:: SCMFSA8A  semantic presentation
set c1 = the Instruction-Locations of SCM+FSA ;
set c2 = Int-Locations  \/ FinSeq-Locations ;
theorem Th1: :: SCMFSA8A:1
canceled; 
theorem Th2: :: SCMFSA8A:2
theorem Th3: :: SCMFSA8A:3
theorem Th4: :: SCMFSA8A:4
theorem Th5: :: SCMFSA8A:5
theorem Th6: :: SCMFSA8A:6
theorem Th7: :: SCMFSA8A:7
theorem Th8: :: SCMFSA8A:8
theorem Th9: :: SCMFSA8A:9
theorem Th10: :: SCMFSA8A:10
theorem Th11: :: SCMFSA8A:11
theorem Th12: :: SCMFSA8A:12
theorem Th13: :: SCMFSA8A:13
theorem Th14: :: SCMFSA8A:14
theorem Th15: :: SCMFSA8A:15
theorem Th16: :: SCMFSA8A:16
theorem Th17: :: SCMFSA8A:17
:: deftheorem Def1   defines Directed SCMFSA8A:def 1 : 
theorem Th18: :: SCMFSA8A:18
theorem Th19: :: SCMFSA8A:19
theorem Th20: :: SCMFSA8A:20
theorem Th21: :: SCMFSA8A:21
theorem Th22: :: SCMFSA8A:22
theorem Th23: :: SCMFSA8A:23
theorem Th24: :: SCMFSA8A:24
theorem Th25: :: SCMFSA8A:25
theorem Th26: :: SCMFSA8A:26
theorem Th27: :: SCMFSA8A:27
Lemma25: 
for b1 being  Instruction-Location of SCM+FSA  holds 
 (  dom ((insloc 0) .--> (goto b1)) = {(insloc 0)} &  insloc 0 in  dom ((insloc 0) .--> (goto b1)) & ((insloc 0) .--> (goto b1)) . (insloc 0) =  goto b1 &  card ((insloc 0) .--> (goto b1)) = 1 & not  halt SCM+FSA  in  rng ((insloc 0) .--> (goto b1)) )
 
:: deftheorem Def2   defines Goto SCMFSA8A:def 2 : 
:: deftheorem Def3   defines is_pseudo-closed_on SCMFSA8A:def 3 : 
:: deftheorem Def4   defines pseudo-paraclosed SCMFSA8A:def 4 : 
:: deftheorem Def5   defines pseudo-LifeSpan SCMFSA8A:def 5 : 
theorem Th28: :: SCMFSA8A:28
theorem Th29: :: SCMFSA8A:29
theorem Th30: :: SCMFSA8A:30
theorem Th31: :: SCMFSA8A:31
theorem Th32: :: SCMFSA8A:32
theorem Th33: :: SCMFSA8A:33
theorem Th34: :: SCMFSA8A:34
theorem Th35: :: SCMFSA8A:35
theorem Th36: :: SCMFSA8A:36
Lemma38: 
for b1 being  State of SCM+FSA 
 for b2 being  Macro-Instruction  st b2 is_closed_on b1 & b2 is_halting_on b1 holds 
(  Directed b2 is_pseudo-closed_on b1 &  pseudo-LifeSpan b1,(Directed b2) = (LifeSpan (b1 +* (b2 +* (Start-At (insloc 0))))) + 1 )
 
