:: JORDAN3 semantic presentation
theorem Th1: :: JORDAN3:1
theorem Th2: :: JORDAN3:2
theorem Th3: :: JORDAN3:3
canceled;
theorem Th4: :: JORDAN3:4
theorem Th5: :: JORDAN3:5
theorem Th6: :: JORDAN3:6
theorem Th7: :: JORDAN3:7
theorem Th8: :: JORDAN3:8
theorem Th9: :: JORDAN3:9
theorem Th10: :: JORDAN3:10
theorem Th11: :: JORDAN3:11
theorem Th12: :: JORDAN3:12
theorem Th13: :: JORDAN3:13
theorem Th14: :: JORDAN3:14
theorem Th15: :: JORDAN3:15
theorem Th16: :: JORDAN3:16
canceled;
theorem Th17: :: JORDAN3:17
theorem Th18: :: JORDAN3:18
theorem Th19: :: JORDAN3:19
theorem Th20: :: JORDAN3:20
canceled;
theorem Th21: :: JORDAN3:21
:: deftheorem Def1 defines mid JORDAN3:def 1 :
theorem Th22: :: JORDAN3:22
theorem Th23: :: JORDAN3:23
theorem Th24: :: JORDAN3:24
theorem Th25: :: JORDAN3:25
theorem Th26: :: JORDAN3:26
theorem Th27: :: JORDAN3:27
for
b1 being non
empty set for
b2 being
FinSequence of
b1 for
b3,
b4 being
Nat st 1
<= b3 &
b3 <= len b2 & 1
<= b4 &
b4 <= len b2 holds
(
(mid b2,b3,b4) . 1
= b2 . b3 & (
b3 <= b4 implies (
len (mid b2,b3,b4) = (b4 -' b3) + 1 & ( for
b5 being
Nat st 1
<= b5 &
b5 <= len (mid b2,b3,b4) holds
(mid b2,b3,b4) . b5 = b2 . ((b5 + b3) -' 1) ) ) ) & (
b3 > b4 implies (
len (mid b2,b3,b4) = (b3 -' b4) + 1 & ( for
b5 being
Nat st 1
<= b5 &
b5 <= len (mid b2,b3,b4) holds
(mid b2,b3,b4) . b5 = b2 . ((b3 -' b5) + 1) ) ) ) )
theorem Th28: :: JORDAN3:28
theorem Th29: :: JORDAN3:29
theorem Th30: :: JORDAN3:30
theorem Th31: :: JORDAN3:31
for
b1 being non
empty set for
b2 being
FinSequence of
b1 for
b3,
b4,
b5 being
Nat st 1
<= b3 &
b3 <= b4 &
b4 <= len b2 & 1
<= b5 & (
b5 <= (b4 -' b3) + 1 or
b5 <= (b4 - b3) + 1 or
b5 <= (b4 + 1) - b3 ) holds
(
(mid b2,b3,b4) . b5 = b2 . ((b5 + b3) -' 1) &
(mid b2,b3,b4) . b5 = b2 . ((b5 -' 1) + b3) &
(mid b2,b3,b4) . b5 = b2 . ((b5 + b3) - 1) &
(mid b2,b3,b4) . b5 = b2 . ((b5 - 1) + b3) )
theorem Th32: :: JORDAN3:32
theorem Th33: :: JORDAN3:33
theorem Th34: :: JORDAN3:34
theorem Th35: :: JORDAN3:35
theorem Th36: :: JORDAN3:36
theorem Th37: :: JORDAN3:37
theorem Th38: :: JORDAN3:38
theorem Th39: :: JORDAN3:39
:: deftheorem Def2 defines Index JORDAN3:def 2 :
theorem Th40: :: JORDAN3:40
theorem Th41: :: JORDAN3:41
theorem Th42: :: JORDAN3:42
theorem Th43: :: JORDAN3:43
theorem Th44: :: JORDAN3:44
theorem Th45: :: JORDAN3:45
theorem Th46: :: JORDAN3:46
theorem Th47: :: JORDAN3:47
:: deftheorem Def3 defines is_S-Seq_joining JORDAN3:def 3 :
theorem Th48: :: JORDAN3:48
theorem Th49: :: JORDAN3:49
theorem Th50: :: JORDAN3:50
theorem Th51: :: JORDAN3:51
theorem Th52: :: JORDAN3:52
definition
let c1 be
FinSequence of
(TOP-REAL 2);
let c2 be
Point of
(TOP-REAL 2);
func L_Cut c1,
c2 -> FinSequence of
(TOP-REAL 2) equals :
Def4:
:: JORDAN3:def 4
<*a2*> ^ (mid a1,((Index a2,a1) + 1),(len a1)) if a2 <> a1 . ((Index a2,a1) + 1) otherwise mid a1,
((Index a2,a1) + 1),
(len a1);
correctness
coherence
