environ
vocabularies HIDDEN, NUMBERS, FINSEQ_1, SUBSET_1, GRAPH_1, FUNCT_1, STRUCT_0, TREES_2, XBOOLE_0, ARYTM_3, XXREAL_0, PARTFUN1, GRAPH_2, RELAT_1, TARSKI, CARD_1, NAT_1, ARYTM_1, ORDINAL4, GLIB_000, FINSET_1, FINSEQ_2, GRAPH_4;
notations HIDDEN, TARSKI, XBOOLE_0, SUBSET_1, RELAT_1, FUNCT_1, PARTFUN1, FINSEQ_1, FINSEQ_2, CARD_1, FINSET_1, ORDINAL1, NUMBERS, XCMPLX_0, NAT_1, NAT_D, STRUCT_0, GRAPH_1, GRAPH_2, XXREAL_0;
definitions TARSKI;
theorems TARSKI, NAT_1, FINSEQ_1, FINSEQ_2, GRAPH_1, RELAT_1, FUNCT_1, GRFUNC_1, FUNCT_2, FINSET_1, FINSEQ_3, FINSEQ_4, GRAPH_2, XBOOLE_0, XBOOLE_1, XREAL_1, CARD_1, XXREAL_0, ORDINAL1, NAT_D, XREAL_0;
schemes NAT_1, FINSEQ_1, FUNCT_1;
registrations XBOOLE_0, RELAT_1, FUNCT_1, XXREAL_0, XREAL_0, NAT_1, FINSEQ_1, GRAPH_2, ORDINAL1, CARD_1, STRUCT_0, GRAPH_1;
constructors HIDDEN, RECDEF_1, GRAPH_2, NAT_D, FINSEQ_2, RELSET_1;
requirements HIDDEN, REAL, NUMERALS, BOOLE, SUBSET, ARITHM;
equalities FINSEQ_2;
expansions ;
Lm1:
for G being Graph
for v being Element of G holds <*v*> is_oriented_vertex_seq_of {}
by FINSEQ_1:39;
Lm2:
for p being FinSequence
for m, n being Nat st 1 <= m & m <= n + 1 & n <= len p holds
( (len ((m,n) -cut p)) + m = n + 1 & ( for i being Nat st i < len ((m,n) -cut p) holds
((m,n) -cut p) . (i + 1) = p . (m + i) ) )