:: PARSP_2 semantic presentation

Lemma1: for b1 being non empty add-associative right_zeroed right_complementable LoopStr
for b2, b3 being Element of b1 st b2 - b3 = 0. b1 holds
b2 = b3
proof end;

Lemma2: for b1 being non empty add-associative right_zeroed right_complementable LoopStr
for b2, b3 being Element of b1 holds
( ( b2 + (- b3) = 0. b1 implies b2 = b3 ) & ( b2 = b3 implies b2 + (- b3) = 0. b1 ) & ( b2 - b3 = 0. b1 implies b2 = b3 ) & ( b2 = b3 implies b2 - b3 = 0. b1 ) )
proof end;

theorem Th1: :: PARSP_2:1
for b1 being Field holds MPS b1 is ParSp
proof end;

Lemma4: for b1 being Field
for b2, b3, b4, b5 being Element of [:the carrier of b1,the carrier of b1,the carrier of b1:] holds
( ( (((b2 `1 ) - (b3 `1 )) * ((b4 `2 ) - (b5 `2 ))) - (((b4 `1 ) - (b5 `1 )) * ((b2 `2 ) - (b3 `2 ))) = 0. b1 & (((b2 `1 ) - (b3 `1 )) * ((b4 `3 ) - (b5 `3 ))) - (((b4 `1 ) - (b5 `1 )) * ((b2 `3 ) - (b3 `3 ))) = 0. b1 & (((b2 `2 ) - (b3 `2 )) * ((b4 `3 ) - (b5 `3 ))) - (((b4 `2 ) - (b5 `2 )) * ((b2 `3 ) - (b3 `3 ))) = 0. b1 ) iff ( ex b6 being Element of b1 st
( b6 * ((b2 `1 ) - (b3 `1 )) = (b4 `1 ) - (b5 `1 ) & b6 * ((b2 `2 ) - (b3 `2 )) = (b4 `2 ) - (b5 `2 ) & b6 * ((b2 `3 ) - (b3 `3 )) = (b4 `3 ) - (b5 `3 ) ) or ( (b2 `1 ) - (b3 `1 ) = 0. b1 & (b2 `2 ) - (b3 `2 ) = 0. b1 & (b2 `3 ) - (b3 `3 ) = 0. b1 ) ) )
proof end;

theorem Th2: :: PARSP_2:2
for b1 being Field
for b2, b3, b4, b5 being Element of (MPS b1) holds
( b2,b3 '||' b4,b5 iff ex b6, b7, b8, b9 being Element of [:the carrier of b1,the carrier of b1,the carrier of b1:] st
( [b2,b3,b4,b5] = [b6,b7,b8,b9] & ( ex b10 being Element of b1 st
( b10 * ((b6 `1 ) - (b7 `1 )) = (b8 `1 ) - (b9 `1 ) & b10 * ((b6 `2 ) - (b7 `2 )) = (b8 `2 ) - (b9 `2 ) & b10 * ((b6 `3 ) - (b7 `3 )) = (b8 `3 ) - (b9 `3 ) ) or ( (b6 `1 ) - (b7 `1 ) = 0. b1 & (b6 `2 ) - (b7 `2 ) = 0. b1 & (b6 `3 ) - (b7 `3 ) = 0. b1 ) ) ) )
proof end;

theorem Th3: :: PARSP_2:3
for b1 being Field
for b2, b3, b4 being Element of (MPS b1)
for b5, b6, b7 being Element of [:the carrier of b1,the carrier of b1,the carrier of b1:] st not b2,b3 '||' b2,b4 & [b2,b3,b2,b4] = [b5,b6,b5,b7] holds
( b5 <> b6 & b5 <> b7 & b6 <> b7 )
proof end;

