:: NEWTON  semantic presentation
theorem Th1: :: NEWTON:1
canceled; 
theorem Th2: :: NEWTON:2
canceled; 
theorem Th3: :: NEWTON:3
theorem Th4: :: NEWTON:4
canceled; 
theorem Th5: :: NEWTON:5
theorem Th6: :: NEWTON:6
theorem Th7: :: NEWTON:7
:: deftheorem Def1   defines |^ NEWTON:def 1 : 
theorem Th8: :: NEWTON:8
canceled; 
theorem Th9: :: NEWTON:9
theorem Th10: :: NEWTON:10
theorem Th11: :: NEWTON:11
theorem Th12: :: NEWTON:12
theorem Th13: :: NEWTON:13
theorem Th14: :: NEWTON:14
theorem Th15: :: NEWTON:15
theorem Th16: :: NEWTON:16
:: deftheorem Def2   defines ! NEWTON:def 2 : 
theorem Th17: :: NEWTON:17
canceled; 
theorem Th18: :: NEWTON:18
theorem Th19: :: NEWTON:19
theorem Th20: :: NEWTON:20
theorem Th21: :: NEWTON:21
theorem Th22: :: NEWTON:22
theorem Th23: :: NEWTON:23
theorem Th24: :: NEWTON:24
canceled; 
theorem Th25: :: NEWTON:25
:: deftheorem Def3   defines choose NEWTON:def 3 : 
theorem Th26: :: NEWTON:26
canceled; 
theorem Th27: :: NEWTON:27
theorem Th28: :: NEWTON:28
canceled; 
theorem Th29: :: NEWTON:29
theorem Th30: :: NEWTON:30
theorem Th31: :: NEWTON:31
theorem Th32: :: NEWTON:32
theorem Th33: :: NEWTON:33
theorem Th34: :: NEWTON:34
theorem Th35: :: NEWTON:35
theorem Th36: :: NEWTON:36
definition
let c1, 
c2 be  
real  number ;
let c3 be  
natural  number ;
func c1,
c2 In_Power c3 ->    FinSequence of  
REAL  means :
Def4: 
:: NEWTON:def 4
(  
len a4 = a3 + 1 & ( for 
b1, 
b2, 
b3 being 
natural  number   st 
b1 in  dom a4 & 
b3 = b1 - 1 & 
b2 = a3 - b3 holds 
a4 . b1 = ((a3 choose b3) * (a1 |^ b2)) * (a2 |^ b3) ) );
existence 
ex b1 being   FinSequence of  REAL  st 
(  len b1 = c3 + 1 & ( for b2, b3, b4 being natural  number   st b2 in  dom b1 & b4 = b2 - 1 & b3 = c3 - b4 holds 
b1 . b2 = ((c3 choose b4) * (c1 |^ b3)) * (c2 |^ b4) ) )
 
uniqueness 
for b1, b2 being   FinSequence of  REAL   st  len b1 = c3 + 1 & ( for b3, b4, b5 being natural  number   st b3 in  dom b1 & b5 = b3 - 1 & b4 = c3 - b5 holds 
b1 . b3 = ((c3 choose b5) * (c1 |^ b4)) * (c2 |^ b5) ) &  len b2 = c3 + 1 & ( for b3, b4, b5 being natural  number   st b3 in  dom b2 & b5 = b3 - 1 & b4 = c3 - b5 holds 
b2 . b3 = ((c3 choose b5) * (c1 |^ b4)) * (c2 |^ b5) ) holds 
b1 = b2
 
 
end;
 
