:: TOPGEN_2 semantic presentation
theorem Th1: :: TOPGEN_2:1
theorem Th2: :: TOPGEN_2:2
:: deftheorem Def1 defines Chi TOPGEN_2:def 1 :
theorem Th3: :: TOPGEN_2:3
:: deftheorem Def2 defines Chi TOPGEN_2:def 2 :
theorem Th4: :: TOPGEN_2:4
theorem Th5: :: TOPGEN_2:5
theorem Th6: :: TOPGEN_2:6
:: deftheorem Def3 defines Neighborhood_System TOPGEN_2:def 3 :
theorem Th7: :: TOPGEN_2:7
canceled;
theorem Th8: :: TOPGEN_2:8
theorem Th9: :: TOPGEN_2:9
theorem Th10: :: TOPGEN_2:10
theorem Th11: :: TOPGEN_2:11
theorem Th12: :: TOPGEN_2:12
:: deftheorem Def4 defines finite-weight TOPGEN_2:def 4 :
theorem Th13: :: TOPGEN_2:13
theorem Th14: :: TOPGEN_2:14
theorem Th15: :: TOPGEN_2:15
Lemma17:
for b1 being infinite-weight TopSpace
for b2 being Basis of b1 ex b3 being Basis of b1 st
( b3 c= b2 & Card b3 = weight b1 )
theorem Th16: :: TOPGEN_2:16
canceled;
theorem Th17: :: TOPGEN_2:17
theorem Th18: :: TOPGEN_2:18
theorem Th19: :: TOPGEN_2:19
Lemma21:
for b1 being non empty finite-weight TopSpace
for b2 being Basis of b1 ex b3 being Basis of b1 st
( b3 c= b2 & Card b3 = weight b1 )
theorem Th20: :: TOPGEN_2:20
:: deftheorem Def5 defines DiscrWithInfin TOPGEN_2:def 5 :
theorem Th21: :: TOPGEN_2:21
theorem Th22: :: TOPGEN_2:22
theorem Th23: :: TOPGEN_2:23
theorem Th24: :: TOPGEN_2:24
theorem Th25: :: TOPGEN_2:25
theorem Th26: :: TOPGEN_2:26
theorem Th27: :: TOPGEN_2:27
theorem Th28: :: TOPGEN_2:28
theorem Th29: :: TOPGEN_2:29
theorem Th30: :: TOPGEN_2:30
theorem Th31: :: TOPGEN_2:31
theorem Th32: :: TOPGEN_2:32
theorem Th33: :: TOPGEN_2:33
theorem Th34: :: TOPGEN_2:34
theorem Th35: :: TOPGEN_2:35
theorem Th36: :: TOPGEN_2:36
theorem Th37: :: TOPGEN_2:37
theorem Th38: :: TOPGEN_2:38
theorem Th39: :: TOPGEN_2:39
theorem Th40: :: TOPGEN_2:40
theorem Th41: :: TOPGEN_2:41