theorem Th4: :: PARSP_2:4
for b1 being Field
for b2, b3, b4 being Element of (MPS b1)
for b5, b6, b7 being Element of [:the carrier of b1,the carrier of b1,the carrier of b1:]
for b8, b9 being Element of b1 st not b2,b3 '||' b2,b4 & [b2,b3,b2,b4] = [b5,b6,b5,b7] & b8 * ((b5 `1 ) - (b6 `1 )) = b9 * ((b5 `1 ) - (b7 `1 )) & b8 * ((b5 `2 ) - (b6 `2 )) = b9 * ((b5 `2 ) - (b7 `2 )) & b8 * ((b5 `3 ) - (b6 `3 )) = b9 * ((b5 `3 ) - (b7 `3 )) holds
( b8 = 0. b1 & b9 = 0. b1 )
proof end;

Lemma8: for b1 being non empty add-associative right_zeroed right_complementable LoopStr
for b2, b3, b4 being Element of b1 holds (b3 + b2) - (b4 + b2) = b3 - b4
proof end;

Lemma9: for b1 being Field
for b2, b3, b4 being Element of b1 holds (b2 - b3) - (b4 - b3) = b2 - b4
proof end;

Lemma10: for b1 being Field
for b2, b3, b4, b5, b6 being Element of b1 st (b2 * (b3 - b4)) - (b5 * (b3 - b6)) = b6 - b4 holds
(b2 + (- (1. b1))) * (b3 - b4) = (b5 + (- (1. b1))) * (b3 - b6)
proof end;

Lemma11: for b1 being Field
for b2, b3, b4, b5 being Element of b1 st b2 - b3 = b4 - b5 holds
b5 = (b3 + b4) - b2
proof end;

theorem Th5: :: PARSP_2:5
for b1 being Field
for b2, b3, b4, b5 being Element of (MPS b1)
for b6, b7, b8, b9 being Element of [:the carrier of b1,the carrier of b1,the carrier of b1:] st not b2,b3 '||' b2,b4 & b2,b3 '||' b4,b5 & b2,b4 '||' b3,b5 & [b2,b3,b4,b5] = [b6,b7,b8,b9] holds
( b9 `1 = ((b7 `1 ) + (b8 `1 )) - (b6 `1 ) & b9 `2 = ((b7 `2 ) + (b8 `2 )) - (b6 `2 ) & b9 `3 = ((b7 `3 ) + (b8 `3 )) - (b6 `3 ) )
proof end;

Lemma13: for b1 being Field
for b2, b3, b4 being Element of b1 st (b2 * b3) - (b2 * b4) = b4 + b3 holds
(b2 - (1. b1)) * b3 = (b2 + (1. b1)) * b4
proof end;

Lemma14: for b1 being Field
for b2, b3, b4, b5, b6 being Element of b1 st b2 * (b3 - b4) = b5 - b6 & b6 = (b3 + b4) - b5 holds
(b2 - (1. b1)) * (b5 - b4) = (b2 + (1. b1)) * (b5 - b3)
proof end;

Lemma15: for b1 being Field
for b2, b3, b4, b5, b6, b7 being Element of b1 st b2 = (b3 + b4) - b5 & b6 = (b3 + b7) - b5 holds
(1. b1) * (b4 - b7) = b2 - b6
proof end;

theorem Th6: :: PARSP_2:6
for b1 being Field holds
not for b2, b3, b4 being Element of (MPS b1) holds b2,b3 '||' b2,b4
proof end;

theorem Th7: :: PARSP_2:7
for b1 being Field
for b2, b3, b4, b5 being Element of (MPS b1) st (1. b1) + (1. b1) <> 0. b1 & b2,b3 '||' b4,b5 & b4,b2 '||' b3,b5 & b4,b3 '||' b2,b5 holds
b4,b2 '||' b4,b3
proof end;

theorem Th8: :: PARSP_2:8
for b1 being Field
for b2, b3, b4, b5, b6, b7 being Element of (MPS b1) st not b2,b3 '||' b2,b4 & not b2,b3 '||' b2,b5 & b2,b3 '||' b4,b6 & b2,b3 '||' b5,b7 & b2,b4 '||' b3,b6 & b2,b5 '||' b3,b7 holds
b4,b5 '||' b6,b7
proof end;

