,
a5,
a8 are_LinDep );
end;
:: deftheorem Def3 defines are_perspective ANPROJ_2:def 3 :
for
b1 being
RealLinearSpace for
b2,
b3,
b4,
b5,
b6,
b7,
b8 being
Element of
b1 holds
(
b2,
b3,
b4,
b5,
b6,
b7,
b8 are_perspective iff (
b2,
b3,
b6 are_LinDep &
b2,
b4,
b7 are_LinDep &
b2,
b5,
b8 are_LinDep ) );
Lemma16:
for b1 being RealLinearSpace
for b2 being Element of b1
for b3 being Real holds - (b3 * b2) = (- b3) * b2
theorem Th6: :: ANPROJ_2:6
for
b1 being
RealLinearSpace for
b2,
b3,
b4 being
Element of
b1 st
b2,
b3,
b4 are_LinDep & not
are_Prop b2,
b3 & not
are_Prop b2,
b4 & not
are_Prop b3,
b4 &
b2,
b3,
b4 are_Prop_Vect holds
( ex
b5,
b6 being
Real st
(
b6 * b4 = b2 + (b5 * b3) &
b5 <> 0 &
b6 <> 0 ) & ex
b5,
b6 being
Real st
(
b4 = (b6 * b2) + (b5 * b3) &
b6 <> 0 &
b5 <> 0 ) )
theorem Th7: :: ANPROJ_2:7
Lemma19:
for b1 being RealLinearSpace
for b2, b3 being Element of b1
for b4 being Real st b4 * b2 = b3 & b4 <> 0 holds
are_Prop b2,b3
Lemma20:
for b1 being RealLinearSpace
for b2, b3, b4, b5, b6 being Element of b1
for b7, b8 being Real st b2 = b3 + (b7 * b4) & b5 = b3 + (b8 * b6) & are_Prop b2,b5 & b7 <> 0 holds
b3,b4,b6 are_LinDep
Lemma21:
for b1 being RealLinearSpace
for b2, b3 being Element of b1
for b4 being Real st b4 * b2 = b3 & b4 <> 0 & b2 is_Prop_Vect holds
b3 is_Prop_Vect
Lemma22:
for b1 being RealLinearSpace
for b2, b3, b4, b5, b6, b7 being Element of b1
for b8, b9, b10, b11 being Real st b2 = (b10 * b3) + (b11 * b4) & b3 = b5 + (b8 * b6) & b4 = b5 + (b9 * b7) holds
b2 = (((b10 + b11) * b5) + ((b10 * b8) * b6)) + ((b11 * b9) * b7)
Lemma23:
for b1 being RealLinearSpace
for b2, b3, b4, b5 being Element of b1
for b6, b7 being Real st b2 = (b6 * b3) + (b7 * b4) holds
b2 = ((0 * b5) + (b6 * b3)) + (b7 * b4)
Lemma24:
for b1 being RealLinearSpace
for b2, b3 being Element of b1 holds (0 * b2) + (0 * b3) = 0. b1
Lemma25:
for b1 being RealLinearSpace
for b2, b3, b4 being Element of b1
for b5, b6, b7 being Real holds ((0 * b2) + ((b5 * b6) * b3)) + (((- b5) * b7) * b4) = b5 * ((b6 * b3) - (b7 * b4))
theorem Th8: :: ANPROJ_2:8
for
b1 being
RealLinearSpace for
b2,
b3,
b4,
b5,
b6,
b7,
b8,
b9,
b10,
b11 being
Element of
b1 st
b2 is_Prop_Vect &
b3,
b4,
b5 are_Prop_Vect &
b6,
b7,
b8 are_Prop_Vect &
b9,
b10,
b11 are_Prop_Vect &
b2,
b3,
b4,
b5,
b6,
b7,
b8 are_perspective & not
are_Prop b2,
b6 & not
are_Prop b2,
b7 & not
are_Prop b2,
b8 & not
are_Prop b3,
b6 & not
are_Prop b4,
b7 & not
are_Prop b5,
b8 & not
b2,
b3,
b4 are_LinDep & not
b2,
b3,
b5 are_LinDep & not
b2,
b4,
b5 are_LinDep &
b3,
b4,
b5,
b9,
b10,
b11 lie_on_a_triangle &
b6,
b7,
b8,
b9,
b10,
b11 lie_on_a_triangle holds
b9,
b10,
b11 are_LinDep
definition
let c1 be
RealLinearSpace;
let c2,
c3,
c4,
c5,
c6,
c7,
c8 be
Element of
c1;
pred c2,
c3,
c4,
c5,
c6,
c7,
c8 lie_on_an_angle means :
Def4:
:: ANPROJ_2:def 4
( not
a2,
a3,
a6 are_LinDep &
a2,
a3,
a4 are_LinDep &
a2,
a3,
a5 are_LinDep &
a2,
a6,
a7 are_LinDep &
a2,
a6,
a8 are_LinDep );
end;
:: deftheorem Def4 defines lie_on_an_angle ANPROJ_2:def 4 :
for
b1 being
RealLinearSpace for
b2,
b3,
b4,
b5,
b6,
b7,
b8 being
Element of
b1 holds
(
b2,
b3,
b4,
b5,
b6,
b7,
b8 lie_on_an_angle iff ( not
b2,
b3,
b6 are_LinDep &
b2,
b3,
b4 are_LinDep &
b2,
b3,
b5 are_LinDep &
b2,
b6,
b7 are_LinDep &
b2,
b6,
b8 are_LinDep ) );
definition
let c1 be
RealLinearSpace;
let c2,
c3,
c4,
c5,
c6,
c7,
c8 be
Element of
c1;
pred c2,
c3,
c4,
c5,
c6,
c7,
c8 are_half_mutually_not_Prop means :
Def5:
:: ANPROJ_2:def 5
( not
are_Prop a2,
a4 & not
are_Prop a2,
a5 & not
