:: JORDAN semantic presentation
REAL
is non
empty
V42
()
V166
()
V167
()
V168
()
V172
()
V200
() non
bounded_below
non
bounded_above
interval
set
NAT
is
V166
()
V167
()
V168
()
V169
()
V170
()
V171
()
V172
()
V200
()
bounded_below
Element
of
bool
REAL
bool
REAL
is non
empty
set
I[01]
is non
empty
strict
TopSpace-like
T_0
T_1
T_2
V82
()
normal
T_3
T_4
connected
compact
locally_connected
V211
()
V246
()
pathwise_connected
pseudocompact
SubSpace
of
R^1
R^1
is non
empty
strict
TopSpace-like
T_0
T_1
T_2
V211
()
TopStruct
the
carrier
of
I[01]
is non
empty
V166
()
V167
()
V168
()
set
[:
I[01]
,
I[01]
:]
is non
empty
strict
TopSpace-like
T_0
T_1
T_2
TopStruct
the
carrier
of
[:
I[01]
,
I[01]
:]
is non
empty
set
COMPLEX
is non
empty
V42
()
V166
()
V172
()
set
omega
is
V166
()
V167
()
V168
()
V169
()
V170
()
V171
()
V172
()
V200
()
bounded_below
set
bool
omega
is non
empty
set
bool
NAT
is non
empty
set
1 is non
empty
ordinal
natural
complex
ext-real
positive
non
negative
real
V33
()
V119
()
V166
()
V167
()
V168
()
V169
()
V170
()
V171
()
left_end
bounded_below
Element
of
NAT
RAT
is non
empty
V42
()
V166
()
V167
()
V168
()
V169
()
V172
()
set
[:
1,1
:]
is
Relation-like
RAT
-valued
INT
-valued
non
empty
V156
()
V157
()
V158
()
V159
()
set
INT
is non
empty
V42
()
V166
()
V167
()
V168
()
V169
()
V170
()
V172
()
set
bool
[:
1,1
:]
is non
empty
set
[:
[:
1,1
:]
,1
:]
is
Relation-like
RAT
-valued
INT
-valued
non
empty
V156
()
V157
()
V158
()
V159
()
set
bool
[:
[:
1,1
:]
,1
:]
is non
empty
set
[:
[:
1,1
:]
,
REAL
:]
is
Relation-like
non
empty
V156
()
V157
()
V158
()
set
bool
[:
[:
1,1
:]
,
REAL
:]
is non
empty
set
[:
REAL
,
REAL
:]
is
Relation-like
non
empty
V156
()
V157
()
V158
()
set
[:
[:
REAL
,
REAL
:]
,
REAL
:]
is
Relation-like
non
empty
V156
()
V157
()
V158
()
set
bool
[:
[:
REAL
,
REAL
:]
,
REAL
:]
is non
empty
set
2 is non
empty
ordinal
natural
complex
ext-real
positive
non
negative
real
V33
()
V119
()
V166
()
V167
()
V168
()
V169
()
V170
()
V171
()
left_end
bounded_below
Element
of
NAT
[:
2,2
:]
is
Relation-like
RAT
-valued
INT
-valued
non
empty
V156
()
V157
()
V158
()
V159
()
set
[:
[:
2,2
:]
,
REAL
:]
is
Relation-like
non
empty
V156
()
V157
()
V158
()
set
bool
[:
[:
2,2
:]
,
REAL
:]
is non
empty
set
bool
[:
REAL
,
REAL
:]
is non
empty
set
TOP-REAL
2 is non
empty
TopSpace-like
T_0
T_1
T_2
connected
V132
()
V178
()
V179
()
V180
()
V181
()
V182
()
V183
()
V184
()
strict
add-continuous
Mult-continuous
pathwise_connected
RLTopStruct
the
carrier
of
(
TOP-REAL
2
)
is
functional
non
empty
set
bool
the
carrier
of
(
TOP-REAL
2
)
is non
empty
set
I[01]
is non
empty
strict
TopSpace-like
T_0
T_1
T_2
V82
()
normal
T_3
T_4
connected
compact
locally_connected
V211
()
V246
()
pathwise_connected
pseudocompact
TopStruct
the
carrier
of
I[01]
is non
empty
V166
()
V167
()
V168
()
set
RealSpace
is non
empty
strict
Reflexive
discerning
symmetric
triangle
Discerning
V211
()
MetrStruct
0
is
Relation-like
non-empty
empty-yielding
RAT
-valued
Function-like
one-to-one
constant
functional
empty
ordinal
natural
complex
ext-real
non
positive
non
negative
real
V33
()
V119
()
V156
()
V157
()
V158
()
V159
()
V166
()
V167
()
V168
()
V169
()
V170
()
V171
()
V172
()
bounded_below
interval
Element
of
NAT
the
Relation-like
non-empty
empty-yielding
RAT
-valued
Function-like
one-to-one
constant
functional
empty
V156
()
V157
()
V158
()
V159
()
V166
()
V167
()
V168
()
V169
()
V170
()
V171
()
V172
()
bounded_below
interval
set
is
Relation-like
non-empty
empty-yielding
RAT
-valued
Function-like
one-to-one
constant
functional
empty
V156
()
V157
()
V158
()
V159
()
V166
()
V167
()
V168
()
V169
()
V170
()
V171
()
V172
()
bounded_below
interval
set
Closed-Interval-TSpace
(
0
,1) is non
empty
strict
TopSpace-like
T_0
T_1
T_2
V211
()
SubSpace
of
R^1
the
carrier
of
(
Closed-Interval-TSpace
(
0
,1)
)
is non
empty
V166
()
V167
()
V168
()
set
[:
R^1
,
R^1
:]
is non
empty
strict
TopSpace-like
T_0
T_1
T_2
TopStruct
the
carrier
of
[:
R^1
,
R^1
:]
is non
empty
set
[:
the
carrier
of
[:
R^1
,
R^1
:]
, the
carrier
of
(
TOP-REAL
2
)
:]
is
Relation-like
non
empty
set
bool
[:
the
carrier
of
[:
R^1
,
R^1
:]
, the
carrier
of
(
TOP-REAL
2
)
:]
is non
empty
set
{}
is
Relation-like
non-empty
empty-yielding
RAT
-valued
Function-like
one-to-one
constant
functional
empty
V156
()
V157
()
V158
()
V159
()
V166
()
V167
()
V168
()
V169
()
V170
()
V171
()
V172
()
bounded_below
interval
set
{
{}
,1
}
is non
empty
set
K618
() is non
empty
strict
TopSpace-like
T_0
T_1
T_2
V211
()
V271
()
SubSpace
of
R^1
the
carrier
of
K618
() is non
empty
V166
()
V167
()
V168
()
set
bool
the
carrier
of
K618
() is non
empty
set
bool
(
bool
the
carrier
of
K618
()
)
is non
empty
set
Tunit_circle
2 is non
empty
TopSpace-like
T_0
T_1
T_2
V82
()
normal
T_3
T_4
connected
compact
V246
()
being_simple_closed_curve
pathwise_connected
pseudocompact
SubSpace
of
TOP-REAL
2
the
carrier
of
(
Tunit_circle
2
)
is non
empty
set
[:
the
carrier
of
K618
(), the
carrier
of
(
Tunit_circle
2
)
:]
is
Relation-like
non
empty
set
bool
[:
the
carrier
of
K618
(), the
carrier
of
(
Tunit_circle
2
)
:]
is non
empty
set
CircleMap
is
Relation-like
the
carrier
of
K618
()
-defined
the
carrier
of
K618
()
-defined
the
carrier
of
(
Tunit_circle
2
)
-valued
the
carrier
of
(
Tunit_circle
2
)
-valued
Function-like
non
empty
total
total
quasi_total
quasi_total
onto
continuous
Element
of
bool
[:
the
carrier
of
K618
(), the
carrier
of
(
Tunit_circle
2
)
:]
c[10]
is
Element
of the
carrier
of
(
Tunit_circle
2
)
Topen_unit_circle
c[10]
is non
empty
strict
TopSpace-like
T_0
T_1
T_2
V118
(
Tunit_circle
2)
SubSpace
of
Tunit_circle
2
the
carrier
of
(
Topen_unit_circle
c[10]
)
is non
empty
set
].
0
,1
.[
is non
empty
V166
()
V167
()
V168
() non
left_end
non
right_end
bounded_below
bounded_above
real-bounded
interval
Element
of
bool
REAL
R^1
].
0
,1
.[
is non
empty
connected
V166
()
V167
()
V168
()
interval
Element
of
bool
the
carrier
of
K618
()
K618
()
|
(
R^1
].
0
,1
.[
)
is non
empty
strict
TopSpace-like
T_0
T_1
T_2
V211
()
V271
()
SubSpace
of
K618
()
the
carrier
of
(
K618
()
|
(
R^1
].
0
,1
.[
)
)
is non
empty
V166
()
V167
()
V168
()
set
[:
the
carrier
of
(
Topen_unit_circle
c[10]
)
, the
carrier
of
(
K618
()
|
(
R^1
].
0
,1
.[
)
)
:]
is
Relation-like
non
empty
V156
()
V157
()
V158
()
set
bool
[:
the
carrier
of
(
Topen_unit_circle
c[10]
)
, the
carrier
of
(
K618
()
|
(
R^1
].
0
,1
.[
)
)
:]
is non
empty
set
c[-10]
is
Element
of the
carrier
of
(
Tunit_circle
2
)
Topen_unit_circle
c[-10]
is non
empty
strict
TopSpace-like
T_0
T_1
T_2
V118
(
Tunit_circle
2)
SubSpace
of
Tunit_circle
2
the
carrier
of
(
Topen_unit_circle
c[-10]
)
is non
empty
set
1
/
2 is
complex
ext-real
non
negative
real
Element
of
REAL
3 is non
empty
ordinal
natural
complex
ext-real
positive
non
negative
real
V33
()
V119
()
V166
()
V167
()
V168
()
V169
()
V170
()
V171
()
left_end
bounded_below
Element
of
NAT
3
/
2 is
complex
ext-real
non
negative
real
Element
of
REAL
].
(
1
/
2
)
,
(
3
/
2
)
.[
is non
empty
V166
()
V167
()
V168
() non
left_end
non
right_end
bounded_below
bounded_above
real-bounded
interval
Element
of
bool
REAL
R^1
].
(
1
/
2
)
,
(
3
/
2
)
.[
is non
empty
connected
V166
()
V167
()
V168
()
interval
Element
of
bool
the
carrier
of
K618
()
K618
()
|
(
R^1
].
(
1
/
2
)
,
(
3
/
2
)
.[
)
is non
empty
strict
TopSpace-like
T_0
T_1
T_2
V211
()
V271
()
SubSpace
of
K618
()
the
carrier
of
(
K618
()
|
(
R^1
].
(
1
/
2
)
,
(
3
/
2
)
.[
)
)
is non
empty
V166
()
V167
()
V168
()
set
[:
the
carrier
of
(
Topen_unit_circle
c[-10]
)
, the
carrier
of
(
K618
()
|
(
R^1
].
(
1
/
2
)
,
(
3
/
2
)
.[
)
)
:]
is
Relation-like
non
empty
V156
()
V157
()
V158
()
set
bool
[:
the
carrier
of
(
Topen_unit_circle
c[-10]
)
, the
carrier
of
(
K618
()
|
(
R^1
].
(
1
/
2
)
,
(
3
/
2
)
.[
)
)
:]
is non
empty
set
[:
the
carrier
of
(
TOP-REAL
2
)
, the
carrier
of
(
TOP-REAL
2
)
:]
is
Relation-like
non
empty
set
bool
[:
the
carrier
of
(
TOP-REAL
2
)
, the
carrier
of
(
TOP-REAL
2
)
:]
is non
empty
set
[:
the
carrier
of
I[01]
, the
carrier
of
I[01]
:]
is
Relation-like
non
empty
V156
()
V157
()
V158
()
set
bool
[:
the
carrier
of
I[01]
, the
carrier
of
I[01]
:]
is non
empty
set
bool
the
carrier
of
[:
I[01]
,
I[01]
:]
is non
empty
set
[:
COMPLEX
,
COMPLEX
:]
is
Relation-like
non
empty
V156
()
set
bool
[:
COMPLEX
,
COMPLEX
:]
is non
empty
set
[:
COMPLEX
,
REAL
:]
is
Relation-like
non
empty
V156
()
V157
()
V158
()
set
bool
[:
COMPLEX
,
REAL
:]
is non
empty
set
[:
[:
COMPLEX
,
COMPLEX
:]
,
COMPLEX
:]
is
Relation-like
non
empty
V156
()
set
bool
[:
[:
COMPLEX
,
COMPLEX
:]
,
COMPLEX
:]
is non
empty
set
[:
RAT
,
RAT
:]
is
Relation-like
RAT
-valued
non
empty
V156
()
V157
()
V158
()
set
bool
[:
RAT
,
RAT
:]
is non
empty
set
[:
[:
RAT
,
RAT
:]
,
RAT
:]
is
Relation-like
RAT
-valued
non
empty
V156
()
V157
()
V158
()
set
bool
[:
[:
RAT
,
RAT
:]
,
RAT
:]
is non
empty
set
[:
INT
,
INT
:]
is
Relation-like
RAT
-valued
INT
-valued
non
empty
V156
()
V157
()
V158
()
set
bool
[:
INT
,
INT
:]
is non
empty
set
[:
[:
INT
,
INT
:]
,
INT
:]
is
Relation-like
RAT
-valued
INT
-valued
non
empty
V156
()
V157
()
V158
()
set
bool
[:
[:
INT
,
INT
:]
,
INT
:]
is non
empty
set
[:
NAT
,
NAT
:]
is
Relation-like
RAT
-valued
INT
-valued
V156
()
V157
()
V158
()
V159
()
set
[:
[:
NAT
,
NAT
:]
,
NAT
:]
is
Relation-like
RAT
-valued
INT
-valued
V156
()
V157
()
V158
()
V159
()
set
bool
[:
[:
NAT
,
NAT
:]
,
NAT
:]
is non
empty
set
[:
the
carrier
of
(
TOP-REAL
2
)
,
REAL
:]
is
Relation-like
non
empty
V156
()
V157
()
V158
()
set
bool
[:
the
carrier
of
(
TOP-REAL
2
)
,
REAL
:]
is non
empty
set
4 is non
empty
ordinal
natural
complex
ext-real
positive
non
negative
real
V33
()
V119
()
V166
()
V167
()
V168
()
V169
()
V170
()
V171
()
left_end
bounded_below
Element
of
NAT
sqrt
4 is non
empty
complex
ext-real
positive
non
negative
real
Element
of
REAL
the
carrier
of
R^1
is non
empty
V166
()
V167
()
V168
()
set
R2Homeomorphism
is
Relation-like
the
carrier
of
[:
R^1
,
R^1
:]
-defined
the
carrier
of
(
TOP-REAL
2
)
-valued
Function-like
non
empty
total
quasi_total
Element
of
bool
[:
the
carrier
of
[:
R^1
,
R^1
:]
, the
carrier
of
(
TOP-REAL
2
)
:]
[.
0
,1
.]
is non
empty
V166
()
V167
()
V168
()
compact
interval
Element
of
bool
REAL
0[01]
is
complex
ext-real
real
Element
of the
carrier
of
I[01]
1[01]
is
complex
ext-real
real
Element
of the
carrier
of
I[01]
proj2
is
Relation-like
the
carrier
of
(
TOP-REAL
2
)
-defined
REAL
-valued
Function-like
non
empty
total
quasi_total
V156
()
V157
()
V158
()
continuous
Element
of
bool
[:
the
carrier
of
(
TOP-REAL
2
)
,
REAL
:]
proj1
is
Relation-like
the
carrier
of
(
TOP-REAL
2
)
-defined
REAL
-valued
Function-like
non
empty
total
quasi_total
V156
()
V157
()
V158
()
continuous
Element
of
bool
[:
the
carrier
of
(
TOP-REAL
2
)
,
REAL
:]
-
1 is
complex
ext-real
non
positive
real
Element
of
REAL
|[
(
-
1
)
,
0
]|
is
Relation-like
Function-like
V49
(2)
V50
()
V156
()
V157
()
V158
()
Element
of the
carrier
of
(
TOP-REAL
2
)
|[
1,
0
]|
is
Relation-like
Function-like
V49
(2)
V50
()
V156
()
V157
()
V158
()
Element
of the
carrier
of
(
TOP-REAL
2
)
R^2-unit_square
is
functional
non
empty
non
trivial
closed
connected
compact
bounded
being_special_polygon
being_simple_closed_curve
with_the_max_arc
Element
of
bool
the
carrier
of
(
TOP-REAL
2
)
(
TOP-REAL
2
)
|
R^2-unit_square
is non
empty
strict
TopSpace-like
T_0
T_1
T_2
V82
()
normal
T_3
T_4
compact
V246
()
pseudocompact
SubSpace
of
TOP-REAL
2
the
carrier
of
(
(
TOP-REAL
2
)
|
R^2-unit_square
)
is non
empty
set
bool
the
carrier
of
R^1
is non
empty
set
Closed-Interval-TSpace
(
(
-
1
)
,1) is non
empty
strict
TopSpace-like
T_0
T_1
T_2
V211
()
SubSpace
of
R^1
the
carrier
of
(
Closed-Interval-TSpace
(
(
-
1
)
,1)
)
is non
empty
V166
()
V167
()
V168
()
set
(#)
(
0
,1) is
complex
ext-real
real
Element
of the
carrier
of
(
Closed-Interval-TSpace
(
0
,1)
)
(
0
,1)
(#)
is
complex
ext-real
real
Element
of the
carrier
of
(
Closed-Interval-TSpace
(
0
,1)
)
{
0
}
is
functional
non
empty
V166
()
V167
()
V168
()
V169
()
V170
()
V171
()
left_end
bounded_below
set
C0
is
set
l1
is
set
C1
is
set
l0
is
set
C0
\/
C1
is
set
(
C0
\/
C1
)
\/
l0
is
set
C0
is
set
h1
is
set
C1
is
set
l0
is
set
l1
is
set
C0
\/
C1
is
set
(
C0
\/
C1
)
\/
l0
is
set
(
(
C0
\/
C1
)
\/
l0
)
\/
l1
is
set
C0
is
set
h1
is
set
C1
is
set
l0
is
set
l1
is
set
C0
\/
C1
is
set
(
C0
\/
C1
)
\/
l0
is
set
(
(
C0
\/
C1
)
\/
l0
)
\/
l1
is
set
C0
is
Reflexive
symmetric
triangle
MetrStruct
the
carrier
of
C0
is
set
C1
is
Element
of the
carrier
of
C0
l0
is
Element
of the
carrier
of
C0
dist
(
C1
,
l0
) is
complex
ext-real
real
Element
of
REAL
C0
is
ordinal
natural
complex
ext-real
non
negative
real
V33
()
V119
()
V166
()
V167
()
V168
()
V169
()
V170
()
V171
()
bounded_below
Element
of
NAT
TOP-REAL
C0
is non
empty
TopSpace-like
T_0
T_1
T_2
connected
V132
()
V178
()
V179
()
V180
()
V181
()
V182
()
V183
()
V184
()
strict
add-continuous
Mult-continuous
pathwise_connected
RLTopStruct
the
carrier
of
(
TOP-REAL
C0
)
is
functional
non
empty
set
C1
is
Relation-like
Function-like
V49
(
C0
)
V50
()
V156
()
V157
()
V158
()
Element
of the
carrier
of
(
TOP-REAL
C0
)
l0
is
Relation-like
Function-like
V49
(
C0
)
V50
()
V156
()
V157
()
V158
()
Element
of the
carrier
of
(
TOP-REAL
C0
)
dist
(
C1
,
l0
) is
complex
ext-real
real
Element
of
REAL
Euclid
C0
is non
empty
strict
Reflexive
discerning
symmetric
triangle
Discerning
MetrStruct
the
carrier
of
(
Euclid
C0
)
is non
empty
set
l1
is
Element
of the
carrier
of
(
Euclid
C0
)
h1
is
Element
of the
carrier
of
(
Euclid
C0
)
dist
(
l1
,
h1
) is
complex
ext-real
non
negative
real
Element
of
REAL
C0
is
ordinal
natural
complex
ext-real
non
negative
real
V33
()
V119
()
V166
()
V167
()
V168
()
V169
()
V170
()
V171
()
bounded_below
Element
of
NAT
TOP-REAL
C0
is non
empty
TopSpace-like
T_0
T_1
T_2
connected
V132
()
V178
()
V179
()
V180
()
V181
()
V182
()
V183
()
V184
()
strict
add-continuous
Mult-continuous
pathwise_connected
RLTopStruct
the
carrier
of
(
TOP-REAL
C0
)
is
functional
non
empty
set
C1
is
Relation-like
Function-like
V49
(
C0
)
V50
()
V156
()
V157
()
V158
()
Element
of the
carrier
of
(
TOP-REAL
C0
)
l0
is
Relation-like
Function-like
V49
(
C0
)
V50
()
V156
()
V157
()
V158
()
Element
of the
carrier
of
(
TOP-REAL
C0
)
C1
+
l0
is
Relation-like
Function-like
V49
(
C0
)
V50
()
V156
()
V157
()
V158
()
Element
of the
carrier
of
(
TOP-REAL
C0
)
the
U7
of
(
TOP-REAL
C0
)
is
Relation-like
[:
the
carrier
of
(
TOP-REAL
C0
)
, the
carrier
of
(
TOP-REAL
C0
)
:]
-defined
the
carrier
of
(
TOP-REAL
C0
)
-valued
Function-like
non
empty
total
quasi_total
Element
of
bool
[:
[:
the
carrier
of
(
TOP-REAL
C0
)
, the
carrier
of
(
TOP-REAL
C0
)
:]
, the
carrier
of
(
TOP-REAL
C0
)
:]
[:
the
carrier
of
(
TOP-REAL
C0
)
, the
carrier
of
(
TOP-REAL
C0
)
:]
is
Relation-like
non
empty
set
[:
[:
the
carrier
of
(
TOP-REAL
C0
)
, the
carrier
of
(
TOP-REAL
C0
)
:]
, the
carrier
of
(
TOP-REAL
C0
)
:]
is
Relation-like
non
empty
set
bool
[:
[:
the
carrier
of
(
TOP-REAL
C0
)
, the
carrier
of
(
TOP-REAL
C0
)
:]
, the
carrier
of
(
TOP-REAL
C0
)
:]
is non
empty
set
K224
( the
carrier
of
(
TOP-REAL
C0
)
, the
U7
of
(
TOP-REAL
C0
)
,
C1
,
l0
) is
Relation-like
Function-like
V49
(
C0
)
V50
()
V156
()
V157
()
V158
()
Element
of the
carrier
of
(
TOP-REAL
C0
)
(
1
/
2
)
*
(
C1
+
l0
)
is
Relation-like
Function-like
V49
(
C0
)
V50
()
V156
()
V157
()
V158
()
Element
of the
carrier
of
(
TOP-REAL
C0
)
(
1
/
2
)
*
C1
is
Relation-like
Function-like
V49
(
C0
)
V50
()
V156
()
V157
()
V158
()
Element
of the
carrier
of
(
TOP-REAL
C0
)
(
1
/
2
)
*
l0
is
Relation-like
Function-like
V49
(
C0
)
V50
()
V156
()
V157
()
V158
()
Element
of the
carrier
of
(
TOP-REAL
C0
)
(
(
1
/
2
)
*
C1
)
+
(
(
1
/
2
)
*
l0
)
is
Relation-like
Function-like
V49
(
C0
)
V50
()
V156
()
V157
()
V158
()
Element
of the
carrier
of
(
TOP-REAL
C0
)
K224
( the
carrier
of
(
TOP-REAL
C0
)
, the
U7
of
(
TOP-REAL
C0
)
,
(
(
1
/
2
)
*
C1
)
,
(
(
1
/
2
)
*
l0
)
) is
Relation-like
Function-like
V49
(
C0
)
V50
()
V156
()
V157
()
V158
()
Element
of the
carrier
of
(
TOP-REAL
C0
)
0.
(
TOP-REAL
C0
)
is
Relation-like
Function-like
V49
(
C0
)
V50
()
zero
V156
()
V157
()
V158
()
Element
of the
carrier
of
(
TOP-REAL
C0
)
the
ZeroF
of
(
TOP-REAL
C0
)
is
Relation-like
Function-like
V49
(
C0
)
V50
()
V156
()
V157
()
V158
()
Element
of the
carrier
of
(
TOP-REAL
C0
)
C1
-
(
(
(
1
/
2
)
*
C1
)
+
(
(
1
/
2
)
*
l0
)
)
is
Relation-like
Function-like
V49
(
C0
)
V50
()
V156
()
V157
()
V158
()
Element
of the
carrier
of
(
TOP-REAL
C0
)
-
(
(
(
1
/
2
)
*
C1
)
+
(
(
1
/
2
)
*
l0
)
)
is
Relation-like
Function-like
V49
(
C0
)
V50
()
V156
()
V157
()
V158
()
Element
of the
carrier
of
(
TOP-REAL
C0
)
K270
(
(
TOP-REAL
C0
)
,
C1
,
(
-
(
(
(
1
/
2
)
*
C1
)
+
(
(
1
/
2
)
*
l0
)
)
)
) is
Relation-like
Function-like
V49
(
C0
)
V50
()
V156
()
V157
()
V158
()
Element
of the
carrier
of
(
TOP-REAL
C0
)
K224
( the
carrier
of
(
TOP-REAL
C0
)
, the
U7
of
(
TOP-REAL
C0
)
,
C1
,
(
-
(
(
(
1
/
2
)
*
C1
)
+
(
(
1
/
2
)
*
l0
)
)
)
) is
Relation-like
Function-like
V49
(
C0
)
V50
()
V156
()
V157
()
V158
()
Element
of the
carrier
of
(
TOP-REAL
C0
)
C1
-
(
(
1
/
2
)
*
C1
)
is
Relation-like
Function-like
V49
(
C0
)
V50
()
V156
()
V157
()
V158
()
Element
of the
carrier
of
(
TOP-REAL
C0
)
-
(
(
1
/
2
)
*
C1
)
is
Relation-like
Function-like
V49
(
C0
)
V50
()
V156
()
V157
()
V158
()
Element
of the
carrier
of
(
TOP-REAL
C0
)
K270
(
(
TOP-REAL
C0
)
,
C1
,
(
-
(
(
1
/
2
)
*
C1
)
)
) is
Relation-like
Function-like
V49
(
C0
)
V50
()
V156
()
V157
()
V158
()
Element
of the
carrier
of
(
TOP-REAL
C0
)
K224
( the
carrier
of
(
TOP-REAL
C0
)
, the
U7
of
(
TOP-REAL
C0
)
,
C1
,
(
-
(
(
1
/
2
)
*
C1
)
)
) is
Relation-like
Function-like
V49
(
C0
)
V50
()
V156
()
V157
()
V158
()
Element
of the
carrier
of
(
TOP-REAL
C0
)
(
C1
-
(
(
1
/
2
)
*
C1
)
)
-
(
(
1
/
2
)
*
l0
)
is
Relation-like
Function-like
V49
(
C0
)
V50
()
V156
()
V157
()
V158
()
Element
of the
carrier
of
(
TOP-REAL
C0
)
-
(
(
1
/
2
)
*
l0
)
is
Relation-like
Function-like
V49
(
C0
)
V50
()
V156
()
V157
()
V158
()
Element
of the
carrier
of
(
TOP-REAL
C0
)
K270
(
(
TOP-REAL
C0
)
,
(
C1
-
(
(
1
/
2
)
*
C1
)
)
,
(
-
(
(
1
/
2
)
*
l0
)
)
) is
Relation-like
Function-like
V49
(
C0
)
V50
()
V156
()
V157
()
V158
()
Element
of the
carrier
of
(
TOP-REAL
C0
)
K224
( the
carrier
of
(
TOP-REAL
C0
)
, the
U7
of
(
TOP-REAL
C0
)
,
(
C1
-
(
(
1
/
2
)
*
C1
)
)
,
(
-
(
(
1
/
2
)
*
l0
)
)
) is
Relation-like
Function-like
V49
(
C0
)
V50
()
V156
()
V157
()
V158
()
Element
of the
carrier
of
(
TOP-REAL
C0
)
1
*
C1
is
Relation-like
Function-like
V49
(
C0
)
V50
()
V156
()
V157
()
V158
()
Element
of the
carrier
of
(
TOP-REAL
C0
)
(
1
*
C1
)
-
(
(
1
/
2
)
*
C1
)
is
Relation-like
Function-like
V49
(
C0
)
V50
()
V156
()
V157
()
V158
()
Element
of the
carrier
of
(
TOP-REAL
C0
)
K270
(
(
TOP-REAL
C0
)
,
(
1
*
C1
)
,
(
-
(
(
1
/
2
)
*
C1
)
)
) is
Relation-like
Function-like
V49
(
C0
)
V50
()
V156
()
V157
()
V158
()
Element
of the
carrier
of
(
TOP-REAL
C0
)
K224
( the
carrier
of
(
TOP-REAL
C0
)
, the
U7
of
(
TOP-REAL
C0
)
,
(
1
*
C1
)
,
(
-
(
(
1
/
2
)
*
C1
)
)
) is
Relation-like
Function-like
V49
(
C0
)
V50
()
V156
()
V157
()
V158
()
Element
of the
carrier
of
(
TOP-REAL
C0
)
(
(
1
*
C1
)
-
(
(
1
/
2
)
*
C1
)
)
-
(
(
1
/
2
)
*
l0
)
is
Relation-like
Function-like
V49
(
C0
)
V50
()
V156
()
V157
()
V158
()
Element
of the
carrier
of
(
TOP-REAL
C0
)
K270
(
(
TOP-REAL
C0
)
,
(
(
1
*
C1
)
-
(
(
1
/
2
)
*
C1
)
)
,
(
-
(
(
1
/
2
)
*
l0
)
)
) is
Relation-like
Function-like
V49
(
C0
)
V50
()
V156
()
V157
()
V158
()
Element
of the
carrier
of
(
TOP-REAL
C0
)
K224
( the
carrier
of
(
TOP-REAL
C0
)
, the
U7
of
(
TOP-REAL
C0
)
,
(
(
1
*
C1
)
-
(
(
1
/
2
)
*
C1
)
)
,
(
-
(
(
1
/
2
)
*
l0
)
)
) is
Relation-like
Function-like
V49
(
C0
)
V50
()
V156
()
V157
()
V158
()
Element
of the
carrier
of
(
TOP-REAL
C0
)
1
-
(
1
/
2
)
is
complex
ext-real
real
Element
of
REAL
(
1
-
(
1
/
2
)
)
*
C1
is
Relation-like
Function-like
V49
(
C0
)
V50
()
V156
()
V157
()
V158
()
Element
of the
carrier
of
(
TOP-REAL
C0
)
(
(
1
-
(
1
/
2
)
)
*
C1
)
-
(
(
1
/
2
)
*
l0
)
is
Relation-like
Function-like
V49
(
C0
)
V50
()
V156
()
V157
()
V158
()
Element
of the
carrier
of
(
TOP-REAL
C0
)
K270
(
(
TOP-REAL
C0
)
,
(
(
1
-
(
1
/
2
)
)
*
C1
)
,
(
-
(
(
1
/
2
)
*
l0
)
)
) is
Relation-like
Function-like
V49
(
C0
)
V50
()
V156
()
V157
()
V158
()
Element
of the
carrier
of
(
TOP-REAL
C0
)
K224
( the
carrier
of
(
TOP-REAL
C0
)
, the
U7
of
(
TOP-REAL
C0
)
,
(
(
1
-
(
1
/
2
)
)
*
C1
)
,
(
-
(
(
1
/
2
)
*
l0
)
)
) is
Relation-like
Function-like
V49
(
C0
)
V50
()
V156
()
V157
()
V158
()
Element
of the
carrier
of
(
TOP-REAL
C0
)
C1
-
l0
is
Relation-like
Function-like
V49
(
C0
)
V50
()
V156
()
V157
()
V158
()
Element
of the
carrier
of
(
TOP-REAL
C0
)
-
l0
is
Relation-like
Function-like
V49
(
C0
)
V50
()
V156
()
V157
()
V158
()
Element
of the
carrier
of
(
TOP-REAL
C0
)
K270
(
(
TOP-REAL
C0
)
,
C1
,
(
-
l0
)
) is
Relation-like
Function-like
V49
(
C0
)
V50
()
V156
()
V157
()
V158
()
Element
of the
carrier
of
(
TOP-REAL
C0
)
K224
( the
carrier
of
(
TOP-REAL
C0
)
, the
U7
of
(
TOP-REAL
C0
)
,
C1
,
(
-
l0
)
) is
Relation-like
Function-like
V49
(
C0
)
V50
()
V156
()
V157
()
V158
()
Element
of the
carrier
of
(
TOP-REAL
C0
)
(
1
/
2
)
*
(
C1
-
l0
)
is
Relation-like
Function-like
V49
(
C0
)
V50
()
V156
()
V157
()
V158
()
Element
of the
carrier
of
(
TOP-REAL
C0
)
C0
is
Relation-like
Function-like
V49
(2)
V50
()
V156
()
V157
()
V158
()
Element
of the
carrier
of
(
TOP-REAL
2
)
C0
`2
is
complex
ext-real
real
Element
of
REAL
C1
is
Relation-like
Function-like
V49
(2)
V50
()
V156
()
V157
()
V158
()
Element
of the
carrier
of
(
TOP-REAL
2
)
C1
`2
is
complex
ext-real
real
Element
of
REAL
C0
+
C1
is
Relation-like
Function-like
V49
(2)
V50
()
V156
()
V157
()
V158
()
Element
of the
carrier
of
(
TOP-REAL
2
)
the
U7
of
(
TOP-REAL
2
)
is
Relation-like
[:
the
carrier
of
(
TOP-REAL
2
)
, the
carrier
of
(
TOP-REAL
2
)
:]
-defined
the
carrier
of
(
TOP-REAL
2
)
-valued
Function-like
non
empty
total
quasi_total
Element
of
bool
[:
[:
the
carrier
of
(
TOP-REAL
2
)
, the
carrier
of
(
TOP-REAL
2
)
:]
, the
carrier
of
(
TOP-REAL
2
)
:]
[:
[:
the
carrier
of
(
TOP-REAL
2
)
, the
carrier
of
(
TOP-REAL
2
)
:]
, the
carrier
of
(
TOP-REAL
2
)
:]
is
Relation-like
non
empty
set
bool
[:
[:
the
carrier
of
(
TOP-REAL
2
)
, the
carrier
of
(
TOP-REAL
2
)
:]
, the
carrier
of
(
TOP-REAL
2
)
:]
is non
empty
set
K224
( the
carrier
of
(
TOP-REAL
2
)
, the
U7
of
(
TOP-REAL
2
)
,
C0
,
C1
) is
Relation-like
Function-like
V49
(2)
V50
()
V156
()
V157
()
V158
()
Element
of the
carrier
of
(
TOP-REAL
2
)
(
1
/
2
)
*
(
C0
+
C1
)
is
Relation-like
Function-like
V49
(2)
V50
()
V156
()
V157
()
V158
()
Element
of the
carrier
of
(
TOP-REAL
2
)
(
(
1
/
2
)
*
(
C0
+
C1
)
)
`2
is
complex
ext-real
real
Element
of
REAL
(
C0
+
C1
)
`2
is
complex
ext-real
real
Element
of
REAL
(
1
/
2
)
*
(
(
C0
+
C1
)
`2
)
is
complex
ext-real
real
Element
of
REAL
(
C0
`2
)
+
(
C1
`2
)
is
complex
ext-real
real
Element
of
REAL
(
1
/
2
)
*
(
(
C0
`2
)
+
(
C1
`2
)
)
is
complex
ext-real
real
Element
of
REAL
(
(
C0
`2
)
+
(
C1
`2
)
)
/
2 is
complex
ext-real
real
Element
of
REAL
C0
is
Relation-like
Function-like
V49
(2)
V50
()
V156
()
V157
()
V158
()
Element
of the
carrier
of
(
TOP-REAL
2
)
C0
`2
is
complex
ext-real
real
Element
of
REAL
C1
is
Relation-like
Function-like
V49
(2)
V50
()
V156
()
V157
()
V158
()
Element
of the
carrier
of
(
TOP-REAL
2
)
C1
`2
is
complex
ext-real
real
Element
of
REAL
C0
+
C1
is
Relation-like
Function-like
V49
(2)
V50
()
V156
()
V157
()
V158
()
Element
of the
carrier
of
(
TOP-REAL
2
)
the
U7
of
(
TOP-REAL
2
)
is
Relation-like
[:
the
carrier
of
(
TOP-REAL
2
)
, the
carrier
of
(
TOP-REAL
2
)
:]
-defined
the
carrier
of
(
TOP-REAL
2
)
-valued
Function-like
non
empty
total
quasi_total
Element
of
bool
[:
[:
the
carrier
of
(
TOP-REAL
2
)
, the
carrier
of
(
TOP-REAL
2
)
:]
, the
carrier
of
(
TOP-REAL
2
)
:]
[:
[:
the
carrier
of
(
TOP-REAL
2
)
, the
carrier
of
(
TOP-REAL
2
)
:]
, the
carrier
of
(
TOP-REAL
2
)
:]
is
Relation-like
non
empty
set
bool
[:
[:
the
carrier
of
(
TOP-REAL
2
)
, the
carrier
of
(
TOP-REAL
2
)
:]
, the
carrier
of
(
TOP-REAL
2
)
:]
is non
empty
set
K224
( the
carrier
of
(
TOP-REAL
2
)
, the
U7
of
(
TOP-REAL
2
)
,
C0
,
C1
) is
Relation-like
Function-like
V49
(2)
V50
()
V156
()
V157
()
V158
()
Element
of the
carrier
of
(
TOP-REAL
2
)
(
1
/
2
)
*
(
C0
+
C1
)
is
Relation-like
Function-like
V49
(2)
V50
()
V156
()
V157
()
V158
()
Element
of the
carrier
of
(
TOP-REAL
2
)
(
(
1
/
2
)
*
(
C0
+
C1
)
)
`2
is
complex
ext-real
real
Element
of
REAL
(
C0
+
C1
)
`2
is
complex
ext-real
real
Element
of
REAL
(
1
/
2
)
*
(
(
C0
+
C1
)
`2
)
is
complex
ext-real
real
Element
of
REAL
(
C0
`2
)
+
(
C1
`2
)
is
complex
ext-real
real
Element
of
REAL
(
1
/
2
)
*
(
(
C0
`2
)
+
(
C1
`2
)
)
is
complex
ext-real
real
Element
of
REAL
(
(
C0
`2
)
+
(
C1
`2
)
)
/
2 is
complex
ext-real
real
Element
of
REAL
C0
is
functional
Element
of
bool
the
carrier
of
(
TOP-REAL
2
)
C1
is
functional
vertical
Element
of
bool
the
carrier
of
(
TOP-REAL
2
)
C1
/\
C0
is
functional
Element
of
bool
the
carrier
of
(
TOP-REAL
2
)
l0
is
Relation-like
Function-like
V49
(2)
V50
()
V156
()
V157
()
V158
()
Element
of the
carrier
of
(
TOP-REAL
2
)
l1
is
Relation-like
Function-like
V49
(2)
V50
()
V156
()
V157
()
V158
()
Element
of the
carrier
of
(
TOP-REAL
2
)
l0
`1
is
complex
ext-real
real
Element
of
REAL
l1
`1
is
complex
ext-real
real
Element
of
REAL
C0
is
functional
Element
of
bool
the
carrier
of
(
TOP-REAL
2
)
C1
is
functional
horizontal
Element
of
bool
the
carrier
of
(
TOP-REAL
2
)
C1
/\
C0
is
functional
Element
of
bool
the
carrier
of
(
TOP-REAL
2
)
l0
is
Relation-like
Function-like
V49
(2)
V50
()
V156
()
V157
()
V158
()
Element
of the
carrier
of
(
TOP-REAL
2
)
l1
is
Relation-like
Function-like
V49
(2)
V50
()
V156
()
V157
()
V158
()
Element
of the
carrier
of
(
TOP-REAL
2
)
l0
`2
is
complex
ext-real
real
Element
of
REAL
l1
`2
is
complex
ext-real
real
Element
of
REAL
C0
is
Relation-like
Function-like
V49
(2)
V50
()
V156
()
V157
()
V158
()
Element
of the
carrier
of
(
TOP-REAL
2
)
C1
is
Relation-like
Function-like
V49
(2)
V50
()
V156
()
V157
()
V158
()
Element
of the
carrier
of
(
TOP-REAL
2
)
l0
is
Relation-like
Function-like
V49
(2)
V50
()
V156
()
V157
()
V158
()
Element
of the
carrier
of
(
TOP-REAL
2
)
LSeg
(
C1
,
l0
) is
functional
closed
closed
boundary
nowhere_dense
connected
compact
compact
bounded
bounded
Element
of
bool
the
carrier
of
(
TOP-REAL
2
)
{
(
(
(
1
-
b
1
)
*
C1
)
+
(
b
1
*
l0
)
)
where
b
1
is
complex
ext-real
real
Element
of
REAL
: (
0
<=
b
1
&
b
1
<=
1 )
}
is
set
LSeg
(
C0
,
l0
) is
functional
closed
closed
boundary
nowhere_dense
connected
compact
compact
bounded
bounded
Element
of
bool
the
carrier
of
(
TOP-REAL
2
)
{
(
(
(
1
-
b
1
)
*
C0
)
+
(
b
1
*
l0
)
)
where
b
1
is
complex
ext-real
real
Element
of
REAL
: (
0
<=
b
1
&
b
1
<=
1 )
}
is
set
C1
`1
is
complex
ext-real
real
Element
of
REAL
l0
`1
is
complex
ext-real
real
Element
of
REAL
C0
`1
is
complex
ext-real
real
Element
of
REAL
C0
is
Relation-like
Function-like
V49
(2)
V50
()
V156
()
V157
()
V158
()
Element
of the
carrier
of
(
TOP-REAL
2
)
C1
is
Relation-like
Function-like
V49
(2)
V50
()
V156
()
V157
()
V158
()
Element
of the
carrier
of
(
TOP-REAL
2
)
l0
is
Relation-like
Function-like
V49
(2)
V50
()
V156
()
V157
()
V158
()
Element
of the
carrier
of
(
TOP-REAL
2
)
LSeg
(
C1
,
l0
) is
functional
closed
closed
boundary
nowhere_dense
connected
compact
compact
bounded
bounded
Element
of
bool
the
carrier
of
(
TOP-REAL
2
)
{
(
(
(
1
-
b
1
)
*
C1
)
+
(
b
1
*
l0
)
)
where
b
1
is
complex
ext-real
real
Element
of
REAL
: (
0
<=
b
1
&
b
1
<=
1 )
}
is
set
LSeg
(
C0
,
l0
) is
functional
closed
closed
boundary
nowhere_dense
connected
compact
compact
bounded
bounded
Element
of
bool
the
carrier
of
(
TOP-REAL
2
)
{
(
(
(
1
-
b
1
)
*
C0
)
+
(
b
1
*
l0
)
)
where
b
1
is
complex
ext-real
real
Element
of
REAL
: (
0
<=
b
1
&
b
1
<=
1 )
}
is
set
C1
`2
is
complex
ext-real
real
Element
of
REAL
l0
`2
is
complex
ext-real
real
Element
of
REAL
C0
`2
is
complex
ext-real
real
Element
of
REAL
C0
is
functional
Element
of
bool
the
carrier
of
(
TOP-REAL
2
)
SW-corner
C0
is
Relation-like
Function-like
V49
(2)
V50
()
V156
()
V157
()
V158
()
Element
of the
carrier
of
(
TOP-REAL
2
)
W-bound
C0
is
complex
ext-real
real
Element
of
REAL
(
TOP-REAL
2
)
|
C0
is
strict
TopSpace-like
T_0
T_1
T_2
SubSpace
of
TOP-REAL
2
proj1
|
C0
is
Relation-like
C0
-defined
the
carrier
of
(
TOP-REAL
2
)
-defined
the
carrier
of
(
(
TOP-REAL
2
)
|
C0
)
-defined
REAL
-valued
Function-like
total
quasi_total
V156
()
V157
()
V158
()
continuous
Element
of
bool
[:
the
carrier
of
(
(
TOP-REAL
2
)
|
C0
)
,
REAL
:]
the
carrier
of
(
(
TOP-REAL
2
)
|
C0
)
is
set
[:
the
carrier
of
(
(
TOP-REAL
2
)
|
C0
)
,
REAL
:]
is
Relation-like
V156
()
V157
()
V158
()
set
bool
[:
the
carrier
of
(
(
TOP-REAL
2
)
|
C0
)
,
REAL
:]
is non
empty
set
lower_bound
(
proj1
|
C0
)
is
complex
ext-real
real
Element
of
REAL
(
proj1
|
C0
)
.:
the
carrier
of
(
(
TOP-REAL
2
)
|
C0
)
is
V166
()
V167
()
V168
()
Element
of
bool
REAL
K663
(
(
(
proj1
|
C0
)
.:
the
carrier
of
(
(
TOP-REAL
2
)
|
C0
)
)
) is
complex
ext-real
real
Element
of
REAL
S-bound
C0
is
complex
ext-real
real
Element
of
REAL
proj2
|
C0
is
Relation-like
C0
-defined
the
carrier
of
(
TOP-REAL
2
)
-defined
the
carrier
of
(
(
TOP-REAL
2
)
|
C0
)
-defined
REAL
-valued
Function-like
total
quasi_total
V156
()
V157
()
V158
()
continuous
Element
of
bool
[:
the
carrier
of
(
(
TOP-REAL
2
)
|
C0
)
,
REAL
:]
lower_bound
(
proj2
|
C0
)
is
complex
ext-real
real
Element
of
REAL
(
proj2
|
C0
)
.:
the
carrier
of
(
(
TOP-REAL
2
)
|
C0
)
is
V166
()
V167
()
V168
()
Element
of
bool
REAL
K663
(
(
(
proj2
|
C0
)
.:
the
carrier
of
(
(
TOP-REAL
2
)
|
C0
)
)
) is
complex
ext-real
real
Element
of
REAL
|[
(
W-bound
C0
)
,
(
S-bound
C0
)
]|
is
Relation-like
Function-like
V49
(2)
V50
()
V156
()
V157
()
V158
()
Element
of the
carrier
of
(
TOP-REAL
2
)
SE-corner
C0
is
Relation-like
Function-like
V49
(2)
V50
()
V156
()
V157
()
V158
()
Element
of the
carrier
of
(
TOP-REAL
2
)
E-bound
C0
is
complex
ext-real
real
Element
of
REAL
upper_bound
(
proj1
|
C0
)
is
complex
ext-real
real
Element
of
REAL
K662
(
(
(
proj1
|
C0
)
.:
the
carrier
of
(
(
TOP-REAL
2
)
|
C0
)
)
) is
complex
ext-real
real
Element
of
REAL
|[
(
E-bound
C0
)
,
(
S-bound
C0
)
]|
is
Relation-like
Function-like
V49
(2)
V50
()
V156
()
V157
()
V158
()
Element
of the
carrier
of
(
TOP-REAL
2
)
LSeg
(
(
SW-corner
C0
)
,
(
SE-corner
C0
)
) is
functional
closed
closed
boundary
nowhere_dense
connected
compact
compact
bounded
bounded
Element
of
bool
the
carrier
of
(
TOP-REAL
2
)
{
(
(
(
1
-
b
1
)
*
(
SW-corner
C0
)
)
+
(
b
1
*
(
SE-corner
C0
)
)
)
where
b
1
is
complex
ext-real
real
Element
of
REAL
: (
0
<=
b
1
&
b
1
<=
1 )
}
is
set
(
SW-corner
C0
)
`2
is
complex
ext-real
real
Element
of
REAL
(
SE-corner
C0
)
`2
is
complex
ext-real
real
Element
of
REAL
NW-corner
C0
is
Relation-like
Function-like
V49
(2)
V50
()
V156
()
V157
()
V158
()
Element
of the
carrier
of
(
TOP-REAL
2
)
N-bound
C0
is
complex
ext-real
real
Element
of
REAL
upper_bound
(
proj2
|
C0
)
is
complex
ext-real
real
Element
of
REAL
K662
(
(
(
proj2
|
C0
)
.:
the
carrier
of
(
(
TOP-REAL
2
)
|
C0
)
)
) is
complex
ext-real
real
Element
of
REAL
|[
(
W-bound
C0
)
,
(
N-bound
C0
)
]|
is
Relation-like
Function-like
V49
(2)
V50
()
V156
()
V157
()
V158
()
Element
of the
carrier
of
(
TOP-REAL
2
)
LSeg
(
(
NW-corner
C0
)
,
(
SW-corner
C0
)
) is
functional
closed
closed
boundary
nowhere_dense
connected
compact
compact
bounded
bounded
Element
of
bool
the
carrier
of
(
TOP-REAL
2
)
{
(
(
(
1
-
b
1
)
*
(
NW-corner
C0
)
)
+
(
b
1
*
(
SW-corner
C0
)
)
)
where
b
1
is
complex
ext-real
real
Element
of
REAL
: (
0
<=
b
1
&
b
1
<=
1 )
}
is
set
(
NW-corner
C0
)
`1
is
complex
ext-real
real
Element
of
REAL
(
SW-corner
C0
)
`1
is
complex
ext-real
real
Element
of
REAL
NE-corner
C0
is
Relation-like
Function-like
V49
(2)
V50
()
V156
()
V157
()
V158
()
Element
of the
carrier
of
(
TOP-REAL
2
)
|[
(
E-bound
C0
)
,
(
N-bound
C0
)
]|
is
Relation-like
Function-like
V49
(2)
V50
()
V156
()
V157
()
V158
()
Element
of the
carrier
of
(
TOP-REAL
2
)
LSeg
(
(
NE-corner
C0
)
,
(
SE-corner
C0
)
) is
functional
closed
closed
boundary
nowhere_dense
connected
compact
compact
bounded
bounded
Element
of
bool
the
carrier
of
(
TOP-REAL
2
)
{
(
(
(
1
-
b
1
)
*
(
NE-corner
C0
)
)
+
(
b
1
*
(
SE-corner
C0
)
)
)
where
b
1
is
complex
ext-real
real
Element
of
REAL
: (
0
<=
b
1
&
b
1
<=
1 )
}
is
set
(
NE-corner
C0
)
`1
is
complex
ext-real
real
Element
of
REAL
(
SE-corner
C0
)
`1
is
complex
ext-real
real
Element
of
REAL
C0
is
functional
Element
of
bool
the
carrier
of
(
TOP-REAL
2
)
SE-corner
C0
is
Relation-like
Function-like
V49
(2)
V50
()
V156
()
V157
()
V158
()
Element
of the
carrier
of
(
TOP-REAL
2
)
E-bound
C0
is
complex
ext-real
real
Element
of
REAL
(
TOP-REAL
2
)
|
C0
is
strict
TopSpace-like
T_0
T_1
T_2
SubSpace
of
TOP-REAL
2
proj1
|
C0
is
Relation-like
C0
-defined
the
carrier
of
(
TOP-REAL
2
)
-defined
the
carrier
of
(
(
TOP-REAL
2
)
|
C0
)
-defined
REAL
-valued
Function-like
total
quasi_total
V156
()
V157
()
V158
()
continuous
Element
of
bool
[:
the
carrier
of
(
(
TOP-REAL
2
)
|
C0
)
,
REAL
:]
the
carrier
of
(
(
TOP-REAL
2
)
|
C0
)
is
set
[:
the
carrier
of
(
(
TOP-REAL
2
)
|
C0
)
,
REAL
:]
is
Relation-like
V156
()
V157
()
V158
()
set
bool
[:
the
carrier
of
(
(
TOP-REAL
2
)
|
C0
)
,
REAL
:]
is non
empty
set
upper_bound
(
proj1
|
C0
)
is
complex
ext-real
real
Element
of
REAL
(
proj1
|
C0
)
.:
the
carrier
of
(
(
TOP-REAL
2
)
|
C0
)
is
V166
()
V167
()
V168
()
Element
of
bool
REAL
K662
(
(
(
proj1
|
C0
)
.:
the
carrier
of
(
(
TOP-REAL
2
)
|
C0
)
)
) is
complex
ext-real
real
Element
of
REAL
S-bound
C0
is
complex
ext-real
real
Element
of
REAL
proj2
|
C0
is
Relation-like
C0
-defined
the
carrier
of
(
TOP-REAL
2
)
-defined
the
carrier
of
(
(
TOP-REAL
2
)
|
C0
)
-defined
REAL
-valued
Function-like
total
quasi_total
V156
()
V157
()
V158
()
continuous
Element
of
bool
[:
the
carrier
of
(
(
TOP-REAL
2
)
|
C0
)
,
REAL
:]
lower_bound
(
proj2
|
C0
)
is
complex
ext-real
real
Element
of
REAL
(
proj2
|
C0
)
.:
the
carrier
of
(
(
TOP-REAL
2
)
|
C0
)
is
V166
()
V167
()
V168
()
Element
of
bool
REAL
K663
(
(
(
proj2
|
C0
)
.:
the
carrier
of
(
(
TOP-REAL
2
)
|
C0
)
)
) is
complex
ext-real
real
Element
of
REAL
|[
(
E-bound
C0
)
,
(
S-bound
C0
)
]|
is
Relation-like
Function-like
V49
(2)
V50
()
V156
()
V157
()
V158
()
Element
of the
carrier
of
(
TOP-REAL
2
)
SW-corner
C0
is
Relation-like
Function-like
V49
(2)
V50
()
V156
()
V157
()
V158
()
Element
of the
carrier
of
(
TOP-REAL
2
)
W-bound
C0
is
complex
ext-real
real
Element
of
REAL
lower_bound
(
proj1
|
C0
)
is
complex
ext-real
real
Element
of
REAL
K663
(
(
(
proj1
|
C0
)
.:
the
carrier
of
(
(
TOP-REAL
2
)
|
C0
)
)
) is
complex
ext-real
real
Element
of
REAL
|[
(
W-bound
C0
)
,
(
S-bound
C0
)
]|
is
Relation-like
Function-like
V49
(2)
V50
()
V156
()
V157
()
V158
()
Element
of the
carrier
of
(
TOP-REAL
2
)
LSeg
(
(
SE-corner
C0
)
,
(
SW-corner
C0
)
) is
functional
closed
closed
boundary
nowhere_dense
connected
compact
compact
bounded
bounded
horizontal
Element
of
bool
the
carrier
of
(
TOP-REAL
2
)
{
(
(
(
1
-
b
1
)
*
(
SE-corner
C0
)
)
+
(
b
1
*
(
SW-corner
C0
)
)
)
where
b
1
is
complex
ext-real
real
Element
of
REAL
: (
0
<=
b
1
&
b
1
<=
1 )
}
is
set
NW-corner
C0
is
Relation-like
Function-like
V49
(2)
V50
()
V156
()
V157
()
V158
()
Element
of the
carrier
of
(
TOP-REAL
2
)
N-bound
C0
is
complex
ext-real
real
Element
of
REAL
upper_bound
(
proj2
|
C0
)
is
complex
ext-real
real
Element
of
REAL
K662
(
(
(
proj2
|
C0
)
.:
the
carrier
of
(
(
TOP-REAL
2
)
|
C0
)
)
) is
complex
ext-real
real
Element
of
REAL
|[
(
W-bound
C0
)
,
(
N-bound
C0
)
]|
is
Relation-like
Function-like
V49
(2)
V50
()
V156
()
V157
()
V158
()
Element
of the
carrier
of
(
TOP-REAL
2
)
LSeg
(
(
SW-corner
C0
)
,
(
NW-corner
C0
)
) is
functional
closed
closed
boundary
nowhere_dense
connected
compact
compact
bounded
bounded
vertical
Element
of
bool
the
carrier
of
(
TOP-REAL
2
)
{
(
(
(
1
-
b
1
)
*
(
SW-corner
C0
)
)
+
(
b
1
*
(
NW-corner
C0
)
)
)
where
b
1
is
complex
ext-real
real
Element
of
REAL
: (
0
<=
b
1
&
b
1
<=
1 )
}
is
set
NE-corner
C0
is
Relation-like
Function-like
V49
(2)
V50
()
V156
()
V157
()
V158
()
Element
of the
carrier
of
(
TOP-REAL
2
)
|[
(
E-bound
C0
)
,
(
N-bound
C0
)
]|
is
Relation-like
Function-like
V49
(2)
V50
()
V156
()
V157
()
V158
()
Element
of the
carrier
of
(
TOP-REAL
2
)
LSeg
(
(
SE-corner
C0
)
,
(
NE-corner
C0
)
) is
functional
closed
closed
boundary
nowhere_dense
connected
compact
compact
bounded
bounded
vertical
Element
of
bool
the
carrier
of
(
TOP-REAL
2
)
{
(
(
(
1
-
b
1
)
*
(
SE-corner
C0
)
)
+
(
b
1
*
(
NE-corner
C0
)
)
)
where
b
1
is
complex
ext-real
real
Element
of
REAL
: (
0
<=
b
1
&
b
1
<=
1 )
}
is
set
C0
is
functional
Element
of
bool
the
carrier
of
(
TOP-REAL
2
)
W-bound
C0
is
complex
ext-real
real
Element
of
REAL
(
TOP-REAL
2
)
|
C0
is
strict
TopSpace-like
T_0
T_1
T_2
SubSpace
of
TOP-REAL
2
proj1
|
C0
is
Relation-like
C0
-defined
the
carrier
of
(
TOP-REAL
2
)
-defined
the
carrier
of
(
(
TOP-REAL
2
)
|
C0
)
-defined
REAL
-valued
Function-like
total
quasi_total
V156
()
V157
()
V158
()
continuous
Element
of
bool
[:
the
carrier
of
(
(
TOP-REAL
2
)
|
C0
)
,
REAL
:]
the
carrier
of
(
(
TOP-REAL
2
)
|
C0
)
is
set
[:
the
carrier
of
(
(
TOP-REAL
2
)
|
C0
)
,
REAL
:]
is
Relation-like
V156
()
V157
()
V158
()
set
bool
[:
the
carrier
of
(
(
TOP-REAL
2
)
|
C0
)
,
REAL
:]
is non
empty
set
lower_bound
(
proj1
|
C0
)
is
complex
ext-real
real
Element
of
REAL
(
proj1
|
C0
)
.:
the
carrier
of
(
(
TOP-REAL
2
)
|
C0
)
is
V166
()
V167
()
V168
()
Element
of
bool
REAL
K663
(
(
(
proj1
|
C0
)
.:
the
carrier
of
(
(
TOP-REAL
2
)
|
C0
)
)
) is
complex
ext-real
real
Element
of
REAL
E-bound
C0
is
complex
ext-real
real
Element
of
REAL
upper_bound
(
proj1
|
C0
)
is
complex
ext-real
real
Element
of
REAL
K662
(
(
(
proj1
|
C0
)
.:
the
carrier
of
(
(
TOP-REAL
2
)
|
C0
)
)
) is
complex
ext-real
real
Element
of
REAL
E-min
C0
is
Relation-like
Function-like
V49
(2)
V50
()
V156
()
V157
()
V158
()
Element
of the
carrier
of
(
TOP-REAL
2
)
E-most
C0
is
functional
Element
of
bool
the
carrier
of
(
TOP-REAL
2
)
SE-corner
C0
is
Relation-like
Function-like
V49
(2)
V50
()
V156
()
V157
()
V158
()
Element
of the
carrier
of
(
TOP-REAL
2
)
S-bound
C0
is
complex
ext-real
real
Element
of
REAL
proj2
|
C0
is
Relation-like
C0
-defined
the
carrier
of
(
TOP-REAL
2
)
-defined
the
carrier
of
(
(
TOP-REAL
2
)
|
C0
)
-defined
REAL
-valued
Function-like
total
quasi_total
V156
()
V157
()
V158
()
continuous
Element
of
bool
[:
the
carrier
of
(
(
TOP-REAL
2
)
|
C0
)
,
REAL
:]
lower_bound
(
proj2
|
C0
)
is
complex
ext-real
real
Element
of
REAL
(
proj2
|
C0
)
.:
the
carrier
of
(
(
TOP-REAL
2
)
|
C0
)
is
V166
()
V167
()
V168
()
Element
of
bool
REAL
K663
(
(
(
proj2
|
C0
)
.:
the
carrier
of
(
(
TOP-REAL
2
)
|
C0
)
)
) is
complex
ext-real
real
Element
of
REAL
|[
(
E-bound
C0
)
,
(
S-bound
C0
)
]|
is
Relation-like
Function-like
V49
(2)
V50
()
V156
()
V157
()
V158
()
Element
of the
carrier
of
(
TOP-REAL
2
)
NE-corner
C0
is
Relation-like
Function-like
V49
(2)
V50
()
V156
()
V157
()
V158
()
Element
of the
carrier
of
(
TOP-REAL
2
)
N-bound
C0
is
complex
ext-real
real
Element
of
REAL
upper_bound
(
proj2
|
C0
)
is
complex
ext-real
real
Element
of
REAL
K662
(
(
(
proj2
|
C0
)
.:
the
carrier
of
(
(
TOP-REAL
2
)
|
C0
)
)
) is
complex
ext-real
real
Element
of
REAL
|[
(
E-bound
C0
)
,
(
N-bound
C0
)
]|
is
Relation-like
Function-like
V49
(2)
V50
()
V156
()
V157
()
V158
()
Element
of the
carrier
of
(
TOP-REAL
2
)
LSeg
(
(
SE-corner
C0
)
,
(
NE-corner
C0
)
) is
functional
closed
closed
boundary
nowhere_dense
connected
compact
compact
bounded
bounded
vertical
Element
of
bool
the
carrier
of
(
TOP-REAL
2
)
{
(
(
(
1
-
b
1
)
*
(
SE-corner
C0
)
)
+
(
b
1
*