definition
let c1 be ParSp;
attr a1 is FanodesSp-like means :Def1: :: PARSP_2:def 1
( not for b1, b2, b3 being Element of a1 holds b1,b2 '||' b1,b3 & ( for b1, b2, b3, b4 being Element of a1 st b2,b3 '||' b1,b4 & b1,b2 '||' b3,b4 & b1,b3 '||' b2,b4 holds
b1,b2 '||' b1,b3 ) & ( for b1, b2, b3, b4, b5, b6 being Element of a1 st not b1,b4 '||' b1,b2 & not b1,b4 '||' b1,b3 & b1,b4 '||' b2,b5 & b1,b4 '||' b3,b6 & b1,b2 '||' b4,b5 & b1,b3 '||' b4,b6 holds
b2,b3 '||' b5,b6 ) );
end;

:: deftheorem Def1 defines FanodesSp-like PARSP_2:def 1 :
for b1 being ParSp holds
( b1 is FanodesSp-like iff ( not for b2, b3, b4 being Element of b1 holds b2,b3 '||' b2,b4 & ( for b2, b3, b4, b5 being Element of b1 st b3,b4 '||' b2,b5 & b2,b3 '||' b4,b5 & b2,b4 '||' b3,b5 holds
b2,b3 '||' b2,b4 ) & ( for b2, b3, b4, b5, b6, b7 being Element of b1 st not b2,b5 '||' b2,b3 & not b2,b5 '||' b2,b4 & b2,b5 '||' b3,b6 & b2,b5 '||' b4,b7 & b2,b3 '||' b5,b6 & b2,b4 '||' b5,b7 holds
b3,b4 '||' b6,b7 ) ) );

registration
cluster strict FanodesSp-like ParStr ;
existence
ex b1 being ParSp st
( b1 is strict & b1 is FanodesSp-like )
proof end;
end;

definition
mode FanodesSp is FanodesSp-like ParSp;
end;

theorem Th9: :: PARSP_2:9
canceled;

theorem Th10: :: PARSP_2:10
canceled;

theorem Th11: :: PARSP_2:11
canceled;

theorem Th12: :: PARSP_2:12
canceled;

theorem Th13: :: PARSP_2:13
for b1 being FanodesSp
for b2, b3 being Element of b1 st b2 <> b3 holds
ex b4 being Element of b1 st not b2,b3 '||' b2,b4
proof end;

definition
let c1 be FanodesSp;
let c2, c3, c4 be Element of c1;
pred c2,c3,c4 is_collinear means :Def2: :: PARSP_2:def 2
a2,a3 '||' a2,a4;
end;

:: deftheorem Def2 defines is_collinear PARSP_2:def 2 :
for b1 being FanodesSp
for b2, b3, b4 being Element of b1 holds
( b2,b3,b4 is_collinear iff b2,b3 '||' b2,b4 );

theorem Th14: :: PARSP_2:14
canceled;

theorem Th15: :: PARSP_2:15
for b1 being FanodesSp
for b2, b3, b4 being Element of b1 st b2,b3,b4 is_collinear holds
( b2,b4,b3 is_collinear & b4,b3,b2 is_collinear & b3,b2,b4 is_collinear & b3,b4,b2 is_collinear & b4,b2,b3 is_collinear )
proof end;

theorem Th16: :: PARSP_2:16
canceled;

theorem Th17: :: PARSP_2:17
for b1 being FanodesSp
for b2, b3, b4, b5, b6, b7 being Element of b1 st not b2,b3,b4 is_collinear & b2,b3 '||' b5,b6 & b2,b4 '||' b5,b7 & b5 <> b6 & b5 <> b7 holds
not b5,b6,b7 is_collinear
proof end;

