:: SUB_METR semantic presentation
theorem Th1: :: SUB_METR:1
theorem Th2: :: SUB_METR:2
Lemma3:
[{} ,{} ] in [:{{} },{{} }:]
by ZFMISC_1:34;
E4: Empty^2-to-zero . {} ,{} =
Empty^2-to-zero . [{} ,{} ]
.=
0
by Lemma3, FUNCOP_1:13, METRIC_1:def 2
;
theorem Th3: :: SUB_METR:3
canceled;
theorem Th4: :: SUB_METR:4
theorem Th5: :: SUB_METR:5
theorem Th6: :: SUB_METR:6
theorem Th7: :: SUB_METR:7
theorem Th8: :: SUB_METR:8
set c1 = MetrStruct(# {{} },Empty^2-to-zero #);
:: deftheorem Def1 defines Discerning SUB_METR:def 1 :
:: deftheorem Def2 defines Discerning SUB_METR:def 2 :
theorem Th9: :: SUB_METR:9
canceled;
theorem Th10: :: SUB_METR:10
canceled;
theorem Th11: :: SUB_METR:11
canceled;
theorem Th12: :: SUB_METR:12
canceled;
theorem Th13: :: SUB_METR:13
canceled;
theorem Th14: :: SUB_METR:14
theorem Th15: :: SUB_METR:15
canceled;
theorem Th16: :: SUB_METR:16
canceled;
theorem Th17: :: SUB_METR:17
canceled;
theorem Th18: :: SUB_METR:18
theorem Th19: :: SUB_METR:19
canceled;
theorem Th20: :: SUB_METR:20
canceled;
theorem Th21: :: SUB_METR:21
canceled;
theorem Th22: :: SUB_METR:22
canceled;
theorem Th23: :: SUB_METR:23
canceled;
theorem Th24: :: SUB_METR:24
canceled;
theorem Th25: :: SUB_METR:25
canceled;
:: deftheorem Def3 SUB_METR:def 3 :
canceled;
:: deftheorem Def4 defines ultra SUB_METR:def 4 :
theorem Th26: :: SUB_METR:26
canceled;
theorem Th27: :: SUB_METR:27
canceled;
theorem Th28: :: SUB_METR:28
canceled;
theorem Th29: :: SUB_METR:29
canceled;
theorem Th30: :: SUB_METR:30
canceled;
theorem Th31: :: SUB_METR:31
canceled;
theorem Th32: :: SUB_METR:32
canceled;
theorem Th33: :: SUB_METR:33
canceled;
theorem Th34: :: SUB_METR:34
canceled;
theorem Th35: :: SUB_METR:35
canceled;
theorem Th36: :: SUB_METR:36
canceled;
theorem Th37: :: SUB_METR:37
canceled;
theorem Th38: :: SUB_METR:38
canceled;
definition
func Set_to_zero -> Function of
[:{{} ,{{} }},{{} ,{{} }}:],
REAL equals :: SUB_METR:def 5
[:{{} ,{{} }},{{} ,{{} }}:] --> 0;
coherence
[:{{} ,{{} }},{{} ,{{} }}:] --> 0 is Function of [:{{} ,{{} }},{{} ,{{} }}:], REAL
end;
:: deftheorem Def5 defines Set_to_zero SUB_METR:def 5 :
theorem Th39: :: SUB_METR:39
(
[{} ,{} ] in [:{{} ,{{} }},{{} ,{{} }}:] &
[{} ,{{} }] in [:{{} ,{{} }},{{} ,{{} }}:] &
[{{} },{} ] in [:{{} ,{{} }},{{} ,{{} }}:] &
[{{} },{{} }] in [:{{} ,{{} }},{{} ,{{} }}:] )
theorem Th40: :: SUB_METR:40
theorem Th41: :: SUB_METR:41
canceled;
theorem Th42: :: SUB_METR:42
theorem Th43: :: SUB_METR:43
:: deftheorem Def6 defines ZeroSpace SUB_METR:def 6 :
:: deftheorem Def7 defines is_between SUB_METR:def 7 :
theorem Th44: :: SUB_METR:44
canceled;
theorem Th45: :: SUB_METR:45
canceled;
theorem Th46: :: SUB_METR:46
canceled;
theorem Th47: :: SUB_METR:47
theorem Th48: :: SUB_METR:48
theorem Th49: :: SUB_METR:49
:: deftheorem Def8 defines open_dist_Segment SUB_METR:def 8 :
theorem Th50: :: SUB_METR:50
canceled;
theorem Th51: :: SUB_METR:51
:: deftheorem Def9 defines close_dist_Segment SUB_METR:def 9 :
theorem Th52: :: SUB_METR:52
canceled;
theorem Th53: :: SUB_METR:53
theorem Th54: :: SUB_METR:54