(
NE-corner
C0
)
)
)
where
b
1
is
complex
ext-real
real
Element
of
REAL
: (
0
<=
b
1
&
b
1
<=
1 )
}
is
set
(
LSeg
(
(
SE-corner
C0
)
,
(
NE-corner
C0
)
)
)
/\
C0
is
functional
Element
of
bool
the
carrier
of
(
TOP-REAL
2
)
(
TOP-REAL
2
)
|
(
E-most
C0
)
is
strict
TopSpace-like
T_0
T_1
T_2
SubSpace
of
TOP-REAL
2
proj2
|
(
E-most
C0
)
is
Relation-like
E-most
C0
-defined
the
carrier
of
(
TOP-REAL
2
)
-defined
the
carrier
of
(
(
TOP-REAL
2
)
|
(
E-most
C0
)
)
-defined
REAL
-valued
Function-like
total
quasi_total
V156
()
V157
()
V158
()
continuous
Element
of
bool
[:
the
carrier
of
(
(
TOP-REAL
2
)
|
(
E-most
C0
)
)
,
REAL
:]
the
carrier
of
(
(
TOP-REAL
2
)
|
(
E-most
C0
)
)
is
set
[:
the
carrier
of
(
(
TOP-REAL
2
)
|
(
E-most
C0
)
)
,
REAL
:]
is
Relation-like
V156
()
V157
()
V158
()
set
bool
[:
the
carrier
of
(
(
TOP-REAL
2
)
|
(
E-most
C0
)
)
,
REAL
:]
is non
empty
set
lower_bound
(
proj2
|
(
E-most
C0
)
)
is
complex
ext-real
real
Element
of
REAL
(
proj2
|
(
E-most
C0
)
)
.:
the
carrier
of
(
(
TOP-REAL
2
)
|
(
E-most
C0
)
)
is
V166
()
V167
()
V168
()
Element
of
bool
REAL
K663
(
(
(
proj2
|
(
E-most
C0
)
)
.:
the
carrier
of
(
(
TOP-REAL
2
)
|
(
E-most
C0
)
)
)
) is
complex
ext-real
real
Element
of
REAL
|[
(
E-bound
C0
)
,
(
lower_bound
(
proj2
|
(
E-most
C0
)
)
)
]|
is
Relation-like
Function-like
V49
(2)
V50
()
V156
()
V157
()
V158
()
Element
of the
carrier
of
(
TOP-REAL
2
)
(
E-min
C0
)
`1
is
complex
ext-real
real
Element
of
REAL
(
W-bound
C0
)
+
(
E-bound
C0
)
is
complex
ext-real
real
Element
of
REAL
(
(
W-bound
C0
)
+
(
E-bound
C0
)
)
/
2 is
complex
ext-real
real
Element
of
REAL
Vertical_Line
(
(
(
W-bound
C0
)
+
(
E-bound
C0
)
)
/
2
)
is
functional
Element
of
bool
the
carrier
of
(
TOP-REAL
2
)
C0
is
complex
ext-real
real
set
Vertical_Line
C0
is
functional
Element
of
bool
the
carrier
of
(
TOP-REAL
2
)
C1
is
Relation-like
Function-like
V49
(2)
V50
()
V156
()
V157
()
V158
()
Element
of the
carrier
of
(
TOP-REAL
2
)
C1
`1
is
complex
ext-real
real
Element
of
REAL
l0
is
Relation-like
Function-like
V49
(2)
V50
()
V156
()
V157
()
V158
()
Element
of the
carrier
of
(
TOP-REAL
2
)
l0
`1
is
complex
ext-real
real
Element
of
REAL
LSeg
(
C1
,
l0
) is
functional
closed
closed
boundary
nowhere_dense
connected
compact
compact
bounded
bounded
Element
of
bool
the
carrier
of
(
TOP-REAL
2
)
{
(
(
(
1
-
b
1
)
*
C1
)
+
(
b
1
*
l0
)
)
where
b
1
is
complex
ext-real
real
Element
of
REAL
: (
0
<=
b
1
&
b
1
<=
1 )
}
is
set
C0
-
(
C1
`1
)
is
complex
ext-real
real
Element
of
REAL
(
l0
`1
)
-
(
C1
`1
)
is
complex
ext-real
real
Element
of
REAL
(
C0
-
(
C1
`1
)
)
/
(
(
l0
`1
)
-
(
C1
`1
)
)
is
complex
ext-real
real
Element
of
REAL
1
-
(
(
C0
-
(
C1
`1
)
)
/
(
(
l0
`1
)
-
(
C1
`1
)
)
)
is
complex
ext-real
real
Element
of
REAL
(
1
-
(
(
C0
-
(
C1
`1
)
)
/
(
(
l0
`1
)
-
(
C1
`1
)
)
)
)
*
C1
is
Relation-like
Function-like
V49
(2)
V50
()
V156
()
V157
()
V158
()
Element
of the
carrier
of
(
TOP-REAL
2
)
(
(
C0
-
(
C1
`1
)
)
/
(
(
l0
`1
)
-
(
C1
`1
)
)
)
*
l0
is
Relation-like
Function-like
V49
(2)
V50
()
V156
()
V157
()
V158
()
Element
of the
carrier
of
(
TOP-REAL
2
)
(
(
1
-
(
(
C0
-
(
C1
`1
)
)
/
(
(
l0
`1
)
-
(
C1
`1
)
)
)
)
*
C1
)
+
(
(
(
C0
-
(
C1
`1
)
)
/
(
(
l0
`1
)
-
(
C1
`1
)
)
)
*
l0
)
is
Relation-like
Function-like
V49
(2)
V50
()
V156
()
V157
()
V158
()
Element
of the
carrier
of
(
TOP-REAL
2
)
the
U7
of
(
TOP-REAL
2
)
is
Relation-like
[:
the
carrier
of
(
TOP-REAL
2
)
, the
carrier
of
(
TOP-REAL
2
)
:]
-defined
the
carrier
of
(
TOP-REAL
2
)
-valued
Function-like
non
empty
total
quasi_total
Element
of
bool
[:
[:
the
carrier
of
(
TOP-REAL
2
)
, the
carrier
of
(
TOP-REAL
2
)
:]
, the
carrier
of
(
TOP-REAL
2
)
:]
[:
[:
the
carrier
of
(
TOP-REAL
2
)
, the
carrier
of
(
TOP-REAL
2
)
:]
, the
carrier
of
(
TOP-REAL
2
)
:]
is
Relation-like
non
empty
set
bool
[:
[:
the
carrier
of
(
TOP-REAL
2
)
, the
carrier
of
(
TOP-REAL
2
)
:]
, the
carrier
of
(
TOP-REAL
2
)
:]
is non
empty
set
K224
( the
carrier
of
(
TOP-REAL
2
)
, the
U7
of
(
TOP-REAL
2
)
,
(
(
1
-
(
(
C0
-
(
C1
`1
)
)
/
(
(
l0
`1
)
-
(
C1
`1
)
)
)
)
*
C1
)
,
(
(
(
C0
-
(
C1
`1
)
)
/
(
(
l0
`1
)
-
(
C1
`1
)
)
)
*
l0
)
) is
Relation-like
Function-like
V49
(2)
V50
()
V156
()
V157
()
V158
()
Element
of the
carrier
of
(
TOP-REAL
2
)
(
C1
`1
)
-
(
C1
`1
)
is
complex
ext-real
real
Element
of
REAL
(
(
(
1
-
(
(
C0
-
(
C1
`1
)
)
/
(
(
l0
`1
)
-
(
C1
`1
)
)
)
)
*
C1
)
+
(
(
(
C0
-
(
C1
`1
)
)
/
(
(
l0
`1
)
-
(
C1
`1
)
)
)
*
l0
)
)
`1
is
complex
ext-real
real
Element
of
REAL
(
1
-
(
(
C0
-
(
C1
`1
)
)
/
(
(
l0
`1
)
-
(
C1
`1
)
)
)
)
*
(
C1
`1
)
is
complex
ext-real
real
Element
of
REAL
(
(
C0
-
(
C1
`1
)
)
/
(
(
l0
`1
)
-
(
C1
`1
)
)
)
*
(
l0
`1
)
is
complex
ext-real
real
Element
of
REAL
(
(
1
-
(
(
C0
-
(
C1
`1
)
)
/
(
(
l0
`1
)
-
(
C1
`1
)
)
)
)
*
(
C1
`1
)
)
+
(
(
(
C0
-
(
C1
`1
)
)
/
(
(
l0
`1
)
-
(
C1
`1
)
)
)
*
(
l0
`1
)
)
is
complex
ext-real
real
Element
of
REAL
(
(
C0
-
(
C1
`1
)
)
/
(
(
l0
`1
)
-
(
C1
`1
)
)
)
*
(
(
l0
`1
)
-
(
C1
`1
)
)
is
complex
ext-real
real
Element
of
REAL
(
C1
`1
)
+
(
(
(
C0
-
(
C1
`1
)
)
/
(
(
l0
`1
)
-
(
C1
`1
)
)
)
*
(
(
l0
`1
)
-
(
C1
`1
)
)
)
is
complex
ext-real
real
Element
of
REAL
(
C1
`1
)
+
(
C0
-
(
C1
`1
)
)
is
complex
ext-real
real
Element
of
REAL
C0
is
complex
ext-real
real
set
Horizontal_Line
C0
is
functional
Element
of
bool
the
carrier
of
(
TOP-REAL
2
)
C1
is
Relation-like
Function-like
V49
(2)
V50
()
V156
()
V157
()
V158
()
Element
of the
carrier
of
(
TOP-REAL
2
)
C1
`2
is
complex
ext-real
real
Element
of
REAL
l0
is
Relation-like
Function-like
V49
(2)
V50
()
V156
()
V157
()
V158
()
Element
of the
carrier
of
(
TOP-REAL
2
)
l0
`2
is
complex
ext-real
real
Element
of
REAL
LSeg
(
C1
,
l0
) is
functional
closed
closed
boundary
nowhere_dense
connected
compact
compact
bounded
bounded
Element
of
bool
the
carrier
of
(
TOP-REAL
2
)
{
(
(
(
1
-
b
1
)
*
C1
)
+
(
b
1
*
l0
)
)
where
b
1
is
complex
ext-real
real
Element
of
REAL
: (
0
<=
b
1
&
b
1
<=
1 )
}
is
set
C0
-
(
C1
`2
)
is
complex
ext-real
real
Element
of
REAL
(
l0
`2
)
-
(
C1
`2
)
is
complex
ext-real
real
Element
of
REAL
(
C0
-
(
C1
`2
)
)
/
(
(
l0
`2
)
-
(
C1
`2
)
)
is
complex
ext-real
real
Element
of
REAL
1
-
(
(
C0
-
(
C1
`2
)
)
/
(
(
l0
`2
)
-
(
C1
`2
)
)
)
is
complex
ext-real
real
Element
of
REAL
(
1
-
(
(
C0
-
(
C1
`2
)
)
/
(
(
l0
`2
)
-
(
C1
`2
)
)
)
)
*
C1
is
Relation-like
Function-like
V49
(2)
V50
()
V156
()
V157
()
V158
()
Element
of the
carrier
of
(
TOP-REAL
2
)
(
(
C0
-
(
C1
`2
)
)
/
(
(
l0
`2
)
-
(
C1
`2
)
)
)
*
l0
is
Relation-like
Function-like
V49
(2)
V50
()
V156
()
V157
()
V158
()
Element
of the
carrier
of
(
TOP-REAL
2
)
(
(
1
-
(
(
C0
-
(
C1
`2
)
)
/
(
(
l0
`2
)
-
(
C1
`2
)
)
)
)
*
C1
)
+
(
(
(
C0
-
(
C1
`2
)
)
/
(
(
l0
`2
)
-
(
C1
`2
)
)
)
*
l0
)
is
Relation-like
Function-like
V49
(2)
V50
()
V156
()
V157
()
V158
()
Element
of the
carrier
of
(
TOP-REAL
2
)
the
U7
of
(
TOP-REAL
2
)
is
Relation-like
[:
the
carrier
of
(
TOP-REAL
2
)
, the
carrier
of
(
TOP-REAL
2
)
:]
-defined
the
carrier
of
(
TOP-REAL
2
)
-valued
Function-like
non
empty
total
quasi_total
Element
of
bool
[:
[:
the
carrier
of
(
TOP-REAL
2
)
, the
carrier
of
(
TOP-REAL
2
)
:]
, the
carrier
of
(
TOP-REAL
2
)
:]
[:
[:
the
carrier
of
(
TOP-REAL
2
)
, the
carrier
of
(
TOP-REAL
2
)
:]
, the
carrier
of
(
TOP-REAL
2
)
:]
is
Relation-like
non
empty
set
bool
[:
[:
the
carrier
of
(
TOP-REAL
2
)
, the
carrier
of
(
TOP-REAL
2
)
:]
, the
carrier
of
(
TOP-REAL
2
)
:]
is non
empty
set
K224
( the
carrier
of
(
TOP-REAL
2
)
, the
U7
of
(
TOP-REAL
2
)
,
(
(
1
-
(
(
C0
-
(
C1
`2
)
)
/
(
(
l0
`2
)
-
(
C1
`2
)
)
)
)
*
C1
)
,
(
(
(
C0
-
(
C1
`2
)
)
/
(
(
l0
`2
)
-
(
C1
`2
)
)
)
*
l0
)
) is
Relation-like
Function-like
V49
(2)
V50
()
V156
()
V157
()
V158
()
Element
of the
carrier
of
(
TOP-REAL
2
)
(
C1
`2
)
-
(
C1
`2
)
is
complex
ext-real
real
Element
of
REAL
(
(
(
1
-
(
(
C0
-
(
C1
`2
)
)
/
(
(
l0
`2
)
-
(
C1
`2
)
)
)
)
*
C1
)
+
(
(
(
C0
-
(
C1
`2
)
)
/
(
(
l0
`2
)
-
(
C1
`2
)
)
)
*
l0
)
)
`2
is
complex
ext-real
real
Element
of
REAL
(
1
-
(
(
C0
-
(
C1
`2
)
)
/
(
(
l0
`2
)
-
(
C1
`2
)
)
)
)
*
(
C1
`2
)
is
complex
ext-real
real
Element
of
REAL
(
(
C0
-
(
C1
`2
)
)
/
(
(
l0
`2
)
-
(
C1
`2
)
)
)
*
(
l0
`2
)
is
complex
ext-real
real
Element
of
REAL
(
(
1
-
(
(
C0
-
(
C1
`2
)
)
/
(
(
l0
`2
)
-
(
C1
`2
)
)
)
)
*
(
C1
`2
)
)
+
(
(
(
C0
-
(
C1
`2
)
)
/
(
(
l0
`2
)
-
(
C1
`2
)
)
)
*
(
l0
`2
)
)
is
complex
ext-real
real
Element
of
REAL
(
(
C0
-
(
C1
`2
)
)
/
(
(
l0
`2
)
-
(
C1
`2
)
)
)
*
(
(
l0
`2
)
-
(
C1
`2
)
)
is
complex
ext-real
real
Element
of
REAL
(
C1
`2
)
+
(
(
(
C0
-
(
C1
`2
)
)
/
(
(
l0
`2
)
-
(
C1
`2
)
)
)
*
(
(
l0
`2
)
-
(
C1
`2
)
)
)
is
complex
ext-real
real
Element
of
REAL
(
C1
`2
)
+
(
C0
-
(
C1
`2
)
)
is
complex
ext-real
real
Element
of
REAL
C0
is
ordinal
natural
complex
ext-real
non
negative
real
V33
()
V119
()
V166
()
V167
()
V168
()
V169
()
V170
()
V171
()
bounded_below
Element
of
NAT
TOP-REAL
C0
is non
empty
TopSpace-like
T_0
T_1
T_2
connected
V132
()
V178
()
V179
()
V180
()
V181
()
V182
()
V183
()
V184
()
strict
add-continuous
Mult-continuous
pathwise_connected
RLTopStruct
the
carrier
of
(
TOP-REAL
C0
)
is
functional
non
empty
set
bool
the
carrier
of
(
TOP-REAL
C0
)
is non
empty
set
C1
is
functional
Element
of
bool
the
carrier
of
(
TOP-REAL
C0
)
C1
is
functional
Element
of
bool
the
carrier
of
(
TOP-REAL
C0
)
C0
is non
empty
ordinal
natural
complex
ext-real
positive
non
negative
real
set
TOP-REAL
C0
is non
empty
TopSpace-like
T_0
T_1
T_2
V132
()
V178
()
V179
()
V180
()
V181
()
V182
()
V183
()
V184
()
strict
add-continuous
Mult-continuous
RLTopStruct
the
carrier
of
(
TOP-REAL
C0
)
is
functional
non
empty
set
bool
the
carrier
of
(
TOP-REAL
C0
)
is non
empty
set
[#]
(
TOP-REAL
C0
)
is
functional
non
empty
non
proper
non
proper
open
open
closed
closed
dense
dense
non
boundary
non
boundary
connected
convex
Element
of
bool
the
carrier
of
(
TOP-REAL
C0
)
C1
is
ordinal
natural
complex
ext-real
non
negative
real
V33
()
V119
()
V166
()
V167
()
V168
()
V169
()
V170
()
V171
()
bounded_below
Element
of
NAT
TOP-REAL
C1
is non
empty
TopSpace-like
T_0
T_1
T_2
connected
V132
()
V178
()
V179
()
V180
()
V181
()
V182
()
V183
()
V184
()
strict
add-continuous
Mult-continuous
pathwise_connected
RLTopStruct
[#]
(
TOP-REAL
C1
)
is
functional
non
empty
non
proper
non
proper
open
open
closed
closed
dense
dense
non
boundary
non
boundary
connected
a_component
convex
Element
of
bool
the
carrier
of
(
TOP-REAL
C1
)
the
carrier
of
(
TOP-REAL
C1
)
is
functional
non
empty
set
bool
the
carrier
of
(
TOP-REAL
C1
)
is non
empty
set
C0
is
functional
closed
compact
bounded
Element
of
bool
the
carrier
of
(
TOP-REAL
2
)
UMP
C0
is
Relation-like
Function-like
V49
(2)
V50
()
V156
()
V157
()
V158
()
Element
of the
carrier
of
(
TOP-REAL
2
)
E-bound
C0
is
complex
ext-real
real
Element
of
REAL
(
TOP-REAL
2
)
|
C0
is
strict
TopSpace-like
T_0
T_1
T_2
SubSpace
of
TOP-REAL
2
proj1
|
C0
is
Relation-like
C0
-defined
the
carrier
of
(
TOP-REAL
2
)
-defined
the
carrier
of
(
(
TOP-REAL
2
)
|
C0
)
-defined
REAL
-valued
Function-like
total
quasi_total
V156
()
V157
()
V158
()
continuous
Element
of
bool
[:
the
carrier
of
(
(
TOP-REAL
2
)
|
C0
)
,
REAL
:]
the
carrier
of
(
(
TOP-REAL
2
)
|
C0
)
is
set
[:
the
carrier
of
(
(
TOP-REAL
2
)
|
C0
)
,
REAL
:]
is
Relation-like
V156
()
V157
()
V158
()
set
bool
[:
the
carrier
of
(
(
TOP-REAL
2
)
|
C0
)
,
REAL
:]
is non
empty
set
upper_bound
(
proj1
|
C0
)
is
complex
ext-real
real
Element
of
REAL
(
proj1
|
C0
)
.:
the
carrier
of
(
(
TOP-REAL
2
)
|
C0
)
is
V166
()
V167
()
V168
()
Element
of
bool
REAL
K662
(
(
(
proj1
|
C0
)
.:
the
carrier
of
(
(
TOP-REAL
2
)
|
C0
)
)
) is
complex
ext-real
real
Element
of
REAL
W-bound
C0
is
complex
ext-real
real
Element
of
REAL
lower_bound
(
proj1
|
C0
)
is
complex
ext-real
real
Element
of
REAL
K663
(
(
(
proj1
|
C0
)
.:
the
carrier
of
(
(
TOP-REAL
2
)
|
C0
)
)
) is
complex
ext-real
real
Element
of
REAL
(
E-bound
C0
)
+
(
W-bound
C0
)
is
complex
ext-real
real
Element
of
REAL
(
(
E-bound
C0
)
+
(
W-bound
C0
)
)
/
2 is
complex
ext-real
real
Element
of
REAL
Vertical_Line
(
(
(
E-bound
C0
)
+
(
W-bound
C0
)
)
/
2
)
is
functional
Element
of
bool
the
carrier
of
(
TOP-REAL
2
)
C0
/\
(
Vertical_Line
(
(
(
E-bound
C0
)
+
(
W-bound
C0
)
)
/
2
)
)
is
functional
Element
of
bool
the
carrier
of
(
TOP-REAL
2
)
proj2
.:
(
C0
/\
(
Vertical_Line
(
(
(
E-bound
C0
)
+
(
W-bound
C0
)
)
/
2
)
)
)
is
V166
()
V167
()
V168
()
Element
of
bool
REAL
K662
(
(
proj2
.:
(
C0
/\
(
Vertical_Line
(
(
(
E-bound
C0
)
+
(
W-bound
C0
)
)
/
2
)
)
)
)
) is
complex
ext-real
real
Element
of
REAL
|[
(
(
(
E-bound
C0
)
+
(
W-bound
C0
)
)
/
2
)
,
K662
(
(
proj2
.:
(
C0
/\
(
Vertical_Line
(
(
(
E-bound
C0
)
+
(
W-bound
C0
)
)
/
2
)
)
)
)
)
]|
is
Relation-like
Function-like
V49
(2)
V50
()
V156
()
V157
()
V158
()
Element
of the
carrier
of
(
TOP-REAL
2
)
north_halfline
(
UMP
C0
)
is
functional
non
empty
connected
convex
Element
of
bool
the
carrier
of
(
TOP-REAL
2
)
{
(
UMP
C0
)
}
is
functional
non
empty
closed
compact
bounded
Element
of
bool
the
carrier
of
(
TOP-REAL
2
)
(
north_halfline
(
UMP
C0
)
)
\
{
(
UMP
C0
)
}
is
functional
Element
of
bool
the
carrier
of
(
TOP-REAL
2
)
(
W-bound
C0
)
+
(
E-bound
C0
)
is
complex
ext-real
real
Element
of
REAL
(
(
W-bound
C0
)
+
(
E-bound
C0
)
)
/
2 is
complex
ext-real
real
Element
of
REAL
h1
is
set
rp
is
Relation-like
Function-like
V49
(2)
V50
()
V156
()
V157
()
V158
()
Element
of the
carrier
of
(
TOP-REAL
2
)
rp
`1
is
complex
ext-real
real
Element
of
REAL
(
UMP
C0
)
`1
is
complex
ext-real
real
Element
of
REAL
(
UMP
C0
)
`2
is
complex
ext-real
real
Element
of
REAL
rp
`2
is
complex
ext-real
real
Element
of
REAL
Vertical_Line
(
(
(
W-bound
C0
)
+
(
E-bound
C0
)
)
/
2
)
is
functional
Element
of
bool
the
carrier
of
(
TOP-REAL
2
)
C0
/\
(
Vertical_Line
(
(
(
W-bound
C0
)
+
(
E-bound
C0
)
)
/
2
)
)
is
functional
Element
of
bool
the
carrier
of
(
TOP-REAL
2
)
C0
is
functional
closed
compact
bounded
Element
of
bool
the
carrier
of
(
TOP-REAL
2
)
LMP
C0
is
Relation-like
Function-like
V49
(2)
V50
()
V156
()
V157
()
V158
()
Element
of the
carrier
of
(
TOP-REAL
2
)
E-bound
C0
is
complex
ext-real
real
Element
of
REAL
(
TOP-REAL
2
)
|
C0
is
strict
TopSpace-like
T_0
T_1
T_2
SubSpace
of
TOP-REAL
2
proj1
|
C0
is
Relation-like
C0
-defined
the
carrier
of
(
TOP-REAL
2
)
-defined
the
carrier
of
(
(
TOP-REAL
2
)
|
C0
)
-defined
REAL
-valued
Function-like
total
quasi_total
V156
()
V157
()
V158
()
continuous
Element
of
bool
[:
the
carrier
of
(
(
TOP-REAL
2
)
|
C0
)
,
REAL
:]
the
carrier
of
(
(
TOP-REAL
2
)
|
C0
)
is
set
[:
the
carrier
of
(
(
TOP-REAL
2
)
|
C0
)
,
REAL
:]
is
Relation-like
V156
()
V157
()
V158
()
set
bool
[:
the
carrier
of
(
(
TOP-REAL
2
)
|
C0
)
,
REAL
:]
is non
empty
set
upper_bound
(
proj1
|
C0
)
is
complex
ext-real
real
Element
of
REAL
(
proj1
|
C0
)
.:
the
carrier
of
(
(
TOP-REAL
2
)
|
C0
)
is
V166
()
V167
()
V168
()
Element
of
bool
REAL
K662
(
(
(
proj1
|
C0
)
.:
the
carrier
of
(
(
TOP-REAL
2
)
|
C0
)
)
) is
complex
ext-real
real
Element
of
REAL
W-bound
C0
is
complex
ext-real
real
Element
of
REAL
lower_bound
(
proj1
|
C0
)
is
complex
ext-real
real
Element
of
REAL
K663
(
(
(
proj1
|
C0
)
.:
the
carrier
of
(
(
TOP-REAL
2
)
|
C0
)
)
) is
complex
ext-real
real
Element
of
REAL
(
E-bound
C0
)
+
(
W-bound
C0
)
is
complex
ext-real
real
Element
of
REAL
(
(
E-bound
C0
)
+
(
W-bound
C0
)
)
/
2 is
complex
ext-real
real
Element
of
REAL
Vertical_Line
(
(
(
E-bound
C0
)
+
(
W-bound
C0
)
)
/
2
)
is
functional
Element
of
bool
the
carrier
of
(
TOP-REAL
2
)
C0
/\
(
Vertical_Line
(
(
(
E-bound
C0
)
+
(
W-bound
C0
)
)
/
2
)
)
is
functional
Element
of
bool
the
carrier
of
(
TOP-REAL
2
)
proj2
.:
(
C0
/\
(
Vertical_Line
(
(
(
E-bound
C0
)
+
(
W-bound
C0
)
)
/
2
)
)
)
is
V166
()
V167
()
V168
()
Element
of
bool
REAL
K663
(
(
proj2
.:
(
C0
/\
(
Vertical_Line
(
(
(
E-bound
C0
)
+
(
W-bound
C0
)
)
/
2
)
)
)
)
) is
complex
ext-real
real
Element
of
REAL
|[
(
(
(
E-bound
C0
)
+
(
W-bound
C0
)
)
/
2
)
,
K663
(
(
proj2
.:
(
C0
/\
(
Vertical_Line
(
(
(
E-bound
C0
)
+
(
W-bound
C0
)
)
/
2
)
)
)
)
)
]|
is
Relation-like
Function-like
V49
(2)
V50
()
V156
()
V157
()
V158
()
Element
of the
carrier
of
(
TOP-REAL
2
)
south_halfline
(
LMP
C0
)
is
functional
non
empty
connected
convex
Element
of
bool
the
carrier
of
(
TOP-REAL
2
)
{
(
LMP
C0
)
}
is
functional
non
empty
closed
compact
bounded
Element
of
bool
the
carrier
of
(
TOP-REAL
2
)
(
south_halfline
(
LMP
C0
)
)
\
{
(
LMP
C0
)
}
is
functional
Element
of
bool
the
carrier
of
(
TOP-REAL
2
)
(
W-bound
C0
)
+
(
E-bound
C0
)
is
complex
ext-real
real
Element
of
REAL
(
(
W-bound
C0
)
+
(
E-bound
C0
)
)
/
2 is
complex
ext-real
real
Element
of
REAL
h1
is
set
rp
is
Relation-like
Function-like
V49
(2)
V50
()
V156
()
V157
()
V158
()
Element
of the
carrier
of
(
TOP-REAL
2
)
rp
`1
is
complex
ext-real
real
Element
of
REAL
(
LMP
C0
)
`1
is
complex
ext-real
real
Element
of
REAL
rp
`2
is
complex
ext-real
real
Element
of
REAL
(
LMP
C0
)
`2
is
complex
ext-real
real
Element
of
REAL
Vertical_Line
(
(
(
W-bound
C0
)
+
(
E-bound
C0
)
)
/
2
)
is
functional
Element
of
bool
the
carrier
of
(
TOP-REAL
2
)
C0
/\
(
Vertical_Line
(
(
(
W-bound
C0
)
+
(
E-bound
C0
)
)
/
2
)
)
is
functional
Element
of
bool
the
carrier
of
(
TOP-REAL
2
)
C0
is
functional
closed
compact
bounded
Element
of
bool
the
carrier
of
(
TOP-REAL
2
)
UMP
C0
is
Relation-like
Function-like
V49
(2)
V50
()
V156
()
V157
()
V158
()
Element
of the
carrier
of
(
TOP-REAL
2
)
E-bound
C0
is
complex
ext-real
real
Element
of
REAL
(
TOP-REAL
2
)
|
C0
is
strict
TopSpace-like
T_0
T_1
T_2
SubSpace
of
TOP-REAL
2
proj1
|
C0
is
Relation-like
C0
-defined
the
carrier
of
(
TOP-REAL
2
)
-defined
the
carrier
of
(
(
TOP-REAL
2
)
|
C0
)
-defined
REAL
-valued
Function-like
total
quasi_total
V156
()
V157
()
V158
()
continuous
Element
of
bool
[:
the
carrier
of
(
(
TOP-REAL
2
)
|
C0
)
,
REAL
:]
the
carrier
of
(
(
TOP-REAL
2
)
|
C0
)
is
set
[:
the
carrier
of
(
(
TOP-REAL
2
)
|
C0
)
,
REAL
:]
is
Relation-like
V156
()
V157
()
V158
()
set
bool
[:
the
carrier
of
(
(
TOP-REAL
2
)
|
C0
)
,
REAL
:]
is non
empty
set
upper_bound
(
proj1
|
C0
)
is
complex
ext-real
real
Element
of
REAL
(
proj1
|
C0
)
.:
the
carrier
of
(
(
TOP-REAL
2
)
|
C0
)
is
V166
()
V167
()
V168
()
Element
of
bool
REAL
K662
(
(
(
proj1
|
C0
)
.:
the
carrier
of
(
(
TOP-REAL
2
)
|
C0
)
)
) is
complex
ext-real
real
Element
of
REAL
W-bound
C0
is
complex
ext-real
real
Element
of
REAL
lower_bound
(
proj1
|
C0
)
is
complex
ext-real
real
Element
of
REAL
K663
(
(
(
proj1
|
C0
)
.:
the
carrier
of
(
(
TOP-REAL
2
)
|
C0
)
)
) is
complex
ext-real
real
Element
of
REAL
(
E-bound
C0
)
+
(
W-bound
C0
)
is
complex
ext-real
real
Element
of
REAL
(
(
E-bound
C0
)
+
(
W-bound
C0
)
)
/
2 is
complex
ext-real
real
Element
of
REAL
Vertical_Line
(
(
(
E-bound
C0
)
+
(
W-bound
C0
)
)
/
2
)
is
functional
Element
of
bool
the
carrier
of
(
TOP-REAL
2
)
C0
/\
(
Vertical_Line
(
(
(
E-bound
C0
)
+
(
W-bound
C0
)
)
/
2
)
)
is
functional
Element
of
bool
the
carrier
of
(
TOP-REAL
2
)
proj2
.:
(
C0
/\
(
Vertical_Line
(
(
(
E-bound
C0
)
+
(
W-bound
C0
)
)
/
2
)
)
)
is
V166
()
V167
()
V168
()
Element
of
bool
REAL
K662
(
(
proj2
.:
(
C0
/\
(
Vertical_Line
(
(
(
E-bound
C0
)
+
(
W-bound
C0
)
)
/
2
)
)
)
)
) is
complex
ext-real
real
Element
of
REAL
|[
(
(
(
E-bound
C0
)
+
(
W-bound
C0
)
)
/
2
)
,
K662
(
(
proj2
.:
(
C0
/\
(
Vertical_Line
(
(
(
E-bound
C0
)
+
(
W-bound
C0
)
)
/
2
)
)
)
)
)
]|
is
Relation-like
Function-like
V49
(2)
V50
()
V156
()
V157
()
V158
()
Element
of the
carrier
of
(
TOP-REAL
2
)
north_halfline
(
UMP
C0
)
is
functional
non
empty
connected
convex
Element
of
bool
the
carrier
of
(
TOP-REAL
2
)
{
(
UMP
C0
)
}
is
functional
non
empty
closed
compact
bounded
Element
of
bool
the
carrier
of
(
TOP-REAL
2
)
(
north_halfline
(
UMP
C0
)
)
\
{
(
UMP
C0
)
}
is
functional
Element
of
bool
the
carrier
of
(
TOP-REAL
2
)
UBD
C0
is
functional
non
empty
open
connected
being_Region
Element
of
bool
the
carrier
of
(
TOP-REAL
2
)
{
b
1
where
b
1
is
functional
Element
of
bool
the
carrier
of
(
TOP-REAL
2
)
:
b
1
is_outside_component_of
C0
}
is
set
union
{
b
1
where
b
1
is
functional
Element
of
bool
the
carrier
of
(
TOP-REAL
2
)
:
b
1
is_outside_component_of
C0
}
is
set
l0
is
functional
non
empty
non
bounded
Element
of
bool
the
carrier
of
(
TOP-REAL
2
)
C0
is
functional
closed
compact
bounded
Element
of
bool
the
carrier
of
(
TOP-REAL
2
)
LMP
C0
is
Relation-like
Function-like
V49
(2)
V50
()
V156
()
V157
()
V158
()
Element
of the
carrier
of
(
TOP-REAL
2
)
E-bound
C0
is
complex
ext-real
real
Element
of
REAL
(
TOP-REAL
2
)
|
C0
is
strict
TopSpace-like
T_0
T_1
T_2
SubSpace
of
TOP-REAL
2
proj1
|
C0
is
Relation-like
C0
-defined
the
carrier
of
(
TOP-REAL
2
)
-defined
the
carrier
of
(
(
TOP-REAL
2
)
|
C0
)
-defined
REAL
-valued
Function-like
total
quasi_total
V156
()
V157
()
V158
()
continuous
Element
of
bool
[:
the
carrier
of
(
(
TOP-REAL
2
)
|
C0
)
,
REAL
:]
the
carrier
of
(
(
TOP-REAL
2
)
|
C0
)
is
set
[:
the
carrier
of
(
(
TOP-REAL
2
)
|
C0
)
,
REAL
:]
is
Relation-like
V156
()
V157
()
V158
()
set
bool
[:
the
carrier
of
(
(
TOP-REAL
2
)
|
C0
)
,
REAL
:]
is non
empty
set
upper_bound
(
proj1
|
C0
)
is
complex
ext-real
real
Element
of
REAL
(
proj1
|
C0
)
.:
the
carrier
of
(
(
TOP-REAL
2
)
|
C0
)
is
V166
()
V167
()
V168
()
Element
of
bool
REAL
K662
(
(
(
proj1
|
C0
)
.:
the
carrier
of
(
(
TOP-REAL
2
)
|
C0
)
)
) is
complex
ext-real
real
Element
of
REAL
W-bound
C0
is
complex
ext-real
real
Element
of
REAL
lower_bound
(
proj1
|
C0
)
is
complex
ext-real
real
Element
of
REAL
K663
(
(
(
proj1
|
C0
)
.:
the
carrier
of
(
(
TOP-REAL
2
)
|
C0
)
)
) is
complex
ext-real
real
Element
of
REAL
(
E-bound
C0
)
+
(
W-bound
C0
)
is
complex
ext-real
real
Element
of
REAL
(
(
E-bound
C0
)
+
(
W-bound
C0
)
)
/
2 is
complex
ext-real
real
Element
of
REAL
Vertical_Line
(
(
(
E-bound
C0
)
+
(
W-bound
C0
)
)
/
2
)
is
functional
Element
of
bool
the
carrier
of
(
TOP-REAL
2
)
C0
/\
(
Vertical_Line
(
(
(
E-bound
C0
)
+
(
W-bound
C0
)
)
/
2
)
)
is
functional
Element
of
bool
the
carrier
of
(
TOP-REAL
2
)
proj2
.:
(
C0
/\
(
Vertical_Line
(
(
(
E-bound
C0
)
+
(
W-bound
C0
)
)
/
2
)
)
)
is
V166
()
V167
()
V168
()
Element
of
bool
REAL
K663
(
(
proj2
.:
(
C0
/\
(
Vertical_Line
(
(
(
E-bound
C0
)
+
(
W-bound
C0
)
)
/
2
)
)
)
)
) is
complex
ext-real
real
Element
of
REAL
|[
(
(
(
E-bound
C0
)
+
(
W-bound
C0
)
)
/
2
)
,
K663
(
(
proj2
.:
(
C0
/\
(
Vertical_Line
(
(
(
E-bound
C0
)
+
(
W-bound
C0
)
)
/
2
)
)
)
)
)
]|
is
Relation-like
Function-like
V49
(2)
V50
()
V156
()
V157
()
V158
()
Element
of the
carrier
of
(
TOP-REAL
2
)
south_halfline
(
LMP
C0
)
is
functional
non
empty
connected
convex
Element
of
bool
the
carrier
of
(
TOP-REAL
2
)
{
(
LMP
C0
)
}
is
functional
non
empty
closed
compact
bounded
Element
of
bool
the
carrier
of
(
TOP-REAL
2
)
(
south_halfline
(
LMP
C0
)
)
\
{
(
LMP
C0
)
}
is
functional
Element
of
bool
the
carrier
of
(
TOP-REAL
2
)
UBD
C0
is
functional
non
empty
open
connected
being_Region
Element
of
bool
the
carrier
of
(
TOP-REAL
2
)
{
b
1
where
b
1
is
functional
Element
of
bool
the
carrier
of
(
TOP-REAL
2
)
:
b
1
is_outside_component_of
C0
}
is
set
union
{
b
1
where
b
1
is
functional
Element
of
bool
the
carrier
of
(
TOP-REAL
2
)
:
b
1
is_outside_component_of
C0
}
is
set
l0
is
functional
non
empty
non
bounded
Element
of
bool
the
carrier
of
(
TOP-REAL
2
)
C0
is
functional
Element
of
bool
the
carrier
of
(
TOP-REAL
2
)
C1
is
functional
Element
of
bool
the
carrier
of
(
TOP-REAL
2
)
UBD
C1
is
functional
Element
of
bool
the
carrier
of
(
TOP-REAL
2
)
{
b
1
where
b
1
is
functional
Element
of
bool
the
carrier
of
(
TOP-REAL
2
)
:
b
1
is_outside_component_of
C1
}
is
set
union
{
b
1
where
b
1
is
functional
Element
of
bool
the
carrier
of
(
TOP-REAL
2
)
:
b
1
is_outside_component_of
C1
}
is
set
BDD
C1
is
functional
Element
of
bool
the
carrier
of
(
TOP-REAL
2
)
{
b
1
where
b
1
is
functional
Element
of
bool
the
carrier
of
(
TOP-REAL
2
)
:
b
1
is_inside_component_of
C1
}
is
set
union
{
b
1
where
b
1
is
functional
Element
of
bool
the
carrier
of
(
TOP-REAL
2
)
:
b
1
is_inside_component_of
C1
}
is
set
C0
is
functional
Element
of
bool
the
carrier
of
(
TOP-REAL
2
)
C1
is
functional
Element
of
bool
the
carrier
of
(
TOP-REAL
2
)
BDD
C1
is
functional
Element
of
bool
the
carrier
of
(
TOP-REAL
2
)
{
b
1
where
b
1
is
functional
Element
of
bool
the
carrier
of
(
TOP-REAL
2
)
:
b
1
is_inside_component_of
C1
}
is
set
union
{
b
1
where
b
1
is
functional
Element
of
bool
the
carrier
of
(
TOP-REAL
2
)
:
b
1
is_inside_component_of
C1
}
is
set
UBD
C1
is
functional
Element
of
bool
the
carrier
of
(
TOP-REAL
2
)
{
b
1
where
b
1
is
functional
Element
of
bool
the
carrier
of
(
TOP-REAL
2
)
:
b
1
is_outside_component_of
C1
}
is
set
union
{
b
1
where
b
1
is
functional
Element
of
bool
the
carrier
of
(
TOP-REAL
2
)
:
b
1
is_outside_component_of
C1
}
is
set
C0
is
Relation-like
Function-like
V49
(2)
V50
()
V156
()
V157
()
V158
()
Element
of the
carrier
of
(
TOP-REAL
2
)
{
C0
}
is
functional
non
empty
closed
compact
bounded
Element
of
bool
the
carrier
of
(
TOP-REAL
2
)
C1
is
functional
non
empty
closed
connected
compact
bounded
being_simple_closed_curve
with_the_max_arc
Element
of
bool
the
carrier
of
(
TOP-REAL
2
)
C1
`
is
functional
open
Element
of
bool
the
carrier
of
(
TOP-REAL
2
)
the
carrier
of
(
TOP-REAL
2
)
\
C1
is
set
(
TOP-REAL
2
)
|
(
C1
`
)
is
strict
TopSpace-like
T_0
T_1
T_2
V118
(
TOP-REAL
2)
SubSpace
of
TOP-REAL
2
the
carrier
of
(
(
TOP-REAL
2
)
|
(
C1
`
)
)
is
set
bool
the
carrier
of
(
(
TOP-REAL
2
)
|
(
C1
`
)
)
is non
empty
set
l0
is
Element
of
bool
the
carrier
of
(
(
TOP-REAL
2
)
|
(
C1
`
)
)
(#)
(
(
-
1
)
,1) is
complex
ext-real
real
Element
of the
carrier
of
(
Closed-Interval-TSpace
(
(
-
1
)
,1)
)
(
(
-
1
)
,1)
(#)
is
complex
ext-real
real
Element
of the
carrier
of
(
Closed-Interval-TSpace
(
(
-
1
)
,1)
)
L[01]
(
(
(#)
(
(
-
1
)
,1)
)
,
(
(
(
-
1
)
,1)
(#)
)
) is
Relation-like
the
carrier
of
(
Closed-Interval-TSpace
(
0
,1)
)
-defined
the
carrier
of
(
Closed-Interval-TSpace
(
(
-
1
)
,1)
)
-valued
Function-like
non
empty
total
quasi_total
V156
()
V157
()
V158
()
Element
of
bool
[:
the
carrier
of
(
Closed-Interval-TSpace
(
0
,1)
)
, the
carrier
of
(
Closed-Interval-TSpace
(
(
-
1
)
,1)
)
:]
[:
the
carrier
of
(
Closed-Interval-TSpace
(
0
,1)
)
, the
carrier
of
(
Closed-Interval-TSpace
(
(
-
1
)
,1)
)
:]
is
Relation-like
non
empty
V156
()
V157
()
V158
()
set
bool
[:
the
carrier
of
(
Closed-Interval-TSpace
(
0
,1)
)
, the
carrier
of
(
Closed-Interval-TSpace
(
(
-
1
)
,1)
)
:]
is non
empty
set
[:
(
TOP-REAL
2
)
,
(
TOP-REAL
2
)
:]
is non
empty
strict
TopSpace-like
T_0
T_1
T_2
TopStruct
the
carrier
of
[:
(
TOP-REAL
2
)
,
(
TOP-REAL
2
)
:]
is non
empty
set
rp
is non
empty
TopSpace-like
TopStruct
the
carrier
of
rp
is non
empty
set
rl
is
complex
ext-real
real
Element
of
REAL
the
carrier
of
rp
-->
rl
is
Relation-like
the
carrier
of
rp
-defined
REAL
-valued
Function-like
non
empty
total
quasi_total
V156
()
V157
()
V158
()
Element
of
bool
[:
the
carrier
of
rp
,
REAL
:]
[:
the
carrier
of
rp
,
REAL
:]
is
Relation-like
non
empty
V156
()
V157
()
V158
()
set
bool
[:
the
carrier
of
rp
,
REAL
:]
is non
empty
set
dom
(
the
carrier
of
rp
-->
rl
)
is non
empty
Element
of
bool
the
carrier
of
rp
bool
the
carrier
of
rp
is non
empty
set
rng
(
the
carrier
of
rp
-->
rl
)
is non
empty
V166
()
V167
()
V168
()
Element
of
bool
REAL
{
rl
}
is non
empty
V166
()
V167
()
V168
()
Element
of
bool
REAL
a
is
V166
()
V167
()
V168
()
Element
of
bool
REAL
(
the
carrier
of
rp
-->
rl
)
"
a
is
Element
of
bool
the
carrier
of
rp
(
rng
(
the
carrier
of
rp
-->
rl
)
)
/\
a
is
V166
()
V167
()
V168
()
Element
of
bool
REAL
(
the
carrier
of
rp
-->
rl
)
"
(
(
rng
(
the
carrier
of
rp
-->
rl
)
)
/\
a
)
is
Element
of
bool
the
carrier
of
rp
(
the
carrier
of
rp
-->
rl
)
"
(
rng
(
the
carrier
of
rp
-->
rl
)
)
is
Element
of
bool
the
carrier
of
rp
[#]
rp
is non
empty
non
proper
open
closed
dense
non
boundary
Element
of
bool
the
carrier
of
rp
(
rng
(
the
carrier
of
rp
-->
rl
)
)
/\
a
is
V166
()
V167
()
V168
()
Element
of
bool
REAL
(
the
carrier
of
rp
-->
rl
)
"
(
(
rng
(
the
carrier
of
rp
-->
rl
)
)
/\
a
)
is
Element
of
bool
the
carrier
of
rp
(
the
carrier
of
rp
-->
rl
)
"
{}
is
Relation-like
non-empty
empty-yielding
RAT
-valued
Function-like
one-to-one
constant
functional
empty
proper
open
closed
boundary
nowhere_dense
connected
compact
V156
()
V157
()
V158
()
V159
()
V166
()
V167
()
V168
()
V169
()
V170
()
V171
()
V172
()
bounded_below
interval
Element
of
bool
the
carrier
of
rp
{}
rp
is
Relation-like
non-empty
empty-yielding
RAT
-valued
Function-like
one-to-one
constant
functional
empty
proper
open
closed
boundary
nowhere_dense
connected
compact
V156
()
V157
()
V158
()
V159
()
V166
()
V167
()
V168
()
V169
()
V170
()
V171
()
V172
()
bounded_below
interval
Element
of
bool
the
carrier
of
rp
rp
is
ordinal
natural
complex
ext-real
non
negative
real
V33
()
V119
()
V166
()
V167
()
V168
()
V169
()
V170
()
V171
()
bounded_below
Element
of
NAT
TOP-REAL
rp
is non
empty
TopSpace-like
T_0
T_1
T_2
connected
V132
()
V178
()
V179
()
V180
()
V181
()
V182
()
V183
()
V184
()
strict
add-continuous
Mult-continuous
pathwise_connected
RLTopStruct
the
carrier
of
(
TOP-REAL
rp
)
is
functional
non
empty
set
rl
is non
empty
complex
ext-real
positive
non
negative
real
set
rg
is
Relation-like
Function-like
V49
(
rp
)
V50
()
V156
()
V157
()
V158
()
Element
of the
carrier
of
(
TOP-REAL
rp
)
Ball
(
rg
,
rl
) is
functional
non
empty
open
connected
bounded
convex
Element
of
bool
the
carrier
of
(
TOP-REAL
rp
)
bool
the
carrier
of
(
TOP-REAL
rp
)
is non
empty
set
rg
-
rg
is
Relation-like
Function-like
V49
(
rp
)
V50
()
V156
()
V157
()
V158
()
Element
of the
carrier
of
(
TOP-REAL
rp
)
-
rg
is
Relation-like
Function-like
V49
(
rp
)
V50
()
V156
()
V157
()
V158
()
Element
of the
carrier
of
(
TOP-REAL
rp
)
K270
(
(
TOP-REAL
rp
)
,
rg
,
(
-
rg
)
) is
Relation-like
Function-like
V49
(
rp
)
V50
()
V156
()
V157
()
V158
()
Element
of the
carrier
of
(
TOP-REAL
rp
)
the
U7
of
(
TOP-REAL
rp
)
is
Relation-like
[:
the
carrier
of
(
TOP-REAL
rp
)
, the
carrier
of
(
TOP-REAL
rp
)
:]
-defined
the
carrier
of
(
TOP-REAL
rp
)
-valued
Function-like
non
empty
total
quasi_total
Element
of
bool
[:
[:
the
carrier
of
(
TOP-REAL
rp
)
, the
carrier
of
(
TOP-REAL
rp
)
:]
, the
carrier
of
(
TOP-REAL
rp
)
:]
[:
the
carrier
of
(
TOP-REAL
rp
)
, the
carrier
of
(
TOP-REAL
rp
)
:]
is
Relation-like
non
empty
set
[:
[:
the
carrier
of
(
TOP-REAL
rp
)
, the
carrier
of
(
TOP-REAL
rp
)
:]
, the
carrier
of
(
TOP-REAL
rp
)
:]
is
Relation-like
non
empty
set
bool
[:
[:
the
carrier
of
(
TOP-REAL
rp
)
, the
carrier
of
(
TOP-REAL
rp
)
:]
, the
carrier
of
(
TOP-REAL
rp
)
:]
is non
empty
set
K224
( the
carrier
of
(
TOP-REAL
rp
)
, the
U7
of
(
TOP-REAL
rp
)
,
rg
,
(
-
rg
)
) is
Relation-like
Function-like
V49
(
rp
)
V50
()
V156
()
V157
()
V158
()
Element
of the
carrier
of
(
TOP-REAL
rp
)
|.
(
rg
-
rg
)
.|
is
complex
ext-real
non
negative
real
Element
of
REAL
rp
is
ordinal
natural
complex
ext-real
non
negative
real
V33
()
V119
()
V166
()
V167
()
V168
()
V169
()
V170
()
V171
()
bounded_below
Element
of
NAT
TOP-REAL
rp
is non
empty
TopSpace-like
T_0
T_1
T_2
connected
V132
()
V178
()
V179
()
V180
()
V181
()
V182
()
V183
()
V184
()
strict
add-continuous
Mult-continuous
pathwise_connected
RLTopStruct
the
carrier
of
(
TOP-REAL
rp
)
is
functional
non
empty
set
rl
is
complex
ext-real
non
negative
real
set
rg
is
Relation-like
Function-like
V49
(
rp
)
V50
()
V156
()
V157
()
V158
()
Element
of the
carrier
of
(
TOP-REAL
rp
)
Tdisk
(
rg
,
rl
) is non
empty
TopSpace-like
T_0
T_1
T_2
V270
(
rp
)
SubSpace
of
TOP-REAL
rp
the
carrier
of
(
Tdisk
(
rg
,
rl
)
)
is non
empty
set
cl_Ball
(
rg
,
rl
) is
functional
non
empty
closed
connected
bounded
convex
Element
of
bool
the
carrier
of
(
TOP-REAL
rp
)
bool
the
carrier
of
(
TOP-REAL
rp
)
is non
empty
set
rg
-
rg
is
Relation-like
Function-like
V49
(
rp
)
V50
()
V156
()
V157
()
V158
()
Element
of the
carrier
of
(
TOP-REAL
rp
)
-
rg
is
Relation-like
Function-like
V49
(
rp
)
V50
()
V156
()
V157
()
V158
()
Element
of the
carrier
of
(
TOP-REAL
rp
)
K270
(
(
TOP-REAL
rp
)
,
rg
,
(
-
rg
)
) is
Relation-like
Function-like
V49
(
rp
)
V50
()
V156
()
V157
()
V158
()
Element
of the
carrier
of
(
TOP-REAL
rp
)
the
U7
of
(
TOP-REAL
rp
)
is
Relation-like
[:
the
carrier
of
(
TOP-REAL
rp
)
, the
carrier
of
(
TOP-REAL
rp
)
:]
-defined
the
carrier
of
(
TOP-REAL
rp
)
-valued
Function-like
non
empty
total
quasi_total
Element
of
bool
[:
[:
the
carrier
of
(
TOP-REAL
rp
)
, the
carrier
of
(
TOP-REAL
rp
)
:]
, the
carrier
of
(
TOP-REAL
rp
)
:]
[:
the
carrier
of
(
TOP-REAL
rp
)
, the
carrier
of
(
TOP-REAL
rp
)
:]
is
Relation-like
non
empty
set
[:
[:
the
carrier
of
(
TOP-REAL
rp
)
, the
carrier
of
(
TOP-REAL
rp
)
:]
, the
carrier
of
(
TOP-REAL
rp
)
:]
is
Relation-like
non
empty
set
bool
[:
[:
the
carrier
of
(
TOP-REAL
rp
)
, the
carrier
of
(
TOP-REAL
rp
)
:]
, the
carrier
of
(
TOP-REAL
rp
)
:]
is non
empty
set
K224
( the
carrier
of
(
TOP-REAL
rp
)
, the
U7
of
(
TOP-REAL
rp
)
,
rg
,
(
-
rg
)
) is
Relation-like
Function-like
V49
(
rp
)
V50
()
V156
()
V157
()
V158
()
Element
of the
carrier
of
(
TOP-REAL
rp
)
|.
(
rg
-
rg
)
.|
is
complex
ext-real
non
negative
real
Element
of
REAL
rl
is non
empty
ordinal
natural
complex
ext-real
positive
non
negative
real
V33
()
V119
()
V166
()
V167
()
V168
()
V169
()
V170
()
V171
()
left_end
bounded_below
Element
of
NAT
TOP-REAL
rl
is non
empty
TopSpace-like
T_0
T_1
T_2
connected
V132
()
V178
()
V179
()
V180
()
V181
()
V182
()
V183
()
V184
()
strict
add-continuous
Mult-continuous
pathwise_connected
RLTopStruct
the
carrier
of
(
TOP-REAL
rl
)
is
functional
non
empty
set
rg
is
Relation-like
Function-like
V49
(
rl
)
V50
()
V156
()
V157
()
V158
()
Element
of the
carrier
of
(
TOP-REAL
rl
)
rp
is non
empty
complex
ext-real
positive
non
negative
real
set
cl_Ball
(
rg
,
rp
) is
functional
non
empty
closed
connected
bounded
convex
Element
of
bool
the
carrier
of
(
TOP-REAL
rl
)
bool
the
carrier
of
(
TOP-REAL
rl
)
is non
empty
set
rd
is
Relation-like
Function-like
V49
(
rl
)
V50
()
V156
()
V157
()
V158
()
Element
of the
carrier
of
(
TOP-REAL
rl
)
{
rd
}
is
functional
non
empty
closed
compact
bounded
Element
of
bool
the
carrier
of
(
TOP-REAL
rl
)
(
cl_Ball
(
rg
,
rp
)
)
\
{
rd
}
is
functional
Element
of
bool
the
carrier
of
(
TOP-REAL
rl
)
Tcircle
(
rg
,
rp
) is non
empty
strict
TopSpace-like
T_0
T_1
T_2
SubSpace
of
TOP-REAL
rl
the
carrier
of
(
Tcircle
(
rg
,
rp
)
)
is non
empty
set
Sphere
(
rg
,
rp
) is
functional
non
empty
closed
bounded
Element
of
bool
the
carrier
of
(
TOP-REAL
rl
)
Tdisk
(
rg
,
rp
) is non
empty
TopSpace-like
T_0
T_1
T_2
V270
(
rl
)
SubSpace
of
TOP-REAL
rl
the
carrier
of
(
Tdisk
(
rg
,
rp
)
)
is non
empty
set
the
Element
of the
carrier
of
(
Tcircle
(
rg
,
rp
)
)
is
Element
of the
carrier
of
(
Tcircle
(
rg
,
rp
)
)
rg
-
rg
is
Relation-like
Function-like
V49
(
rl
)
V50
()
V156
()
V157
()
V158
()
Element
of the
carrier
of
(
TOP-REAL
rl
)
-
rg
is
Relation-like
Function-like
V49
(
rl
)
V50
()
V156
()
V157
()
V158
()
Element
of the
carrier
of
(
TOP-REAL
rl
)
K270
(
(
TOP-REAL
rl
)
,
rg
,
(
-
rg
)
) is
Relation-like
Function-like
V49
(
rl
)
V50
()
V156
()
V157
()
V158
()
Element
of the
carrier
of
(
TOP-REAL
rl
)
the
U7
of
(
TOP-REAL
rl
)
is
Relation-like
[:
the
carrier
of
(
TOP-REAL
rl
)
, the
carrier
of
(
TOP-REAL
rl
)
:]
-defined
the
carrier
of
(
TOP-REAL
rl
)
-valued
Function-like
non
empty
total
quasi_total
Element
of
bool
[:
[:
the
carrier
of
(
TOP-REAL
rl
)
, the
carrier
of
(
TOP-REAL
rl
)
:]
, the
carrier
of
(
TOP-REAL
rl
)
:]
[:
the
carrier
of
(
TOP-REAL
rl
)
, the
carrier
of
(
TOP-REAL
rl
)
:]
is
Relation-like
non
empty
set
[:
[:
the
carrier
of
(
TOP-REAL
rl
)
, the
carrier
of
(
TOP-REAL
rl
)
:]
, the
carrier
of
(
TOP-REAL
rl
)
:]
is
Relation-like
non
empty
set
bool
[:
[:
the
carrier
of
(
TOP-REAL
rl
)
, the
carrier
of
(
TOP-REAL
rl
)
:]
, the
carrier
of
(
TOP-REAL
rl
)
:]
is non
empty
set
K224
( the
carrier
of
(
TOP-REAL
rl
)
, the
U7
of
(
TOP-REAL
rl
)
,
rg
,
(
-
rg
)
) is
Relation-like
Function-like
V49
(
rl
)
V50
()
V156
()
V157
()
V158
()
Element
of the
carrier
of
(
TOP-REAL
rl
)
|.
(
rg
-
rg
)
.|
is
complex
ext-real
non
negative
real
Element
of
REAL
rp
is
complex
ext-real
real
set
rl
is
complex
ext-real
real
set
rg
is
ordinal
natural
complex
ext-real
non
negative
real
V33
()
V119
()
V166
()
V167
()
V168
()
V169
()
V170
()
V171
()
bounded_below
Element
of
NAT
TOP-REAL
rg
is non
empty
TopSpace-like
T_0
T_1
T_2
connected
V132
()
V178
()
V179
()
V180
()
V181
()
V182
()
V183
()
V184
()
strict
add-continuous
Mult-continuous
pathwise_connected
RLTopStruct
the
carrier
of
(
TOP-REAL
rg
)
is
functional
non
empty
set
rd
is
Relation-like
Function-like
V49
(
rg
)
V50
()
V156
()
V157
()
V158
()
Element
of the
carrier
of
(
TOP-REAL
rg
)
Ball
(
rd
,
rp
) is
functional
open
connected
bounded
convex
Element
of
bool
the
carrier
of
(
TOP-REAL
rg
)
bool
the
carrier
of
(
TOP-REAL
rg
)
is non
empty
set
Ball
(
rd
,
rl
) is
functional
open
connected
bounded
convex
Element
of
bool
the
carrier
of
(
TOP-REAL
rg
)
Euclid
rg
is non
empty
strict
Reflexive
discerning
symmetric
triangle
Discerning
MetrStruct
the
carrier
of
(
Euclid
rg
)
is non
empty
set
a
is
Element
of the
carrier
of
(
Euclid
rg
)
Ball
(
a
,
rp
) is
Element
of
bool
the
carrier
of
(
Euclid
rg
)
bool
the
carrier
of
(
Euclid
rg
)
is non
empty
set
Ball
(
a
,
rl
) is
Element
of
bool
the
carrier
of
(
Euclid
rg
)
rp
is
complex
ext-real
real
set
rl
is
ordinal
natural
complex
ext-real
non
negative
real
V33
()
V119
()
V166
()
V167
()
V168
()
V169
()
V170
()
V171
()
bounded_below
Element
of
NAT
TOP-REAL
rl
is non
empty
TopSpace-like
T_0
T_1
T_2
connected
V132
()
V178
()
V179
()
V180
()
V181
()
V182
()
V183
()
V184
()
strict
add-continuous
Mult-continuous
pathwise_connected
RLTopStruct
the
carrier
of
(
TOP-REAL
rl
)
is
functional
non
empty
set
rg
is
Relation-like
Function-like
V49
(
rl
)
V50
()
V156
()
V157
()
V158
()
Element
of the
carrier
of
(
TOP-REAL
rl
)
cl_Ball
(
rg
,
rp
) is
functional
closed
connected
bounded
convex
Element
of
bool
the
carrier
of
(
TOP-REAL
rl
)
bool
the
carrier
of
(
TOP-REAL
rl
)
is non
empty
set
Ball
(
rg
,
rp
) is
functional
open
connected
bounded
convex
Element
of
bool
the
carrier
of
(
TOP-REAL
rl
)
(
cl_Ball
(
rg
,
rp
)
)
\
(
Ball
(
rg
,
rp
)
)
is
functional
Element
of
bool
the
carrier
of
(
TOP-REAL
rl
)
Sphere
(
rg
,
rp
) is
functional
closed
bounded
Element
of
bool
the
carrier
of
(
TOP-REAL
rl
)
rd
is
set
a
is
Relation-like
Function-like
V49
(
rl
)
V50
()
V156
()
V157
()
V158
()
Element
of the
carrier
of
(
TOP-REAL
rl
)
a
-
rg
is
Relation-like
Function-like
V49
(
rl
)
V50
()
V156
()
V157
()
V158
()
Element
of the
carrier
of
(
TOP-REAL
rl
)
-
rg
is
Relation-like
Function-like
V49
(
rl
)
V50
()
V156
()
V157
()
V158
()
Element
of the
carrier
of
(
TOP-REAL
rl
)
K270
(
(
TOP-REAL
rl
)
,
a
,
(
-
rg
)
) is
Relation-like
Function-like
V49
(
rl
)
V50
()
V156
()
V157
()
V158
()
Element
of the
carrier
of
(
TOP-REAL
rl
)
the
U7
of
(
TOP-REAL
rl
)
is
Relation-like
[:
the
carrier
of
(
TOP-REAL
rl
)
, the
carrier
of
(
TOP-REAL
rl
)
:]
-defined
the
carrier
of
(
TOP-REAL
rl
)
-valued
Function-like
non
empty
total
quasi_total
Element
of
bool
[:
[:
the
carrier
of
(
TOP-REAL
rl
)
, the
carrier
of
(
TOP-REAL
rl
)
:]
, the
carrier
of
(
TOP-REAL
rl
)
:]
[:
the
carrier
of
(
TOP-REAL
rl
)
, the
carrier
of
(
TOP-REAL
rl
)
:]
is
Relation-like
non
empty
set
[:
[:
the
carrier
of
(
TOP-REAL
rl
)
, the
carrier
of
(
TOP-REAL
rl
)
:]
, the
carrier
of
(
TOP-REAL
rl
)
:]
is
Relation-like
non
empty
set
bool
[:
[:
the
carrier
of
(
TOP-REAL
rl
)
, the
carrier
of
(
TOP-REAL
rl
)
:]
, the
carrier
of
(
TOP-REAL
rl
)
:]
is non
empty
set
K224
( the
carrier
of
(
TOP-REAL
rl
)
, the
U7
of
(
TOP-REAL
rl
)
,
a
,
(
-
rg
)
) is
Relation-like
Function-like
V49
(
rl
)
V50
()
V156
()
V157
()
V158
()
Element
of the
carrier
of
(
TOP-REAL
rl
)
|.