theorem Th18: :: PARSP_2:18
for b1 being FanodesSp
for b2, b3, b4 being Element of b1 st ( b2 = b3 or b3 = b4 or b4 = b2 ) holds
b2,b3,b4 is_collinear
proof end;

theorem Th19: :: PARSP_2:19
for b1 being FanodesSp
for b2, b3, b4, b5, b6 being Element of b1 st b2 <> b3 & b2,b3,b4 is_collinear & b2,b3,b5 is_collinear & b2,b3,b6 is_collinear holds
b4,b5,b6 is_collinear
proof end;

theorem Th20: :: PARSP_2:20
for b1 being FanodesSp
for b2, b3 being Element of b1 st b2 <> b3 holds
ex b4 being Element of b1 st not b2,b3,b4 is_collinear
proof end;

theorem Th21: :: PARSP_2:21
for b1 being FanodesSp
for b2, b3, b4, b5 being Element of b1 st b2,b3,b4 is_collinear & b2,b3,b5 is_collinear holds
b2,b3 '||' b4,b5
proof end;

theorem Th22: :: PARSP_2:22
for b1 being FanodesSp
for b2, b3, b4, b5 being Element of b1 st not b2,b3,b4 is_collinear & b2,b3 '||' b4,b5 holds
not b2,b3,b5 is_collinear
proof end;

theorem Th23: :: PARSP_2:23
for b1 being FanodesSp
for b2, b3, b4, b5, b6 being Element of b1 st not b2,b3,b4 is_collinear & b2,b3 '||' b4,b5 & b4 <> b5 & b2,b3,b6 is_collinear holds
not b4,b5,b6 is_collinear
proof end;

theorem Th24: :: PARSP_2:24
for b1 being FanodesSp
for b2, b3, b4, b5 being Element of b1 holds
( b2,b3,b4 is_collinear or not b2,b3,b5 is_collinear or not b2,b4,b5 is_collinear or b2 = b5 )
proof end;

theorem Th25: :: PARSP_2:25
for b1 being FanodesSp
for b2, b3, b4, b5, b6 being Element of b1 st b2 <> b3 & b2 <> b4 & b2,b3,b4 is_collinear & b2,b3,b5 is_collinear & b2,b4,b6 is_collinear holds
b3,b4 '||' b5,b6
proof end;

theorem Th26: :: PARSP_2:26
for b1 being FanodesSp
for b2, b3, b4, b5, b6, b7 being Element of b1 st not b2,b3 '||' b4,b5 & b2,b3,b6 is_collinear & b2,b3,b7 is_collinear & b4,b5,b6 is_collinear & b4,b5,b7 is_collinear holds
b6 = b7
proof end;

theorem Th27: :: PARSP_2:27
for b1 being FanodesSp
for b2, b3, b4, b5 being Element of b1 st b2 <> b3 & b2,b3,b4 is_collinear & b2,b3 '||' b4,b5 holds
b2,b4 '||' b3,b5
proof end;

theorem Th28: :: PARSP_2:28
for b1 being FanodesSp
for b2, b3, b4, b5 being Element of b1 st b2 <> b3 & b2,b3,b4 is_collinear & b2,b3 '||' b4,b5 holds
b4,b3 '||' b4,b5
proof end;

theorem Th29: :: PARSP_2:29
for b1 being FanodesSp
for b2, b3, b4, b5, b6, b7 being Element of b1 st not b2,b3,b4 is_collinear & b2,b3,b5 is_collinear & b2,b4,b6 is_collinear & b2,b4,b7 is_collinear & b3,b4 '||' b5,b6 & b3,b4 '||' b5,b7 holds
b6 = b7
proof end;

theorem Th30: :: PARSP_2:30
for b1 being FanodesSp
for b2, b3, b4, b5 being Element of b1 st b2 <> b3 & b2,b3,b4 is_collinear & b2,b3,b5 is_collinear holds
b2,b4,b5 is_collinear
proof end;

