:: KURATO_1 semantic presentation
theorem Th1: :: KURATO_1:1
Lemma2:
for b1 being 1-sorted
for b2, b3 being Subset-Family of b1 holds b2 \/ b3 is Subset-Family of b1
;
definition
let c1 be non
empty TopSpace;
let c2 be
Subset of
c1;
func Kurat14Part c2 -> set equals :: KURATO_1:def 1
{a2,(a2 - ),((a2 - ) ` ),(((a2 - ) ` ) - ),((((a2 - ) ` ) - ) ` ),(((((a2 - ) ` ) - ) ` ) - ),((((((a2 - ) ` ) - ) ` ) - ) ` )};
coherence
{c2,(c2 - ),((c2 - ) ` ),(((c2 - ) ` ) - ),((((c2 - ) ` ) - ) ` ),(((((c2 - ) ` ) - ) ` ) - ),((((((c2 - ) ` ) - ) ` ) - ) ` )} is set
;
end;
:: deftheorem Def1 defines Kurat14Part KURATO_1:def 1 :
definition
let c1 be non
empty TopSpace;
let c2 be
Subset of
c1;
func Kurat14Set c2 -> Subset-Family of
a1 equals :: KURATO_1:def 2
{a2,(a2 - ),((a2 - ) ` ),(((a2 - ) ` ) - ),((((a2 - ) ` ) - ) ` ),(((((a2 - ) ` ) - ) ` ) - ),((((((a2 - ) ` ) - ) ` ) - ) ` )} \/ {(a2 ` ),((a2 ` ) - ),(((a2 ` ) - ) ` ),((((a2 ` ) - ) ` ) - ),(((((a2 ` ) - ) ` ) - ) ` ),((((((a2 ` ) - ) ` ) - ) ` ) - ),(((((((a2 ` ) - ) ` ) - ) ` ) - ) ` )};
coherence
{c2,(c2 - ),((c2 - ) ` ),(((c2 - ) ` ) - ),((((c2 - ) ` ) - ) ` ),(((((c2 - ) ` ) - ) ` ) - ),((((((c2 - ) ` ) - ) ` ) - ) ` )} \/ {(c2 ` ),((c2 ` ) - ),(((c2 ` ) - ) ` ),((((c2 ` ) - ) ` ) - ),(((((c2 ` ) - ) ` ) - ) ` ),((((((c2 ` ) - ) ` ) - ) ` ) - ),(((((((c2 ` ) - ) ` ) - ) ` ) - ) ` )} is Subset-Family of c1
end;
:: deftheorem Def2 defines Kurat14Set KURATO_1:def 2 :
for
b1 being non
empty TopSpace for
b2 being
Subset of
b1 holds
Kurat14Set b2 = {b2,(b2 - ),((b2 - ) ` ),(((b2 - ) ` ) - ),((((b2 - ) ` ) - ) ` ),(((((b2 - ) ` ) - ) ` ) - ),((((((b2 - ) ` ) - ) ` ) - ) ` )} \/ {(b2 ` ),((b2 ` ) - ),(((b2 ` ) - ) ` ),((((b2 ` ) - ) ` ) - ),(((((b2 ` ) - ) ` ) - ) ` ),((((((b2 ` ) - ) ` ) - ) ` ) - ),(((((((b2 ` ) - ) ` ) - ) ` ) - ) ` )};
theorem Th2: :: KURATO_1:2
theorem Th3: :: KURATO_1:3
theorem Th4: :: KURATO_1:4
definition
let c1 be non
empty TopSpace;
let c2 be
Subset of
c1;
func Kurat14ClPart c2 -> Subset-Family of
a1 equals :: KURATO_1:def 3
{(a2 - ),(((a2 - ) ` ) - ),(((((a2 - ) ` ) - ) ` ) - ),((a2 ` ) - ),((((a2 ` ) - ) ` ) - ),((((((a2 ` ) - ) ` ) - ) ` ) - )};
coherence
{(c2 - ),(((c2 - ) ` ) - ),(((((c2 - ) ` ) - ) ` ) - ),((c2 ` ) - ),((((c2 ` ) - ) ` ) - ),((((((c2 ` ) - ) ` ) - ) ` ) - )} is Subset-Family of c1
func Kurat14OpPart c2 -> Subset-Family of
a1 equals :: KURATO_1:def 4
{((a2 - ) ` ),((((a2 - ) ` ) - ) ` ),((((((a2 - ) ` ) - ) ` ) - ) ` ),(((a2 ` ) - ) ` ),(((((a2 ` ) - ) ` ) - ) ` ),(((((((a2 ` ) - ) ` ) - ) ` ) - ) ` )};
coherence
{((c2 - ) ` ),((((c2 - ) ` ) - ) ` ),((((((c2 - ) ` ) - ) ` ) - ) ` ),(((c2 ` ) - ) ` ),(((((c2 ` ) - ) ` ) - ) ` ),(((((((c2 ` ) - ) ` ) - ) ` ) - ) ` )} is Subset-Family of c1
end;
:: deftheorem Def3 defines Kurat14ClPart KURATO_1:def 3 :
