:: JORDAN9 semantic presentation
Lemma1:
for b1 being Nat st 1 <= b1 holds
(b1 -' 1) + 2 = b1 + 1
theorem Th1: :: JORDAN9:1
canceled;
theorem Th2: :: JORDAN9:2
canceled;
theorem Th3: :: JORDAN9:3
theorem Th4: :: JORDAN9:4
theorem Th5: :: JORDAN9:5
theorem Th6: :: JORDAN9:6
theorem Th7: :: JORDAN9:7
theorem Th8: :: JORDAN9:8
Lemma8:
for b1 being Nat
for b2 being Go-board
for b3 being FinSequence of (TOP-REAL 2) st b3 is_sequence_on b2 & 1 <= b1 & b1 <= len b3 holds
ex b4, b5 being Nat st
( [b4,b5] in Indices b2 & b3 /. b1 = b2 * b4,b5 )
theorem Th9: :: JORDAN9:9
theorem Th10: :: JORDAN9:10
theorem Th11: :: JORDAN9:11
theorem Th12: :: JORDAN9:12
theorem Th13: :: JORDAN9:13
theorem Th14: :: JORDAN9:14
theorem Th15: :: JORDAN9:15
theorem Th16: :: JORDAN9:16
theorem Th17: :: JORDAN9:17
theorem Th18: :: JORDAN9:18
theorem Th19: :: JORDAN9:19
theorem Th20: :: JORDAN9:20
theorem Th21: :: JORDAN9:21
theorem Th22: :: JORDAN9:22
for
b1,
b2 being
Nat for
b3 being
Go-board st 1
<= b1 &
b1 + 1
<= len b3 & 1
<= b2 &
b2 + 1
<= width b3 holds
(
b3 * b1,
b2 in cell b3,
b1,
b2 &
b3 * b1,
(b2 + 1) in cell b3,
b1,
b2 &
b3 * (b1 + 1),
(b2 + 1) in cell b3,
b1,
b2 &
b3 * (b1 + 1),
b2 in cell b3,
b1,
b2 )
theorem Th23: :: JORDAN9:23
theorem Th24: :: JORDAN9:24
theorem Th25: :: JORDAN9:25
theorem Th26: :: JORDAN9:26
theorem Th27: :: JORDAN9:27
theorem Th28: :: JORDAN9:28
theorem Th29: :: JORDAN9:29
theorem Th30: :: JORDAN9:30
theorem Th31: :: JORDAN9:31
for
b1 being
Nat for
b2 being non
empty compact non
horizontal non
vertical Subset of
(TOP-REAL 2) for
b3,
b4 being
Nat st 1
<= b3 &
b3 + 1
<= len (Gauge b2,b1) &
N-min b2 in cell (Gauge b2,b1),
b3,
((width (Gauge b2,b1)) -' 1) &
N-min b2 <> (Gauge b2,b1) * b3,
((width (Gauge b2,b1)) -' 1) & 1
<= b4 &
b4 + 1
<= len (Gauge b2,b1) &
N-min b2 in cell (Gauge b2,b1),
b4,
((width (Gauge b2,b1)) -' 1) &
N-min b2 <> (Gauge b2,b1) * b4,
((width (Gauge b2,b1)) -' 1) holds
b3 = b4
theorem Th32: :: JORDAN9:32
for
b1 being
Nat for
b2 being non
empty compact non
horizontal non
vertical Subset of
(TOP-REAL 2) for
b3 being non
constant standard special_circular_sequence st
b3 is_sequence_on Gauge b2,
b1 & ( for
b4 being
Nat st 1
<= b4 &
b4 + 1
<= len b3 holds
(
left_cell b3,
b4,
(Gauge b2,b1) misses b2 &
right_cell b3,
b4,
(Gauge b2,b1) meets b2 ) ) & ex
b4 being
Nat st
( 1
<= b4 &
b4 + 1
<= len (Gauge b2,b1) &
b3 /. 1
= (Gauge b2,b1) * b4,
(width (Gauge b2,b1)) &
b3 /. 2
= (Gauge b2,b1) * (b4 + 1),
(width (Gauge b2,b1)) &
N-min b2 in cell (Gauge b2,b1),
b4,
((width (Gauge b2,b1)) -' 1) &