are_Prop a2,
a7 & not
are_Prop a2,
a8 & not
are_Prop a3,
a4 & not
are_Prop a3,
a5 & not
are_Prop a6,
a7 & not
are_Prop a6,
a8 & not
are_Prop a4,
a5 & not
are_Prop a7,
a8 );
end;
:: deftheorem Def5 defines are_half_mutually_not_Prop ANPROJ_2:def 5 :
for
b1 being
RealLinearSpace for
b2,
b3,
b4,
b5,
b6,
b7,
b8 being
Element of
b1 holds
(
b2,
b3,
b4,
b5,
b6,
b7,
b8 are_half_mutually_not_Prop iff ( not
are_Prop b2,
b4 & not
are_Prop b2,
b5 & not
are_Prop b2,
b7 & not
are_Prop b2,
b8 & not
are_Prop b3,
b4 & not
are_Prop b3,
b5 & not
are_Prop b6,
b7 & not
are_Prop b6,
b8 & not
are_Prop b4,
b5 & not
are_Prop b7,
b8 ) );
Lemma29:
for b1 being RealLinearSpace
for b2, b3 being Element of b1
for b4 being Real st b4 * b2 = b3 & b4 <> 0 holds
are_Prop b2,b3
Lemma30:
for b1 being RealLinearSpace
for b2, b3, b4 being Element of b1
for b5 being Real st not are_Prop b2,b3 & b4 = b5 * b3 & b5 <> 0 holds
not are_Prop b2,b4
Lemma31:
for b1 being RealLinearSpace
for b2, b3, b4, b5, b6 being Element of b1
for b7, b8, b9 being Real st b2 = (b7 * b3) + (b8 * b4) & b4 = b5 + (b9 * b6) holds
b2 = ((b8 * b5) + (b7 * b3)) + ((b8 * b9) * b6)
Lemma32:
for b1 being RealLinearSpace
for b2, b3, b4, b5, b6 being Element of b1
for b7, b8, b9 being Real st b2 = (b7 * b3) + (b8 * b4) & b4 = b5 + (b9 * b6) holds
b2 = ((b8 * b5) + ((b8 * b9) * b6)) + (b7 * b3)
Lemma33:
for b1 being RealLinearSpace
for b2, b3 being Element of b1
for b4 being Real st b4 * b2 = b3 & b4 <> 0 & b2 is_Prop_Vect holds
b3 is_Prop_Vect
Lemma34:
for b1 being RealLinearSpace
for b2, b3, b4, b5 being Element of b1
for b6, b7 being Real st not are_Prop b2,b3 & b4 = b6 * b3 & b6 <> 0 & b5 = b7 * b2 & b7 <> 0 holds
not are_Prop b5,b4
Lemma35:
for b1 being RealLinearSpace
for b2, b3, b4, b5, b6, b7 being Element of b1
for b8, b9, b10, b11 being Real st b2 = (b10 * b3) + (b11 * b4) & b3 = b5 + (b8 * b6) & b4 = b5 + (b9 * b7) holds
b2 = (((b10 + b11) * b5) + ((b10 * b8) * b6)) + ((b11 * b9) * b7)
Lemma36:
for b1, b2, b3 being Real st b1 <> b2 & b3 <> 0 holds
(b2 * b3) - (b1 * b3) <> 0
Lemma37:
for b1, b2, b3, b4, b5, b6, b7, b8 being Real st b5 + b7 = b6 + b8 & b5 * b1 = b6 * b2 & b7 * b3 = b8 * b4 & b1 <> b2 & b4 <> 0 holds
b5 = (((b2 * b3) - (b2 * b4)) * (((b2 * b4) - (b1 * b4)) " )) * b7
Lemma38:
for b1, b2, b3, b4 being Real st b1 <> 0 & b2 <> b3 & b4 <> 0 holds
b4 * (((b3 * b1) - (b2 * b1)) " ) <> 0
Lemma39:
for b1 being RealLinearSpace
for b2, b3, b4, b5 being Element of b1
for b6, b7, b8, b9, b10, b11 being Real st b10 = (((b6 * b7) - (b6 * b8)) * (((b6 * b8) - (b9 * b8)) " )) * b11 & b8 <> 0 & b9 <> b6 & b2 = (((b10 + b11) * b3) + ((b10 * b9) * b4)) + ((b11 * b7) * b5) holds
b2 = (b11 * (((b6 * b8) - (b9 * b8)) " )) * (((((b6 * b7) - (b9 * b8)) * b3) + (((b9 * b6) * (b7 - b8)) * b4)) + (((b8 * b7) * (b6 - b9)) * b5))
Lemma40:
for b1 being RealLinearSpace
for b2, b3, b4, b5, b6, b7 being Element of b1 holds ((b2 + b3) + b4) + ((b5 + b6) + b7) = ((b2 + b5) + (b3 + b6)) + (b4 + b7)
Lemma41:
for b1 being RealLinearSpace
for b2, b3, b4, b5, b6, b7 being Element of b1
for b8, b9, b10, b11, b12, b13 being Real st b2 = ((((b8 * b9) - (b10 * b11)) * b3) + (((b10 * b8) * (b9 - b11)) * b4)) + (((b11 * b9) * (b8 - b10)) * b5) & b6 = (b3 + (b8 * b4)) + (b9 * b5) & b7 = (b3 + (b10 * b4)) + (b11 * b5) & b12 + b13 = (b10 * b11) - (b8 * b9) & (b12 * b8) + (b13 * b10) = (b10 * b8) * (b11 - b9) & (b12 * b9) + (b13 * b11) = (b11 * b9) * (b10 - b8) holds
((1 * b2) + (b12 * b6)) + (b13 * b7) = 0. b1
Lemma42:
