:: JORDAN20 semantic presentation
theorem Th1: :: JORDAN20:1
theorem Th2: :: JORDAN20:2
theorem Th3: :: JORDAN20:3
theorem Th4: :: JORDAN20:4
theorem Th5: :: JORDAN20:5
theorem Th6: :: JORDAN20:6
theorem Th7: :: JORDAN20:7
definition
let c1 be
Subset of
(TOP-REAL 2);
let c2,
c3,
c4 be
Point of
(TOP-REAL 2);
let c5 be
Real;
pred c4 is_Lin c1,
c2,
c3,
c5 means :
Def1:
:: JORDAN20:def 1
(
a1 is_an_arc_of a2,
a3 &
a4 in a1 &
a4 `1 = a5 & ex
b1 being
Point of
(TOP-REAL 2) st
(
b1 `1 < a5 &
LE b1,
a4,
a1,
a2,
a3 & ( for
b2 being
Point of
(TOP-REAL 2) st
LE b1,
b2,
a1,
a2,
a3 &
LE b2,
a4,
a1,
a2,
a3 holds
b2 `1 <= a5 ) ) );
pred c4 is_Rin c1,
c2,
c3,
c5 means :
Def2:
:: JORDAN20:def 2
(
a1 is_an_arc_of a2,
a3 &
a4 in a1 &
a4 `1 = a5 & ex
b1 being
Point of
(TOP-REAL 2) st
(
b1 `1 > a5 &
LE b1,
a4,
a1,
a2,
a3 & ( for
b2 being
Point of
(TOP-REAL 2) st
LE b1,
b2,
a1,
a2,
a3 &
LE b2,
a4,
a1,
a2,
a3 holds
b2 `1 >= a5 ) ) );
pred c4 is_Lout c1,
c2,
c3,
c5 means :
Def3:
:: JORDAN20:def 3
(
a1 is_an_arc_of a2,
a3 &
a4 in a1 &
a4 `1 = a5 & ex
b1 being
Point of
(TOP-REAL 2) st
(
b1 `1 < a5 &
LE a4,
b1,
a1,
a2,
a3 & ( for
b2 being
Point of
(TOP-REAL 2) st
LE b2,
b1,
a1,
a2,
a3 &
LE a4,
b2,
a1,
a2,
a3 holds
b2 `1 <= a5 ) ) );
pred c4 is_Rout c1,
c2,
c3,
c5 means :
Def4:
:: JORDAN20:def 4
(
a1 is_an_arc_of a2,
a3 &
a4 in a1 &
a4 `1 = a5 & ex
b1 being
Point of
(TOP-REAL 2) st
(
b1 `1 > a5 &
LE a4,
b1,
a1,
a2,
a3 & ( for
b2 being
Point of
(TOP-REAL 2) st
LE b2,
b1,
a1,
a2,
a3 &
LE a4,
b2,
a1,
a2,
a3 holds
b2 `1 >= a5 ) ) );
pred c4 is_OSin c1,
c2,
c3,
c5 means :
Def5:
:: JORDAN20:def 5
(
a1 is_an_arc_of a2,
a3 &
a4 in a1 &
a4 `1 = a5 & ex
b1 being
Point of
(TOP-REAL 2) st
(
LE b1,
a4,
a1,
a2,
a3 & ( for
b2 being
Point of
(TOP-REAL 2) st
LE b1,
b2,
a1,
a2,
a3 &
LE b2,
a4,
a1,
a2,
a3 holds
b2 `1 = a5 ) & ( for
b2 being
Point of
(TOP-REAL 2) st
LE b2,
b1,
a1,
a2,
a3 &
b2 <> b1 holds
( ex
b3 being
Point of
(TOP-REAL 2) st
(
LE b2,
b3,
a1,
a2,
a3 &
LE b3,
b1,
a1,
a2,
a3 &
b3 `1 > a5 ) & ex
b3 being
Point of
(TOP-REAL 2) st
(
LE b2,
b3,
a1,
a2,
a3 &
LE b3,
b1,
a1,
a2,
a3 &
b3 `1 < a5 ) ) ) ) );
pred c4 is_OSout c1,
c2,
c3,
c5 means :
Def6:
:: JORDAN20:def 6
(
a1 is_an_arc_of a2,
a3 &
a4 in a1 &
a4 `1 = a5 & ex
b1 being
Point of
(TOP-REAL 2) st
(
LE a4,
b1,
a1,
