:: FUNCSDOM semantic presentation
:: deftheorem Def1 defines @ FUNCSDOM:def 1 :
definition
let c1 be non
empty set ;
func RealFuncAdd c1 -> BinOp of
Funcs a1,
REAL means :
Def2:
:: FUNCSDOM:def 2
for
b1,
b2 being
Element of
Funcs a1,
REAL holds
a2 . b1,
b2 = addreal .: b1,
b2;
existence
ex b1 being BinOp of Funcs c1,REAL st
for b2, b3 being Element of Funcs c1,REAL holds b1 . b2,b3 = addreal .: b2,b3
uniqueness
for b1, b2 being BinOp of Funcs c1,REAL st ( for b3, b4 being Element of Funcs c1,REAL holds b1 . b3,b4 = addreal .: b3,b4 ) & ( for b3, b4 being Element of Funcs c1,REAL holds b2 . b3,b4 = addreal .: b3,b4 ) holds
b1 = b2
end;
:: deftheorem Def2 defines RealFuncAdd FUNCSDOM:def 2 :
definition
let c1 be non
empty set ;
func RealFuncMult c1 -> BinOp of
Funcs a1,
REAL means :
Def3:
:: FUNCSDOM:def 3
for
b1,
b2 being
Element of
Funcs a1,
REAL holds
a2 . b1,
b2 = multreal .: b1,
b2;
existence
ex b1 being BinOp of Funcs c1,REAL st
for b2, b3 being Element of Funcs c1,REAL holds b1 . b2,b3 = multreal .: b2,b3
uniqueness
for b1, b2 being BinOp of Funcs c1,REAL st ( for b3, b4 being Element of Funcs c1,REAL holds b1 . b3,b4 = multreal .: b3,b4 ) & ( for b3, b4 being Element of Funcs c1,REAL holds b2 . b3,b4 = multreal .: b3,b4 ) holds
b1 = b2
end;
:: deftheorem Def3 defines RealFuncMult FUNCSDOM:def 3 :
definition
let c1 be non
empty set ;
func RealFuncExtMult c1 -> Function of
[:REAL ,(Funcs a1,REAL ):],
Funcs a1,
REAL means :
Def4:
:: FUNCSDOM:def 4
for
b1 being
Real for
b2 being
Element of
Funcs a1,
REAL for
b3 being
Element of
a1 holds
(a2 . [b1,b2]) . b3 = b1 * (b2 . b3);
existence
ex b1 being Function of [:REAL ,(Funcs c1,REAL ):], Funcs c1,REAL st
for b2 being Real
for b3 being Element of Funcs c1,REAL
for b4 being Element of c1 holds (b1 . [b2,b3]) . b4 = b2 * (b3 . b4)
uniqueness
for b1, b2 being Function of [:REAL ,(Funcs c1,REAL ):], Funcs c1,REAL st ( for b3 being Real
for b4 being Element of Funcs c1,REAL
for b5 being Element of c1 holds (b1 . [b3,b4]) . b5 = b3 * (b4 . b5) ) & ( for b3 being Real
for b4 being Element of Funcs c1,REAL
for b5 being Element of c1 holds (b2 . [b3,b4]) . b5 = b3 * (b4 . b5) ) holds
b1 = b2
end;
:: deftheorem Def4 defines RealFuncExtMult FUNCSDOM:def 4 :
:: deftheorem Def5 defines RealFuncZero FUNCSDOM:def 5 :
:: deftheorem Def6 defines RealFuncUnit FUNCSDOM:def 6 :
Lemma4:
for b1, b2 being non empty set
for b3 being Element of b1
for b4 being Function of b1,b2 holds b3 in dom b4
theorem Th1: :: FUNCSDOM:1
canceled;
theorem Th2: :: FUNCSDOM:2
canceled;
theorem Th3: :: FUNCSDOM:3
canceled;
theorem Th4: :: FUNCSDOM:4
canceled;
theorem Th5: :: FUNCSDOM:5
canceled;
theorem Th6: :: FUNCSDOM:6
canceled;
theorem Th7: :: FUNCSDOM:7
canceled;
theorem Th8: :: FUNCSDOM:8
canceled;
theorem Th9: :: FUNCSDOM:9
canceled;
theorem Th10: :: FUNCSDOM:10
theorem Th11: :: FUNCSDOM:11
theorem Th12: :: FUNCSDOM:12
theorem Th13: :: FUNCSDOM:13
theorem Th14: :: FUNCSDOM:14
theorem Th15: :: FUNCSDOM:15
theorem Th16: :: FUNCSDOM:16
theorem Th17: :: FUNCSDOM:17
theorem Th18: :: FUNCSDOM:18
theorem Th19: :: FUNCSDOM:19
theorem Th20: :: FUNCSDOM:20
theorem Th21: :: FUNCSDOM:21
theorem Th22: :: FUNCSDOM:22
theorem Th23: :: FUNCSDOM:23
theorem Th24: :: FUNCSDOM:24
theorem Th25: :: FUNCSDOM:25
Lemma20:
for b1 being non empty set
for b2, b3 being Element of Funcs b1,REAL