( ( c2 <> c1 . ((Index c2,c1) + 1) implies <*c2*> ^ (mid c1,((Index c2,c1) + 1),(len c1)) is FinSequence of (TOP-REAL 2) ) & ( not c2 <> c1 . ((Index c2,c1) + 1) implies mid c1,((Index c2,c1) + 1),(len c1) is FinSequence of (TOP-REAL 2) ) );
consistency
for b1 being FinSequence of (TOP-REAL 2) holds verum;
;
func R_Cut c1,
c2 -> FinSequence of
(TOP-REAL 2) equals :
Def5:
:: JORDAN3:def 5
(mid a1,1,(Index a2,a1)) ^ <*a2*> if a2 <> a1 . 1
otherwise <*a2*>;
correctness
coherence
( ( c2 <> c1 . 1 implies (mid c1,1,(Index c2,c1)) ^ <*c2*> is FinSequence of (TOP-REAL 2) ) & ( not c2 <> c1 . 1 implies <*c2*> is FinSequence of (TOP-REAL 2) ) );
consistency
for b1 being FinSequence of (TOP-REAL 2) holds verum;
;
end;
:: deftheorem Def4 defines L_Cut JORDAN3:def 4 :
for
b1 being
FinSequence of
(TOP-REAL 2) for
b2 being
Point of
(TOP-REAL 2) holds
( (
b2 <> b1 . ((Index b2,b1) + 1) implies
L_Cut b1,
b2 = <*b2*> ^ (mid b1,((Index b2,b1) + 1),(len b1)) ) & ( not
b2 <> b1 . ((Index b2,b1) + 1) implies
L_Cut b1,
b2 = mid b1,
((Index b2,b1) + 1),
(len b1) ) );
:: deftheorem Def5 defines R_Cut JORDAN3:def 5 :
theorem Th53: :: JORDAN3:53
theorem Th54: :: JORDAN3:54
theorem Th55: :: JORDAN3:55
theorem Th56: :: JORDAN3:56
theorem Th57: :: JORDAN3:57
theorem Th58: :: JORDAN3:58
theorem Th59: :: JORDAN3:59
theorem Th60: :: JORDAN3:60
theorem Th61: :: JORDAN3:61
:: deftheorem Def6 defines LE JORDAN3:def 6 :
for
b1,
b2,
b3,
b4 being
Point of
(TOP-REAL 2) holds
(
LE b3,
b4,
b1,
b2 iff (
b3 in LSeg b1,
b2 &
b4 in LSeg b1,
b2 & ( for
b5,
b6 being
Real st 0
<= b5 &
b5 <= 1 &
b3 = ((1 - b5) * b1) + (b5 * b2) & 0
<= b6 &
b6 <= 1 &
b4 = ((1 - b6) * b1) + (b6 * b2) holds
b5 <= b6 ) ) );
:: deftheorem Def7 defines LT JORDAN3:def 7 :
for
b1,
b2,
b3,
b4 being
Point of
(TOP-REAL 2) holds
(
LT b3,
b4,
b1,
b2 iff (
LE b3,
b4,
b1,
b2 &
b3 <> b4 ) );
theorem Th62: :: JORDAN3:62
for
b1,
b2,
b3,
b4 being
Point of
(TOP-REAL 2) st
LE b3,
b4,
b1,
b2 &
LE b4,
b3,
b1,
b2 holds
b3 = b4
theorem Th63: :: JORDAN3:63
for
b1,
b2,
b3,
b4 being
Point of
(TOP-REAL 2) st
b3 in LSeg b1,
b2 &
b4 in LSeg b1,
b2 &
b1 <> b2 holds
( (
LE b3,
b4,
b1,
b2 or
LT b4,
b3,
b1,
b2 ) & ( not
LE b3,
b4,
b1,
b2 or not
LT b4,
b3,
b1,
b2 ) )
theorem Th64: :: JORDAN3:64
theorem Th65: :: JORDAN3:65
theorem Th66: :: JORDAN3:66
definition
let c1 be
FinSequence of
(TOP-REAL 2);
let c2,
c3 be
Point of
(TOP-REAL 2);
func B_Cut c1,
c2,
c3 -> FinSequence of
(TOP-REAL 2) equals :
Def8:
:: JORDAN3:def 8
R_Cut (L_Cut a1,a2),
a3 if ( (
a2 in L~ a1 &
a3 in L~ a1 &
Index a2,
a1 < Index a3,
a1 ) or (
Index a2,
a1 = Index a3,
a1 &
LE a2,
a3,
a1 /. (Index a2,a1),
a1 /. ((Index a2,a1) + 1) ) )
otherwise Rev (R_Cut (L_Cut a1,a3),a2);
correctness
coherence
( ( ( ( c2 in L~ c1 & c3 in L~ c1 & Index c2,c1 < Index c3,c1 ) or ( Index c2,c1 = Index c3,c1 & LE c2,c3,c1 /. (Index c2,c1),c1 /. ((Index c2,c1) + 1) ) ) implies R_Cut (L_Cut c1,c2),c3 is FinSequence of (TOP-REAL 2) ) & ( ( c2 in L~ c1 & c3 in L~ c1 & Index c2,c1 < Index c3,c1 ) or ( Index c2,c1 = Index c3,c1 & LE c2,c3,c1 /. (Index c2,c1),c1 /. ((Index c2,c1) + 1) ) or Rev (R_Cut (L_Cut c1,c3),c2) is FinSequence of (TOP-REAL 2) ) );
