:: NEWTON semantic presentation
theorem Th1: :: NEWTON:1
canceled;
theorem Th2: :: NEWTON:2
canceled;
theorem Th3: :: NEWTON:3
theorem Th4: :: NEWTON:4
canceled;
theorem Th5: :: NEWTON:5
theorem Th6: :: NEWTON:6
theorem Th7: :: NEWTON:7
:: deftheorem Def1 defines |^ NEWTON:def 1 :
theorem Th8: :: NEWTON:8
canceled;
theorem Th9: :: NEWTON:9
theorem Th10: :: NEWTON:10
theorem Th11: :: NEWTON:11
theorem Th12: :: NEWTON:12
theorem Th13: :: NEWTON:13
theorem Th14: :: NEWTON:14
theorem Th15: :: NEWTON:15
theorem Th16: :: NEWTON:16
:: deftheorem Def2 defines ! NEWTON:def 2 :
theorem Th17: :: NEWTON:17
canceled;
theorem Th18: :: NEWTON:18
theorem Th19: :: NEWTON:19
theorem Th20: :: NEWTON:20
theorem Th21: :: NEWTON:21
theorem Th22: :: NEWTON:22
theorem Th23: :: NEWTON:23
theorem Th24: :: NEWTON:24
canceled;
theorem Th25: :: NEWTON:25
:: deftheorem Def3 defines choose NEWTON:def 3 :
theorem Th26: :: NEWTON:26
canceled;
theorem Th27: :: NEWTON:27
theorem Th28: :: NEWTON:28
canceled;
theorem Th29: :: NEWTON:29
theorem Th30: :: NEWTON:30
theorem Th31: :: NEWTON:31
theorem Th32: :: NEWTON:32
theorem Th33: :: NEWTON:33
theorem Th34: :: NEWTON:34
theorem Th35: :: NEWTON:35
theorem Th36: :: NEWTON:36
definition
let c1,
c2 be
real number ;
let c3 be
natural number ;
func c1,
c2 In_Power c3 -> FinSequence of
REAL means :
Def4:
:: NEWTON:def 4
(
len a4 = a3 + 1 & ( for
b1,
b2,
b3 being
natural number st
b1 in dom a4 &
b3 = b1 - 1 &
b2 = a3 - b3 holds
a4 . b1 = ((a3 choose b3) * (a1 |^ b2)) * (a2 |^ b3) ) );
existence
ex b1 being FinSequence of REAL st
( len b1 = c3 + 1 & ( for b2, b3, b4 being natural number st b2 in dom b1 & b4 = b2 - 1 & b3 = c3 - b4 holds
b1 . b2 = ((c3 choose b4) * (c1 |^ b3)) * (c2 |^ b4) ) )
uniqueness
for b1, b2 being FinSequence of REAL st len b1 = c3 + 1 & ( for b3, b4, b5 being natural number st b3 in dom b1 & b5 = b3 - 1 & b4 = c3 - b5 holds
b1 . b3 = ((c3 choose b5) * (c1 |^ b4)) * (c2 |^ b5) ) & len b2 = c3 + 1 & ( for b3, b4, b5 being natural number st b3 in dom b2 & b5 = b3 - 1 & b4 = c3 - b5 holds
b2 . b3 = ((c3 choose b5) * (c1 |^ b4)) * (c2 |^ b5) ) holds
b1 = b2
end;
:: deftheorem Def4 defines In_Power NEWTON:def 4 :
theorem Th37: :: NEWTON:37
canceled;
theorem Th38: :: NEWTON:38
theorem Th39: :: NEWTON:39
theorem Th40: :: NEWTON:40
theorem Th41: :: NEWTON:41
:: deftheorem Def5 defines Newton_Coeff NEWTON:def 5 :
theorem Th42: :: NEWTON:42
canceled;
theorem Th43: :: NEWTON:43
theorem Th44: :: NEWTON:44
theorem Th45: :: NEWTON:45
for
b1,
b2 being
Nat st
b1 >= 1 holds
b2 * b1 >= b2
theorem Th46: :: NEWTON:46
for
b1,
b2,
b3 being
Nat st
b1 >= 1 &
b2 >= b3 * b1 holds
b2 >= b3
theorem Th47: :: NEWTON:47
theorem Th48: :: NEWTON:48
for
b1 being
Nat st
b1 <> 0 holds