(
a
-
rg
)
.|
is
complex
ext-real
non
negative
real
Element
of
REAL
rd
is
set
a
is
Relation-like
Function-like
V49
(
rl
)
V50
()
V156
()
V157
()
V158
()
Element
of the
carrier
of
(
TOP-REAL
rl
)
a
-
rg
is
Relation-like
Function-like
V49
(
rl
)
V50
()
V156
()
V157
()
V158
()
Element
of the
carrier
of
(
TOP-REAL
rl
)
-
rg
is
Relation-like
Function-like
V49
(
rl
)
V50
()
V156
()
V157
()
V158
()
Element
of the
carrier
of
(
TOP-REAL
rl
)
K270
(
(
TOP-REAL
rl
)
,
a
,
(
-
rg
)
) is
Relation-like
Function-like
V49
(
rl
)
V50
()
V156
()
V157
()
V158
()
Element
of the
carrier
of
(
TOP-REAL
rl
)
the
U7
of
(
TOP-REAL
rl
)
is
Relation-like
[:
the
carrier
of
(
TOP-REAL
rl
)
, the
carrier
of
(
TOP-REAL
rl
)
:]
-defined
the
carrier
of
(
TOP-REAL
rl
)
-valued
Function-like
non
empty
total
quasi_total
Element
of
bool
[:
[:
the
carrier
of
(
TOP-REAL
rl
)
, the
carrier
of
(
TOP-REAL
rl
)
:]
, the
carrier
of
(
TOP-REAL
rl
)
:]
[:
the
carrier
of
(
TOP-REAL
rl
)
, the
carrier
of
(
TOP-REAL
rl
)
:]
is
Relation-like
non
empty
set
[:
[:
the
carrier
of
(
TOP-REAL
rl
)
, the
carrier
of
(
TOP-REAL
rl
)
:]
, the
carrier
of
(
TOP-REAL
rl
)
:]
is
Relation-like
non
empty
set
bool
[:
[:
the
carrier
of
(
TOP-REAL
rl
)
, the
carrier
of
(
TOP-REAL
rl
)
:]
, the
carrier
of
(
TOP-REAL
rl
)
:]
is non
empty
set
K224
( the
carrier
of
(
TOP-REAL
rl
)
, the
U7
of
(
TOP-REAL
rl
)
,
a
,
(
-
rg
)
) is
Relation-like
Function-like
V49
(
rl
)
V50
()
V156
()
V157
()
V158
()
Element
of the
carrier
of
(
TOP-REAL
rl
)
|.
(
a
-
rg
)
.|
is
complex
ext-real
non
negative
real
Element
of
REAL
rp
is
complex
ext-real
real
set
rl
is
ordinal
natural
complex
ext-real
non
negative
real
V33
()
V119
()
V166
()
V167
()
V168
()
V169
()
V170
()
V171
()
bounded_below
Element
of
NAT
TOP-REAL
rl
is non
empty
TopSpace-like
T_0
T_1
T_2
connected
V132
()
V178
()
V179
()
V180
()
V181
()
V182
()
V183
()
V184
()
strict
add-continuous
Mult-continuous
pathwise_connected
RLTopStruct
the
carrier
of
(
TOP-REAL
rl
)
is
functional
non
empty
set
rg
is
Relation-like
Function-like
V49
(
rl
)
V50
()
V156
()
V157
()
V158
()
Element
of the
carrier
of
(
TOP-REAL
rl
)
rd
is
Relation-like
Function-like
V49
(
rl
)
V50
()
V156
()
V157
()
V158
()
Element
of the
carrier
of
(
TOP-REAL
rl
)
Sphere
(
rd
,
rp
) is
functional
closed
bounded
Element
of
bool
the
carrier
of
(
TOP-REAL
rl
)
bool
the
carrier
of
(
TOP-REAL
rl
)
is non
empty
set
LSeg
(
rd
,
rg
) is
functional
closed
compact
bounded
Element
of
bool
the
carrier
of
(
TOP-REAL
rl
)
{
(
(
(
1
-
b
1
)
*
rd
)
+
(
b
1
*
rg
)
)
where
b
1
is
complex
ext-real
real
Element
of
REAL
: (
0
<=
b
1
&
b
1
<=
1 )
}
is
set
{
rd
,
rg
}
is
functional
non
empty
Element
of
bool
the
carrier
of
(
TOP-REAL
rl
)
(
LSeg
(
rd
,
rg
)
)
\
{
rd
,
rg
}
is
functional
Element
of
bool
the
carrier
of
(
TOP-REAL
rl
)
Ball
(
rd
,
rp
) is
functional
open
connected
bounded
convex
Element
of
bool
the
carrier
of
(
TOP-REAL
rl
)
Euclid
rl
is non
empty
strict
Reflexive
discerning
symmetric
triangle
Discerning
MetrStruct
the
carrier
of
(
Euclid
rl
)
is non
empty
set
a
is
Element
of the
carrier
of
(
Euclid
rl
)
Sphere
(
a
,
rp
) is
Element
of
bool
the
carrier
of
(
Euclid
rl
)
bool
the
carrier
of
(
Euclid
rl
)
is non
empty
set
{
rd
}
is
functional
non
empty
closed
compact
bounded
Element
of
bool
the
carrier
of
(
TOP-REAL
rl
)
LSeg
(
rd
,
rd
) is
functional
closed
compact
bounded
Element
of
bool
the
carrier
of
(
TOP-REAL
rl
)
{
(
(
(
1
-
b
1
)
*
rd
)
+
(
b
1
*
rd
)
)
where
b
1
is
complex
ext-real
real
Element
of
REAL
: (
0
<=
b
1
&
b
1
<=
1 )
}
is
set
{
rd
,
rd
}
is
functional
non
empty
Element
of
bool
the
carrier
of
(
TOP-REAL
rl
)
{
rd
}
\
{
rd
}
is
functional
Element
of
bool
the
carrier
of
(
TOP-REAL
rl
)
a
is
set
b
is
complex
ext-real
real
Element
of
REAL
1
-
b
is
complex
ext-real
real
Element
of
REAL
(
1
-
b
)
*
rd
is
Relation-like
Function-like
V49
(
rl
)
V50
()
V156
()
V157
()
V158
()
Element
of the
carrier
of
(
TOP-REAL
rl
)
b
*
rg
is
Relation-like
Function-like
V49
(
rl
)
V50
()
V156
()
V157
()
V158
()
Element
of the
carrier
of
(
TOP-REAL
rl
)
(
(
1
-
b
)
*
rd
)
+
(
b
*
rg
)
is
Relation-like
Function-like
V49
(
rl
)
V50
()
V156
()
V157
()
V158
()
Element
of the
carrier
of
(
TOP-REAL
rl
)
the
U7
of
(
TOP-REAL
rl
)
is
Relation-like
[:
the
carrier
of
(
TOP-REAL
rl
)
, the
carrier
of
(
TOP-REAL
rl
)
:]
-defined
the
carrier
of
(
TOP-REAL
rl
)
-valued
Function-like
non
empty
total
quasi_total
Element
of
bool
[:
[:
the
carrier
of
(
TOP-REAL
rl
)
, the
carrier
of
(
TOP-REAL
rl
)
:]
, the
carrier
of
(
TOP-REAL
rl
)
:]
[:
the
carrier
of
(
TOP-REAL
rl
)
, the
carrier
of
(
TOP-REAL
rl
)
:]
is
Relation-like
non
empty
set
[:
[:
the
carrier
of
(
TOP-REAL
rl
)
, the
carrier
of
(
TOP-REAL
rl
)
:]
, the
carrier
of
(
TOP-REAL
rl
)
:]
is
Relation-like
non
empty
set
bool
[:
[:
the
carrier
of
(
TOP-REAL
rl
)
, the
carrier
of
(
TOP-REAL
rl
)
:]
, the
carrier
of
(
TOP-REAL
rl
)
:]
is non
empty
set
K224
( the
carrier
of
(
TOP-REAL
rl
)
, the
U7
of
(
TOP-REAL
rl
)
,
(
(
1
-
b
)
*
rd
)
,
(
b
*
rg
)
) is
Relation-like
Function-like
V49
(
rl
)
V50
()
V156
()
V157
()
V158
()
Element
of the
carrier
of
(
TOP-REAL
rl
)
c
is
Relation-like
Function-like
V49
(
rl
)
V50
()
V156
()
V157
()
V158
()
Element
of the
carrier
of
(
TOP-REAL
rl
)
c
-
rd
is
Relation-like
Function-like
V49
(
rl
)
V50
()
V156
()
V157
()
V158
()
Element
of the
carrier
of
(
TOP-REAL
rl
)
-
rd
is
Relation-like
Function-like
V49
(
rl
)
V50
()
V156
()
V157
()
V158
()
Element
of the
carrier
of
(
TOP-REAL
rl
)
K270
(
(
TOP-REAL
rl
)
,
c
,
(
-
rd
)
) is
Relation-like
Function-like
V49
(
rl
)
V50
()
V156
()
V157
()
V158
()
Element
of the
carrier
of
(
TOP-REAL
rl
)
K224
( the
carrier
of
(
TOP-REAL
rl
)
, the
U7
of
(
TOP-REAL
rl
)
,
c
,
(
-
rd
)
) is
Relation-like
Function-like
V49
(
rl
)
V50
()
V156
()
V157
()
V158
()
Element
of the
carrier
of
(
TOP-REAL
rl
)
(
(
1
-
b
)
*
rd
)
-
rd
is
Relation-like
Function-like
V49
(
rl
)
V50
()
V156
()
V157
()
V158
()
Element
of the
carrier
of
(
TOP-REAL
rl
)
K270
(
(
TOP-REAL
rl
)
,
(
(
1
-
b
)
*
rd
)
,
(
-
rd
)
) is
Relation-like
Function-like
V49
(
rl
)
V50
()
V156
()
V157
()
V158
()
Element
of the
carrier
of
(
TOP-REAL
rl
)
K224
( the
carrier
of
(
TOP-REAL
rl
)
, the
U7
of
(
TOP-REAL
rl
)
,
(
(
1
-
b
)
*
rd
)
,
(
-
rd
)
) is
Relation-like
Function-like
V49
(
rl
)
V50
()
V156
()
V157
()
V158
()
Element
of the
carrier
of
(
TOP-REAL
rl
)
(
(
(
1
-
b
)
*
rd
)
-
rd
)
+
(
b
*
rg
)
is
Relation-like
Function-like
V49
(
rl
)
V50
()
V156
()
V157
()
V158
()
Element
of the
carrier
of
(
TOP-REAL
rl
)
K224
( the
carrier
of
(
TOP-REAL
rl
)
, the
U7
of
(
TOP-REAL
rl
)
,
(
(
(
1
-
b
)
*
rd
)
-
rd
)
,
(
b
*
rg
)
) is
Relation-like
Function-like
V49
(
rl
)
V50
()
V156
()
V157
()
V158
()
Element
of the
carrier
of
(
TOP-REAL
rl
)
1
*
rd
is
Relation-like
Function-like
V49
(
rl
)
V50
()
V156
()
V157
()
V158
()
Element
of the
carrier
of
(
TOP-REAL
rl
)
b
*
rd
is
Relation-like
Function-like
V49
(
rl
)
V50
()
V156
()
V157
()
V158
()
Element
of the
carrier
of
(
TOP-REAL
rl
)
(
1
*
rd
)
-
(
b
*
rd
)
is
Relation-like
Function-like
V49
(
rl
)
V50
()
V156
()
V157
()
V158
()
Element
of the
carrier
of
(
TOP-REAL
rl
)
-
(
b
*
rd
)
is
Relation-like
Function-like
V49
(
rl
)
V50
()
V156
()
V157
()
V158
()
Element
of the
carrier
of
(
TOP-REAL
rl
)
K270
(
(
TOP-REAL
rl
)
,
(
1
*
rd
)
,
(
-
(
b
*
rd
)
)
) is
Relation-like
Function-like
V49
(
rl
)
V50
()
V156
()
V157
()
V158
()
Element
of the
carrier
of
(
TOP-REAL
rl
)
K224
( the
carrier
of
(
TOP-REAL
rl
)
, the
U7
of
(
TOP-REAL
rl
)
,
(
1
*
rd
)
,
(
-
(
b
*
rd
)
)
) is
Relation-like
Function-like
V49
(
rl
)
V50
()
V156
()
V157
()
V158
()
Element
of the
carrier
of
(
TOP-REAL
rl
)
(
(
1
*
rd
)
-
(
b
*
rd
)
)
-
rd
is
Relation-like
Function-like
V49
(
rl
)
V50
()
V156
()
V157
()
V158
()
Element
of the
carrier
of
(
TOP-REAL
rl
)
K270
(
(
TOP-REAL
rl
)
,
(
(
1
*
rd
)
-
(
b
*
rd
)
)
,
(
-
rd
)
) is
Relation-like
Function-like
V49
(
rl
)
V50
()
V156
()
V157
()
V158
()
Element
of the
carrier
of
(
TOP-REAL
rl
)
K224
( the
carrier
of
(
TOP-REAL
rl
)
, the
U7
of
(
TOP-REAL
rl
)
,
(
(
1
*
rd
)
-
(
b
*
rd
)
)
,
(
-
rd
)
) is
Relation-like
Function-like
V49
(
rl
)
V50
()
V156
()
V157
()
V158
()
Element
of the
carrier
of
(
TOP-REAL
rl
)
(
(
(
1
*
rd
)
-
(
b
*
rd
)
)
-
rd
)
+
(
b
*
rg
)
is
Relation-like
Function-like
V49
(
rl
)
V50
()
V156
()
V157
()
V158
()
Element
of the
carrier
of
(
TOP-REAL
rl
)
K224
( the
carrier
of
(
TOP-REAL
rl
)
, the
U7
of
(
TOP-REAL
rl
)
,
(
(
(
1
*
rd
)
-
(
b
*
rd
)
)
-
rd
)
,
(
b
*
rg
)
) is
Relation-like
Function-like
V49
(
rl
)
V50
()
V156
()
V157
()
V158
()
Element
of the
carrier
of
(
TOP-REAL
rl
)
rd
-
(
b
*
rd
)
is
Relation-like
Function-like
V49
(
rl
)
V50
()
V156
()
V157
()
V158
()
Element
of the
carrier
of
(
TOP-REAL
rl
)
K270
(
(
TOP-REAL
rl
)
,
rd
,
(
-
(
b
*
rd
)
)
) is
Relation-like
Function-like
V49
(
rl
)
V50
()
V156
()
V157
()
V158
()
Element
of the
carrier
of
(
TOP-REAL
rl
)
K224
( the
carrier
of
(
TOP-REAL
rl
)
, the
U7
of
(
TOP-REAL
rl
)
,
rd
,
(
-
(
b
*
rd
)
)
) is
Relation-like
Function-like
V49
(
rl
)
V50
()
V156
()
V157
()
V158
()
Element
of the
carrier
of
(
TOP-REAL
rl
)
(
rd
-
(
b
*
rd
)
)
-
rd
is
Relation-like
Function-like
V49
(
rl
)
V50
()
V156
()
V157
()
V158
()
Element
of the
carrier
of
(
TOP-REAL
rl
)
K270
(
(
TOP-REAL
rl
)
,
(
rd
-
(
b
*
rd
)
)
,
(
-
rd
)
) is
Relation-like
Function-like
V49
(
rl
)
V50
()
V156
()
V157
()
V158
()
Element
of the
carrier
of
(
TOP-REAL
rl
)
K224
( the
carrier
of
(
TOP-REAL
rl
)
, the
U7
of
(
TOP-REAL
rl
)
,
(
rd
-
(
b
*
rd
)
)
,
(
-
rd
)
) is
Relation-like
Function-like
V49
(
rl
)
V50
()
V156
()
V157
()
V158
()
Element
of the
carrier
of
(
TOP-REAL
rl
)
(
(
rd
-
(
b
*
rd
)
)
-
rd
)
+
(
b
*
rg
)
is
Relation-like
Function-like
V49
(
rl
)
V50
()
V156
()
V157
()
V158
()
Element
of the
carrier
of
(
TOP-REAL
rl
)
K224
( the
carrier
of
(
TOP-REAL
rl
)
, the
U7
of
(
TOP-REAL
rl
)
,
(
(
rd
-
(
b
*
rd
)
)
-
rd
)
,
(
b
*
rg
)
) is
Relation-like
Function-like
V49
(
rl
)
V50
()
V156
()
V157
()
V158
()
Element
of the
carrier
of
(
TOP-REAL
rl
)
rd
+
(
-
(
b
*
rd
)
)
is
Relation-like
Function-like
V49
(
rl
)
V50
()
V156
()
V157
()
V158
()
Element
of the
carrier
of
(
TOP-REAL
rl
)
(
rd
+
(
-
(
b
*
rd
)
)
)
+
(
-
rd
)
is
Relation-like
Function-like
V49
(
rl
)
V50
()
V156
()
V157
()
V158
()
Element
of the
carrier
of
(
TOP-REAL
rl
)
K224
( the
carrier
of
(
TOP-REAL
rl
)
, the
U7
of
(
TOP-REAL
rl
)
,
(
rd
+
(
-
(
b
*
rd
)
)
)
,
(
-
rd
)
) is
Relation-like
Function-like
V49
(
rl
)
V50
()
V156
()
V157
()
V158
()
Element
of the
carrier
of
(
TOP-REAL
rl
)
(
(
rd
+
(
-
(
b
*
rd
)
)
)
+
(
-
rd
)
)
+
(
b
*
rg
)
is
Relation-like
Function-like
V49
(
rl
)
V50
()
V156
()
V157
()
V158
()
Element
of the
carrier
of
(
TOP-REAL
rl
)
K224
( the
carrier
of
(
TOP-REAL
rl
)
, the
U7
of
(
TOP-REAL
rl
)
,
(
(
rd
+
(
-
(
b
*
rd
)
)
)
+
(
-
rd
)
)
,
(
b
*
rg
)
) is
Relation-like
Function-like
V49
(
rl
)
V50
()
V156
()
V157
()
V158
()
Element
of the
carrier
of
(
TOP-REAL
rl
)
rd
+
(
-
rd
)
is
Relation-like
Function-like
V49
(
rl
)
V50
()
V156
()
V157
()
V158
()
Element
of the
carrier
of
(
TOP-REAL
rl
)
K224
( the
carrier
of
(
TOP-REAL
rl
)
, the
U7
of
(
TOP-REAL
rl
)
,
rd
,
(
-
rd
)
) is
Relation-like
Function-like
V49
(
rl
)
V50
()
V156
()
V157
()
V158
()
Element
of the
carrier
of
(
TOP-REAL
rl
)
(
rd
+
(
-
rd
)
)
+
(
-
(
b
*
rd
)
)
is
Relation-like
Function-like
V49
(
rl
)
V50
()
V156
()
V157
()
V158
()
Element
of the
carrier
of
(
TOP-REAL
rl
)
K224
( the
carrier
of
(
TOP-REAL
rl
)
, the
U7
of
(
TOP-REAL
rl
)
,
(
rd
+
(
-
rd
)
)
,
(
-
(
b
*
rd
)
)
) is
Relation-like
Function-like
V49
(
rl
)
V50
()
V156
()
V157
()
V158
()
Element
of the
carrier
of
(
TOP-REAL
rl
)
(
(
rd
+
(
-
rd
)
)
+
(
-
(
b
*
rd
)
)
)
+
(
b
*
rg
)
is
Relation-like
Function-like
V49
(
rl
)
V50
()
V156
()
V157
()
V158
()
Element
of the
carrier
of
(
TOP-REAL
rl
)
K224
( the
carrier
of
(
TOP-REAL
rl
)
, the
U7
of
(
TOP-REAL
rl
)
,
(
(
rd
+
(
-
rd
)
)
+
(
-
(
b
*
rd
)
)
)
,
(
b
*
rg
)
) is
Relation-like
Function-like
V49
(
rl
)
V50
()
V156
()
V157
()
V158
()
Element
of the
carrier
of
(
TOP-REAL
rl
)
rd
-
rd
is
Relation-like
Function-like
V49
(
rl
)
V50
()
V156
()
V157
()
V158
()
Element
of the
carrier
of
(
TOP-REAL
rl
)
K270
(
(
TOP-REAL
rl
)
,
rd
,
(
-
rd
)
) is
Relation-like
Function-like
V49
(
rl
)
V50
()
V156
()
V157
()
V158
()
Element
of the
carrier
of
(
TOP-REAL
rl
)
(
rd
-
rd
)
-
(
b
*
rd
)
is
Relation-like
Function-like
V49
(
rl
)
V50
()
V156
()
V157
()
V158
()
Element
of the
carrier
of
(
TOP-REAL
rl
)
K270
(
(
TOP-REAL
rl
)
,
(
rd
-
rd
)
,
(
-
(
b
*
rd
)
)
) is
Relation-like
Function-like
V49
(
rl
)
V50
()
V156
()
V157
()
V158
()
Element
of the
carrier
of
(
TOP-REAL
rl
)
K224
( the
carrier
of
(
TOP-REAL
rl
)
, the
U7
of
(
TOP-REAL
rl
)
,
(
rd
-
rd
)
,
(
-
(
b
*
rd
)
)
) is
Relation-like
Function-like
V49
(
rl
)
V50
()
V156
()
V157
()
V158
()
Element
of the
carrier
of
(
TOP-REAL
rl
)
(
(
rd
-
rd
)
-
(
b
*
rd
)
)
+
(
b
*
rg
)
is
Relation-like
Function-like
V49
(
rl
)
V50
()
V156
()
V157
()
V158
()
Element
of the
carrier
of
(
TOP-REAL
rl
)
K224
( the
carrier
of
(
TOP-REAL
rl
)
, the
U7
of
(
TOP-REAL
rl
)
,
(
(
rd
-
rd
)
-
(
b
*
rd
)
)
,
(
b
*
rg
)
) is
Relation-like
Function-like
V49
(
rl
)
V50
()
V156
()
V157
()
V158
()
Element
of the
carrier
of
(
TOP-REAL
rl
)
0.
(
TOP-REAL
rl
)
is
Relation-like
Function-like
V49
(
rl
)
V50
()
zero
V156
()
V157
()
V158
()
Element
of the
carrier
of
(
TOP-REAL
rl
)
the
ZeroF
of
(
TOP-REAL
rl
)
is
Relation-like
Function-like
V49
(
rl
)
V50
()
V156
()
V157
()
V158
()
Element
of the
carrier
of
(
TOP-REAL
rl
)
(
0.
(
TOP-REAL
rl
)
)
-
(
b
*
rd
)
is
Relation-like
Function-like
V49
(
rl
)
V50
()
V156
()
V157
()
V158
()
Element
of the
carrier
of
(
TOP-REAL
rl
)
K270
(
(
TOP-REAL
rl
)
,
(
0.
(
TOP-REAL
rl
)
)
,
(
-
(
b
*
rd
)
)
) is
Relation-like
Function-like
V49
(
rl
)
V50
()
V156
()
V157
()
V158
()
Element
of the
carrier
of
(
TOP-REAL
rl
)
K224
( the
carrier
of
(
TOP-REAL
rl
)
, the
U7
of
(
TOP-REAL
rl
)
,
(
0.
(
TOP-REAL
rl
)
)
,
(
-
(
b
*
rd
)
)
) is
Relation-like
Function-like
V49
(
rl
)
V50
()
V156
()
V157
()
V158
()
Element
of the
carrier
of
(
TOP-REAL
rl
)
(
(
0.
(
TOP-REAL
rl
)
)
-
(
b
*
rd
)
)
+
(
b
*
rg
)
is
Relation-like
Function-like
V49
(
rl
)
V50
()
V156
()
V157
()
V158
()
Element
of the
carrier
of
(
TOP-REAL
rl
)
K224
( the
carrier
of
(
TOP-REAL
rl
)
, the
U7
of
(
TOP-REAL
rl
)
,
(
(
0.
(
TOP-REAL
rl
)
)
-
(
b
*
rd
)
)
,
(
b
*
rg
)
) is
Relation-like
Function-like
V49
(
rl
)
V50
()
V156
()
V157
()
V158
()
Element
of the
carrier
of
(
TOP-REAL
rl
)
(
b
*
rg
)
-
(
b
*
rd
)
is
Relation-like
Function-like
V49
(
rl
)
V50
()
V156
()
V157
()
V158
()
Element
of the
carrier
of
(
TOP-REAL
rl
)
K270
(
(
TOP-REAL
rl
)
,
(
b
*
rg
)
,
(
-
(
b
*
rd
)
)
) is
Relation-like
Function-like
V49
(
rl
)
V50
()
V156
()
V157
()
V158
()
Element
of the
carrier
of
(
TOP-REAL
rl
)
K224
( the
carrier
of
(
TOP-REAL
rl
)
, the
U7
of
(
TOP-REAL
rl
)
,
(
b
*
rg
)
,
(
-
(
b
*
rd
)
)
) is
Relation-like
Function-like
V49
(
rl
)
V50
()
V156
()
V157
()
V158
()
Element
of the
carrier
of
(
TOP-REAL
rl
)
rg
-
rd
is
Relation-like
Function-like
V49
(
rl
)
V50
()
V156
()
V157
()
V158
()
Element
of the
carrier
of
(
TOP-REAL
rl
)
K270
(
(
TOP-REAL
rl
)
,
rg
,
(
-
rd
)
) is
Relation-like
Function-like
V49
(
rl
)
V50
()
V156
()
V157
()
V158
()
Element
of the
carrier
of
(
TOP-REAL
rl
)
K224
( the
carrier
of
(
TOP-REAL
rl
)
, the
U7
of
(
TOP-REAL
rl
)
,
rg
,
(
-
rd
)
) is
Relation-like
Function-like
V49
(
rl
)
V50
()
V156
()
V157
()
V158
()
Element
of the
carrier
of
(
TOP-REAL
rl
)
b
*
(
rg
-
rd
)
is
Relation-like
Function-like
V49
(
rl
)
V50
()
V156
()
V157
()
V158
()
Element
of the
carrier
of
(
TOP-REAL
rl
)
|.
(
c
-
rd
)
.|
is
complex
ext-real
non
negative
real
Element
of
REAL
abs
b
is
complex
ext-real
real
Element
of
REAL
|.
(
rg
-
rd
)
.|
is
complex
ext-real
non
negative
real
Element
of
REAL
(
abs
b
)
*
|.
(
rg
-
rd
)
.|
is
complex
ext-real
real
Element
of
REAL
b
*
|.
(
rg
-
rd
)
.|
is
complex
ext-real
real
Element
of
REAL
b
*
rp
is
complex
ext-real
real
Element
of
REAL
1
*
rp
is
complex
ext-real
real
Element
of
REAL
rp
is
complex
ext-real
real
set
rl
is
complex
ext-real
real
set
rg
is
ordinal
natural
complex
ext-real
non
negative
real
V33
()
V119
()
V166
()
V167
()
V168
()
V169
()
V170
()
V171
()
bounded_below
Element
of
NAT
TOP-REAL
rg
is non
empty
TopSpace-like
T_0
T_1
T_2
connected
V132
()
V178
()
V179
()
V180
()
V181
()
V182
()
V183
()
V184
()
strict
add-continuous
Mult-continuous
pathwise_connected
RLTopStruct
the
carrier
of
(
TOP-REAL
rg
)
is
functional
non
empty
set
rd
is
Relation-like
Function-like
V49
(
rg
)
V50
()
V156
()
V157
()
V158
()
Element
of the
carrier
of
(
TOP-REAL
rg
)
cl_Ball
(
rd
,
rp
) is
functional
closed
connected
bounded
convex
Element
of
bool
the
carrier
of
(
TOP-REAL
rg
)
bool
the
carrier
of
(
TOP-REAL
rg
)
is non
empty
set
Ball
(
rd
,
rl
) is
functional
open
connected
bounded
convex
Element
of
bool
the
carrier
of
(
TOP-REAL
rg
)
a
is
set
b
is
Relation-like
Function-like
V49
(
rg
)
V50
()
V156
()
V157
()
V158
()
Element
of the
carrier
of
(
TOP-REAL
rg
)
b
-
rd
is
Relation-like
Function-like
V49
(
rg
)
V50
()
V156
()
V157
()
V158
()
Element
of the
carrier
of
(
TOP-REAL
rg
)
-
rd
is
Relation-like
Function-like
V49
(
rg
)
V50
()
V156
()
V157
()
V158
()
Element
of the
carrier
of
(
TOP-REAL
rg
)
K270
(
(
TOP-REAL
rg
)
,
b
,
(
-
rd
)
) is
Relation-like
Function-like
V49
(
rg
)
V50
()
V156
()
V157
()
V158
()
Element
of the
carrier
of
(
TOP-REAL
rg
)
the
U7
of
(
TOP-REAL
rg
)
is
Relation-like
[:
the
carrier
of
(
TOP-REAL
rg
)
, the
carrier
of
(
TOP-REAL
rg
)
:]
-defined
the
carrier
of
(
TOP-REAL
rg
)
-valued
Function-like
non
empty
total
quasi_total
Element
of
bool
[:
[:
the
carrier
of
(
TOP-REAL
rg
)
, the
carrier
of
(
TOP-REAL
rg
)
:]
, the
carrier
of
(
TOP-REAL
rg
)
:]
[:
the
carrier
of
(
TOP-REAL
rg
)
, the
carrier
of
(
TOP-REAL
rg
)
:]
is
Relation-like
non
empty
set
[:
[:
the
carrier
of
(
TOP-REAL
rg
)
, the
carrier
of
(
TOP-REAL
rg
)
:]
, the
carrier
of
(
TOP-REAL
rg
)
:]
is
Relation-like
non
empty
set
bool
[:
[:
the
carrier
of
(
TOP-REAL
rg
)
, the
carrier
of
(
TOP-REAL
rg
)
:]
, the
carrier
of
(
TOP-REAL
rg
)
:]
is non
empty
set
K224
( the
carrier
of
(
TOP-REAL
rg
)
, the
U7
of
(
TOP-REAL
rg
)
,
b
,
(
-
rd
)
) is
Relation-like
Function-like
V49
(
rg
)
V50
()
V156
()
V157
()
V158
()
Element
of the
carrier
of
(
TOP-REAL
rg
)
|.
(
b
-
rd
)
.|
is
complex
ext-real
non
negative
real
Element
of
REAL
rp
is
complex
ext-real
real
set
rl
is
complex
ext-real
real
set
rg
is
ordinal
natural
complex
ext-real
non
negative
real
V33
()
V119
()
V166
()
V167
()
V168
()
V169
()
V170
()
V171
()
bounded_below
Element
of
NAT
TOP-REAL
rg
is non
empty
TopSpace-like
T_0
T_1
T_2
connected
V132
()
V178
()
V179
()
V180
()
V181
()
V182
()
V183
()
V184
()
strict
add-continuous
Mult-continuous
pathwise_connected
RLTopStruct
the
carrier
of
(
TOP-REAL
rg
)
is
functional
non
empty
set
rd
is
Relation-like
Function-like
V49
(
rg
)
V50
()
V156
()
V157
()
V158
()
Element
of the
carrier
of
(
TOP-REAL
rg
)
Sphere
(
rd
,
rp
) is
functional
closed
bounded
Element
of
bool
the
carrier
of
(
TOP-REAL
rg
)
bool
the
carrier
of
(
TOP-REAL
rg
)
is non
empty
set
Ball
(
rd
,
rl
) is
functional
open
connected
bounded
convex
Element
of
bool
the
carrier
of
(
TOP-REAL
rg
)
cl_Ball
(
rd
,
rp
) is
functional
closed
connected
bounded
convex
Element
of
bool
the
carrier
of
(
TOP-REAL
rg
)
rp
is
ordinal
natural
complex
ext-real
non
negative
real
V33
()
V119
()
V166
()
V167
()
V168
()
V169
()
V170
()
V171
()
bounded_below
Element
of
NAT
TOP-REAL
rp
is non
empty
TopSpace-like
T_0
T_1
T_2
connected
V132
()
V178
()
V179
()
V180
()
V181
()
V182
()
V183
()
V184
()
strict
add-continuous
Mult-continuous
pathwise_connected
RLTopStruct
the
carrier
of
(
TOP-REAL
rp
)
is
functional
non
empty
set
rl
is
Relation-like
Function-like
V49
(
rp
)
V50
()
V156
()
V157
()
V158
()
Element
of the
carrier
of
(
TOP-REAL
rp
)
rg
is non
empty
complex
ext-real
real
set
Ball
(
rl
,
rg
) is
functional
open
connected
bounded
convex
Element
of
bool
the
carrier
of
(
TOP-REAL
rp
)
bool
the
carrier
of
(
TOP-REAL
rp
)
is non
empty
set
Cl
(
Ball
(
rl
,
rg
)
)
is
functional
closed
Element
of
bool
the
carrier
of
(
TOP-REAL
rp
)
cl_Ball
(
rl
,
rg
) is
functional
closed
connected
bounded
convex
Element
of
bool
the
carrier
of
(
TOP-REAL
rp
)
rd
is
set
Euclid
rp
is non
empty
strict
Reflexive
discerning
symmetric
triangle
Discerning
MetrStruct
the
carrier
of
(
Euclid
rp
)
is non
empty
set
a
is
Relation-like
Function-like
V49
(
rp
)
V50
()
V156
()
V157
()
V158
()
Element
of the
carrier
of
(
TOP-REAL
rp
)
b
is
Element
of the
carrier
of
(
Euclid
rp
)
c
is
complex
ext-real
real
set
Ball
(
b
,
c
) is
Element
of
bool
the
carrier
of
(
Euclid
rp
)
bool
the
carrier
of
(
Euclid
rp
)
is non
empty
set
Sphere
(
rl
,
rg
) is
functional
closed
bounded
Element
of
bool
the
carrier
of
(
TOP-REAL
rp
)
(
Ball
(
rl
,
rg
)
)
\/
(
Sphere
(
rl
,
rg
)
)
is
functional
Element
of
bool
the
carrier
of
(
TOP-REAL
rp
)
a
-
a
is
Relation-like
Function-like
V49
(
rp
)
V50
()
V156
()
V157
()
V158
()
Element
of the
carrier
of
(
TOP-REAL
rp
)
-
a
is
Relation-like
Function-like
V49
(
rp
)
V50
()
V156
()
V157
()
V158
()
Element
of the
carrier
of
(
TOP-REAL
rp
)
K270
(
(
TOP-REAL
rp
)
,
a
,
(
-
a
)
) is
Relation-like
Function-like
V49
(
rp
)
V50
()
V156
()
V157
()
V158
()
Element
of the
carrier
of
(
TOP-REAL
rp
)
the
U7
of
(
TOP-REAL
rp
)
is
Relation-like
[:
the
carrier
of
(
TOP-REAL
rp
)
, the
carrier
of
(
TOP-REAL
rp
)
:]
-defined
the
carrier
of
(
TOP-REAL
rp
)
-valued
Function-like
non
empty
total
quasi_total
Element
of
bool
[:
[:
the
carrier
of
(
TOP-REAL
rp
)
, the
carrier
of
(
TOP-REAL
rp
)
:]
, the
carrier
of
(
TOP-REAL
rp
)
:]
[:
the
carrier
of
(
TOP-REAL
rp
)
, the
carrier
of
(
TOP-REAL
rp
)
:]
is
Relation-like
non
empty
set
[:
[:
the
carrier
of
(
TOP-REAL
rp
)
, the
carrier
of
(
TOP-REAL
rp
)
:]
, the
carrier
of
(
TOP-REAL
rp
)
:]
is
Relation-like
non
empty
set
bool
[:
[:
the
carrier
of
(
TOP-REAL
rp
)
, the
carrier
of
(
TOP-REAL
rp
)
:]
, the
carrier
of
(
TOP-REAL
rp
)
:]
is non
empty
set
K224
( the
carrier
of
(
TOP-REAL
rp
)
, the
U7
of
(
TOP-REAL
rp
)
,
a
,
(
-
a
)
) is
Relation-like
Function-like
V49
(
rp
)
V50
()
V156
()
V157
()
V158
()
Element
of the
carrier
of
(
TOP-REAL
rp
)
|.
(
a
-
a
)
.|
is
complex
ext-real
non
negative
real
Element
of
REAL
Ball
(
a
,
c
) is
functional
open
connected
bounded
convex
Element
of
bool
the
carrier
of
(
TOP-REAL
rp
)
a
-
rl
is
Relation-like
Function-like
V49
(
rp
)
V50
()
V156
()
V157
()
V158
()
Element
of the
carrier
of
(
TOP-REAL
rp
)
-
rl
is
Relation-like
Function-like
V49
(
rp
)
V50
()
V156
()
V157
()
V158
()
Element
of the
carrier
of
(
TOP-REAL
rp
)
K270
(
(
TOP-REAL
rp
)
,
a
,
(
-
rl
)
) is
Relation-like
Function-like
V49
(
rp
)
V50
()
V156
()
V157
()
V158
()
Element
of the
carrier
of
(
TOP-REAL
rp
)
the
U7
of
(
TOP-REAL
rp
)
is
Relation-like
[:
the
carrier
of
(
TOP-REAL
rp
)
, the
carrier
of
(
TOP-REAL
rp
)
:]
-defined
the
carrier
of
(
TOP-REAL
rp
)
-valued
Function-like
non
empty
total
quasi_total
Element
of
bool
[:
[:
the
carrier
of
(
TOP-REAL
rp
)
, the
carrier
of
(
TOP-REAL
rp
)
:]
, the
carrier
of
(
TOP-REAL
rp
)
:]
[:
the
carrier
of
(
TOP-REAL
rp
)
, the
carrier
of
(
TOP-REAL
rp
)
:]
is
Relation-like
non
empty
set
[:
[:
the
carrier
of
(
TOP-REAL
rp
)
, the
carrier
of
(
TOP-REAL
rp
)
:]
, the
carrier
of
(
TOP-REAL
rp
)
:]
is
Relation-like
non
empty
set
bool
[:
[:
the
carrier
of
(
TOP-REAL
rp
)
, the
carrier
of
(
TOP-REAL
rp
)
:]
, the
carrier
of
(
TOP-REAL
rp
)
:]
is non
empty
set
K224
( the
carrier
of
(
TOP-REAL
rp
)
, the
U7
of
(
TOP-REAL
rp
)
,
a
,
(
-
rl
)
) is
Relation-like
Function-like
V49
(
rp
)
V50
()
V156
()
V157
()
V158
()
Element
of the
carrier
of
(
TOP-REAL
rp
)
|.
(
a
-
rl
)
.|
is
complex
ext-real
non
negative
real
Element
of
REAL
rl
-
rl
is
Relation-like
Function-like
V49
(
rp
)
V50
()
V156
()
V157
()
V158
()
Element
of the
carrier
of
(
TOP-REAL
rp
)
K270
(
(
TOP-REAL
rp
)
,
rl
,
(
-
rl
)
) is
Relation-like
Function-like
V49
(
rp
)
V50
()
V156
()
V157
()
V158
()
Element
of the
carrier
of
(
TOP-REAL
rp
)
K224
( the
carrier
of
(
TOP-REAL
rp
)
, the
U7
of
(
TOP-REAL
rp
)
,
rl
,
(
-
rl
)
) is
Relation-like
Function-like
V49
(
rp
)
V50
()
V156
()
V157
()
V158
()
Element
of the
carrier
of
(
TOP-REAL
rp
)
|.
(
rl
-
rl
)
.|
is
complex
ext-real
non
negative
real
Element
of
REAL
2
*
rg
is
complex
ext-real
real
Element
of
REAL
c
/
(
2
*
rg
)
is
complex
ext-real
real
Element
of
REAL
1
-
(
c
/
(
2
*
rg
)
)
is
complex
ext-real
real
Element
of
REAL
(
1
-
(
c
/
(
2
*
rg
)
)
)
*
a
is
Relation-like
Function-like
V49
(
rp
)
V50
()
V156
()
V157
()
V158
()
Element
of the
carrier
of
(
TOP-REAL
rp
)
(
c
/
(
2
*
rg
)
)
*
rl
is
Relation-like
Function-like
V49
(
rp
)
V50
()
V156
()
V157
()
V158
()
Element
of the
carrier
of
(
TOP-REAL
rp
)
(
(
1
-
(
c
/
(
2
*
rg
)
)
)
*
a
)
+
(
(
c
/
(
2
*
rg
)
)
*
rl
)
is
Relation-like
Function-like
V49
(
rp
)
V50
()
V156
()
V157
()
V158
()
Element
of the
carrier
of
(
TOP-REAL
rp
)
K224
( the
carrier
of
(
TOP-REAL
rp
)
, the
U7
of
(
TOP-REAL
rp
)
,
(
(
1
-
(
c
/
(
2
*
rg
)
)
)
*
a
)
,
(
(
c
/
(
2
*
rg
)
)
*
rl
)
) is
Relation-like
Function-like
V49
(
rp
)
V50
()
V156
()
V157
()
V158
()
Element
of the
carrier
of
(
TOP-REAL
rp
)
1
*
rg
is
complex
ext-real
real
Element
of
REAL
LSeg
(
a
,
rl
) is
functional
closed
compact
bounded
Element
of
bool
the
carrier
of
(
TOP-REAL
rp
)
{
(
(
(
1
-
b
1
)
*
a
)
+
(
b
1
*
rl
)
)
where
b
1
is
complex
ext-real
real
Element
of
REAL
: (
0
<=
b
1
&
b
1
<=
1 )
}
is
set
{
a
,
rl
}
is
functional
non
empty
Element
of
bool
the
carrier
of
(
TOP-REAL
rp
)
(
LSeg
(
a
,
rl
)
)
\
{
a
,
rl
}
is
functional
Element
of
bool
the
carrier
of
(
TOP-REAL
rp
)
(
(
(
1
-
(
c
/
(
2
*
rg
)
)
)
*
a
)
+
(
(
c
/
(
2
*
rg
)
)
*
rl
)
)
-
a
is
Relation-like
Function-like
V49
(
rp
)
V50
()
V156
()
V157
()
V158
()
Element
of the
carrier
of
(
TOP-REAL
rp
)
-
a
is
Relation-like
Function-like
V49
(
rp
)
V50
()
V156
()
V157
()
V158
()
Element
of the
carrier
of
(
TOP-REAL
rp
)
K270
(
(
TOP-REAL
rp
)
,
(
(
(
1
-
(
c
/
(
2
*
rg
)
)
)
*
a
)
+
(
(
c
/
(
2
*
rg
)
)
*
rl
)
)
,
(
-
a
)
) is
Relation-like
Function-like
V49
(
rp
)
V50
()
V156
()
V157
()
V158
()
Element
of the
carrier
of
(
TOP-REAL
rp
)
K224
( the
carrier
of
(
TOP-REAL
rp
)
, the
U7
of
(
TOP-REAL
rp
)
,
(
(
(
1
-
(
c
/
(
2
*
rg
)
)
)
*
a
)
+
(
(
c
/
(
2
*
rg
)
)
*
rl
)
)
,
(
-
a
)
) is
Relation-like
Function-like
V49
(
rp
)
V50
()
V156
()
V157
()
V158
()
Element
of the
carrier
of
(
TOP-REAL
rp
)
(
(
1
-
(
c
/
(
2
*
rg
)
)
)
*
a
)
-
a
is
Relation-like
Function-like
V49
(
rp
)
V50
()
V156
()
V157
()
V158
()
Element
of the
carrier
of
(
TOP-REAL
rp
)
K270
(
(
TOP-REAL
rp
)
,
(
(
1
-
(
c
/
(
2
*
rg
)
)
)
*
a
)
,
(
-
a
)
) is
Relation-like
Function-like
V49
(
rp
)
V50
()
V156
()
V157
()
V158
()
Element
of the
carrier
of
(
TOP-REAL
rp
)
K224
( the
carrier
of
(
TOP-REAL
rp
)
, the
U7
of
(
TOP-REAL
rp
)
,
(
(
1
-
(
c
/
(
2
*
rg
)
)
)
*
a
)
,
(
-
a
)
) is
Relation-like
Function-like
V49
(
rp
)
V50
()
V156
()
V157
()
V158
()
Element
of the
carrier
of
(
TOP-REAL
rp
)
(
(
(
1
-
(
c
/
(
2
*
rg
)
)
)
*
a
)
-
a
)
+
(
(
c
/
(
2
*
rg
)
)
*
rl
)
is
Relation-like
Function-like
V49
(
rp
)
V50
()
V156
()
V157
()
V158
()
Element
of the
carrier
of
(
TOP-REAL
rp
)
K224
( the
carrier
of
(
TOP-REAL
rp
)
, the
U7
of
(
TOP-REAL
rp
)
,
(
(
(
1
-
(
c
/
(
2
*
rg
)
)
)
*
a
)
-
a
)
,
(
(
c
/
(
2
*
rg
)
)
*
rl
)
) is
Relation-like
Function-like
V49
(
rp
)
V50
()
V156
()
V157
()
V158
()
Element
of the
carrier
of
(
TOP-REAL
rp
)
1
*
a
is
Relation-like
Function-like
V49
(
rp
)
V50
()
V156
()
V157
()
V158
()
Element
of the
carrier
of
(
TOP-REAL
rp
)
(
c
/
(
2
*
rg
)
)
*
a
is
Relation-like
Function-like
V49
(
rp
)
V50
()
V156
()
V157
()
V158
()
Element
of the
carrier
of
(
TOP-REAL
rp
)
(
1
*
a
)
-
(
(
c
/
(
2
*
rg
)
)
*
a
)
is
Relation-like
Function-like
V49
(
rp
)
V50
()
V156
()
V157
()
V158
()
Element
of the
carrier
of
(
TOP-REAL
rp
)
-
(
(
c
/
(
2
*
rg
)
)
*
a
)
is
Relation-like
Function-like
V49
(
rp
)
V50
()
V156
()
V157
()
V158
()
Element
of the
carrier
of
(
TOP-REAL
rp
)
K270
(
(
TOP-REAL
rp
)
,
(
1
*
a
)
,
(
-
(
(
c
/
(
2
*
rg
)
)
*
a
)
)
) is
Relation-like
Function-like
V49
(
rp
)
V50
()
V156
()
V157
()
V158
()
Element
of the
carrier
of
(
TOP-REAL
rp
)
K224
( the
carrier
of
(
TOP-REAL
rp
)
, the
U7
of
(
TOP-REAL
rp
)
,
(
1
*
a
)
,
(
-
(
(
c
/
(
2
*
rg
)
)
*
a
)
)
) is
Relation-like
Function-like
V49
(
rp
)
V50
()
V156
()
V157
()
V158
()
Element
of the
carrier
of
(
TOP-REAL
rp
)
(
(
1
*
a
)
-
(
(
c
/
(
2
*
rg
)
)
*
a
)
)
-
a
is
Relation-like
Function-like
V49
(
rp
)
V50
()
V156
()
V157
()
V158
()
Element
of the
carrier
of
(
TOP-REAL
rp
)
K270
(
(
TOP-REAL
rp
)
,
(
(
1
*
a
)
-
(
(
c
/
(
2
*
rg
)
)
*
a
)
)
,
(
-
a
)
) is
Relation-like
Function-like
V49
(
rp
)
V50
()
V156
()
V157
()
V158
()
Element
of the
carrier
of
(
TOP-REAL
rp
)
K224
( the
carrier
of
(
TOP-REAL
rp
)
, the
U7
of
(
TOP-REAL
rp
)
,
(
(
1
*
a
)
-
(
(
c
/
(
2
*
rg
)
)
*
a
)
)
,
(
-
a
)
) is
Relation-like
Function-like
V49
(
rp
)
V50
()
V156
()
V157
()
V158
()
Element
of the
carrier
of
(
TOP-REAL
rp
)
(
(
(
1
*
a
)
-
(
(
c
/
(
2
*
rg
)
)
*
a
)
)
-
a
)
+
(
(
c
/
(
2
*
rg
)
)
*
rl
)
is
Relation-like
Function-like
V49
(
rp
)
V50
()
V156
()
V157
()
V158
()
Element
of the
carrier
of
(
TOP-REAL
rp
)
K224
( the
carrier
of
(
TOP-REAL
rp
)
, the
U7
of
(
TOP-REAL
rp
)
,
(
(
(
1
*
a
)
-
(
(
c
/
(
2
*
rg
)
)
*
a
)
)
-
a
)
,
(
(
c
/
(
2
*
rg
)
)
*
rl
)
) is
Relation-like
Function-like
V49
(
rp
)
V50
()
V156
()
V157
()
V158
()
Element
of the
carrier
of
(
TOP-REAL
rp
)
a
-
(
(
c
/
(
2
*
rg
)
)
*
a
)
is
Relation-like
Function-like
V49
(
rp
)
V50
()
V156
()
V157
()
V158
()
Element
of the
carrier
of
(
TOP-REAL
rp
)
K270
(
(
TOP-REAL
rp
)
,
a
,
(
-
(
(
c
/
(
2
*
rg
)
)
*
a
)
)
) is
Relation-like
Function-like
V49
(
rp
)
V50
()
V156
()
V157
()
V158
()
Element
of the
carrier
of
(
TOP-REAL
rp
)
K224
( the
carrier
of
(
TOP-REAL
rp
)
, the
U7
of
(
TOP-REAL
rp
)
,
a
,
(
-
(
(
c
/
(
2
*
rg
)
)
*
a
)
)
) is
Relation-like
Function-like
V49
(
rp
)
V50
()
V156
()
V157
()
V158
()
Element
of the
carrier
of
(
TOP-REAL
rp
)
(
a
-
(
(
c
/
(
2
*
rg
)
)
*
a
)
)
-
a
is
Relation-like
Function-like
V49
(
rp
)
V50
()
V156
()
V157
()
V158
()
Element
of the
carrier
of
(
TOP-REAL
rp
)
K270
(
(
TOP-REAL
rp
)
,
(
a
-
(
(
c
/
(
2
*
rg
)
)
*
a
)
)
,
(
-
a
)
) is
Relation-like
Function-like
V49
(
rp
)
V50
()
V156
()
V157
()
V158
()
Element
of the
carrier
of
(
TOP-REAL
rp
)
K224
( the
carrier
of
(
TOP-REAL
rp
)
, the
U7
of
(
TOP-REAL
rp
)
,
(
a
-
(
(
c
/
(
2
*
rg
)
)
*
a
)
)
,
(
-
a
)
) is
Relation-like
Function-like
V49
(
rp
)
V50
()
V156
()
V157
()
V158
()
Element
of the
carrier
of
(
TOP-REAL
rp
)
(
(
a
-
(
(
c
/
(
2
*
rg
)
)
*
a
)
)
-
a
)
+
(
(
c
/
(
2
*
rg
)
)
*
rl
)
is
Relation-like
Function-like
V49
(
rp
)
V50
()
V156
()
V157
()
V158
()
Element
of the
carrier
of
(
TOP-REAL
rp
)
K224
( the
carrier
of
(
TOP-REAL
rp
)
, the
U7
of
(
TOP-REAL
rp
)
,
(
(
a
-
(
(
c
/
(
2
*
rg
)
)
*
a
)
)
-
a
)
,
(
(
c
/
(
2
*
rg
)
)
*
rl
)
) is
Relation-like
Function-like
V49
(
rp
)
V50
()
V156
()
V157
()
V158
()
Element
of the
carrier
of
(
TOP-REAL
rp
)
a
+
(
-
(
(
c
/
(
2
*
rg
)
)
*
a
)
)
is
Relation-like
Function-like
V49
(
rp
)
V50
()
V156
()
V157
()
V158
()
Element
of the
carrier
of
(
TOP-REAL
rp
)
(
a
+
(
-
(
(
c
/
(
2
*
rg
)
)
*
a
)
)
)
+
(
-
a
)
is
Relation-like
Function-like
V49
(
rp
)
V50
()
V156
()
V157
()
V158
()
Element
of the
carrier
of
(
TOP-REAL
rp
)
K224
( the
carrier
of
(
TOP-REAL
rp
)
, the
U7
of
(
TOP-REAL
rp
)
,
(
a
+
(
-
(
(
c
/
(
2
*
rg
)
)
*
a
)
)
)
,
(
-
a
)
) is
Relation-like
Function-like
V49
(
rp
)
V50
()
V156
()
V157
()
V158
()
Element
of the
carrier
of
(
TOP-REAL
rp
)
(
(
a
+
(
-
(
(
c
/
(
2
*
rg
)
)
*
a
)
)
)
+
(
-
a
)
)
+
(
(
c
/
(
2
*
rg
)
)
*
rl
)
is
Relation-like
Function-like
V49
(
rp
)
V50
()
V156
()
V157
()
V158
()
Element
of the
carrier
of
(
TOP-REAL
rp
)
K224
( the
carrier
of
(
TOP-REAL
rp
)
, the
U7
of
(
TOP-REAL
rp
)
,
(
(
a
+
(
-
(
(
c
/
(
2
*
rg
)
)
*
a
)
)
)
+
(
-
a
)
)
,
(
(
c
/
(
2
*
rg
)
)
*
rl
)
) is
Relation-like
Function-like
V49
(
rp
)
V50
()
V156
()
V157
()
V158
()
Element
of the
carrier
of
(
TOP-REAL
rp
)
a
+
(
-
a
)
is
Relation-like
Function-like
V49
(
rp
)
V50
()
V156
()
V157
()
V158
()
Element
of the
carrier
of
(
TOP-REAL
rp
)
K224
( the
carrier
of
(
TOP-REAL
rp
)
, the
U7
of
(
TOP-REAL
rp
)
,
a
,
(
-
a
)
) is
Relation-like
Function-like
V49
(
rp
)
V50
()
V156
()
V157
()
V158
()
Element
of the
carrier
of
(
TOP-REAL
rp
)
(
a
+
(
-
a
)
)
+
(
-
(
(
c
/
(
2
*
rg
)
)
*
a
)
)
is
Relation-like
Function-like
V49
(
rp
)
V50
()
V156
()
V157
()
V158
()
Element
of the
carrier
of
(
TOP-REAL
rp
)
K224
( the
carrier
of
(
TOP-REAL
rp
)
, the
U7
of
(
TOP-REAL
rp
)
,
(
a
+
(
-
a
)
)
,
(
-
(
(
c
/
(
2
*
rg
)
)
*
a
)
)
) is
Relation-like
Function-like
V49
(
rp
)
V50
()
V156
()
V157
()
V158
()
Element
of the
carrier
of
(
TOP-REAL
rp
)
(
(
a
+
(
-
a
)
)
+
(
-
(
(
c
/
(
2
*
rg
)
)
*
a
)
)
)
+
(
(
c
/
(
2
*
rg
)
)
*
rl
)
is
Relation-like
Function-like
V49
(
rp
)
V50
()
V156
()
V157
()
V158
()
Element
of the
carrier
of
(
TOP-REAL
rp
)
K224
( the
carrier
of
(
TOP-REAL
rp
)
, the
U7
of
(
TOP-REAL
rp
)
,
(
(
a
+
(
-
a
)
)
+
(
-
(
(
c
/
(
2
*
rg
)
)
*
a
)
)
)
,
(
(
c
/
(
2
*
rg
)
)
*
rl
)
) is
Relation-like
Function-like
V49
(
rp
)
V50
()
V156
()
V157
()
V158
()
Element
of the
carrier
of
(
TOP-REAL
rp
)
a
-
a
is
Relation-like
Function-like
V49
(
rp
)
V50
()
V156
()
V157
()
V158
()
Element
of the
carrier
of
(
TOP-REAL
rp
)
K270
(
(
TOP-REAL
rp
)
,
a
,
(
-
a
)
) is
Relation-like
Function-like
V49
(
rp
)
V50
()
V156
()
V157
()
V158
()
Element
of the
carrier
of
(
TOP-REAL
rp
)
(
a
-
a
)
-
(
(
c
/
(
2
*
rg
)
)
*
a
)
is
Relation-like
Function-like
V49
(
rp
)
V50
()
V156
()
V157
()
V158
()
Element
of the
carrier
of
(
TOP-REAL
rp
)
K270
(
(
TOP-REAL
rp
)
,
(
a
-
a
)
,
(
-
(
(
c
/
(
2
*
rg
)
)
*
a
)
)
) is
Relation-like
Function-like
V49
(
rp
)
V50
()
V156
()
V157
()
V158
()
Element
of the
carrier
of
(
TOP-REAL
rp
)
K224
( the
carrier
of
(
TOP-REAL
rp
)
, the
U7
of
(
TOP-REAL
rp
)
,
(
a
-
a
)
,
(
-
(
(
c
/
(
2
*
rg
)
)
*
a
)
)
) is
Relation-like
Function-like
V49
(
rp
)
V50
()
V156
()
V157
()
V158
()
Element
of the
carrier
of
(
TOP-REAL
rp
)
(
(
a
-
a
)
-
(
(
c
/
(
2
*
rg
)
)
*
a
)
)
+
(
(
c
/
(
2
*
rg
)
)
*
rl
)
is
Relation-like
Function-like
V49
(
rp
)
V50
()
V156
()
V157
()
V158
()
Element
of the
carrier
of
(
TOP-REAL
rp
)
K224
( the
carrier
of
(
TOP-REAL
rp
)
, the
U7
of
(
TOP-REAL
rp
)
,
(
(
a
-
a
)
-
(
(
c
/
(
2
*
rg
)
)
*
a
)
)
,
(
(
c
/
(
2
*
rg
)
)
*
rl
)
) is
Relation-like
Function-like
V49
(
rp
)
V50
()
V156
()
V157
()
V158
()
Element
of the
carrier
of
(
TOP-REAL
rp
)
0.
(
TOP-REAL
rp
)
is
Relation-like
Function-like
V49
(
rp
)
V50
()
zero
V156
()
V157
()
V158
()
Element
of the
carrier
of
(
TOP-REAL
rp
)
the
ZeroF
of
(
TOP-REAL
rp
)
is
Relation-like
Function-like
V49
(
rp
)
V50
()
V156
()
V157
()
V158
()
Element
of the
carrier
of
(
TOP-REAL
rp
)
(
0.
(
TOP-REAL
rp
)
)
-
(
(
c
/
(
2
*
rg
)
)
*
a
)
is
Relation-like
Function-like
V49
(
rp
)
V50
()
V156
()
V157
()
V158
()
Element
of the
carrier
of
(
TOP-REAL
rp
)
K270
(
(
TOP-REAL
rp
)
,
(
0.
(
TOP-REAL
rp
)
)
,
(
-
(
(
c
/
(
2
*
rg
)
)
*
a
)
)
) is
Relation-like
Function-like
V49
(
rp
)
V50
()
V156
()
V157
()
V158
()
Element
of the
carrier
of
(
TOP-REAL
rp
)
K224
( the
carrier
of
(
TOP-REAL
rp
)
, the
U7
of
(
TOP-REAL
rp
)
,
(
0.
(
TOP-REAL
rp
)
)
,
(
-
(
(
c
/
(
2
*
rg
)
)
*
a
)
)
) is
Relation-like
Function-like
V49
(
rp
)
V50
()
V156
()
V157
()
V158
()
Element
of the
carrier
of
(
TOP-REAL
rp
)
(
(
0.
(
TOP-REAL
rp
)
)
-
(
(
c
/
(
2
*
rg
)
)
*
a
)
)
+
(
(
c
/
(
2
*
rg
)
)
*
rl
)
is
Relation-like
Function-like
V49
(
rp
)
V50
()
V156
()
V157
()
V158
()
Element
of the
carrier
of
(
TOP-REAL
rp
)
K224
( the
carrier
of
(
TOP-REAL
rp
)
, the
U7
of
(
TOP-REAL
rp
)
,
(
(
0.
(
TOP-REAL
rp
)
)
-
(
(
c
/
(
2
*
rg
)
)
*
a
)
)
,
(
(
c
/
(
2
*
rg
)
)
*
rl
)
) is
Relation-like
Function-like
V49
(
rp
)
V50
()
V156
()
V157
()
V158
()
Element
of the
carrier
of
(
TOP-REAL
rp
)
(
(
c
/
(
2
*
rg
)
)
*
rl
)
-
(
(
c
/
(
2
*
rg
)
)
*
a
)
is
Relation-like
Function-like
V49
(
rp
)
V50
()
V156
()
V157
()
V158
()
Element
of the
carrier
of
(
TOP-REAL
rp
)
K270
(
(
TOP-REAL
rp
)
,
(
(
c
/
(
2
*
rg
)
)
*
rl
)
,
(
-
(
(
c
/
(
2
*
rg
)
)
*
a
)
)
) is
Relation-like
Function-like
V49
(
rp
)
V50
()
V156
()
V157
()
V158
()
Element
of the
carrier
of
(
TOP-REAL
rp
)
K224
( the
carrier
of
(
TOP-REAL
rp
)
, the
U7
of
(
TOP-REAL
rp
)
,
(
(
c
/
(
2
*
rg
)
)
*
rl
)
,
(
-
(
(
c
/
(
2
*
rg
)
)
*
a
)
)
) is
Relation-like
Function-like
V49
(
rp
)
V50
()
V156
()
V157
()
V158
()
Element
of the
carrier
of
(
TOP-REAL
rp
)
rl
-
a
is
Relation-like
Function-like
V49
(
rp
)
V50
()
V156
()
V157
()
V158
()
Element
of the
carrier
of
(
TOP-REAL
rp
)
K270
(
(
TOP-REAL
rp
)
,
rl
,
(
-
a
)
) is
Relation-like
Function-like
V49
(
rp
)
V50
()
V156
()
V157
()
V158
()
Element
of the
carrier
of
(
TOP-REAL
rp
)
K224
( the
carrier
of
(
TOP-REAL
rp
)
, the
U7
of
(
TOP-REAL
rp
)
,
rl
,
(
-
a
)
) is
Relation-like
Function-like
V49
(
rp
)
V50
()
V156
()
V157
()
V158
()
Element
of the
carrier
of
(
TOP-REAL
rp
)
(
c
/
(
2
*
rg
)
)
*
(
rl
-
a
)
is
Relation-like
Function-like
V49
(
rp
)
V50
()
V156
()
V157
()
V158
()
Element
of the
carrier
of
(
TOP-REAL
rp
)
|.
(
(
(
(
1
-
(
c
/
(
2
*
rg
)
)
)
*
a
)
+
(
(
c
/
(
2
*
rg
)
)
*
rl
)
)
-
a
)
.|
is
complex
ext-real
non
negative
real
Element
of
REAL
abs
(
c
/
(
2
*
rg
)
)
is
complex
ext-real
real
Element
of
REAL
|.
(
rl
-
a
)
.|
is
complex
ext-real
non
negative
real
Element
of
REAL
(
abs
(
c
/
(
2
*
rg
)
)
)
*
|.
(
rl
-
a
)
.|
is
complex
ext-real
real
Element
of
REAL
(
c
/
(
2
*
rg
)
)
*
|.
(
rl
-
a
)
.|
is
complex
ext-real
real
Element
of
REAL
(
c
/
(
2
*
rg
)
)
*
|.