consistency
for b1 being FinSequence of (TOP-REAL 2) holds verum;
;
end;
:: deftheorem Def8 defines B_Cut JORDAN3:def 8 :
for
b1 being
FinSequence of
(TOP-REAL 2) for
b2,
b3 being
Point of
(TOP-REAL 2) holds
( ( ( (
b2 in L~ b1 &
b3 in L~ b1 &
Index b2,
b1 < Index b3,
b1 ) or (
Index b2,
b1 = Index b3,
b1 &
LE b2,
b3,
b1 /. (Index b2,b1),
b1 /. ((Index b2,b1) + 1) ) ) implies
B_Cut b1,
b2,
b3 = R_Cut (L_Cut b1,b2),
b3 ) & ( (
b2 in L~ b1 &
b3 in L~ b1 &
Index b2,
b1 < Index b3,
b1 ) or (
Index b2,
b1 = Index b3,
b1 &
LE b2,
b3,
b1 /. (Index b2,b1),
b1 /. ((Index b2,b1) + 1) ) or
B_Cut b1,
b2,
b3 = Rev (R_Cut (L_Cut b1,b3),b2) ) );
theorem Th67: :: JORDAN3:67
theorem Th68: :: JORDAN3:68
theorem Th69: :: JORDAN3:69
theorem Th70: :: JORDAN3:70
Lemma66:
for b1 being FinSequence of (TOP-REAL 2)
for b2, b3 being Point of (TOP-REAL 2) st b1 is_S-Seq & b2 in L~ b1 & b3 in L~ b1 & b2 <> b3 & ( Index b2,b1 < Index b3,b1 or ( Index b2,b1 = Index b3,b1 & LE b2,b3,b1 /. (Index b2,b1),b1 /. ((Index b2,b1) + 1) ) ) holds
B_Cut b1,b2,b3 is_S-Seq_joining b2,b3
theorem Th71: :: JORDAN3:71
theorem Th72: :: JORDAN3:72
theorem Th73: :: JORDAN3:73
theorem Th74: :: JORDAN3:74
theorem Th75: :: JORDAN3:75
theorem Th76: :: JORDAN3:76
Lemma71:
for b1 being natural number
for b2, b3 being Nat st b2 <= b3 holds
(b3 + b1) -' b2 = (b3 + b1) - b2
Lemma72:
for b1 being Nat
for b2 being non empty set holds (<*> b2) | b1 = <*> b2
Lemma73:
for b1 being non empty set holds Rev (<*> b1) = <*> b1
;
Lemma74:
for b1 being non empty set
for b2 being FinSequence of b1
for b3 being Nat st 1 <= b3 & b3 <= len b2 holds
( mid b2,b3,b3 = <*(b2 /. b3)*> & len (mid b2,b3,b3) = 1 )
Lemma75:
for b1 being non empty set
for b2 being FinSequence of b1 holds mid b2,0,0 = b2 | 1
Lemma76:
for b1 being non empty set
for b2 being FinSequence of b1
for b3 being Nat st len b2 < b3 holds
mid b2,b3,b3 = <*> b1
Lemma77:
for b1 being non empty set
for b2 being FinSequence of b1
for b3, b4 being Nat holds mid b2,b3,b4 = Rev (mid b2,b4,b3)
Lemma78:
for b1 being FinSequence of (TOP-REAL 2)
for b2, b3 being Nat st 1 <= b2 & b2 <= len b1 & 1 <= b3 & b3 <= len b1 holds
L~ (mid b1,b2,b3) c= L~ b1
Lemma79:
for b1, b2 being Nat
for b3 being non empty set
for b4 being FinSequence of b3 st b1 in dom b4 & b2 in dom b4 holds
len (mid b4,b1,b2) >= 1
Lemma80:
for b1, b2 being Nat
for b3 being non empty set
for b4 being FinSequence of b3 st b1 in dom b4 & b2 in dom b4 holds
not mid b4,b1,b2 is empty
Lemma81:
for b1, b2 being Nat
for b3 being non empty set
for b4 being FinSequence of b3 st b1 in dom b4 & b2 in dom b4 holds
(mid b4,b1,b2) /. 1 = b4 /. b1
theorem Th77: :: JORDAN3:77
theorem Th78: :: JORDAN3:78
theorem Th79: :: JORDAN3:79
theorem Th80: :: JORDAN3:80
theorem Th81: :: JORDAN3:81
theorem Th82: :: JORDAN3:82
theorem Th83: :: JORDAN3:83