for b1 being RealLinearSpace
for b2, b3, b4, b5, b6 being Element of b1
for b7, b8, b9, b10, b11, b12 being Real st b2 = (b3 + (b7 * b4)) + (b8 * b5) & b6 = ((b11 * b3) + (b9 * b4)) + ((b11 * b8) * b5) & b11 = b12 & b9 = b12 * b7 & b11 * b8 = b10 holds
b6 = b11 * b2
theorem Th9: :: ANPROJ_2:9
for
b1 being
RealLinearSpace for
b2,
b3,
b4,
b5,
b6,
b7,
b8,
b9,
b10,
b11 being
Element of
b1 st
b2 is_Prop_Vect &
b3,
b4,
b5 are_Prop_Vect &
b6,
b7,
b8 are_Prop_Vect &
b9,
b10,
b11 are_Prop_Vect &
b2,
b3,
b4,
b5,
b6,
b7,
b8 lie_on_an_angle &
b2,
b3,
b4,
b5,
b6,
b7,
b8 are_half_mutually_not_Prop &
b3,
b7,
b11 are_LinDep &
b6,
b4,
b11 are_LinDep &
b3,
b8,
b10 are_LinDep &
b5,
b6,
b10 are_LinDep &
b4,
b8,
b9 are_LinDep &
b5,
b7,
b9 are_LinDep holds
b9,
b10,
b11 are_LinDep
theorem Th10: :: ANPROJ_2:10
for
b1 being non
empty set for
b2,
b3,
b4 being
Element of
b1 ex
b5,
b6,
b7 being
Element of
Funcs b1,
REAL st
( ( for
b8 being
set st
b8 in b1 holds
( (
b8 = b2 implies
b5 . b8 = 1 ) & (
b8 <> b2 implies
b5 . b8 = 0 ) ) ) & ( for
b8 being
set st
b8 in b1 holds
( (
b8 = b3 implies
b6 . b8 = 1 ) & (
b8 <> b3 implies
b6 . b8 = 0 ) ) ) & ( for
b8 being
set st
b8 in b1 holds
( (
b8 = b4 implies
b7 . b8 = 1 ) & (
b8 <> b4 implies
b7 . b8 = 0 ) ) ) )
theorem Th11: :: ANPROJ_2:11
for
b1 being non
empty set for
b2,
b3,
b4 being
Element of
Funcs b1,
REAL for
b5,
b6,
b7 being
Element of
b1 st
b5 in b1 &
b6 in b1 &
b7 in b1 &
b5 <> b6 &
b5 <> b7 &
b6 <> b7 & ( for
b8 being
set st
b8 in b1 holds
( (
b8 = b5 implies
b2 . b8 = 1 ) & (
b8 <> b5 implies
b2 . b8 = 0 ) ) ) & ( for
b8 being
set st
b8 in b1 holds
( (
b8 = b6 implies
b3 . b8 = 1 ) & (
b8 <> b6 implies
b3 . b8 = 0 ) ) ) & ( for
b8 being
set st
b8 in b1 holds
( (
b8 = b7 implies
b4 . b8 = 1 ) & (
b8 <> b7 implies
b4 . b8 = 0 ) ) ) holds
for
b8,
b9,
b10 being
Real st
(RealFuncAdd b1) . ((RealFuncAdd b1) . ((RealFuncExtMult b1) . [b8,b2]),((RealFuncExtMult b1) . [b9,b3])),
((RealFuncExtMult b1) . [b10,b4]) = RealFuncZero b1 holds
(
b8 = 0 &
b9 = 0 &
b10 = 0 )
theorem Th12: :: ANPROJ_2:12
for
b1 being non
empty set for
b2,
b3,
b4 being
Element of
b1 st
b2 in b1 &
b3 in b1 &
b4 in b1 &
b2 <> b3 &
b2 <> b4 &
b3 <> b4 holds
ex
b5,
b6,
b7 being
Element of
Funcs b1,
REAL st
for
b8,
b9,
b10 being
Real st
(RealFuncAdd b1) . ((RealFuncAdd b1) . ((RealFuncExtMult b1) . [b8,b5]),((RealFuncExtMult b1) . [b9,b6])),
((RealFuncExtMult b1) . [b10,b7]) = RealFuncZero b1 holds
(
b8 = 0 &
b9 = 0 &
b10 = 0 )
theorem Th13: :: ANPROJ_2:13
for
b1 being non
empty set for
b2,
b3,
b4 being
Element of
Funcs b1,
REAL for
b5,
b6,
b7 being
Element of
b1 st
b1 = {b5,b6,b7} &
b5 <> b6 &
b5 <> b7 &
b6 <> b7 & ( for
b8 being
set st
b8 in b1 holds
( (
b8 = b5 implies
b2 . b8 = 1 ) & (
b8 <> b5 implies
b2 . b8 = 0 ) ) ) & ( for
b8 being
set st
b8 in b1 holds
( (
b8 = b6 implies
b3 . b8 = 1 ) & (
b8 <> b6 implies
b3 . b8 = 0 ) ) ) & ( for
b8 being
set st
b8 in b1 holds
( (
b8 = b7 implies
b4 . b8 = 1 ) & (
b8 <> b7 implies
b4 . b8 = 0 ) ) ) holds
for
b8 being
Element of
Funcs b1,
REAL ex
b9,
b10,
b11 being
Real st
b8 = (RealFuncAdd b1) . ((RealFuncAdd b1) . ((RealFuncExtMult b1) . [b9,b2]),((RealFuncExtMult b1) . [b10,b3])),
((RealFuncExtMult b1) . [b11,b4])
theorem Th14: :: ANPROJ_2:14
for
b1 being non
empty set for
b2,
b3,
b4 being
Element of
b1 st
b1 = {b2,b3,b4} &
b2 <> b3 &
b2 <> b4 &
b3 <> b4 holds
ex
b5,
b6,
b7 being
Element of
Funcs b1,
REAL st
for
b8 being
Element of
Funcs b1,
REAL ex
b9,
b10,
b11 being
Real st