(
a
-
rl
)
.|
is
complex
ext-real
real
Element
of
REAL
c
/
2 is
complex
ext-real
real
Element
of
REAL
Sphere
(
a
,
(
c
/
2
)
) is
functional
closed
bounded
Element
of
bool
the
carrier
of
(
TOP-REAL
rp
)
c
/
1 is
complex
ext-real
real
Element
of
REAL
Ball
(
a
,
c
) is
functional
open
connected
bounded
convex
Element
of
bool
the
carrier
of
(
TOP-REAL
rp
)
Ball
(
a
,
c
) is
functional
open
connected
bounded
convex
Element
of
bool
the
carrier
of
(
TOP-REAL
rp
)
Ball
(
a
,
c
) is
functional
open
connected
bounded
convex
Element
of
bool
the
carrier
of
(
TOP-REAL
rp
)
rp
is
ordinal
natural
complex
ext-real
non
negative
real
V33
()
V119
()
V166
()
V167
()
V168
()
V169
()
V170
()
V171
()
bounded_below
Element
of
NAT
TOP-REAL
rp
is non
empty
TopSpace-like
T_0
T_1
T_2
connected
V132
()
V178
()
V179
()
V180
()
V181
()
V182
()
V183
()
V184
()
strict
add-continuous
Mult-continuous
pathwise_connected
RLTopStruct
the
carrier
of
(
TOP-REAL
rp
)
is
functional
non
empty
set
rl
is
Relation-like
Function-like
V49
(
rp
)
V50
()
V156
()
V157
()
V158
()
Element
of the
carrier
of
(
TOP-REAL
rp
)
rg
is non
empty
complex
ext-real
real
set
Ball
(
rl
,
rg
) is
functional
open
connected
bounded
convex
Element
of
bool
the
carrier
of
(
TOP-REAL
rp
)
bool
the
carrier
of
(
TOP-REAL
rp
)
is non
empty
set
Fr
(
Ball
(
rl
,
rg
)
)
is
functional
closed
boundary
nowhere_dense
Element
of
bool
the
carrier
of
(
TOP-REAL
rp
)
Cl
(
Ball
(
rl
,
rg
)
)
is
functional
closed
Element
of
bool
the
carrier
of
(
TOP-REAL
rp
)
(
Ball
(
rl
,
rg
)
)
`
is
functional
closed
Element
of
bool
the
carrier
of
(
TOP-REAL
rp
)
the
carrier
of
(
TOP-REAL
rp
)
\
(
Ball
(
rl
,
rg
)
)
is
set
Cl
(
(
Ball
(
rl
,
rg
)
)
`
)
is
functional
closed
Element
of
bool
the
carrier
of
(
TOP-REAL
rp
)
(
Cl
(
Ball
(
rl
,
rg
)
)
)
/\
(
Cl
(
(
Ball
(
rl
,
rg
)
)
`
)
)
is
functional
closed
Element
of
bool
the
carrier
of
(
TOP-REAL
rp
)
Sphere
(
rl
,
rg
) is
functional
closed
bounded
Element
of
bool
the
carrier
of
(
TOP-REAL
rp
)
(
Cl
(
Ball
(
rl
,
rg
)
)
)
\
(
Ball
(
rl
,
rg
)
)
is
functional
Element
of
bool
the
carrier
of
(
TOP-REAL
rp
)
cl_Ball
(
rl
,
rg
) is
functional
closed
connected
bounded
convex
Element
of
bool
the
carrier
of
(
TOP-REAL
rp
)
(
cl_Ball
(
rl
,
rg
)
)
\
(
Ball
(
rl
,
rg
)
)
is
functional
Element
of
bool
the
carrier
of
(
TOP-REAL
rp
)
rp
is non
empty
ordinal
natural
complex
ext-real
positive
non
negative
real
V33
()
V119
()
V166
()
V167
()
V168
()
V169
()
V170
()
V171
()
left_end
bounded_below
Element
of
NAT
TOP-REAL
rp
is non
empty
TopSpace-like
T_0
T_1
T_2
connected
V132
()
V178
()
V179
()
V180
()
V181
()
V182
()
V183
()
V184
()
strict
add-continuous
Mult-continuous
pathwise_connected
RLTopStruct
the
carrier
of
(
TOP-REAL
rp
)
is
functional
non
empty
set
bool
the
carrier
of
(
TOP-REAL
rp
)
is non
empty
set
[#]
(
TOP-REAL
rp
)
is
functional
non
empty
non
proper
non
proper
open
open
closed
closed
dense
dense
non
boundary
non
boundary
connected
a_component
convex
Element
of
bool
the
carrier
of
(
TOP-REAL
rp
)
rl
is
functional
Element
of
bool
the
carrier
of
(
TOP-REAL
rp
)
rp
is
ordinal
natural
complex
ext-real
non
negative
real
V33
()
V119
()
V166
()
V167
()
V168
()
V169
()
V170
()
V171
()
bounded_below
Element
of
NAT
TOP-REAL
rp
is non
empty
TopSpace-like
T_0
T_1
T_2
connected
V132
()
V178
()
V179
()
V180
()
V181
()
V182
()
V183
()
V184
()
strict
add-continuous
Mult-continuous
pathwise_connected
RLTopStruct
the
carrier
of
(
TOP-REAL
rp
)
is
functional
non
empty
set
bool
the
carrier
of
(
TOP-REAL
rp
)
is non
empty
set
0.
(
TOP-REAL
rp
)
is
Relation-like
Function-like
V49
(
rp
)
V50
()
zero
V156
()
V157
()
V158
()
Element
of the
carrier
of
(
TOP-REAL
rp
)
the
ZeroF
of
(
TOP-REAL
rp
)
is
Relation-like
Function-like
V49
(
rp
)
V50
()
V156
()
V157
()
V158
()
Element
of the
carrier
of
(
TOP-REAL
rp
)
cl_Ball
(
(
0.
(
TOP-REAL
rp
)
)
,1) is
functional
non
empty
closed
connected
bounded
convex
Element
of
bool
the
carrier
of
(
TOP-REAL
rp
)
0.
(
TOP-REAL
rp
)
is
Relation-like
Function-like
V49
(
rp
)
V50
()
zero
V156
()
V157
()
V158
()
Element
of the
carrier
of
(
TOP-REAL
rp
)
the
ZeroF
of
(
TOP-REAL
rp
)
is
Relation-like
Function-like
V49
(
rp
)
V50
()
V156
()
V157
()
V158
()
Element
of the
carrier
of
(
TOP-REAL
rp
)
Ball
(
(
0.
(
TOP-REAL
rp
)
)
,1) is
functional
non
empty
open
connected
bounded
convex
Element
of
bool
the
carrier
of
(
TOP-REAL
rp
)
rp
is
ordinal
natural
complex
ext-real
non
negative
real
V33
()
V119
()
V166
()
V167
()
V168
()
V169
()
V170
()
V171
()
bounded_below
Element
of
NAT
TOP-REAL
rp
is non
empty
TopSpace-like
T_0
T_1
T_2
connected
V132
()
V178
()
V179
()
V180
()
V181
()
V182
()
V183
()
V184
()
strict
add-continuous
Mult-continuous
pathwise_connected
RLTopStruct
the
carrier
of
(
TOP-REAL
rp
)
is
functional
non
empty
set
bool
the
carrier
of
(
TOP-REAL
rp
)
is non
empty
set
rl
is
functional
bounded
Element
of
bool
the
carrier
of
(
TOP-REAL
rp
)
Cl
rl
is
functional
closed
Element
of
bool
the
carrier
of
(
TOP-REAL
rp
)
rp
is
ordinal
natural
complex
ext-real
non
negative
real
V33
()
V119
()
V166
()
V167
()
V168
()
V169
()
V170
()
V171
()
bounded_below
Element
of
NAT
TOP-REAL
rp
is non
empty
TopSpace-like
T_0
T_1
T_2
connected
V132
()
V178
()
V179
()
V180
()
V181
()
V182
()
V183
()
V184
()
strict
add-continuous
Mult-continuous
pathwise_connected
RLTopStruct
the
carrier
of
(
TOP-REAL
rp
)
is
functional
non
empty
set
bool
the
carrier
of
(
TOP-REAL
rp
)
is non
empty
set
rl
is
functional
bounded
Element
of
bool
the
carrier
of
(
TOP-REAL
rp
)
Fr
rl
is
functional
closed
Element
of
bool
the
carrier
of
(
TOP-REAL
rp
)
Cl
rl
is
functional
closed
closed
bounded
Element
of
bool
the
carrier
of
(
TOP-REAL
rp
)
rl
`
is
functional
Element
of
bool
the
carrier
of
(
TOP-REAL
rp
)
the
carrier
of
(
TOP-REAL
rp
)
\
rl
is
set
Cl
(
rl
`
)
is
functional
closed
Element
of
bool
the
carrier
of
(
TOP-REAL
rp
)
(
Cl
rl
)
/\
(
Cl
(
rl
`
)
)
is
functional
closed
Element
of
bool
the
carrier
of
(
TOP-REAL
rp
)
rp
is
ordinal
natural
complex
ext-real
non
negative
real
V33
()
V119
()
V166
()
V167
()
V168
()
V169
()
V170
()
V171
()
bounded_below
Element
of
NAT
TOP-REAL
rp
is non
empty
TopSpace-like
T_0
T_1
T_2
connected
V132
()
V178
()
V179
()
V180
()
V181
()
V182
()
V183
()
V184
()
strict
add-continuous
Mult-continuous
pathwise_connected
RLTopStruct
the
carrier
of
(
TOP-REAL
rp
)
is
functional
non
empty
set
bool
the
carrier
of
(
TOP-REAL
rp
)
is non
empty
set
rl
is
functional
closed
Element
of
bool
the
carrier
of
(
TOP-REAL
rp
)
rg
is
Relation-like
Function-like
V49
(
rp
)
V50
()
V156
()
V157
()
V158
()
Element
of the
carrier
of
(
TOP-REAL
rp
)
rl
`
is
functional
open
Element
of
bool
the
carrier
of
(
TOP-REAL
rp
)
the
carrier
of
(
TOP-REAL
rp
)
\
rl
is
set
Euclid
rp
is non
empty
strict
Reflexive
discerning
symmetric
triangle
Discerning
MetrStruct
the
carrier
of
(
Euclid
rp
)
is non
empty
set
the
topology
of
(
TOP-REAL
rp
)
is non
empty
open
Element
of
bool
(
bool
the
carrier
of
(
TOP-REAL
rp
)
)
bool
(
bool
the
carrier
of
(
TOP-REAL
rp
)
)
is non
empty
set
TopStruct
(# the
carrier
of
(
TOP-REAL
rp
)
, the
topology
of
(
TOP-REAL
rp
)
#) is non
empty
strict
TopSpace-like
TopStruct
TopSpaceMetr
(
Euclid
rp
)
is
TopStruct
the
carrier
of
(
TopSpaceMetr
(
Euclid
rp
)
)
is
set
bool
the
carrier
of
(
TopSpaceMetr
(
Euclid
rp
)
)
is non
empty
set
a
is
Element
of
bool
the
carrier
of
(
TopSpaceMetr
(
Euclid
rp
)
)
rd
is
Element
of the
carrier
of
(
Euclid
rp
)
b
is
complex
ext-real
real
set
Ball
(
rd
,
b
) is
Element
of
bool
the
carrier
of
(
Euclid
rp
)
bool
the
carrier
of
(
Euclid
rp
)
is non
empty
set
c
is non
empty
complex
ext-real
positive
non
negative
real
set
Ball
(
rg
,
c
) is
functional
non
empty
open
connected
bounded
convex
Element
of
bool
the
carrier
of
(
TOP-REAL
rp
)
Ball
(
rd
,
c
) is
Element
of
bool
the
carrier
of
(
Euclid
rp
)
rp
is
ordinal
natural
complex
ext-real
non
negative
real
V33
()
V119
()
V166
()
V167
()
V168
()
V169
()
V170
()
V171
()
bounded_below
Element
of
NAT
TOP-REAL
rp
is non
empty
TopSpace-like
T_0
T_1
T_2
connected
V132
()
V178
()
V179
()
V180
()
V181
()
V182
()
V183
()
V184
()
strict
add-continuous
Mult-continuous
pathwise_connected
RLTopStruct
the
carrier
of
(
TOP-REAL
rp
)
is
functional
non
empty
set
bool
the
carrier
of
(
TOP-REAL
rp
)
is non
empty
set
rl
is
functional
bounded
Element
of
bool
the
carrier
of
(
TOP-REAL
rp
)
rg
is
Relation-like
Function-like
V49
(
rp
)
V50
()
V156
()
V157
()
V158
()
Element
of the
carrier
of
(
TOP-REAL
rp
)
Euclid
rp
is non
empty
strict
Reflexive
discerning
symmetric
triangle
Discerning
MetrStruct
the
carrier
of
(
Euclid
rp
)
is non
empty
set
bool
the
carrier
of
(
Euclid
rp
)
is non
empty
set
rd
is
bounded
Element
of
bool
the
carrier
of
(
Euclid
rp
)
a
is
complex
ext-real
real
Element
of
REAL
b
is
Element
of the
carrier
of
(
Euclid
rp
)
Ball
(
b
,
a
) is
Element
of
bool
the
carrier
of
(
Euclid
rp
)
c
is non
empty
complex
ext-real
positive
non
negative
real
set
d
is
Relation-like
Function-like
V49
(
rp
)
V50
()
V156
()
V157
()
V158
()
Element
of the
carrier
of
(
TOP-REAL
rp
)
d
-
rg
is
Relation-like
Function-like
V49
(
rp
)
V50
()
V156
()
V157
()
V158
()
Element
of the
carrier
of
(
TOP-REAL
rp
)
-
rg
is
Relation-like
Function-like
V49
(
rp
)
V50
()
V156
()
V157
()
V158
()
Element
of the
carrier
of
(
TOP-REAL
rp
)
K270
(
(
TOP-REAL
rp
)
,
d
,
(
-
rg
)
) is
Relation-like
Function-like
V49
(
rp
)
V50
()
V156
()
V157
()
V158
()
Element
of the
carrier
of
(
TOP-REAL
rp
)
the
U7
of
(
TOP-REAL
rp
)
is
Relation-like
[:
the
carrier
of
(
TOP-REAL
rp
)
, the
carrier
of
(
TOP-REAL
rp
)
:]
-defined
the
carrier
of
(
TOP-REAL
rp
)
-valued
Function-like
non
empty
total
quasi_total
Element
of
bool
[:
[:
the
carrier
of
(
TOP-REAL
rp
)
, the
carrier
of
(
TOP-REAL
rp
)
:]
, the
carrier
of
(
TOP-REAL
rp
)
:]
[:
the
carrier
of
(
TOP-REAL
rp
)
, the
carrier
of
(
TOP-REAL
rp
)
:]
is
Relation-like
non
empty
set
[:
[:
the
carrier
of
(
TOP-REAL
rp
)
, the
carrier
of
(
TOP-REAL
rp
)
:]
, the
carrier
of
(
TOP-REAL
rp
)
:]
is
Relation-like
non
empty
set
bool
[:
[:
the
carrier
of
(
TOP-REAL
rp
)
, the
carrier
of
(
TOP-REAL
rp
)
:]
, the
carrier
of
(
TOP-REAL
rp
)
:]
is non
empty
set
K224
( the
carrier
of
(
TOP-REAL
rp
)
, the
U7
of
(
TOP-REAL
rp
)
,
d
,
(
-
rg
)
) is
Relation-like
Function-like
V49
(
rp
)
V50
()
V156
()
V157
()
V158
()
Element
of the
carrier
of
(
TOP-REAL
rp
)
|.
(
d
-
rg
)
.|
is
complex
ext-real
non
negative
real
Element
of
REAL
c
+
|.
(
d
-
rg
)
.|
is non
empty
complex
ext-real
positive
non
negative
real
Element
of
REAL
lg
is non
empty
complex
ext-real
positive
non
negative
real
Element
of
REAL
Ball
(
rg
,
lg
) is
functional
non
empty
open
connected
bounded
convex
Element
of
bool
the
carrier
of
(
TOP-REAL
rp
)
pg
is
set
ld
is
Relation-like
Function-like
V49
(
rp
)
V50
()
V156
()
V157
()
V158
()
Element
of the
carrier
of
(
TOP-REAL
rp
)
pd
is
Element
of the
carrier
of
(
Euclid
rp
)
dist
(
pd
,
b
) is
complex
ext-real
non
negative
real
Element
of
REAL
ld
-
d
is
Relation-like
Function-like
V49
(
rp
)
V50
()
V156
()
V157
()
V158
()
Element
of the
carrier
of
(
TOP-REAL
rp
)
-
d
is
Relation-like
Function-like
V49
(
rp
)
V50
()
V156
()
V157
()
V158
()
Element
of the
carrier
of
(
TOP-REAL
rp
)
K270
(
(
TOP-REAL
rp
)
,
ld
,
(
-
d
)
) is
Relation-like
Function-like
V49
(
rp
)
V50
()
V156
()
V157
()
V158
()
Element
of the
carrier
of
(
TOP-REAL
rp
)
K224
( the
carrier
of
(
TOP-REAL
rp
)
, the
U7
of
(
TOP-REAL
rp
)
,
ld
,
(
-
d
)
) is
Relation-like
Function-like
V49
(
rp
)
V50
()
V156
()
V157
()
V158
()
Element
of the
carrier
of
(
TOP-REAL
rp
)
|.
(
ld
-
d
)
.|
is
complex
ext-real
non
negative
real
Element
of
REAL
ld
-
rg
is
Relation-like
Function-like
V49
(
rp
)
V50
()
V156
()
V157
()
V158
()
Element
of the
carrier
of
(
TOP-REAL
rp
)
K270
(
(
TOP-REAL
rp
)
,
ld
,
(
-
rg
)
) is
Relation-like
Function-like
V49
(
rp
)
V50
()
V156
()
V157
()
V158
()
Element
of the
carrier
of
(
TOP-REAL
rp
)
K224
( the
carrier
of
(
TOP-REAL
rp
)
, the
U7
of
(
TOP-REAL
rp
)
,
ld
,
(
-
rg
)
) is
Relation-like
Function-like
V49
(
rp
)
V50
()
V156
()
V157
()
V158
()
Element
of the
carrier
of
(
TOP-REAL
rp
)
|.
(
ld
-
rg
)
.|
is
complex
ext-real
non
negative
real
Element
of
REAL
|.
(
ld
-
d
)
.|
+
|.
(
d
-
rg
)
.|
is
complex
ext-real
non
negative
real
Element
of
REAL
rp
is
TopStruct
the
carrier
of
rp
is
set
rl
is
TopStruct
the
carrier
of
rl
is
set
[:
the
carrier
of
rp
, the
carrier
of
rl
:]
is
Relation-like
set
bool
[:
the
carrier
of
rp
, the
carrier
of
rl
:]
is non
empty
set
rg
is
Relation-like
the
carrier
of
rp
-defined
the
carrier
of
rl
-valued
Function-like
quasi_total
Element
of
bool
[:
the
carrier
of
rp
, the
carrier
of
rl
:]
rp
is non
empty
TopSpace-like
T_0
T_1
T_2
TopStruct
rl
is non
empty
TopSpace-like
T_0
T_1
T_2
SubSpace
of
rp
rp
is
Relation-like
Function-like
V49
(2)
V50
()
V156
()
V157
()
V158
()
Element
of the
carrier
of
(
TOP-REAL
2
)
rl
is
complex
ext-real
real
set
Tdisk
(
rp
,
rl
) is
TopSpace-like
T_0
T_1
T_2
V270
(2)
SubSpace
of
TOP-REAL
2
rg
is
functional
Element
of
bool
the
carrier
of
(
TOP-REAL
2
)
the
carrier
of
(
Tdisk
(
rp
,
rl
)
)
is
set
cl_Ball
(
rp
,
rl
) is
functional
proper
closed
connected
bounded
convex
Element
of
bool
the
carrier
of
(
TOP-REAL
2
)
rp
is
Relation-like
Function-like
V49
(2)
V50
()
V156
()
V157
()
V158
()
Element
of the
carrier
of
(
TOP-REAL
2
)
rl
is
complex
ext-real
real
set
Tdisk
(
rp
,
rl
) is
TopSpace-like
T_0
T_1
T_2
closed
V270
(2)
SubSpace
of
TOP-REAL
2
[#]
(
Tdisk
(
rp
,
rl
)
)
is non
proper
open
closed
dense
Element
of
bool
the
carrier
of
(
Tdisk
(
rp
,
rl
)
)
the
carrier
of
(
Tdisk
(
rp
,
rl
)
)
is
set
bool
the
carrier
of
(
Tdisk
(
rp
,
rl
)
)
is non
empty
set
cl_Ball
(
rp
,
rl
) is
functional
proper
closed
connected
bounded
convex
Element
of
bool
the
carrier
of
(
TOP-REAL
2
)
rd
is
functional
Element
of
bool
the
carrier
of
(
TOP-REAL
2
)
rp
is non
empty
TopSpace-like
TopStruct
the
carrier
of
rp
is non
empty
set
rl
is
Element
of the
carrier
of
rp
rg
is
Element
of the
carrier
of
rp
rd
is
Relation-like
the
carrier
of
I[01]
-defined
the
carrier
of
rp
-valued
Function-like
non
empty
total
quasi_total
Path
of
rl
,
rg
rng
rd
is non
empty
Element
of
bool
the
carrier
of
rp
bool
the
carrier
of
rp
is non
empty
set
dom
rd
is non
empty
V166
()
V167
()
V168
()
Element
of
bool
the
carrier
of
I[01]
bool
the
carrier
of
I[01]
is non
empty
set
a
is
connected
V166
()
V167
()
V168
()
interval
Element
of
bool
the
carrier
of
R^1
b
is
V166
()
V167
()
V168
()
Element
of
bool
the
carrier
of
I[01]
rd
.:
b
is
Element
of
bool
the
carrier
of
rp
rp
is non
empty
TopSpace-like
TopStruct
the
carrier
of
rp
is non
empty
set
rl
is non
empty
TopSpace-like
SubSpace
of
rp
the
carrier
of
rl
is non
empty
set
rg
is
Element
of the
carrier
of
rp
rd
is
Element
of the
carrier
of
rp
a
is
Element
of the
carrier
of
rl
b
is
Element
of the
carrier
of
rl
c
is
Relation-like
the
carrier
of
I[01]
-defined
the
carrier
of
rp
-valued
Function-like
non
empty
total
quasi_total
Path
of
rg
,
rd
rng
c
is non
empty
Element
of
bool
the
carrier
of
rp
bool
the
carrier
of
rp
is non
empty
set
[:
the
carrier
of
I[01]
, the
carrier
of
rl
:]
is
Relation-like
non
empty
set
bool
[:
the
carrier
of
I[01]
, the
carrier
of
rl
:]
is non
empty
set
c
.
0
is
set
c
.
1 is
set
d
is
Relation-like
the
carrier
of
I[01]
-defined
the
carrier
of
rl
-valued
Function-like
non
empty
total
quasi_total
Element
of
bool
[:
the
carrier
of
I[01]
, the
carrier
of
rl
:]
d
.
0
is
set
d
.
1 is
set
rp
is non
empty
TopSpace-like
connected
pathwise_connected
TopStruct
the
carrier
of
rp
is non
empty
set
rl
is non
empty
TopSpace-like
SubSpace
of
rp
the
carrier
of
rl
is non
empty
set
rg
is
Element
of the
carrier
of
rp
rd
is
Element
of the
carrier
of
rp
a
is
Element
of the
carrier
of
rl
b
is
Element
of the
carrier
of
rl
c
is
Relation-like
the
carrier
of
I[01]
-defined
the
carrier
of
rp
-valued
Function-like
non
empty
total
quasi_total
continuous
Path
of
rg
,
rd
rng
c
is non
empty
Element
of
bool
the
carrier
of
rp
bool
the
carrier
of
rp
is non
empty
set
rp
is non
empty
TopSpace-like
TopStruct
the
carrier
of
rp
is non
empty
set
rl
is
Element
of the
carrier
of
rp
rg
is
Element
of the
carrier
of
rp
rd
is
Relation-like
the
carrier
of
I[01]
-defined
the
carrier
of
rp
-valued
Function-like
non
empty
total
quasi_total
Path
of
rl
,
rg
rng
rd
is non
empty
Element
of
bool
the
carrier
of
rp
bool
the
carrier
of
rp
is non
empty
set
-
rd
is
Relation-like
the
carrier
of
I[01]
-defined
the
carrier
of
rp
-valued
Function-like
non
empty
total
quasi_total
Path
of
rg
,
rl
rng
(
-
rd
)
is non
empty
Element
of
bool
the
carrier
of
rp
a
is
set
dom
rd
is non
empty
V166
()
V167
()
V168
()
Element
of
bool
the
carrier
of
I[01]
bool
the
carrier
of
I[01]
is non
empty
set
b
is
set
rd
.
b
is
set
dom
(
-
rd
)
is non
empty
V166
()
V167
()
V168
()
Element
of
bool
the
carrier
of
I[01]
c
is
complex
ext-real
real
Element
of the
carrier
of
I[01]
1
-
c
is
complex
ext-real
real
Element
of
REAL
(
-
rd
)
.
(
1
-
c
)
is
set
1
-
(
1
-
c
)
is
complex
ext-real
real
Element
of
REAL
rd
.
(
1
-
(
1
-
c
)
)
is
set
rp
is non
empty
TopSpace-like
TopStruct
the
carrier
of
rp
is non
empty
set
rl
is
Element
of the
carrier
of
rp
rg
is
Element
of the
carrier
of
rp
rd
is
Relation-like
the
carrier
of
I[01]
-defined
the
carrier
of
rp
-valued
Function-like
non
empty
total
quasi_total
Path
of
rl
,
rg
rng
rd
is non
empty
Element
of
bool
the
carrier
of
rp
bool
the
carrier
of
rp
is non
empty
set
-
rd
is
Relation-like
the
carrier
of
I[01]
-defined
the
carrier
of
rp
-valued
Function-like
non
empty
total
quasi_total
Path
of
rg
,
rl
rng
(
-
rd
)
is non
empty
Element
of
bool
the
carrier
of
rp
-
(
-
rd
)
is
Relation-like
the
carrier
of
I[01]
-defined
the
carrier
of
rp
-valued
Function-like
non
empty
total
quasi_total
Path
of
rl
,
rg
rp
is non
empty
TopSpace-like
connected
pathwise_connected
TopStruct
the
carrier
of
rp
is non
empty
set
rl
is
Element
of the
carrier
of
rp
rg
is
Element
of the
carrier
of
rp
rd
is
Relation-like
the
carrier
of
I[01]
-defined
the
carrier
of
rp
-valued
Function-like
non
empty
total
quasi_total
continuous
Path
of
rl
,
rg
rng
rd
is non
empty
Element
of
bool
the
carrier
of
rp
bool
the
carrier
of
rp
is non
empty
set
-
rd
is
Relation-like
the
carrier
of
I[01]
-defined
the
carrier
of
rp
-valued
Function-like
non
empty
total
quasi_total
continuous
Path
of
rg
,
rl
rng
(
-
rd
)
is non
empty
Element
of
bool
the
carrier
of
rp
rp
is non
empty
TopSpace-like
TopStruct
the
carrier
of
rp
is non
empty
set
rl
is
Element
of the
carrier
of
rp
rg
is
Element
of the
carrier
of
rp
rd
is
Element
of the
carrier
of
rp
a
is
Relation-like
the
carrier
of
I[01]
-defined
the
carrier
of
rp
-valued
Function-like
non
empty
total
quasi_total
Path
of
rl
,
rg
rng
a
is non
empty
Element
of
bool
the
carrier
of
rp
bool
the
carrier
of
rp
is non
empty
set
b
is
Relation-like
the
carrier
of
I[01]
-defined
the
carrier
of
rp
-valued
Function-like
non
empty
total
quasi_total
Path
of
rg
,
rd
a
+
b
is
Relation-like
the
carrier
of
I[01]
-defined
the
carrier
of
rp
-valued
Function-like
non
empty
total
quasi_total
Path
of
rl
,
rd
rng
(
a
+
b
)
is non
empty
Element
of
bool
the
carrier
of
rp
c
is
set
dom
a
is non
empty
V166
()
V167
()
V168
()
Element
of
bool
the
carrier
of
I[01]
bool
the
carrier
of
I[01]
is non
empty
set
d
is
set
a
.
d
is
set
dom
(
a
+
b
)
is non
empty
V166
()
V167
()
V168
()
Element
of
bool
the
carrier
of
I[01]
lg
is
complex
ext-real
real
Element
of the
carrier
of
I[01]
(
1
/
2
)
*
lg
is
complex
ext-real
real
Element
of
REAL
lg
/
2 is
complex
ext-real
real
Element
of
REAL
(
a
+
b
)
.
(
lg
/
2
)
is
set
2
*
(
lg
/
2
)
is
complex
ext-real
real
Element
of
REAL
a
.
(
2
*
(
lg
/
2
)
)
is
set
rp
is non
empty
TopSpace-like
connected
pathwise_connected
TopStruct
the
carrier
of
rp
is non
empty
set
rl
is
Element
of the
carrier
of
rp
rg
is
Element
of the
carrier
of
rp
rd
is
Element
of the
carrier
of
rp
a
is
Relation-like
the
carrier
of
I[01]
-defined
the
carrier
of
rp
-valued
Function-like
non
empty
total
quasi_total
continuous
Path
of
rl
,
rg
rng
a
is non
empty
Element
of
bool
the
carrier
of
rp
bool
the
carrier
of
rp
is non
empty
set
b
is
Relation-like
the
carrier
of
I[01]
-defined
the
carrier
of
rp
-valued
Function-like
non
empty
total
quasi_total
continuous
Path
of
rg
,
rd
a
+
b
is
Relation-like
the
carrier
of
I[01]
-defined
the
carrier
of
rp
-valued
Function-like
non
empty
total
quasi_total
continuous
Path
of
rl
,
rd
rng
(
a
+
b
)
is non
empty
Element
of
bool
the
carrier
of
rp
rp
is non
empty
TopSpace-like
TopStruct
the
carrier
of
rp
is non
empty
set
rg
is
Element
of the
carrier
of
rp
rd
is
Element
of the
carrier
of
rp
rl
is
Element
of the
carrier
of
rp
a
is
Relation-like
the
carrier
of
I[01]
-defined
the
carrier
of
rp
-valued
Function-like
non
empty
total
quasi_total
Path
of
rg
,
rd
rng
a
is non
empty
Element
of
bool
the
carrier
of
rp
bool
the
carrier
of
rp
is non
empty
set
b
is
Relation-like
the
carrier
of
I[01]
-defined
the
carrier
of
rp
-valued
Function-like
non
empty
total
quasi_total
Path
of
rl
,
rg
b
+
a
is
Relation-like
the
carrier
of
I[01]
-defined
the
carrier
of
rp
-valued
Function-like
non
empty
total
quasi_total
Path
of
rl
,
rd
rng
(
b
+
a
)
is non
empty
Element
of
bool
the
carrier
of
rp
c
is
set
dom
a
is non
empty
V166
()
V167
()
V168
()
Element
of
bool
the
carrier
of
I[01]
bool
the
carrier
of
I[01]
is non
empty
set
d
is
set
a
.
d
is
set
dom
(
b
+
a
)
is non
empty
V166
()
V167
()
V168
()
Element
of
bool
the
carrier
of
I[01]
lg
is
complex
ext-real
real
Element
of the
carrier
of
I[01]
0
+
(
1
/
2
)
is
complex
ext-real
non
negative
real
Element
of
REAL
lg
/
2 is
complex
ext-real
real
Element
of
REAL
(
lg
/
2
)
+
(
1
/
2
)
is
complex
ext-real
real
Element
of
REAL
lg
+
1 is
complex
ext-real
real
Element
of
REAL
1
+
1 is non
empty
ordinal
natural
complex
ext-real
positive
non
negative
real
Element
of
REAL
(
lg
+
1
)
/
2 is
complex
ext-real
real
Element
of
REAL
2
/
2 is
complex
ext-real
non
negative
real
Element
of
REAL
(
b
+
a
)
.
(
(
lg
/
2
)
+
(
1
/
2
)
)
is
set
2
*
(
(
lg
/
2
)
+
(
1
/
2
)
)
is
complex
ext-real
real
Element
of
REAL
(
2
*
(
(
lg
/
2
)
+
(
1
/
2
)
)
)
-
1 is
complex
ext-real
real
Element
of
REAL
a
.
(
(
2
*
(
(
lg
/
2
)
+
(
1
/
2
)
)
)
-
1
)
is
set
rp
is non
empty
TopSpace-like
connected
pathwise_connected
TopStruct
the
carrier
of
rp
is non
empty
set
rg
is
Element
of the
carrier
of
rp
rd
is
Element
of the
carrier
of
rp
rl
is
Element
of the
carrier
of
rp
a
is
Relation-like
the
carrier
of
I[01]
-defined
the
carrier
of
rp
-valued
Function-like
non
empty
total
quasi_total
continuous
Path
of
rg
,
rd
rng
a
is non
empty
Element
of
bool
the
carrier
of
rp
bool
the
carrier
of
rp
is non
empty
set
b
is
Relation-like
the
carrier
of
I[01]
-defined
the
carrier
of
rp
-valued
Function-like
non
empty
total
quasi_total
continuous
Path
of
rl
,
rg
b
+
a
is
Relation-like
the
carrier
of
I[01]
-defined
the
carrier
of
rp
-valued
Function-like
non
empty
total
quasi_total
continuous
Path
of
rl
,
rd
rng
(
b
+
a
)
is non
empty
Element
of
bool
the
carrier
of
rp
rp
is non
empty
TopSpace-like
TopStruct
the
carrier
of
rp
is non
empty
set
rl
is
Element
of the
carrier
of
rp
rg
is
Element
of the
carrier
of
rp
rd
is
Element
of the
carrier
of
rp
a
is
Relation-like
the
carrier
of
I[01]
-defined
the
carrier
of
rp
-valued
Function-like
non
empty
total
quasi_total
Path
of
rl
,
rg
rng
a
is non
empty
Element
of
bool
the
carrier
of
rp
bool
the
carrier
of
rp
is non
empty
set
b
is
Relation-like
the
carrier
of
I[01]
-defined
the
carrier
of
rp
-valued
Function-like
non
empty
total
quasi_total
Path
of
rg
,
rd
a
+
b
is
Relation-like
the
carrier
of
I[01]
-defined
the
carrier
of
rp
-valued
Function-like
non
empty
total
quasi_total
Path
of
rl
,
rd
rng
(
a
+
b
)
is non
empty
Element
of
bool
the
carrier
of
rp
rng
b
is non
empty
Element
of
bool
the
carrier
of
rp
(
rng
a
)
\/
(
rng
b
)
is non
empty
Element
of
bool
the
carrier
of
rp
c
is
set
dom
(
a
+
b
)
is non
empty
V166
()
V167
()
V168
()
Element
of
bool
the
carrier
of
I[01]
bool
the
carrier
of
I[01]
is non
empty
set
d
is
set
(
a
+
b
)
.
d
is
set
lg
is
complex
ext-real
real
Element
of the
carrier
of
I[01]
(
a
+
b
)
.
lg
is
Element
of the
carrier
of
rp
2
*
lg
is
complex
ext-real
real
Element
of
REAL
a
.
(
2
*
lg
)
is
set
dom
a
is non
empty
V166
()
V167
()
V168
()
Element
of
bool
the
carrier
of
I[01]
lg
is
complex
ext-real
real
Element
of the
carrier
of
I[01]
(
a
+
b
)
.
lg
is
Element
of the
carrier
of
rp
2
*
lg
is
complex
ext-real
real
Element
of
REAL
(
2
*
lg
)
-
1 is
complex
ext-real
real
Element
of
REAL
b
.
(
(
2
*
lg
)
-
1
)
is
set
dom
b
is non
empty
V166
()
V167
()
V168
()
Element
of
bool
the
carrier
of
I[01]
lg
is
complex
ext-real
real
Element
of the
carrier
of
I[01]
rp
is non
empty
TopSpace-like
connected
pathwise_connected
TopStruct
the
carrier
of
rp
is non
empty
set
rl
is
Element
of the
carrier
of
rp
rg
is
Element
of the
carrier
of
rp
rd
is
Element
of the
carrier
of
rp
a
is
Relation-like
the
carrier
of
I[01]
-defined
the
carrier
of
rp
-valued
Function-like
non
empty
total
quasi_total
continuous
Path
of
rl
,
rg
rng
a
is non
empty
Element
of
bool
the
carrier
of
rp
bool
the
carrier
of
rp
is non
empty
set
b
is
Relation-like
the
carrier
of
I[01]
-defined
the
carrier
of
rp
-valued
Function-like
non
empty
total
quasi_total
continuous
Path
of
rg
,
rd
a
+
b
is
Relation-like
the
carrier
of
I[01]
-defined
the
carrier
of
rp
-valued
Function-like
non
empty
total
quasi_total
continuous
Path
of
rl
,
rd
rng
(
a
+
b
)
is non
empty
Element
of
bool
the
carrier
of
rp
rng
b
is non
empty
Element
of
bool
the
carrier
of
rp
(
rng
a
)
\/
(
rng
b
)
is non
empty
Element
of
bool
the
carrier
of
rp
rp
is non
empty
TopSpace-like
TopStruct
the
carrier
of
rp
is non
empty
set
rl
is
Element
of the
carrier
of
rp
rg
is
Element
of the
carrier
of
rp
rd
is
Element
of the
carrier
of
rp
a
is
Element
of the
carrier
of
rp
b
is
Relation-like
the
carrier
of
I[01]
-defined
the
carrier
of
rp
-valued
Function-like
non
empty
total
quasi_total
Path
of
rl
,
rg
rng
b
is non
empty
Element
of
bool
the
carrier
of
rp
bool
the
carrier
of
rp
is non
empty
set
c
is
Relation-like
the
carrier
of
I[01]
-defined
the
carrier
of
rp
-valued
Function-like
non
empty
total
quasi_total
Path
of
rg
,
rd
b
+
c
is
Relation-like
the
carrier
of
I[01]
-defined
the
carrier
of
rp
-valued
Function-like
non
empty
total
quasi_total
Path
of
rl
,
rd
rng
c
is non
empty
Element
of
bool
the
carrier
of
rp
(
rng
b
)
\/
(
rng
c
)
is non
empty
Element
of
bool
the
carrier
of
rp
d
is
Relation-like
the
carrier
of
I[01]
-defined
the
carrier
of
rp
-valued
Function-like
non
empty
total
quasi_total
Path
of
rd
,
a
(
b
+
c
)
+
d
is
Relation-like
the
carrier
of
I[01]
-defined
the
carrier
of
rp
-valued
Function-like
non
empty
total
quasi_total
Path
of
rl
,
a
rng
(
(
b
+
c
)
+
d
)
is non
empty
Element
of
bool
the
carrier
of
rp
rng
d
is non
empty
Element
of
bool
the
carrier
of
rp
(
(
rng
b
)
\/
(
rng
c
)
)
\/
(
rng
d
)
is non
empty
Element
of
bool
the
carrier
of
rp
rng
(
b
+
c
)
is non
empty
Element
of
bool
the
carrier
of
rp
(
rng
(
b
+
c
)
)
\/
(
rng
d
)
is non
empty
Element
of
bool
the
carrier
of
rp
rp
is non
empty
TopSpace-like
connected
pathwise_connected
TopStruct
the
carrier
of
rp
is non
empty
set
rl
is
Element
of the
carrier
of
rp
rg
is
Element
of the
carrier
of
rp
rd
is
Element
of the
carrier
of
rp
a
is
Element
of the
carrier
of
rp
b
is
Relation-like
the
carrier
of
I[01]
-defined
the
carrier
of
rp
-valued
Function-like
non
empty
total
quasi_total
continuous
Path
of
rl
,
rg
rng
b
is non
empty
Element
of
bool
the
carrier
of
rp
bool
the
carrier
of
rp
is non
empty
set
c
is
Relation-like
the
carrier
of
I[01]
-defined
the
carrier
of
rp
-valued
Function-like
non
empty
total
quasi_total
continuous
Path
of
rg
,
rd
b
+
c
is
Relation-like
the
carrier
of
I[01]
-defined
the
carrier
of
rp
-valued
Function-like
non
empty
total
quasi_total
continuous
Path
of
rl
,
rd
rng
c
is non
empty
Element
of
bool
the
carrier
of
rp
(
rng
b
)
\/
(
rng
c
)
is non
empty
Element
of
bool
the
carrier
of
rp
d
is
Relation-like
the
carrier
of
I[01]
-defined
the
carrier
of
rp
-valued
Function-like
non
empty
total
quasi_total
continuous
Path
of
rd
,
a
(
b
+
c
)
+
d
is
Relation-like
the
carrier
of
I[01]
-defined
the
carrier
of
rp
-valued
Function-like
non
empty
total
quasi_total
continuous
Path
of
rl
,
a
rng
(
(
b
+
c
)
+
d
)
is non
empty
Element
of
bool
the
carrier
of
rp
rng
d
is non
empty
Element
of
bool
the
carrier
of
rp
(
(
rng
b
)
\/
(
rng
c
)
)
\/
(
rng
d
)
is non
empty
Element
of
bool
the
carrier
of
rp
rp
is non
empty
TopSpace-like
TopStruct
the
carrier
of
rp
is non
empty
set
rl
is
Element
of the
carrier
of
rp
rg
is
Element
of the
carrier
of
rp
rd
is
Element
of the
carrier
of
rp
a
is
Element
of the
carrier
of
rp
b
is
Element
of the
carrier
of
rp
c
is
Relation-like
the
carrier
of
I[01]
-defined
the
carrier
of
rp
-valued
Function-like
non
empty
total
quasi_total
Path
of
rl
,
rg
rng
c
is non
empty
Element
of
bool
the
carrier
of
rp
bool
the
carrier
of
rp
is non
empty
set
d
is
Relation-like
the
carrier
of
I[01]
-defined
the
carrier
of
rp
-valued
Function-like
non
empty
total
quasi_total
Path
of
rg
,
rd
c
+
d
is
Relation-like
the
carrier
of
I[01]
-defined
the
carrier
of
rp
-valued
Function-like
non
empty
total
quasi_total
Path
of
rl
,
rd
rng
d
is non
empty
Element
of
bool
the
carrier
of
rp
(
rng
c
)
\/
(
rng
d
)
is non
empty
Element
of
bool
the
carrier
of
rp
lg
is
Relation-like
the
carrier
of
I[01]
-defined
the
carrier
of
rp
-valued
Function-like
non
empty
total
quasi_total
Path
of
rd
,
a
(
c
+
d
)
+
lg
is
Relation-like
the
carrier
of
I[01]
-defined
the
carrier
of
rp
-valued
Function-like
non
empty
total
quasi_total
Path
of
rl
,
a
rng
lg
is non
empty
Element
of
bool
the
carrier
of
rp
(
(
rng
c
)
\/
(
rng
d
)
)
\/
(
rng
lg
)
is non
empty
Element
of
bool
the
carrier
of
rp
pg
is
Relation-like
the
carrier
of
I[01]
-defined
the
carrier
of
rp
-valued
Function-like
non
empty
total
quasi_total
Path
of
a
,
b
(
(
c
+
d
)
+
lg
)
+
pg
is
Relation-like
the
carrier
of
I[01]
-defined
the
carrier
of
rp
-valued
Function-like
non
empty
total
quasi_total
Path
of
rl
,
b
rng
(
(
(
c
+
d
)
+
lg
)
+
pg
)
is non
empty
Element
of
bool
the
carrier
of
rp
rng
pg
is non
empty
Element
of
bool
the
carrier
of
rp
(
(
(
rng
c
)
\/
(
rng
d
)
)
\/
(
rng
lg
)
)
\/
(
rng
pg
)
is non
empty
Element
of
bool
the
carrier
of
rp
rng
(
(
c
+
d
)
+
lg
)
is non
empty
Element
of
bool
the
carrier
of
rp
(
rng
(
(
c
+
d
)
+
lg
)
)
\/
(
rng
pg
)
is non
empty
Element
of
bool
the
carrier
of
rp
rp
is non
empty
TopSpace-like
connected
pathwise_connected
TopStruct
the
carrier
of
rp
is non
empty
set
rl
is
Element
of the
carrier
of
rp
rg
is
Element
of the
carrier
of
rp
rd
is
Element
of the
carrier
of
rp
a
is
Element
of the
carrier
of
rp
b
is
Element
of the
carrier
of
rp
c
is
Relation-like
the
carrier
of
I[01]
-defined
the
carrier
of
rp
-valued
Function-like
non
empty
total
quasi_total
continuous
Path
of
rl
,
rg
rng
c
is non
empty
Element
of
bool
the
carrier
of
rp
bool
the
carrier
of
rp
is non
empty
set
d
is
Relation-like
the
carrier
of
I[01]
-defined
the
carrier
of
rp
-valued
Function-like
non
empty
total
quasi_total
continuous
Path
of
rg
,
rd
c
+
d
is
Relation-like
the
carrier
of
I[01]
-defined
the
carrier
of
rp
-valued
Function-like
non
empty
total
quasi_total
continuous
Path
of
rl
,
rd
rng
d
is non
empty
Element
of
bool
the
carrier
of
rp
(
rng
c
)
\/
(
rng
d
)
is non
empty
Element
of
bool
the
carrier
of
rp
lg
is
Relation-like
the
carrier
of
I[01]
-defined
the
carrier
of
rp
-valued
Function-like
non
empty
total
quasi_total
continuous
Path
of
rd
,
a
(
c
+
d
)
+
lg
is
Relation-like
the
carrier
of
I[01]
-defined
the
carrier
of
rp
-valued
Function-like
non
empty
total
quasi_total
continuous
Path
of
rl
,
a
rng
lg
is non
empty
Element
of
bool
the
carrier
of
rp
(
(
rng
c
)
\/
(
rng
d
)
)
\/
(
rng
lg
)
is non
empty
Element
of
bool
the
carrier
of
rp
pg
is
Relation-like
the
carrier
of
I[01]
-defined
the
carrier
of
rp
-valued
Function-like
non
empty
total
quasi_total
continuous
Path
of
a
,
b
(
(
c
+
d
)
+
lg
)
+
pg
is
Relation-like
the
carrier
of
I[01]
-defined
the
carrier
of
rp
-valued
Function-like
non
empty
total
quasi_total
continuous
Path
of
rl
,
b
rng
(
(
(
c
+
d
)
+
lg
)
+
pg
)
is non
empty
Element
of
bool
the
carrier
of
rp
rng
pg
is non
empty
Element
of
bool
the
carrier
of
rp
(
(
(
rng
c
)
\/
(
rng
d
)
)
\/
(
rng
lg
)
)
\/
(
rng
pg
)
is non
empty
Element
of
bool
the
carrier
of
rp
rp
is non
empty
TopSpace-like
TopStruct
the
carrier
of
rp
is non
empty
set
rl
is
Element
of the
carrier
of
rp
rg
is
Element
of the
carrier
of
rp
rd
is
Element
of the
carrier
of
rp
a
is
Element
of the
carrier
of
rp
b
is
Element
of the
carrier
of
rp
c
is
Element
of the
carrier
of
rp
d
is
Relation-like
the
carrier
of
I[01]
-defined
the
carrier
of
rp
-valued
Function-like
non
empty
total
quasi_total
Path
of
rl
,
rg
rng
d
is non
empty
Element
of
bool
the
carrier
of
rp
bool
the
carrier
of
rp
is non
empty
set
lg
is
Relation-like
the
carrier
of
I[01]
-defined
the
carrier
of
rp
-valued
Function-like
non
empty
total
quasi_total
Path
of
rg
,
rd
d
+
lg
is
Relation-like
the
carrier
of
I[01]
-defined
the
carrier
of
rp
-valued
Function-like
non
empty
total
quasi_total
Path
of
rl
,
rd
rng
lg
is non
empty
Element
of
bool
the
carrier
of
rp
(
rng
d
)
\/
(
rng
lg
)
is non
empty
Element
of
bool
the
carrier
of
rp
pg
is
Relation-like
the
carrier
of
I[01]
-defined
the
carrier
of
rp
-valued
Function-like
non
empty
total
quasi_total
Path
of
rd
,
a
(
d
+
lg
)
+
pg
is
Relation-like
the
carrier
of
I[01]
-defined
the
carrier
of
rp
-valued
Function-like
non
empty
total
quasi_total
Path
of
rl
,
a
rng
pg
is non
empty
Element
of
bool
the
carrier
of
rp
(
(
rng
d
)
\/
(
rng
lg
)
)
\/
(
rng
pg
)
is non
empty
Element
of
bool
the
carrier
of
rp
ld
is
Relation-like
the
carrier
of
I[01]
-defined
the
carrier
of
rp
-valued
Function-like
non
empty
total
quasi_total
Path
of
a
,
b
(
(
d
+
lg
)
+
pg
)
+
ld
is
Relation-like
the
carrier
of
I[01]
-defined
the
carrier
of
rp
-valued
Function-like
non
empty
total
quasi_total
Path
of
rl
,
b
rng
ld
is non
empty
Element
of
bool
the
carrier
of
rp
(
(
(
rng
d
)
\/
(
rng
lg
)
)
\/
(
rng
pg
)
)
\/
(
rng
ld
)
is non
empty
Element
of
bool
the
carrier
of
rp
pd
is
Relation-like
the
carrier
of
I[01]
-defined
the
carrier
of
rp
-valued
Function-like
non
empty
total
quasi_total
Path
of
b
,
c
(
(
(
d
+
lg
)
+
pg
)
+
ld
)
+
pd
is
Relation-like
the
carrier
of
I[01]
-defined
the
carrier
of
rp
-valued
Function-like
non
empty
total
quasi_total
Path
of
rl
,
c
rng
(
(
(
(
d
+
lg
)
+
pg
)
+
ld
)
+
pd
)
is non
empty
Element
of
bool
the
carrier
of
rp
rng
pd
is non
empty
Element
of
bool
the
carrier
of
rp
(
(
(
(
rng
d
)
\/
(
rng
lg
)
)
\/
(
rng
pg
)
)
\/
(
rng
ld
)
)
\/
(
rng
pd
)
is non
empty
Element
of
bool
the
carrier
of
rp
rng
(
(
(
d
+
lg
)
+
pg
)
+
ld
)
is non
empty
Element
of
bool
the
carrier
of
rp
(
rng
(
(
(
d
+
lg
)
+
pg
)
+
ld
)
)
\/
(
rng
pd
)
is non
empty
Element
of
bool
the
carrier
of
rp
rp
is non
empty
TopSpace-like
connected
pathwise_connected
TopStruct
the
carrier
of
rp
is non
empty
set
rl
is
Element
of the
carrier
of
rp
rg
is
Element
of the
carrier
of
rp
rd
is
Element
of the
carrier
of
rp
a
is
Element
of the
carrier
of
rp
b
is
Element
of the
carrier
of
rp
c
is
Element
of the
carrier
of
rp
d
is
Relation-like
the
carrier
of
I[01]
-defined
the
carrier
of
rp
-valued
Function-like
non
empty
total
quasi_total
continuous
Path
of
rl
,
rg
rng
d
is non
empty
Element
of
bool
the
carrier
of
rp
bool
the
carrier
of
rp
is non
empty
set
lg
is
Relation-like
the
carrier
of
I[01]
-defined
the
carrier
of
rp
-valued
Function-like
non
empty
total
quasi_total
continuous
Path
of
rg
,
rd
d
+
lg
is
Relation-like
the
carrier
of
I[01]
-defined
the
carrier
of
rp
-valued
Function-like
non
empty
total
quasi_total
continuous
Path
of
rl
,
rd
rng
lg
is non
empty
Element
of
bool
the
carrier
of
rp
(
rng
d
)
\/
(
rng
lg
)
is non
empty
Element
of
bool
the
carrier
of
rp
pg
is
Relation-like
the
carrier
of
I[01]
-defined
the
carrier
of
rp
-valued
Function-like
non
empty
total
quasi_total
continuous
Path
of
rd
,
a
(
d
+
lg
)
+
pg
is
Relation-like
the
carrier
of
I[01]
-defined
the
carrier
of
rp
-valued
Function-like
non
empty
total
quasi_total
continuous
Path
of
rl
,
a
rng
pg
is non
empty
Element
of
bool
the
carrier
of
rp
(
(
rng
d
)
\/
(
rng
lg
)
)
\/
(
rng
pg
)
is non
empty
Element
of
bool
the
carrier
of
rp
ld
is
Relation-like
the
carrier
of
I[01]
-defined
the
carrier
of
rp
-valued
Function-like
non
empty
total
quasi_total
continuous
Path
of
a
,
b
(
(
d
+
lg
)
+
pg
)
+
ld
is
Relation-like
the
carrier
of
I[01]
-defined
the
carrier
of
rp
-valued
Function-like
non
empty
total
quasi_total
continuous
Path
of
rl
,
b
rng
ld
is non
empty
Element
of
bool
the
carrier
of
rp
(
(
(
rng
d
)
\/
(
rng
lg
)
)
\/
(
rng
pg
)
)
\/
(
rng
ld
)
is non
empty
Element
of
bool
the
carrier
of
rp
pd
is
Relation-like
the
carrier
of
I[01]
-defined
the
carrier
of
rp
-valued
Function-like
non
empty
total
quasi_total
continuous
Path
of
b
,
c
(
(
(
d
+
lg
)
+
pg
)
+
ld
)
+
pd
is
Relation-like
the
carrier
of
I[01]
-defined
the
carrier
of
rp
-valued
Function-like
non
empty
total
quasi_total
continuous
Path
of
rl
,
c
rng
(
(
(
(
d
+
lg
)
+
pg
)
+
ld
)
+
pd
)
is non
empty
Element
of
bool
the
carrier
of
rp
rng
pd
is non
empty
Element
of
bool
the
carrier
of
rp
(
(
(
(
rng
d
)
\/
(
rng
lg
)
)
\/
(
rng
pg
)
)
\/
(
rng
ld
)
)
\/
(
rng
pd
)
is non
empty
Element
of
bool
the
carrier
of
rp
rp
is non
empty
TopSpace-like
TopStruct
the
carrier
of
rp
is non
empty
set
rl
is
Element
of the
carrier
of
rp
I[01]
-->
rl
is
Relation-like
the
carrier
of
I[01]
-defined
the
carrier
of
rp
-valued
Function-like
non
empty
total
quasi_total
continuous
Element
of
bool
[:
the
carrier
of
I[01]
, the
carrier
of
rp
:]
[:
the
carrier
of
I[01]
, the
carrier
of
rp
:]
is
Relation-like
non
empty
set
bool
[:
the
carrier
of
I[01]
, the
carrier
of
rp
:]
is non
empty
set
the
carrier
of
I[01]
-->
rl
is
Relation-like
the
carrier
of
I[01]
-defined
the
carrier
of
rp
-valued
Function-like
non
empty
total
quasi_total
Element
of
bool
[:
the
carrier
of
I[01]
, the
carrier
of
rp
:]
(
I[01]
-->
rl
)
.
0
is
set
(
I[01]
-->
rl
)
.
1 is
set
rp
is
ordinal
natural
complex
ext-real
non
negative
real
V33
()
V119
()
V166
()
V167
()
V168
()
V169
()
V170
()
V171
()
bounded_below
Element
of
NAT
TOP-REAL
rp
is non
empty
TopSpace-like
T_0
T_1
T_2
connected
V132
()
V178
()
V179
()
V180
()
V181
()
V182
()
V183
()
V184
()
strict
add-continuous
Mult-continuous
pathwise_connected
RLTopStruct
the
carrier
of
(
TOP-REAL
rp
)
is
functional
non
empty
set
bool
the
carrier
of
(
TOP-REAL
rp
)
is non
empty
set
rl
is
Relation-like
Function-like
V49
(
rp
)
V50
()
V156
()
V157
()
V158
()
Element
of the
carrier
of
(
TOP-REAL
rp
)
rg
is
Relation-like
Function-like
V49
(
rp
)
V50
()
V156
()
V157
()
V158
()
Element
of the
carrier
of
(
TOP-REAL
rp
)
rd
is
functional
Element
of
bool
the
carrier
of
(
TOP-REAL
rp
)
(
TOP-REAL
rp
)
|
rd
is
strict
TopSpace-like
T_0
T_1
T_2
SubSpace
of
TOP-REAL
rp
the
carrier
of
(
(
TOP-REAL
rp
)
|
rd
)
is
set
[:
the
carrier
of
I[01]
, the
carrier
of
(
(
TOP-REAL
rp
)
|
rd
)
:]
is
Relation-like
set
bool
[:
the
carrier
of
I[01]
, the
carrier
of
(
(
TOP-REAL
rp
)
|
rd
)
:]
is non
empty
set
b
is
Relation-like
the
carrier
of
I[01]
-defined
the
carrier
of
(
(
TOP-REAL
rp
)
|
rd
)
-valued
Function-like
quasi_total
Element
of
bool
[:
the
carrier
of
I[01]
, the
carrier
of
(
(
TOP-REAL
rp
)
|
rd
)
:]
b
.
0
is
set
b
.
1 is
set
a
is
functional
non
empty
Element
of
bool
the
carrier
of
(
TOP-REAL
rp
)
(
TOP-REAL
rp
)
|
a
is non
empty
strict
TopSpace-like
T_0
T_1
T_2
SubSpace
of
TOP-REAL
rp
the
carrier
of
(
(
TOP-REAL
rp
)
|
a
)
is non
empty
set
[:
the
carrier
of
I[01]
, the
carrier
of
(
(
TOP-REAL
rp
)
|
a
)
:]
is
Relation-like
non
empty
set
bool
[:
the
carrier
of
I[01]
, the
carrier
of
(
(
TOP-REAL
rp
)
|
a
)
:]
is non
empty
set
[:
the
carrier
of
I[01]
, the
carrier
of
(
TOP-REAL
rp
)
:]
is
Relation-like
non
empty
set
bool
[:
the
carrier
of
I[01]
, the
carrier
of
(
TOP-REAL
rp
)
:]
is non
empty
set
c
is
Relation-like
the
carrier
of
I[01]
-defined
the
carrier
of
(
TOP-REAL
rp
)
-valued
Function-like
non
empty
total
quasi_total
Element
of
bool
[:
the
carrier
of
I[01]
, the
carrier
of
(
TOP-REAL
rp
)
:]
d
is
Relation-like
the
carrier
of
I[01]
-defined
the
carrier
of
(
TOP-REAL
rp
)
-valued
Function-like
non
empty
total
quasi_total
continuous
Path
of
rl
,
rg
rng
b
is
Element
of
bool
the
carrier
of
(
(
TOP-REAL
rp
)
|
rd
)
bool
the
carrier
of
(
(
TOP-REAL
rp
)
|
rd
)
is non
empty
set
[#]
(
(
TOP-REAL
rp
)
|
rd
)
is non
proper
open
closed
dense
Element
of
bool
the
carrier
of
(
(
TOP-REAL
rp
)
|
rd
)
rp
is
ordinal
natural
complex
ext-real
non
negative
real
V33
()
V119
()
V166
()
V167
()
V168
()
V169
()
V170
()
V171
()
bounded_below
Element
of
NAT
TOP-REAL
rp
is non
empty
TopSpace-like
T_0
T_1
T_2
connected
V132
()
V178
()
V179
()
V180
()
V181
()
V182
()
V183
()
V184
()
strict
add-continuous
Mult-continuous
pathwise_connected
RLTopStruct
the
carrier
of
(
TOP-REAL
rp
)
is
functional
non
empty
set
rl
is
Relation-like
Function-like
V49
(
rp
)
V50
()
V156
()
V157
()
V158
()
Element
of the
carrier
of
(
TOP-REAL
rp
)
rg
is
Relation-like
Function-like
V49
(
rp
)
V50
()
V156
()
V157
()
V158
()
Element
of the
carrier
of
(
TOP-REAL
rp
)
LSeg
(
rl
,
rg
) is
functional
closed
compact
bounded
Element
of
bool
the
carrier
of
(
TOP-REAL
rp
)
bool
the
carrier
of
(
TOP-REAL
rp
)
is non
empty
set
{
(
(
(
1
-
b
1
)
*
rl
)
+
(
b
1
*
rg
)
)
where
b
1
is
complex
ext-real
real
Element
of
REAL
: (
0
<=
b
1
&
b
1
<=
1 )
}
is
set
(
TOP-REAL
rp
)
|
(
LSeg
(
rl
,
rg
)
)
is
strict
TopSpace-like
T_0
T_1
T_2
SubSpace
of
TOP-REAL
rp
the
carrier
of
(
(
TOP-REAL
rp
)
|
(
LSeg
(
rl
,
rg
)
)
)
is
set
[:
the
carrier
of
I[01]
, the
carrier
of
(
(
TOP-REAL
rp
)
|
(
LSeg
(
rl
,
rg
)
)
)
:]
is
Relation-like
set
bool
[:
the
carrier
of
I[01]
, the
carrier
of
(
(
TOP-REAL
rp
)
|
(
LSeg
(
rl
,
rg
)
)
)
:]
is non
empty
set
I[01]
-->
rl
is
Relation-like
the
carrier
of
I[01]
-defined
the
carrier
of
(
TOP-REAL
rp
)
-valued
Function-like
non
empty
total
quasi_total
continuous
Element
of
bool
[:
the
carrier
of
I[01]
, the
carrier
of
(
TOP-REAL
rp
)
:]
[:
the
carrier
of
I[01]
, the
carrier
of
(
TOP-REAL
rp
)
:]
is
Relation-like
non
empty
set
bool
[:
the
carrier
of
I[01]
, the
carrier
of
(
TOP-REAL
rp
)
:]
is non
empty
set
the
carrier
of
I[01]
-->
rl
is
Relation-like
the
carrier
of
I[01]
-defined
the
carrier
of
(
TOP-REAL
rp
)
-valued
Function-like
non
empty
total
quasi_total
Element
of
bool
[:
the
carrier
of
I[01]
, the
carrier
of
(
TOP-REAL
rp
)
:]
rd
is
Relation-like
the
carrier
of
I[01]
-defined
the
carrier
of
(
TOP-REAL
rp
)
-valued
Function-like
non
empty
total
quasi_total
continuous
Path
of
rl
,
rg
{
rl
}
is
functional
non
empty
closed
compact
bounded
Element
of
bool
the
carrier
of
(
TOP-REAL
rp
)
rng
rd
is
functional
non
empty
Element
of
bool
the
carrier
of
(
TOP-REAL
rp
)
a
is
Relation-like
the
carrier
of
I[01]
-defined
the
carrier
of
(
(
TOP-REAL
rp
)
|
(
LSeg
(
rl
,
rg
)
)
)
-valued
Function-like
quasi_total
Element
of
bool
[:
the
carrier
of
I[01]
, the
carrier
of
(
(
TOP-REAL
rp
)
|
(
LSeg
(
rl
,
rg
)
)
)
:]
rng
a
is
Element
of
bool
the
carrier
of
(
(
TOP-REAL
rp
)
|
(
LSeg
(
rl
,
rg
)
)
)
bool
the
carrier
of
(
(
TOP-REAL
rp
)
|
(
LSeg
(
rl
,
rg
)
)
)
is non
empty
set
rp
is
functional
Element
of
bool
the
carrier
of
(
TOP-REAL
2
)
rl
is
Relation-like
Function-like
V49
(2)
V50
()
V156
()
V157
()
V158
()
Element
of the
carrier
of
(
TOP-REAL
2
)
rg
is
Relation-like
Function-like
V49
(2)
V50
()
V156
()
V157
()
V158
()
Element
of the
carrier
of
(
TOP-REAL
2
)
rd
is
Relation-like
Function-like
V49
(2)
V50
()
V156
()
V157
()
V158
()
Element
of the
carrier
of
(
TOP-REAL
2
)
a
is
Relation-like
Function-like
V49
(2)
V50
()
V156
()
V157
()
V158
()
Element
of the
carrier
of
(
TOP-REAL
2
)
{
rl
,
rg
}
is
functional
non
empty
Element
of
bool
the
carrier
of
(
TOP-REAL
2
)
I[01]
-->
rd
is
Relation-like
the
carrier
of
I[01]
-defined
the
carrier
of
(
TOP-REAL
2
)
-valued
Function-like
non
empty
total
quasi_total
continuous
Element
of
bool
[:
the
carrier
of
I[01]
, the
carrier
of
(
TOP-REAL
2
)
:]
[:
the
carrier
of
I[01]
, the
carrier
of
(
TOP-REAL
2
)
:]
is
Relation-like
non
empty
set
bool
[:
the
carrier
of
I[01]
, the
carrier
of
(
TOP-REAL
2
)
:]
is non
empty
set
the
carrier
of
I[01]
-->
rd
is
Relation-like
the
carrier
of
I[01]
-defined
the
carrier
of
(
TOP-REAL
2
)
-valued
Function-like
non
empty
total
quasi_total
Element
of
bool
[:
the
carrier
of
I[01]
, the
carrier
of
(
TOP-REAL
2
)
:]
b
is
Relation-like
the
carrier
of
I[01]
-defined
the
carrier
of
(
TOP-REAL
2
)
-valued
Function-like
non
empty
total
quasi_total
continuous
Path
of
rd
,
a
rng
b
is
functional
non
empty
Element
of
bool
the
carrier
of
(
TOP-REAL
2
)
{
rd
}
is
functional
non
empty
proper
closed
compact
bounded
Element
of
bool
the
carrier
of
(
TOP-REAL
2
)
c
is
set
b
is
functional
non
empty
Element
of
bool
the
carrier
of
(
TOP-REAL
2
)
(
TOP-REAL
2
)
|
b
is non
empty
strict
TopSpace-like
T_0
T_1
T_2
SubSpace
of
TOP-REAL
2
the
carrier
of
(
(
TOP-REAL
2
)
|
b
)
is non
empty
set
[:
the
carrier
of
I[01]
, the
carrier
of
(
(
TOP-REAL
2
)
|
b
)
:]
is
Relation-like
non
empty
set
bool
[:
the
carrier
of
I[01]
, the
carrier
of
(
(
TOP-REAL
2
)
|
b
)
:]
is non
empty
set
d
is
Relation-like
the
carrier
of
I[01]
-defined
the
carrier
of
(
(
TOP-REAL
2
)
|
b
)
-valued
Function-like
non
empty
total
quasi_total
Element
of
bool
[:
the
carrier
of
I[01]
, the
carrier
of
(
(
TOP-REAL
2
)
|
b
)
:]
rng
d
is non
empty
Element
of
bool
the
carrier
of
(
(
TOP-REAL
2
)
|
b
)
bool
the
carrier
of
(
(
TOP-REAL
2
)
|
b
)
is non
empty
set
c
is
Relation-like
the
carrier
of
I[01]
-defined
the
carrier
of
(
TOP-REAL
2
)
-valued
Function-like
non
empty
total
quasi_total
continuous
Path
of
rd
,
a
[:
the
carrier
of
I[01]
, the
carrier
of
(
TOP-REAL
2
)
:]
is
Relation-like
non
empty
set
bool
[:
the
carrier
of
I[01]
, the
carrier
of
(
TOP-REAL
2
)
:]
is non
empty
set
pg
is
Element
of the
carrier
of
(
(
TOP-REAL
2
)
|
b
)
ld
is
Element
of the
carrier
of
(
(
TOP-REAL
2
)
|
b
)
d
.
