:: SERIES_4 semantic presentation
Lemma1:
for b1 being real number holds b1 |^ 2 = b1 * b1
by WSIERP_1:2;
Lemma2:
for b1, b2 being real number holds
( 4 = 2 |^ 2 & (b1 + b2) |^ 2 = ((b1 |^ 2) + ((2 * b1) * b2)) + (b2 |^ 2) )
Lemma3:
for b1 being Nat holds (((1 / 2) |^ (b1 + 1)) + (2 |^ (b1 + 1))) |^ 2 = (((1 / 4) |^ (b1 + 1)) + (4 |^ (b1 + 1))) + 2
Lemma4:
for b1 being Nat holds (((1 / 3) |^ (b1 + 1)) + (3 |^ (b1 + 1))) |^ 2 = (((1 / 9) |^ (b1 + 1)) + (9 |^ (b1 + 1))) + 2
Lemma5:
for b1, b2 being real number holds (b1 - b2) * (b1 + b2) = (b1 |^ 2) - (b2 |^ 2)
Lemma6:
for b1, b2 being real number holds (b1 - b2) |^ 2 = ((b1 |^ 2) - ((2 * b1) * b2)) + (b2 |^ 2)
Lemma7:
for b1 being Nat
for b2 being real number st b2 <> 1 holds
((((b2 * (1 - (b2 |^ b1))) / ((1 - b2) |^ 2)) - ((b1 * (b2 |^ (b1 + 1))) / (1 - b2))) + (b1 * (b2 |^ (b1 + 1)))) + (b2 |^ (b1 + 1)) = ((b2 * (1 - (b2 |^ (b1 + 1)))) / ((1 - b2) |^ 2)) - (((b1 + 1) * (b2 |^ (b1 + 2))) / (1 - b2))
Lemma8:
for b1 being Nat holds 1 / ((2 -Root (b1 + 2)) + (2 -Root (b1 + 1))) = (2 -Root (b1 + 2)) - (2 -Root (b1 + 1))
theorem Th1: :: SERIES_4:1
theorem Th2: :: SERIES_4:2
theorem Th3: :: SERIES_4:3
theorem Th4: :: SERIES_4:4
theorem Th5: :: SERIES_4:5
theorem Th6: :: SERIES_4:6
theorem Th7: :: SERIES_4:7
for
b1,
b2,
b3,
b4 being
real number holds
(((b1 + b2) + b3) + b4) |^ 2
= ((((((b1 |^ 2) + (b2 |^ 2)) + (b3 |^ 2)) + (b4 |^ 2)) + ((((2 * b1) * b2) + ((2 * b1) * b3)) + ((2 * b1) * b4))) + (((2 * b2) * b3) + ((2 * b2) * b4))) + ((2 * b3) * b4)
theorem Th8: :: SERIES_4:8
for
b1,
b2,
b3 being
real number holds
((b1 + b2) + b3) |^ 3
= ((((((b1 |^ 3) + (b2 |^ 3)) + (b3 |^ 3)) + (((3 * (b1 |^ 2)) * b2) + ((3 * (b1 |^ 2)) * b3))) + (((3 * (b2 |^ 2)) * b1) + ((3 * (b2 |^ 2)) * b3))) + (((3 * (b3 |^ 2)) * b1) + ((3 * (b3 |^ 2)) * b2))) + (((6 * b1) * b2) * b3)
theorem Th9: :: SERIES_4:9
theorem Th10: :: SERIES_4:10
theorem Th11: :: SERIES_4:11
theorem Th12: :: SERIES_4:12
theorem Th13: :: SERIES_4:13
theorem Th14: :: SERIES_4:14
theorem Th15: :: SERIES_4:15
theorem Th16: :: SERIES_4:16
theorem Th17: :: SERIES_4:17
theorem Th18: :: SERIES_4:18
theorem Th19: :: SERIES_4:19
theorem Th20: :: SERIES_4:20
theorem Th21: :: SERIES_4:21
theorem Th22: :: SERIES_4:22
theorem Th23: :: SERIES_4:23
theorem Th24: :: SERIES_4:24
theorem Th25: :: SERIES_4:25
theorem Th26: :: SERIES_4:26
theorem Th27: :: SERIES_4:27
theorem Th28: :: SERIES_4:28
theorem Th29: :: SERIES_4:29
theorem Th30: :: SERIES_4:30