b8 = (RealFuncAdd b1) . ((RealFuncAdd b1) . ((RealFuncExtMult b1) . [b9,b5]),((RealFuncExtMult b1) . [b10,b6])),
((RealFuncExtMult b1) . [b11,b7])
theorem Th15: :: ANPROJ_2:15
for
b1 being non
empty set for
b2,
b3,
b4 being
Element of
b1 st
b1 = {b2,b3,b4} &
b2 <> b3 &
b2 <> b4 &
b3 <> b4 holds
ex
b5,
b6,
b7 being
Element of
Funcs b1,
REAL st
( ( for
b8,
b9,
b10 being
Real st
(RealFuncAdd b1) . ((RealFuncAdd b1) . ((RealFuncExtMult b1) . [b8,b5]),((RealFuncExtMult b1) . [b9,b6])),
((RealFuncExtMult b1) . [b10,b7]) = RealFuncZero b1 holds
(
b8 = 0 &
b9 = 0 &
b10 = 0 ) ) & ( for
b8 being
Element of
Funcs b1,
REAL ex
b9,
b10,
b11 being
Real st
b8 = (RealFuncAdd b1) . ((RealFuncAdd b1) . ((RealFuncExtMult b1) . [b9,b5]),((RealFuncExtMult b1) . [b10,b6])),
((RealFuncExtMult b1) . [b11,b7]) ) )
Lemma48:
ex b1 being non empty set ex b2, b3, b4 being Element of b1 st
( b1 = {b2,b3,b4} & b2 <> b3 & b2 <> b4 & b3 <> b4 )
theorem Th16: :: ANPROJ_2:16
theorem Th17: :: ANPROJ_2:17
for
b1 being non
empty set for
b2,
b3,
b4,
b5 being
Element of
b1 ex
b6,
b7,
b8,
b9 being
Element of
Funcs b1,
REAL st
( ( for
b10 being
set st
b10 in b1 holds
( (
b10 = b2 implies
b6 . b10 = 1 ) & (
b10 <> b2 implies
b6 . b10 = 0 ) ) ) & ( for
b10 being
set st
b10 in b1 holds
( (
b10 = b3 implies
b7 . b10 = 1 ) & (
b10 <> b3 implies
b7 . b10 = 0 ) ) ) & ( for
b10 being
set st
b10 in b1 holds
( (
b10 = b4 implies
b8 . b10 = 1 ) & (
b10 <> b4 implies
b8 . b10 = 0 ) ) ) & ( for
b10 being
set st
b10 in b1 holds
( (
b10 = b5 implies
b9 . b10 = 1 ) & (
b10 <> b5 implies
b9 . b10 = 0 ) ) ) )
theorem Th18: :: ANPROJ_2:18
for
b1 being non
empty set for
b2,
b3,
b4,
b5 being
Element of
Funcs b1,
REAL for
b6,
b7,
b8,
b9 being
Element of
b1 st
b6 in b1 &
b7 in b1 &
b8 in b1 &
b9 in b1 &
b6 <> b7 &
b6 <> b8 &
b6 <> b9 &
b7 <> b8 &
b7 <> b9 &
b8 <> b9 & ( for
b10 being
set st
b10 in b1 holds
( (
b10 = b6 implies
b2 . b10 = 1 ) & (
b10 <> b6 implies
b2 . b10 = 0 ) ) ) & ( for
b10 being
set st
b10 in b1 holds
( (
b10 = b7 implies
b3 . b10 = 1 ) & (
b10 <> b7 implies
b3 . b10 = 0 ) ) ) & ( for
b10 being
set st
b10 in b1 holds
( (
b10 = b8 implies
b4 . b10 = 1 ) & (
b10 <> b8 implies
b4 . b10 = 0 ) ) ) & ( for
b10 being
set st
b10 in b1 holds
( (
b10 = b9 implies
b5 . b10 = 1 ) & (
b10 <> b9 implies
b5 . b10 = 0 ) ) ) holds
for
b10,
b11,
b12,
b13 being
Real st
(RealFuncAdd b1) . ((RealFuncAdd b1) . ((RealFuncAdd b1) . ((RealFuncExtMult b1) . [b10,b2]),((RealFuncExtMult b1) . [b11,b3])),((RealFuncExtMult b1) . [b12,b4])),
((RealFuncExtMult b1) . [b13,b5]) = RealFuncZero b1 holds
(
b10 = 0 &
b11 = 0 &
b12 = 0 &
b13 = 0 )
theorem Th19: :: ANPROJ_2:19
for
b1 being non
empty set for
b2,
b3,
b4,
b5 being
Element of
b1 st
b2 in b1 &
b3 in b1 &
b4 in b1 &
b5 in b1 &
b2 <> b3 &
b2 <> b4 &
b2 <> b5 &
b3 <> b4 &
b3 <> b5 &
b4 <> b5 holds
ex
b6,
b7,
b8,
b9 being
Element of
Funcs b1,
REAL st
for
b10,
b11,
b12,
b13 being
Real st
(RealFuncAdd b1) . ((RealFuncAdd b1) . ((RealFuncAdd b1) . ((RealFuncExtMult b1) . [b10,b6]),((RealFuncExtMult b1) . [b11,b7])),((RealFuncExtMult b1) . [b12,b8])),
((RealFuncExtMult b1) . [b13,b9]) = RealFuncZero b1 holds
(
b10 = 0 &
b11 = 0 &
b12 = 0 &
b13 = 0 )
theorem Th20: :: ANPROJ_2:20
for
b1 being non
empty set for
b2,
b3,
b4,
b5 being
Element of
Funcs b1,
REAL for
b6,
b7,
b8,
b9 being
Element of
b1 st
b1 = {b6,b7,b8,b9} &
b6 <> b7 &
b6 <> b8 &
b6 <> b9 &
b7 <> b8 &
b7 <> b9 &
b8 <> b9 & ( for
b10 being
set st
b10 in b1 holds
( (
b10 = b6 implies
b2 . b10 = 1 ) & (
b10 <> b6 implies