theorem Th37: :: SCMFSA8A:37
theorem Th38: :: SCMFSA8A:38
theorem Th39: :: SCMFSA8A:39
theorem Th40: :: SCMFSA8A:40
theorem Th41: :: SCMFSA8A:41
theorem Th42: :: SCMFSA8A:42
theorem Th43: :: SCMFSA8A:43
theorem Th44: :: SCMFSA8A:44
theorem Th45: :: SCMFSA8A:45
Lemma46: 
for b1 being  Macro-Instruction
 for b2 being  State of SCM+FSA   st b1 is_closed_on b2 & b1 is_halting_on b2 holds 
(  IC ((Computation (b2 +* ((b1 ';' SCM+FSA-Stop ) +* (Start-At (insloc 0))))) . ((LifeSpan (b2 +* (b1 +* (Start-At (insloc 0))))) + 1)) =  insloc (card b1) & ((Computation (b2 +* (b1 +* (Start-At (insloc 0))))) . (LifeSpan (b2 +* (b1 +* (Start-At (insloc 0)))))) | (Int-Locations  \/ FinSeq-Locations ) = ((Computation (b2 +* ((b1 ';' SCM+FSA-Stop ) +* (Start-At (insloc 0))))) . ((LifeSpan (b2 +* (b1 +* (Start-At (insloc 0))))) + 1)) | (Int-Locations  \/ FinSeq-Locations ) & b2 +* ((b1 ';' SCM+FSA-Stop ) +* (Start-At (insloc 0))) is halting &  LifeSpan (b2 +* ((b1 ';' SCM+FSA-Stop ) +* (Start-At (insloc 0)))) = (LifeSpan (b2 +* (b1 +* (Start-At (insloc 0))))) + 1 & b1 ';' SCM+FSA-Stop  is_closed_on b2 & b1 ';' SCM+FSA-Stop  is_halting_on b2 )
 
theorem Th46: :: SCMFSA8A:46
theorem Th47: :: SCMFSA8A:47
theorem Th48: :: SCMFSA8A:48
theorem Th49: :: SCMFSA8A:49
theorem Th50: :: SCMFSA8A:50
theorem Th51: :: SCMFSA8A:51
theorem Th52: :: SCMFSA8A:52
Lemma53: 
for b1 being  Macro-Instruction
 for b2 being  State of SCM+FSA   st b1 is_closed_on  Initialize b2 & b1 is_halting_on  Initialize b2 holds 
(  IC ((Computation (b2 +* (Initialized (b1 ';' SCM+FSA-Stop )))) . ((LifeSpan (b2 +* (Initialized b1))) + 1)) =  insloc (card b1) & ((Computation (b2 +* (Initialized b1))) . (LifeSpan (b2 +* (Initialized b1)))) | (Int-Locations  \/ FinSeq-Locations ) = ((Computation (b2 +* (Initialized (b1 ';' SCM+FSA-Stop )))) . ((LifeSpan (b2 +* (Initialized b1))) + 1)) | (Int-Locations  \/ FinSeq-Locations ) & b2 +* (Initialized (b1 ';' SCM+FSA-Stop )) is halting &  LifeSpan (b2 +* (Initialized (b1 ';' SCM+FSA-Stop ))) = (LifeSpan (b2 +* (Initialized b1))) + 1 )
 
theorem Th53: :: SCMFSA8A:53
theorem Th54: :: SCMFSA8A:54
theorem Th55: :: SCMFSA8A:55
theorem Th56: :: SCMFSA8A:56
theorem Th57: :: SCMFSA8A:57
Lemma54: 
for b1, b2 being  Macro-Instruction
 for b3 being  State of SCM+FSA   st b1 is_closed_on b3 & b1 is_halting_on b3 holds 
(  IC ((Computation (b3 +* ((((b1 ';' (Goto (insloc ((card b2) + 1)))) ';' b2) ';' SCM+FSA-Stop ) +* (Start-At (insloc 0))))) . ((LifeSpan (b3 +* (b1 +* (Start-At (insloc 0))))) + 2)) =  insloc (((card b1) + (card b2)) + 1) & ((Computation (b3 +* (b1 +* (Start-At (insloc 0))))) . (LifeSpan (b3 +* (b1 +* (Start-At (insloc 0)))))) | (Int-Locations  \/ FinSeq-Locations ) = ((Computation (b3 +* ((((b1 ';' (Goto (insloc ((card b2) + 1)))) ';' b2) ';' SCM+FSA-Stop ) +* (Start-At (insloc 0))))) . ((LifeSpan (b3 +* (b1 +* (Start-At (insloc 0))))) + 2)) | (Int-Locations  \/ FinSeq-Locations ) & ( for b4 being  Nat  st b4 < (LifeSpan (b3 +* (b1 +* (Start-At (insloc 0))))) + 2 holds 
 CurInstr ((Computation (b3 +* ((((b1 ';' (Goto (insloc ((card b2) + 1)))) ';' b2) ';' SCM+FSA-Stop ) +* (Start-At (insloc 0))))) . b4) <>  halt SCM+FSA  ) & ( for b4 being  Nat  st b4 <=  LifeSpan (b3 +* (b1 +* (Start-At (insloc 0)))) holds 
 IC ((Computation (b3 +* ((((b1 ';' (Goto (insloc ((card b2) + 1)))) ';' b2) ';' SCM+FSA-Stop ) +* (Start-At (insloc 0))))) . b4) =  IC ((Computation (b3 +* (b1 +* (Start-At (insloc 0))))) . b4) ) &  IC ((Computation (b3 +* ((((b1 ';' (Goto (insloc ((card b2) + 1)))) ';' b2) ';' SCM+FSA-Stop ) +* (Start-At (insloc 0))))) . ((LifeSpan (b3 +* (b1 +* (Start-At (insloc 0))))) + 1)) =  insloc (card b1) & b3 +* ((((b1 ';' (Goto (insloc ((card b2) + 1)))) ';' b2) ';' SCM+FSA-Stop ) +* (Start-At (insloc 0))) is halting &  LifeSpan (b3 +* ((((b1 ';' (Goto (insloc ((card b2) + 1)))) ';' b2) ';' SCM+FSA-Stop ) +* (Start-At (insloc 0)))) = (LifeSpan (b3 +* (b1 +* (Start-At (insloc 0))))) + 2 )
 