0
is
set
d
.
1 is
set
d
.
0
is
set
d
.
1 is
set
lg
is
Relation-like
the
carrier
of
I[01]
-defined
the
carrier
of
(
TOP-REAL
2
)
-valued
Function-like
non
empty
total
quasi_total
Element
of
bool
[:
the
carrier
of
I[01]
, the
carrier
of
(
TOP-REAL
2
)
:]
pd
is
Relation-like
the
carrier
of
I[01]
-defined
the
carrier
of
(
TOP-REAL
2
)
-valued
Function-like
non
empty
total
quasi_total
continuous
Path
of
rd
,
a
rng
pd
is
functional
non
empty
Element
of
bool
the
carrier
of
(
TOP-REAL
2
)
rp
is
complex
ext-real
real
set
rl
is
complex
ext-real
real
set
rg
is
complex
ext-real
real
set
rd
is
complex
ext-real
real
set
rectangle
(
rp
,
rl
,
rg
,
rd
) is
functional
non
empty
proper
closed
compact
bounded
Element
of
bool
the
carrier
of
(
TOP-REAL
2
)
closed_inside_of_rectangle
(
rp
,
rl
,
rg
,
rd
) is
functional
connected
convex
Element
of
bool
the
carrier
of
(
TOP-REAL
2
)
{
b
1
where
b
1
is
Relation-like
Function-like
V49
(2)
V50
()
V156
()
V157
()
V158
()
Element
of the
carrier
of
(
TOP-REAL
2
)
: (
rp
<=
b
1
`1
&
b
1
`1
<=
rl
&
rg
<=
b
1
`2
&
b
1
`2
<=
rd
)
}
is
set
a
is
set
{
b
1
where
b
1
is
Relation-like
Function-like
V49
(2)
V50
()
V156
()
V157
()
V158
()
Element
of the
carrier
of
(
TOP-REAL
2
)
: ( (
b
1
`1
=
rp
&
b
1
`2
<=
rd
&
rg
<=
b
1
`2
) or (
b
1
`1
<=
rl
&
rp
<=
b
1
`1
&
b
1
`2
=
rd
) or (
b
1
`1
<=
rl
&
rp
<=
b
1
`1
&
b
1
`2
=
rg
) or (
b
1
`1
=
rl
&
b
1
`2
<=
rd
&
rg
<=
b
1
`2
) )
}
is
set
b
is
Relation-like
Function-like
V49
(2)
V50
()
V156
()
V157
()
V158
()
Element
of the
carrier
of
(
TOP-REAL
2
)
b
`1
is
complex
ext-real
real
Element
of
REAL
b
`2
is
complex
ext-real
real
Element
of
REAL
rp
is
complex
ext-real
real
set
rl
is
complex
ext-real
real
set
rg
is
complex
ext-real
real
set
rd
is
complex
ext-real
real
set
inside_of_rectangle
(
rp
,
rl
,
rg
,
rd
) is
functional
Element
of
bool
the
carrier
of
(
TOP-REAL
2
)
{
b
1
where
b
1
is
Relation-like
Function-like
V49
(2)
V50
()
V156
()
V157
()
V158
()
Element
of the
carrier
of
(
TOP-REAL
2
)
: ( not
b
1
`1
<=
rp
& not
rl
<=
b
1
`1
& not
b
1
`2
<=
rg
& not
rd
<=
b
1
`2
)
}
is
set
closed_inside_of_rectangle
(
rp
,
rl
,
rg
,
rd
) is
functional
connected
convex
Element
of
bool
the
carrier
of
(
TOP-REAL
2
)
{
b
1
where
b
1
is
Relation-like
Function-like
V49
(2)
V50
()
V156
()
V157
()
V158
()
Element
of the
carrier
of
(
TOP-REAL
2
)
: (
rp
<=
b
1
`1
&
b
1
`1
<=
rl
&
rg
<=
b
1
`2
&
b
1
`2
<=
rd
)
}
is
set
a
is
set
b
is
Relation-like
Function-like
V49
(2)
V50
()
V156
()
V157
()
V158
()
Element
of the
carrier
of
(
TOP-REAL
2
)
b
`1
is
complex
ext-real
real
Element
of
REAL
b
`2
is
complex
ext-real
real
Element
of
REAL
rp
is
complex
ext-real
real
set
rl
is
complex
ext-real
real
set
rg
is
complex
ext-real
real
set
rd
is
complex
ext-real
real
set
closed_inside_of_rectangle
(
rp
,
rl
,
rg
,
rd
) is
functional
connected
convex
Element
of
bool
the
carrier
of
(
TOP-REAL
2
)
{
b
1
where
b
1
is
Relation-like
Function-like
V49
(2)
V50
()
V156
()
V157
()
V158
()
Element
of the
carrier
of
(
TOP-REAL
2
)
: (
rp
<=
b
1
`1
&
b
1
`1
<=
rl
&
rg
<=
b
1
`2
&
b
1
`2
<=
rd
)
}
is
set
outside_of_rectangle
(
rp
,
rl
,
rg
,
rd
) is
functional
Element
of
bool
the
carrier
of
(
TOP-REAL
2
)
{
b
1
where
b
1
is
Relation-like
Function-like
V49
(2)
V50
()
V156
()
V157
()
V158
()
Element
of the
carrier
of
(
TOP-REAL
2
)
: ( not
rp
<=
b
1
`1
or not
b
1
`1
<=
rl
or not
rg
<=
b
1
`2
or not
b
1
`2
<=
rd
)
}
is
set
(
outside_of_rectangle
(
rp
,
rl
,
rg
,
rd
)
)
`
is
functional
Element
of
bool
the
carrier
of
(
TOP-REAL
2
)
the
carrier
of
(
TOP-REAL
2
)
\
(
outside_of_rectangle
(
rp
,
rl
,
rg
,
rd
)
)
is
set
c
is
set
d
is
Relation-like
Function-like
V49
(2)
V50
()
V156
()
V157
()
V158
()
Element
of the
carrier
of
(
TOP-REAL
2
)
d
`1
is
complex
ext-real
real
Element
of
REAL
d
`2
is
complex
ext-real
real
Element
of
REAL
lg
is
Relation-like
Function-like
V49
(2)
V50
()
V156
()
V157
()
V158
()
Element
of the
carrier
of
(
TOP-REAL
2
)
lg
`1
is
complex
ext-real
real
Element
of
REAL
lg
`2
is
complex
ext-real
real
Element
of
REAL
c
is
set
d
is
Relation-like
Function-like
V49
(2)
V50
()
V156
()
V157
()
V158
()
Element
of the
carrier
of
(
TOP-REAL
2
)
d
`1
is
complex
ext-real
real
Element
of
REAL
d
`2
is
complex
ext-real
real
Element
of
REAL
rp
is
complex
ext-real
real
set
rl
is
complex
ext-real
real
set
rg
is
complex
ext-real
real
set
rd
is
complex
ext-real
real
set
closed_inside_of_rectangle
(
rp
,
rl
,
rg
,
rd
) is
functional
connected
convex
Element
of
bool
the
carrier
of
(
TOP-REAL
2
)
{
b
1
where
b
1
is
Relation-like
Function-like
V49
(2)
V50
()
V156
()
V157
()
V158
()
Element
of the
carrier
of
(
TOP-REAL
2
)
: (
rp
<=
b
1
`1
&
b
1
`1
<=
rl
&
rg
<=
b
1
`2
&
b
1
`2
<=
rd
)
}
is
set
outside_of_rectangle
(
rp
,
rl
,
rg
,
rd
) is
functional
Element
of
bool
the
carrier
of
(
TOP-REAL
2
)
{
b
1
where
b
1
is
Relation-like
Function-like
V49
(2)
V50
()
V156
()
V157
()
V158
()
Element
of the
carrier
of
(
TOP-REAL
2
)
: ( not
rp
<=
b
1
`1
or not
b
1
`1
<=
rl
or not
rg
<=
b
1
`2
or not
b
1
`2
<=
rd
)
}
is
set
b
is
functional
open
Element
of
bool
the
carrier
of
(
TOP-REAL
2
)
b
`
is
functional
closed
Element
of
bool
the
carrier
of
(
TOP-REAL
2
)
the
carrier
of
(
TOP-REAL
2
)
\
b
is
set
rp
is
complex
ext-real
real
set
rl
is
complex
ext-real
real
set
rg
is
complex
ext-real
real
set
rd
is
complex
ext-real
real
set
closed_inside_of_rectangle
(
rp
,
rl
,
rg
,
rd
) is
functional
closed
connected
convex
Element
of
bool
the
carrier
of
(
TOP-REAL
2
)
{
b
1
where
b
1
is
Relation-like
Function-like
V49
(2)
V50
()
V156
()
V157
()
V158
()
Element
of the
carrier
of
(
TOP-REAL
2
)
: (
rp
<=
b
1
`1
&
b
1
`1
<=
rl
&
rg
<=
b
1
`2
&
b
1
`2
<=
rd
)
}
is
set
outside_of_rectangle
(
rp
,
rl
,
rg
,
rd
) is
functional
Element
of
bool
the
carrier
of
(
TOP-REAL
2
)
{
b
1
where
b
1
is
Relation-like
Function-like
V49
(2)
V50
()
V156
()
V157
()
V158
()
Element
of the
carrier
of
(
TOP-REAL
2
)
: ( not
rp
<=
b
1
`1
or not
b
1
`1
<=
rl
or not
rg
<=
b
1
`2
or not
b
1
`2
<=
rd
)
}
is
set
c
is
set
d
is
Relation-like
Function-like
V49
(2)
V50
()
V156
()
V157
()
V158
()
Element
of the
carrier
of
(
TOP-REAL
2
)
d
`1
is
complex
ext-real
real
Element
of
REAL
d
`2
is
complex
ext-real
real
Element
of
REAL
lg
is
Relation-like
Function-like
V49
(2)
V50
()
V156
()
V157
()
V158
()
Element
of the
carrier
of
(
TOP-REAL
2
)
lg
`1
is
complex
ext-real
real
Element
of
REAL
lg
`2
is
complex
ext-real
real
Element
of
REAL
rp
is
complex
ext-real
real
set
rl
is
complex
ext-real
real
set
rg
is
complex
ext-real
real
set
rd
is
complex
ext-real
real
set
closed_inside_of_rectangle
(
rp
,
rl
,
rg
,
rd
) is
functional
closed
connected
convex
Element
of
bool
the
carrier
of
(
TOP-REAL
2
)
{
b
1
where
b
1
is
Relation-like
Function-like
V49
(2)
V50
()
V156
()
V157
()
V158
()
Element
of the
carrier
of
(
TOP-REAL
2
)
: (
rp
<=
b
1
`1
&
b
1
`1
<=
rl
&
rg
<=
b
1
`2
&
b
1
`2
<=
rd
)
}
is
set
inside_of_rectangle
(
rp
,
rl
,
rg
,
rd
) is
functional
Element
of
bool
the
carrier
of
(
TOP-REAL
2
)
{
b
1
where
b
1
is
Relation-like
Function-like
V49
(2)
V50
()
V156
()
V157
()
V158
()
Element
of the
carrier
of
(
TOP-REAL
2
)
: ( not
b
1
`1
<=
rp
& not
rl
<=
b
1
`1
& not
b
1
`2
<=
rg
& not
rd
<=
b
1
`2
)
}
is
set
(
closed_inside_of_rectangle
(
rp
,
rl
,
rg
,
rd
)
)
/\
(
inside_of_rectangle
(
rp
,
rl
,
rg
,
rd
)
)
is
functional
Element
of
bool
the
carrier
of
(
TOP-REAL
2
)
(
inside_of_rectangle
(
rp
,
rl
,
rg
,
rd
)
)
/\
(
inside_of_rectangle
(
rp
,
rl
,
rg
,
rd
)
)
is
functional
Element
of
bool
the
carrier
of
(
TOP-REAL
2
)
(
inside_of_rectangle
(
rp
,
rl
,
rg
,
rd
)
)
/\
(
closed_inside_of_rectangle
(
rp
,
rl
,
rg
,
rd
)
)
is
functional
Element
of
bool
the
carrier
of
(
TOP-REAL
2
)
rp
is
complex
ext-real
real
set
rl
is
complex
ext-real
real
set
rg
is
complex
ext-real
real
set
rd
is
complex
ext-real
real
set
closed_inside_of_rectangle
(
rp
,
rl
,
rg
,
rd
) is
functional
closed
connected
convex
Element
of
bool
the
carrier
of
(
TOP-REAL
2
)
{
b
1
where
b
1
is
Relation-like
Function-like
V49
(2)
V50
()
V156
()
V157
()
V158
()
Element
of the
carrier
of
(
TOP-REAL
2
)
: (
rp
<=
b
1
`1
&
b
1
`1
<=
rl
&
rg
<=
b
1
`2
&
b
1
`2
<=
rd
)
}
is
set
Int
(
closed_inside_of_rectangle
(
rp
,
rl
,
rg
,
rd
)
)
is
functional
open
Element
of
bool
the
carrier
of
(
TOP-REAL
2
)
(
closed_inside_of_rectangle
(
rp
,
rl
,
rg
,
rd
)
)
`
is
functional
open
Element
of
bool
the
carrier
of
(
TOP-REAL
2
)
the
carrier
of
(
TOP-REAL
2
)
\
(
closed_inside_of_rectangle
(
rp
,
rl
,
rg
,
rd
)
)
is
set
Cl
(
(
closed_inside_of_rectangle
(
rp
,
rl
,
rg
,
rd
)
)
`
)
is
functional
closed
Element
of
bool
the
carrier
of
(
TOP-REAL
2
)
(
Cl
(
(
closed_inside_of_rectangle
(
rp
,
rl
,
rg
,
rd
)
)
`
)
)
`
is
functional
open
Element
of
bool
the
carrier
of
(
TOP-REAL
2
)
the
carrier
of
(
TOP-REAL
2
)
\
(
Cl
(
(
closed_inside_of_rectangle
(
rp
,
rl
,
rg
,
rd
)
)
`
)
)
is
set
inside_of_rectangle
(
rp
,
rl
,
rg
,
rd
) is
functional
Element
of
bool
the
carrier
of
(
TOP-REAL
2
)
{
b
1
where
b
1
is
Relation-like
Function-like
V49
(2)
V50
()
V156
()
V157
()
V158
()
Element
of the
carrier
of
(
TOP-REAL
2
)
: ( not
b
1
`1
<=
rp
& not
rl
<=
b
1
`1
& not
b
1
`2
<=
rg
& not
rd
<=
b
1
`2
)
}
is
set
rectangle
(
rp
,
rl
,
rg
,
rd
) is
functional
non
empty
proper
closed
compact
bounded
Element
of
bool
the
carrier
of
(
TOP-REAL
2
)
outside_of_rectangle
(
rp
,
rl
,
rg
,
rd
) is
functional
Element
of
bool
the
carrier
of
(
TOP-REAL
2
)
{
b
1
where
b
1
is
Relation-like
Function-like
V49
(2)
V50
()
V156
()
V157
()
V158
()
Element
of the
carrier
of
(
TOP-REAL
2
)
: ( not
rp
<=
b
1
`1
or not
b
1
`1
<=
rl
or not
rg
<=
b
1
`2
or not
b
1
`2
<=
rd
)
}
is
set
{
b
1
where
b
1
is
Relation-like
Function-like
V49
(2)
V50
()
V156
()
V157
()
V158
()
Element
of the
carrier
of
(
TOP-REAL
2
)
: ( (
b
1
`1
=
rp
&
b
1
`2
<=
rd
&
rg
<=
b
1
`2
) or (
b
1
`1
<=
rl
&
rp
<=
b
1
`1
&
b
1
`2
=
rd
) or (
b
1
`1
<=
rl
&
rp
<=
b
1
`1
&
b
1
`2
=
rg
) or (
b
1
`1
=
rl
&
b
1
`2
<=
rd
&
rg
<=
b
1
`2
) )
}
is
set
(
outside_of_rectangle
(
rp
,
rl
,
rg
,
rd
)
)
`
is
functional
Element
of
bool
the
carrier
of
(
TOP-REAL
2
)
the
carrier
of
(
TOP-REAL
2
)
\
(
outside_of_rectangle
(
rp
,
rl
,
rg
,
rd
)
)
is
set
(
(
outside_of_rectangle
(
rp
,
rl
,
rg
,
rd
)
)
`
)
`
is
functional
Element
of
bool
the
carrier
of
(
TOP-REAL
2
)
the
carrier
of
(
TOP-REAL
2
)
\
(
(
outside_of_rectangle
(
rp
,
rl
,
rg
,
rd
)
)
`
)
is
set
Cl
(
(
(
outside_of_rectangle
(
rp
,
rl
,
rg
,
rd
)
)
`
)
`
)
is
functional
closed
Element
of
bool
the
carrier
of
(
TOP-REAL
2
)
(
Cl
(
(
(
outside_of_rectangle
(
rp
,
rl
,
rg
,
rd
)
)
`
)
`
)
)
`
is
functional
open
Element
of
bool
the
carrier
of
(
TOP-REAL
2
)
the
carrier
of
(
TOP-REAL
2
)
\
(
Cl
(
(
(
outside_of_rectangle
(
rp
,
rl
,
rg
,
rd
)
)
`
)
`
)
)
is
set
(
outside_of_rectangle
(
rp
,
rl
,
rg
,
rd
)
)
\/
(
rectangle
(
rp
,
rl
,
rg
,
rd
)
)
is
functional
non
empty
Element
of
bool
the
carrier
of
(
TOP-REAL
2
)
(
(
outside_of_rectangle
(
rp
,
rl
,
rg
,
rd
)
)
\/
(
rectangle
(
rp
,
rl
,
rg
,
rd
)
)
)
`
is
functional
Element
of
bool
the
carrier
of
(
TOP-REAL
2
)
the
carrier
of
(
TOP-REAL
2
)
\
(
(
outside_of_rectangle
(
rp
,
rl
,
rg
,
rd
)
)
\/
(
rectangle
(
rp
,
rl
,
rg
,
rd
)
)
)
is
set
(
rectangle
(
rp
,
rl
,
rg
,
rd
)
)
`
is
functional
non
empty
open
Element
of
bool
the
carrier
of
(
TOP-REAL
2
)
the
carrier
of
(
TOP-REAL
2
)
\
(
rectangle
(
rp
,
rl
,
rg
,
rd
)
)
is
set
(
(
outside_of_rectangle
(
rp
,
rl
,
rg
,
rd
)
)
`
)
/\
(
(
rectangle
(
rp
,
rl
,
rg
,
rd
)
)
`
)
is
functional
Element
of
bool
the
carrier
of
(
TOP-REAL
2
)
(
closed_inside_of_rectangle
(
rp
,
rl
,
rg
,
rd
)
)
/\
(
(
rectangle
(
rp
,
rl
,
rg
,
rd
)
)
`
)
is
functional
Element
of
bool
the
carrier
of
(
TOP-REAL
2
)
(
inside_of_rectangle
(
rp
,
rl
,
rg
,
rd
)
)
\/
(
outside_of_rectangle
(
rp
,
rl
,
rg
,
rd
)
)
is
functional
Element
of
bool
the
carrier
of
(
TOP-REAL
2
)
(
closed_inside_of_rectangle
(
rp
,
rl
,
rg
,
rd
)
)
/\
(
(
inside_of_rectangle
(
rp
,
rl
,
rg
,
rd
)
)
\/
(
outside_of_rectangle
(
rp
,
rl
,
rg
,
rd
)
)
)
is
functional
Element
of
bool
the
carrier
of
(
TOP-REAL
2
)
(
closed_inside_of_rectangle
(
rp
,
rl
,
rg
,
rd
)
)
/\
(
inside_of_rectangle
(
rp
,
rl
,
rg
,
rd
)
)
is
functional
Element
of
bool
the
carrier
of
(
TOP-REAL
2
)
(
closed_inside_of_rectangle
(
rp
,
rl
,
rg
,
rd
)
)
/\
(
outside_of_rectangle
(
rp
,
rl
,
rg
,
rd
)
)
is
functional
Element
of
bool
the
carrier
of
(
TOP-REAL
2
)
(
(
closed_inside_of_rectangle
(
rp
,
rl
,
rg
,
rd
)
)
/\
(
inside_of_rectangle
(
rp
,
rl
,
rg
,
rd
)
)
)
\/
(
(
closed_inside_of_rectangle
(
rp
,
rl
,
rg
,
rd
)
)
/\
(
outside_of_rectangle
(
rp
,
rl
,
rg
,
rd
)
)
)
is
functional
Element
of
bool
the
carrier
of
(
TOP-REAL
2
)
(
(
closed_inside_of_rectangle
(
rp
,
rl
,
rg
,
rd
)
)
/\
(
inside_of_rectangle
(
rp
,
rl
,
rg
,
rd
)
)
)
\/
{}
is
set
rp
is
complex
ext-real
real
set
rl
is
complex
ext-real
real
set
rg
is
complex
ext-real
real
set
rd
is
complex
ext-real
real
set
closed_inside_of_rectangle
(
rp
,
rl
,
rg
,
rd
) is
functional
closed
connected
convex
Element
of
bool
the
carrier
of
(
TOP-REAL
2
)
{
b
1
where
b
1
is
Relation-like
Function-like
V49
(2)
V50
()
V156
()
V157
()
V158
()
Element
of the
carrier
of
(
TOP-REAL
2
)
: (
rp
<=
b
1
`1
&
b
1
`1
<=
rl
&
rg
<=
b
1
`2
&
b
1
`2
<=
rd
)
}
is
set
inside_of_rectangle
(
rp
,
rl
,
rg
,
rd
) is
functional
Element
of
bool
the
carrier
of
(
TOP-REAL
2
)
{
b
1
where
b
1
is
Relation-like
Function-like
V49
(2)
V50
()
V156
()
V157
()
V158
()
Element
of the
carrier
of
(
TOP-REAL
2
)
: ( not
b
1
`1
<=
rp
& not
rl
<=
b
1
`1
& not
b
1
`2
<=
rg
& not
rd
<=
b
1
`2
)
}
is
set
(
closed_inside_of_rectangle
(
rp
,
rl
,
rg
,
rd
)
)
\
(
inside_of_rectangle
(
rp
,
rl
,
rg
,
rd
)
)
is
functional
Element
of
bool
the
carrier
of
(
TOP-REAL
2
)
rectangle
(
rp
,
rl
,
rg
,
rd
) is
functional
non
empty
proper
closed
compact
bounded
Element
of
bool
the
carrier
of
(
TOP-REAL
2
)
{
b
1
where
b
1
is
Relation-like
Function-like
V49
(2)
V50
()
V156
()
V157
()
V158
()
Element
of the
carrier
of
(
TOP-REAL
2
)
: ( (
b
1
`1
=
rp
&
b
1
`2
<=
rd
&
rg
<=
b
1
`2
) or (
b
1
`1
<=
rl
&
rp
<=
b
1
`1
&
b
1
`2
=
rd
) or (
b
1
`1
<=
rl
&
rp
<=
b
1
`1
&
b
1
`2
=
rg
) or (
b
1
`1
=
rl
&
b
1
`2
<=
rd
&
rg
<=
b
1
`2
) )
}
is
set
d
is
set
lg
is
Relation-like
Function-like
V49
(2)
V50
()
V156
()
V157
()
V158
()
Element
of the
carrier
of
(
TOP-REAL
2
)
lg
`1
is
complex
ext-real
real
Element
of
REAL
lg
`2
is
complex
ext-real
real
Element
of
REAL
d
is
set
lg
is
Relation-like
Function-like
V49
(2)
V50
()
V156
()
V157
()
V158
()
Element
of the
carrier
of
(
TOP-REAL
2
)
lg
`1
is
complex
ext-real
real
Element
of
REAL
lg
`2
is
complex
ext-real
real
Element
of
REAL
pg
is
Relation-like
Function-like
V49
(2)
V50
()
V156
()
V157
()
V158
()
Element
of the
carrier
of
(
TOP-REAL
2
)
pg
`1
is
complex
ext-real
real
Element
of
REAL
pg
`2
is
complex
ext-real
real
Element
of
REAL
rp
is
complex
ext-real
real
set
rl
is
complex
ext-real
real
set
rg
is
complex
ext-real
real
set
rd
is
complex
ext-real
real
set
closed_inside_of_rectangle
(
rp
,
rl
,
rg
,
rd
) is
functional
closed
connected
convex
Element
of
bool
the
carrier
of
(
TOP-REAL
2
)
{
b
1
where
b
1
is
Relation-like
Function-like
V49
(2)
V50
()
V156
()
V157
()
V158
()
Element
of the
carrier
of
(
TOP-REAL
2
)
: (
rp
<=
b
1
`1
&
b
1
`1
<=
rl
&
rg
<=
b
1
`2
&
b
1
`2
<=
rd
)
}
is
set
Fr
(
closed_inside_of_rectangle
(
rp
,
rl
,
rg
,
rd
)
)
is
functional
closed
boundary
nowhere_dense
Element
of
bool
the
carrier
of
(
TOP-REAL
2
)
Cl
(
closed_inside_of_rectangle
(
rp
,
rl
,
rg
,
rd
)
)
is
functional
closed
Element
of
bool
the
carrier
of
(
TOP-REAL
2
)
(
closed_inside_of_rectangle
(
rp
,
rl
,
rg
,
rd
)
)
`
is
functional
open
Element
of
bool
the
carrier
of
(
TOP-REAL
2
)
the
carrier
of
(
TOP-REAL
2
)
\
(
closed_inside_of_rectangle
(
rp
,
rl
,
rg
,
rd
)
)
is
set
Cl
(
(
closed_inside_of_rectangle
(
rp
,
rl
,
rg
,
rd
)
)
`
)
is
functional
closed
Element
of
bool
the
carrier
of
(
TOP-REAL
2
)
(
Cl
(
closed_inside_of_rectangle
(
rp
,
rl
,
rg
,
rd
)
)
)
/\
(
Cl
(
(
closed_inside_of_rectangle
(
rp
,
rl
,
rg
,
rd
)
)
`
)
)
is
functional
closed
Element
of
bool
the
carrier
of
(
TOP-REAL
2
)
rectangle
(
rp
,
rl
,
rg
,
rd
) is
functional
non
empty
proper
closed
compact
bounded
Element
of
bool
the
carrier
of
(
TOP-REAL
2
)
Int
(
closed_inside_of_rectangle
(
rp
,
rl
,
rg
,
rd
)
)
is
functional
open
Element
of
bool
the
carrier
of
(
TOP-REAL
2
)
(
Cl
(
(
closed_inside_of_rectangle
(
rp
,
rl
,
rg
,
rd
)
)
`
)
)
`
is
functional
open
Element
of
bool
the
carrier
of
(
TOP-REAL
2
)
the
carrier
of
(
TOP-REAL
2
)
\
(
Cl
(
(
closed_inside_of_rectangle
(
rp
,
rl
,
rg
,
rd
)
)
`
)
)
is
set
(
closed_inside_of_rectangle
(
rp
,
rl
,
rg
,
rd
)
)
\
(
Int
(
closed_inside_of_rectangle
(
rp
,
rl
,
rg
,
rd
)
)
)
is
functional
Element
of
bool
the
carrier
of
(
TOP-REAL
2
)
inside_of_rectangle
(
rp
,
rl
,
rg
,
rd
) is
functional
Element
of
bool
the
carrier
of
(
TOP-REAL
2
)
{
b
1
where
b
1
is
Relation-like
Function-like
V49
(2)
V50
()
V156
()
V157
()
V158
()
Element
of the
carrier
of
(
TOP-REAL
2
)
: ( not
b
1
`1
<=
rp
& not
rl
<=
b
1
`1
& not
b
1
`2
<=
rg
& not
rd
<=
b
1
`2
)
}
is
set
(
closed_inside_of_rectangle
(
rp
,
rl
,
rg
,
rd
)
)
\
(
inside_of_rectangle
(
rp
,
rl
,
rg
,
rd
)
)
is
functional
Element
of
bool
the
carrier
of
(
TOP-REAL
2
)
rp
is
complex
ext-real
real
set
rl
is
complex
ext-real
real
set
rg
is
complex
ext-real
real
set
rd
is
complex
ext-real
real
set
closed_inside_of_rectangle
(
rp
,
rl
,
rg
,
rd
) is
functional
closed
connected
convex
Element
of
bool
the
carrier
of
(
TOP-REAL
2
)
{
b
1
where
b
1
is
Relation-like
Function-like
V49
(2)
V50
()
V156
()
V157
()
V158
()
Element
of the
carrier
of
(
TOP-REAL
2
)
: (
rp
<=
b
1
`1
&
b
1
`1
<=
rl
&
rg
<=
b
1
`2
&
b
1
`2
<=
rd
)
}
is
set
W-bound
(
closed_inside_of_rectangle
(
rp
,
rl
,
rg
,
rd
)
)
is
complex
ext-real
real
Element
of
REAL
(
TOP-REAL
2
)
|
(
closed_inside_of_rectangle
(
rp
,
rl
,
rg
,
rd
)
)
is
strict
TopSpace-like
T_0
T_1
T_2
SubSpace
of
TOP-REAL
2
proj1
|
(
closed_inside_of_rectangle
(
rp
,
rl
,
rg
,
rd
)
)
is
Relation-like
closed_inside_of_rectangle
(
rp
,
rl
,
rg
,
rd
)
-defined
the
carrier
of
(
TOP-REAL
2
)
-defined
the
carrier
of
(
(
TOP-REAL
2
)
|
(
closed_inside_of_rectangle
(
rp
,
rl
,
rg
,
rd
)
)
)
-defined
REAL
-valued
Function-like
total
quasi_total
V156
()
V157
()
V158
()
continuous
Element
of
bool
[:
the
carrier
of
(
(
TOP-REAL
2
)
|
(
closed_inside_of_rectangle
(
rp
,
rl
,
rg
,
rd
)
)
)
,
REAL
:]
the
carrier
of
(
(
TOP-REAL
2
)
|
(
closed_inside_of_rectangle
(
rp
,
rl
,
rg
,
rd
)
)
)
is
set
[:
the
carrier
of
(
(
TOP-REAL
2
)
|
(
closed_inside_of_rectangle
(
rp
,
rl
,
rg
,
rd
)
)
)
,
REAL
:]
is
Relation-like
V156
()
V157
()
V158
()
set
bool
[:
the
carrier
of
(
(
TOP-REAL
2
)
|
(
closed_inside_of_rectangle
(
rp
,
rl
,
rg
,
rd
)
)
)
,
REAL
:]
is non
empty
set
lower_bound
(
proj1
|
(
closed_inside_of_rectangle
(
rp
,
rl
,
rg
,
rd
)
)
)
is
complex
ext-real
real
Element
of
REAL
(
proj1
|
(
closed_inside_of_rectangle
(
rp
,
rl
,
rg
,
rd
)
)
)
.:
the
carrier
of
(
(
TOP-REAL
2
)
|
(
closed_inside_of_rectangle
(
rp
,
rl
,
rg
,
rd
)
)
)
is
V166
()
V167
()
V168
()
Element
of
bool
REAL
K663
(
(
(
proj1
|
(
closed_inside_of_rectangle
(
rp
,
rl
,
rg
,
rd
)
)
)
.:
the
carrier
of
(
(
TOP-REAL
2
)
|
(
closed_inside_of_rectangle
(
rp
,
rl
,
rg
,
rd
)
)
)
)
) is
complex
ext-real
real
Element
of
REAL
|[
rp
,
rg
]|
is
Relation-like
Function-like
V49
(2)
V50
()
V156
()
V157
()
V158
()
Element
of the
carrier
of
(
TOP-REAL
2
)
b
is
V166
()
V167
()
V168
()
Element
of
bool
REAL
c
is
complex
ext-real
real
set
d
is
set
(
proj1
|
(
closed_inside_of_rectangle
(
rp
,
rl
,
rg
,
rd
)
)
)
.
d
is
complex
ext-real
real
set
lg
is
Relation-like
Function-like
V49
(2)
V50
()
V156
()
V157
()
V158
()
Element
of the
carrier
of
(
TOP-REAL
2
)
lg
`1
is
complex
ext-real
real
Element
of
REAL
lg
`2
is
complex
ext-real
real
Element
of
REAL
c
is
complex
ext-real
real
set
|[
rp
,
rg
]|
`1
is
complex
ext-real
real
Element
of
REAL
(
proj1
|
(
closed_inside_of_rectangle
(
rp
,
rl
,
rg
,
rd
)
)
)
.
|[
rp
,
rg
]|
is
complex
ext-real
real
set
rp
is
complex
ext-real
real
set
rl
is
complex
ext-real
real
set
rg
is
complex
ext-real
real
set
rd
is
complex
ext-real
real
set
closed_inside_of_rectangle
(
rp
,
rl
,
rg
,
rd
) is
functional
closed
connected
convex
Element
of
bool
the
carrier
of
(
TOP-REAL
2
)
{
b
1
where
b
1
is
Relation-like
Function-like
V49
(2)
V50
()
V156
()
V157
()
V158
()
Element
of the
carrier
of
(
TOP-REAL
2
)
: (
rp
<=
b
1
`1
&
b
1
`1
<=
rl
&
rg
<=
b
1
`2
&
b
1
`2
<=
rd
)
}
is
set
S-bound
(
closed_inside_of_rectangle
(
rp
,
rl
,
rg
,
rd
)
)
is
complex
ext-real
real
Element
of
REAL
(
TOP-REAL
2
)
|
(
closed_inside_of_rectangle
(
rp
,
rl
,
rg
,
rd
)
)
is
strict
TopSpace-like
T_0
T_1
T_2
SubSpace
of
TOP-REAL
2
proj2
|
(
closed_inside_of_rectangle
(
rp
,
rl
,
rg
,
rd
)
)
is
Relation-like
closed_inside_of_rectangle
(
rp
,
rl
,
rg
,
rd
)
-defined
the
carrier
of
(
TOP-REAL
2
)
-defined
the
carrier
of
(
(
TOP-REAL
2
)
|
(
closed_inside_of_rectangle
(
rp
,
rl
,
rg
,
rd
)
)
)
-defined
REAL
-valued
Function-like
total
quasi_total
V156
()
V157
()
V158
()
continuous
Element
of
bool
[:
the
carrier
of
(
(
TOP-REAL
2
)
|
(
closed_inside_of_rectangle
(
rp
,
rl
,
rg
,
rd
)
)
)
,
REAL
:]
the
carrier
of
(
(
TOP-REAL
2
)
|
(
closed_inside_of_rectangle
(
rp
,
rl
,
rg
,
rd
)
)
)
is
set
[:
the
carrier
of
(
(
TOP-REAL
2
)
|
(
closed_inside_of_rectangle
(
rp
,
rl
,
rg
,
rd
)
)
)
,
REAL
:]
is
Relation-like
V156
()
V157
()
V158
()
set
bool
[:
the
carrier
of
(
(
TOP-REAL
2
)
|
(
closed_inside_of_rectangle
(
rp
,
rl
,
rg
,
rd
)
)
)
,
REAL
:]
is non
empty
set
lower_bound
(
proj2
|
(
closed_inside_of_rectangle
(
rp
,
rl
,
rg
,
rd
)
)
)
is
complex
ext-real
real
Element
of
REAL
(
proj2
|
(
closed_inside_of_rectangle
(
rp
,
rl
,
rg
,
rd
)
)
)
.:
the
carrier
of
(
(
TOP-REAL
2
)
|
(
closed_inside_of_rectangle
(
rp
,
rl
,
rg
,
rd
)
)
)
is
V166
()
V167
()
V168
()
Element
of
bool
REAL
K663
(
(
(
proj2
|
(
closed_inside_of_rectangle
(
rp
,
rl
,
rg
,
rd
)
)
)
.:
the
carrier
of
(
(
TOP-REAL
2
)
|
(
closed_inside_of_rectangle
(
rp
,
rl
,
rg
,
rd
)
)
)
)
) is
complex
ext-real
real
Element
of
REAL
|[
rp
,
rg
]|
is
Relation-like
Function-like
V49
(2)
V50
()
V156
()
V157
()
V158
()
Element
of the
carrier
of
(
TOP-REAL
2
)
b
is
V166
()
V167
()
V168
()
Element
of
bool
REAL
c
is
complex
ext-real
real
set
d
is
set
(
proj2
|
(
closed_inside_of_rectangle
(
rp
,
rl
,
rg
,
rd
)
)
)
.
d
is
complex
ext-real
real
set
lg
is
Relation-like
Function-like
V49
(2)
V50
()
V156
()
V157
()
V158
()
Element
of the
carrier
of
(
TOP-REAL
2
)
lg
`1
is
complex
ext-real
real
Element
of
REAL
lg
`2
is
complex
ext-real
real
Element
of
REAL
c
is
complex
ext-real
real
set
|[
rp
,
rg
]|
`2
is
complex
ext-real
real
Element
of
REAL
(
proj2
|
(
closed_inside_of_rectangle
(
rp
,
rl
,
rg
,
rd
)
)
)
.
|[
rp
,
rg
]|
is
complex
ext-real
real
set
rp
is
complex
ext-real
real
set
rl
is
complex
ext-real
real
set
rg
is
complex
ext-real
real
set
rd
is
complex
ext-real
real
set
closed_inside_of_rectangle
(
rp
,
rl
,
rg
,
rd
) is
functional
closed
connected
convex
Element
of
bool
the
carrier
of
(
TOP-REAL
2
)
{
b
1
where
b
1
is
Relation-like
Function-like
V49
(2)
V50
()
V156
()
V157
()
V158
()
Element
of the
carrier
of
(
TOP-REAL
2
)
: (
rp
<=
b
1
`1
&
b
1
`1
<=
rl
&
rg
<=
b
1
`2
&
b
1
`2
<=
rd
)
}
is
set
E-bound
(
closed_inside_of_rectangle
(
rp
,
rl
,
rg
,
rd
)
)
is
complex
ext-real
real
Element
of
REAL
(
TOP-REAL
2
)
|
(
closed_inside_of_rectangle
(
rp
,
rl
,
rg
,
rd
)
)
is
strict
TopSpace-like
T_0
T_1
T_2
SubSpace
of
TOP-REAL
2
proj1
|
(
closed_inside_of_rectangle
(
rp
,
rl
,
rg
,
rd
)
)
is
Relation-like
closed_inside_of_rectangle
(
rp
,
rl
,
rg
,
rd
)
-defined
the
carrier
of
(
TOP-REAL
2
)
-defined
the
carrier
of
(
(
TOP-REAL
2
)
|
(
closed_inside_of_rectangle
(
rp
,
rl
,
rg
,
rd
)
)
)
-defined
REAL
-valued
Function-like
total
quasi_total
V156
()
V157
()
V158
()
continuous
Element
of
bool
[:
the
carrier
of
(
(
TOP-REAL
2
)
|
(
closed_inside_of_rectangle
(
rp
,
rl
,
rg
,
rd
)
)
)
,
REAL
:]
the
carrier
of
(
(
TOP-REAL
2
)
|
(
closed_inside_of_rectangle
(
rp
,
rl
,
rg
,
rd
)
)
)
is
set
[:
the
carrier
of
(
(
TOP-REAL
2
)
|
(
closed_inside_of_rectangle
(
rp
,
rl
,
rg
,
rd
)
)
)
,
REAL
:]
is
Relation-like
V156
()
V157
()
V158
()
set
bool
[:
the
carrier
of
(
(
TOP-REAL
2
)
|
(
closed_inside_of_rectangle
(
rp
,
rl
,
rg
,
rd
)
)
)
,
REAL
:]
is non
empty
set
upper_bound
(
proj1
|
(
closed_inside_of_rectangle
(
rp
,
rl
,
rg
,
rd
)
)
)
is
complex
ext-real
real
Element
of
REAL
(
proj1
|
(
closed_inside_of_rectangle
(
rp
,
rl
,
rg
,
rd
)
)
)
.:
the
carrier
of
(
(
TOP-REAL
2
)
|
(
closed_inside_of_rectangle
(
rp
,
rl
,
rg
,
rd
)
)
)
is
V166
()
V167
()
V168
()
Element
of
bool
REAL
K662
(
(
(
proj1
|
(
closed_inside_of_rectangle
(
rp
,
rl
,
rg
,
rd
)
)
)
.:
the
carrier
of
(
(
TOP-REAL
2
)
|
(
closed_inside_of_rectangle
(
rp
,
rl
,
rg
,
rd
)
)
)
)
) is
complex
ext-real
real
Element
of
REAL
b
is
V166
()
V167
()
V168
()
Element
of
bool
REAL
c
is
complex
ext-real
real
set
d
is
set
(
proj1
|
(
closed_inside_of_rectangle
(
rp
,
rl
,
rg
,
rd
)
)
)
.
d
is
complex
ext-real
real
set
lg
is
Relation-like
Function-like
V49
(2)
V50
()
V156
()
V157
()
V158
()
Element
of the
carrier
of
(
TOP-REAL
2
)
lg
`1
is
complex
ext-real
real
Element
of
REAL
lg
`2
is
complex
ext-real
real
Element
of
REAL
c
is
complex
ext-real
real
set
|[
rl
,
rd
]|
is
Relation-like
Function-like
V49
(2)
V50
()
V156
()
V157
()
V158
()
Element
of the
carrier
of
(
TOP-REAL
2
)
|[
rl
,
rd
]|
`1
is
complex
ext-real
real
Element
of
REAL
|[
rl
,
rd
]|
`2
is
complex
ext-real
real
Element
of
REAL
(
proj1
|
(
closed_inside_of_rectangle
(
rp
,
rl
,
rg
,
rd
)
)
)
.
|[
rl
,
rd
]|
is
complex
ext-real
real
set
|[
rp
,
rg
]|
is
Relation-like
Function-like
V49
(2)
V50
()
V156
()
V157
()
V158
()
Element
of the
carrier
of
(
TOP-REAL
2
)
rp
is
complex
ext-real
real
set
rl
is
complex
ext-real
real
set
rg
is
complex
ext-real
real
set
rd
is
complex
ext-real
real
set
closed_inside_of_rectangle
(
rp
,
rl
,
rg
,
rd
) is
functional
closed
connected
convex
Element
of
bool
the
carrier
of
(
TOP-REAL
2
)
{
b
1
where
b
1
is
Relation-like
Function-like
V49
(2)
V50
()
V156
()
V157
()
V158
()
Element
of the
carrier
of
(
TOP-REAL
2
)
: (
rp
<=
b
1
`1
&
b
1
`1
<=
rl
&
rg
<=
b
1
`2
&
b
1
`2
<=
rd
)
}
is
set
N-bound
(
closed_inside_of_rectangle
(
rp
,
rl
,
rg
,
rd
)
)
is
complex
ext-real
real
Element
of
REAL
(
TOP-REAL
2
)
|
(
closed_inside_of_rectangle
(
rp
,
rl
,
rg
,
rd
)
)
is
strict
TopSpace-like
T_0
T_1
T_2
SubSpace
of
TOP-REAL
2
proj2
|
(
closed_inside_of_rectangle
(
rp
,
rl
,
rg
,
rd
)
)
is
Relation-like
closed_inside_of_rectangle
(
rp
,
rl
,
rg
,
rd
)
-defined
the
carrier
of
(
TOP-REAL
2
)
-defined
the
carrier
of
(
(
TOP-REAL
2
)
|
(
closed_inside_of_rectangle
(
rp
,
rl
,
rg
,
rd
)
)
)
-defined
REAL
-valued
Function-like
total
quasi_total
V156
()
V157
()
V158
()
continuous
Element
of
bool
[:
the
carrier
of
(
(
TOP-REAL
2
)
|
(
closed_inside_of_rectangle
(
rp
,
rl
,
rg
,
rd
)
)
)
,
REAL
:]
the
carrier
of
(
(
TOP-REAL
2
)
|
(
closed_inside_of_rectangle
(
rp
,
rl
,
rg
,
rd
)
)
)
is
set
[:
the
carrier
of
(
(
TOP-REAL
2
)
|
(
closed_inside_of_rectangle
(
rp
,
rl
,
rg
,
rd
)
)
)
,
REAL
:]
is
Relation-like
V156
()
V157
()
V158
()
set
bool
[:
the
carrier
of
(
(
TOP-REAL
2
)
|
(
closed_inside_of_rectangle
(
rp
,
rl
,
rg
,
rd
)
)
)
,
REAL
:]
is non
empty
set
upper_bound
(
proj2
|
(
closed_inside_of_rectangle
(
rp
,
rl
,
rg
,
rd
)
)
)
is
complex
ext-real
real
Element
of
REAL
(
proj2
|
(
closed_inside_of_rectangle
(
rp
,
rl
,
rg
,
rd
)
)
)
.:
the
carrier
of
(
(
TOP-REAL
2
)
|
(
closed_inside_of_rectangle
(
rp
,
rl
,
rg
,
rd
)
)
)
is
V166
()
V167
()
V168
()
Element
of
bool
REAL
K662
(
(
(
proj2
|
(
closed_inside_of_rectangle
(
rp
,
rl
,
rg
,
rd
)
)
)
.:
the
carrier
of
(
(
TOP-REAL
2
)
|
(
closed_inside_of_rectangle
(
rp
,
rl
,
rg
,
rd
)
)
)
)
) is
complex
ext-real
real
Element
of
REAL
b
is
V166
()
V167
()
V168
()
Element
of
bool
REAL
c
is
complex
ext-real
real
set
d
is
set
(
proj2
|
(
closed_inside_of_rectangle
(
rp
,
rl
,
rg
,
rd
)
)
)
.
d
is
complex
ext-real
real
set
lg
is
Relation-like
Function-like
V49
(2)
V50
()
V156
()
V157
()
V158
()
Element
of the
carrier
of
(
TOP-REAL
2
)
lg
`1
is
complex
ext-real
real
Element
of
REAL
lg
`2
is
complex
ext-real
real
Element
of
REAL
c
is
complex
ext-real
real
set
|[
rl
,
rd
]|
is
Relation-like
Function-like
V49
(2)
V50
()
V156
()
V157
()
V158
()
Element
of the
carrier
of
(
TOP-REAL
2
)
|[
rl
,
rd
]|
`1
is
complex
ext-real
real
Element
of
REAL
|[
rl
,
rd
]|
`2
is
complex
ext-real
real
Element
of
REAL
(
proj2
|
(
closed_inside_of_rectangle
(
rp
,
rl
,
rg
,
rd
)
)
)
.
|[
rl
,
rd
]|
is
complex
ext-real
real
set
|[
rp
,
rg
]|
is
Relation-like
Function-like
V49
(2)
V50
()
V156
()
V157
()
V158
()
Element
of the
carrier
of
(
TOP-REAL
2
)
rp
is
complex
ext-real
real
set
rl
is
complex
ext-real
real
set
rg
is
complex
ext-real
real
set
rd
is
complex
ext-real
real
set
closed_inside_of_rectangle
(
rp
,
rl
,
rg
,
rd
) is
functional
closed
connected
convex
Element
of
bool
the
carrier
of
(
TOP-REAL
2
)
{
b
1
where
b
1
is
Relation-like
Function-like
V49
(2)
V50
()
V156
()
V157
()
V158
()
Element
of the
carrier
of
(
TOP-REAL
2
)
: (
rp
<=
b
1
`1
&
b
1
`1
<=
rl
&
rg
<=
b
1
`2
&
b
1
`2
<=
rd
)
}
is
set
rectangle
(
rp
,
rl
,
rg
,
rd
) is
functional
non
empty
proper
closed
compact
bounded
Element
of
bool
the
carrier
of
(
TOP-REAL
2
)
a
is
Relation-like
Function-like
V49
(2)
V50
()
V156
()
V157
()
V158
()
Element
of the
carrier
of
(
TOP-REAL
2
)
b
is
Relation-like
Function-like
V49
(2)
V50
()
V156
()
V157
()
V158
()
Element
of the
carrier
of
(
TOP-REAL
2
)
c
is
functional
Element
of
bool
the
carrier
of
(
TOP-REAL
2
)
First_Point
(
c
,
a
,
b
,
(
rectangle
(
rp
,
rl
,
rg
,
rd
)
)
) is
Relation-like
Function-like
V49
(2)
V50
()
V156
()
V157
()
V158
()
Element
of the
carrier
of
(
TOP-REAL
2
)
Segment
(
c
,
a
,
b
,
a
,
(
First_Point
(
c
,
a
,
b
,
(
rectangle
(
rp
,
rl
,
rg
,
rd
)
)
)
)
) is
functional
Element
of
bool
the
carrier
of
(
TOP-REAL
2
)
ld
is
set
Fr
(
closed_inside_of_rectangle
(
rp
,
rl
,
rg
,
rd
)
)
is
functional
closed
boundary
nowhere_dense
Element
of
bool
the
carrier
of
(
TOP-REAL
2
)
Cl
(
closed_inside_of_rectangle
(
rp
,
rl
,
rg
,
rd
)
)
is
functional
closed
Element
of
bool
the
carrier
of
(
TOP-REAL
2
)
(
closed_inside_of_rectangle
(
rp
,
rl
,
rg
,
rd
)
)
`
is
functional
open
Element
of
bool
the
carrier
of
(
TOP-REAL
2
)
the
carrier
of
(
TOP-REAL
2
)
\
(
closed_inside_of_rectangle
(
rp
,
rl
,
rg
,
rd
)
)
is
set
Cl
(
(
closed_inside_of_rectangle
(
rp
,
rl
,
rg
,
rd
)
)
`
)
is
functional
closed
Element
of
bool
the
carrier
of
(
TOP-REAL
2
)
(
Cl
(
closed_inside_of_rectangle
(
rp
,
rl
,
rg
,
rd
)
)
)
/\
(
Cl
(
(
closed_inside_of_rectangle
(
rp
,
rl
,
rg
,
rd
)
)
`
)
)
is
functional
closed
Element
of
bool
the
carrier
of
(
TOP-REAL
2
)
c
\
(
closed_inside_of_rectangle
(
rp
,
rl
,
rg
,
rd
)
)
is
functional
Element
of
bool
the
carrier
of
(
TOP-REAL
2
)
{}
(
TOP-REAL
2
)
is
Relation-like
non-empty
empty-yielding
RAT
-valued
Function-like
one-to-one
constant
functional
empty
proper
open
closed
boundary
nowhere_dense
connected
compact
V156
()
V157
()
V158
()
V159
()
V166
()
V167
()
V168
()
V169
()
V170
()
V171
()
V172
()
bounded
being_Region
horizontal
vertical
bounded_below
interval
Element
of
bool
the
carrier
of
(
TOP-REAL
2
)
c
/\
(
rectangle
(
rp
,
rl
,
rg
,
rd
)
)
is
functional
Element
of
bool
the
carrier
of
(
TOP-REAL
2
)
pd
is
Relation-like
Function-like
V49
(2)
V50
()
V156
()
V157
()
V158
()
Element
of the
carrier
of
(
TOP-REAL
2
)
pd
is
Relation-like
Function-like
V49
(2)
V50
()
V156
()
V157
()
V158
()
Element
of the
carrier
of
(
TOP-REAL
2
)
R
is
functional
non
empty
Element
of
bool
the
carrier
of
(
TOP-REAL
2
)
(
TOP-REAL
2
)
|
R
is non
empty
strict
TopSpace-like
T_0
T_1
T_2
SubSpace
of
TOP-REAL
2
the
carrier
of
(
(
TOP-REAL
2
)
|
R
)
is non
empty
set
[:
the
carrier
of
I[01]
, the
carrier
of
(
(
TOP-REAL
2
)
|
R
)
:]
is
Relation-like
non
empty
set
bool
[:
the
carrier
of
I[01]
, the
carrier
of
(
(
TOP-REAL
2
)
|
R
)
:]
is non
empty
set
dR
is
Relation-like
the
carrier
of
I[01]
-defined
the
carrier
of
(
(
TOP-REAL
2
)
|
R
)
-valued
Function-like
non
empty
total
quasi_total
Element
of
bool
[:
the
carrier
of
I[01]
, the
carrier
of
(
(
TOP-REAL
2
)
|
R
)
:]
dR
.
0
is
set
dR
.
1 is
set
rng
dR
is non
empty
Element
of
bool
the
carrier
of
(
(
TOP-REAL
2
)
|
R
)
bool
the
carrier
of
(
(
TOP-REAL
2
)
|
R
)
is non
empty
set
[#]
(
(
TOP-REAL
2
)
|
R
)
is non
empty
non
proper
open
closed
dense
non
boundary
Element
of
bool
the
carrier
of
(
(
TOP-REAL
2
)
|
R
)
dom
dR
is non
empty
V166
()
V167
()
V168
()
Element
of
bool
the
carrier
of
I[01]
bool
the
carrier
of
I[01]
is non
empty
set
TR
is
set
dR
.
TR
is
set
C
is
complex
ext-real
real
Element
of
REAL
Segment
(
R
,
a
,
b
,
a
,
(
First_Point
(
c
,
a
,
b
,
(
rectangle
(
rp
,
rl
,
rg
,
rd
)
)
)
)
) is
functional
Element
of
bool
the
carrier
of
(
TOP-REAL
2
)
P
is
set
dR
.