a2,
a3 & ( for
b2 being
Point of
(TOP-REAL 2) st
LE b2,
b1,
a1,
a2,
a3 &
LE a4,
b2,
a1,
a2,
a3 holds
b2 `1 = a5 ) & ( for
b2 being
Point of
(TOP-REAL 2) st
LE b1,
b2,
a1,
a2,
a3 &
b2 <> b1 holds
( ex
b3 being
Point of
(TOP-REAL 2) st
(
LE b3,
b2,
a1,
a2,
a3 &
LE b1,
b3,
a1,
a2,
a3 &
b3 `1 > a5 ) & ex
b3 being
Point of
(TOP-REAL 2) st
(
LE b3,
b2,
a1,
a2,
a3 &
LE b1,
b3,
a1,
a2,
a3 &
b3 `1 < a5 ) ) ) ) );
correctness
;
end;
:: deftheorem Def1 defines is_Lin JORDAN20:def 1 :
for
b1 being
Subset of
(TOP-REAL 2) for
b2,
b3,
b4 being
Point of
(TOP-REAL 2) for
b5 being
Real holds
(
b4 is_Lin b1,
b2,
b3,
b5 iff (
b1 is_an_arc_of b2,
b3 &
b4 in b1 &
b4 `1 = b5 & ex
b6 being
Point of
(TOP-REAL 2) st
(
b6 `1 < b5 &
LE b6,
b4,
b1,
b2,
b3 & ( for
b7 being
Point of
(TOP-REAL 2) st
LE b6,
b7,
b1,
b2,
b3 &
LE b7,
b4,
b1,
b2,
b3 holds
b7 `1 <= b5 ) ) ) );
:: deftheorem Def2 defines is_Rin JORDAN20:def 2 :
for
b1 being
Subset of
(TOP-REAL 2) for
b2,
b3,
b4 being
Point of
(TOP-REAL 2) for
b5 being
Real holds
(
b4 is_Rin b1,
b2,
b3,
b5 iff (
b1 is_an_arc_of b2,
b3 &
b4 in b1 &
b4 `1 = b5 & ex
b6 being
Point of
(TOP-REAL 2) st
(
b6 `1 > b5 &
LE b6,
b4,
b1,
b2,
b3 & ( for
b7 being
Point of
(TOP-REAL 2) st
LE b6,
b7,
b1,
b2,
b3 &
LE b7,
b4,
b1,
b2,
b3 holds
b7 `1 >= b5 ) ) ) );
:: deftheorem Def3 defines is_Lout JORDAN20:def 3 :
for
b1 being
Subset of
(TOP-REAL 2) for
b2,
b3,
b4 being
Point of
(TOP-REAL 2) for
b5 being
Real holds
(
b4 is_Lout b1,
b2,
b3,
b5 iff (
b1 is_an_arc_of b2,
b3 &
b4 in b1 &
b4 `1 = b5 & ex
b6 being
Point of
(TOP-REAL 2) st
(
b6 `1 < b5 &
LE b4,
b6,
b1,
b2,
b3 & ( for
b7 being
Point of
(TOP-REAL 2) st
LE b7,
b6,
b1,
b2,
b3 &
LE b4,
b7,
b1,
b2,
b3 holds
b7 `1 <= b5 ) ) ) );
:: deftheorem Def4 defines is_Rout JORDAN20:def 4 :
for
b1 being
Subset of
(TOP-REAL 2) for
b2,
b3,
b4 being
Point of
(TOP-REAL 2) for
b5 being
Real holds
(
b4 is_Rout b1,
b2,
b3,
b5 iff (
b1 is_an_arc_of b2,
b3 &
b4 in b1 &
b4 `1 = b5 & ex
b6 being
Point of
(TOP-REAL 2) st
(
b6 `1 > b5 &
LE b4,
b6,
b1,
b2,
b3 & ( for
b7 being
Point of
(TOP-REAL 2) st
LE b7,
b6,
b1,
b2,
b3 &
LE b4,
b7,
b1,
b2,
b3 holds
b7 `1 >= b5 ) ) ) );
:: deftheorem Def5 defines is_OSin JORDAN20:def 5 :
for
b1 being
Subset of
(TOP-REAL 2) for
b2,
b3,
b4 being
Point of
(TOP-REAL 2) for