N-min b2 <> (Gauge b2,b1) * b4,
((width (Gauge b2,b1)) -' 1) ) holds
N-min (L~ b3) = b3 /. 1
definition
let c1 be non
empty compact non
horizontal non
vertical Subset of
(TOP-REAL 2);
let c2 be
Nat;
assume E30:
c1 is
connected
;
func Cage c1,
c2 -> clockwise_oriented non
constant standard special_circular_sequence means :
Def1:
:: JORDAN9:def 1
(
a3 is_sequence_on Gauge a1,
a2 & ex
b1 being
Nat st
( 1
<= b1 &
b1 + 1
<= len (Gauge a1,a2) &
a3 /. 1
= (Gauge a1,a2) * b1,
(width (Gauge a1,a2)) &
a3 /. 2
= (Gauge a1,a2) * (b1 + 1),
(width (Gauge a1,a2)) &
N-min a1 in cell (Gauge a1,a2),
b1,
((width (Gauge a1,a2)) -' 1) &
N-min a1 <> (Gauge a1,a2) * b1,
((width (Gauge a1,a2)) -' 1) ) & ( for
b1 being
Nat st 1
<= b1 &
b1 + 2
<= len a3 holds
( (
front_left_cell a3,
b1,
(Gauge a1,a2) misses a1 &
front_right_cell a3,
b1,
(Gauge a1,a2) misses a1 implies
a3 turns_right b1,
Gauge a1,
a2 ) & (
front_left_cell a3,
b1,
(Gauge a1,a2) misses a1 &
front_right_cell a3,
b1,
(Gauge a1,a2) meets a1 implies
a3 goes_straight b1,
Gauge a1,
a2 ) & (
front_left_cell a3,
b1,
(Gauge a1,a2) meets a1 implies
a3 turns_left b1,
Gauge a1,
a2 ) ) ) );
existence
ex b1 being clockwise_oriented non constant standard special_circular_sequence st
( b1 is_sequence_on Gauge c1,c2 & ex b2 being Nat st
( 1 <= b2 & b2 + 1 <= len (Gauge c1,c2) & b1 /. 1 = (Gauge c1,c2) * b2,(width (Gauge c1,c2)) & b1 /. 2 = (Gauge c1,c2) * (b2 + 1),(width (Gauge c1,c2)) & N-min c1 in cell (Gauge c1,c2),b2,((width (Gauge c1,c2)) -' 1) & N-min c1 <> (Gauge c1,c2) * b2,((width (Gauge c1,c2)) -' 1) ) & ( for b2 being Nat st 1 <= b2 & b2 + 2 <= len b1 holds
( ( front_left_cell b1,b2,(Gauge c1,c2) misses c1 & front_right_cell b1,b2,(Gauge c1,c2) misses c1 implies b1 turns_right b2, Gauge c1,c2 ) & ( front_left_cell b1,b2,(Gauge c1,c2) misses c1 & front_right_cell b1,b2,(Gauge c1,c2) meets c1 implies b1 goes_straight b2, Gauge c1,c2 ) & ( front_left_cell b1,b2,(Gauge c1,c2) meets c1 implies b1 turns_left b2, Gauge c1,c2 ) ) ) )
uniqueness
for b1, b2 being clockwise_oriented non constant standard special_circular_sequence st b1 is_sequence_on Gauge c1,c2 & ex b3 being Nat st
( 1 <= b3 & b3 + 1 <= len (Gauge c1,c2) & b1 /. 1 = (Gauge c1,c2) * b3,(width (Gauge c1,c2)) & b1 /. 2 = (Gauge c1,c2) * (b3 + 1),(width (Gauge c1,c2)) & N-min c1 in cell (Gauge c1,c2),b3,((width (Gauge c1,c2)) -' 1) & N-min c1 <> (Gauge c1,c2) * b3,((width (Gauge c1,c2)) -' 1) ) & ( for b3 being Nat st 1 <= b3 & b3 + 2 <= len b1 holds
