:: QC_LANG2 semantic presentation
theorem Th1: :: QC_LANG2:1
theorem Th2: :: QC_LANG2:2
theorem Th3: :: QC_LANG2:3
theorem Th4: :: QC_LANG2:4
theorem Th5: :: QC_LANG2:5
theorem Th6: :: QC_LANG2:6
theorem Th7: :: QC_LANG2:7
theorem Th8: :: QC_LANG2:8
:: deftheorem Def1 defines FALSUM QC_LANG2:def 1 :
:: deftheorem Def2 defines => QC_LANG2:def 2 :
:: deftheorem Def3 defines 'or' QC_LANG2:def 3 :
:: deftheorem Def4 defines <=> QC_LANG2:def 4 :
:: deftheorem Def5 defines Ex QC_LANG2:def 5 :
theorem Th9: :: QC_LANG2:9
canceled;
theorem Th10: :: QC_LANG2:10
canceled;
theorem Th11: :: QC_LANG2:11
canceled;
theorem Th12: :: QC_LANG2:12
canceled;
theorem Th13: :: QC_LANG2:13
theorem Th14: :: QC_LANG2:14
theorem Th15: :: QC_LANG2:15
canceled;
theorem Th16: :: QC_LANG2:16
theorem Th17: :: QC_LANG2:17
theorem Th18: :: QC_LANG2:18
theorem Th19: :: QC_LANG2:19
definition
let c1,
c2 be
bound_QC-variable;
let c3 be
Element of
QC-WFF ;
func All c1,
c2,
c3 -> QC-formula equals :: QC_LANG2:def 6
All a1,
(All a2,a3);
correctness
coherence
All c1,(All c2,c3) is QC-formula;
;
func Ex c1,
c2,
c3 -> QC-formula equals :: QC_LANG2:def 7
Ex a1,
(Ex a2,a3);
correctness
coherence
Ex c1,(Ex c2,c3) is QC-formula;
;
end;
:: deftheorem Def6 defines All QC_LANG2:def 6 :
:: deftheorem Def7 defines Ex QC_LANG2:def 7 :
theorem Th20: :: QC_LANG2:20
theorem Th21: :: QC_LANG2:21
theorem Th22: :: QC_LANG2:22
theorem Th23: :: QC_LANG2:23
theorem Th24: :: QC_LANG2:24
theorem Th25: :: QC_LANG2:25
definition
let c1,
c2,
c3 be
bound_QC-variable;
let c4 be
Element of
QC-WFF ;
func All c1,
c2,
c3,
c4 -> QC-formula equals :: QC_LANG2:def 8
All a1,
(All a2,a3,a4);
correctness
coherence
All c1,(All c2,c3,c4) is QC-formula;
;
func Ex c1,
c2,
c3,
c4 -> QC-formula equals :: QC_LANG2:def 9
Ex a1,
(Ex a2,a3,a4);
correctness
coherence
Ex c1,(Ex c2,c3,c4) is QC-formula;
;
end;
:: deftheorem Def8 defines All QC_LANG2:def 8 :
:: deftheorem Def9 defines Ex QC_LANG2:def 9 :
theorem Th26: :: QC_LANG2:26
for
b1,
b2,
b3 being
bound_QC-variable for
b4 being
Element of
QC-WFF holds
(
All b1,
b2,
b3,
b4 = All b1,
(All b2,b3,b4) &
Ex b1,
b2,
b3,
b4 = Ex b1,
(Ex b2,b3,b4) ) ;
theorem Th27: :: QC_LANG2:27
for
b1,
b2 being
Element of
QC-WFF for
b3,
b4,
b5,
b6,
b7,
b8 being
bound_QC-variable st
All b3,
b5,
b7,
b1 = All b4,
b6,
b8,
b2 holds
(
b3 = b4 &
b5 = b6 &
b7 = b8 &
b1 = b2 )
theorem Th28: :: QC_LANG2:28
theorem Th29: :: QC_LANG2:29
for
b1,
b2,
b3 being
bound_QC-variable for
b4,
b5 being
Element of
QC-WFF for
b6,
b7 being
bound_QC-variable st
All b1,
b2,
b3,
b4 = All b6,
b7,
b5 holds
(
b1 = b6 &
b2 = b7 &
All b3,
b4 = b5 )
theorem Th30: :: QC_LANG2:30
for
b1,
b2 being
Element of
QC-WFF for
b3,
b4,
b5,
b6,
b7,
b8 being
bound_QC-variable st
Ex b3,
b5,
b7,
b1 = Ex b4,
b6,
b8,
b2 holds
(
b3 = b4 &
b5 = b6 &
b7 = b8 &
b1 = b2 )
theorem Th31: :: QC_LANG2:31
theorem Th32: :: QC_LANG2:32
for
b1,
b2,
b3 being
bound_QC-variable for
b4,
b5 being
Element of
QC-WFF for
b6,
b7 being
bound_QC-variable st
Ex b1,
b2,
b3,
b4 = Ex b6,
b7,
b5 holds
(
b1 = b6 &
b2 = b7 &
Ex b3,
b4 = b5 )
theorem Th33: :: QC_LANG2:33
for
b1,
b2,
b3 being
bound_QC-variable for
b4 being
Element of
QC-WFF holds
(
All b1,
b2,
b3,
b4 is
universal &
bound_in (All b1,b2,b3,b4) = b1 &
the_scope_of (All b1,b2,b3,b4) = All b2,
b3,
b4 )
by Th8, QC_LANG1:def 20;
:: deftheorem Def10 defines disjunctive QC_LANG2:def 10 :
:: deftheorem Def11 defines conditional QC_LANG2:def 11 :
