:: PARSP_2 semantic presentation
Lemma1:
for b1 being non empty add-associative right_zeroed right_complementable LoopStr
for b2, b3 being Element of b1 st b2 - b3 = 0. b1 holds
b2 = b3
Lemma2:
for b1 being non empty add-associative right_zeroed right_complementable LoopStr
for b2, b3 being Element of b1 holds
( ( b2 + (- b3) = 0. b1 implies b2 = b3 ) & ( b2 = b3 implies b2 + (- b3) = 0. b1 ) & ( b2 - b3 = 0. b1 implies b2 = b3 ) & ( b2 = b3 implies b2 - b3 = 0. b1 ) )
theorem Th1: :: PARSP_2:1
Lemma4:
for b1 being Field
for b2, b3, b4, b5 being Element of [:the carrier of b1,the carrier of b1,the carrier of b1:] holds
( ( (((b2 `1 ) - (b3 `1 )) * ((b4 `2 ) - (b5 `2 ))) - (((b4 `1 ) - (b5 `1 )) * ((b2 `2 ) - (b3 `2 ))) = 0. b1 & (((b2 `1 ) - (b3 `1 )) * ((b4 `3 ) - (b5 `3 ))) - (((b4 `1 ) - (b5 `1 )) * ((b2 `3 ) - (b3 `3 ))) = 0. b1 & (((b2 `2 ) - (b3 `2 )) * ((b4 `3 ) - (b5 `3 ))) - (((b4 `2 ) - (b5 `2 )) * ((b2 `3 ) - (b3 `3 ))) = 0. b1 ) iff ( ex b6 being Element of b1 st
( b6 * ((b2 `1 ) - (b3 `1 )) = (b4 `1 ) - (b5 `1 ) & b6 * ((b2 `2 ) - (b3 `2 )) = (b4 `2 ) - (b5 `2 ) & b6 * ((b2 `3 ) - (b3 `3 )) = (b4 `3 ) - (b5 `3 ) ) or ( (b2 `1 ) - (b3 `1 ) = 0. b1 & (b2 `2 ) - (b3 `2 ) = 0. b1 & (b2 `3 ) - (b3 `3 ) = 0. b1 ) ) )
theorem Th2: :: PARSP_2:2
for
b1 being
Field for
b2,
b3,
b4,
b5 being
Element of
(MPS b1) holds
(
b2,
b3 '||' b4,
b5 iff ex
b6,
b7,
b8,
b9 being
Element of
[:the carrier of b1,the carrier of b1,the carrier of b1:] st
(
[b2,b3,b4,b5] = [b6,b7,b8,b9] & ( ex
b10 being
Element of
b1 st
(
b10 * ((b6 `1 ) - (b7 `1 )) = (b8 `1 ) - (b9 `1 ) &
b10 * ((b6 `2 ) - (b7 `2 )) = (b8 `2 ) - (b9 `2 ) &
b10 * ((b6 `3 ) - (b7 `3 )) = (b8 `3 ) - (b9 `3 ) ) or (
(b6 `1 ) - (b7 `1 ) = 0. b1 &
(b6 `2 ) - (b7 `2 ) = 0. b1 &
(b6 `3 ) - (b7 `3 ) = 0. b1 ) ) ) )
theorem Th3: :: PARSP_2:3
for
b1 being
Field for
b2,
b3,
b4 being
Element of
(MPS b1) for
b5,
b6,
b7 being
Element of
[:the carrier of b1,the carrier of b1,the carrier of b1:] st not
b2,
b3 '||' b2,
b4 &
[b2,b3,b2,b4] = [b5,b6,b5,b7] holds
(
b5 <> b6 &
b5 <> b7 &
b6 <> b7 )
theorem Th4: :: PARSP_2:4
for
b1 being
Field for
b2,
b3,
b4 being
Element of
(MPS b1) for
b5,
b6,
b7 being
Element of
[:the carrier of b1,the carrier of b1,the carrier of b1:] for
b8,
b9 being
Element of
b1 st not
b2,
b3 '||' b2,
b4 &
[b2,b3,b2,b4] = [b5,b6,b5,b7] &
b8 * ((b5 `1 ) - (b6 `1 )) = b9 * ((b5 `1 ) - (b7 `1 )) &
b8 * ((b5 `2 ) - (b6 `2 )) = b9 * ((b5 `2 ) - (b7 `2 )) &
b8 * ((b5 `3 ) - (b6 `3 )) = b9 * ((b5 `3 ) - (b7 `3 )) holds
(
b8 = 0. b1 &
b9 = 0. b1 )
Lemma8:
for b1 being non empty add-associative right_zeroed right_complementable LoopStr
for b2, b3, b4 being Element of b1 holds (b3 + b2) - (b4 + b2) = b3 - b4
Lemma9:
for b1 being Field
for b2, b3, b4 being Element of b1 holds (b2 - b3) - (b4 - b3) = b2 - b4
Lemma10:
for b1 being Field
for b2, b3, b4, b5, b6 being Element of b1 st (b2 * (b3 - b4)) - (b5 * (b3 - b6)) = b6 - b4 holds
(b2 + (- (1. b1))) * (b3 - b4) = (b5 + (- (1. b1))) * (b3 - b6)
Lemma11:
for b1 being Field
for b2, b3, b4, b5 being Element of b1 st b2 - b3 = b4 - b5 holds
b5 = (b3 + b4) - b2
theorem Th5: :: PARSP_2:5
for
b1 being
Field for
b2,
b3,
b4,
b5 being
Element of
(MPS b1) for
b6,
b7,
b8,
b9 being
Element of
[:the carrier of b1,the carrier of b1,the carrier of b1:] st not
b2,
b3 '||' b2,
b4 &
b2,
b3 '||' b4,
b5 &
b2,
b4 '||' b3,
b5 &
[b2,b3,b4,b5] = [b6,b7,b8,b9] holds
(
b9 `1 = ((b7 `1 ) + (b8 `1 )) - (b6 `1 ) &
b9 `2 = ((b7 `2 ) + (b8 `2 )) - (b6 `2 ) &
b9 `3 = ((b7 `3 ) + (b8 `3 )) - (b6 `3 ) )
Lemma13:
for b1 being Field
for b2, b3, b4 being Element of b1 st (b2 * b3) - (b2 * b4) = b4 + b3 holds
(b2 - (1. b1)) * b3 = (b2 + (1. b1)) * b4
Lemma14:
for b1 being Field
for b2, b3, b4, b5, b6 being Element of b1 st b2 * (b3 - b4) = b5 - b6 & b6 = (b3 + b4) - b5 holds
(b2 - (1. b1)) * (b5 - b4) = (b2 + (1. b1)) * (b5 - b3)
Lemma15:
for b1 being Field
for b2, b3, b4, b5, b6, b7 being Element of b1 st b2 = (b3 + b4) - b5 & b6 = (b3 + b7) - b5 holds
(1. b1) * (b4 - b7) = b2 - b6
theorem Th6: :: PARSP_2:6
theorem Th7: :: PARSP_2:7
for
b1 being
Field for
b2,
b3,
b4,
b5 being
Element of
(MPS b1) st
(1. b1) + (1. b1) <> 0. b1 &
b2,
b3 '||' b4,
b5 &
b4,
b2 '||' b3,
b5 &
b4,
b3 '||' b2,
b5 holds
b4,
b2 '||' b4,
b3
theorem Th8: :: PARSP_2:8
for
b1 being
Field for
b2,
b3,
b4,
b5,
b6,
b7 being
Element of
(MPS b1) st not
b2,
b3 '||' b2,
b4 & not
b2,
b3 '||' b2,
b5 &
b2,
b3 '||' b4,
b6 &
b2,
b3 '||' b5,
b7 &
b2,
b4 '||' b3,
b6 &
b2,
b5 '||' b3,
b7 holds
b4,
b5 '||' b6,
b7
definition
let c1 be
ParSp;
attr a1 is
FanodesSp-like means :
Def1:
:: PARSP_2:def 1
( not for
b1,
b2,
b3 being
Element of
a1 holds
b1,
b2 '||' b1,
b3 & ( for
b1,
b2,
b3,
b4 being
Element of
a1 st
b2,
b3 '||' b1,
b4 &
b1,
b2 '||' b3,
b4 &
b1,
b3 '||' b2,
b4 holds
b1,
b2 '||' b1,
b3 ) & ( for
b1,
b2,
b3,
b4,
b5,
b6 being
Element of
a1 st not
b1,
b4 '||' b1,
b2 & not
b1,
b4 '||' b1,
b3 &
b1,
b4 '||' b2,
b5 &
b1,
b4 '||' b3,
b6 &
b1,
b2 '||' b4,
b5 &
b1,
b3 '||' b4,
b6 holds
b2,
b3 '||' b5,
b6 ) );
end;
:: deftheorem Def1 defines FanodesSp-like PARSP_2:def 1 :
for
b1 being
ParSp holds
(
b1 is