b2 . b10 = 0 ) ) ) & ( for
b10 being
set st
b10 in b1 holds
( (
b10 = b7 implies
b3 . b10 = 1 ) & (
b10 <> b7 implies
b3 . b10 = 0 ) ) ) & ( for
b10 being
set st
b10 in b1 holds
( (
b10 = b8 implies
b4 . b10 = 1 ) & (
b10 <> b8 implies
b4 . b10 = 0 ) ) ) & ( for
b10 being
set st
b10 in b1 holds
( (
b10 = b9 implies
b5 . b10 = 1 ) & (
b10 <> b9 implies
b5 . b10 = 0 ) ) ) holds
for
b10 being
Element of
Funcs b1,
REAL ex
b11,
b12,
b13,
b14 being
Real st
b10 = (RealFuncAdd b1) . ((RealFuncAdd b1) . ((RealFuncAdd b1) . ((RealFuncExtMult b1) . [b11,b2]),((RealFuncExtMult b1) . [b12,b3])),((RealFuncExtMult b1) . [b13,b4])),
((RealFuncExtMult b1) . [b14,b5])
theorem Th21: :: ANPROJ_2:21
for
b1 being non
empty set for
b2,
b3,
b4,
b5 being
Element of
b1 st
b1 = {b2,b3,b4,b5} &
b2 <> b3 &
b2 <> b4 &
b2 <> b5 &
b3 <> b4 &
b3 <> b5 &
b4 <> b5 holds
ex
b6,
b7,
b8,
b9 being
Element of
Funcs b1,
REAL st
for
b10 being
Element of
Funcs b1,
REAL ex
b11,
b12,
b13,
b14 being
Real st
b10 = (RealFuncAdd b1) . ((RealFuncAdd b1) . ((RealFuncAdd b1) . ((RealFuncExtMult b1) . [b11,b6]),((RealFuncExtMult b1) . [b12,b7])),((RealFuncExtMult b1) . [b13,b8])),
((RealFuncExtMult b1) . [b14,b9])
theorem Th22: :: ANPROJ_2:22
for
b1 being non
empty set for
b2,
b3,
b4,
b5 being
Element of
b1 st
b1 = {b2,b3,b4,b5} &
b2 <> b3 &
b2 <> b4 &
b2 <> b5 &
b3 <> b4 &
b3 <> b5 &
b4 <> b5 holds
ex
b6,
b7,
b8,
b9 being
Element of
Funcs b1,
REAL st
( ( for
b10,
b11,
b12,
b13 being
Real st
(RealFuncAdd b1) . ((RealFuncAdd b1) . ((RealFuncAdd b1) . ((RealFuncExtMult b1) . [b10,b6]),((RealFuncExtMult b1) . [b11,b7])),((RealFuncExtMult b1) . [b12,b8])),
((RealFuncExtMult b1) . [b13,b9]) = RealFuncZero b1 holds
(
b10 = 0 &
b11 = 0 &
b12 = 0 &
b13 = 0 ) ) & ( for
b10 being
Element of
Funcs b1,
REAL ex
b11,
b12,
b13,
b14 being
Real st
b10 = (RealFuncAdd b1) . ((RealFuncAdd b1) . ((RealFuncAdd b1) . ((RealFuncExtMult b1) . [b11,b6]),((RealFuncExtMult b1) . [b12,b7])),((RealFuncExtMult b1) . [b13,b8])),
((RealFuncExtMult b1) . [b14,b9]) ) )
Lemma54:
ex b1 being non empty set ex b2, b3, b4, b5 being Element of b1 st
( b1 = {b2,b3,b4,b5} & b2 <> b3 & b2 <> b4 & b2 <> b5 & b3 <> b4 & b3 <> b5 & b4 <> b5 )
theorem Th23: :: ANPROJ_2:23
ex
b1 being non
trivial RealLinearSpaceex
b2,
b3,
b4,
b5 being
Element of
b1 st
( ( for
b6,
b7,
b8,
b9 being
Real st
(((b6 * b2) + (b7 * b3)) + (b8 * b4)) + (b9 * b5) = 0. b1 holds
(
b6 = 0 &
b7 = 0 &
b8 = 0 &
b9 = 0 ) ) & ( for
b6 being
Element of
b1 ex
b7,
b8,
b9,
b10 being
Real st
b6 = (((b7 * b2) + (b8 * b3)) + (b9 * b4)) + (b10 * b5) ) )
:: deftheorem Def6 defines up-3-dimensional ANPROJ_2:def 6 :
definition
let c1 be non
empty CollStr ;
redefine attr a1 is
reflexive means :
Def7:
:: ANPROJ_2:def 7
for
b1,
b2,
b3 being
Element of
a1 holds
(
b1,
b2,
b1 is_collinear &
b1,
b1,
b2 is_collinear &
b1,
b2,
b2 is_collinear );
compatibility
( c1 is reflexive iff for b1, b2, b3 being Element of c1 holds
( b1,b2,b1 is_collinear & b1,b1,b2 is_collinear & b1,b2,b2 is_collinear ) )
redefine attr a1 is
transitive means :
Def8:
:: ANPROJ_2:def 8
for
b1,
b2,
b3,
b4,
b5 being
Element of
a1 st
b1 <> b2 &
b1,
b2,
b3 is_collinear &
b1,
b2,
b4 is_collinear &
b1,
b2,
b5 is_collinear holds
b3,
b4,
b5 is_collinear ;
compatibility
( c1 is transitive iff for b1, b2, b3, b4, b5 being Element of c1 st b1 <> b2 & b1,b2,b3 is_collinear & b1,b2,b4 is_collinear & b1,b2,b5 is_collinear holds
b3,b4,b5 is_collinear )
end;
:: deftheorem Def7 defines reflexive ANPROJ_2:def 7 :