theorem Th31: :: PARSP_2:31
for b1 being FanodesSp
for b2, b3, b4, b5 being Element of b1 st b2,b3,b4 is_collinear & b2,b4,b5 is_collinear & b2 <> b4 holds
b3,b4,b5 is_collinear
proof end;

definition
let c1 be FanodesSp;
let c2, c3, c4, c5 be Element of c1;
pred parallelogram c2,c3,c4,c5 means :Def3: :: PARSP_2:def 3
( not a2,a3,a4 is_collinear & a2,a3 '||' a4,a5 & a2,a4 '||' a3,a5 );
end;

:: deftheorem Def3 defines parallelogram PARSP_2:def 3 :
for b1 being FanodesSp
for b2, b3, b4, b5 being Element of b1 holds
( parallelogram b2,b3,b4,b5 iff ( not b2,b3,b4 is_collinear & b2,b3 '||' b4,b5 & b2,b4 '||' b3,b5 ) );

theorem Th32: :: PARSP_2:32
canceled;

theorem Th33: :: PARSP_2:33
canceled;

theorem Th34: :: PARSP_2:34
for b1 being FanodesSp
for b2, b3, b4, b5 being Element of b1 st parallelogram b2,b3,b4,b5 holds
( b2 <> b3 & b3 <> b4 & b4 <> b2 & b2 <> b5 & b3 <> b5 & b4 <> b5 )
proof end;

theorem Th35: :: PARSP_2:35
for b1 being FanodesSp
for b2, b3, b4, b5 being Element of b1 st parallelogram b2,b3,b4,b5 holds
( not b2,b3,b4 is_collinear & not b3,b2,b5 is_collinear & not b4,b5,b2 is_collinear & not b5,b4,b3 is_collinear )
proof end;

theorem Th36: :: PARSP_2:36
for b1 being FanodesSp
for b2, b3, b4, b5 being Element of b1 st parallelogram b2,b3,b4,b5 holds
( not b2,b3,b4 is_collinear & not b3,b2,b5 is_collinear & not b4,b5,b2 is_collinear & not b5,b4,b3 is_collinear & not b2,b4,b3 is_collinear & not b3,b2,b4 is_collinear & not b3,b4,b2 is_collinear & not b4,b2,b3 is_collinear & not b4,b3,b2 is_collinear & not b3,b5,b2 is_collinear & not b2,b3,b5 is_collinear & not b2,b5,b3 is_collinear & not b5,b2,b3 is_collinear & not b5,b3,b2 is_collinear & not b4,b2,b5 is_collinear & not b2,b4,b5 is_collinear & not b2,b5,b4 is_collinear & not b5,b2,b4 is_collinear & not b5,b4,b2 is_collinear & not b5,b3,b4 is_collinear & not b3,b4,b5 is_collinear & not b3,b5,b4 is_collinear & not b4,b3,b5 is_collinear & not b4,b5,b3 is_collinear )
proof end;

theorem Th37: :: PARSP_2:37
for b1 being FanodesSp
for b2, b3, b4, b5, b6 being Element of b1 holds
( not parallelogram b2,b3,b4,b5 or not b2,b3,b6 is_collinear or not b4,b5,b6 is_collinear )
proof end;

theorem Th38: :: PARSP_2:38
for b1 being FanodesSp
for b2, b3, b4, b5 being Element of b1 st parallelogram b2,b3,b4,b5 holds
parallelogram b2,b4,b3,b5
proof end;

theorem Th39: :: PARSP_2:39
for b1 being FanodesSp
for b2, b3, b4, b5 being Element of b1 st parallelogram b2,b3,b4,b5 holds
parallelogram b4,b5,b2,b3
proof end;

theorem Th40: :: PARSP_2:40
for b1 being FanodesSp
for b2, b3, b4, b5 being Element of b1 st parallelogram b2,b3,b4,b5 holds
parallelogram b3,b2,b5,b4
proof end;