b5 being
Real holds
(
b4 is_OSin b1,
b2,
b3,
b5 iff (
b1 is_an_arc_of b2,
b3 &
b4 in b1 &
b4 `1 = b5 & ex
b6 being
Point of
(TOP-REAL 2) st
(
LE b6,
b4,
b1,
b2,
b3 & ( for
b7 being
Point of
(TOP-REAL 2) st
LE b6,
b7,
b1,
b2,
b3 &
LE b7,
b4,
b1,
b2,
b3 holds
b7 `1 = b5 ) & ( for
b7 being
Point of
(TOP-REAL 2) st
LE b7,
b6,
b1,
b2,
b3 &
b7 <> b6 holds
( ex
b8 being
Point of
(TOP-REAL 2) st
(
LE b7,
b8,
b1,
b2,
b3 &
LE b8,
b6,
b1,
b2,
b3 &
b8 `1 > b5 ) & ex
b8 being
Point of
(TOP-REAL 2) st
(
LE b7,
b8,
b1,
b2,
b3 &
LE b8,
b6,
b1,
b2,
b3 &
b8 `1 < b5 ) ) ) ) ) );
:: deftheorem Def6 defines is_OSout JORDAN20:def 6 :
for
b1 being
Subset of
(TOP-REAL 2) for
b2,
b3,
b4 being
Point of
(TOP-REAL 2) for
b5 being
Real holds
(
b4 is_OSout b1,
b2,
b3,
b5 iff (
b1 is_an_arc_of b2,
b3 &
b4 in b1 &
b4 `1 = b5 & ex
b6 being
Point of
(TOP-REAL 2) st
(
LE b4,
b6,
b1,
b2,
b3 & ( for
b7 being
Point of
(TOP-REAL 2) st
LE b7,
b6,
b1,
b2,
b3 &
LE b4,
b7,
b1,
b2,
b3 holds
b7 `1 = b5 ) & ( for
b7 being
Point of
(TOP-REAL 2) st
LE b6,
b7,
b1,
b2,
b3 &
b7 <> b6 holds
( ex
b8 being
Point of
(TOP-REAL 2) st
(
LE b8,
b7,
b1,
b2,
b3 &
LE b6,
b8,
b1,
b2,
b3 &
b8 `1 > b5 ) & ex
b8 being
Point of
(TOP-REAL 2) st
(
LE b8,
b7,
b1,
b2,
b3 &
LE b6,
b8,
b1,
b2,
b3 &
b8 `1 < b5 ) ) ) ) ) );
theorem Th8: :: JORDAN20:8
theorem Th9: :: JORDAN20:9
for
b1 being non
empty Subset of
(TOP-REAL 2) for
b2,
b3,
b4 being
Point of
(TOP-REAL 2) for
b5 being
Real st
b1 is_an_arc_of b2,
b3 &
b2 `1 < b5 &
b3 `1 > b5 &
b4 in b1 &
b4 `1 = b5 & not
b4 is_Lin b1,
b2,
b3,
b5 & not
b4 is_Rin b1,
b2,
b3,
b5 holds
b4 is_OSin b1,
b2,
b3,
b5
theorem Th10: :: JORDAN20:10
for
b1 being non
empty Subset of
(TOP-REAL 2) for
b2,
b3,
b4 being
Point of
(TOP-REAL 2) for
b5 being
Real st
b1 is_an_arc_of b2,
b3 &
b2 `1 < b5 &
b3 `1 > b5 &
b4 in b1 &
b4 `1 = b5 & not
b4 is_Lout b1,
b2,
b3,
b5 & not
b4 is_Rout b1,
b2,
b3,
b5 holds
b4 is_OSout b1,
b2,
b3,
b5
theorem Th11: :: JORDAN20:11
theorem Th12: :: JORDAN20:12
theorem Th13: :: JORDAN20:13
theorem Th14: :: JORDAN20:14
theorem Th15: :: JORDAN20:15
theorem Th16: :: JORDAN20:16
theorem Th17: :: JORDAN20:17
theorem Th18: :: JORDAN20:18
theorem Th19: :: JORDAN20:19
for
b1 being non
empty Subset of
(TOP-REAL 2) for
b2,
b3,
b4,
b5 being
Point of
(TOP-REAL 2) st