(b1 + 1) / b1 > 1
theorem Th49: :: NEWTON:49
for
b1 being
Nat holds
b1 / (b1 + 1) < 1
theorem Th50: :: NEWTON:50
for
b1 being
Nat holds
b1 ! >= b1
theorem Th51: :: NEWTON:51
theorem Th52: :: NEWTON:52
theorem Th53: :: NEWTON:53
theorem Th54: :: NEWTON:54
theorem Th55: :: NEWTON:55
theorem Th56: :: NEWTON:56
theorem Th57: :: NEWTON:57
theorem Th58: :: NEWTON:58
theorem Th59: :: NEWTON:59
for
b1 being
Nat holds
b1 lcm 1
= b1
theorem Th60: :: NEWTON:60
theorem Th61: :: NEWTON:61
theorem Th62: :: NEWTON:62
theorem Th63: :: NEWTON:63
theorem Th64: :: NEWTON:64
for
b1 being
Nat holds
b1 hcf 1
= 1
theorem Th65: :: NEWTON:65
for
b1 being
Nat holds
b1 hcf 0
= b1
theorem Th66: :: NEWTON:66
for
b1,
b2 being
Nat holds
(b1 hcf b2) lcm b2 = b2
theorem Th67: :: NEWTON:67
for
b1,
b2 being
Nat holds
b1 hcf (b1 lcm b2) = b1
theorem Th68: :: NEWTON:68
theorem Th69: :: NEWTON:69
theorem Th70: :: NEWTON:70
theorem Th71: :: NEWTON:71
for
b1,
b2 being
Nat st
b1 > 0 holds
b1 hcf b2 > 0
theorem Th72: :: NEWTON:72
canceled;
theorem Th73: :: NEWTON:73
for
b1,
b2 being
Nat st
b1 > 0 &
b2 > 0 holds
b1 lcm b2 > 0
theorem Th74: :: NEWTON:74
theorem Th75: :: NEWTON:75
theorem Th76: :: NEWTON:76
theorem Th77: :: NEWTON:77
for
b1,
b2 being
Nat st 0
< b2 holds
b1 mod b2 = b1 - (b2 * (b1 div b2))
theorem Th78: :: NEWTON:78
theorem Th79: :: NEWTON:79
theorem Th80: :: NEWTON:80
theorem Th81: :: NEWTON:81
for
b1,
b2 being
Nat st (
b1 > 0 or
b2 > 0 ) holds
ex
b3,
b4 being
Integer st
(b3 * b1) + (b4 * b2) = b1 hcf b2
:: deftheorem Def6 defines SetPrimes NEWTON:def 6 :
:: deftheorem Def7 defines SetPrimenumber NEWTON:def 7 :
theorem Th82: :: NEWTON:82
theorem Th83: :: NEWTON:83
theorem Th84: :: NEWTON:84
theorem Th85: :: NEWTON:85
Lemma50:
for b1 being Nat holds
( b1 = 0 or b1 = 1 or 2 <= b1 )
theorem Th86: :: NEWTON:86
theorem Th87: :: NEWTON:87
theorem Th88: :: NEWTON:88
theorem Th89: :: NEWTON:89
theorem Th90: :: NEWTON:90
theorem Th91: :: NEWTON:91
theorem Th92: :: NEWTON:92
for
b1 being
Nat holds not
b1 in { b2 where B is Nat : ( b2 < b1 & b2 is prime ) }
theorem Th93: :: NEWTON:93
theorem Th94: :: NEWTON:94
for
b1,
b2 being
Prime st
b1 < b2 holds
{ b3 where B is Nat : ( b3 < b1 & b3 is prime ) } \/ {b1} c= { b3 where B is Nat : ( b3 < b2 & b3 is prime ) }
theorem Th95: :: NEWTON:95
for
b1,
b2 being
Nat st
b2 > b1 holds
not
b2 in { b3 where B is Nat : ( b3 < b1 & b3 is prime ) }
:: deftheorem Def8 defines primenumber NEWTON:def 8 :
theorem Th96: :: NEWTON:96
theorem Th97: :: NEWTON:97
Lemma60:
for b1 being Nat st b1 is prime holds
b1 > 0
by INT_2:def 5;
theorem Th98: :: NEWTON:98
theorem Th99: :: NEWTON:99
for
b1,
b2 being
Nat holds
b2 |^ b1 is
Nat
theorem Th100: :: NEWTON:100
theorem Th101: :: NEWTON:101