:: INTEGRA5 semantic presentation
theorem Th1: :: INTEGRA5:1
theorem Th2: :: INTEGRA5:2
theorem Th3: :: INTEGRA5:3
:: deftheorem Def1 defines || INTEGRA5:def 1 :
theorem Th4: :: INTEGRA5:4
theorem Th5: :: INTEGRA5:5
:: deftheorem Def2 defines is_integrable_on INTEGRA5:def 2 :
:: deftheorem Def3 defines integral INTEGRA5:def 3 :
theorem Th6: :: INTEGRA5:6
theorem Th7: :: INTEGRA5:7
theorem Th8: :: INTEGRA5:8
theorem Th9: :: INTEGRA5:9
theorem Th10: :: INTEGRA5:10
theorem Th11: :: INTEGRA5:11
theorem Th12: :: INTEGRA5:12
theorem Th13: :: INTEGRA5:13
theorem Th14: :: INTEGRA5:14
theorem Th15: :: INTEGRA5:15
Lemma17:
for b1 being closed-interval Subset of REAL
for b2 being PartFunc of REAL , REAL st b2 is_non_decreasing_on b1 & b1 c= dom b2 holds
b2 is_integrable_on b1
theorem Th16: :: INTEGRA5:16
theorem Th17: :: INTEGRA5:17
theorem Th18: :: INTEGRA5:18
:: deftheorem Def4 defines [' INTEGRA5:def 4 :
definition
let c1,
c2 be
real number ;
let c3 be
PartFunc of
REAL ,
REAL ;
func integral c3,
c1,
c2 -> Real equals :
Def5:
:: INTEGRA5:def 5
integral a3,
['a1,a2'] if a1 <= a2 otherwise - (integral a3,['a2,a1']);
correctness
coherence
( ( c1 <= c2 implies integral c3,['c1,c2'] is Real ) & ( not c1 <= c2 implies - (integral c3,['c2,c1']) is Real ) );
consistency
for b1 being Real holds verum;
;
end;
:: deftheorem Def5 defines integral INTEGRA5:def 5 :
for
b1,
b2 being
real number for
b3 being
PartFunc of
REAL ,
REAL holds
( (
b1 <= b2 implies
integral b3,
b1,
b2 = integral b3,
['b1,b2'] ) & ( not
b1 <= b2 implies
integral b3,
b1,
b2 = - (integral b3,['b2,b1']) ) );
theorem Th19: :: INTEGRA5:19
theorem Th20: :: INTEGRA5:20
theorem Th21: :: INTEGRA5:21