P
is
set
U
is
complex
ext-real
real
Element
of
REAL
Segment
(
R
,
a
,
b
,
a
,
pd
) is
functional
Element
of
bool
the
carrier
of
(
TOP-REAL
2
)
(
Segment
(
R
,
a
,
b
,
a
,
pd
)
)
\
(
closed_inside_of_rectangle
(
rp
,
rl
,
rg
,
rd
)
)
is
functional
Element
of
bool
the
carrier
of
(
TOP-REAL
2
)
l
is
set
{
b
1
where
b
1
is
Relation-like
Function-like
V49
(2)
V50
()
V156
()
V157
()
V158
()
Element
of the
carrier
of
(
TOP-REAL
2
)
: (
LE
a
,
b
1
,
R
,
a
,
b
&
LE
b
1
,
pd
,
R
,
a
,
b
)
}
is
set
LJ
is
Relation-like
Function-like
V49
(2)
V50
()
V156
()
V157
()
V158
()
Element
of the
carrier
of
(
TOP-REAL
2
)
k
is
set
dR
.
k
is
set
x
is
complex
ext-real
real
Element
of
REAL
A1
is
Relation-like
Function-like
V49
(2)
V50
()
V156
()
V157
()
V158
()
Element
of the
carrier
of
(
TOP-REAL
2
)
{
b
1
where
b
1
is
Relation-like
Function-like
V49
(2)
V50
()
V156
()
V157
()
V158
()
Element
of the
carrier
of
(
TOP-REAL
2
)
: (
LE
a
,
b
1
,
R
,
a
,
b
&
LE
b
1
,
First_Point
(
c
,
a
,
b
,
(
rectangle
(
rp
,
rl
,
rg
,
rd
)
)
),
R
,
a
,
b
)
}
is
set
A1
is
Relation-like
Function-like
V49
(2)
V50
()
V156
()
V157
()
V158
()
Element
of the
carrier
of
(
TOP-REAL
2
)
pd
is
Relation-like
Function-like
V49
(2)
V50
()
V156
()
V157
()
V158
()
Element
of the
carrier
of
(
TOP-REAL
2
)
rp
is non
empty
TopSpace-like
TopStruct
rl
is non
empty
TopSpace-like
TopStruct
[:
rp
,
rl
:]
is non
empty
strict
TopSpace-like
TopStruct
the
carrier
of
[:
rp
,
rl
:]
is non
empty
set
rg
is
Element
of the
carrier
of
[:
rp
,
rl
:]
rg
`1
is
set
the
carrier
of
rp
is non
empty
set
the
carrier
of
rl
is non
empty
set
[:
the
carrier
of
rp
, the
carrier
of
rl
:]
is
Relation-like
non
empty
set
rg
`2
is
set
the
carrier
of
rl
is non
empty
set
[:
the
carrier
of
rp
, the
carrier
of
rl
:]
is
Relation-like
non
empty
set
[:
the
carrier
of
[:
(
TOP-REAL
2
)
,
(
TOP-REAL
2
)
:]
,
REAL
:]
is
Relation-like
non
empty
V156
()
V157
()
V158
()
set
bool
[:
the
carrier
of
[:
(
TOP-REAL
2
)
,
(
TOP-REAL
2
)
:]
,
REAL
:]
is non
empty
set
rp
is
Relation-like
Function-like
V49
(2)
V50
()
V156
()
V157
()
V158
()
Element
of the
carrier
of
(
TOP-REAL
2
)
rp
`1
is
complex
ext-real
real
Element
of
REAL
rl
is
Relation-like
the
carrier
of
[:
(
TOP-REAL
2
)
,
(
TOP-REAL
2
)
:]
-defined
REAL
-valued
Function-like
non
empty
total
quasi_total
V156
()
V157
()
V158
()
Element
of
bool
[:
the
carrier
of
[:
(
TOP-REAL
2
)
,
(
TOP-REAL
2
)
:]
,
REAL
:]
rg
is
Element
of the
carrier
of
[:
(
TOP-REAL
2
)
,
(
TOP-REAL
2
)
:]
rl
.
rg
is
complex
ext-real
real
Element
of
REAL
(
(
TOP-REAL
2
)
,
(
TOP-REAL
2
)
,
rg
) is
Relation-like
Function-like
V49
(2)
V50
()
V156
()
V157
()
V158
()
Element
of the
carrier
of
(
TOP-REAL
2
)
(
(
TOP-REAL
2
)
,
(
TOP-REAL
2
)
,
rg
)
`1
is
complex
ext-real
real
Element
of
REAL
(
(
(
TOP-REAL
2
)
,
(
TOP-REAL
2
)
,
rg
)
`1
)
-
(
rp
`1
)
is
complex
ext-real
real
Element
of
REAL
rl
is
Relation-like
the
carrier
of
[:
(
TOP-REAL
2
)
,
(
TOP-REAL
2
)
:]
-defined
REAL
-valued
Function-like
non
empty
total
quasi_total
V156
()
V157
()
V158
()
Element
of
bool
[:
the
carrier
of
[:
(
TOP-REAL
2
)
,
(
TOP-REAL
2
)
:]
,
REAL
:]
rg
is
Relation-like
the
carrier
of
[:
(
TOP-REAL
2
)
,
(
TOP-REAL
2
)
:]
-defined
REAL
-valued
Function-like
non
empty
total
quasi_total
V156
()
V157
()
V158
()
Element
of
bool
[:
the
carrier
of
[:
(
TOP-REAL
2
)
,
(
TOP-REAL
2
)
:]
,
REAL
:]
rd
is
Element
of the
carrier
of
[:
(
TOP-REAL
2
)
,
(
TOP-REAL
2
)
:]
rl
.
rd
is
complex
ext-real
real
Element
of
REAL
(
(
TOP-REAL
2
)
,
(
TOP-REAL
2
)
,
rd
) is
Relation-like
Function-like
V49
(2)
V50
()
V156
()
V157
()
V158
()
Element
of the
carrier
of
(
TOP-REAL
2
)
(
(
TOP-REAL
2
)
,
(
TOP-REAL
2
)
,
rd
)
`1
is
complex
ext-real
real
Element
of
REAL
(
(
(
TOP-REAL
2
)
,
(
TOP-REAL
2
)
,
rd
)
`1
)
-
(
rp
`1
)
is
complex
ext-real
real
Element
of
REAL
rg
.
rd
is
complex
ext-real
real
Element
of
REAL
rp
`2
is
complex
ext-real
real
Element
of
REAL
rl
is
Relation-like
the
carrier
of
[:
(
TOP-REAL
2
)
,
(
TOP-REAL
2
)
:]
-defined
REAL
-valued
Function-like
non
empty
total
quasi_total
V156
()
V157
()
V158
()
Element
of
bool
[:
the
carrier
of
[:
(
TOP-REAL
2
)
,
(
TOP-REAL
2
)
:]
,
REAL
:]
rg
is
Element
of the
carrier
of
[:
(
TOP-REAL
2
)
,
(
TOP-REAL
2
)
:]
rl
.
rg
is
complex
ext-real
real
Element
of
REAL
(
(
TOP-REAL
2
)
,
(
TOP-REAL
2
)
,
rg
) is
Relation-like
Function-like
V49
(2)
V50
()
V156
()
V157
()
V158
()
Element
of the
carrier
of
(
TOP-REAL
2
)
(
(
TOP-REAL
2
)
,
(
TOP-REAL
2
)
,
rg
)
`2
is
complex
ext-real
real
Element
of
REAL
(
(
(
TOP-REAL
2
)
,
(
TOP-REAL
2
)
,
rg
)
`2
)
-
(
rp
`2
)
is
complex
ext-real
real
Element
of
REAL
rl
is
Relation-like
the
carrier
of
[:
(
TOP-REAL
2
)
,
(
TOP-REAL
2
)
:]
-defined
REAL
-valued
Function-like
non
empty
total
quasi_total
V156
()
V157
()
V158
()
Element
of
bool
[:
the
carrier
of
[:
(
TOP-REAL
2
)
,
(
TOP-REAL
2
)
:]
,
REAL
:]
rg
is
Relation-like
the
carrier
of
[:
(
TOP-REAL
2
)
,
(
TOP-REAL
2
)
:]
-defined
REAL
-valued
Function-like
non
empty
total
quasi_total
V156
()
V157
()
V158
()
Element
of
bool
[:
the
carrier
of
[:
(
TOP-REAL
2
)
,
(
TOP-REAL
2
)
:]
,
REAL
:]
rd
is
Element
of the
carrier
of
[:
(
TOP-REAL
2
)
,
(
TOP-REAL
2
)
:]
rl
.
rd
is
complex
ext-real
real
Element
of
REAL
(
(
TOP-REAL
2
)
,
(
TOP-REAL
2
)
,
rd
) is
Relation-like
Function-like
V49
(2)
V50
()
V156
()
V157
()
V158
()
Element
of the
carrier
of
(
TOP-REAL
2
)
(
(
TOP-REAL
2
)
,
(
TOP-REAL
2
)
,
rd
)
`2
is
complex
ext-real
real
Element
of
REAL
(
(
(
TOP-REAL
2
)
,
(
TOP-REAL
2
)
,
rd
)
`2
)
-
(
rp
`2
)
is
complex
ext-real
real
Element
of
REAL
rg
.
rd
is
complex
ext-real
real
Element
of
REAL
rp
is
Relation-like
the
carrier
of
[:
(
TOP-REAL
2
)
,
(
TOP-REAL
2
)
:]
-defined
REAL
-valued
Function-like
non
empty
total
quasi_total
V156
()
V157
()
V158
()
Element
of
bool
[:
the
carrier
of
[:
(
TOP-REAL
2
)
,
(
TOP-REAL
2
)
:]
,
REAL
:]
rl
is
Element
of the
carrier
of
[:
(
TOP-REAL
2
)
,
(
TOP-REAL
2
)
:]
rp
.
rl
is
complex
ext-real
real
Element
of
REAL
(
(
TOP-REAL
2
)
,
(
TOP-REAL
2
)
,
rl
) is
Relation-like
Function-like
V49
(2)
V50
()
V156
()
V157
()
V158
()
Element
of the
carrier
of
(
TOP-REAL
2
)
(
(
TOP-REAL
2
)
,
(
TOP-REAL
2
)
,
rl
)
`1
is
complex
ext-real
real
Element
of
REAL
(
(
TOP-REAL
2
)
,
(
TOP-REAL
2
)
,
rl
) is
Relation-like
Function-like
V49
(2)
V50
()
V156
()
V157
()
V158
()
Element
of the
carrier
of
(
TOP-REAL
2
)
(
(
TOP-REAL
2
)
,
(
TOP-REAL
2
)
,
rl
)
`1
is
complex
ext-real
real
Element
of
REAL
(
(
(
TOP-REAL
2
)
,
(
TOP-REAL
2
)
,
rl
)
`1
)
-
(
(
(
TOP-REAL
2
)
,
(
TOP-REAL
2
)
,
rl
)
`1
)
is
complex
ext-real
real
Element
of
REAL
rp
is
Relation-like
the
carrier
of
[:
(
TOP-REAL
2
)
,
(
TOP-REAL
2
)
:]
-defined
REAL
-valued
Function-like
non
empty
total
quasi_total
V156
()
V157
()
V158
()
Element
of
bool
[:
the
carrier
of
[:
(
TOP-REAL
2
)
,
(
TOP-REAL
2
)
:]
,
REAL
:]
rl
is
Relation-like
the
carrier
of
[:
(
TOP-REAL
2
)
,
(
TOP-REAL
2
)
:]
-defined
REAL
-valued
Function-like
non
empty
total
quasi_total
V156
()
V157
()
V158
()
Element
of
bool
[:
the
carrier
of
[:
(
TOP-REAL
2
)
,
(
TOP-REAL
2
)
:]
,
REAL
:]
rg
is
Element
of the
carrier
of
[:
(
TOP-REAL
2
)
,
(
TOP-REAL
2
)
:]
rp
.
rg
is
complex
ext-real
real
Element
of
REAL
(
(
TOP-REAL
2
)
,
(
TOP-REAL
2
)
,
rg
) is
Relation-like
Function-like
V49
(2)
V50
()
V156
()
V157
()
V158
()
Element
of the
carrier
of
(
TOP-REAL
2
)
(
(
TOP-REAL
2
)
,
(
TOP-REAL
2
)
,
rg
)
`1
is
complex
ext-real
real
Element
of
REAL
(
(
TOP-REAL
2
)
,
(
TOP-REAL
2
)
,
rg
) is
Relation-like
Function-like
V49
(2)
V50
()
V156
()
V157
()
V158
()
Element
of the
carrier
of
(
TOP-REAL
2
)
(
(
TOP-REAL
2
)
,
(
TOP-REAL
2
)
,
rg
)
`1
is
complex
ext-real
real
Element
of
REAL
(
(
(
TOP-REAL
2
)
,
(
TOP-REAL
2
)
,
rg
)
`1
)
-
(
(
(
TOP-REAL
2
)
,
(
TOP-REAL
2
)
,
rg
)
`1
)
is
complex
ext-real
real
Element
of
REAL
rl
.
rg
is
complex
ext-real
real
Element
of
REAL
rp
is
Relation-like
the
carrier
of
[:
(
TOP-REAL
2
)
,
(
TOP-REAL
2
)
:]
-defined
REAL
-valued
Function-like
non
empty
total
quasi_total
V156
()
V157
()
V158
()
Element
of
bool
[:
the
carrier
of
[:
(
TOP-REAL
2
)
,
(
TOP-REAL
2
)
:]
,
REAL
:]
rl
is
Element
of the
carrier
of
[:
(
TOP-REAL
2
)
,
(
TOP-REAL
2
)
:]
rp
.
rl
is
complex
ext-real
real
Element
of
REAL
(
(
TOP-REAL
2
)
,
(
TOP-REAL
2
)
,
rl
) is
Relation-like
Function-like
V49
(2)
V50
()
V156
()
V157
()
V158
()
Element
of the
carrier
of
(
TOP-REAL
2
)
(
(
TOP-REAL
2
)
,
(
TOP-REAL
2
)
,
rl
)
`2
is
complex
ext-real
real
Element
of
REAL
(
(
TOP-REAL
2
)
,
(
TOP-REAL
2
)
,
rl
) is
Relation-like
Function-like
V49
(2)
V50
()
V156
()
V157
()
V158
()
Element
of the
carrier
of
(
TOP-REAL
2
)
(
(
TOP-REAL
2
)
,
(
TOP-REAL
2
)
,
rl
)
`2
is
complex
ext-real
real
Element
of
REAL
(
(
(
TOP-REAL
2
)
,
(
TOP-REAL
2
)
,
rl
)
`2
)
-
(
(
(
TOP-REAL
2
)
,
(
TOP-REAL
2
)
,
rl
)
`2
)
is
complex
ext-real
real
Element
of
REAL
rp
is
Relation-like
the
carrier
of
[:
(
TOP-REAL
2
)
,
(
TOP-REAL
2
)
:]
-defined
REAL
-valued
Function-like
non
empty
total
quasi_total
V156
()
V157
()
V158
()
Element
of
bool
[:
the
carrier
of
[:
(
TOP-REAL
2
)
,
(
TOP-REAL
2
)
:]
,
REAL
:]
rl
is
Relation-like
the
carrier
of
[:
(
TOP-REAL
2
)
,
(
TOP-REAL
2
)
:]
-defined
REAL
-valued
Function-like
non
empty
total
quasi_total
V156
()
V157
()
V158
()
Element
of
bool
[:
the
carrier
of
[:
(
TOP-REAL
2
)
,
(
TOP-REAL
2
)
:]
,
REAL
:]
rg
is
Element
of the
carrier
of
[:
(
TOP-REAL
2
)
,
(
TOP-REAL
2
)
:]
rp
.
rg
is
complex
ext-real
real
Element
of
REAL
(
(
TOP-REAL
2
)
,
(
TOP-REAL
2
)
,
rg
) is
Relation-like
Function-like
V49
(2)
V50
()
V156
()
V157
()
V158
()
Element
of the
carrier
of
(
TOP-REAL
2
)
(
(
TOP-REAL
2
)
,
(
TOP-REAL
2
)
,
rg
)
`2
is
complex
ext-real
real
Element
of
REAL
(
(
TOP-REAL
2
)
,
(
TOP-REAL
2
)
,
rg
) is
Relation-like
Function-like
V49
(2)
V50
()
V156
()
V157
()
V158
()
Element
of the
carrier
of
(
TOP-REAL
2
)
(
(
TOP-REAL
2
)
,
(
TOP-REAL
2
)
,
rg
)
`2
is
complex
ext-real
real
Element
of
REAL
(
(
(
TOP-REAL
2
)
,
(
TOP-REAL
2
)
,
rg
)
`2
)
-
(
(
(
TOP-REAL
2
)
,
(
TOP-REAL
2
)
,
rg
)
`2
)
is
complex
ext-real
real
Element
of
REAL
rl
.
rg
is
complex
ext-real
real
Element
of
REAL
rp
is
Relation-like
the
carrier
of
[:
(
TOP-REAL
2
)
,
(
TOP-REAL
2
)
:]
-defined
REAL
-valued
Function-like
non
empty
total
quasi_total
V156
()
V157
()
V158
()
Element
of
bool
[:
the
carrier
of
[:
(
TOP-REAL
2
)
,
(
TOP-REAL
2
)
:]
,
REAL
:]
rl
is
Element
of the
carrier
of
[:
(
TOP-REAL
2
)
,
(
TOP-REAL
2
)
:]
rp
.
rl
is
complex
ext-real
real
Element
of
REAL
(
(
TOP-REAL
2
)
,
(
TOP-REAL
2
)
,
rl
) is
Relation-like
Function-like
V49
(2)
V50
()
V156
()
V157
()
V158
()
Element
of the
carrier
of
(
TOP-REAL
2
)
(
(
TOP-REAL
2
)
,
(
TOP-REAL
2
)
,
rl
)
`1
is
complex
ext-real
real
Element
of
REAL
rp
is
Relation-like
the
carrier
of
[:
(
TOP-REAL
2
)
,
(
TOP-REAL
2
)
:]
-defined
REAL
-valued
Function-like
non
empty
total
quasi_total
V156
()
V157
()
V158
()
Element
of
bool
[:
the
carrier
of
[:
(
TOP-REAL
2
)
,
(
TOP-REAL
2
)
:]
,
REAL
:]
rl
is
Relation-like
the
carrier
of
[:
(
TOP-REAL
2
)
,
(
TOP-REAL
2
)
:]
-defined
REAL
-valued
Function-like
non
empty
total
quasi_total
V156
()
V157
()
V158
()
Element
of
bool
[:
the
carrier
of
[:
(
TOP-REAL
2
)
,
(
TOP-REAL
2
)
:]
,
REAL
:]
rg
is
Element
of the
carrier
of
[:
(
TOP-REAL
2
)
,
(
TOP-REAL
2
)
:]
rp
.
rg
is
complex
ext-real
real
Element
of
REAL
(
(
TOP-REAL
2
)
,
(
TOP-REAL
2
)
,
rg
) is
Relation-like
Function-like
V49
(2)
V50
()
V156
()
V157
()
V158
()
Element
of the
carrier
of
(
TOP-REAL
2
)
(
(
TOP-REAL
2
)
,
(
TOP-REAL
2
)
,
rg
)
`1
is
complex
ext-real
real
Element
of
REAL
rl
.
rg
is
complex
ext-real
real
Element
of
REAL
rp
is
Relation-like
the
carrier
of
[:
(
TOP-REAL
2
)
,
(
TOP-REAL
2
)
:]
-defined
REAL
-valued
Function-like
non
empty
total
quasi_total
V156
()
V157
()
V158
()
Element
of
bool
[:
the
carrier
of
[:
(
TOP-REAL
2
)
,
(
TOP-REAL
2
)
:]
,
REAL
:]
rl
is
Element
of the
carrier
of
[:
(
TOP-REAL
2
)
,
(
TOP-REAL
2
)
:]
rp
.
rl
is
complex
ext-real
real
Element
of
REAL
(
(
TOP-REAL
2
)
,
(
TOP-REAL
2
)
,
rl
) is
Relation-like
Function-like
V49
(2)
V50
()
V156
()
V157
()
V158
()
Element
of the
carrier
of
(
TOP-REAL
2
)
(
(
TOP-REAL
2
)
,
(
TOP-REAL
2
)
,
rl
)
`2
is
complex
ext-real
real
Element
of
REAL
rp
is
Relation-like
the
carrier
of
[:
(
TOP-REAL
2
)
,
(
TOP-REAL
2
)
:]
-defined
REAL
-valued
Function-like
non
empty
total
quasi_total
V156
()
V157
()
V158
()
Element
of
bool
[:
the
carrier
of
[:
(
TOP-REAL
2
)
,
(
TOP-REAL
2
)
:]
,
REAL
:]
rl
is
Relation-like
the
carrier
of
[:
(
TOP-REAL
2
)
,
(
TOP-REAL
2
)
:]
-defined
REAL
-valued
Function-like
non
empty
total
quasi_total
V156
()
V157
()
V158
()
Element
of
bool
[:
the
carrier
of
[:
(
TOP-REAL
2
)
,
(
TOP-REAL
2
)
:]
,
REAL
:]
rg
is
Element
of the
carrier
of
[:
(
TOP-REAL
2
)
,
(
TOP-REAL
2
)
:]
rp
.
rg
is
complex
ext-real
real
Element
of
REAL
(
(
TOP-REAL
2
)
,
(
TOP-REAL
2
)
,
rg
) is
Relation-like
Function-like
V49
(2)
V50
()
V156
()
V157
()
V158
()
Element
of the
carrier
of
(
TOP-REAL
2
)
(
(
TOP-REAL
2
)
,
(
TOP-REAL
2
)
,
rg
)
`2
is
complex
ext-real
real
Element
of
REAL
rl
.
rg
is
complex
ext-real
real
Element
of
REAL
() is
Relation-like
the
carrier
of
[:
(
TOP-REAL
2
)
,
(
TOP-REAL
2
)
:]
-defined
REAL
-valued
Function-like
non
empty
total
quasi_total
V156
()
V157
()
V158
()
Element
of
bool
[:
the
carrier
of
[:
(
TOP-REAL
2
)
,
(
TOP-REAL
2
)
:]
,
REAL
:]
() is
Relation-like
the
carrier
of
[:
(
TOP-REAL
2
)
,
(
TOP-REAL
2
)
:]
-defined
REAL
-valued
Function-like
non
empty
total
quasi_total
V156
()
V157
()
V158
()
Element
of
bool
[:
the
carrier
of
[:
(
TOP-REAL
2
)
,
(
TOP-REAL
2
)
:]
,
REAL
:]
() is
Relation-like
the
carrier
of
[:
(
TOP-REAL
2
)
,
(
TOP-REAL
2
)
:]
-defined
REAL
-valued
Function-like
non
empty
total
quasi_total
V156
()
V157
()
V158
()
Element
of
bool
[:
the
carrier
of
[:
(
TOP-REAL
2
)
,
(
TOP-REAL
2
)
:]
,
REAL
:]
() is
Relation-like
the
carrier
of
[:
(
TOP-REAL
2
)
,
(
TOP-REAL
2
)
:]
-defined
REAL
-valued
Function-like
non
empty
total
quasi_total
V156
()
V157
()
V158
()
Element
of
bool
[:
the
carrier
of
[:
(
TOP-REAL
2
)
,
(
TOP-REAL
2
)
:]
,
REAL
:]
[:
the
carrier
of
[:
(
TOP-REAL
2
)
,
(
TOP-REAL
2
)
:]
, the
carrier
of
R^1
:]
is
Relation-like
non
empty
V156
()
V157
()
V158
()
set
bool
[:
the
carrier
of
[:
(
TOP-REAL
2
)
,
(
TOP-REAL
2
)
:]
, the
carrier
of
R^1
:]
is non
empty
set
rp
is
Relation-like
Function-like
V49
(2)
V50
()
V156
()
V157
()
V158
()
Element
of the
carrier
of
(
TOP-REAL
2
)
(
rp
) is
Relation-like
the
carrier
of
[:
(
TOP-REAL
2
)
,
(
TOP-REAL
2
)
:]
-defined
REAL
-valued
Function-like
non
empty
total
quasi_total
V156
()
V157
()
V158
()
Element
of
bool
[:
the
carrier
of
[:
(
TOP-REAL
2
)
,
(
TOP-REAL
2
)
:]
,
REAL
:]
rl
is
Relation-like
the
carrier
of
[:
(
TOP-REAL
2
)
,
(
TOP-REAL
2
)
:]
-defined
the
carrier
of
R^1
-valued
Function-like
non
empty
total
quasi_total
V156
()
V157
()
V158
()
Element
of
bool
[:
the
carrier
of
[:
(
TOP-REAL
2
)
,
(
TOP-REAL
2
)
:]
, the
carrier
of
R^1
:]
bool
the
carrier
of
[:
(
TOP-REAL
2
)
,
(
TOP-REAL
2
)
:]
is non
empty
set
rg
is
Element
of the
carrier
of
[:
(
TOP-REAL
2
)
,
(
TOP-REAL
2
)
:]
rl
.
rg
is
complex
ext-real
real
Element
of the
carrier
of
R^1
rd
is
V166
()
V167
()
V168
()
Element
of
bool
the
carrier
of
R^1
(
(
TOP-REAL
2
)
,
(
TOP-REAL
2
)
,
rg
) is
Relation-like
Function-like
V49
(2)
V50
()
V156
()
V157
()
V158
()
Element
of the
carrier
of
(
TOP-REAL
2
)
(
(
TOP-REAL
2
)
,
(
TOP-REAL
2
)
,
rg
)
`1
is
complex
ext-real
real
Element
of
REAL
rp
`1
is
complex
ext-real
real
Element
of
REAL
(
(
(
TOP-REAL
2
)
,
(
TOP-REAL
2
)
,
rg
)
`1
)
-
(
rp
`1
)
is
complex
ext-real
real
Element
of
REAL
b
is
V166
()
V167
()
V168
()
open
Element
of
bool
REAL
c
is
complex
ext-real
real
set
(
(
(
(
TOP-REAL
2
)
,
(
TOP-REAL
2
)
,
rg
)
`1
)
-
(
rp
`1
)
)
-
c
is
complex
ext-real
real
Element
of
REAL
(
(
(
(
TOP-REAL
2
)
,
(
TOP-REAL
2
)
,
rg
)
`1
)
-
(
rp
`1
)
)
+
c
is
complex
ext-real
real
Element
of
REAL
].
(
(
(
(
(
TOP-REAL
2
)
,
(
TOP-REAL
2
)
,
rg
)
`1
)
-
(
rp
`1
)
)
-
c
)
,
(
(
(
(
(
TOP-REAL
2
)
,
(
TOP-REAL
2
)
,
rg
)
`1
)
-
(
rp
`1
)
)
+
c
)
.[
is
V166
()
V167
()
V168
() non
left_end
non
right_end
bounded_below
bounded_above
real-bounded
interval
Element
of
bool
REAL
d
is
complex
ext-real
real
Element
of
REAL
(
(
(
TOP-REAL
2
)
,
(
TOP-REAL
2
)
,
rg
)
`1
)
-
d
is
complex
ext-real
real
Element
of
REAL
(
(
(
TOP-REAL
2
)
,
(
TOP-REAL
2
)
,
rg
)
`1
)
+
d
is
complex
ext-real
real
Element
of
REAL
{
|[
b
1
,
b
2
]|
where
b
1
,
b
2
is
complex
ext-real
real
Element
of
REAL
: ( not
b
1
<=
(
(
(
TOP-REAL
2
)
,
(
TOP-REAL
2
)
,
rg
)
`1
)
-
d
& not
(
(
(
TOP-REAL
2
)
,
(
TOP-REAL
2
)
,
rg
)
`1
)
+
d
<=
b
1
)
}
is
set
pg
is
set
ld
is
complex
ext-real
real
Element
of
REAL
pd
is
complex
ext-real
real
Element
of
REAL
|[
ld
,
pd
]|
is
Relation-like
Function-like
V49
(2)
V50
()
V156
()
V157
()
V158
()
Element
of the
carrier
of
(
TOP-REAL
2
)
[#]
(
TOP-REAL
2
)
is
functional
non
empty
non
proper
non
proper
open
open
closed
closed
dense
dense
non
boundary
non
boundary
connected
a_component
being_Region
convex
Element
of
bool
the
carrier
of
(
TOP-REAL
2
)
pg
is
functional
Element
of
bool
the
carrier
of
(
TOP-REAL
2
)
[:
(
[#]
(
TOP-REAL
2
)
)
,
pg
:]
is
Relation-like
Element
of
bool
the
carrier
of
[:
(
TOP-REAL
2
)
,
(
TOP-REAL
2
)
:]
rl
.:
[:
(
[#]
(
TOP-REAL
2
)
)
,
pg
:]
is
V166
()
V167
()
V168
()
Element
of
bool
the
carrier
of
R^1
(
(
TOP-REAL
2
)
,
(
TOP-REAL
2
)
,
rg
)
`2
is
complex
ext-real
real
Element
of
REAL
|[
(
(
(
TOP-REAL
2
)
,
(
TOP-REAL
2
)
,
rg
)
`1
)
,
(
(
(
TOP-REAL
2
)
,
(
TOP-REAL
2
)
,
rg
)
`2
)
]|
is
Relation-like
Function-like
V49
(2)
V50
()
V156
()
V157
()
V158
()
Element
of the
carrier
of
(
TOP-REAL
2
)
(
(
TOP-REAL
2
)
,
(
TOP-REAL
2
)
,
rg
) is
Relation-like
Function-like
V49
(2)
V50
()
V156
()
V157
()
V158
()
Element
of the
carrier
of
(
TOP-REAL
2
)
[
(
(
TOP-REAL
2
)
,
(
TOP-REAL
2
)
,
rg
),(
(
TOP-REAL
2
)
,
(
TOP-REAL
2
)
,
rg
)
]
is
V15
()
Element
of the
carrier
of
[:
(
TOP-REAL
2
)
,
(
TOP-REAL
2
)
:]
{
(
(
TOP-REAL
2
)
,
(
TOP-REAL
2
)
,
rg
),(
(
TOP-REAL
2
)
,
(
TOP-REAL
2
)
,
rg
)
}
is
functional
non
empty
set
{
(
(
TOP-REAL
2
)
,
(
TOP-REAL
2
)
,
rg
)
}
is
functional
non
empty
set
{
{
(
(
TOP-REAL
2
)
,
(
TOP-REAL
2
)
,
rg
),(
(
TOP-REAL
2
)
,
(
TOP-REAL
2
)
,
rg
)
}
,
{
(
(
TOP-REAL
2
)
,
(
TOP-REAL
2
)
,
rg
)
}
}
is non
empty
set
(
(
(
TOP-REAL
2
)
,
(
TOP-REAL
2
)
,
rg
)
`1
)
-
0
is
complex
ext-real
real
Element
of
REAL
(
(
(
TOP-REAL
2
)
,
(
TOP-REAL
2
)
,
rg
)
`1
)
+
0
is
complex
ext-real
real
Element
of
REAL
ld
is
set
pd
is
Element
of the
carrier
of
[:
(
TOP-REAL
2
)
,
(
TOP-REAL
2
)
:]
rl
.
pd
is
complex
ext-real
real
Element
of the
carrier
of
R^1
(
(
TOP-REAL
2
)
,
(
TOP-REAL
2
)
,
pd
) is
Relation-like
Function-like
V49
(2)
V50
()
V156
()
V157
()
V158
()
Element
of the
carrier
of
(
TOP-REAL
2
)
(
(
TOP-REAL
2
)
,
(
TOP-REAL
2
)
,
pd
) is
Relation-like
Function-like
V49
(2)
V50
()
V156
()
V157
()
V158
()
Element
of the
carrier
of
(
TOP-REAL
2
)
[
(
(
TOP-REAL
2
)
,
(
TOP-REAL
2
)
,
pd
),(
(
TOP-REAL
2
)
,
(
TOP-REAL
2
)
,
pd
)
]
is
V15
()
Element
of the
carrier
of
[:
(
TOP-REAL
2
)
,
(
TOP-REAL
2
)
:]
{
(
(
TOP-REAL
2
)
,
(
TOP-REAL
2
)
,
pd
),(
(
TOP-REAL
2
)
,
(
TOP-REAL
2
)
,
pd
)
}
is
functional
non
empty
set
{
(
(
TOP-REAL
2
)
,
(
TOP-REAL
2
)
,
pd
)
}
is
functional
non
empty
set
{
{
(
(
TOP-REAL
2
)
,
(
TOP-REAL
2
)
,
pd
),(
(
TOP-REAL
2
)
,
(
TOP-REAL
2
)
,
pd
)
}
,
{
(
(
TOP-REAL
2
)
,
(
TOP-REAL
2
)
,
pd
)
}
}
is non
empty
set
(
rp
)
.
pd
is
complex
ext-real
real
Element
of
REAL
(
(
TOP-REAL
2
)
,
(
TOP-REAL
2
)
,
pd
)
`1
is
complex
ext-real
real
Element
of
REAL
(
(
(
TOP-REAL
2
)
,
(
TOP-REAL
2
)
,
pd
)
`1
)
-
(
rp
`1
)
is
complex
ext-real
real
Element
of
REAL
R
is
complex
ext-real
real
Element
of
REAL
dR
is
complex
ext-real
real
Element
of
REAL
|[
R
,
dR
]|
is
Relation-like
Function-like
V49
(2)
V50
()
V156
()
V157
()
V158
()
Element
of the
carrier
of
(
TOP-REAL
2
)
(
(
(
(
TOP-REAL
2
)
,
(
TOP-REAL
2
)
,
rg
)
`1
)
-
d
)
-
(
rp
`1
)
is
complex
ext-real
real
Element
of
REAL
(
(
(
(
TOP-REAL
2
)
,
(
TOP-REAL
2
)
,
rg
)
`1
)
+
d
)
-
(
rp
`1
)
is
complex
ext-real
real
Element
of
REAL
(
(
(
(
TOP-REAL
2
)
,
(
TOP-REAL
2
)
,
rg
)
`1
)
-
(
rp
`1
)
)
-
d
is
complex
ext-real
real
Element
of
REAL
(
(
(
(
TOP-REAL
2
)
,
(
TOP-REAL
2
)
,
rg
)
`1
)
-
(
rp
`1
)
)
+
d
is
complex
ext-real
real
Element
of
REAL
].
(
(
(
(
(
TOP-REAL
2
)
,
(
TOP-REAL
2
)
,
rg
)
`1
)
-
(
rp
`1
)
)
-
d
)
,
(
(
(
(
(
TOP-REAL
2
)
,
(
TOP-REAL
2
)
,
rg
)
`1
)
-
(
rp
`1
)
)
+
d
)
.[
is
V166
()
V167
()
V168
() non
left_end
non
right_end
bounded_below
bounded_above
real-bounded
interval
Element
of
bool
REAL
rp
is
Relation-like
Function-like
V49
(2)
V50
()
V156
()
V157
()
V158
()
Element
of the
carrier
of
(
TOP-REAL
2
)
(
rp
) is
Relation-like
the
carrier
of
[:
(
TOP-REAL
2
)
,
(
TOP-REAL
2
)
:]
-defined
REAL
-valued
Function-like
non
empty
total
quasi_total
V156
()
V157
()
V158
()
Element
of
bool
[:
the
carrier
of
[:
(
TOP-REAL
2
)
,
(
TOP-REAL
2
)
:]
,
REAL
:]
rl
is
Relation-like
the
carrier
of
[:
(
TOP-REAL
2
)
,
(
TOP-REAL
2
)
:]
-defined
the
carrier
of
R^1
-valued
Function-like
non
empty
total
quasi_total
V156
()
V157
()
V158
()
Element
of
bool
[:
the
carrier
of
[:
(
TOP-REAL
2
)
,
(
TOP-REAL
2
)
:]
, the
carrier
of
R^1
:]
bool
the
carrier
of
[:
(
TOP-REAL
2
)
,
(
TOP-REAL
2
)
:]
is non
empty
set
rg
is
Element
of the
carrier
of
[:
(
TOP-REAL
2
)
,
(
TOP-REAL
2
)
:]
rl
.
rg
is
complex
ext-real
real
Element
of the
carrier
of
R^1
rd
is
V166
()
V167
()
V168
()
Element
of
bool
the
carrier
of
R^1
(
(
TOP-REAL
2
)
,
(
TOP-REAL
2
)
,
rg
) is
Relation-like
Function-like
V49
(2)
V50
()
V156
()
V157
()
V158
()
Element
of the
carrier
of
(
TOP-REAL
2
)
(
(
TOP-REAL
2
)
,
(
TOP-REAL
2
)
,
rg
) is
Relation-like
Function-like
V49
(2)
V50
()
V156
()
V157
()
V158
()
Element
of the
carrier
of
(
TOP-REAL
2
)
[
(
(
TOP-REAL
2
)
,
(
TOP-REAL
2
)
,
rg
),(
(
TOP-REAL
2
)
,
(
TOP-REAL
2
)
,
rg
)
]
is
V15
()
Element
of the
carrier
of
[:
(
TOP-REAL
2
)
,
(
TOP-REAL
2
)
:]
{
(
(
TOP-REAL
2
)
,
(
TOP-REAL
2
)
,
rg
),(
(
TOP-REAL
2
)
,
(
TOP-REAL
2
)
,
rg
)
}
is
functional
non
empty
set
{
(
(
TOP-REAL
2
)
,
(
TOP-REAL
2
)
,
rg
)
}
is
functional
non
empty
set
{
{
(
(
TOP-REAL
2
)
,
(
TOP-REAL
2
)
,
rg
),(
(
TOP-REAL
2
)
,
(
TOP-REAL
2
)
,
rg
)
}
,
{
(
(
TOP-REAL
2
)
,
(
TOP-REAL
2
)
,
rg
)
}
}
is non
empty
set
(
(
TOP-REAL
2
)
,
(
TOP-REAL
2
)
,
rg
)
`2
is
complex
ext-real
real
Element
of
REAL
rp
`2
is
complex
ext-real
real
Element
of
REAL
(
(
(
TOP-REAL
2
)
,
(
TOP-REAL
2
)
,
rg
)
`2
)
-
(
rp
`2
)
is
complex
ext-real
real
Element
of
REAL
b
is
V166
()
V167
()
V168
()
open
Element
of
bool
REAL
c
is
complex
ext-real
real
set
(
(
(
(
TOP-REAL
2
)
,
(
TOP-REAL
2
)
,
rg
)
`2
)
-
(
rp
`2
)
)
-
c
is
complex
ext-real
real
Element
of
REAL
(
(
(
(
TOP-REAL
2
)
,
(
TOP-REAL
2
)
,
rg
)
`2
)
-
(
rp
`2
)
)
+
c
is
complex
ext-real
real
Element
of
REAL
].
(
(
(
(
(
TOP-REAL
2
)
,
(
TOP-REAL
2
)
,
rg
)
`2
)
-
(
rp
`2
)
)
-
c
)
,
(
(
(
(
(
TOP-REAL
2
)
,
(
TOP-REAL
2
)
,
rg
)
`2
)
-
(
rp
`2
)
)
+
c
)
.[
is
V166
()
V167
()
V168
() non
left_end
non
right_end
bounded_below
bounded_above
real-bounded
interval
Element
of
bool
REAL
d
is
complex
ext-real
real
Element
of
REAL
(
(
(
TOP-REAL
2
)
,
(
TOP-REAL
2
)
,
rg
)
`2
)
-
d
is
complex
ext-real
real
Element
of
REAL
(
(
(
TOP-REAL
2
)
,
(
TOP-REAL
2
)
,
rg
)
`2
)
+
d
is
complex
ext-real
real
Element
of
REAL
{
|[
b
1
,
b
2
]|
where
b
1
,
b
2
is
complex
ext-real
real
Element
of
REAL
: ( not
b
2
<=
(
(
(
TOP-REAL
2
)
,
(
TOP-REAL
2
)
,
rg
)
`2
)
-
d
& not
(
(
(
TOP-REAL
2
)
,
(
TOP-REAL
2
)
,
rg
)
`2
)
+
d
<=
b
2
)
}
is
set
pg
is
set
ld
is
complex
ext-real
real
Element
of
REAL
pd
is
complex
ext-real
real
Element
of
REAL
|[
ld
,
pd
]|
is
Relation-like
Function-like
V49
(2)
V50
()
V156
()
V157
()
V158
()
Element
of the
carrier
of
(
TOP-REAL
2
)
[#]
(
TOP-REAL
2
)
is
functional
non
empty
non
proper
non
proper
open
open
closed
closed
dense
dense
non
boundary
non
boundary
connected
a_component
being_Region
convex
Element
of
bool
the
carrier
of
(
TOP-REAL
2
)
pg
is
functional
Element
of
bool
the
carrier
of
(
TOP-REAL
2
)
[:
(
[#]
(
TOP-REAL
2
)
)
,
pg
:]
is
Relation-like
Element
of
bool
the
carrier
of
[:
(
TOP-REAL
2
)
,
(
TOP-REAL
2
)
:]
rl
.:
[:
(
[#]
(
TOP-REAL
2
)
)
,
pg
:]
is
V166
()
V167
()
V168
()
Element
of
bool
the
carrier
of
R^1
(
(
TOP-REAL
2
)
,
(
TOP-REAL
2
)
,
rg
)
`1
is
complex
ext-real
real
Element
of
REAL
|[
(
(
(
TOP-REAL
2
)
,
(
TOP-REAL
2
)
,
rg
)
`1
)
,
(
(
(
TOP-REAL
2
)
,
(
TOP-REAL
2
)
,
rg
)
`2
)
]|
is
Relation-like
Function-like
V49
(2)
V50
()
V156
()
V157
()
V158
()
Element
of the
carrier
of
(
TOP-REAL
2
)
(
(
(
TOP-REAL
2
)
,
(
TOP-REAL
2
)
,
rg
)
`2
)
-
0
is
complex
ext-real
real
Element
of
REAL
(
(
(
TOP-REAL
2
)
,
(
TOP-REAL
2
)
,
rg
)
`2
)
+
0
is
complex
ext-real
real
Element
of
REAL
ld
is
set
pd
is
Element
of the
carrier
of
[:
(
TOP-REAL
2
)
,
(
TOP-REAL
2
)
:]
rl
.
pd
is
complex
ext-real
real
Element
of the
carrier
of
R^1
(
(
TOP-REAL
2
)
,
(
TOP-REAL
2
)
,
pd
) is
Relation-like
Function-like
V49
(2)
V50
()
V156
()
V157
()
V158
()
Element
of the
carrier
of
(
TOP-REAL
2
)
(
(
TOP-REAL
2
)
,
(
TOP-REAL
2
)
,
pd
) is
Relation-like
Function-like
V49
(2)
V50
()
V156
()
V157
()
V158
()
Element
of the
carrier
of
(
TOP-REAL
2
)
[
(
(
TOP-REAL
2
)
,
(
TOP-REAL
2
)
,
pd
),(
(
TOP-REAL
2
)
,
(
TOP-REAL
2
)
,
pd
)
]
is
V15
()
Element
of the
carrier
of
[:
(
TOP-REAL
2
)
,
(
TOP-REAL
2
)
:]
{
(
(
TOP-REAL
2
)
,
(
TOP-REAL
2
)
,
pd
),(
(
TOP-REAL
2
)
,
(
TOP-REAL
2
)
,
pd
)
}
is
functional
non
empty
set
{
(
(
TOP-REAL
2
)
,
(
TOP-REAL
2
)
,
pd
)
}
is
functional
non
empty
set
{
{
(
(
TOP-REAL
2
)
,
(
TOP-REAL
2
)
,
pd
),(
(
TOP-REAL
2
)
,
(
TOP-REAL
2
)
,
pd
)
}
,
{
(
(
TOP-REAL
2
)
,
(
TOP-REAL
2
)
,
pd
)
}
}
is non
empty
set
(
rp
)
.
pd
is
complex
ext-real
real
Element
of
REAL
(
(
TOP-REAL
2
)
,
(
TOP-REAL
2
)
,
pd
)
`2
is
complex
ext-real
real
Element
of
REAL
(
(
(
TOP-REAL
2
)
,
(
TOP-REAL
2
)
,
pd
)
`2
)
-
(
rp
`2
)
is
complex
ext-real
real
Element
of
REAL
R
is
complex
ext-real
real
Element
of
REAL
dR
is
complex
ext-real
real
Element
of
REAL
|[
R
,
dR
]|
is
Relation-like
Function-like
V49
(2)
V50
()
V156
()
V157
()
V158
()
Element
of the
carrier
of
(
TOP-REAL
2
)
(
(
(
(
TOP-REAL
2
)
,
(
TOP-REAL
2
)
,
rg
)
`2
)
-
d
)
-
(
rp
`2
)
is
complex
ext-real
real
Element
of
REAL
(
(
(
(
TOP-REAL
2
)
,
(
TOP-REAL
2
)
,
rg
)
`2
)
+
d
)
-
(
rp
`2
)
is
complex
ext-real
real
Element
of
REAL
(
(
(
(
TOP-REAL
2
)
,
(
TOP-REAL
2
)
,
rg
)
`2
)
-
(
rp
`2
)
)
-
d
is
complex
ext-real
real
Element
of
REAL
(
(
(
(
TOP-REAL
2
)
,
(
TOP-REAL
2
)
,
rg
)
`2
)
-
(
rp
`2
)
)
+
d
is
complex
ext-real
real
Element
of
REAL
].
(
(
(
(
(
TOP-REAL
2
)
,
(
TOP-REAL
2
)
,
rg
)
`2
)
-
(
rp
`2
)
)
-
d
)
,
(
(
(
(
(
TOP-REAL
2
)
,
(
TOP-REAL
2
)
,
rg
)
`2
)
-
(
rp
`2
)
)
+
d
)
.[
is
V166
()
V167
()
V168
() non
left_end
non
right_end
bounded_below
bounded_above
real-bounded
interval
Element
of
bool
REAL
rp
is
Relation-like
the
carrier
of
[:
(
TOP-REAL
2
)
,
(
TOP-REAL
2
)
:]
-defined
the
carrier
of
R^1
-valued
Function-like
non
empty
total
quasi_total
V156
()
V157
()
V158
()
Element
of
bool
[:
the
carrier
of
[:
(
TOP-REAL
2
)
,
(
TOP-REAL
2
)
:]
, the
carrier
of
R^1
:]
bool
the
carrier
of
[:
(
TOP-REAL
2
)
,
(
TOP-REAL
2
)
:]
is non
empty
set
rl
is
Element
of the
carrier
of
[:
(
TOP-REAL
2
)
,
(
TOP-REAL
2
)
:]
rp
.
rl
is
complex
ext-real
real
Element
of the
carrier
of
R^1
rg
is
V166
()
V167
()
V168
()
Element
of
bool
the
carrier
of
R^1
(
(
TOP-REAL
2
)
,
(
TOP-REAL
2
)
,
rl
) is
Relation-like
Function-like
V49
(2)
V50
()
V156
()
V157
()
V158
()
Element
of the
carrier
of
(
TOP-REAL
2
)
(
(
TOP-REAL
2
)
,
(
TOP-REAL
2
)
,
rl
) is
Relation-like
Function-like
V49
(2)
V50
()
V156
()
V157
()
V158
()
Element
of the
carrier
of
(
TOP-REAL
2
)
[
(
(
TOP-REAL
2
)
,
(
TOP-REAL
2
)
,
rl
),(
(
TOP-REAL
2
)
,
(
TOP-REAL
2
)
,
rl
)
]
is
V15
()
Element
of the
carrier
of
[:
(
TOP-REAL
2
)
,
(
TOP-REAL
2
)
:]
{
(
(
TOP-REAL
2
)
,
(
TOP-REAL
2
)
,
rl
),(
(
TOP-REAL
2
)
,
(
TOP-REAL
2
)
,
rl
)
}
is
functional
non
empty
set
{
(
(
TOP-REAL
2
)
,
(
TOP-REAL
2
)
,
rl
)
}
is
functional
non
empty
set
{
{
(
(
TOP-REAL
2
)
,
(
TOP-REAL
2
)
,
rl
),(
(
TOP-REAL
2
)
,
(
TOP-REAL
2
)
,
rl
)
}
,
{
(
(
TOP-REAL
2
)
,
(
TOP-REAL
2
)
,
rl
)
}
}
is non
empty
set
()
.
rl
is
complex
ext-real
real
Element
of
REAL
(
(
TOP-REAL
2
)
,
(
TOP-REAL
2
)
,
rl
)
`1
is
complex
ext-real
real
Element
of
REAL
(
(
TOP-REAL
2
)
,
(
TOP-REAL
2
)
,
rl
)
`1
is
complex
ext-real
real
Element
of
REAL
(
(
(
TOP-REAL
2
)
,
(
TOP-REAL
2
)
,
rl
)
`1
)
-
(
(
(
TOP-REAL
2
)
,
(
TOP-REAL
2
)
,
rl
)
`1
)
is
complex
ext-real
real
Element
of
REAL
a
is
V166
()
V167
()
V168
()
open
Element
of
bool
REAL
b
is
complex
ext-real
real
set
(
(
(
(
TOP-REAL
2
)
,
(
TOP-REAL
2
)
,
rl
)
`1
)
-
(
(
(
TOP-REAL
2
)
,
(
TOP-REAL
2
)
,
rl
)
`1
)
)
-
b
is
complex
ext-real
real
Element
of
REAL
(
(
(
(
TOP-REAL
2
)
,
(
TOP-REAL
2
)
,
rl
)
`1
)
-
(
(
(
TOP-REAL
2
)
,
(
TOP-REAL
2
)
,
rl
)
`1
)
)
+
b
is
complex
ext-real
real
Element
of
REAL
].
(
(
(
(
(
TOP-REAL
2
)
,
(
TOP-REAL
2
)
,
rl
)
`1
)
-
(
(
(
TOP-REAL
2
)
,
(
TOP-REAL
2
)
,
rl
)
`1
)
)
-
b
)
,
(
(
(
(
(
TOP-REAL
2
)
,
(
TOP-REAL
2
)
,
rl
)
`1
)
-
(
(
(
TOP-REAL
2
)
,
(
TOP-REAL
2
)
,
rl
)
`1
)
)
+
b
)
.[
is
V166
()
V167
()
V168
() non
left_end
non
right_end
bounded_below
bounded_above
real-bounded
interval
Element
of
bool
REAL
c
is
complex
ext-real
real
Element
of
REAL
c
/
2 is
complex
ext-real
real
Element
of
REAL
(
(
(
TOP-REAL
2
)
,
(
TOP-REAL
2
)
,
rl
)
`1
)
-
(
c
/
2
)
is
complex
ext-real
real
Element
of
REAL
(
(
(
TOP-REAL
2
)
,
(
TOP-REAL
2
)
,
rl
)
`1
)
+
(
c
/
2
)
is
complex
ext-real
real
Element
of
REAL
{
|[
b
1
,
b
2
]|
where
b
1
,
b
2
is
complex
ext-real
real
Element
of
REAL
: ( not
b
1
<=
(
(
(
TOP-REAL
2
)
,
(
TOP-REAL
2
)
,
rl
)
`1
)
-
(
c
/
2
)
& not
(
(
(
TOP-REAL
2
)
,
(
TOP-REAL
2
)
,
rl
)
`1
)
+
(
c
/
2
)
<=
b
1
)
}
is
set
(
(
(
TOP-REAL
2
)
,
(
TOP-REAL
2
)
,
rl
)
`1
)
-
(
c
/
2
)
is
complex
ext-real
real
Element
of
REAL
(
(
(
TOP-REAL
2
)
,
(
TOP-REAL
2
)
,
rl
)
`1
)
+
(
c
/
2
)
is
complex
ext-real
real
Element
of
REAL
{
|[
b
1
,
b
2
]|
where
b
1
,
b
2
is
complex
ext-real
real
Element
of
REAL
: ( not
b
1
<=
(
(
(
TOP-REAL
2
)
,
(
TOP-REAL
2
)
,
rl
)
`1
)
-
(
c
/
2
)
& not
(
(
(
TOP-REAL
2
)
,
(
TOP-REAL
2
)
,
rl
)
`1
)
+
(
c
/
2
)
<=
b
1
)
}
is
set
pg
is
set
ld
is
complex
ext-real
real
Element
of
REAL
pd
is
complex
ext-real
real
Element
of
REAL
|[
ld
,
pd
]|
is
Relation-like
Function-like
V49
(2)
V50
()
V156
()
V157
()
V158
()
Element
of the
carrier
of
(
TOP-REAL
2
)
ld
is
set
pd
is
complex
ext-real
real
Element
of
REAL
R
is
complex
ext-real
real
Element
of
REAL
|[
pd
,
R
]|
is
Relation-like
Function-like
V49
(2)
V50
()
V156
()
V157
()
V158
()
Element
of the
carrier
of
(
TOP-REAL
2
)
pg
is
functional
Element
of
bool
the
carrier
of
(
TOP-REAL
2
)
ld
is
functional
Element
of
bool
the
carrier
of
(
TOP-REAL
2
)
[:
pg
,
ld
:]
is
Relation-like
Element
of
bool
the
carrier
of
[:
(
TOP-REAL
2
)
,
(
TOP-REAL
2
)
:]
rp
.:
[:
pg
,
ld
:]
is
V166
()
V167
()
V168
()
Element
of
bool
the
carrier
of
R^1
(
(
TOP-REAL
2
)
,
(
TOP-REAL
2
)
,
rl
)
`2
is
complex
ext-real
real
Element
of
REAL
|[
(
(
(
TOP-REAL
2
)
,
(
TOP-REAL
2
)
,
rl
)
`1
)
,
(
(
(
TOP-REAL
2
)
,
(
TOP-REAL
2
)
,
rl
)
`2
)
]|
is
Relation-like
Function-like
V49
(2)
V50
()
V156
()
V157
()
V158
()
Element
of the
carrier
of
(
TOP-REAL
2
)
0
/
2 is
Relation-like
non-empty
empty-yielding
RAT
-valued
Function-like
one-to-one
constant
functional
empty
complex
ext-real
non
positive
non
negative
real
V156
()
V157
()
V158
()
V159
()
V166
()
V167
()
V168
()
V169
()
V170
()
V171
()
V172
()
bounded_below
interval
Element
of
REAL
(
(
(
TOP-REAL
2
)
,
(
TOP-REAL
2
)
,
rl
)
`1
)
-
0
is
complex
ext-real
real
Element
of
REAL
(
(
(
TOP-REAL
2
)
,
(
TOP-REAL
2
)
,
rl
)
`1
)
+
0
is
complex
ext-real
real
Element
of
REAL
(
(
TOP-REAL
2
)
,
(
TOP-REAL
2
)
,
rl
)
`2
is
complex
ext-real
real
Element
of
REAL
|[
(
(
(
TOP-REAL
2
)
,
(
TOP-REAL
2
)
,
rl
)
`1
)
,
(
(
(
TOP-REAL
2
)
,
(
TOP-REAL
2
)
,
rl
)
`2
)
]|
is
Relation-like
Function-like
V49
(2)
V50
()
V156
()
V157
()
V158
()
Element
of the
carrier
of
(
TOP-REAL
2
)
(
(
(
TOP-REAL
2
)
,
(
TOP-REAL
2
)
,
rl
)
`1
)
-
0
is
complex
ext-real
real
Element
of
REAL
(
(
(
TOP-REAL
2
)
,
(
TOP-REAL
2
)
,
rl
)
`1
)
+
0
is
complex
ext-real
real
Element
of
REAL
pd
is
set
R
is
Element
of the
carrier
of
[:
(
TOP-REAL
2
)
,
(
TOP-REAL
2
)
:]
rp
.
R
is
complex
ext-real
real
Element
of the
carrier
of
R^1
(
(
TOP-REAL
2
)
,
(
TOP-REAL
2
)
,
R
) is
Relation-like
Function-like
V49
(2)
V50
()
V156
()
V157
()
V158
()
Element
of the
carrier
of
(
TOP-REAL
2
)
(
(
TOP-REAL
2
)
,
(
TOP-REAL
2
)
,
R
) is
Relation-like
Function-like
V49
(2)
V50
()
V156
()
V157
()
V158
()
Element
of the
carrier
of
(
TOP-REAL
2
)
[
(
(
TOP-REAL
2
)
,
(
TOP-REAL
2
)
,
R
),(
(
TOP-REAL
2
)
,
(
TOP-REAL
2
)
,
R
)
]
is
V15
()
Element
of the
carrier
of
[:
(
TOP-REAL
2
)
,
(
TOP-REAL
2
)
:]
{
(
(
TOP-REAL
2
)
,
(
TOP-REAL
2
)
,
R
),(
(
TOP-REAL
2
)
,
(
TOP-REAL
2
)
,
R
)
}
is
functional
non
empty
set
{
(
(
TOP-REAL
2
)
,
(
TOP-REAL
2
)
,
R
)
}
is
functional
non
empty
set
{
{
(
(
TOP-REAL
2
)
,
(
TOP-REAL
2
)
,
R
),(
(
TOP-REAL
2
)
,
(
TOP-REAL
2
)
,
R
)
}
,
{
(
(
TOP-REAL
2
)
,
(
TOP-REAL
2
)
,
R
)
}
}
is non
empty
set
()
.
R
is
complex
ext-real
real
Element
of
REAL
(
(
TOP-REAL
2
)
,
(
TOP-REAL
2
)
,
R
)
`1
is
complex
ext-real
real
Element
of
REAL
(
(
TOP-REAL
2
)
,
(
TOP-REAL
2
)
,
R
)
`1
is
complex
ext-real
real
Element
of
REAL
(
(
(
TOP-REAL
2
)
,
(
TOP-REAL
2
)
,
R
)
`1
)
-
(
(
(
TOP-REAL
2
)
,
(
TOP-REAL
2
)
,
R
)
`1
)
is
complex
ext-real
real
Element
of
REAL
dR
is
complex
ext-real
real
Element
of
REAL
TR
is
complex
ext-real
real
Element
of
REAL
|[
dR
,
TR
]|
is
Relation-like
Function-like
V49
(2)
V50
()
V156
()
V157
()
V158
()
Element
of the
carrier
of
(
TOP-REAL
2
)
dR
+
(
c
/
2
)
is
complex
ext-real
real
Element
of
REAL
(
(
(
(
TOP-REAL
2
)
,
(
TOP-REAL
2
)
,
rl
)
`1
)
-
(
c
/
2
)
)
+
(
c
/
2
)
is
complex
ext-real
real
Element
of
REAL
(
(
(
TOP-REAL
2
)
,
(
TOP-REAL
2
)
,
rl
)
`1
)
-
dR
is
complex
ext-real
real
Element
of
REAL
(
(
(
TOP-REAL
2
)
,
(
TOP-REAL
2
)
,
rl
)
`1
)
-
(
(
(
(
TOP-REAL
2
)
,
(
TOP-REAL
2
)
,
rl
)
`1
)
+
(
c
/
2
)
)
is
complex
ext-real
real
Element
of
REAL
(
dR
+
(
c
/
2
)
)
-
dR
is
complex
ext-real
real
Element
of
REAL
-
(
c
/
2
)
is
complex
ext-real
real
Element
of
REAL
abs
(
(
(
(
TOP-REAL
2
)
,
(
TOP-REAL
2
)
,
rl
)
`1
)
-
dR
)
is
complex
ext-real
real
Element
of
REAL
C
is
complex
ext-real
real
Element
of
REAL
P
is
complex
ext-real
real
Element
of
REAL
|[
C
,
P
]|
is
Relation-like
Function-like
V49
(2)
V50
()
V156
()
V157
()
V158
()
Element
of the
carrier
of
(
TOP-REAL
2
)
C
+
(
c
/
2
)
is
complex
ext-real
real
Element
of
REAL
(
(
(
(
TOP-REAL
2
)
,
(
TOP-REAL
2
)
,
rl
)
`1
)
-
(
c
/
2
)
)
+
(
c
/
2
)
is
complex
ext-real
real
Element
of
REAL
(
(
(
TOP-REAL
2
)
,
(
TOP-REAL
2
)
,
rl
)
`1
)
-
C
is
complex
ext-real
real
Element
of
REAL
(
(
(
TOP-REAL
2
)
,
(
TOP-REAL
2
)
,
rl
)
`1
)
-
(
(
(
(
TOP-REAL
2
)
,
(
TOP-REAL
2
)
,
rl
)
`1
)
+
(
c
/
2
)
)
is
complex
ext-real
real
Element
of
REAL
(
C
+
(
c
/
2
)
)
-
C
is
complex
ext-real
real
Element
of
REAL
abs
(
(
(
(
TOP-REAL
2
)
,
(
TOP-REAL
2
)
,
rl
)
`1
)
-
C
)
is
complex
ext-real
real
Element
of
REAL
(
c
/
2
)
+
(
c
/
2
)
is
complex
ext-real
real
Element
of
REAL
(
abs
(
(
(
(
TOP-REAL
2
)
,
(
TOP-REAL
2
)
,
rl
)
`1
)
-
dR
)
)
+
(
abs
(
(
(
(
TOP-REAL
2
)
,
(
TOP-REAL
2
)
,
rl
)
`1
)
-
C
)
)
is
complex
ext-real
real
Element
of
REAL
(
(
(
(
TOP-REAL
2
)
,
(
TOP-REAL
2
)
,
rl
)
`1
)
-
dR
)
-
(
(
(
(
TOP-REAL
2
)
,
(
TOP-REAL
2
)
,
rl
)
`1
)
-
C
)
is
complex
ext-real
real
Element
of
REAL
abs
(
(
(
(
(
TOP-REAL
2
)
,
(
TOP-REAL
2
)
,
rl
)
`1
)
-
dR
)
-
(
(
(
(
TOP-REAL
2
)
,
(
TOP-REAL
2
)
,
rl
)
`1
)
-
C
)
)
is
complex
ext-real
real
Element
of
REAL
-
(
(
(
(
(
TOP-REAL
2
)
,
(
TOP-REAL
2
)
,
rl
)
`1
)
-
dR
)
-
(
(
(
(
TOP-REAL
2
)
,
(
TOP-REAL
2
)
,
rl
)
`1
)
-
C
)
)
is
complex
ext-real
real
Element
of
REAL
abs
(
-
(
(
(
(
(
TOP-REAL
2
)
,
(
TOP-REAL
2
)
,
rl
)
`1
)
-
dR
)
-
(
(
(
(
TOP-REAL
2
)
,
(
TOP-REAL
2
)
,
rl
)
`1
)
-
C
)
)
)
is
complex
ext-real
real
Element
of
REAL
dR
-
C
is
complex
ext-real
real
Element
of
REAL
(
dR
-
C
)
-
(
(
(
(
TOP-REAL
2
)
,
(
TOP-REAL
2
)
,
rl
)
`1
)
-
(
(
(
TOP-REAL
2
)
,
(
TOP-REAL
2
)
,
rl
)
`1
)
)
is
complex
ext-real
real
Element
of
REAL
abs
(
(
dR
-
C
)
-
(
(
(
(
TOP-REAL
2
)
,
(
TOP-REAL
2
)
,
rl
)
`1
)
-
(
(
(
TOP-REAL
2
)
,
(
TOP-REAL
2
)
,
rl
)
`1
)
)
)
is
complex
ext-real
real
Element
of
REAL
(
(
(
(
TOP-REAL
2
)
,
(
TOP-REAL
2
)
,
rl
)
`1
)
-
(
(
(
TOP-REAL
2
)
,
(
TOP-REAL
2
)
,
rl
)
`1
)
)
-
c
is
complex
ext-real
real
Element
of
REAL
(
(
(
(
TOP-REAL
2
)
,
(
TOP-REAL
2
)
,
rl
)
`1
)
-
(
(
(
TOP-REAL
2
)
,
(
TOP-REAL
2
)
,
rl
)
`1
)
)
+
c
is
complex
ext-real
real
Element
of
REAL
].
(
(
(
(
(
TOP-REAL
2
)
,
(
TOP-REAL
2
)
,
rl
)
`1
)
-
(
(
(
TOP-REAL
2
)
,
(
TOP-REAL
2
)
,
rl
)
`1
)
)
-
c
)
,
(
(
(
(
(
TOP-REAL
2
)
,
(
TOP-REAL
2
)
,
rl
)
`1
)
-
(
(
(
TOP-REAL
2
)
,
(
TOP-REAL
2
)
,
rl
)
`1
)
)
+
c
)
.[
is
V166
()
V167
()
V168
() non
left_end
non
right_end
bounded_below
bounded_above
real-bounded
interval
Element
of
bool
REAL
rp
is
Relation-like
the
carrier
of
[:
(
TOP-REAL
2
)
,
(
TOP-REAL
2
)
:]
-defined
the
carrier
of
R^1
-valued
Function-like
non
empty
total
quasi_total
V156
()
V157
()
V158
()
Element
of
bool
[:
the
carrier
of
[:
(
TOP-REAL
2
)
,
(
TOP-REAL
2
)
:]
, the
carrier
of
R^1
:]
bool
the
carrier
of
[:
(
TOP-REAL
2
)
,
(
TOP-REAL
2
)
:]
is non
empty
set
rl
is
Element
of the
carrier
of
[:
(
TOP-REAL
2
)
,
(
TOP-REAL
2
)
:]
rp
.
rl
is
complex
ext-real
real
Element
of the
carrier
of
R^1
rg
is
V166
()
V167
()
V168
()
Element
of
bool
the
carrier
of
R^1
(
(
TOP-REAL
2
)
,
(
TOP-REAL
2
)
,
rl
) is
Relation-like
Function-like
V49
(2)
V50
()
V156
()
V157
()
V158
()
Element
of the
carrier
of
(
TOP-REAL
2
)
(
(
TOP-REAL
2
)
,
(
TOP-REAL
2
)
,
rl
) is
Relation-like
Function-like
V49
(2)
V50
()
V156
()
V157
()
V158
()
Element
of the
carrier
of
(
TOP-REAL
2
)
[
(
(
TOP-REAL
2
)
,
(
TOP-REAL
2
)
,
rl
),(
(
TOP-REAL
2
)
,
(
TOP-REAL
2
)
,
rl
)
]
is
V15
()
Element
of the
carrier
of
[:
(
TOP-REAL
2
)
,
(
TOP-REAL
2
)
:]
{
(
(
TOP-REAL
2
)
,
(
TOP-REAL
2
)
,
rl
),(
(
TOP-REAL
2
)
,
(
TOP-REAL
2
)
,
rl
)
}
is
functional
non
empty
set
{
(
(
TOP-REAL
2
)
,
(
TOP-REAL
2
)
,
rl
)
}
is
functional
non
empty
set
{
{
(
(
TOP-REAL
2
)
,
(
TOP-REAL
2
)
,
rl
),(
(
TOP-REAL
2
)
,
(
TOP-REAL
2
)
,
rl
)
}
,
{
(
(
TOP-REAL
2
)
,
(
TOP-REAL
2
)
,
rl
)
}
}
is non
empty
set
()
.
rl
is
complex
ext-real
real
Element
of
REAL
(
(
TOP-REAL
2
)
,
(
TOP-REAL
2
)
,
rl
)
`2
is
complex
ext-real
real
Element
of
REAL
(
(
TOP-REAL
2
)
,
(
TOP-REAL
2
)
,
rl
)
`2
is
complex
ext-real
real
Element
of
REAL
(
(
(
TOP-REAL
2
)
,
(
TOP-REAL
2
)
,
rl
)
`2
)
-
(
(
(
TOP-REAL
2
)
,
(
TOP-REAL
2
)
,
rl
)
`2
)
is
complex
ext-real
real
Element
of
REAL
a
is
V166
()
V167
()
V168
()
open
Element
of
bool
REAL
b
is
complex
ext-real
real
set
(
(
(
(
TOP-REAL
2
)
,
(
TOP-REAL
2
)
,
rl
)
`2
)
-
(
(
(
TOP-REAL
2
)
,
(
TOP-REAL
2
)
,
rl
)
`2
)
)
-
b
is
complex
ext-real
real
Element
of
REAL
(
(
(
(
TOP-REAL
2
)
,
(
TOP-REAL
2
)
,
rl
)
`2
)
-
(
(
(
TOP-REAL
2
)
,
(
TOP-REAL
2
)
,
rl
)
`2
)
)
+
b
is
complex
ext-real
real
Element
of
REAL
].