b1 is_an_arc_of b2,
b3 &
b4 in b1 &
b5 in b1 & not
LE b4,
b5,
b1,
b2,
b3 holds
LE b5,
b4,
b1,
b2,
b3
theorem Th20: :: JORDAN20:20
theorem Th21: :: JORDAN20:21
theorem Th22: :: JORDAN20:22
theorem Th23: :: JORDAN20:23
for
b1 being non
empty Subset of
(TOP-REAL 2) for
b2,
b3,
b4,
b5,
b6 being
Point of
(TOP-REAL 2) st
b1 is_an_arc_of b2,
b3 &
LE b4,
b5,
b1,
b2,
b3 &
LE b5,
b6,
b1,
b2,
b3 holds
(Segment b1,b2,b3,b4,b5) \/ (Segment b1,b2,b3,b5,b6) = Segment b1,
b2,
b3,
b4,
b6
theorem Th24: :: JORDAN20:24
for
b1 being non
empty Subset of
(TOP-REAL 2) for
b2,
b3,
b4,
b5,
b6 being
Point of
(TOP-REAL 2) st
b1 is_an_arc_of b2,
b3 &
LE b4,
b5,
b1,
b2,
b3 &
LE b5,
b6,
b1,
b2,
b3 holds
(Segment b1,b2,b3,b4,b5) /\ (Segment b1,b2,b3,b5,b6) = {b5}
theorem Th25: :: JORDAN20:25
theorem Th26: :: JORDAN20:26
canceled;
theorem Th27: :: JORDAN20:27
theorem Th28: :: JORDAN20:28
for
b1,
b2 being non
empty Subset of
(TOP-REAL 2) for
b3,
b4,
b5,
b6 being
Point of
(TOP-REAL 2) st
b1 is_an_arc_of b3,
b4 &
b2 is_an_arc_of b5,
b6 &
LE b5,
b6,
b1,
b3,
b4 &
b2 c= b1 holds
b2 = Segment b1,
b3,
b4,
b5,
b6
theorem Th29: :: JORDAN20:29
for
b1 being non
empty Subset of
(TOP-REAL 2) for
b2,
b3,
b4,
b5,
b6 being
Point of
(TOP-REAL 2) for
b7 being
Real st
b2 `1 < b7 &
b3 `1 > b7 &
b4 is_Lin b1,
b2,
b3,
b7 &
b5 `1 = b7 &
LSeg b4,
b5 c= b1 &
b6 in LSeg b4,
b5 holds
b6 is_Lin b1,
b2,
b3,
b7
theorem Th30: :: JORDAN20:30
for
b1 being non
empty Subset of
(TOP-REAL 2) for
b2,
b3,
b4,
b5,
b6 being
Point of
(TOP-REAL 2) for
b7 being
Real st
b2 `1 < b7 &
b3 `1 > b7 &
b4 is_Rin b1,
b2,
b3,
b7 &
b5 `1 = b7 &
LSeg b4,
b5 c= b1 &
b6 in LSeg b4,
b5 holds
b6 is_Rin b1,
b2,
b3,
b7
theorem Th31: :: JORDAN20:31
for
b1 being non
empty Subset of
(TOP-REAL 2) for
b2,
b3,
b4,
b5,
b6 being
Point of
(TOP-REAL 2) for
b7 being
Real st
b2 `1 < b7 &
b3 `1 > b7 &
b4 is_Lout b1,
b2,
b3,
b7 &
b5 `1 = b7 &
LSeg b4,
b5 c= b1 &
b6 in LSeg b4,
b5 holds
b6 is_Lout b1,
b2,
b3,
b7
theorem Th32: :: JORDAN20:32
for
b1 being non
empty Subset of
(TOP-REAL 2) for
b2,
b3,
b4,
b5,
b6 being
Point of
(TOP-REAL 2) for
b7 being
Real st
b2 `1 < b7 &
b3 `1 > b7 &
b4 is_Rout b1,
b2,
b3,
b7 &
b5 `1 = b7 &
LSeg b4,
b5 c= b1 &
b6 in LSeg b4,
b5 holds
b6 is_Rout b1,
b2,
b3,
b7
theorem Th33: :: JORDAN20:33
theorem Th34: :: JORDAN20:34