:: deftheorem Def8 defines transitive ANPROJ_2:def 8 :
for
b1 being non
empty CollStr holds
(
b1 is
transitive iff for
b2,
b3,
b4,
b5,
b6 being
Element of
b1 st
b2 <> b3 &
b2,
b3,
b4 is_collinear &
b2,
b3,
b5 is_collinear &
b2,
b3,
b6 is_collinear holds
b4,
b5,
b6 is_collinear );
definition
let c1 be non
empty CollStr ;
attr a1 is
Vebleian means :
Def9:
:: ANPROJ_2:def 9
for
b1,
b2,
b3,
b4,
b5 being
Element of
a1 st
b1,
b2,
b4 is_collinear &
b2,
b3,
b5 is_collinear holds
ex
b6 being
Element of
a1 st
(
b1,
b3,
b6 is_collinear &
b4,
b5,
b6 is_collinear );
attr a1 is
at_least_3rank means :
Def10:
:: ANPROJ_2:def 10
for
b1,
b2 being
Element of
a1 ex
b3 being
Element of
a1 st
(
b1 <> b3 &
b2 <> b3 &
b1,
b2,
b3 is_collinear );
end;
:: deftheorem Def9 defines Vebleian ANPROJ_2:def 9 :
for
b1 being non
empty CollStr holds
(
b1 is
Vebleian iff for
b2,
b3,
b4,
b5,
b6 being
Element of
b1 st
b2,
b3,
b5 is_collinear &
b3,
b4,
b6 is_collinear holds
ex
b7 being
Element of
b1 st
(
b2,
b4,
b7 is_collinear &
b5,
b6,
b7 is_collinear ) );
:: deftheorem Def10 defines at_least_3rank ANPROJ_2:def 10 :
theorem Th24: :: ANPROJ_2:24
Lemma62:
for b1 being non trivial RealLinearSpace holds ProjectiveSpace b1 is reflexive
Lemma63:
for b1 being non trivial RealLinearSpace holds ProjectiveSpace b1 is transitive
theorem Th25: :: ANPROJ_2:25
for
b1 being non
trivial RealLinearSpace for
b2,
b3,
b4 being
Element of
(ProjectiveSpace b1) st
b2,
b3,
b4 is_collinear holds
(
b2,
b4,
b3 is_collinear &
b3,
b2,
b4 is_collinear &
b4,
b3,
b2 is_collinear &
b4,
b2,
b3 is_collinear &
b3,
b4,
b2 is_collinear )
Lemma65:
for b1 being non trivial RealLinearSpace
for b2, b3, b4, b5, b6 being Element of (ProjectiveSpace b1) st b2,b3,b4 is_collinear & b2,b3,b5 is_collinear & b3,b4,b6 is_collinear holds
ex b7 being Element of (ProjectiveSpace b1) st
( b2,b4,b7 is_collinear & b5,b6,b7 is_collinear )
Lemma66:
for b1 being non trivial RealLinearSpace
for b2, b3, b4, b5, b6 being Element of (ProjectiveSpace b1) st not b2,b3,b4 is_collinear & b2,b3,b5 is_collinear & b3,b4,b6 is_collinear holds
ex b7 being Element of (ProjectiveSpace b1) st
( b2,b4,b7 is_collinear & b5,b6,b7 is_collinear )
Lemma67:
for b1 being non trivial RealLinearSpace holds ProjectiveSpace b1 is Vebleian
Lemma68:
for b1 being non trivial RealLinearSpace st b1 is up-3-dimensional holds
ProjectiveSpace b1 is proper
theorem Th26: :: ANPROJ_2:26
Lemma70:
for b1 being non trivial RealLinearSpace st b1 is up-3-dimensional holds
ProjectiveSpace b1 is at_least_3rank
Lemma71:
for b1 being up-3-dimensional RealLinearSpace holds ProjectiveSpace b1 is CollProjectiveSpace
;
definition
let c1 be
CollProjectiveSpace;
attr a1 is
Fanoian means :
Def11:
:: ANPROJ_2:def 11
for
b1,
b2,
b3,
b4,
b5,
b6,
b7 being
Element of
a1 st
b1,
b2,
b3 is_collinear &
b4,
b5,
b3 is_collinear &
b1,
b4,
b6 is_collinear &
b2,
b5,
b6 is_collinear &
b1,
b5,
b7 is_collinear &
b2,
b4,
b7 is_collinear &
b6,
b3,
b7 is_collinear & not
b1,
b2,
b5 is_collinear & not
b1,
b2,
b4 is_collinear & not
b1,
b4,
b5 is_collinear holds
b2,
b4,
b5 is_collinear ;
attr a1 is
Desarguesian means :: ANPROJ_2:def 12
for
b1,
b2,
b3,
b4,
b5,
b6,
b7,
b8,
b9,
b10 being
Element of
a1 st
b1 <> b5 &
b2 <> b5 &
b1 <> b6 &
b3 <> b6 &
b1 <> b7 &
b4 <> b7 & not
b1,
b2,
b3 is_collinear & not
b1,
b2,
b4 is_collinear & not
b1,
b3,
b4 is_collinear &
b2,
b3,
b10 is_collinear &
b5,
b6,
b10 is_collinear &
b3,
b4,
b8 is_collinear &
b6,
b7,
b8 is_collinear &
b2,
b4,
b9 is_collinear &
b5,
b7,
b9 is_collinear &