(
(
(
(
(
TOP-REAL
2
)
,
(
TOP-REAL
2
)
,
rl
)
`2
)
-
(
(
(
TOP-REAL
2
)
,
(
TOP-REAL
2
)
,
rl
)
`2
)
)
-
b
)
,
(
(
(
(
(
TOP-REAL
2
)
,
(
TOP-REAL
2
)
,
rl
)
`2
)
-
(
(
(
TOP-REAL
2
)
,
(
TOP-REAL
2
)
,
rl
)
`2
)
)
+
b
)
.[
is
V166
()
V167
()
V168
() non
left_end
non
right_end
bounded_below
bounded_above
real-bounded
interval
Element
of
bool
REAL
c
is
complex
ext-real
real
Element
of
REAL
c
/
2 is
complex
ext-real
real
Element
of
REAL
(
(
(
TOP-REAL
2
)
,
(
TOP-REAL
2
)
,
rl
)
`2
)
-
(
c
/
2
)
is
complex
ext-real
real
Element
of
REAL
(
(
(
TOP-REAL
2
)
,
(
TOP-REAL
2
)
,
rl
)
`2
)
+
(
c
/
2
)
is
complex
ext-real
real
Element
of
REAL
{
|[
b
1
,
b
2
]|
where
b
1
,
b
2
is
complex
ext-real
real
Element
of
REAL
: ( not
b
2
<=
(
(
(
TOP-REAL
2
)
,
(
TOP-REAL
2
)
,
rl
)
`2
)
-
(
c
/
2
)
& not
(
(
(
TOP-REAL
2
)
,
(
TOP-REAL
2
)
,
rl
)
`2
)
+
(
c
/
2
)
<=
b
2
)
}
is
set
(
(
(
TOP-REAL
2
)
,
(
TOP-REAL
2
)
,
rl
)
`2
)
-
(
c
/
2
)
is
complex
ext-real
real
Element
of
REAL
(
(
(
TOP-REAL
2
)
,
(
TOP-REAL
2
)
,
rl
)
`2
)
+
(
c
/
2
)
is
complex
ext-real
real
Element
of
REAL
{
|[
b
1
,
b
2
]|
where
b
1
,
b
2
is
complex
ext-real
real
Element
of
REAL
: ( not
b
2
<=
(
(
(
TOP-REAL
2
)
,
(
TOP-REAL
2
)
,
rl
)
`2
)
-
(
c
/
2
)
& not
(
(
(
TOP-REAL
2
)
,
(
TOP-REAL
2
)
,
rl
)
`2
)
+
(
c
/
2
)
<=
b
2
)
}
is
set
pg
is
set
ld
is
complex
ext-real
real
Element
of
REAL
pd
is
complex
ext-real
real
Element
of
REAL
|[
ld
,
pd
]|
is
Relation-like
Function-like
V49
(2)
V50
()
V156
()
V157
()
V158
()
Element
of the
carrier
of
(
TOP-REAL
2
)
ld
is
set
pd
is
complex
ext-real
real
Element
of
REAL
R
is
complex
ext-real
real
Element
of
REAL
|[
pd
,
R
]|
is
Relation-like
Function-like
V49
(2)
V50
()
V156
()
V157
()
V158
()
Element
of the
carrier
of
(
TOP-REAL
2
)
pg
is
functional
Element
of
bool
the
carrier
of
(
TOP-REAL
2
)
ld
is
functional
Element
of
bool
the
carrier
of
(
TOP-REAL
2
)
[:
pg
,
ld
:]
is
Relation-like
Element
of
bool
the
carrier
of
[:
(
TOP-REAL
2
)
,
(
TOP-REAL
2
)
:]
rp
.:
[:
pg
,
ld
:]
is
V166
()
V167
()
V168
()
Element
of
bool
the
carrier
of
R^1
(
(
TOP-REAL
2
)
,
(
TOP-REAL
2
)
,
rl
)
`1
is
complex
ext-real
real
Element
of
REAL
|[
(
(
(
TOP-REAL
2
)
,
(
TOP-REAL
2
)
,
rl
)
`1
)
,
(
(
(
TOP-REAL
2
)
,
(
TOP-REAL
2
)
,
rl
)
`2
)
]|
is
Relation-like
Function-like
V49
(2)
V50
()
V156
()
V157
()
V158
()
Element
of the
carrier
of
(
TOP-REAL
2
)
0
/
2 is
Relation-like
non-empty
empty-yielding
RAT
-valued
Function-like
one-to-one
constant
functional
empty
complex
ext-real
non
positive
non
negative
real
V156
()
V157
()
V158
()
V159
()
V166
()
V167
()
V168
()
V169
()
V170
()
V171
()
V172
()
bounded_below
interval
Element
of
REAL
(
(
(
TOP-REAL
2
)
,
(
TOP-REAL
2
)
,
rl
)
`2
)
-
0
is
complex
ext-real
real
Element
of
REAL
(
(
(
TOP-REAL
2
)
,
(
TOP-REAL
2
)
,
rl
)
`2
)
+
0
is
complex
ext-real
real
Element
of
REAL
(
(
TOP-REAL
2
)
,
(
TOP-REAL
2
)
,
rl
)
`1
is
complex
ext-real
real
Element
of
REAL
|[
(
(
(
TOP-REAL
2
)
,
(
TOP-REAL
2
)
,
rl
)
`1
)
,
(
(
(
TOP-REAL
2
)
,
(
TOP-REAL
2
)
,
rl
)
`2
)
]|
is
Relation-like
Function-like
V49
(2)
V50
()
V156
()
V157
()
V158
()
Element
of the
carrier
of
(
TOP-REAL
2
)
(
(
(
TOP-REAL
2
)
,
(
TOP-REAL
2
)
,
rl
)
`2
)
-
0
is
complex
ext-real
real
Element
of
REAL
(
(
(
TOP-REAL
2
)
,
(
TOP-REAL
2
)
,
rl
)
`2
)
+
0
is
complex
ext-real
real
Element
of
REAL
pd
is
set
R
is
Element
of the
carrier
of
[:
(
TOP-REAL
2
)
,
(
TOP-REAL
2
)
:]
rp
.
R
is
complex
ext-real
real
Element
of the
carrier
of
R^1
(
(
TOP-REAL
2
)
,
(
TOP-REAL
2
)
,
R
) is
Relation-like
Function-like
V49
(2)
V50
()
V156
()
V157
()
V158
()
Element
of the
carrier
of
(
TOP-REAL
2
)
(
(
TOP-REAL
2
)
,
(
TOP-REAL
2
)
,
R
) is
Relation-like
Function-like
V49
(2)
V50
()
V156
()
V157
()
V158
()
Element
of the
carrier
of
(
TOP-REAL
2
)
[
(
(
TOP-REAL
2
)
,
(
TOP-REAL
2
)
,
R
),(
(
TOP-REAL
2
)
,
(
TOP-REAL
2
)
,
R
)
]
is
V15
()
Element
of the
carrier
of
[:
(
TOP-REAL
2
)
,
(
TOP-REAL
2
)
:]
{
(
(
TOP-REAL
2
)
,
(
TOP-REAL
2
)
,
R
),(
(
TOP-REAL
2
)
,
(
TOP-REAL
2
)
,
R
)
}
is
functional
non
empty
set
{
(
(
TOP-REAL
2
)
,
(
TOP-REAL
2
)
,
R
)
}
is
functional
non
empty
set
{
{
(
(
TOP-REAL
2
)
,
(
TOP-REAL
2
)
,
R
),(
(
TOP-REAL
2
)
,
(
TOP-REAL
2
)
,
R
)
}
,
{
(
(
TOP-REAL
2
)
,
(
TOP-REAL
2
)
,
R
)
}
}
is non
empty
set
()
.
R
is
complex
ext-real
real
Element
of
REAL
(
(
TOP-REAL
2
)
,
(
TOP-REAL
2
)
,
R
)
`2
is
complex
ext-real
real
Element
of
REAL
(
(
TOP-REAL
2
)
,
(
TOP-REAL
2
)
,
R
)
`2
is
complex
ext-real
real
Element
of
REAL
(
(
(
TOP-REAL
2
)
,
(
TOP-REAL
2
)
,
R
)
`2
)
-
(
(
(
TOP-REAL
2
)
,
(
TOP-REAL
2
)
,
R
)
`2
)
is
complex
ext-real
real
Element
of
REAL
dR
is
complex
ext-real
real
Element
of
REAL
TR
is
complex
ext-real
real
Element
of
REAL
|[
dR
,
TR
]|
is
Relation-like
Function-like
V49
(2)
V50
()
V156
()
V157
()
V158
()
Element
of the
carrier
of
(
TOP-REAL
2
)
TR
+
(
c
/
2
)
is
complex
ext-real
real
Element
of
REAL
(
(
(
(
TOP-REAL
2
)
,
(
TOP-REAL
2
)
,
rl
)
`2
)
-
(
c
/
2
)
)
+
(
c
/
2
)
is
complex
ext-real
real
Element
of
REAL
(
(
(
TOP-REAL
2
)
,
(
TOP-REAL
2
)
,
rl
)
`2
)
-
TR
is
complex
ext-real
real
Element
of
REAL
(
(
(
TOP-REAL
2
)
,
(
TOP-REAL
2
)
,
rl
)
`2
)
-
(
(
(
(
TOP-REAL
2
)
,
(
TOP-REAL
2
)
,
rl
)
`2
)
+
(
c
/
2
)
)
is
complex
ext-real
real
Element
of
REAL
(
TR
+
(
c
/
2
)
)
-
TR
is
complex
ext-real
real
Element
of
REAL
-
(
c
/
2
)
is
complex
ext-real
real
Element
of
REAL
abs
(
(
(
(
TOP-REAL
2
)
,
(
TOP-REAL
2
)
,
rl
)
`2
)
-
TR
)
is
complex
ext-real
real
Element
of
REAL
C
is
complex
ext-real
real
Element
of
REAL
P
is
complex
ext-real
real
Element
of
REAL
|[
C
,
P
]|
is
Relation-like
Function-like
V49
(2)
V50
()
V156
()
V157
()
V158
()
Element
of the
carrier
of
(
TOP-REAL
2
)
P
+
(
c
/
2
)
is
complex
ext-real
real
Element
of
REAL
(
(
(
(
TOP-REAL
2
)
,
(
TOP-REAL
2
)
,
rl
)
`2
)
-
(
c
/
2
)
)
+
(
c
/
2
)
is
complex
ext-real
real
Element
of
REAL
(
(
(
TOP-REAL
2
)
,
(
TOP-REAL
2
)
,
rl
)
`2
)
-
P
is
complex
ext-real
real
Element
of
REAL
(
(
(
TOP-REAL
2
)
,
(
TOP-REAL
2
)
,
rl
)
`2
)
-
(
(
(
(
TOP-REAL
2
)
,
(
TOP-REAL
2
)
,
rl
)
`2
)
+
(
c
/
2
)
)
is
complex
ext-real
real
Element
of
REAL
(
P
+
(
c
/
2
)
)
-
P
is
complex
ext-real
real
Element
of
REAL
abs
(
(
(
(
TOP-REAL
2
)
,
(
TOP-REAL
2
)
,
rl
)
`2
)
-
P
)
is
complex
ext-real
real
Element
of
REAL
(
c
/
2
)
+
(
c
/
2
)
is
complex
ext-real
real
Element
of
REAL
(
abs
(
(
(
(
TOP-REAL
2
)
,
(
TOP-REAL
2
)
,
rl
)
`2
)
-
TR
)
)
+
(
abs
(
(
(
(
TOP-REAL
2
)
,
(
TOP-REAL
2
)
,
rl
)
`2
)
-
P
)
)
is
complex
ext-real
real
Element
of
REAL
(
(
(
(
TOP-REAL
2
)
,
(
TOP-REAL
2
)
,
rl
)
`2
)
-
TR
)
-
(
(
(
(
TOP-REAL
2
)
,
(
TOP-REAL
2
)
,
rl
)
`2
)
-
P
)
is
complex
ext-real
real
Element
of
REAL
abs
(
(
(
(
(
TOP-REAL
2
)
,
(
TOP-REAL
2
)
,
rl
)
`2
)
-
TR
)
-
(
(
(
(
TOP-REAL
2
)
,
(
TOP-REAL
2
)
,
rl
)
`2
)
-
P
)
)
is
complex
ext-real
real
Element
of
REAL
-
(
(
(
(
(
TOP-REAL
2
)
,
(
TOP-REAL
2
)
,
rl
)
`2
)
-
TR
)
-
(
(
(
(
TOP-REAL
2
)
,
(
TOP-REAL
2
)
,
rl
)
`2
)
-
P
)
)
is
complex
ext-real
real
Element
of
REAL
abs
(
-
(
(
(
(
(
TOP-REAL
2
)
,
(
TOP-REAL
2
)
,
rl
)
`2
)
-
TR
)
-
(
(
(
(
TOP-REAL
2
)
,
(
TOP-REAL
2
)
,
rl
)
`2
)
-
P
)
)
)
is
complex
ext-real
real
Element
of
REAL
TR
-
P
is
complex
ext-real
real
Element
of
REAL
(
TR
-
P
)
-
(
(
(
(
TOP-REAL
2
)
,
(
TOP-REAL
2
)
,
rl
)
`2
)
-
(
(
(
TOP-REAL
2
)
,
(
TOP-REAL
2
)
,
rl
)
`2
)
)
is
complex
ext-real
real
Element
of
REAL
abs
(
(
TR
-
P
)
-
(
(
(
(
TOP-REAL
2
)
,
(
TOP-REAL
2
)
,
rl
)
`2
)
-
(
(
(
TOP-REAL
2
)
,
(
TOP-REAL
2
)
,
rl
)
`2
)
)
)
is
complex
ext-real
real
Element
of
REAL
(
(
(
(
TOP-REAL
2
)
,
(
TOP-REAL
2
)
,
rl
)
`2
)
-
(
(
(
TOP-REAL
2
)
,
(
TOP-REAL
2
)
,
rl
)
`2
)
)
-
c
is
complex
ext-real
real
Element
of
REAL
(
(
(
(
TOP-REAL
2
)
,
(
TOP-REAL
2
)
,
rl
)
`2
)
-
(
(
(
TOP-REAL
2
)
,
(
TOP-REAL
2
)
,
rl
)
`2
)
)
+
c
is
complex
ext-real
real
Element
of
REAL
].
(
(
(
(
(
TOP-REAL
2
)
,
(
TOP-REAL
2
)
,
rl
)
`2
)
-
(
(
(
TOP-REAL
2
)
,
(
TOP-REAL
2
)
,
rl
)
`2
)
)
-
c
)
,
(
(
(
(
(
TOP-REAL
2
)
,
(
TOP-REAL
2
)
,
rl
)
`2
)
-
(
(
(
TOP-REAL
2
)
,
(
TOP-REAL
2
)
,
rl
)
`2
)
)
+
c
)
.[
is
V166
()
V167
()
V168
() non
left_end
non
right_end
bounded_below
bounded_above
real-bounded
interval
Element
of
bool
REAL
rp
is
Relation-like
the
carrier
of
[:
(
TOP-REAL
2
)
,
(
TOP-REAL
2
)
:]
-defined
the
carrier
of
R^1
-valued
Function-like
non
empty
total
quasi_total
V156
()
V157
()
V158
()
Element
of
bool
[:
the
carrier
of
[:
(
TOP-REAL
2
)
,
(
TOP-REAL
2
)
:]
, the
carrier
of
R^1
:]
bool
the
carrier
of
[:
(
TOP-REAL
2
)
,
(
TOP-REAL
2
)
:]
is non
empty
set
rl
is
Element
of the
carrier
of
[:
(
TOP-REAL
2
)
,
(
TOP-REAL
2
)
:]
rp
.
rl
is
complex
ext-real
real
Element
of the
carrier
of
R^1
rg
is
V166
()
V167
()
V168
()
Element
of
bool
the
carrier
of
R^1
(
(
TOP-REAL
2
)
,
(
TOP-REAL
2
)
,
rl
) is
Relation-like
Function-like
V49
(2)
V50
()
V156
()
V157
()
V158
()
Element
of the
carrier
of
(
TOP-REAL
2
)
(
(
TOP-REAL
2
)
,
(
TOP-REAL
2
)
,
rl
) is
Relation-like
Function-like
V49
(2)
V50
()
V156
()
V157
()
V158
()
Element
of the
carrier
of
(
TOP-REAL
2
)
[
(
(
TOP-REAL
2
)
,
(
TOP-REAL
2
)
,
rl
),(
(
TOP-REAL
2
)
,
(
TOP-REAL
2
)
,
rl
)
]
is
V15
()
Element
of the
carrier
of
[:
(
TOP-REAL
2
)
,
(
TOP-REAL
2
)
:]
{
(
(
TOP-REAL
2
)
,
(
TOP-REAL
2
)
,
rl
),(
(
TOP-REAL
2
)
,
(
TOP-REAL
2
)
,
rl
)
}
is
functional
non
empty
set
{
(
(
TOP-REAL
2
)
,
(
TOP-REAL
2
)
,
rl
)
}
is
functional
non
empty
set
{
{
(
(
TOP-REAL
2
)
,
(
TOP-REAL
2
)
,
rl
),(
(
TOP-REAL
2
)
,
(
TOP-REAL
2
)
,
rl
)
}
,
{
(
(
TOP-REAL
2
)
,
(
TOP-REAL
2
)
,
rl
)
}
}
is non
empty
set
(
(
TOP-REAL
2
)
,
(
TOP-REAL
2
)
,
rl
)
`1
is
complex
ext-real
real
Element
of
REAL
rd
is
V166
()
V167
()
V168
()
open
Element
of
bool
REAL
a
is
complex
ext-real
real
set
(
(
(
TOP-REAL
2
)
,
(
TOP-REAL
2
)
,
rl
)
`1
)
-
a
is
complex
ext-real
real
Element
of
REAL
(
(
(
TOP-REAL
2
)
,
(
TOP-REAL
2
)
,
rl
)
`1
)
+
a
is
complex
ext-real
real
Element
of
REAL
].
(
(
(
(
TOP-REAL
2
)
,
(
TOP-REAL
2
)
,
rl
)
`1
)
-
a
)
,
(
(
(
(
TOP-REAL
2
)
,
(
TOP-REAL
2
)
,
rl
)
`1
)
+
a
)
.[
is
V166
()
V167
()
V168
() non
left_end
non
right_end
bounded_below
bounded_above
real-bounded
interval
Element
of
bool
REAL
b
is
complex
ext-real
real
Element
of
REAL
(
(
(
TOP-REAL
2
)
,
(
TOP-REAL
2
)
,
rl
)
`1
)
-
b
is
complex
ext-real
real
Element
of
REAL
(
(
(
TOP-REAL
2
)
,
(
TOP-REAL
2
)
,
rl
)
`1
)
+
b
is
complex
ext-real
real
Element
of
REAL
{
|[
b
1
,
b
2
]|
where
b
1
,
b
2
is
complex
ext-real
real
Element
of
REAL
: ( not
b
1
<=
(
(
(
TOP-REAL
2
)
,
(
TOP-REAL
2
)
,
rl
)
`1
)
-
b
& not
(
(
(
TOP-REAL
2
)
,
(
TOP-REAL
2
)
,
rl
)
`1
)
+
b
<=
b
1
)
}
is
set
d
is
set
lg
is
complex
ext-real
real
Element
of
REAL
pg
is
complex
ext-real
real
Element
of
REAL
|[
lg
,
pg
]|
is
Relation-like
Function-like
V49
(2)
V50
()
V156
()
V157
()
V158
()
Element
of the
carrier
of
(
TOP-REAL
2
)
[#]
(
TOP-REAL
2
)
is
functional
non
empty
non
proper
non
proper
open
open
closed
closed
dense
dense
non
boundary
non
boundary
connected
a_component
being_Region
convex
Element
of
bool
the
carrier
of
(
TOP-REAL
2
)
d
is
functional
Element
of
bool
the
carrier
of
(
TOP-REAL
2
)
[:
(
[#]
(
TOP-REAL
2
)
)
,
d
:]
is
Relation-like
Element
of
bool
the
carrier
of
[:
(
TOP-REAL
2
)
,
(
TOP-REAL
2
)
:]
rp
.:
[:
(
[#]
(
TOP-REAL
2
)
)
,
d
:]
is
V166
()
V167
()
V168
()
Element
of
bool
the
carrier
of
R^1
(
(
TOP-REAL
2
)
,
(
TOP-REAL
2
)
,
rl
)
`2
is
complex
ext-real
real
Element
of
REAL
|[
(
(
(
TOP-REAL
2
)
,
(
TOP-REAL
2
)
,
rl
)
`1
)
,
(
(
(
TOP-REAL
2
)
,
(
TOP-REAL
2
)
,
rl
)
`2
)
]|
is
Relation-like
Function-like
V49
(2)
V50
()
V156
()
V157
()
V158
()
Element
of the
carrier
of
(
TOP-REAL
2
)
(
(
(
TOP-REAL
2
)
,
(
TOP-REAL
2
)
,
rl
)
`1
)
-
0
is
complex
ext-real
real
Element
of
REAL
(
(
(
TOP-REAL
2
)
,
(
TOP-REAL
2
)
,
rl
)
`1
)
+
0
is
complex
ext-real
real
Element
of
REAL
lg
is
set
pg
is
Element
of the
carrier
of
[:
(
TOP-REAL
2
)
,
(
TOP-REAL
2
)
:]
rp
.
pg
is
complex
ext-real
real
Element
of the
carrier
of
R^1
(
(
TOP-REAL
2
)
,
(
TOP-REAL
2
)
,
pg
) is
Relation-like
Function-like
V49
(2)
V50
()
V156
()
V157
()
V158
()
Element
of the
carrier
of
(
TOP-REAL
2
)
(
(
TOP-REAL
2
)
,
(
TOP-REAL
2
)
,
pg
) is
Relation-like
Function-like
V49
(2)
V50
()
V156
()
V157
()
V158
()
Element
of the
carrier
of
(
TOP-REAL
2
)
[
(
(
TOP-REAL
2
)
,
(
TOP-REAL
2
)
,
pg
),(
(
TOP-REAL
2
)
,
(
TOP-REAL
2
)
,
pg
)
]
is
V15
()
Element
of the
carrier
of
[:
(
TOP-REAL
2
)
,
(
TOP-REAL
2
)
:]
{
(
(
TOP-REAL
2
)
,
(
TOP-REAL
2
)
,
pg
),(
(
TOP-REAL
2
)
,
(
TOP-REAL
2
)
,
pg
)
}
is
functional
non
empty
set
{
(
(
TOP-REAL
2
)
,
(
TOP-REAL
2
)
,
pg
)
}
is
functional
non
empty
set
{
{
(
(
TOP-REAL
2
)
,
(
TOP-REAL
2
)
,
pg
),(
(
TOP-REAL
2
)
,
(
TOP-REAL
2
)
,
pg
)
}
,
{
(
(
TOP-REAL
2
)
,
(
TOP-REAL
2
)
,
pg
)
}
}
is non
empty
set
(
(
TOP-REAL
2
)
,
(
TOP-REAL
2
)
,
pg
)
`1
is
complex
ext-real
real
Element
of
REAL
ld
is
complex
ext-real
real
Element
of
REAL
pd
is
complex
ext-real
real
Element
of
REAL
|[
ld
,
pd
]|
is
Relation-like
Function-like
V49
(2)
V50
()
V156
()
V157
()
V158
()
Element
of the
carrier
of
(
TOP-REAL
2
)
ld
+
b
is
complex
ext-real
real
Element
of
REAL
(
(
(
(
TOP-REAL
2
)
,
(
TOP-REAL
2
)
,
rl
)
`1
)
-
b
)
+
b
is
complex
ext-real
real
Element
of
REAL
(
(
(
TOP-REAL
2
)
,
(
TOP-REAL
2
)
,
rl
)
`1
)
-
ld
is
complex
ext-real
real
Element
of
REAL
(
(
(
TOP-REAL
2
)
,
(
TOP-REAL
2
)
,
rl
)
`1
)
-
(
(
(
(
TOP-REAL
2
)
,
(
TOP-REAL
2
)
,
rl
)
`1
)
+
b
)
is
complex
ext-real
real
Element
of
REAL
(
ld
+
b
)
-
ld
is
complex
ext-real
real
Element
of
REAL
-
b
is
complex
ext-real
real
Element
of
REAL
abs
(
(
(
(
TOP-REAL
2
)
,
(
TOP-REAL
2
)
,
rl
)
`1
)
-
ld
)
is
complex
ext-real
real
Element
of
REAL
-
(
(
(
(
TOP-REAL
2
)
,
(
TOP-REAL
2
)
,
rl
)
`1
)
-
ld
)
is
complex
ext-real
real
Element
of
REAL
abs
(
-
(
(
(
(
TOP-REAL
2
)
,
(
TOP-REAL
2
)
,
rl
)
`1
)
-
ld
)
)
is
complex
ext-real
real
Element
of
REAL
ld
-
(
(
(
TOP-REAL
2
)
,
(
TOP-REAL
2
)
,
rl
)
`1
)
is
complex
ext-real
real
Element
of
REAL
abs
(
ld
-
(
(
(
TOP-REAL
2
)
,
(
TOP-REAL
2
)
,
rl
)
`1
)
)
is
complex
ext-real
real
Element
of
REAL
].
(
(
(
(
TOP-REAL
2
)
,
(
TOP-REAL
2
)
,
rl
)
`1
)
-
b
)
,
(
(
(
(
TOP-REAL
2
)
,
(
TOP-REAL
2
)
,
rl
)
`1
)
+
b
)
.[
is
V166
()
V167
()
V168
() non
left_end
non
right_end
bounded_below
bounded_above
real-bounded
interval
Element
of
bool
REAL
rp
is
Relation-like
the
carrier
of
[:
(
TOP-REAL
2
)
,
(
TOP-REAL
2
)
:]
-defined
the
carrier
of
R^1
-valued
Function-like
non
empty
total
quasi_total
V156
()
V157
()
V158
()
Element
of
bool
[:
the
carrier
of
[:
(
TOP-REAL
2
)
,
(
TOP-REAL
2
)
:]
, the
carrier
of
R^1
:]
bool
the
carrier
of
[:
(
TOP-REAL
2
)
,
(
TOP-REAL
2
)
:]
is non
empty
set
rl
is
Element
of the
carrier
of
[:
(
TOP-REAL
2
)
,
(
TOP-REAL
2
)
:]
rp
.
rl
is
complex
ext-real
real
Element
of the
carrier
of
R^1
rg
is
V166
()
V167
()
V168
()
Element
of
bool
the
carrier
of
R^1
(
(
TOP-REAL
2
)
,
(
TOP-REAL
2
)
,
rl
) is
Relation-like
Function-like
V49
(2)
V50
()
V156
()
V157
()
V158
()
Element
of the
carrier
of
(
TOP-REAL
2
)
(
(
TOP-REAL
2
)
,
(
TOP-REAL
2
)
,
rl
) is
Relation-like
Function-like
V49
(2)
V50
()
V156
()
V157
()
V158
()
Element
of the
carrier
of
(
TOP-REAL
2
)
[
(
(
TOP-REAL
2
)
,
(
TOP-REAL
2
)
,
rl
),(
(
TOP-REAL
2
)
,
(
TOP-REAL
2
)
,
rl
)
]
is
V15
()
Element
of the
carrier
of
[:
(
TOP-REAL
2
)
,
(
TOP-REAL
2
)
:]
{
(
(
TOP-REAL
2
)
,
(
TOP-REAL
2
)
,
rl
),(
(
TOP-REAL
2
)
,
(
TOP-REAL
2
)
,
rl
)
}
is
functional
non
empty
set
{
(
(
TOP-REAL
2
)
,
(
TOP-REAL
2
)
,
rl
)
}
is
functional
non
empty
set
{
{
(
(
TOP-REAL
2
)
,
(
TOP-REAL
2
)
,
rl
),(
(
TOP-REAL
2
)
,
(
TOP-REAL
2
)
,
rl
)
}
,
{
(
(
TOP-REAL
2
)
,
(
TOP-REAL
2
)
,
rl
)
}
}
is non
empty
set
(
(
TOP-REAL
2
)
,
(
TOP-REAL
2
)
,
rl
)
`2
is
complex
ext-real
real
Element
of
REAL
rd
is
V166
()
V167
()
V168
()
open
Element
of
bool
REAL
a
is
complex
ext-real
real
set
(
(
(
TOP-REAL
2
)
,
(
TOP-REAL
2
)
,
rl
)
`2
)
-
a
is
complex
ext-real
real
Element
of
REAL
(
(
(
TOP-REAL
2
)
,
(
TOP-REAL
2
)
,
rl
)
`2
)
+
a
is
complex
ext-real
real
Element
of
REAL
].
(
(
(
(
TOP-REAL
2
)
,
(
TOP-REAL
2
)
,
rl
)
`2
)
-
a
)
,
(
(
(
(
TOP-REAL
2
)
,
(
TOP-REAL
2
)
,
rl
)
`2
)
+
a
)
.[
is
V166
()
V167
()
V168
() non
left_end
non
right_end
bounded_below
bounded_above
real-bounded
interval
Element
of
bool
REAL
b
is
complex
ext-real
real
Element
of
REAL
(
(
(
TOP-REAL
2
)
,
(
TOP-REAL
2
)
,
rl
)
`2
)
-
b
is
complex
ext-real
real
Element
of
REAL
(
(
(
TOP-REAL
2
)
,
(
TOP-REAL
2
)
,
rl
)
`2
)
+
b
is
complex
ext-real
real
Element
of
REAL
{
|[
b
1
,
b
2
]|
where
b
1
,
b
2
is
complex
ext-real
real
Element
of
REAL
: ( not
b
2
<=
(
(
(
TOP-REAL
2
)
,
(
TOP-REAL
2
)
,
rl
)
`2
)
-
b
& not
(
(
(
TOP-REAL
2
)
,
(
TOP-REAL
2
)
,
rl
)
`2
)
+
b
<=
b
2
)
}
is
set
d
is
set
lg
is
complex
ext-real
real
Element
of
REAL
pg
is
complex
ext-real
real
Element
of
REAL
|[
lg
,
pg
]|
is
Relation-like
Function-like
V49
(2)
V50
()
V156
()
V157
()
V158
()
Element
of the
carrier
of
(
TOP-REAL
2
)
[#]
(
TOP-REAL
2
)
is
functional
non
empty
non
proper
non
proper
open
open
closed
closed
dense
dense
non
boundary
non
boundary
connected
a_component
being_Region
convex
Element
of
bool
the
carrier
of
(
TOP-REAL
2
)
d
is
functional
Element
of
bool
the
carrier
of
(
TOP-REAL
2
)
[:
(
[#]
(
TOP-REAL
2
)
)
,
d
:]
is
Relation-like
Element
of
bool
the
carrier
of
[:
(
TOP-REAL
2
)
,
(
TOP-REAL
2
)
:]
rp
.:
[:
(
[#]
(
TOP-REAL
2
)
)
,
d
:]
is
V166
()
V167
()
V168
()
Element
of
bool
the
carrier
of
R^1
(
(
TOP-REAL
2
)
,
(
TOP-REAL
2
)
,
rl
)
`1
is
complex
ext-real
real
Element
of
REAL
|[
(
(
(
TOP-REAL
2
)
,
(
TOP-REAL
2
)
,
rl
)
`1
)
,
(
(
(
TOP-REAL
2
)
,
(
TOP-REAL
2
)
,
rl
)
`2
)
]|
is
Relation-like
Function-like
V49
(2)
V50
()
V156
()
V157
()
V158
()
Element
of the
carrier
of
(
TOP-REAL
2
)
(
(
(
TOP-REAL
2
)
,
(
TOP-REAL
2
)
,
rl
)
`2
)
-
0
is
complex
ext-real
real
Element
of
REAL
(
(
(
TOP-REAL
2
)
,
(
TOP-REAL
2
)
,
rl
)
`2
)
+
0
is
complex
ext-real
real
Element
of
REAL
lg
is
set
pg
is
Element
of the
carrier
of
[:
(
TOP-REAL
2
)
,
(
TOP-REAL
2
)
:]
rp
.
pg
is
complex
ext-real
real
Element
of the
carrier
of
R^1
(
(
TOP-REAL
2
)
,
(
TOP-REAL
2
)
,
pg
) is
Relation-like
Function-like
V49
(2)
V50
()
V156
()
V157
()
V158
()
Element
of the
carrier
of
(
TOP-REAL
2
)
(
(
TOP-REAL
2
)
,
(
TOP-REAL
2
)
,
pg
) is
Relation-like
Function-like
V49
(2)
V50
()
V156
()
V157
()
V158
()
Element
of the
carrier
of
(
TOP-REAL
2
)
[
(
(
TOP-REAL
2
)
,
(
TOP-REAL
2
)
,
pg
),(
(
TOP-REAL
2
)
,
(
TOP-REAL
2
)
,
pg
)
]
is
V15
()
Element
of the
carrier
of
[:
(
TOP-REAL
2
)
,
(
TOP-REAL
2
)
:]
{
(
(
TOP-REAL
2
)
,
(
TOP-REAL
2
)
,
pg
),(
(
TOP-REAL
2
)
,
(
TOP-REAL
2
)
,
pg
)
}
is
functional
non
empty
set
{
(
(
TOP-REAL
2
)
,
(
TOP-REAL
2
)
,
pg
)
}
is
functional
non
empty
set
{
{
(
(
TOP-REAL
2
)
,
(
TOP-REAL
2
)
,
pg
),(
(
TOP-REAL
2
)
,
(
TOP-REAL
2
)
,
pg
)
}
,
{
(
(
TOP-REAL
2
)
,
(
TOP-REAL
2
)
,
pg
)
}
}
is non
empty
set
(
(
TOP-REAL
2
)
,
(
TOP-REAL
2
)
,
pg
)
`2
is
complex
ext-real
real
Element
of
REAL
ld
is
complex
ext-real
real
Element
of
REAL
pd
is
complex
ext-real
real
Element
of
REAL
|[
ld
,
pd
]|
is
Relation-like
Function-like
V49
(2)
V50
()
V156
()
V157
()
V158
()
Element
of the
carrier
of
(
TOP-REAL
2
)
pd
+
b
is
complex
ext-real
real
Element
of
REAL
(
(
(
(
TOP-REAL
2
)
,
(
TOP-REAL
2
)
,
rl
)
`2
)
-
b
)
+
b
is
complex
ext-real
real
Element
of
REAL
(
(
(
TOP-REAL
2
)
,
(
TOP-REAL
2
)
,
rl
)
`2
)
-
pd
is
complex
ext-real
real
Element
of
REAL
(
(
(
TOP-REAL
2
)
,
(
TOP-REAL
2
)
,
rl
)
`2
)
-
(
(
(
(
TOP-REAL
2
)
,
(
TOP-REAL
2
)
,
rl
)
`2
)
+
b
)
is
complex
ext-real
real
Element
of
REAL
(
pd
+
b
)
-
pd
is
complex
ext-real
real
Element
of
REAL
-
b
is
complex
ext-real
real
Element
of
REAL
abs
(
(
(
(
TOP-REAL
2
)
,
(
TOP-REAL
2
)
,
rl
)
`2
)
-
pd
)
is
complex
ext-real
real
Element
of
REAL
-
(
(
(
(
TOP-REAL
2
)
,
(
TOP-REAL
2
)
,
rl
)
`2
)
-
pd
)
is
complex
ext-real
real
Element
of
REAL
abs
(
-
(
(
(
(
TOP-REAL
2
)
,
(
TOP-REAL
2
)
,
rl
)
`2
)
-
pd
)
)
is
complex
ext-real
real
Element
of
REAL
pd
-
(
(
(
TOP-REAL
2
)
,
(
TOP-REAL
2
)
,
rl
)
`2
)
is
complex
ext-real
real
Element
of
REAL
abs
(
pd
-
(
(
(
TOP-REAL
2
)
,
(
TOP-REAL
2
)
,
rl
)
`2
)
)
is
complex
ext-real
real
Element
of
REAL
].
(
(
(
(
TOP-REAL
2
)
,
(
TOP-REAL
2
)
,
rl
)
`2
)
-
b
)
,
(
(
(
(
TOP-REAL
2
)
,
(
TOP-REAL
2
)
,
rl
)
`2
)
+
b
)
.[
is
V166
()
V167
()
V168
() non
left_end
non
right_end
bounded_below
bounded_above
real-bounded
interval
Element
of
bool
REAL
rp
is
Relation-like
Function-like
V49
(2)
V50
()
V156
()
V157
()
V158
()
Element
of the
carrier
of
(
TOP-REAL
2
)
(
rp
) is
Relation-like
the
carrier
of
[:
(
TOP-REAL
2
)
,
(
TOP-REAL
2
)
:]
-defined
REAL
-valued
Function-like
non
empty
total
quasi_total
V156
()
V157
()
V158
()
Element
of
bool
[:
the
carrier
of
[:
(
TOP-REAL
2
)
,
(
TOP-REAL
2
)
:]
,
REAL
:]
(
rp
) is
Relation-like
the
carrier
of
[:
(
TOP-REAL
2
)
,
(
TOP-REAL
2
)
:]
-defined
REAL
-valued
Function-like
non
empty
total
quasi_total
V156
()
V157
()
V158
()
Element
of
bool
[:
the
carrier
of
[:
(
TOP-REAL
2
)
,
(
TOP-REAL
2
)
:]
,
REAL
:]
rp
is non
empty
ordinal
natural
complex
ext-real
positive
non
negative
real
V33
()
V119
()
V166
()
V167
()
V168
()
V169
()
V170
()
V171
()
left_end
bounded_below
Element
of
NAT
TOP-REAL
rp
is non
empty
TopSpace-like
T_0
T_1
T_2
connected
V132
()
V178
()
V179
()
V180
()
V181
()
V182
()
V183
()
V184
()
strict
add-continuous
Mult-continuous
pathwise_connected
RLTopStruct
the
carrier
of
(
TOP-REAL
rp
)
is
functional
non
empty
set
rg
is
Relation-like
Function-like
V49
(
rp
)
V50
()
V156
()
V157
()
V158
()
Element
of the
carrier
of
(
TOP-REAL
rp
)
rl
is
Relation-like
Function-like
V49
(
rp
)
V50
()
V156
()
V157
()
V158
()
Element
of the
carrier
of
(
TOP-REAL
rp
)
rd
is non
empty
complex
ext-real
positive
non
negative
real
set
Tdisk
(
rl
,
rd
) is non
empty
TopSpace-like
T_0
T_1
T_2
V270
(
rp
)
SubSpace
of
TOP-REAL
rp
the
carrier
of
(
Tdisk
(
rl
,
rd
)
)
is non
empty
set
cl_Ball
(
rl
,
rd
) is
functional
non
empty
proper
closed
connected
bounded
convex
Element
of
bool
the
carrier
of
(
TOP-REAL
rp
)
bool
the
carrier
of
(
TOP-REAL
rp
)
is non
empty
set
{
rg
}
is
functional
non
empty
proper
closed
compact
bounded
Element
of
bool
the
carrier
of
(
TOP-REAL
rp
)
(
cl_Ball
(
rl
,
rd
)
)
\
{
rg
}
is
functional
non
empty
Element
of
bool
the
carrier
of
(
TOP-REAL
rp
)
(
TOP-REAL
rp
)
|
(
(
cl_Ball
(
rl
,
rd
)
)
\
{
rg
}
)
is non
empty
strict
TopSpace-like
T_0
T_1
T_2
SubSpace
of
TOP-REAL
rp
the
carrier
of
(
(
TOP-REAL
rp
)
|
(
(
cl_Ball
(
rl
,
rd
)
)
\
{
rg
}
)
)
is non
empty
set
Tcircle
(
rl
,
rd
) is non
empty
strict
TopSpace-like
T_0
T_1
T_2
SubSpace
of
TOP-REAL
rp
the
carrier
of
(
Tcircle
(
rl
,
rd
)
)
is non
empty
set
[:
the
carrier
of
(
(
TOP-REAL
rp
)
|
(
(
cl_Ball
(
rl
,
rd
)
)
\
{
rg
}
)
)
, the
carrier
of
(
Tcircle
(
rl
,
rd
)
)
:]
is
Relation-like
non
empty
set
bool
[:
the
carrier
of
(
(
TOP-REAL
rp
)
|
(
(
cl_Ball
(
rl
,
rd
)
)
\
{
rg
}
)
)
, the
carrier
of
(
Tcircle
(
rl
,
rd
)
)
:]
is non
empty
set
b
is
set
c
is
Relation-like
Function-like
V49
(
rp
)
V50
()
V156
()
V157
()
V158
()
Element
of the
carrier
of
(
TOP-REAL
rp
)
HC
(
rg
,
c
,
rl
,
rd
) is
Relation-like
Function-like
V49
(
rp
)
V50
()
V156
()
V157
()
V158
()
Element
of the
carrier
of
(
TOP-REAL
rp
)
b
is
Relation-like
the
carrier
of
(
(
TOP-REAL
rp
)
|
(
(
cl_Ball
(
rl
,
rd
)
)
\
{
rg
}
)
)
-defined
the
carrier
of
(
Tcircle
(
rl
,
rd
)
)
-valued
Function-like
non
empty
total
quasi_total
Element
of
bool
[:
the
carrier
of
(
(
TOP-REAL
rp
)
|
(
(
cl_Ball
(
rl
,
rd
)
)
\
{
rg
}
)
)
, the
carrier
of
(
Tcircle
(
rl
,
rd
)
)
:]
c
is
Relation-like
the
carrier
of
(
(
TOP-REAL
rp
)
|
(
(
cl_Ball
(
rl
,
rd
)
)
\
{
rg
}
)
)
-defined
the
carrier
of
(
Tcircle
(
rl
,
rd
)
)
-valued
Function-like
non
empty
total
quasi_total
Element
of
bool
[:
the
carrier
of
(
(
TOP-REAL
rp
)
|
(
(
cl_Ball
(
rl
,
rd
)
)
\
{
rg
}
)
)
, the
carrier
of
(
Tcircle
(
rl
,
rd
)
)
:]
d
is
Element
of the
carrier
of
(
(
TOP-REAL
rp
)
|
(
(
cl_Ball
(
rl
,
rd
)
)
\
{
rg
}
)
)
c
.
d
is
Element
of the
carrier
of
(
Tcircle
(
rl
,
rd
)
)
b
is
Relation-like
the
carrier
of
(
(
TOP-REAL
rp
)
|
(
(
cl_Ball
(
rl
,
rd
)
)
\
{
rg
}
)
)
-defined
the
carrier
of
(
Tcircle
(
rl
,
rd
)
)
-valued
Function-like
non
empty
total
quasi_total
Element
of
bool
[:
the
carrier
of
(
(
TOP-REAL
rp
)
|
(
(
cl_Ball
(
rl
,
rd
)
)
\
{
rg
}
)
)
, the
carrier
of
(
Tcircle
(
rl
,
rd
)
)
:]
c
is
Relation-like
the
carrier
of
(
(
TOP-REAL
rp
)
|
(
(
cl_Ball
(
rl
,
rd
)
)
\
{
rg
}
)
)
-defined
the
carrier
of
(
Tcircle
(
rl
,
rd
)
)
-valued
Function-like
non
empty
total
quasi_total
Element
of
bool
[:
the
carrier
of
(
(
TOP-REAL
rp
)
|
(
(
cl_Ball
(
rl
,
rd
)
)
\
{
rg
}
)
)
, the
carrier
of
(
Tcircle
(
rl
,
rd
)
)
:]
d
is
set
b
.
d
is
set
c
.
d
is
set
lg
is
Relation-like
Function-like
V49
(
rp
)
V50
()
V156
()
V157
()
V158
()
Element
of the
carrier
of
(
TOP-REAL
rp
)
HC
(
rg
,
lg
,
rl
,
rd
) is
Relation-like
Function-like
V49
(
rp
)
V50
()
V156
()
V157
()
V158
()
Element
of the
carrier
of
(
TOP-REAL
rp
)
pg
is
Relation-like
Function-like
V49
(
rp
)
V50
()
V156
()
V157
()
V158
()
Element
of the
carrier
of
(
TOP-REAL
rp
)
HC
(
rg
,
pg
,
rl
,
rd
) is
Relation-like
Function-like
V49
(
rp
)
V50
()
V156
()
V157
()
V158
()
Element
of the
carrier
of
(
TOP-REAL
rp
)
rl
is
Relation-like
Function-like
V49
(2)
V50
()
V156
()
V157
()
V158
()
Element
of the
carrier
of
(
TOP-REAL
2
)
rp
is
Relation-like
Function-like
V49
(2)
V50
()
V156
()
V157
()
V158
()
Element
of the
carrier
of
(
TOP-REAL
2
)
{
rl
}
is
functional
non
empty
proper
closed
compact
bounded
Element
of
bool
the
carrier
of
(
TOP-REAL
2
)
rg
is non
empty
complex
ext-real
positive
non
negative
real
set
Tdisk
(
rp
,
rg
) is non
empty
TopSpace-like
T_0
T_1
T_2
V82
()
normal
T_3
T_4
compact
closed
V246
()
V270
(2)
pseudocompact
SubSpace
of
TOP-REAL
2
the
carrier
of
(
Tdisk
(
rp
,
rg
)
)
is non
empty
set
cl_Ball
(
rp
,
rg
) is
functional
non
empty
proper
closed
connected
bounded
convex
Element
of
bool
the
carrier
of
(
TOP-REAL
2
)
(
cl_Ball
(
rp
,
rg
)
)
\
{
rl
}
is
functional
non
empty
Element
of
bool
the
carrier
of
(
TOP-REAL
2
)
(
TOP-REAL
2
)
|
(
(
cl_Ball
(
rp
,
rg
)
)
\
{
rl
}
)
is non
empty
strict
TopSpace-like
T_0
T_1
T_2
SubSpace
of
TOP-REAL
2
Tcircle
(
rp
,
rg
) is non
empty
strict
TopSpace-like
T_0
T_1
T_2
V82
()
normal
T_3
T_4
connected
compact
V246
()
being_simple_closed_curve
pathwise_connected
pseudocompact
SubSpace
of
TOP-REAL
2
(2,
rp
,
rl
,
rg
) is
Relation-like
the
carrier
of
(
(
TOP-REAL
2
)
|
(
(
cl_Ball
(
rp
,
rg
)
)
\
{
rl
}
)
)
-defined
the
carrier
of
(
Tcircle
(
rp
,
rg
)
)
-valued
Function-like
non
empty
total
quasi_total
Element
of
bool
[:
the
carrier
of
(
(
TOP-REAL
2
)
|
(
(
cl_Ball
(
rp
,
rg
)
)
\
{
rl
}
)
)
, the
carrier
of
(
Tcircle
(
rp
,
rg
)
)
:]
the
carrier
of
(
(
TOP-REAL
2
)
|
(
(
cl_Ball
(
rp
,
rg
)
)
\
{
rl
}
)
)
is non
empty
set
the
carrier
of
(
Tcircle
(
rp
,
rg
)
)
is non
empty
set
[:
the
carrier
of
(
(
TOP-REAL
2
)
|
(
(
cl_Ball
(
rp
,
rg
)
)
\
{
rl
}
)
)
, the
carrier
of
(
Tcircle
(
rp
,
rg
)
)
:]
is
Relation-like
non
empty
set
bool
[:
the
carrier
of
(
(
TOP-REAL
2
)
|
(
(
cl_Ball
(
rp
,
rg
)
)
\
{
rl
}
)
)
, the
carrier
of
(
Tcircle
(
rp
,
rg
)
)
:]
is non
empty
set
[:
(
(
cl_Ball
(
rp
,
rg
)
)
\
{
rl
}
)
,
{
rl
}
:]
is
Relation-like
non
empty
Element
of
bool
the
carrier
of
[:
(
TOP-REAL
2
)
,
(
TOP-REAL
2
)
:]
bool
the
carrier
of
[:
(
TOP-REAL
2
)
,
(
TOP-REAL
2
)
:]
is non
empty
set
(
TOP-REAL
2
)
|
{
rl
}
is non
empty
strict
TopSpace-like
T_0
T_1
T_2
V82
()
normal
T_3
T_4
compact
V246
()
pseudocompact
SubSpace
of
TOP-REAL
2
the
carrier
of
(
(
TOP-REAL
2
)
|
{
rl
}
)
is non
empty
set
[:
(
TOP-REAL
2
)
,
(
TOP-REAL
2
)
:]
|
[:
(
(
cl_Ball
(
rp
,
rg
)
)
\
{
rl
}
)
,
{
rl
}
:]
is non
empty
strict
TopSpace-like
T_0
T_1
T_2
SubSpace
of
[:
(
TOP-REAL
2
)
,
(
TOP-REAL
2
)
:]
(
rp
) is
Relation-like
the
carrier
of
[:
(
TOP-REAL
2
)
,
(
TOP-REAL
2
)
:]
-defined
REAL
-valued
Function-like
non
empty
total
quasi_total
V156
()
V157
()
V158
()
continuous
Element
of
bool
[:
the
carrier
of
[:
(
TOP-REAL
2
)
,
(
TOP-REAL
2
)
:]
,
REAL
:]
(
rp
) is
Relation-like
the
carrier
of
[:
(
TOP-REAL
2
)
,
(
TOP-REAL
2
)
:]
-defined
REAL
-valued
Function-like
non
empty
total
quasi_total
V156
()
V157
()
V158
()
continuous
Element
of
bool
[:
the
carrier
of
[:
(
TOP-REAL
2
)
,
(
TOP-REAL
2
)
:]
,
REAL
:]
rg
^2
is
complex
ext-real
real
set
rg
*
rg
is
complex
ext-real
non
negative
real
set
l
is
complex
ext-real
real
Element
of
REAL
the
carrier
of
[:
(
TOP-REAL
2
)
,
(
TOP-REAL
2
)
:]
-->
l
is
Relation-like
the
carrier
of
[:
(
TOP-REAL
2
)
,
(
TOP-REAL
2
)
:]
-defined
REAL
-valued
Function-like
non
empty
total
quasi_total
V156
()
V157
()
V158
()
Element
of
bool
[:
the
carrier
of
[:
(
TOP-REAL
2
)
,
(
TOP-REAL
2
)
:]
,
REAL
:]
k
is
Relation-like
the
carrier
of
[:
(
TOP-REAL
2
)
,
(
TOP-REAL
2
)
:]
-defined
REAL
-valued
Function-like
non
empty
total
quasi_total
V156
()
V157
()
V158
()
continuous
Element
of
bool
[:
the
carrier
of
[:
(
TOP-REAL
2
)
,
(
TOP-REAL
2
)
:]
,
REAL
:]
k
|
[:
(
(
cl_Ball
(
rp
,
rg
)
)
\
{
rl
}
)
,
{
rl
}
:]
is
Relation-like
[:
(
(
cl_Ball
(
rp
,
rg
)
)
\
{
rl
}
)
,
{
rl
}
:]
-defined
the
carrier
of
[:
(
TOP-REAL
2
)
,
(
TOP-REAL
2
)
:]
-defined
the
carrier
of
(
[:
(
TOP-REAL
2
)
,
(
TOP-REAL
2
)
:]
|
[:
(
(
cl_Ball
(
rp
,
rg
)
)
\
{
rl
}
)
,
{
rl
}
:]
)
-defined
REAL
-valued
Function-like
non
empty
total
quasi_total
V156
()
V157
()
V158
()
continuous
Element
of
bool
[:
the
carrier
of
(
[:
(
TOP-REAL
2
)
,
(
TOP-REAL
2
)
:]
|
[:
(
(
cl_Ball
(
rp
,
rg
)
)
\
{
rl
}
)
,
{
rl
}
:]
)
,
REAL
:]
the
carrier
of
(
[:
(
TOP-REAL
2
)
,
(
TOP-REAL
2
)
:]
|
[:
(
(
cl_Ball
(
rp
,
rg
)
)
\
{
rl
}
)
,
{
rl
}
:]
)
is non
empty
set
[:
the
carrier
of
(
[:
(
TOP-REAL
2
)
,
(
TOP-REAL
2
)
:]
|
[:
(
(
cl_Ball
(
rp
,
rg
)
)
\
{
rl
}
)
,
{
rl
}
:]
)
,
REAL
:]
is
Relation-like
non
empty
V156
()
V157
()
V158
()
set
bool
[:
the
carrier
of
(
[:
(
TOP-REAL
2
)
,
(
TOP-REAL
2
)
:]
|
[:
(
(
cl_Ball
(
rp
,
rg
)
)
\
{
rl
}
)
,
{
rl
}
:]
)
,
REAL
:]
is non
empty
set
()
|
[:
(
(
cl_Ball
(
rp
,
rg
)
)
\
{
rl
}
)
,
{
rl
}
:]
is
Relation-like
[:
(
(
cl_Ball
(
rp
,
rg
)
)
\
{
rl
}
)
,
{
rl
}
:]
-defined
the
carrier
of
[:
(
TOP-REAL
2
)
,
(
TOP-REAL
2
)
:]
-defined
the
carrier
of
(
[:
(
TOP-REAL
2
)
,
(
TOP-REAL
2
)
:]
|
[:
(
(
cl_Ball
(
rp
,
rg
)
)
\
{
rl
}
)
,
{
rl
}
:]
)
-defined
REAL
-valued
Function-like
non
empty
total
quasi_total
V156
()
V157
()
V158
()
continuous
Element
of
bool
[:
the
carrier
of
(
[:
(
TOP-REAL
2
)
,
(
TOP-REAL
2
)
:]
|
[:
(
(
cl_Ball
(
rp
,
rg
)
)
\
{
rl
}
)
,
{
rl
}
:]
)
,
REAL
:]
()
|
[:
(
(
cl_Ball
(
rp
,
rg
)
)
\
{
rl
}
)
,
{
rl
}
:]
is
Relation-like
[:
(
(
cl_Ball
(
rp
,
rg
)
)
\
{
rl
}
)
,
{
rl
}
:]
-defined
the
carrier
of
[:
(
TOP-REAL
2
)
,
(
TOP-REAL
2
)
:]
-defined
the
carrier
of
(
[:
(
TOP-REAL
2
)
,
(
TOP-REAL
2
)
:]
|
[:
(
(
cl_Ball
(
rp
,
rg
)
)
\
{
rl
}
)
,
{
rl
}
:]
)
-defined
REAL
-valued
Function-like
non
empty
total
quasi_total
V156
()
V157
()
V158
()
continuous
Element
of
bool
[:
the
carrier
of
(
[:
(
TOP-REAL
2
)
,
(
TOP-REAL
2
)
:]
|
[:
(
(
cl_Ball
(
rp
,
rg
)
)
\
{
rl
}
)
,
{
rl
}
:]
)
,
REAL
:]
()
|
[:
(
(
cl_Ball
(
rp
,
rg
)
)
\
{
rl
}
)
,
{
rl
}
:]
is
Relation-like
[:
(
(
cl_Ball
(
rp
,
rg
)
)
\
{
rl
}
)
,
{
rl
}
:]
-defined
the
carrier
of
[:
(
TOP-REAL
2
)
,
(
TOP-REAL
2
)
:]
-defined
the
carrier
of
(
[:
(
TOP-REAL
2
)
,
(
TOP-REAL
2
)
:]
|
[:
(
(
cl_Ball
(
rp
,
rg
)
)
\
{
rl
}
)
,
{
rl
}
:]
)
-defined
REAL
-valued
Function-like
non
empty
total
quasi_total
V156
()
V157
()
V158
()
continuous
Element
of
bool
[:
the
carrier
of
(
[:
(
TOP-REAL
2
)
,
(
TOP-REAL
2
)
:]
|
[:
(
(
cl_Ball
(
rp
,
rg
)
)
\
{
rl
}
)
,
{
rl
}
:]
)
,
REAL
:]
()
|
[:
(
(
cl_Ball
(
rp
,
rg
)
)
\
{
rl
}
)
,
{
rl
}
:]
is
Relation-like
[:
(
(
cl_Ball
(
rp
,
rg
)
)
\
{
rl
}
)
,
{
rl
}
:]
-defined
the
carrier
of
[:
(
TOP-REAL
2
)
,
(
TOP-REAL
2
)
:]
-defined
the
carrier
of
(
[:
(
TOP-REAL
2
)
,
(
TOP-REAL
2
)
:]
|
[:
(
(
cl_Ball
(
rp
,
rg
)
)
\
{
rl
}
)
,
{
rl
}
:]
)
-defined
REAL
-valued
Function-like
non
empty
total
quasi_total
V156
()
V157
()
V158
()
continuous
Element
of
bool
[:
the
carrier
of
(
[:
(
TOP-REAL
2
)
,
(
TOP-REAL
2
)
:]
|
[:
(
(
cl_Ball
(
rp
,
rg
)
)
\
{
rl
}
)
,
{
rl
}
:]
)
,
REAL
:]
(
rp
)
|
[:
(
(
cl_Ball
(
rp
,
rg
)
)
\
{
rl
}
)
,
{
rl
}
:]
is
Relation-like
[:
(
(
cl_Ball
(
rp
,
rg
)
)
\
{
rl
}
)
,
{
rl
}
:]
-defined
the
carrier
of
[:
(
TOP-REAL
2
)
,
(
TOP-REAL
2
)
:]
-defined
the
carrier
of
(
[:
(
TOP-REAL
2
)
,
(
TOP-REAL
2
)
:]
|
[:
(
(
cl_Ball
(
rp
,
rg
)
)
\
{
rl
}
)
,
{
rl
}
:]
)
-defined
REAL
-valued
Function-like
non
empty
total
quasi_total
V156
()
V157
()
V158
()
continuous
Element
of
bool
[:
the
carrier
of
(
[:
(
TOP-REAL
2
)
,
(
TOP-REAL
2
)
:]
|
[:
(
(
cl_Ball
(
rp
,
rg
)
)
\
{
rl
}
)
,
{
rl
}
:]
)
,
REAL
:]
(
rp
)
|
[:
(
(
cl_Ball
(
rp
,
rg
)
)
\
{
rl
}
)
,
{
rl
}
:]
is
Relation-like
[:
(
(
cl_Ball
(
rp
,
rg
)
)
\
{
rl
}
)
,
{
rl
}
:]
-defined
the
carrier
of
[:
(
TOP-REAL
2
)
,
(
TOP-REAL
2
)
:]
-defined
the
carrier
of
(
[:
(
TOP-REAL
2
)
,
(
TOP-REAL
2
)
:]
|
[:
(
(
cl_Ball
(
rp
,
rg
)
)
\
{
rl
}
)
,
{
rl
}
:]
)
-defined
REAL
-valued
Function-like
non
empty
total
quasi_total
V156
()
V157
()
V158
()
continuous
Element
of
bool
[:
the
carrier
of
(
[:
(
TOP-REAL
2
)
,
(
TOP-REAL
2
)
:]
|
[:
(
(
cl_Ball
(
rp
,
rg
)
)
\
{
rl
}
)
,
{
rl
}
:]
)
,
REAL
:]
(
(
rp
)
|
[:
(
(
cl_Ball
(
rp
,
rg
)
)
\
{
rl
}
)
,
{
rl
}
:]
)
(#)
(
()
|
[:
(
(
cl_Ball
(
rp
,
rg
)
)
\
{
rl
}
)
,
{
rl
}
:]
)
is
Relation-like
the
carrier
of
[:
(
TOP-REAL
2
)
,
(
TOP-REAL
2
)
:]
-defined
the
carrier
of
(
[:
(
TOP-REAL
2
)
,
(
TOP-REAL
2
)
:]
|
[:
(
(
cl_Ball
(
rp
,
rg
)
)
\
{
rl
}
)
,
{
rl
}
:]
)
-defined
the
carrier
of
(
[:
(
TOP-REAL
2
)
,
(
TOP-REAL
2
)
:]
|
[:
(
(
cl_Ball
(
rp
,
rg
)
)
\
{
rl
}
)
,
{
rl
}
:]
)
-defined
REAL
-valued
Function-like
non
empty
total
total
quasi_total
quasi_total
V156
()
V157
()
V158
()
continuous
Element
of
bool
[:
the
carrier
of
(
[:
(
TOP-REAL
2
)
,
(
TOP-REAL
2
)
:]
|
[:
(
(
cl_Ball
(
rp
,
rg
)
)
\
{
rl
}
)
,
{
rl
}
:]
)
,
REAL
:]
(
(
rp
)
|
[:
(
(
cl_Ball
(
rp
,
rg
)
)
\
{
rl
}
)
,
{
rl
}
:]
)
(#)
(
()
|
[:
(
(
cl_Ball
(
rp
,
rg
)
)
\
{
rl
}
)
,
{
rl
}
:]
)
is
Relation-like
the
carrier
of
[:
(
TOP-REAL
2
)
,
(
TOP-REAL
2
)
:]
-defined
the
carrier
of
(
[:
(
TOP-REAL
2
)
,
(
TOP-REAL
2
)
:]
|
[:
(
(
cl_Ball
(
rp
,
rg
)
)
\
{
rl
}
)
,
{
rl
}
:]
)
-defined
the
carrier
of
(
[:
(
TOP-REAL
2
)
,
(
TOP-REAL
2
)
:]
|
[:
(
(
cl_Ball
(
rp
,
rg
)
)
\
{
rl
}
)
,
{
rl
}
:]
)
-defined
REAL
-valued
Function-like
non
empty
total
total
quasi_total
quasi_total
V156
()
V157
()
V158
()
continuous
Element
of
bool
[:
the
carrier
of
(
[:
(
TOP-REAL
2
)
,
(
TOP-REAL
2
)
:]
|
[:
(
(
cl_Ball
(
rp
,
rg
)
)
\
{
rl
}
)
,
{
rl
}
:]
)
,
REAL
:]
(
()
|
[:
(
(
cl_Ball
(
rp
,
rg
)
)
\
{
rl
}
)
,
{
rl
}
:]
)
(#)
(
()
|
[:
(
(
cl_Ball
(
rp
,
rg
)
)
\
{
rl
}
)
,
{
rl
}
:]
)
is
Relation-like
the
carrier
of
[:
(
TOP-REAL
2
)
,
(
TOP-REAL
2
)
:]
-defined
the
carrier
of
(
[:
(
TOP-REAL
2
)
,
(
TOP-REAL
2
)
:]
|
[:
(
(
cl_Ball
(
rp
,
rg
)
)
\
{
rl
}
)
,
{
rl
}
:]
)
-defined
the
carrier
of
(
[:
(
TOP-REAL
2
)
,
(
TOP-REAL
2
)
:]
|
[:
(
(
cl_Ball
(
rp
,
rg
)
)
\
{
rl
}
)
,
{
rl
}
:]
)
-defined
REAL
-valued
Function-like
non
empty
total
total
quasi_total
quasi_total
V156
()
V157
()
V158
()
nonnegative-yielding
continuous
Element
of
bool
[:
the
carrier
of
(
[:
(
TOP-REAL
2
)
,
(
TOP-REAL
2
)
:]
|
[:
(
(
cl_Ball
(
rp
,
rg
)
)
\
{
rl
}
)
,
{
rl
}
:]
)
,
REAL
:]
(
()
|
[:
(
(
cl_Ball
(
rp
,
rg
)
)
\
{
rl
}
)
,
{
rl
}
:]
)
(#)
(
()
|
[:
(
(
cl_Ball
(
rp
,
rg
)
)
\
{
rl
}
)
,
{
rl
}
:]
)
is
Relation-like
the
carrier
of
[:
(
TOP-REAL
2
)
,
(
TOP-REAL
2
)
:]
-defined
the
carrier
of
(
[:
(
TOP-REAL
2
)
,
(
TOP-REAL
2
)
:]
|
[:
(
(
cl_Ball
(
rp
,
rg
)
)
\
{
rl
}
)
,
{
rl
}
:]
)
-defined
the
carrier
of
(
[:
(
TOP-REAL
2
)
,
(
TOP-REAL
2
)
:]
|
[:
(
(
cl_Ball
(
rp
,
rg
)
)
\
{
rl
}
)
,
{
rl
}
:]
)
-defined
REAL
-valued
Function-like
non
empty
total
total
quasi_total
quasi_total
V156
()
V157
()
V158
()
nonnegative-yielding
continuous
Element
of
bool
[:
the
carrier
of
(
[:
(
TOP-REAL
2
)
,
(
TOP-REAL
2
)
:]
|
[:
(
(
cl_Ball
(
rp
,
rg
)
)
\
{
rl
}
)
,
{
rl
}
:]
)
,
REAL
:]
(
(
()
|
[:
(
(
cl_Ball
(
rp
,
rg
)
)
\
{
rl
}
)
,
{
rl
}
:]
)
(#)
(
()
|
[:
(
(
cl_Ball
(
rp
,
rg
)
)
\
{
rl
}
)
,
{
rl
}
:]
)
)
+
(
(
()
|
[:
(
(
cl_Ball
(
rp
,
rg
)
)
\
{
rl
}
)
,
{
rl
}
:]
)
(#)
(
()
|
[:
(
(
cl_Ball
(
rp
,
rg
)
)
\
{
rl
}
)
,
{
rl
}
:]
)
)
is
Relation-like
the
carrier
of
[:
(
TOP-REAL
2
)
,
(
TOP-REAL
2
)
:]
-defined
the
carrier
of
(
[:
(
TOP-REAL
2
)
,
(
TOP-REAL
2
)
:]
|
[:
(
(
cl_Ball
(
rp
,
rg
)
)
\
{
rl
}
)
,
{
rl
}
:]
)
-defined
the
carrier
of
(
[:
(
TOP-REAL
2
)
,
(
TOP-REAL
2
)
:]
|
[:
(
(
cl_Ball
(
rp
,
rg
)
)
\
{
rl
}
)
,
{
rl
}
:]
)
-defined
REAL
-valued
Function-like
non
empty
total
total
quasi_total
quasi_total
V156
()
V157
()
V158
()
nonnegative-yielding
continuous
Element
of
bool
[:
the
carrier
of
(
[:
(
TOP-REAL
2
)
,
(
TOP-REAL
2
)
:]
|
[:
(
(
cl_Ball
(
rp
,
rg
)
)
\
{
rl
}
)
,
{
rl
}
:]
)
,
REAL
:]
AR
is
Element
of the
carrier
of
(
(
TOP-REAL
2
)
|
(
(
cl_Ball
(
rp
,
rg
)
)
\
{
rl
}
)
)
BR
is
Element
of the
carrier
of
(
(
TOP-REAL
2
)
|
{
rl
}
)
[
AR
,
BR
]
is
V15
()
Element
of the
carrier
of
[:
(
(
TOP-REAL
2
)
|
(
(
cl_Ball
(
rp
,
rg
)
)
\
{
rl
}
)
)
,
(
(
TOP-REAL
2
)
|
{
rl
}
)
:]
[:
(
(
TOP-REAL
2
)
|
(
(
cl_Ball
(
rp
,
rg
)
)
\
{
rl
}
)
)
,
(
(
TOP-REAL
2
)
|
{
rl
}
)
:]
is non
empty
strict
TopSpace-like
T_0
T_1
T_2
TopStruct
the
carrier
of
[:
(
(
TOP-REAL
2
)
|
(
(
cl_Ball
(
rp
,
rg
)
)
\
{
rl
}
)
)
,
(
(
TOP-REAL
2
)
|
{
rl
}
)
:]
is non
empty
set
{
AR
,
BR
}
is non
empty
set
{
AR
}
is non
empty
set
{
{
AR
,
BR
}
,
{
AR
}
}
is non
empty
set
(
()
|
[:
(
(
cl_Ball
(
rp
,
rg
)
)
\
{
rl
}
)
,
{
rl
}
:]
)
.
