:: JORDAN18 semantic presentation
Lemma1:
TOP-REAL 2 = TopSpaceMetr (Euclid 2)
by EUCLID:def 8;
Lemma2:
the carrier of (Euclid 2) = the carrier of (TopSpaceMetr (Euclid 2))
by TOPMETR:16;
Lemma3:
dom proj1 = the carrier of (TOP-REAL 2)
by FUNCT_2:def 1;
Lemma4:
dom proj2 = the carrier of (TOP-REAL 2)
by FUNCT_2:def 1;
theorem Th1: :: JORDAN18:1
theorem Th2: :: JORDAN18:2
theorem Th3: :: JORDAN18:3
theorem Th4: :: JORDAN18:4
theorem Th5: :: JORDAN18:5
theorem Th6: :: JORDAN18:6
theorem Th7: :: JORDAN18:7
theorem Th8: :: JORDAN18:8
theorem Th9: :: JORDAN18:9
theorem Th10: :: JORDAN18:10
theorem Th11: :: JORDAN18:11
theorem Th12: :: JORDAN18:12
theorem Th13: :: JORDAN18:13
theorem Th14: :: JORDAN18:14
theorem Th15: :: JORDAN18:15
theorem Th16: :: JORDAN18:16
theorem Th17: :: JORDAN18:17
theorem Th18: :: JORDAN18:18
theorem Th19: :: JORDAN18:19
:: deftheorem Def1 defines North-Bound JORDAN18:def 1 :
:: deftheorem Def2 defines South-Bound JORDAN18:def 2 :
theorem Th20: :: JORDAN18:20
theorem Th21: :: JORDAN18:21
theorem Th22: :: JORDAN18:22
theorem Th23: :: JORDAN18:23
theorem Th24: :: JORDAN18:24
theorem Th25: :: JORDAN18:25
theorem Th26: :: JORDAN18:26
theorem Th27: :: JORDAN18:27
theorem Th28: :: JORDAN18:28
:: deftheorem Def3 defines -separate JORDAN18:def 3 :
theorem Th29: :: JORDAN18:29
theorem Th30: :: JORDAN18:30
theorem Th31: :: JORDAN18:31
theorem Th32: :: JORDAN18:32
theorem Th33: :: JORDAN18:33
theorem Th34: :: JORDAN18:34
theorem Th35: :: JORDAN18:35
theorem Th36: :: JORDAN18:36
theorem Th37: :: JORDAN18:37
theorem Th38: :: JORDAN18:38