theorem Th41: :: PARSP_2:41
for b1 being FanodesSp
for b2, b3, b4, b5 being Element of b1 st parallelogram b2,b3,b4,b5 holds
( parallelogram b2,b4,b3,b5 & parallelogram b4,b5,b2,b3 & parallelogram b3,b2,b5,b4 & parallelogram b4,b2,b5,b3 & parallelogram b5,b3,b4,b2 & parallelogram b3,b5,b2,b4 & parallelogram b5,b4,b3,b2 )
proof end;

theorem Th42: :: PARSP_2:42
for b1 being FanodesSp
for b2, b3, b4 being Element of b1 st not b2,b3,b4 is_collinear holds
ex b5 being Element of b1 st parallelogram b2,b3,b4,b5
proof end;

theorem Th43: :: PARSP_2:43
for b1 being FanodesSp
for b2, b3, b4, b5, b6 being Element of b1 st parallelogram b2,b3,b4,b5 & parallelogram b2,b3,b4,b6 holds
b5 = b6
proof end;

theorem Th44: :: PARSP_2:44
for b1 being FanodesSp
for b2, b3, b4, b5 being Element of b1 st parallelogram b2,b3,b4,b5 holds
not b2,b5 '||' b3,b4
proof end;

theorem Th45: :: PARSP_2:45
for b1 being FanodesSp
for b2, b3, b4, b5 being Element of b1 st parallelogram b2,b3,b4,b5 holds
not parallelogram b2,b3,b5,b4
proof end;

theorem Th46: :: PARSP_2:46
for b1 being FanodesSp
for b2, b3 being Element of b1 st b2 <> b3 holds
ex b4 being Element of b1 st
( b2,b3,b4 is_collinear & b4 <> b2 & b4 <> b3 )
proof end;

theorem Th47: :: PARSP_2:47
for b1 being FanodesSp
for b2, b3, b4, b5, b6, b7 being Element of b1 st parallelogram b2,b3,b4,b5 & parallelogram b2,b3,b6,b7 holds
b4,b6 '||' b5,b7
proof end;

theorem Th48: :: PARSP_2:48
for b1 being FanodesSp
for b2, b3, b4, b5, b6, b7 being Element of b1 st not b2,b3,b4 is_collinear & parallelogram b5,b6,b2,b3 & parallelogram b5,b6,b4,b7 holds
parallelogram b2,b3,b4,b7
proof end;

theorem Th49: :: PARSP_2:49
for b1 being FanodesSp
for b2, b3, b4, b5, b6, b7 being Element of b1 st b2,b3,b4 is_collinear & b3 <> b4 & parallelogram b2,b5,b3,b6 & parallelogram b2,b5,b4,b7 holds
parallelogram b3,b6,b4,b7
proof end;

theorem Th50: :: PARSP_2:50
for b1 being FanodesSp
for b2, b3, b4, b5, b6, b7, b8, b9 being Element of b1 st parallelogram b2,b3,b4,b5 & parallelogram b2,b3,b6,b7 & parallelogram b4,b5,b8,b9 holds
b6,b8 '||' b7,b9
proof end;

theorem Th51: :: PARSP_2:51
for b1 being FanodesSp
for b2, b3 being Element of b1 st b2 <> b3 holds
ex b4, b5 being Element of b1 st parallelogram b2,b3,b4,b5
proof end;

theorem Th52: :: PARSP_2:52
for b1 being FanodesSp
for b2, b3 being Element of b1 st b2 <> b3 holds
ex b4, b5 being Element of b1 st parallelogram b2,b4,b5,b3
proof end;

definition
let c1 be FanodesSp;
let c2, c3, c4, c5 be Element of c1;
pred c2,c3 congr c4,c5 means :Def4: :: PARSP_2:def 4
( ( a2 = a3 & a4 = a5 ) or ex b1, b2 being Element of a1 st
( parallelogram b1,b2,a2,a3 & parallelogram b1,b2,a4,a5 ) );
end;