:: deftheorem Def4 defines Kurat14OpPart KURATO_1:def 4 :
Lemma5:
for b1 being non empty TopSpace
for b2 being Subset of b1 holds Kurat14Set b2 = ({(Cl b2),(Cl ((Cl b2) ` )),(Cl ((Cl ((Cl b2) ` )) ` )),(Cl (b2 ` )),(Cl ((Cl (b2 ` )) ` )),(Cl ((Cl ((Cl (b2 ` )) ` )) ` ))} \/ {b2,(b2 ` )}) \/ {((Cl b2) ` ),((Cl ((Cl b2) ` )) ` ),((Cl ((Cl ((Cl b2) ` )) ` )) ` ),((Cl (b2 ` )) ` ),((Cl ((Cl (b2 ` )) ` )) ` ),((Cl ((Cl ((Cl (b2 ` )) ` )) ` )) ` )}
theorem Th5: :: KURATO_1:5
theorem Th6: :: KURATO_1:6
theorem Th7: :: KURATO_1:7
definition
let c1 be non
empty TopSpace;
let c2 be
Subset of
c1;
func Kurat7Set c2 -> Subset-Family of
a1 equals :: KURATO_1:def 5
{a2,(Int a2),(Cl a2),(Int (Cl a2)),(Cl (Int a2)),(Cl (Int (Cl a2))),(Int (Cl (Int a2)))};
coherence
{c2,(Int c2),(Cl c2),(Int (Cl c2)),(Cl (Int c2)),(Cl (Int (Cl c2))),(Int (Cl (Int c2)))} is Subset-Family of c1
end;
:: deftheorem Def5 defines Kurat7Set KURATO_1:def 5 :
theorem Th8: :: KURATO_1:8
theorem Th9: :: KURATO_1:9
theorem Th10: :: KURATO_1:10
theorem Th11: :: KURATO_1:11
:: deftheorem Def6 defines KurExSet KURATO_1:def 6 :
theorem Th12: :: KURATO_1:12
theorem Th13: :: KURATO_1:13
theorem Th14: :: KURATO_1:14
theorem Th15: :: KURATO_1:15
theorem Th16: :: KURATO_1:16
theorem Th17: :: KURATO_1:17
theorem Th18: :: KURATO_1:18
theorem Th19: :: KURATO_1:19
theorem Th20: :: KURATO_1:20
theorem Th21: :: KURATO_1:21
theorem Th22: :: KURATO_1:22
theorem Th23: :: KURATO_1:23
theorem Th24: :: KURATO_1:24
theorem Th25: :: KURATO_1:25
theorem Th26: :: KURATO_1:26
theorem Th27: :: KURATO_1:27
theorem Th28: :: KURATO_1:28
theorem Th29: :: KURATO_1:29
theorem Th30: :: KURATO_1:30
theorem Th31: :: KURATO_1:31
theorem Th32: :: KURATO_1:32
theorem Th33: :: KURATO_1:33
theorem Th34: :: KURATO_1:34
theorem Th35: :: KURATO_1:35
theorem Th36: :: KURATO_1:36
theorem Th37: :: KURATO_1:37
theorem Th38: :: KURATO_1:38
theorem Th39: :: KURATO_1:39
theorem Th40: :: KURATO_1:40
theorem Th41: :: KURATO_1:41
theorem Th42: :: KURATO_1:42
theorem Th43: :: KURATO_1:43
theorem Th44: :: KURATO_1:44
theorem Th45: :: KURATO_1:45
theorem Th46: :: KURATO_1:46
theorem Th47: :: KURATO_1:47
theorem Th48: :: KURATO_1:48
theorem Th49: :: KURATO_1:49
theorem Th50: :: KURATO_1:50
theorem Th51: :: KURATO_1:51
canceled;
theorem Th52: :: KURATO_1:52
theorem Th53: :: KURATO_1:53
theorem Th54: :: KURATO_1:54
theorem Th55: :: KURATO_1:55
theorem Th56: :: KURATO_1:56
theorem Th57: :: KURATO_1:57
theorem Th58: :: KURATO_1:58
theorem Th59: :: KURATO_1:59
theorem Th60: :: KURATO_1:60
theorem Th61: :: KURATO_1:61
theorem Th62: :: KURATO_1:62
theorem Th63: :: KURATO_1:63
theorem Th64: :: KURATO_1:64
theorem Th65: :: KURATO_1:65
theorem Th66: :: KURATO_1:66
theorem Th67: :: KURATO_1:67
:: deftheorem Def7 defines Cl-closed KURATO_1:def 7 :
:: deftheorem Def8 defines Int-closed KURATO_1:def 8 :