( ( front_left_cell b1,b3,(Gauge c1,c2) misses c1 & front_right_cell b1,b3,(Gauge c1,c2) misses c1 implies b1 turns_right b3, Gauge c1,c2 ) & ( front_left_cell b1,b3,(Gauge c1,c2) misses c1 & front_right_cell b1,b3,(Gauge c1,c2) meets c1 implies b1 goes_straight b3, Gauge c1,c2 ) & ( front_left_cell b1,b3,(Gauge c1,c2) meets c1 implies b1 turns_left b3, Gauge c1,c2 ) ) ) & b2 is_sequence_on Gauge c1,c2 & ex b3 being Nat st
( 1 <= b3 & b3 + 1 <= len (Gauge c1,c2) & b2 /. 1 = (Gauge c1,c2) * b3,(width (Gauge c1,c2)) & b2 /. 2 = (Gauge c1,c2) * (b3 + 1),(width (Gauge c1,c2)) & N-min c1 in cell (Gauge c1,c2),b3,((width (Gauge c1,c2)) -' 1) & N-min c1 <> (Gauge c1,c2) * b3,((width (Gauge c1,c2)) -' 1) ) & ( for b3 being Nat st 1 <= b3 & b3 + 2 <= len b2 holds
( ( front_left_cell b2,b3,(Gauge c1,c2) misses c1 & front_right_cell b2,b3,(Gauge c1,c2) misses c1 implies b2 turns_right b3, Gauge c1,c2 ) & ( front_left_cell b2,b3,(Gauge c1,c2) misses c1 & front_right_cell b2,b3,(Gauge c1,c2) meets c1 implies b2 goes_straight b3, Gauge c1,c2 ) & ( front_left_cell b2,b3,(Gauge c1,c2) meets c1 implies b2 turns_left b3, Gauge c1,c2 ) ) ) holds
b1 = b2
end;
:: deftheorem Def1 defines Cage JORDAN9:def 1 :
for
b1 being non
empty compact non
horizontal non
vertical Subset of
(TOP-REAL 2) for
b2 being
Nat st
b1 is
connected holds
for
b3 being
clockwise_oriented non
constant standard special_circular_sequence holds
(
b3 = Cage b1,
b2 iff (
b3 is_sequence_on Gauge b1,
b2 & ex
b4 being
Nat st
( 1
<= b4 &
b4 + 1
<= len (Gauge b1,b2) &
b3 /. 1
= (Gauge b1,b2) * b4,
(width (Gauge b1,b2)) &
b3 /. 2
= (Gauge b1,b2) * (b4 + 1),
(width (Gauge b1,b2)) &
N-min b1 in cell (Gauge b1,b2),
b4,
((width (Gauge b1,b2)) -' 1) &
N-min b1 <> (Gauge b1,b2) * b4,
((width (Gauge b1,b2)) -' 1) ) & ( for
b4 being
Nat st 1
<= b4 &
b4 + 2
<= len b3 holds
( (
front_left_cell b3,
b4,
(Gauge b1,b2) misses b1 &
front_right_cell b3,
b4,
(Gauge b1,b2) misses b1 implies
b3 turns_right b4,
Gauge b1,
b2 ) & (
front_left_cell b3,
b4,
(Gauge b1,b2) misses b1 &
front_right_cell b3,
b4,
(Gauge b1,b2) meets b1 implies
b3 goes_straight b4,
Gauge b1,
b2 ) & (
front_left_cell b3,
b4,
(Gauge b1,b2) meets b1 implies
b3 turns_left b4,
Gauge b1,
b2 ) ) ) ) );
theorem Th33: :: JORDAN9:33
for
b1,
b2 being
Nat for
b3 being non
empty compact non
horizontal non
vertical Subset of
(TOP-REAL 2) st
b3 is
connected & 1
<= b1 &
b1 + 1
<= len (Cage b3,b2) holds
(
left_cell (Cage b3,b2),
b1,
(Gauge b3,b2) misses b3 &
right_cell (Cage b3,b2),
b1,
(Gauge b3,b2) meets b3 )
theorem Th34: :: JORDAN9:34