:: deftheorem Def4   defines In_Power NEWTON:def 4 : 
theorem Th37: :: NEWTON:37
canceled; 
theorem Th38: :: NEWTON:38
theorem Th39: :: NEWTON:39
theorem Th40: :: NEWTON:40
theorem Th41: :: NEWTON:41
:: deftheorem Def5   defines Newton_Coeff NEWTON:def 5 : 
theorem Th42: :: NEWTON:42
canceled; 
theorem Th43: :: NEWTON:43
theorem Th44: :: NEWTON:44
theorem Th45: :: NEWTON:45
for 
b1, 
b2 being  
Nat  st 
b1 >= 1 holds 
b2 * b1 >= b2
theorem Th46: :: NEWTON:46
for 
b1, 
b2, 
b3 being  
Nat  st 
b1 >= 1 & 
b2 >= b3 * b1 holds 
b2 >= b3
theorem Th47: :: NEWTON:47
theorem Th48: :: NEWTON:48
for 
b1 being  
Nat  st 
b1 <> 0 holds 
(b1 + 1) / b1 > 1
theorem Th49: :: NEWTON:49
for 
b1 being  
Nat  holds 
b1 / (b1 + 1) < 1
theorem Th50: :: NEWTON:50
for 
b1 being  
Nat holds  
b1 !  >= b1
theorem Th51: :: NEWTON:51
theorem Th52: :: NEWTON:52
theorem Th53: :: NEWTON:53
theorem Th54: :: NEWTON:54
theorem Th55: :: NEWTON:55
theorem Th56: :: NEWTON:56
theorem Th57: :: NEWTON:57
theorem Th58: :: NEWTON:58
theorem Th59: :: NEWTON:59
for 
b1 being  
Nat holds  
b1 lcm 1 
= b1
theorem Th60: :: NEWTON:60
theorem Th61: :: NEWTON:61
theorem Th62: :: NEWTON:62
theorem Th63: :: NEWTON:63
theorem Th64: :: NEWTON:64
for 
b1 being  
Nat holds  
b1 hcf 1 
= 1
theorem Th65: :: NEWTON:65
for 
b1 being  
Nat holds  
b1 hcf 0 
= b1
theorem Th66: :: NEWTON:66
for 
b1, 
b2 being  
Nat holds  
(b1 hcf b2) lcm b2 = b2
theorem Th67: :: NEWTON:67
for 
b1, 
b2 being  
Nat holds  
b1 hcf (b1 lcm b2) = b1
theorem Th68: :: NEWTON:68
theorem Th69: :: NEWTON:69
theorem Th70: :: NEWTON:70
theorem Th71: :: NEWTON:71
for 
b1, 
b2 being  
Nat  st 
b1 > 0 holds 
b1 hcf b2 > 0
theorem Th72: :: NEWTON:72
canceled; 
theorem Th73: :: NEWTON:73
for 
b1, 
b2 being  
Nat  st 
b1 > 0 & 
b2 > 0 holds 
b1 lcm b2 > 0
theorem Th74: :: NEWTON:74
theorem Th75: :: NEWTON:75
theorem Th76: :: NEWTON:76
theorem Th77: :: NEWTON:77
for 
b1, 
b2 being  
Nat  st 0 
< b2 holds 
b1 mod b2 = b1 - (b2 * (b1 div b2))
theorem Th78: :: NEWTON:78
theorem Th79: :: NEWTON:79
theorem Th80: :: NEWTON:80
theorem Th81: :: NEWTON:81
for 
b1, 
b2 being  
Nat  st ( 
b1 > 0 or 
b2 > 0 ) holds 
ex 
b3, 
b4 being  
Integer st 
(b3 * b1) + (b4 * b2) = b1 hcf b2
:: deftheorem Def6   defines SetPrimes NEWTON:def 6 : 
:: deftheorem Def7   defines SetPrimenumber NEWTON:def 7 : 
theorem Th82: :: NEWTON:82
theorem Th83: :: NEWTON:83
theorem Th84: :: NEWTON:84
theorem Th85: :: NEWTON:85
Lemma50: 
for b1 being  Nat  holds 
( b1 = 0 or b1 = 1 or 2 <= b1 )
 
theorem Th86: :: NEWTON:86
theorem Th87: :: NEWTON:87
theorem Th88: :: NEWTON:88
theorem Th89: :: NEWTON:89
theorem Th90: :: NEWTON:90
theorem Th91: :: NEWTON:91
theorem Th92: :: NEWTON:92
for 
b1 being  
Nat  holds not 
b1 in { b2 where B is   Nat : ( b2 < b1 & b2 is prime ) } 
theorem Th93: :: NEWTON:93
theorem Th94: :: NEWTON:94
for 
b1, 
b2 being  
Prime  st 
b1 < b2 holds 
{ b3 where B is   Nat : ( b3 < b1 & b3 is prime ) }  \/ {b1} c= { b3 where B is   Nat : ( b3 < b2 & b3 is prime ) } 
theorem Th95: :: NEWTON:95
for 
b1, 
b2 being  
Nat  st 
b2 > b1 holds 
 not 
b2 in { b3 where B is   Nat : ( b3 < b1 & b3 is prime ) } 
:: deftheorem Def8   defines primenumber NEWTON:def 8 : 
theorem Th96: :: NEWTON:96
theorem Th97: :: NEWTON:97
Lemma60: 
for b1 being  Nat  st b1 is prime holds 
b1 > 0
 
by INT_2:def 5;
theorem Th98: :: NEWTON:98
theorem Th99: :: NEWTON:99
for 
b1, 
b2 being  
Nat holds  
b2 |^ b1 is   
Nat
theorem Th100: :: NEWTON:100
theorem Th101: :: NEWTON:101