theorem Th58: :: SCMFSA8A:58
theorem Th59: :: SCMFSA8A:59
Lemma55: 
for b1, b2 being  Macro-Instruction
 for b3 being  State of SCM+FSA   st b1 is_closed_on  Initialize b3 & b1 is_halting_on  Initialize b3 holds 
(  IC ((Computation (b3 +* (Initialized (((b1 ';' (Goto (insloc ((card b2) + 1)))) ';' b2) ';' SCM+FSA-Stop )))) . ((LifeSpan (b3 +* (Initialized b1))) + 2)) =  insloc (((card b1) + (card b2)) + 1) & ((Computation (b3 +* (Initialized b1))) . (LifeSpan (b3 +* (Initialized b1)))) | (Int-Locations  \/ FinSeq-Locations ) = ((Computation (b3 +* (Initialized (((b1 ';' (Goto (insloc ((card b2) + 1)))) ';' b2) ';' SCM+FSA-Stop )))) . ((LifeSpan (b3 +* (Initialized b1))) + 2)) | (Int-Locations  \/ FinSeq-Locations ) & ( for b4 being  Nat  st b4 < (LifeSpan (b3 +* (Initialized b1))) + 2 holds 
 CurInstr ((Computation (b3 +* (Initialized (((b1 ';' (Goto (insloc ((card b2) + 1)))) ';' b2) ';' SCM+FSA-Stop )))) . b4) <>  halt SCM+FSA  ) & ( for b4 being  Nat  st b4 <=  LifeSpan (b3 +* (Initialized b1)) holds 
 IC ((Computation (b3 +* (Initialized (((b1 ';' (Goto (insloc ((card b2) + 1)))) ';' b2) ';' SCM+FSA-Stop )))) . b4) =  IC ((Computation (b3 +* (Initialized b1))) . b4) ) &  IC ((Computation (b3 +* (Initialized (((b1 ';' (Goto (insloc ((card b2) + 1)))) ';' b2) ';' SCM+FSA-Stop )))) . ((LifeSpan (b3 +* (Initialized b1))) + 1)) =  insloc (card b1) & b3 +* (Initialized (((b1 ';' (Goto (insloc ((card b2) + 1)))) ';' b2) ';' SCM+FSA-Stop )) is halting &  LifeSpan (b3 +* (Initialized (((b1 ';' (Goto (insloc ((card b2) + 1)))) ';' b2) ';' SCM+FSA-Stop ))) = (LifeSpan (b3 +* (Initialized b1))) + 2 )
 
theorem Th60: :: SCMFSA8A:60
theorem Th61: :: SCMFSA8A:61
theorem Th62: :: SCMFSA8A:62