b1,
b2,
b5 is_collinear &
b1,
b3,
b6 is_collinear &
b1,
b4,
b7 is_collinear holds
b8,
b9,
b10 is_collinear ;
attr a1 is
Pappian means :: ANPROJ_2:def 13
for
b1,
b2,
b3,
b4,
b5,
b6,
b7,
b8,
b9,
b10 being
Element of
a1 st
b1 <> b3 &
b1 <> b4 &
b3 <> b4 &
b2 <> b3 &
b2 <> b4 &
b1 <> b6 &
b1 <> b7 &
b6 <> b7 &
b5 <> b6 &
b5 <> b7 & not
b1,
b2,
b5 is_collinear &
b1,
b2,
b3 is_collinear &
b1,
b2,
b4 is_collinear &
b1,
b5,
b6 is_collinear &
b1,
b5,
b7 is_collinear &
b2,
b6,
b10 is_collinear &
b5,
b3,
b10 is_collinear &
b2,
b7,
b9 is_collinear &
b4,
b5,
b9 is_collinear &
b3,
b7,
b8 is_collinear &
b4,
b6,
b8 is_collinear holds
b8,
b9,
b10 is_collinear ;
end;
:: deftheorem Def11 defines Fanoian ANPROJ_2:def 11 :
for
b1 being
CollProjectiveSpace holds
(
b1 is
Fanoian iff for
b2,
b3,
b4,
b5,
b6,
b7,
b8 being
Element of
b1 st
b2,
b3,
b4 is_collinear &
b5,
b6,
b4 is_collinear &
b2,
b5,
b7 is_collinear &
b3,
b6,
b7 is_collinear &
b2,
b6,
b8 is_collinear &
b3,
b5,
b8 is_collinear &
b7,
b4,
b8 is_collinear & not
b2,
b3,
b6 is_collinear & not
b2,
b3,
b5 is_collinear & not
b2,
b5,
b6 is_collinear holds
b3,
b5,
b6 is_collinear );
:: deftheorem Def12 defines Desarguesian ANPROJ_2:def 12 :
for
b1 being
CollProjectiveSpace holds
(
b1 is
Desarguesian iff for
b2,
b3,
b4,
b5,
b6,
b7,
b8,
b9,
b10,
b11 being
Element of
b1 st
b2 <> b6 &
b3 <> b6 &
b2 <> b7 &
b4 <> b7 &
b2 <> b8 &
b5 <> b8 & not
b2,
b3,
b4 is_collinear & not
b2,
b3,
b5 is_collinear & not
b2,
b4,
b5 is_collinear &
b3,
b4,
b11 is_collinear &
b6,
b7,
b11 is_collinear &
b4,
b5,
b9 is_collinear &
b7,
b8,
b9 is_collinear &
b3,
b5,
b10 is_collinear &
b6,
b8,
b10 is_collinear &
b2,
b3,
b6 is_collinear &
b2,
b4,
b7 is_collinear &
b2,
b5,
b8 is_collinear holds
b9,
b10,
b11 is_collinear );
:: deftheorem Def13 defines Pappian ANPROJ_2:def 13 :
for
b1 being
CollProjectiveSpace holds
(
b1 is
Pappian iff for
b2,
b3,
b4,
b5,
b6,
b7,
b8,
b9,
b10,
b11 being
Element of
b1 st
b2 <> b4 &
b2 <> b5 &
b4 <> b5 &
b3 <> b4 &
b3 <> b5 &
b2 <> b7 &
b2 <> b8 &
b7 <> b8 &
b6 <> b7 &
b6 <> b8 & not
b2,
b3,
b6 is_collinear &
b2,
b3,
b4 is_collinear &
b2,
b3,
b5 is_collinear &
b2,
b6,
b7 is_collinear &
b2,
b6,
b8 is_collinear &
b3,
b7,
b11 is_collinear &
b6,
b4,
b11 is_collinear &
b3,
b8,
b10 is_collinear &
b5,
b6,
b10 is_collinear &
b4,
b8,
b9 is_collinear &
b5,
b7,
b9 is_collinear holds
b9,
b10,
b11 is_collinear );
:: deftheorem Def14 defines 2-dimensional ANPROJ_2:def 14 :
definition
let c1 be
CollProjectiveSpace;
attr a1 is
at_most-3-dimensional means :
Def15:
:: ANPROJ_2:def 15
for
b1,
b2,
b3,
b4,
b5 being
Element of
a1 ex
b6,
b7 being
Element of
a1 st
(
b1,
b3,
b6 is_collinear &
b2,
b4,
b7 is_collinear &
b5,
b6,
b7 is_collinear );
end;
:: deftheorem Def15 defines at_most-3-dimensional ANPROJ_2:def 15 :
for
b1 being
CollProjectiveSpace holds
(
b1 is
at_most-3-dimensional iff for
b2,
b3,
b4,
b5,
b6 being
Element of
b1 ex
b7,
b8 being
Element of
b1 st
(
b2,
b4,
b7 is_collinear &
b3,
b5,
b8 is_collinear &
b6,
b7,
b8 is_collinear ) );
theorem Th27: :: ANPROJ_2:27
canceled;
theorem Th28: :: ANPROJ_2:28
for
b1 being non
trivial RealLinearSpace for
b2,
b3,
b4,
b5,
b6,
b7,
b8 being
Element of
(ProjectiveSpace b1) st
b2,
b3,
b4 is_collinear &
b5,
b6,
b4 is_collinear &
b2,
b5,
b7 is_collinear &
b3,
b6,
b7 is_collinear &
b2,
b6,
b8 is_collinear &
b3,
b5,
b8 is_collinear &
b7,
b4,
b8 is_collinear & not
b2,
b3,
b6 is_collinear & not
b2,
b3,
b5 is_collinear & not
b2,
b5,
b6 is_collinear holds
b3,
b5,
b6 is_collinear