FanodesSp-like iff ( not for
b2,
b3,
b4 being
Element of
b1 holds
b2,
b3 '||' b2,
b4 & ( for
b2,
b3,
b4,
b5 being
Element of
b1 st
b3,
b4 '||' b2,
b5 &
b2,
b3 '||' b4,
b5 &
b2,
b4 '||' b3,
b5 holds
b2,
b3 '||' b2,
b4 ) & ( for
b2,
b3,
b4,
b5,
b6,
b7 being
Element of
b1 st not
b2,
b5 '||' b2,
b3 & not
b2,
b5 '||' b2,
b4 &
b2,
b5 '||' b3,
b6 &
b2,
b5 '||' b4,
b7 &
b2,
b3 '||' b5,
b6 &
b2,
b4 '||' b5,
b7 holds
b3,
b4 '||' b6,
b7 ) ) );
theorem Th9: :: PARSP_2:9
canceled;
theorem Th10: :: PARSP_2:10
canceled;
theorem Th11: :: PARSP_2:11
canceled;
theorem Th12: :: PARSP_2:12
canceled;
theorem Th13: :: PARSP_2:13
:: deftheorem Def2 defines is_collinear PARSP_2:def 2 :
theorem Th14: :: PARSP_2:14
canceled;
theorem Th15: :: PARSP_2:15
for
b1 being
FanodesSp for
b2,
b3,
b4 being
Element of
b1 st
b2,
b3,
b4 is_collinear holds
(
b2,
b4,
b3 is_collinear &
b4,
b3,
b2 is_collinear &
b3,
b2,
b4 is_collinear &
b3,
b4,
b2 is_collinear &
b4,
b2,
b3 is_collinear )
theorem Th16: :: PARSP_2:16
canceled;
theorem Th17: :: PARSP_2:17
for
b1 being
FanodesSp for
b2,
b3,
b4,
b5,
b6,
b7 being
Element of
b1 st not
b2,
b3,
b4 is_collinear &
b2,
b3 '||' b5,
b6 &
b2,
b4 '||' b5,
b7 &
b5 <> b6 &
b5 <> b7 holds
not
b5,
b6,
b7 is_collinear
theorem Th18: :: PARSP_2:18
theorem Th19: :: PARSP_2:19
for
b1 being
FanodesSp for
b2,
b3,
b4,
b5,
b6 being
Element of
b1 st
b2 <> b3 &
b2,
b3,
b4 is_collinear &
b2,
b3,
b5 is_collinear &
b2,
b3,
b6 is_collinear holds
b4,
b5,
b6 is_collinear
theorem Th20: :: PARSP_2:20
theorem Th21: :: PARSP_2:21
theorem Th22: :: PARSP_2:22
theorem Th23: :: PARSP_2:23
for
b1 being
FanodesSp for
b2,
b3,
b4,
b5,
b6 being
Element of
b1 st not
b2,
b3,
b4 is_collinear &
b2,
b3 '||' b4,
b5 &
b4 <> b5 &
b2,
b3,
b6 is_collinear holds
not
b4,
b5,
b6 is_collinear
theorem Th24: :: PARSP_2:24
theorem Th25: :: PARSP_2:25
for
b1 being
FanodesSp for
b2,
b3,
b4,
b5,
b6 being
Element of
b1 st
b2 <> b3 &
b2 <> b4 &
b2,
b3,
b4 is_collinear &
b2,
b3,
b5 is_collinear &
b2,
b4,
b6 is_collinear holds
b3,
b4 '||' b5,
b6
theorem Th26: :: PARSP_2:26
for
b1 being
FanodesSp for
b2,
b3,
b4,
b5,
b6,
b7 being
Element of
b1 st not
b2,
b3 '||' b4,
b5 &
b2,
b3,
b6 is_collinear &
b2,
b3,
b7 is_collinear &
b4,
b5,
b6 is_collinear &
b4,
b5,
b7 is_collinear holds
b6 = b7
theorem Th27: :: PARSP_2:27
theorem Th28: :: PARSP_2:28
theorem Th29: :: PARSP_2:29
for
b1 being
FanodesSp for
b2,
b3,
b4,
b5,
b6,
b7 being
Element of
b1 st not
b2,
b3,
b4 is_collinear &
b2,
b3,
b5 is_collinear &
b2,
b4,
b6 is_collinear &
b2,
b4,
b7 is_collinear &
b3,
b4 '||' b5,
b6 &