:: deftheorem Def12 defines biconditional QC_LANG2:def 12 :
:: deftheorem Def13 defines existential QC_LANG2:def 13 :
theorem Th34: :: QC_LANG2:34
canceled;
theorem Th35: :: QC_LANG2:35
canceled;
theorem Th36: :: QC_LANG2:36
canceled;
theorem Th37: :: QC_LANG2:37
canceled;
theorem Th38: :: QC_LANG2:38
:: deftheorem Def14 defines the_left_disjunct_of QC_LANG2:def 14 :
:: deftheorem Def15 defines the_right_disjunct_of QC_LANG2:def 15 :
:: deftheorem Def16 defines the_antecedent_of QC_LANG2:def 16 :
:: deftheorem Def17 QC_LANG2:def 17 :
canceled;
:: deftheorem Def18 defines the_left_side_of QC_LANG2:def 18 :
:: deftheorem Def19 defines the_right_side_of QC_LANG2:def 19 :
theorem Th39: :: QC_LANG2:39
canceled;
theorem Th40: :: QC_LANG2:40
canceled;
theorem Th41: :: QC_LANG2:41
canceled;
theorem Th42: :: QC_LANG2:42
canceled;
theorem Th43: :: QC_LANG2:43
canceled;
theorem Th44: :: QC_LANG2:44
canceled;
theorem Th45: :: QC_LANG2:45
theorem Th46: :: QC_LANG2:46
theorem Th47: :: QC_LANG2:47
theorem Th48: :: QC_LANG2:48
theorem Th49: :: QC_LANG2:49
theorem Th50: :: QC_LANG2:50
theorem Th51: :: QC_LANG2:51
theorem Th52: :: QC_LANG2:52
theorem Th53: :: QC_LANG2:53
theorem Th54: :: QC_LANG2:54
theorem Th55: :: QC_LANG2:55
theorem Th56: :: QC_LANG2:56
:: deftheorem Def20 defines is_immediate_constituent_of QC_LANG2:def 20 :
theorem Th57: :: QC_LANG2:57
canceled;
theorem Th58: :: QC_LANG2:58
theorem Th59: :: QC_LANG2:59
theorem Th60: :: QC_LANG2:60
theorem Th61: :: QC_LANG2:61
theorem Th62: :: QC_LANG2:62
theorem Th63: :: QC_LANG2:63
theorem Th64: :: QC_LANG2:64
theorem Th65: :: QC_LANG2:65
theorem Th66: :: QC_LANG2:66
theorem Th67: :: QC_LANG2:67
:: deftheorem Def21 defines is_subformula_of QC_LANG2:def 21 :
:: deftheorem Def22 defines is_proper_subformula_of QC_LANG2:def 22 :
theorem Th68: :: QC_LANG2:68
canceled;
theorem Th69: :: QC_LANG2:69
canceled;
theorem Th70: :: QC_LANG2:70
canceled;
theorem Th71: :: QC_LANG2:71
theorem Th72: :: QC_LANG2:72
theorem Th73: :: QC_LANG2:73
theorem Th74: :: QC_LANG2:74
theorem Th75: :: QC_LANG2:75
theorem Th76: :: QC_LANG2:76
theorem Th77: :: QC_LANG2:77
theorem Th78: :: QC_LANG2:78
theorem Th79: :: QC_LANG2:79
theorem Th80: :: QC_LANG2:80
theorem Th81: :: QC_LANG2:81
theorem Th82: :: QC_LANG2:82
theorem Th83: :: QC_LANG2:83
theorem Th84: :: QC_LANG2:84
theorem Th85: :: QC_LANG2:85
theorem Th86: :: QC_LANG2:86
theorem Th87: :: QC_LANG2:87
theorem Th88: :: QC_LANG2:88
theorem Th89: :: QC_LANG2:89
theorem Th90: :: QC_LANG2:90
theorem Th91: :: QC_LANG2:91
theorem Th92: :: QC_LANG2:92
theorem Th93: :: QC_LANG2:93
theorem Th94: :: QC_LANG2:94
theorem Th95: :: QC_LANG2:95
theorem Th96: :: QC_LANG2:96
theorem Th97: :: QC_LANG2:97
theorem Th98: :: QC_LANG2:98
theorem Th99: :: QC_LANG2:99
theorem Th100: :: QC_LANG2:100
theorem Th101: :: QC_LANG2:101
:: deftheorem Def23 defines Subformulae QC_LANG2:def 23 :
theorem Th102: :: QC_LANG2:102
canceled;
theorem Th103: :: QC_LANG2:103
theorem Th104: :: QC_LANG2:104
theorem Th105: :: QC_LANG2:105
theorem Th106: :: QC_LANG2:106
canceled;
theorem Th107: :: QC_LANG2:107
theorem Th108: :: QC_LANG2:108
theorem Th109: :: QC_LANG2:109
theorem Th110: :: QC_LANG2:110
theorem Th111: :: QC_LANG2:111
theorem Th112: :: QC_LANG2:112
theorem Th113: :: QC_LANG2:113
theorem Th114: :: QC_LANG2:114
theorem Th115: :: QC_LANG2:115
theorem Th116: :: QC_LANG2:116
theorem Th117: :: QC_LANG2:117
theorem Th118: :: QC_LANG2:118
theorem Th119: :: QC_LANG2:119
theorem Th120: :: QC_LANG2:120