Lemma76:
for b1 being up-3-dimensional RealLinearSpace holds ProjectiveSpace b1 is Fanoian
Lemma77:
for b1 being up-3-dimensional RealLinearSpace holds ProjectiveSpace b1 is Desarguesian
Lemma78:
for b1 being up-3-dimensional RealLinearSpace holds ProjectiveSpace b1 is Pappian
theorem Th29: :: ANPROJ_2:29
for
b1 being non
trivial RealLinearSpace st ex
b2,
b3,
b4 being
Element of
b1 st
( ( for
b5,
b6,
b7 being
Real st
((b5 * b2) + (b6 * b3)) + (b7 * b4) = 0. b1 holds
(
b5 = 0 &
b6 = 0 &
b7 = 0 ) ) & ( for
b5 being
Element of
b1 ex
b6,
b7,
b8 being
Real st
b5 = ((b6 * b2) + (b7 * b3)) + (b8 * b4) ) ) holds
ex
b2,
b3 being
Element of
(ProjectiveSpace b1) st
(
b2 <> b3 & ( for
b4,
b5 being
Element of
(ProjectiveSpace b1) ex
b6 being
Element of
(ProjectiveSpace b1) st
(
b2,
b3,
b6 is_collinear &
b4,
b5,
b6 is_collinear ) ) )
theorem Th30: :: ANPROJ_2:30
for
b1 being non
trivial RealLinearSpace st ex
b2,
b3 being
Element of
(ProjectiveSpace b1) st
(
b2 <> b3 & ( for
b4,
b5 being
Element of
(ProjectiveSpace b1) ex
b6 being
Element of
(ProjectiveSpace b1) st
(
b2,
b3,
b6 is_collinear &
b4,
b5,
b6 is_collinear ) ) ) holds
for
b2,
b3,
b4,
b5 being
Element of
(ProjectiveSpace b1) ex
b6 being
Element of
(ProjectiveSpace b1) st
(
b2,
b3,
b6 is_collinear &
b4,
b5,
b6 is_collinear )
theorem Th31: :: ANPROJ_2:31
Lemma82:
for b1 being non trivial RealLinearSpace st ex b2, b3, b4, b5 being Element of b1 st
for b6, b7, b8, b9 being Real st (((b6 * b2) + (b7 * b3)) + (b8 * b4)) + (b9 * b5) = 0. b1 holds
( b6 = 0 & b7 = 0 & b8 = 0 & b9 = 0 ) holds
b1 is up-3-dimensional
Lemma83:
for b1 being non trivial RealLinearSpace st ex b2, b3, b4, b5 being Element of b1 st
for b6, b7, b8, b9 being Real st (((b6 * b2) + (b7 * b3)) + (b8 * b4)) + (b9 * b5) = 0. b1 holds
( b6 = 0 & b7 = 0 & b8 = 0 & b9 = 0 ) holds
( ProjectiveSpace b1 is proper & ProjectiveSpace b1 is at_least_3rank )
theorem Th32: :: ANPROJ_2:32
for
b1 being non
trivial RealLinearSpace st ex
b2,
b3,
b4,
b5 being
Element of
b1 st
( ( for
b6 being
Element of
b1 ex
b7,
b8,
b9,
b10 being
Real st
b6 = (((b7 * b2) + (b8 * b3)) + (b9 * b4)) + (b10 * b5) ) & ( for
b6,
b7,
b8,
b9 being
Real st
(((b6 * b2) + (b7 * b3)) + (b8 * b4)) + (b9 * b5) = 0. b1 holds
(
b6 = 0 &
b7 = 0 &
b8 = 0 &
b9 = 0 ) ) ) holds
ex
b2,
b3,
b4 being
Element of
(ProjectiveSpace b1) st
( not
b2,
b3,
b4 is_collinear & ( for
b5,
b6 being
Element of
(ProjectiveSpace b1) ex
b7,
b8 being
Element of
(ProjectiveSpace b1) st
(
b5,
b6,
b8 is_collinear &
b3,
b4,
b7 is_collinear &
b2,
b8,
b7 is_collinear ) ) )
Lemma85:
for b1 being non trivial RealLinearSpace
for b2, b3, b4, b5, b6, b7 being Element of (ProjectiveSpace b1) st not b7,b4,b3 is_collinear & b4,b3,b2 is_collinear & b7,b5,b4 is_collinear & b7,b6,b3 is_collinear holds
ex b8 being Element of (ProjectiveSpace b1) st
( b5,b6,b8 is_collinear & b7,b2,b8 is_collinear )
theorem Th33: :: ANPROJ_2:33
for
b1 being non
trivial RealLinearSpace st
ProjectiveSpace b1 is
proper &
ProjectiveSpace b1 is
at_least_3rank & ex
b2,
b3,
b4 being
Element of
(ProjectiveSpace b1) st
( not
b2,
b3,
b4 is_collinear & ( for
b5,
b6 being
Element of
(ProjectiveSpace b1) ex
b7,
b8 being
Element of
(ProjectiveSpace b1) st
(
b5,
b6,
b8 is_collinear &
b3,
b4,
b7 is_collinear &
b2,
b8,
b7 is_collinear ) ) ) holds
ex
b2 being
CollProjectiveSpace st
(
b2 = ProjectiveSpace b1 &
b2 is
at_most-3-dimensional )
theorem Th34: :: ANPROJ_2:34
theorem Th35: :: ANPROJ_2:35
theorem Th36: :: ANPROJ_2:36
theorem Th37: :: ANPROJ_2:37