:: JORDAN13 semantic presentation
definition
let c1 be non
empty being_simple_closed_curve non
horizontal non
vertical Subset of
(TOP-REAL 2);
let c2 be
Nat;
assume E1:
c2 is_sufficiently_large_for c1
;
func Span c1,
c2 -> clockwise_oriented non
constant standard special_circular_sequence means :: JORDAN13:def 1
(
a3 is_sequence_on Gauge a1,
a2 &
a3 /. 1
= (Gauge a1,a2) * (X-SpanStart a1,a2),
(Y-SpanStart a1,a2) &
a3 /. 2
= (Gauge a1,a2) * ((X-SpanStart a1,a2) -' 1),
(Y-SpanStart a1,a2) & ( for
b1 being
Nat st 1
<= b1 &
b1 + 2
<= len a3 holds
( (
front_right_cell a3,
b1,
(Gauge a1,a2) misses a1 &
front_left_cell a3,
b1,
(Gauge a1,a2) misses a1 implies
a3 turns_left b1,
Gauge a1,
a2 ) & (
front_right_cell a3,
b1,
(Gauge a1,a2) misses a1 &
front_left_cell a3,
b1,
(Gauge a1,a2) meets a1 implies
a3 goes_straight b1,
Gauge a1,
a2 ) & (
front_right_cell a3,
b1,
(Gauge a1,a2) meets a1 implies
a3 turns_right b1,
Gauge a1,
a2 ) ) ) );
existence
ex b1 being clockwise_oriented non constant standard special_circular_sequence st
( b1 is_sequence_on Gauge c1,c2 & b1 /. 1 = (Gauge c1,c2) * (X-SpanStart c1,c2),(Y-SpanStart c1,c2) & b1 /. 2 = (Gauge c1,c2) * ((X-SpanStart c1,c2) -' 1),(Y-SpanStart c1,c2) & ( for b2 being Nat st 1 <= b2 & b2 + 2 <= len b1 holds
( ( front_right_cell b1,b2,(Gauge c1,c2) misses c1 & front_left_cell b1,b2,(Gauge c1,c2) misses c1 implies b1 turns_left b2, Gauge c1,c2 ) & ( front_right_cell b1,b2,(Gauge c1,c2) misses c1 & front_left_cell b1,b2,(Gauge c1,c2) meets c1 implies b1 goes_straight b2, Gauge c1,c2 ) & ( front_right_cell b1,b2,(Gauge c1,c2) meets c1 implies b1 turns_right b2, Gauge c1,c2 ) ) ) )
uniqueness
for b1, b2 being clockwise_oriented non constant standard special_circular_sequence st b1 is_sequence_on Gauge c1,c2 & b1 /. 1 = (Gauge c1,c2) * (X-SpanStart c1,c2),(Y-SpanStart c1,c2) & b1 /. 2 = (Gauge c1,c2) * ((X-SpanStart c1,c2) -' 1),(Y-SpanStart c1,c2) & ( for b3 being Nat st 1 <= b3 & b3 + 2 <= len b1 holds
( ( front_right_cell b1,b3,(Gauge c1,c2) misses c1 & front_left_cell b1,b3,(Gauge c1,c2) misses c1 implies b1 turns_left b3, Gauge c1,c2 ) & ( front_right_cell b1,b3,(Gauge c1,c2) misses c1 & front_left_cell b1,b3,(Gauge c1,c2) meets c1 implies b1 goes_straight b3, Gauge c1,c2 ) & ( front_right_cell b1,b3,(Gauge c1,c2) meets c1 implies b1 turns_right b3, Gauge c1,c2 ) ) ) & b2 is_sequence_on Gauge c1,c2 & b2 /. 1 = (Gauge c1,c2) * (X-SpanStart c1,c2),(Y-SpanStart c1,c2) & b2 /. 2 = (Gauge c1,c2) * ((X-SpanStart c1,c2) -' 1),(Y-SpanStart c1,c2) & ( for b3 being Nat st 1 <= b3 & b3 + 2 <= len b2 holds
( ( front_right_cell b2,b3,(Gauge c1,c2) misses c1 & front_left_cell b2,b3,(Gauge c1,c2) misses c1 implies b2 turns_left b3, Gauge c1,c2 ) & ( front_right_cell b2,b3,(Gauge c1,c2) misses c1 & front_left_cell b2,b3,(Gauge c1,c2) meets c1 implies b2 goes_straight b3, Gauge c1,c2 ) & ( front_right_cell b2,b3,(Gauge c1,c2) meets c1 implies b2 turns_right b3, Gauge c1,c2 ) ) ) holds
b1 = b2
end;
:: deftheorem Def1 defines Span JORDAN13:def 1 :
for
b1 being non
empty being_simple_closed_curve non
horizontal non
vertical Subset of
(TOP-REAL 2) for
b2 being
Nat st
b2 is_sufficiently_large_for b1 holds
for
b3 being
clockwise_oriented non
constant standard special_circular_sequence holds
(
b3 = Span b1,
b2 iff (
b3 is_sequence_on Gauge b1,
b2 &
b3 /. 1
= (Gauge b1,b2) * (X-SpanStart b1,b2),
(Y-SpanStart b1,b2) &
b3 /. 2
= (Gauge b1,b2) * ((X-SpanStart b1,b2) -' 1),
(Y-SpanStart b1,b2) & ( for
b4 being
Nat st 1
<= b4 &
b4 + 2
<= len b3 holds
( (
front_right_cell b3,
b4,
(Gauge b1,b2) misses b1 &
front_left_cell b3,
b4,
(Gauge b1,b2) misses b1 implies
b3 turns_left b4,
Gauge b1,
b2 ) & (
front_right_cell b3,
b4,
(Gauge b1,b2) misses b1 &
front_left_cell b3,
b4,
(Gauge b1,b2) meets b1 implies
b3 goes_straight b4,
Gauge b1,
b2 ) & (
front_right_cell b3,
b4,
(Gauge b1,b2) meets b1 implies
b3 turns_right b4,
Gauge b1,
b2 ) ) ) ) );