:: T_0TOPSP semantic presentation
theorem Th1: :: T_0TOPSP:1
theorem Th2: :: T_0TOPSP:2
:: deftheorem Def1 defines are_homeomorphic T_0TOPSP:def 1 :
:: deftheorem Def2 defines open T_0TOPSP:def 2 :
:: deftheorem Def3 defines Indiscernibility T_0TOPSP:def 3 :
:: deftheorem Def4 defines Indiscernible T_0TOPSP:def 4 :
:: deftheorem Def5 defines T_0-reflex T_0TOPSP:def 5 :
:: deftheorem Def6 defines T_0-canonical_map T_0TOPSP:def 6 :
theorem Th3: :: T_0TOPSP:3
theorem Th4: :: T_0TOPSP:4
theorem Th5: :: T_0TOPSP:5
theorem Th6: :: T_0TOPSP:6
theorem Th7: :: T_0TOPSP:7
theorem Th8: :: T_0TOPSP:8
theorem Th9: :: T_0TOPSP:9
theorem Th10: :: T_0TOPSP:10
theorem Th11: :: T_0TOPSP:11
theorem Th12: :: T_0TOPSP:12
Lemma15:
for b1 being non empty TopSpace
for b2, b3 being Point of (T_0-reflex b1) st b2 <> b3 holds
ex b4 being Subset of (T_0-reflex b1) st
( b4 is open & ( ( b2 in b4 & not b3 in b4 ) or ( b3 in b4 & not b2 in b4 ) ) )
:: deftheorem Def7 defines discerning T_0TOPSP:def 7 :
theorem Th13: :: T_0TOPSP:13
theorem Th14: :: T_0TOPSP:14
theorem Th15: :: T_0TOPSP:15
theorem Th16: :: T_0TOPSP:16
theorem Th17: :: T_0TOPSP:17