:: ZF_REFLE semantic presentation
theorem Th1: :: ZF_REFLE:1
canceled;
theorem Th2: :: ZF_REFLE:2
theorem Th3: :: ZF_REFLE:3
theorem Th4: :: ZF_REFLE:4
theorem Th5: :: ZF_REFLE:5
theorem Th6: :: ZF_REFLE:6
theorem Th7: :: ZF_REFLE:7
:: deftheorem Def1 defines c= ZF_REFLE:def 1 :
theorem Th8: :: ZF_REFLE:8
:: deftheorem Def2 defines union ZF_REFLE:def 2 :
theorem Th9: :: ZF_REFLE:9
canceled;
theorem Th10: :: ZF_REFLE:10
theorem Th11: :: ZF_REFLE:11
theorem Th12: :: ZF_REFLE:12
theorem Th13: :: ZF_REFLE:13
theorem Th14: :: ZF_REFLE:14
theorem Th15: :: ZF_REFLE:15
theorem Th16: :: ZF_REFLE:16
canceled;
theorem Th17: :: ZF_REFLE:17
:: deftheorem Def3 ZF_REFLE:def 3 :
canceled;
:: deftheorem Def4 ZF_REFLE:def 4 :
canceled;
:: deftheorem Def5 defines DOMAIN-yielding ZF_REFLE:def 5 :
Lemma14:
for b1, b2 being set st b1 <> {} & b1 c= b2 holds
b2 <> {}
theorem Th18: :: ZF_REFLE:18
canceled;
theorem Th19: :: ZF_REFLE:19
canceled;
theorem Th20: :: ZF_REFLE:20
canceled;
theorem Th21: :: ZF_REFLE:21
canceled;
theorem Th22: :: ZF_REFLE:22
canceled;
theorem Th23: :: ZF_REFLE:23
theorem Th24: :: ZF_REFLE:24
theorem Th25: :: ZF_REFLE:25
theorem Th26: :: ZF_REFLE:26
canceled;
theorem Th27: :: ZF_REFLE:27
theorem Th28: :: ZF_REFLE:28
theorem Th29: :: ZF_REFLE:29