:: JORDAN1I semantic presentation
theorem Th1: :: JORDAN1I:1
theorem Th2: :: JORDAN1I:2
theorem Th3: :: JORDAN1I:3
theorem Th4: :: JORDAN1I:4
theorem Th5: :: JORDAN1I:5
theorem Th6: :: JORDAN1I:6
theorem Th7: :: JORDAN1I:7
theorem Th8: :: JORDAN1I:8
theorem Th9: :: JORDAN1I:9
theorem Th10: :: JORDAN1I:10
theorem Th11: :: JORDAN1I:11
theorem Th12: :: JORDAN1I:12
theorem Th13: :: JORDAN1I:13
theorem Th14: :: JORDAN1I:14
theorem Th15: :: JORDAN1I:15
theorem Th16: :: JORDAN1I:16
theorem Th17: :: JORDAN1I:17
theorem Th18: :: JORDAN1I:18
theorem Th19: :: JORDAN1I:19
theorem Th20: :: JORDAN1I:20
theorem Th21: :: JORDAN1I:21
theorem Th22: :: JORDAN1I:22
theorem Th23: :: JORDAN1I:23
theorem Th24: :: JORDAN1I:24
theorem Th25: :: JORDAN1I:25
theorem Th26: :: JORDAN1I:26
theorem Th27: :: JORDAN1I:27
theorem Th28: :: JORDAN1I:28
theorem Th29: :: JORDAN1I:29
theorem Th30: :: JORDAN1I:30
for
b1,
b2 being
Nat for
b3 being non
empty compact non
horizontal non
vertical being_simple_closed_curve Subset of
(TOP-REAL 2) for
b4 being
Point of
(TOP-REAL 2) st
b4 `1 = ((W-bound b3) + (E-bound b3)) / 2 &
b1 > 0 & 1
<= b2 &
b2 <= width (Gauge b3,b1) &
(Gauge b3,b1) * (Center (Gauge b3,b1)),
b2 in Upper_Arc (L~ (Cage b3,b1)) &
b4 `2 = sup (proj2 .: ((LSeg ((Gauge b3,1) * (Center (Gauge b3,1)),1),((Gauge b3,b1) * (Center (Gauge b3,b1)),b2)) /\ (Lower_Arc (L~ (Cage b3,b1))))) holds
ex
b5 being
Nat st
( 1
<= b5 &
b5 <= width (Gauge b3,b1) &
b4 = (Gauge b3,b1) * (Center (Gauge b3,b1)),
b5 )