b3,
b4 '||' b5,
b7 holds
b6 = b7
theorem Th30: :: PARSP_2:30
theorem Th31: :: PARSP_2:31
definition
let c1 be
FanodesSp;
let c2,
c3,
c4,
c5 be
Element of
c1;
pred parallelogram c2,
c3,
c4,
c5 means :
Def3:
:: PARSP_2:def 3
( not
a2,
a3,
a4 is_collinear &
a2,
a3 '||' a4,
a5 &
a2,
a4 '||' a3,
a5 );
end;
:: deftheorem Def3 defines parallelogram PARSP_2:def 3 :
for
b1 being
FanodesSp for
b2,
b3,
b4,
b5 being
Element of
b1 holds
(
parallelogram b2,
b3,
b4,
b5 iff ( not
b2,
b3,
b4 is_collinear &
b2,
b3 '||' b4,
b5 &
b2,
b4 '||' b3,
b5 ) );
theorem Th32: :: PARSP_2:32
canceled;
theorem Th33: :: PARSP_2:33
canceled;
theorem Th34: :: PARSP_2:34
theorem Th35: :: PARSP_2:35
for
b1 being
FanodesSp for
b2,
b3,
b4,
b5 being
Element of
b1 st
parallelogram b2,
b3,
b4,
b5 holds
( not
b2,
b3,
b4 is_collinear & not
b3,
b2,
b5 is_collinear & not
b4,
b5,
b2 is_collinear & not
b5,
b4,
b3 is_collinear )
theorem Th36: :: PARSP_2:36
for
b1 being
FanodesSp for
b2,
b3,
b4,
b5 being
Element of
b1 st
parallelogram b2,
b3,
b4,
b5 holds
( not
b2,
b3,
b4 is_collinear & not
b3,
b2,
b5 is_collinear & not
b4,
b5,
b2 is_collinear & not
b5,
b4,
b3 is_collinear & not
b2,
b4,
b3 is_collinear & not
b3,
b2,
b4 is_collinear & not
b3,
b4,
b2 is_collinear & not
b4,
b2,
b3 is_collinear & not
b4,
b3,
b2 is_collinear & not
b3,
b5,
b2 is_collinear & not
b2,
b3,
b5 is_collinear & not
b2,
b5,
b3 is_collinear & not
b5,
b2,
b3 is_collinear & not
b5,
b3,
b2 is_collinear & not
b4,
b2,
b5 is_collinear & not
b2,
b4,
b5 is_collinear & not
b2,
b5,
b4 is_collinear & not
b5,
b2,
b4 is_collinear & not
b5,
b4,
b2 is_collinear & not
b5,
b3,
b4 is_collinear & not
b3,
b4,
b5 is_collinear & not
b3,
b5,
b4 is_collinear & not
b4,
b3,
b5 is_collinear & not
b4,
b5,
b3 is_collinear )
theorem Th37: :: PARSP_2:37
for
b1 being
FanodesSp for
b2,
b3,
b4,
b5,
b6 being
Element of
b1 holds
( not
parallelogram b2,
b3,
b4,
b5 or not
b2,
b3,
b6 is_collinear or not
b4,
b5,
b6 is_collinear )
theorem Th38: :: PARSP_2:38
theorem Th39: :: PARSP_2:39
theorem Th40: :: PARSP_2:40
theorem Th41: :: PARSP_2:41
for
b1 being
FanodesSp for
b2,
b3,
b4,
b5 being
Element of
b1 st
parallelogram b2,
b3,
b4,
b5 holds
(
parallelogram b2,
b4,
b3,
b5 &
parallelogram b4,
b5,
b2,
b3 &
parallelogram b3,
b2,
b5,
b4 &
parallelogram b4,
b2,
b5,
b3 &
parallelogram b5,
b3,
b4,
b2 &
parallelogram b3,
b5,
b2,
b4 &
parallelogram b5,
b4,
b3,
b2 )
theorem Th42: :: PARSP_2:42
theorem Th43: :: PARSP_2:43
for
b1 being
FanodesSp for
b2,
b3,
b4,
b5,
b6 being
Element of
b1 st
parallelogram b2,
b3,
b4,
b5 &
parallelogram b2,