for b4 being Real holds (RealFuncAdd b1) . ((RealFuncExtMult b1) . [b4,b2]),((RealFuncExtMult b1) . [b4,b3]) = (RealFuncExtMult b1) . [b4,((RealFuncAdd b1) . b2,b3)]
theorem Th26: :: FUNCSDOM:26
theorem Th27: :: FUNCSDOM:27
theorem Th28: :: FUNCSDOM:28
for
b1 being
set for
b2 being non
empty set ex
b3,
b4 being
Element of
Funcs b2,
REAL st
( ( for
b5 being
set st
b5 in b2 holds
( (
b5 = b1 implies
b3 . b5 = 1 ) & (
b5 <> b1 implies
b3 . b5 = 0 ) ) ) & ( for
b5 being
set st
b5 in b2 holds
( (
b5 = b1 implies
b4 . b5 = 0 ) & (
b5 <> b1 implies
b4 . b5 = 1 ) ) ) )
theorem Th29: :: FUNCSDOM:29
theorem Th30: :: FUNCSDOM:30
theorem Th31: :: FUNCSDOM:31
theorem Th32: :: FUNCSDOM:32
theorem Th33: :: FUNCSDOM:33
for
b1,
b2 being
set for
b3 being non
empty set st
b3 = {b1,b2} &
b1 <> b2 holds
ex
b4,
b5 being
Element of
Funcs b3,
REAL st
( ( for
b6,
b7 being
Real st
(RealFuncAdd b3) . ((RealFuncExtMult b3) . [b6,b4]),
((RealFuncExtMult b3) . [b7,b5]) = RealFuncZero b3 holds
(
b6 = 0 &
b7 = 0 ) ) & ( for
b6 being
Element of
Funcs b3,
REAL ex
b7,
b8 being
Real st
b6 = (RealFuncAdd b3) . ((RealFuncExtMult b3) . [b7,b4]),
((RealFuncExtMult b3) . [b8,b5]) ) )
theorem Th34: :: FUNCSDOM:34
:: deftheorem Def7 defines RealVectSpace FUNCSDOM:def 7 :
Lemma28:
ex b1 being non empty set ex b2, b3 being set st
( b1 = {b2,b3} & b2 <> b3 )
theorem Th35: :: FUNCSDOM:35
canceled;
theorem Th36: :: FUNCSDOM:36
canceled;
theorem Th37: :: FUNCSDOM:37
definition
let c1 be non
empty set ;
canceled;canceled;canceled;canceled;func RRing c1 -> strict doubleLoopStr equals :: FUNCSDOM:def 12
doubleLoopStr(#
(Funcs a1,REAL ),
(RealFuncAdd a1),
(RealFuncMult a1),
(RealFuncUnit a1),
(RealFuncZero a1) #);
correctness
coherence
doubleLoopStr(# (Funcs c1,REAL ),(RealFuncAdd c1),(RealFuncMult c1),(RealFuncUnit c1),(RealFuncZero c1) #) is strict doubleLoopStr ;
;
end;
:: deftheorem Def8 FUNCSDOM:def 8 :
canceled;
:: deftheorem Def9 FUNCSDOM:def 9 :
canceled;
:: deftheorem Def10 FUNCSDOM:def 10 :
canceled;
:: deftheorem Def11 FUNCSDOM:def 11 :
canceled;
:: deftheorem Def12 defines RRing FUNCSDOM:def 12 :
theorem Th38: :: FUNCSDOM:38
canceled;
theorem Th39: :: FUNCSDOM:39
canceled;
theorem Th40: :: FUNCSDOM:40
canceled;
theorem Th41: :: FUNCSDOM:41
theorem Th42: :: FUNCSDOM:42
theorem Th43: :: FUNCSDOM:43
definition
let c1 be non
empty set ;
canceled;canceled;canceled;canceled;canceled;canceled;func RAlgebra c1 -> strict AlgebraStr equals :: FUNCSDOM:def 19
AlgebraStr(#
(Funcs a1,REAL ),
(RealFuncMult a1),
(RealFuncAdd a1),
(RealFuncExtMult a1),
(RealFuncUnit a1),
(RealFuncZero a1) #);
correctness
coherence
AlgebraStr(# (Funcs c1,REAL ),(RealFuncMult c1),(RealFuncAdd c1),(RealFuncExtMult c1),(RealFuncUnit c1),(RealFuncZero c1) #) is strict AlgebraStr ;
;
end;
:: deftheorem Def13 FUNCSDOM:def 13 :
canceled;
:: deftheorem Def14 FUNCSDOM:def 14 :
canceled;
:: deftheorem Def15 FUNCSDOM:def 15 :
canceled;
:: deftheorem Def16 FUNCSDOM:def 16 :
canceled;
:: deftheorem Def17 FUNCSDOM:def 17 :
canceled;
:: deftheorem Def18 FUNCSDOM:def 18 :
canceled;
:: deftheorem Def19 defines RAlgebra FUNCSDOM:def 19 :
theorem Th44: :: FUNCSDOM:44
theorem Th45: :: FUNCSDOM:45
canceled;
theorem Th46: :: FUNCSDOM:46
canceled;
theorem Th47: :: FUNCSDOM:47
canceled;
theorem Th48: :: FUNCSDOM:48
canceled;
theorem Th49: :: FUNCSDOM:49
:: deftheorem Def20 defines Algebra-like FUNCSDOM:def 20 :
theorem Th50: :: FUNCSDOM:50