:: deftheorem Def4 defines congr PARSP_2:def 4 :
for b1 being FanodesSp
for b2, b3, b4, b5 being Element of b1 holds
( b2,b3 congr b4,b5 iff ( ( b2 = b3 & b4 = b5 ) or ex b6, b7 being Element of b1 st
( parallelogram b6,b7,b2,b3 & parallelogram b6,b7,b4,b5 ) ) );

theorem Th53: :: PARSP_2:53
canceled;

theorem Th54: :: PARSP_2:54
canceled;

theorem Th55: :: PARSP_2:55
for b1 being FanodesSp
for b2, b3, b4 being Element of b1 st b2,b2 congr b3,b4 holds
b3 = b4
proof end;

theorem Th56: :: PARSP_2:56
for b1 being FanodesSp
for b2, b3, b4 being Element of b1 st b2,b3 congr b4,b4 holds
b2 = b3
proof end;

theorem Th57: :: PARSP_2:57
for b1 being FanodesSp
for b2, b3 being Element of b1 st b2,b3 congr b3,b2 holds
b2 = b3
proof end;

theorem Th58: :: PARSP_2:58
for b1 being FanodesSp
for b2, b3, b4, b5 being Element of b1 st b2,b3 congr b4,b5 holds
b2,b3 '||' b4,b5
proof end;

theorem Th59: :: PARSP_2:59
for b1 being FanodesSp
for b2, b3, b4, b5 being Element of b1 st b2,b3 congr b4,b5 holds
b2,b4 '||' b3,b5
proof end;

theorem Th60: :: PARSP_2:60
for b1 being FanodesSp
for b2, b3, b4, b5 being Element of b1 st b2,b3 congr b4,b5 & not b2,b3,b4 is_collinear holds
parallelogram b2,b3,b4,b5
proof end;

theorem Th61: :: PARSP_2:61
for b1 being FanodesSp
for b2, b3, b4, b5 being Element of b1 st parallelogram b2,b3,b4,b5 holds
b2,b3 congr b4,b5
proof end;

theorem Th62: :: PARSP_2:62
for b1 being FanodesSp
for b2, b3, b4, b5, b6, b7 being Element of b1 st b2,b3 congr b4,b5 & b2,b3,b4 is_collinear & parallelogram b6,b7,b2,b3 holds
parallelogram b6,b7,b4,b5
proof end;

theorem Th63: :: PARSP_2:63
for b1 being FanodesSp
for b2, b3, b4, b5, b6 being Element of b1 st b2,b3 congr b4,b5 & b2,b3 congr b4,b6 holds
b5 = b6
proof end;

theorem Th64: :: PARSP_2:64
for b1 being FanodesSp
for b2, b3, b4 being Element of b1 ex b5 being Element of b1 st b2,b3 congr b4,b5
proof end;

theorem Th65: :: PARSP_2:65
canceled;

theorem Th66: :: PARSP_2:66
for b1 being FanodesSp
for b2, b3 being Element of b1 holds b2,b3 congr b2,b3
proof end;

theorem Th67: :: PARSP_2:67
for b1 being FanodesSp
for b2, b3, b4, b5, b6, b7 being Element of b1 st b2,b3 congr b4,b5 & b2,b3 congr b6,b7 holds
b4,b5 congr b6,b7
proof end;

theorem Th68: :: PARSP_2:68
for b1 being FanodesSp
for b2, b3, b4, b5 being Element of b1 st b2,b3 congr b4,b5 holds
b4,b5 congr b2,b3
proof end;

theorem Th69: :: PARSP_2:69
for b1 being FanodesSp
for b2, b3, b4, b5 being Element of b1 st b2,b3 congr b4,b5 holds
b3,b2 congr b5,b4
proof end;