b3,
b4,
b6 holds
b5 = b6
theorem Th44: :: PARSP_2:44
theorem Th45: :: PARSP_2:45
theorem Th46: :: PARSP_2:46
theorem Th47: :: PARSP_2:47
for
b1 being
FanodesSp for
b2,
b3,
b4,
b5,
b6,
b7 being
Element of
b1 st
parallelogram b2,
b3,
b4,
b5 &
parallelogram b2,
b3,
b6,
b7 holds
b4,
b6 '||' b5,
b7
theorem Th48: :: PARSP_2:48
for
b1 being
FanodesSp for
b2,
b3,
b4,
b5,
b6,
b7 being
Element of
b1 st not
b2,
b3,
b4 is_collinear &
parallelogram b5,
b6,
b2,
b3 &
parallelogram b5,
b6,
b4,
b7 holds
parallelogram b2,
b3,
b4,
b7
theorem Th49: :: PARSP_2:49
for
b1 being
FanodesSp for
b2,
b3,
b4,
b5,
b6,
b7 being
Element of
b1 st
b2,
b3,
b4 is_collinear &
b3 <> b4 &
parallelogram b2,
b5,
b3,
b6 &
parallelogram b2,
b5,
b4,
b7 holds
parallelogram b3,
b6,
b4,
b7
theorem Th50: :: PARSP_2:50
for
b1 being
FanodesSp for
b2,
b3,
b4,
b5,
b6,
b7,
b8,
b9 being
Element of
b1 st
parallelogram b2,
b3,
b4,
b5 &
parallelogram b2,
b3,
b6,
b7 &
parallelogram b4,
b5,
b8,
b9 holds
b6,
b8 '||' b7,
b9
theorem Th51: :: PARSP_2:51
theorem Th52: :: PARSP_2:52
definition
let c1 be
FanodesSp;
let c2,
c3,
c4,
c5 be
Element of
c1;
pred c2,
c3 congr c4,
c5 means :
Def4:
:: PARSP_2:def 4
( (
a2 = a3 &
a4 = a5 ) or ex
b1,
b2 being
Element of
a1 st
(
parallelogram b1,
b2,
a2,
a3 &
parallelogram b1,
b2,
a4,
a5 ) );
end;
:: deftheorem Def4 defines congr PARSP_2:def 4 :
for
b1 being
FanodesSp for
b2,
b3,
b4,
b5 being
Element of
b1 holds
(
b2,
b3 congr b4,
b5 iff ( (
b2 = b3 &
b4 = b5 ) or ex
b6,
b7 being
Element of
b1 st
(
parallelogram b6,
b7,
b2,
b3 &
parallelogram b6,
b7,
b4,
b5 ) ) );
theorem Th53: :: PARSP_2:53
canceled;
theorem Th54: :: PARSP_2:54
canceled;
theorem Th55: :: PARSP_2:55
theorem Th56: :: PARSP_2:56
theorem Th57: :: PARSP_2:57
theorem Th58: :: PARSP_2:58
theorem Th59: :: PARSP_2:59
theorem Th60: :: PARSP_2:60
for
b1 being
FanodesSp for
b2,
b3,
b4,
b5 being
Element of
b1 st
b2,
b3 congr b4,
b5 & not
b2,
b3,
b4 is_collinear holds
parallelogram b2,
b3,
b4,
b5
theorem Th61: :: PARSP_2:61
theorem Th62: :: PARSP_2:62
for
b1 being
FanodesSp for
b2,
b3,
b4,
b5,
b6,
b7 being
Element of
b1 st
b2,
b3 congr b4,
b5 &
b2,
b3,
b4 is_collinear &
parallelogram b6,
b7,
b2,
b3 holds
parallelogram b6,
b7,
b4,
b5
theorem Th63: :: PARSP_2:63
theorem Th64: :: PARSP_2:64
theorem Th65: :: PARSP_2:65
canceled;
theorem Th66: :: PARSP_2:66
theorem Th67: :: PARSP_2:67
for
b1 being
FanodesSp for
b2,
b3,
b4,
b5,
b6,
b7 being
Element of
b1 st
b2,
b3 congr b4,
b5 &
b2,
b3 congr b6,
b7 holds
b4,
b5 congr b6,
b7
theorem Th68: :: PARSP_2:68
theorem Th69: :: PARSP_2:69