:: JORDAN16 semantic presentation
theorem Th1: :: JORDAN16:1
theorem Th2: :: JORDAN16:2
for
b1,
b2,
b3,
b4 being
set st
b1 in b4 &
b2 in b4 &
b3 in b4 holds
{b1,b2,b3} c= b4
theorem Th3: :: JORDAN16:3
theorem Th4: :: JORDAN16:4
theorem Th5: :: JORDAN16:5
theorem Th6: :: JORDAN16:6
theorem Th7: :: JORDAN16:7
theorem Th8: :: JORDAN16:8
theorem Th9: :: JORDAN16:9
for
b1 being
Subset of
(TOP-REAL 2) for
b2,
b3,
b4,
b5 being
Point of
(TOP-REAL 2) st
b1 is_an_arc_of b2,
b3 &
LE b4,
b5,
b1,
b2,
b3 holds
(
b4 in Segment b1,
b2,
b3,
b4,
b5 &
b5 in Segment b1,
b2,
b3,
b4,
b5 )
theorem Th10: :: JORDAN16:10
theorem Th11: :: JORDAN16:11
theorem Th12: :: JORDAN16:12
theorem Th13: :: JORDAN16:13
theorem Th14: :: JORDAN16:14
theorem Th15: :: JORDAN16:15
theorem Th16: :: JORDAN16:16
theorem Th17: :: JORDAN16:17
theorem Th18: :: JORDAN16:18
theorem Th19: :: JORDAN16:19
theorem Th20: :: JORDAN16:20
for
b1 being
Subset of
(TOP-REAL 2) for
b2,
b3,
b4,
b5 being
Point of
(TOP-REAL 2) st
b1 is_an_arc_of b2,
b3 &
LE b4,
b5,
b1,
b2,
b3 holds
ex
b6 being
Function of
I[01] ,
((TOP-REAL 2) | b1)ex
b7,
b8 being
Real st
(
b6 is_homeomorphism &
b6 . 0
= b2 &
b6 . 1
= b3 &
b6 . b7 = b4 &
b6 . b8 = b5 & 0
<= b7 &
b7 <= b8 &
b8 <= 1 )
theorem Th21: :: JORDAN16:21
for
b1 being
Subset of
(TOP-REAL 2) for
b2,
b3,
b4,
b5 being
Point of
(TOP-REAL 2) st
b1 is_an_arc_of b2,
b3 &
LE b4,
b5,
b1,
b2,
b3 &
b4 <> b5 holds
ex
b6 being
Function of
I[01] ,
((TOP-REAL 2) | b1)ex
b7,
b8 being
Real st
(
b6 is_homeomorphism &
b6 . 0
= b2 &
b6 . 1
= b3 &
b6 . b7 = b4 &
b6 . b8 = b5 & 0
<= b7 &
b7 < b8 &
b8 <= 1 )
theorem Th22: :: JORDAN16:22
for
b1 being
Subset of
(TOP-REAL 2) for
b2,
b3,
b4,
b5 being
Point of
(TOP-REAL 2) st
b1 is_an_arc_of b2,
b3 &
LE b4,
b5,
b1,
b2,
b3 holds
not
Segment b1,
b2,
b3,
b4,
b5 is
empty
theorem Th23: :: JORDAN16:23
:: deftheorem Def1 defines continuous JORDAN16:def 1 :
:: deftheorem Def2 defines continuous JORDAN16:def 2 :
:: deftheorem Def3 defines AffineMap JORDAN16:def 3 :
theorem Th24: :: JORDAN16:24
theorem Th25: :: JORDAN16:25
theorem Th26: :: JORDAN16:26
theorem Th27: :: JORDAN16:27
theorem Th28: :: JORDAN16:28
theorem Th29: :: JORDAN16:29
theorem Th30: :: JORDAN16:30
theorem Th31: :: JORDAN16:31
theorem Th32: :: JORDAN16:32
theorem Th33: :: JORDAN16:33
theorem Th34: :: JORDAN16:34
theorem Th35: :: JORDAN16:35
theorem Th36: :: JORDAN16:36
for
b1 being
Subset of
(TOP-REAL 2) for
b2,
b3,
b4,
b5 being
Point of
(TOP-REAL 2) st
b1 is_an_arc_of b2,
b3 &
LE b4,
b5,
b1,
b2,
b3 &
b4 <> b5 holds
Segment b1,
b2,
b3,
b4,
b5 is_an_arc_of b4,
b5
theorem Th37: :: JORDAN16:37