:: JORDAN17 semantic presentation
theorem Th1: :: JORDAN17:1
theorem Th2: :: JORDAN17:2
theorem Th3: :: JORDAN17:3
theorem Th4: :: JORDAN17:4
theorem Th5: :: JORDAN17:5
theorem Th6: :: JORDAN17:6
for
b1,
b2,
b3,
b4 being
Point of
(TOP-REAL 2) for
b5 being
Subset of
(TOP-REAL 2) st
b1 <> b2 &
b5 is_an_arc_of b3,
b4 &
LE b1,
b2,
b5,
b3,
b4 holds
ex
b6 being
Point of
(TOP-REAL 2) st
(
b1 <> b6 &
b2 <> b6 &
LE b1,
b6,
b5,
b3,
b4 &
LE b6,
b2,
b5,
b3,
b4 )
theorem Th7: :: JORDAN17:7
theorem Th8: :: JORDAN17:8
definition
let c1 be
Subset of
(TOP-REAL 2);
let c2,
c3,
c4,
c5 be
Point of
(TOP-REAL 2);
pred c2,
c3,
c4,
c5 are_in_this_order_on c1 means :
Def1:
:: JORDAN17:def 1
( (
LE a2,
a3,
a1 &
LE a3,
a4,
a1 &
LE a4,
a5,
a1 ) or (
LE a3,
a4,
a1 &
LE a4,
a5,
a1 &
LE a5,
a2,
a1 ) or (
LE a4,
a5,
a1 &
LE a5,
a2,
a1 &
LE a2,
a3,
a1 ) or (
LE a5,
a2,
a1 &
LE a2,
a3,
a1 &
LE a3,
a4,
a1 ) );
end;
:: deftheorem Def1 defines are_in_this_order_on JORDAN17:def 1 :
for
b1 being
Subset of
(TOP-REAL 2) for
b2,
b3,
b4,
b5 being
Point of
(TOP-REAL 2) holds
(
b2,
b3,
b4,
b5 are_in_this_order_on b1 iff ( (
LE b2,
b3,
b1 &
LE b3,
b4,
b1 &
LE b4,
b5,
b1 ) or (
LE b3,
b4,
b1 &
LE b4,
b5,
b1 &
LE b5,
b2,
b1 ) or (
LE b4,
b5,
b1 &
LE b5,
b2,
b1 &
LE b2,
b3,
b1 ) or (
LE b5,
b2,
b1 &
LE b2,
b3,
b1 &
LE b3,
b4,
b1 ) ) );
theorem Th9: :: JORDAN17:9
theorem Th10: :: JORDAN17:10
theorem Th11: :: JORDAN17:11
theorem Th12: :: JORDAN17:12
theorem Th13: :: JORDAN17:13
theorem Th14: :: JORDAN17:14
theorem Th15: :: JORDAN17:15
theorem Th16: :: JORDAN17:16
theorem Th17: :: JORDAN17:17
theorem Th18: :: JORDAN17:18
theorem Th19: :: JORDAN17:19
theorem Th20: :: JORDAN17:20
theorem Th21: :: JORDAN17:21
theorem Th22: :: JORDAN17:22
theorem Th23: :: JORDAN17:23
theorem Th24: :: JORDAN17:24
theorem Th25: :: JORDAN17:25
theorem Th26: :: JORDAN17:26
theorem Th27: :: JORDAN17:27
for
b1 being
Simple_closed_curve for
b2,
b3,
b4,
b5 being
Point of
(TOP-REAL 2) st
b2 in b1 &
b3 in b1 &
b4 in b1 &
b5 in b1 & not
b2,
b3,
b4,
b5 are_in_this_order_on b1 & not
b2,
b3,
b5,
b4 are_in_this_order_on b1 & not
b2,
b4,
b3,
b5 are_in_this_order_on b1 & not
b2,
b4,
b5,
b3 are_in_this_order_on b1 & not
b2,
b5,
b3,
b4 are_in_this_order_on b1 holds
b2,
b5,
b4,
b3 are_in_this_order_on b1