[
AR
,
BR
]
is
complex
ext-real
real
set
()
.
[
AR
,
BR
]
is
complex
ext-real
real
set
AR
is
Element
of the
carrier
of
(
(
TOP-REAL
2
)
|
(
(
cl_Ball
(
rp
,
rg
)
)
\
{
rl
}
)
)
BR
is
Element
of the
carrier
of
(
(
TOP-REAL
2
)
|
{
rl
}
)
[
AR
,
BR
]
is
V15
()
Element
of the
carrier
of
[:
(
(
TOP-REAL
2
)
|
(
(
cl_Ball
(
rp
,
rg
)
)
\
{
rl
}
)
)
,
(
(
TOP-REAL
2
)
|
{
rl
}
)
:]
[:
(
(
TOP-REAL
2
)
|
(
(
cl_Ball
(
rp
,
rg
)
)
\
{
rl
}
)
)
,
(
(
TOP-REAL
2
)
|
{
rl
}
)
:]
is non
empty
strict
TopSpace-like
T_0
T_1
T_2
TopStruct
the
carrier
of
[:
(
(
TOP-REAL
2
)
|
(
(
cl_Ball
(
rp
,
rg
)
)
\
{
rl
}
)
)
,
(
(
TOP-REAL
2
)
|
{
rl
}
)
:]
is non
empty
set
{
AR
,
BR
}
is non
empty
set
{
AR
}
is non
empty
set
{
{
AR
,
BR
}
,
{
AR
}
}
is non
empty
set
(
()
|
[:
(
(
cl_Ball
(
rp
,
rg
)
)
\
{
rl
}
)
,
{
rl
}
:]
)
.
[
AR
,
BR
]
is
complex
ext-real
real
set
()
.
[
AR
,
BR
]
is
complex
ext-real
real
set
AR
is
Element
of the
carrier
of
(
(
TOP-REAL
2
)
|
(
(
cl_Ball
(
rp
,
rg
)
)
\
{
rl
}
)
)
BR
is
Element
of the
carrier
of
(
(
TOP-REAL
2
)
|
{
rl
}
)
[
AR
,
BR
]
is
V15
()
Element
of the
carrier
of
[:
(
(
TOP-REAL
2
)
|
(
(
cl_Ball
(
rp
,
rg
)
)
\
{
rl
}
)
)
,
(
(
TOP-REAL
2
)
|
{
rl
}
)
:]
[:
(
(
TOP-REAL
2
)
|
(
(
cl_Ball
(
rp
,
rg
)
)
\
{
rl
}
)
)
,
(
(
TOP-REAL
2
)
|
{
rl
}
)
:]
is non
empty
strict
TopSpace-like
T_0
T_1
T_2
TopStruct
the
carrier
of
[:
(
(
TOP-REAL
2
)
|
(
(
cl_Ball
(
rp
,
rg
)
)
\
{
rl
}
)
)
,
(
(
TOP-REAL
2
)
|
{
rl
}
)
:]
is non
empty
set
{
AR
,
BR
}
is non
empty
set
{
AR
}
is non
empty
set
{
{
AR
,
BR
}
,
{
AR
}
}
is non
empty
set
(
()
|
[:
(
(
cl_Ball
(
rp
,
rg
)
)
\
{
rl
}
)
,
{
rl
}
:]
)
.
[
AR
,
BR
]
is
complex
ext-real
real
set
()
.
[
AR
,
BR
]
is
complex
ext-real
real
set
AR
is
Element
of the
carrier
of
(
(
TOP-REAL
2
)
|
(
(
cl_Ball
(
rp
,
rg
)
)
\
{
rl
}
)
)
BR
is
Element
of the
carrier
of
(
(
TOP-REAL
2
)
|
{
rl
}
)
[
AR
,
BR
]
is
V15
()
Element
of the
carrier
of
[:
(
(
TOP-REAL
2
)
|
(
(
cl_Ball
(
rp
,
rg
)
)
\
{
rl
}
)
)
,
(
(
TOP-REAL
2
)
|
{
rl
}
)
:]
[:
(
(
TOP-REAL
2
)
|
(
(
cl_Ball
(
rp
,
rg
)
)
\
{
rl
}
)
)
,
(
(
TOP-REAL
2
)
|
{
rl
}
)
:]
is non
empty
strict
TopSpace-like
T_0
T_1
T_2
TopStruct
the
carrier
of
[:
(
(
TOP-REAL
2
)
|
(
(
cl_Ball
(
rp
,
rg
)
)
\
{
rl
}
)
)
,
(
(
TOP-REAL
2
)
|
{
rl
}
)
:]
is non
empty
set
{
AR
,
BR
}
is non
empty
set
{
AR
}
is non
empty
set
{
{
AR
,
BR
}
,
{
AR
}
}
is non
empty
set
(
()
|
[:
(
(
cl_Ball
(
rp
,
rg
)
)
\
{
rl
}
)
,
{
rl
}
:]
)
.
[
AR
,
BR
]
is
complex
ext-real
real
set
()
.
[
AR
,
BR
]
is
complex
ext-real
real
set
AR
is
Element
of the
carrier
of
(
(
TOP-REAL
2
)
|
(
(
cl_Ball
(
rp
,
rg
)
)
\
{
rl
}
)
)
BR
is
Element
of the
carrier
of
(
(
TOP-REAL
2
)
|
{
rl
}
)
[
AR
,
BR
]
is
V15
()
Element
of the
carrier
of
[:
(
(
TOP-REAL
2
)
|
(
(
cl_Ball
(
rp
,
rg
)
)
\
{
rl
}
)
)
,
(
(
TOP-REAL
2
)
|
{
rl
}
)
:]
[:
(
(
TOP-REAL
2
)
|
(
(
cl_Ball
(
rp
,
rg
)
)
\
{
rl
}
)
)
,
(
(
TOP-REAL
2
)
|
{
rl
}
)
:]
is non
empty
strict
TopSpace-like
T_0
T_1
T_2
TopStruct
the
carrier
of
[:
(
(
TOP-REAL
2
)
|
(
(
cl_Ball
(
rp
,
rg
)
)
\
{
rl
}
)
)
,
(
(
TOP-REAL
2
)
|
{
rl
}
)
:]
is non
empty
set
{
AR
,
BR
}
is non
empty
set
{
AR
}
is non
empty
set
{
{
AR
,
BR
}
,
{
AR
}
}
is non
empty
set
(
k
|
[:
(
(
cl_Ball
(
rp
,
rg
)
)
\
{
rl
}
)
,
{
rl
}
:]
)
.
[
AR
,
BR
]
is
complex
ext-real
real
set
k
.
[
AR
,
BR
]
is
complex
ext-real
real
set
AR
is
Element
of the
carrier
of
(
(
TOP-REAL
2
)
|
(
(
cl_Ball
(
rp
,
rg
)
)
\
{
rl
}
)
)
BR
is
Element
of the
carrier
of
(
(
TOP-REAL
2
)
|
{
rl
}
)
[
AR
,
BR
]
is
V15
()
Element
of the
carrier
of
[:
(
(
TOP-REAL
2
)
|
(
(
cl_Ball
(
rp
,
rg
)
)
\
{
rl
}
)
)
,
(
(
TOP-REAL
2
)
|
{
rl
}
)
:]
[:
(
(
TOP-REAL
2
)
|
(
(
cl_Ball
(
rp
,
rg
)
)
\
{
rl
}
)
)
,
(
(
TOP-REAL
2
)
|
{
rl
}
)
:]
is non
empty
strict
TopSpace-like
T_0
T_1
T_2
TopStruct
the
carrier
of
[:
(
(
TOP-REAL
2
)
|
(
(
cl_Ball
(
rp
,
rg
)
)
\
{
rl
}
)
)
,
(
(
TOP-REAL
2
)
|
{
rl
}
)
:]
is non
empty
set
{
AR
,
BR
}
is non
empty
set
{
AR
}
is non
empty
set
{
{
AR
,
BR
}
,
{
AR
}
}
is non
empty
set
(
(
rp
)
|
[:
(
(
cl_Ball
(
rp
,
rg
)
)
\
{
rl
}
)
,
{
rl
}
:]
)
.
[
AR
,
BR
]
is
complex
ext-real
real
set
(
rp
)
.
[
AR
,
BR
]
is
complex
ext-real
real
set
AR
is
Element
of the
carrier
of
(
(
TOP-REAL
2
)
|
(
(
cl_Ball
(
rp
,
rg
)
)
\
{
rl
}
)
)
BR
is
Element
of the
carrier
of
(
(
TOP-REAL
2
)
|
{
rl
}
)
[
AR
,
BR
]
is
V15
()
Element
of the
carrier
of
[:
(
(
TOP-REAL
2
)
|
(
(
cl_Ball
(
rp
,
rg
)
)
\
{
rl
}
)
)
,
(
(
TOP-REAL
2
)
|
{
rl
}
)
:]
[:
(
(
TOP-REAL
2
)
|
(
(
cl_Ball
(
rp
,
rg
)
)
\
{
rl
}
)
)
,
(
(
TOP-REAL
2
)
|
{
rl
}
)
:]
is non
empty
strict
TopSpace-like
T_0
T_1
T_2
TopStruct
the
carrier
of
[:
(
(
TOP-REAL
2
)
|
(
(
cl_Ball
(
rp
,
rg
)
)
\
{
rl
}
)
)
,
(
(
TOP-REAL
2
)
|
{
rl
}
)
:]
is non
empty
set
{
AR
,
BR
}
is non
empty
set
{
AR
}
is non
empty
set
{
{
AR
,
BR
}
,
{
AR
}
}
is non
empty
set
(
(
rp
)
|
[:
(
(
cl_Ball
(
rp
,
rg
)
)
\
{
rl
}
)
,
{
rl
}
:]
)
.
[
AR
,
BR
]
is
complex
ext-real
real
set
(
rp
)
.
[
AR
,
BR
]
is
complex
ext-real
real
set
AR
is
complex
ext-real
real
set
rng
(
(
(
()
|
[:
(
(
cl_Ball
(
rp
,
rg
)
)
\
{
rl
}
)
,
{
rl
}
:]
)
(#)
(
()
|
[:
(
(
cl_Ball
(
rp
,
rg
)
)
\
{
rl
}
)
,
{
rl
}
:]
)
)
+
(
(
()
|
[:
(
(
cl_Ball
(
rp
,
rg
)
)
\
{
rl
}
)
,
{
rl
}
:]
)
(#)
(
()
|
[:
(
(
cl_Ball
(
rp
,
rg
)
)
\
{
rl
}
)
,
{
rl
}
:]
)
)
)
is non
empty
V166
()
V167
()
V168
()
Element
of
bool
REAL
dom
(
(
(
()
|
[:
(
(
cl_Ball
(
rp
,
rg
)
)
\
{
rl
}
)
,
{
rl
}
:]
)
(#)
(
()
|
[:
(
(
cl_Ball
(
rp
,
rg
)
)
\
{
rl
}
)
,
{
rl
}
:]
)
)
+
(
(
()
|
[:
(
(
cl_Ball
(
rp
,
rg
)
)
\
{
rl
}
)
,
{
rl
}
:]
)
(#)
(
()
|
[:
(
(
cl_Ball
(
rp
,
rg
)
)
\
{
rl
}
)
,
{
rl
}
:]
)
)
)
is
Relation-like
(
cl_Ball
(
rp
,
rg
)
)
\
{
rl
}
-defined
{
rl
}
-valued
non
empty
Element
of
bool
[:
(
(
cl_Ball
(
rp
,
rg
)
)
\
{
rl
}
)
,
{
rl
}
:]
bool
[:
(
(
cl_Ball
(
rp
,
rg
)
)
\
{
rl
}
)
,
{
rl
}
:]
is non
empty
set
BR
is
set
(
(
(
()
|
[:
(
(
cl_Ball
(
rp
,
rg
)
)
\
{
rl
}
)
,
{
rl
}
:]
)
(#)
(
()
|
[:
(
(
cl_Ball
(
rp
,
rg
)
)
\
{
rl
}
)
,
{
rl
}
:]
)
)
+
(
(
()
|
[:
(
(
cl_Ball
(
rp
,
rg
)
)
\
{
rl
}
)
,
{
rl
}
:]
)
(#)
(
()
|
[:
(
(
cl_Ball
(
rp
,
rg
)
)
\
{
rl
}
)
,
{
rl
}
:]
)
)
)
.
BR
is
complex
ext-real
real
set
CR
is
set
DR
is
set
[
CR
,
DR
]
is
V15
()
set
{
CR
,
DR
}
is non
empty
set
{
CR
}
is non
empty
set
{
{
CR
,
DR
}
,
{
CR
}
}
is non
empty
set
Pcm
is
Relation-like
Function-like
V49
(2)
V50
()
V156
()
V157
()
V158
()
Element
of the
carrier
of
(
TOP-REAL
2
)
fcm
is
Relation-like
Function-like
V49
(2)
V50
()
V156
()
V157
()
V158
()
Element
of the
carrier
of
(
TOP-REAL
2
)
[
Pcm
,
fcm
]
is
V15
()
Element
of the
carrier
of
[:
(
TOP-REAL
2
)
,
(
TOP-REAL
2
)
:]
{
Pcm
,
fcm
}
is
functional
non
empty
set
{
Pcm
}
is
functional
non
empty
set
{
{
Pcm
,
fcm
}
,
{
Pcm
}
}
is non
empty
set
()
.
[
Pcm
,
fcm
]
is
complex
ext-real
real
Element
of
REAL
(
(
TOP-REAL
2
)
,
(
TOP-REAL
2
)
,
[
Pcm
,
fcm
]
) is
Relation-like
Function-like
V49
(2)
V50
()
V156
()
V157
()
V158
()
Element
of the
carrier
of
(
TOP-REAL
2
)
(
(
TOP-REAL
2
)
,
(
TOP-REAL
2
)
,
[
Pcm
,
fcm
]
)
`1
is
complex
ext-real
real
Element
of
REAL
(
(
TOP-REAL
2
)
,
(
TOP-REAL
2
)
,
[
Pcm
,
fcm
]
) is
Relation-like
Function-like
V49
(2)
V50
()
V156
()
V157
()
V158
()
Element
of the
carrier
of
(
TOP-REAL
2
)
(
(
TOP-REAL
2
)
,
(
TOP-REAL
2
)
,
[
Pcm
,
fcm
]
)
`1
is
complex
ext-real
real
Element
of
REAL
(
(
(
TOP-REAL
2
)
,
(
TOP-REAL
2
)
,
[
Pcm
,
fcm
]
)
`1
)
-
(
(
(
TOP-REAL
2
)
,
(
TOP-REAL
2
)
,
[
Pcm
,
fcm
]
)
`1
)
is
complex
ext-real
real
Element
of
REAL
()
.
[
Pcm
,
fcm
]
is
complex
ext-real
real
Element
of
REAL
(
(
TOP-REAL
2
)
,
(
TOP-REAL
2
)
,
[
Pcm
,
fcm
]
)
`2
is
complex
ext-real
real
Element
of
REAL
(
(
TOP-REAL
2
)
,
(
TOP-REAL
2
)
,
[
Pcm
,
fcm
]
)
`2
is
complex
ext-real
real
Element
of
REAL
(
(
(
TOP-REAL
2
)
,
(
TOP-REAL
2
)
,
[
Pcm
,
fcm
]
)
`2
)
-
(
(
(
TOP-REAL
2
)
,
(
TOP-REAL
2
)
,
[
Pcm
,
fcm
]
)
`2
)
is
complex
ext-real
real
Element
of
REAL
Pcm
`1
is
complex
ext-real
real
Element
of
REAL
fcm
`1
is
complex
ext-real
real
Element
of
REAL
(
Pcm
`1
)
-
(
fcm
`1
)
is
complex
ext-real
real
Element
of
REAL
Pcm
`2
is
complex
ext-real
real
Element
of
REAL
fcm
`2
is
complex
ext-real
real
Element
of
REAL
(
Pcm
`2
)
-
(
fcm
`2
)
is
complex
ext-real
real
Element
of
REAL
(
()
|
[:
(
(
cl_Ball
(
rp
,
rg
)
)
\
{
rl
}
)
,
{
rl
}
:]
)
.
[
Pcm
,
fcm
]
is
complex
ext-real
real
set
(
()
|
[:
(
(
cl_Ball
(
rp
,
rg
)
)
\
{
rl
}
)
,
{
rl
}
:]
)
.
[
Pcm
,
fcm
]
is
complex
ext-real
real
set
(
(
(
()
|
[:
(
(
cl_Ball
(
rp
,
rg
)
)
\
{
rl
}
)
,
{
rl
}
:]
)
(#)
(
()
|
[:
(
(
cl_Ball
(
rp
,
rg
)
)
\
{
rl
}
)
,
{
rl
}
:]
)
)
+
(
(
()
|
[:
(
(
cl_Ball
(
rp
,
rg
)
)
\
{
rl
}
)
,
{
rl
}
:]
)
(#)
(
()
|
[:
(
(
cl_Ball
(
rp
,
rg
)
)
\
{
rl
}
)
,
{
rl
}
:]
)
)
)
.
[
Pcm
,
fcm
]
is
complex
ext-real
real
set
(
(
()
|
[:
(
(
cl_Ball
(
rp
,
rg
)
)
\
{
rl
}
)
,
{
rl
}
:]
)
(#)
(
()
|
[:
(
(
cl_Ball
(
rp
,
rg
)
)
\
{
rl
}
)
,
{
rl
}
:]
)
)
.
[
Pcm
,
fcm
]
is
complex
ext-real
real
set
(
(
()
|
[:
(
(
cl_Ball
(
rp
,
rg
)
)
\
{
rl
}
)
,
{
rl
}
:]
)
(#)
(
()
|
[:
(
(
cl_Ball
(
rp
,
rg
)
)
\
{
rl
}
)
,
{
rl
}
:]
)
)
.
[
Pcm
,
fcm
]
is
complex
ext-real
real
set
(
(
(
()
|
[:
(
(
cl_Ball
(
rp
,
rg
)
)
\
{
rl
}
)
,
{
rl
}
:]
)
(#)
(
()
|
[:
(
(
cl_Ball
(
rp
,
rg
)
)
\
{
rl
}
)
,
{
rl
}
:]
)
)
.
[
Pcm
,
fcm
]
)
+
(
(
(
()
|
[:
(
(
cl_Ball
(
rp
,
rg
)
)
\
{
rl
}
)
,
{
rl
}
:]
)
(#)
(
()
|
[:
(
(
cl_Ball
(
rp
,
rg
)
)
\
{
rl
}
)
,
{
rl
}
:]
)
)
.
[
Pcm
,
fcm
]
)
is
complex
ext-real
real
set
(
(
()
|
[:
(
(
cl_Ball
(
rp
,
rg
)
)
\
{
rl
}
)
,
{
rl
}
:]
)
.
[
Pcm
,
fcm
]
)
*
(
(
()
|
[:
(
(
cl_Ball
(
rp
,
rg
)
)
\
{
rl
}
)
,
{
rl
}
:]
)
.
[
Pcm
,
fcm
]
)
is
complex
ext-real
non
negative
real
set
(
(
(
()
|
[:
(
(
cl_Ball
(
rp
,
rg
)
)
\
{
rl
}
)
,
{
rl
}
:]
)
.
[
Pcm
,
fcm
]
)
*
(
(
()
|
[:
(
(
cl_Ball
(
rp
,
rg
)
)
\
{
rl
}
)
,
{
rl
}
:]
)
.
[
Pcm
,
fcm
]
)
)
+
(
(
(
()
|
[:
(
(
cl_Ball
(
rp
,
rg
)
)
\
{
rl
}
)
,
{
rl
}
:]
)
(#)
(
()
|
[:
(
(
cl_Ball
(
rp
,
rg
)
)
\
{
rl
}
)
,
{
rl
}
:]
)
)
.
[
Pcm
,
fcm
]
)
is
complex
ext-real
real
set
(
(
Pcm
`1
)
-
(
fcm
`1
)
)
^2
is
complex
ext-real
real
Element
of
REAL
(
(
Pcm
`1
)
-
(
fcm
`1
)
)
*
(
(
Pcm
`1
)
-
(
fcm
`1
)
)
is
complex
ext-real
non
negative
real
set
(
(
Pcm
`2
)
-
(
fcm
`2
)
)
^2
is
complex
ext-real
real
Element
of
REAL
(
(
Pcm
`2
)
-
(
fcm
`2
)
)
*
(
(
Pcm
`2
)
-
(
fcm
`2
)
)
is
complex
ext-real
non
negative
real
set
(
(
(
Pcm
`1
)
-
(
fcm
`1
)
)
^2
)
+
(
(
(
Pcm
`2
)
-
(
fcm
`2
)
)
^2
)
is
complex
ext-real
real
Element
of
REAL
(
(
(
rp
)
|
[:
(
(
cl_Ball
(
rp
,
rg
)
)
\
{
rl
}
)
,
{
rl
}
:]
)
(#)
(
()
|
[:
(
(
cl_Ball
(
rp
,
rg
)
)
\
{
rl
}
)
,
{
rl
}
:]
)
)
+
(
(
(
rp
)
|
[:
(
(
cl_Ball
(
rp
,
rg
)
)
\
{
rl
}
)
,
{
rl
}
:]
)
(#)
(
()
|
[:
(
(
cl_Ball
(
rp
,
rg
)
)
\
{
rl
}
)
,
{
rl
}
:]
)
)
is
Relation-like
the
carrier
of
[:
(
TOP-REAL
2
)
,
(
TOP-REAL
2
)
:]
-defined
the
carrier
of
(
[:
(
TOP-REAL
2
)
,
(
TOP-REAL
2
)
:]
|
[:
(
(
cl_Ball
(
rp
,
rg
)
)
\
{
rl
}
)
,
{
rl
}
:]
)
-defined
the
carrier
of
(
[:
(
TOP-REAL
2
)
,
(
TOP-REAL
2
)
:]
|
[:
(
(
cl_Ball
(
rp
,
rg
)
)
\
{
rl
}
)
,
{
rl
}
:]
)
-defined
REAL
-valued
Function-like
non
empty
total
total
quasi_total
quasi_total
V156
()
V157
()
V158
()
continuous
Element
of
bool
[:
the
carrier
of
(
[:
(
TOP-REAL
2
)
,
(
TOP-REAL
2
)
:]
|
[:
(
(
cl_Ball
(
rp
,
rg
)
)
\
{
rl
}
)
,
{
rl
}
:]
)
,
REAL
:]
(
(
(
(
rp
)
|
[:
(
(
cl_Ball
(
rp
,
rg
)
)
\
{
rl
}
)
,
{
rl
}
:]
)
(#)
(
()
|
[:
(
(
cl_Ball
(
rp
,
rg
)
)
\
{
rl
}
)
,
{
rl
}
:]
)
)
+
(
(
(
rp
)
|
[:
(
(
cl_Ball
(
rp
,
rg
)
)
\
{
rl
}
)
,
{
rl
}
:]
)
(#)
(
()
|
[:
(
(
cl_Ball
(
rp
,
rg
)
)
\
{
rl
}
)
,
{
rl
}
:]
)
)
)
(#)
(
(
(
(
rp
)
|
[:
(
(
cl_Ball
(
rp
,
rg
)
)
\
{
rl
}
)
,
{
rl
}
:]
)
(#)
(
()
|
[:
(
(
cl_Ball
(
rp
,
rg
)
)
\
{
rl
}
)
,
{
rl
}
:]
)
)
+
(
(
(
rp
)
|
[:
(
(
cl_Ball
(
rp
,
rg
)
)
\
{
rl
}
)
,
{
rl
}
:]
)
(#)
(
()
|
[:
(
(
cl_Ball
(
rp
,
rg
)
)
\
{
rl
}
)
,
{
rl
}
:]
)
)
)
is
Relation-like
the
carrier
of
[:
(
TOP-REAL
2
)
,
(
TOP-REAL
2
)
:]
-defined
the
carrier
of
(
[:
(
TOP-REAL
2
)
,
(
TOP-REAL
2
)
:]
|
[:
(
(
cl_Ball
(
rp
,
rg
)
)
\
{
rl
}
)
,
{
rl
}
:]
)
-defined
the
carrier
of
(
[:
(
TOP-REAL
2
)
,
(
TOP-REAL
2
)
:]
|
[:
(
(
cl_Ball
(
rp
,
rg
)
)
\
{
rl
}
)
,
{
rl
}
:]
)
-defined
REAL
-valued
Function-like
non
empty
total
total
quasi_total
quasi_total
V156
()
V157
()
V158
()
nonnegative-yielding
continuous
Element
of
bool
[:
the
carrier
of
(
[:
(
TOP-REAL
2
)
,
(
TOP-REAL
2
)
:]
|
[:
(
(
cl_Ball
(
rp
,
rg
)
)
\
{
rl
}
)
,
{
rl
}
:]
)
,
REAL
:]
(
(
rp
)
|
[:
(
(
cl_Ball
(
rp
,
rg
)
)
\
{
rl
}
)
,
{
rl
}
:]
)
(#)
(
(
rp
)
|
[:
(
(
cl_Ball
(
rp
,
rg
)
)
\
{
rl
}
)
,
{
rl
}
:]
)
is
Relation-like
the
carrier
of
[:
(
TOP-REAL
2
)
,
(
TOP-REAL
2
)
:]
-defined
the
carrier
of
(
[:
(
TOP-REAL
2
)
,
(
TOP-REAL
2
)
:]
|
[:
(
(
cl_Ball
(
rp
,
rg
)
)
\
{
rl
}
)
,
{
rl
}
:]
)
-defined
the
carrier
of
(
[:
(
TOP-REAL
2
)
,
(
TOP-REAL
2
)
:]
|
[:
(
(
cl_Ball
(
rp
,
rg
)
)
\
{
rl
}
)
,
{
rl
}
:]
)
-defined
REAL
-valued
Function-like
non
empty
total
total
quasi_total
quasi_total
V156
()
V157
()
V158
()
nonnegative-yielding
continuous
Element
of
bool
[:
the
carrier
of
(
[:
(
TOP-REAL
2
)
,
(
TOP-REAL
2
)
:]
|
[:
(
(
cl_Ball
(
rp
,
rg
)
)
\
{
rl
}
)
,
{
rl
}
:]
)
,
REAL
:]
(
(
rp
)
|
[:
(
(
cl_Ball
(
rp
,
rg
)
)
\
{
rl
}
)
,
{
rl
}
:]
)
(#)
(
(
rp
)
|
[:
(
(
cl_Ball
(
rp
,
rg
)
)
\
{
rl
}
)
,
{
rl
}
:]
)
is
Relation-like
the
carrier
of
[:
(
TOP-REAL
2
)
,
(
TOP-REAL
2
)
:]
-defined
the
carrier
of
(
[:
(
TOP-REAL
2
)
,
(
TOP-REAL
2
)
:]
|
[:
(
(
cl_Ball
(
rp
,
rg
)
)
\
{
rl
}
)
,
{
rl
}
:]
)
-defined
the
carrier
of
(
[:
(
TOP-REAL
2
)
,
(
TOP-REAL
2
)
:]
|
[:
(
(
cl_Ball
(
rp
,
rg
)
)
\
{
rl
}
)
,
{
rl
}
:]
)
-defined
REAL
-valued
Function-like
non
empty
total
total
quasi_total
quasi_total
V156
()
V157
()
V158
()
nonnegative-yielding
continuous
Element
of
bool
[:
the
carrier
of
(
[:
(
TOP-REAL
2
)
,
(
TOP-REAL
2
)
:]
|
[:
(
(
cl_Ball
(
rp
,
rg
)
)
\
{
rl
}
)
,
{
rl
}
:]
)
,
REAL
:]
(
(
(
rp
)
|
[:
(
(
cl_Ball
(
rp
,
rg
)
)
\
{
rl
}
)
,
{
rl
}
:]
)
(#)
(
(
rp
)
|
[:
(
(
cl_Ball
(
rp
,
rg
)
)
\
{
rl
}
)
,
{
rl
}
:]
)
)
+
(
(
(
rp
)
|
[:
(
(
cl_Ball
(
rp
,
rg
)
)
\
{
rl
}
)
,
{
rl
}
:]
)
(#)
(
(
rp
)
|
[:
(
(
cl_Ball
(
rp
,
rg
)
)
\
{
rl
}
)
,
{
rl
}
:]
)
)
is
Relation-like
the
carrier
of
[:
(
TOP-REAL
2
)
,
(
TOP-REAL
2
)
:]
-defined
the
carrier
of
(
[:
(
TOP-REAL
2
)
,
(
TOP-REAL
2
)
:]
|
[:
(
(
cl_Ball
(
rp
,
rg
)
)
\
{
rl
}
)
,
{
rl
}
:]
)
-defined
the
carrier
of
(
[:
(
TOP-REAL
2
)
,
(
TOP-REAL
2
)
:]
|
[:
(
(
cl_Ball
(
rp
,
rg
)
)
\
{
rl
}
)
,
{
rl
}
:]
)
-defined
REAL
-valued
Function-like
non
empty
total
total
quasi_total
quasi_total
V156
()
V157
()
V158
()
nonnegative-yielding
continuous
Element
of
bool
[:
the
carrier
of
(
[:
(
TOP-REAL
2
)
,
(
TOP-REAL
2
)
:]
|
[:
(
(
cl_Ball
(
rp
,
rg
)
)
\
{
rl
}
)
,
{
rl
}
:]
)
,
REAL
:]
(
(
(
(
rp
)
|
[:
(
(
cl_Ball
(
rp
,
rg
)
)
\
{
rl
}
)
,
{
rl
}
:]
)
(#)
(
(
rp
)
|
[:
(
(
cl_Ball
(
rp
,
rg
)
)
\
{
rl
}
)
,
{
rl
}
:]
)
)
+
(
(
(
rp
)
|
[:
(
(
cl_Ball
(
rp
,
rg
)
)
\
{
rl
}
)
,
{
rl
}
:]
)
(#)
(
(
rp
)
|
[:
(
(
cl_Ball
(
rp
,
rg
)
)
\
{
rl
}
)
,
{
rl
}
:]
)
)
)
-
(
k
|
[:
(
(
cl_Ball
(
rp
,
rg
)
)
\
{
rl
}
)
,
{
rl
}
:]
)
is
Relation-like
the
carrier
of
[:
(
TOP-REAL
2
)
,
(
TOP-REAL
2
)
:]
-defined
the
carrier
of
(
[:
(
TOP-REAL
2
)
,
(
TOP-REAL
2
)
:]
|
[:
(
(
cl_Ball
(
rp
,
rg
)
)
\
{
rl
}
)
,
{
rl
}
:]
)
-defined
the
carrier
of
(
[:
(
TOP-REAL
2
)
,
(
TOP-REAL
2
)
:]
|
[:
(
(
cl_Ball
(
rp
,
rg
)
)
\
{
rl
}
)
,
{
rl
}
:]
)
-defined
REAL
-valued
Function-like
non
empty
total
total
quasi_total
quasi_total
V156
()
V157
()
V158
()
continuous
Element
of
bool
[:
the
carrier
of
(
[:
(
TOP-REAL
2
)
,
(
TOP-REAL
2
)
:]
|
[:
(
(
cl_Ball
(
rp
,
rg
)
)
\
{
rl
}
)
,
{
rl
}
:]
)
,
REAL
:]
dom
(
(
(
(
(
rp
)
|
[:
(
(
cl_Ball
(
rp
,
rg
)
)
\
{
rl
}
)
,
{
rl
}
:]
)
(#)
(
(
rp
)
|
[:
(
(
cl_Ball
(
rp
,
rg
)
)
\
{
rl
}
)
,
{
rl
}
:]
)
)
+
(
(
(
rp
)
|
[:
(
(
cl_Ball
(
rp
,
rg
)
)
\
{
rl
}
)
,
{
rl
}
:]
)
(#)
(
(
rp
)
|
[:
(
(
cl_Ball
(
rp
,
rg
)
)
\
{
rl
}
)
,
{
rl
}
:]
)
)
)
-
(
k
|
[:
(
(
cl_Ball
(
rp
,
rg
)
)
\
{
rl
}
)
,
{
rl
}
:]
)
)
is
Relation-like
(
cl_Ball
(
rp
,
rg
)
)
\
{
rl
}
-defined
{
rl
}
-valued
non
empty
Element
of
bool
[:
(
(
cl_Ball
(
rp
,
rg
)
)
\
{
rl
}
)
,
{
rl
}
:]
DR
is
complex
ext-real
real
set
rng
(
(
(
(
(
rp
)
|
[:
(
(
cl_Ball
(
rp
,
rg
)
)
\
{
rl
}
)
,
{
rl
}
:]
)
(#)
(
(
rp
)
|
[:
(
(
cl_Ball
(
rp
,
rg
)
)
\
{
rl
}
)
,
{
rl
}
:]
)
)
+
(
(
(
rp
)
|
[:
(
(
cl_Ball
(
rp
,
rg
)
)
\
{
rl
}
)
,
{
rl
}
:]
)
(#)
(
(
rp
)
|
[:
(
(
cl_Ball
(
rp
,
rg
)
)
\
{
rl
}
)
,
{
rl
}
:]
)
)
)
-
(
k
|
[:
(
(
cl_Ball
(
rp
,
rg
)
)
\
{
rl
}
)
,
{
rl
}
:]
)
)
is non
empty
V166
()
V167
()
V168
()
Element
of
bool
REAL
Pcm
is
set
(
(
(
(
(
rp
)
|
[:
(
(
cl_Ball
(
rp
,
rg
)
)
\
{
rl
}
)
,
{
rl
}
:]
)
(#)
(
(
rp
)
|
[:
(
(
cl_Ball
(
rp
,
rg
)
)
\
{
rl
}
)
,
{
rl
}
:]
)
)
+
(
(
(
rp
)
|
[:
(
(
cl_Ball
(
rp
,
rg
)
)
\
{
rl
}
)
,
{
rl
}
:]
)
(#)
(
(
rp
)
|
[:
(
(
cl_Ball
(
rp
,
rg
)
)
\
{
rl
}
)
,
{
rl
}
:]
)
)
)
-
(
k
|
[:
(
(
cl_Ball
(
rp
,
rg
)
)
\
{
rl
}
)
,
{
rl
}
:]
)
)
.
Pcm
is
complex
ext-real
real
set
fcm
is
set
V
is
set
[
fcm
,
V
]
is
V15
()
set
{
fcm
,
V
}
is non
empty
set
{
fcm
}
is non
empty
set
{
{
fcm
,
V
}
,
{
fcm
}
}
is non
empty
set
T2C
is
Relation-like
Function-like
V49
(2)
V50
()
V156
()
V157
()
V158
()
Element
of the
carrier
of
(
TOP-REAL
2
)
T2C
`1
is
complex
ext-real
real
Element
of
REAL
rp
`1
is
complex
ext-real
real
Element
of
REAL
(
T2C
`1
)
-
(
rp
`1
)
is
complex
ext-real
real
Element
of
REAL
T2C
`2
is
complex
ext-real
real
Element
of
REAL
rp
`2
is
complex
ext-real
real
Element
of
REAL
(
T2C
`2
)
-
(
rp
`2
)
is
complex
ext-real
real
Element
of
REAL
VP
is
Relation-like
Function-like
V49
(2)
V50
()
V156
()
V157
()
V158
()
Element
of the
carrier
of
(
TOP-REAL
2
)
[
VP
,
T2C
]
is
V15
()
Element
of the
carrier
of
[:
(
TOP-REAL
2
)
,
(
TOP-REAL
2
)
:]
{
VP
,
T2C
}
is
functional
non
empty
set
{
VP
}
is
functional
non
empty
set
{
{
VP
,
T2C
}
,
{
VP
}
}
is non
empty
set
(
k
|
[:
(
(
cl_Ball
(
rp
,
rg
)
)
\
{
rl
}
)
,
{
rl
}
:]
)
.
[
VP
,
T2C
]
is
complex
ext-real
real
set
k
.
[
VP
,
T2C
]
is
complex
ext-real
real
Element
of
REAL
(
(
rp
)
|
[:
(
(
cl_Ball
(
rp
,
rg
)
)
\
{
rl
}
)
,
{
rl
}
:]
)
.
[
VP
,
T2C
]
is
complex
ext-real
real
set
(
rp
)
.
[
VP
,
T2C
]
is
complex
ext-real
real
Element
of
REAL
(
(
rp
)
|
[:
(
(
cl_Ball
(
rp
,
rg
)
)
\
{
rl
}
)
,
{
rl
}
:]
)
.
[
VP
,
T2C
]
is
complex
ext-real
real
set
(
rp
)
.
[
VP
,
T2C
]
is
complex
ext-real
real
Element
of
REAL
(
(
TOP-REAL
2
)
,
(
TOP-REAL
2
)
,
[
VP
,
T2C
]
) is
Relation-like
Function-like
V49
(2)
V50
()
V156
()
V157
()
V158
()
Element
of the
carrier
of
(
TOP-REAL
2
)
(
(
TOP-REAL
2
)
,
(
TOP-REAL
2
)
,
[
VP
,
T2C
]
)
`1
is
complex
ext-real
real
Element
of
REAL
(
(
(
TOP-REAL
2
)
,
(
TOP-REAL
2
)
,
[
VP
,
T2C
]
)
`1
)
-
(
rp
`1
)
is
complex
ext-real
real
Element
of
REAL
(
(
TOP-REAL
2
)
,
(
TOP-REAL
2
)
,
[
VP
,
T2C
]
)
`2
is
complex
ext-real
real
Element
of
REAL
(
(
(
TOP-REAL
2
)
,
(
TOP-REAL
2
)
,
[
VP
,
T2C
]
)
`2
)
-
(
rp
`2
)
is
complex
ext-real
real
Element
of
REAL
(
(
(
(
(
rp
)
|
[:
(
(
cl_Ball
(
rp
,
rg
)
)
\
{
rl
}
)
,
{
rl
}
:]
)
(#)
(
(
rp
)
|
[:
(
(
cl_Ball
(
rp
,
rg
)
)
\
{
rl
}
)
,
{
rl
}
:]
)
)
+
(
(
(
rp
)
|
[:
(
(
cl_Ball
(
rp
,
rg
)
)
\
{
rl
}
)
,
{
rl
}
:]
)
(#)
(
(
rp
)
|
[:
(
(
cl_Ball
(
rp
,
rg
)
)
\
{
rl
}
)
,
{
rl
}
:]
)
)
)
-
(
k
|
[:
(
(
cl_Ball
(
rp
,
rg
)
)
\
{
rl
}
)
,
{
rl
}
:]
)
)
.
[
VP
,
T2C
]
is
complex
ext-real
real
set
(
(
(
(
rp
)
|
[:
(
(
cl_Ball
(
rp
,
rg
)
)
\
{
rl
}
)
,
{
rl
}
:]
)
(#)
(
(
rp
)
|
[:
(
(
cl_Ball
(
rp
,
rg
)
)
\
{
rl
}
)
,
{
rl
}
:]
)
)
+
(
(
(
rp
)
|
[:
(
(
cl_Ball
(
rp
,
rg
)
)
\
{
rl
}
)
,
{
rl
}
:]
)
(#)
(
(
rp
)
|
[:
(
(
cl_Ball
(
rp
,
rg
)
)
\
{
rl
}
)
,
{
rl
}
:]
)
)
)
.
[
VP
,
T2C
]
is
complex
ext-real
real
set
(
(
(
(
(
rp
)
|
[:
(
(
cl_Ball
(
rp
,
rg
)
)
\
{
rl
}
)
,
{
rl
}
:]
)
(#)
(
(
rp
)
|
[:
(
(
cl_Ball
(
rp
,
rg
)
)
\
{
rl
}
)
,
{
rl
}
:]
)
)
+
(
(
(
rp
)
|
[:
(
(
cl_Ball
(
rp
,
rg
)
)
\
{
rl
}
)
,
{
rl
}
:]
)
(#)
(
(
rp
)
|
[:
(
(
cl_Ball
(
rp
,
rg
)
)
\
{
rl
}
)
,
{
rl
}
:]
)
)
)
.
[
VP
,
T2C
]
)
-
(
(
k
|
[:
(
(
cl_Ball
(
rp
,
rg
)
)
\
{
rl
}
)
,
{
rl
}
:]
)
.
[
VP
,
T2C
]
)
is
complex
ext-real
real
set
(
(
(
(
(
rp
)
|
[:
(
(
cl_Ball
(
rp
,
rg
)
)
\
{
rl
}
)
,
{
rl
}
:]
)
(#)
(
(
rp
)
|
[:
(
(
cl_Ball
(
rp
,
rg
)
)
\
{
rl
}
)
,
{
rl
}
:]
)
)
+
(
(
(
rp
)
|
[:
(
(
cl_Ball
(
rp
,
rg
)
)
\
{
rl
}
)
,
{
rl
}
:]
)
(#)
(
(
rp
)
|
[:
(
(
cl_Ball
(
rp
,
rg
)
)
\
{
rl
}
)
,
{
rl
}
:]
)
)
)
.
[
VP
,
T2C
]
)
-
(
rg
^2
)
is
complex
ext-real
real
set
(
(
(
rp
)
|
[:
(
(
cl_Ball
(
rp
,
rg
)
)
\
{
rl
}
)
,
{
rl
}
:]
)
(#)
(
(
rp
)
|
[:
(
(
cl_Ball
(
rp
,
rg
)
)
\
{
rl
}
)
,
{
rl
}
:]
)
)
.
[
VP
,
T2C
]
is
complex
ext-real
real
set
(
(
(
rp
)
|
[:
(
(
cl_Ball
(
rp
,
rg
)
)
\
{
rl
}
)
,
{
rl
}
:]
)
(#)
(
(
rp
)
|
[:
(
(
cl_Ball
(
rp
,
rg
)
)
\
{
rl
}
)
,
{
rl
}
:]
)
)
.
[
VP
,
T2C
]
is
complex
ext-real
real
set
(
(
(
(
rp
)
|
[:
(
(
cl_Ball
(
rp
,
rg
)
)
\
{
rl
}
)
,
{
rl
}
:]
)
(#)
(
(
rp
)
|
[:
(
(
cl_Ball
(
rp
,
rg
)
)
\
{
rl
}
)
,
{
rl
}
:]
)
)
.
[
VP
,
T2C
]
)
+
(
(
(
(
rp
)
|
[:
(
(
cl_Ball
(
rp
,
rg
)
)
\
{
rl
}
)
,
{
rl
}
:]
)
(#)
(
(
rp
)
|
[:
(
(
cl_Ball
(
rp
,
rg
)
)
\
{
rl
}
)
,
{
rl
}
:]
)
)
.
[
VP
,
T2C
]
)
is
complex
ext-real
real
set
(
(
(
(
(
rp
)
|
[:
(
(
cl_Ball
(
rp
,
rg
)
)
\
{
rl
}
)
,
{
rl
}
:]
)
(#)
(
(
rp
)
|
[:
(
(
cl_Ball
(
rp
,
rg
)
)
\
{
rl
}
)
,
{
rl
}
:]
)
)
.
[
VP
,
T2C
]
)
+
(
(
(
(
rp
)
|
[:
(
(
cl_Ball
(
rp
,
rg
)
)
\
{
rl
}
)
,
{
rl
}
:]
)
(#)
(
(
rp
)
|
[:
(
(
cl_Ball
(
rp
,
rg
)
)
\
{
rl
}
)
,
{
rl
}
:]
)
)
.
[
VP
,
T2C
]
)
)
-
(
rg
^2
)
is
complex
ext-real
real
set
(
(
(
rp
)
|
[:
(
(
cl_Ball
(
rp
,
rg
)
)
\
{
rl
}
)
,
{
rl
}
:]
)
.
[
VP
,
T2C
]
)
*
(
(
(
rp
)
|
[:
(
(
cl_Ball
(
rp
,
rg
)
)
\
{
rl
}
)
,
{
rl
}
:]
)
.
[
VP
,
T2C
]
)
is
complex
ext-real
non
negative
real
set
(
(
(
(
rp
)
|
[:
(
(
cl_Ball
(
rp
,
rg
)
)
\
{
rl
}
)
,
{
rl
}
:]
)
.
[
VP
,
T2C
]
)
*
(
(
(
rp
)
|
[:
(
(
cl_Ball
(
rp
,
rg
)
)
\
{
rl
}
)
,
{
rl
}
:]
)
.
[
VP
,
T2C
]
)
)
+
(
(
(
(
rp
)
|
[:
(
(
cl_Ball
(
rp
,
rg
)
)
\
{
rl
}
)
,
{
rl
}
:]
)
(#)
(
(
rp
)
|
[:
(
(
cl_Ball
(
rp
,
rg
)
)
\
{
rl
}
)
,
{
rl
}
:]
)
)
.
[
VP
,
T2C
]
)
is
complex
ext-real
real
set
(
(
(
(
(
rp
)
|
[:
(
(
cl_Ball
(
rp
,
rg
)
)
\
{
rl
}
)
,
{
rl
}
:]
)
.
[
VP
,
T2C
]
)
*
(
(
(
rp
)
|
[:
(
(
cl_Ball
(
rp
,
rg
)
)
\
{
rl
}
)
,
{
rl
}
:]
)
.
[
VP
,
T2C
]
)
)
+
(
(
(
(
rp
)
|
[:
(
(
cl_Ball
(
rp
,
rg
)
)
\
{
rl
}
)
,
{
rl
}
:]
)
(#)
(
(
rp
)
|
[:
(
(
cl_Ball
(
rp
,
rg
)
)
\
{
rl
}
)
,
{
rl
}
:]
)
)
.
[
VP
,
T2C
]
)
)
-
(
rg
^2
)
is
complex
ext-real
real
set
(
(
T2C
`1
)
-
(
rp
`1
)
)
^2
is
complex
ext-real
real
Element
of
REAL
(
(
T2C
`1
)
-
(
rp
`1
)
)
*
(
(
T2C
`1
)
-
(
rp
`1
)
)
is
complex
ext-real
non
negative
real
set
(
(
T2C
`2
)
-
(
rp
`2
)
)
^2
is
complex
ext-real
real
Element
of
REAL
(
(
T2C
`2
)
-
(
rp
`2
)
)
*
(
(
T2C
`2
)
-
(
rp
`2
)
)
is
complex
ext-real
non
negative
real
set
(
(
(
T2C
`1
)
-
(
rp
`1
)
)
^2
)
+
(
(
(
T2C
`2
)
-
(
rp
`2
)
)
^2
)
is
complex
ext-real
real
Element
of
REAL
(
(
(
(
T2C
`1
)
-
(
rp
`1
)
)
^2
)
+
(
(
(
T2C
`2
)
-
(
rp
`2
)
)
^2
)
)
-
(
rg
^2
)
is
complex
ext-real
real
Element
of
REAL
T2C
-
rp
is
Relation-like
Function-like
V49
(2)
V50
()
V156
()
V157
()
V158
()
Element
of the
carrier
of
(
TOP-REAL
2
)
-
rp
is
Relation-like
Function-like
V49
(2)
V50
()
V156
()
V157
()
V158
()
Element
of the
carrier
of
(
TOP-REAL
2
)
K270
(
(
TOP-REAL
2
)
,
T2C
,
(
-
rp
)
) is
Relation-like
Function-like
V49
(2)
V50
()
V156
()
V157
()
V158
()
Element
of the
carrier
of
(
TOP-REAL
2
)
the
U7
of
(
TOP-REAL
2
)
is
Relation-like
[:
the
carrier
of
(
TOP-REAL
2
)
, the
carrier
of
(
TOP-REAL
2
)
:]
-defined
the
carrier
of
(
TOP-REAL
2
)
-valued
Function-like
non
empty
total
quasi_total
Element
of
bool
[:
[:
the
carrier
of
(
TOP-REAL
2
)
, the
carrier
of
(
TOP-REAL
2
)
:]
, the
carrier
of
(
TOP-REAL
2
)
:]
[:
[:
the
carrier
of
(
TOP-REAL
2
)
, the
carrier
of
(
TOP-REAL
2
)
:]
, the
carrier
of
(
TOP-REAL
2
)
:]
is
Relation-like
non
empty
set
bool
[:
[:
the
carrier
of
(
TOP-REAL
2
)
, the
carrier
of
(
TOP-REAL
2
)
:]
, the
carrier
of
(
TOP-REAL
2
)
:]
is non
empty
set
K224
( the
carrier
of
(
TOP-REAL
2
)
, the
U7
of
(
TOP-REAL
2
)
,
T2C
,
(
-
rp
)
) is
Relation-like
Function-like
V49
(2)
V50
()
V156
()
V157
()
V158
()
Element
of the
carrier
of
(
TOP-REAL
2
)
|.
(
T2C
-
rp
)
.|
is
complex
ext-real
non
negative
real
Element
of
REAL
|.
(
T2C
-
rp
)
.|
^2
is
complex
ext-real
real
Element
of
REAL
|.
(
T2C
-
rp
)
.|
*
|.
(
T2C
-
rp
)
.|
is
complex
ext-real
non
negative
real
set
(
T2C
-
rp
)
`1
is
complex
ext-real
real
Element
of
REAL
(
(
T2C
-
rp
)
`1
)
^2
is
complex
ext-real
real
Element
of
REAL
(
(
T2C
-
rp
)
`1
)
*
(
(
T2C
-
rp
)
`1
)
is
complex
ext-real
non
negative
real
set
(
T2C
-
rp
)
`2
is
complex
ext-real
real
Element
of
REAL
(
(
T2C
-
rp
)
`2
)
^2
is
complex
ext-real
real
Element
of
REAL
(
(
T2C
-
rp
)
`2
)
*
(
(
T2C
-
rp
)
`2
)
is
complex
ext-real
non
negative
real
set
(
(
(
T2C
-
rp
)
`1
)
^2
)
+
(
(
(
T2C
-
rp
)
`2
)
^2
)
is
complex
ext-real
real
Element
of
REAL
(
(
(
T2C
`1
)
-
(
rp
`1
)
)
^2
)
+
(
(
(
T2C
-
rp
)
`2
)
^2
)
is
complex
ext-real
real
Element
of
REAL
(
rg
^2
)
-
(
rg
^2
)
is
complex
ext-real
real
set
AR
is
Relation-like
non-empty
the
carrier
of
(
[:
(
TOP-REAL
2
)
,
(
TOP-REAL
2
)
:]
|
[:
(
(
cl_Ball
(
rp
,
rg
)
)
\
{
rl
}
)
,
{
rl
}
:]
)
-defined
REAL
-valued
Function-like
non
empty
total
quasi_total
V156
()
V157
()
V158
()
positive-yielding
nonnegative-yielding
continuous
Element
of
bool
[:
the
carrier
of
(
[:
(
TOP-REAL
2
)
,
(
TOP-REAL
2
)
:]
|
[:
(
(
cl_Ball
(
rp
,
rg
)
)
\
{
rl
}
)
,
{
rl
}
:]
)
,
REAL
:]
DR
is
Relation-like
the
carrier
of
(
[:
(
TOP-REAL
2
)
,
(
TOP-REAL
2
)
:]
|
[:
(
(
cl_Ball
(
rp
,
rg
)
)
\
{
rl
}
)
,
{
rl
}
:]
)
-defined
REAL
-valued
Function-like
non
empty
total
quasi_total
V156
()
V157
()
V158
()
nonpositive-yielding
continuous
Element
of
bool
[:
the
carrier
of
(
[:
(
TOP-REAL
2
)
,
(
TOP-REAL
2
)
:]
|
[:
(
(
cl_Ball
(
rp
,
rg
)
)
\
{
rl
}
)
,
{
rl
}
:]
)
,
REAL
:]
AR
(#)
DR
is
Relation-like
the
carrier
of
(
[:
(
TOP-REAL
2
)
,
(
TOP-REAL
2
)
:]
|
[:
(
(
cl_Ball
(
rp
,
rg
)
)
\
{
rl
}
)
,
{
rl
}
:]
)
-defined
the
carrier
of
(
[:
(
TOP-REAL
2
)
,
(
TOP-REAL
2
)
:]
|
[:
(
(
cl_Ball
(
rp
,
rg
)
)
\
{
rl
}
)
,
{
rl
}
:]
)
-defined
REAL
-valued
Function-like
non
empty
total
total
quasi_total
quasi_total
V156
()
V157
()
V158
()
nonpositive-yielding
continuous
Element
of
bool
[:
the
carrier
of
(
[:
(
TOP-REAL
2
)
,
(
TOP-REAL
2
)
:]
|
[:
(
(
cl_Ball
(
rp
,
rg
)
)
\
{
rl
}
)
,
{
rl
}
:]
)
,
REAL
:]
(
(
(
(
(
rp
)
|
[:
(
(
cl_Ball
(
rp
,
rg
)
)
\
{
rl
}
)
,
{
rl
}
:]
)
(#)
(
()
|
[:
(
(
cl_Ball
(
rp
,
rg
)
)
\
{
rl
}
)
,
{
rl
}
:]
)
)
+
(
(
(
rp
)
|
[:
(
(
cl_Ball
(
rp
,
rg
)
)
\
{
rl
}
)
,
{
rl
}
:]
)
(#)
(
()
|
[:
(
(
cl_Ball
(
rp
,
rg
)
)
\
{
rl
}
)
,
{
rl
}
:]
)
)
)
(#)
(
(
(
(
rp
)
|
[:
(
(
cl_Ball
(
rp
,
rg
)
)
\
{
rl
}
)
,
{
rl
}
:]
)
(#)
(
()
|
[:
(
(
cl_Ball
(
rp
,
rg
)
)
\
{
rl
}
)
,
{
rl
}
:]
)
)
+
(
(
(
rp
)
|
[:
(
(
cl_Ball
(
rp
,
rg
)
)
\
{
rl
}
)
,
{
rl
}
:]
)
(#)
(
()
|
[:
(
(
cl_Ball
(
rp
,
rg
)
)
\
{
rl
}
)
,
{
rl
}
:]
)
)
)
)
-
(
AR
(#)
DR
)
is
Relation-like
the
carrier
of
(
[:
(
TOP-REAL
2
)
,
(
TOP-REAL
2
)
:]
|
[:
(
(
cl_Ball
(
rp
,
rg
)
)
\
{
rl
}
)
,
{
rl
}
:]
)
-defined
the
carrier
of
(
[:
(
TOP-REAL
2
)
,
(
TOP-REAL
2
)
:]
|
[:
(
(
cl_Ball
(
rp
,
rg
)
)
\
{
rl
}
)
,
{
rl
}
:]
)
-defined
REAL
-valued
Function-like
non
empty
total
total
quasi_total
quasi_total
V156
()
V157
()
V158
()
nonnegative-yielding
continuous
Element
of
bool
[:
the
carrier
of
(
[:
(
TOP-REAL
2
)
,
(
TOP-REAL
2
)
:]
|
[:
(
(
cl_Ball
(
rp
,
rg
)
)
\
{
rl
}
)
,
{
rl
}
:]
)
,
REAL
:]
-
(
(
(
(
rp
)
|
[:
(
(
cl_Ball
(
rp
,
rg
)
)
\
{
rl
}
)
,
{
rl
}
:]
)
(#)
(
()
|
[:
(
(
cl_Ball
(
rp
,
rg
)
)
\
{
rl
}
)
,
{
rl
}
:]
)
)
+
(
(
(
rp
)
|
[:
(
(
cl_Ball
(
rp
,
rg
)
)
\
{
rl
}
)
,
{
rl
}
:]
)
(#)
(
()
|
[:
(
(
cl_Ball
(
rp
,
rg
)
)
\
{
rl
}
)
,
{
rl
}
:]
)
)
)
is
Relation-like
the
carrier
of
[:
(
TOP-REAL
2
)
,
(
TOP-REAL
2
)
:]
-defined
the
carrier
of
(
[:
(
TOP-REAL
2
)
,
(
TOP-REAL
2
)
:]
|
[:
(
(
cl_Ball
(
rp
,
rg
)
)
\
{
rl
}
)
,
{
rl
}
:]
)
-defined
the
carrier
of
(
[:
(
TOP-REAL
2
)
,
(
TOP-REAL
2
)
:]
|
[:
(
(
cl_Ball
(
rp
,
rg
)
)
\
{
rl
}
)
,
{
rl
}
:]
)
-defined
REAL
-valued
Function-like
non
empty
total
total
quasi_total
quasi_total
V156
()
V157
()
V158
()
continuous
Element
of
bool
[:
the
carrier
of
(
[:
(
TOP-REAL
2
)
,
(
TOP-REAL
2
)
:]
|
[:
(
(
cl_Ball
(
rp
,
rg
)
)
\
{
rl
}
)
,
{
rl
}
:]
)
,
REAL
:]
sqrt
(
(
(
(
(
(
rp
)
|
[:
(
(
cl_Ball
(
rp
,
rg
)
)
\
{
rl
}
)
,
{
rl
}
:]
)
(#)
(
()
|
[:
(
(
cl_Ball
(
rp
,
rg
)
)
\
{
rl
}
)
,
{
rl
}
:]
)
)
+
(
(
(
rp
)
|
[:
(
(
cl_Ball
(
rp
,
rg
)
)
\
{
rl
}
)
,
{
rl
}
:]
)
(#)
(
()
|
[:
(
(
cl_Ball
(
rp
,
rg
)
)
\
{
rl
}
)
,
{
rl
}
:]
)
)
)
(#)
(
(
(
(
rp
)
|
[:
(
(
cl_Ball
(
rp
,
rg
)
)
\
{
rl
}
)
,
{
rl
}
:]
)
(#)
(
()
|
[:
(
(
cl_Ball
(
rp
,
rg
)
)
\
{
rl
}
)
,
{
rl
}
:]
)
)
+
(
(
(
rp
)
|
[:
(
(
cl_Ball
(
rp
,
rg
)
)
\
{
rl
}
)
,
{
rl
}
:]
)
(#)
(
()
|
[:
(
(
cl_Ball
(
rp
,
rg
)
)
\
{
rl
}
)
,
{
rl
}
:]
)
)
)
)
-
(
AR
(#)
DR
)
)
is
Relation-like
the
carrier
of
(
[:
(
TOP-REAL
2
)
,
(
TOP-REAL
2
)
:]
|
[:
(
(
cl_Ball
(
rp
,
rg
)
)
\
{
rl
}
)
,
{
rl
}
:]
)
-defined
the
carrier
of
(
[:
(
TOP-REAL
2
)
,
(
TOP-REAL
2
)
:]
|
[:
(
(
cl_Ball
(
rp
,
rg
)
)
\
{
rl
}
)
,
{
rl
}
:]
)
-defined
REAL
-valued
Function-like
non
empty
total
total
quasi_total
quasi_total
V156
()
V157
()
V158
()
nonnegative-yielding
continuous
Element
of
bool
[:
the
carrier
of
(
[:
(
TOP-REAL
2
)
,
(
TOP-REAL
2
)
:]
|
[:
(
(
cl_Ball
(
rp
,
rg
)
)
\
{
rl
}
)
,
{
rl
}
:]
)
,
REAL
:]
(
-
(
(
(
(
rp
)
|
[:
(
(
cl_Ball
(
rp
,
rg
)
)
\
{
rl
}
)
,
{
rl
}
:]
)
(#)
(
()
|
[:
(
(
cl_Ball
(
rp
,
rg
)
)
\
{
rl
}
)
,
{
rl
}
:]
)
)
+
(
(
(
rp
)
|
[:
(
(
cl_Ball
(
rp
,
rg
)
)
\
{
rl
}
)
,
{
rl
}
:]
)
(#)
(
()
|
[:
(
(
cl_Ball
(
rp
,
rg
)
)
\
{
rl
}
)
,
{
rl
}
:]
)
)
)
)
+
(
sqrt
(
(
(
(
(
(
rp
)
|
[:
(
(
cl_Ball
(
rp
,
rg
)
)
\
{
rl
}
)
,
{
rl
}
:]
)
(#)
(
()
|
[:
(
(
cl_Ball
(
rp
,
rg
)
)
\
{
rl
}
)
,
{
rl
}
:]
)
)
+
(
(
(
rp
)
|
[:
(
(
cl_Ball
(
rp
,
rg
)
)
\
{
rl
}
)
,
{
rl
}
:]
)
(#)
(
()
|
[:
(
(
cl_Ball
(
rp
,
rg
)
)
\
{
rl
}
)
,
{
rl
}
:]
)
)
)
(#)
(
(
(
(
rp
)
|
[:
(
(
cl_Ball
(
rp
,
rg
)
)
\
{
rl
}
)
,
{
rl
}
:]
)
(#)
(
()
|
[:
(
(
cl_Ball
(
rp
,
rg
)
)
\
{
rl
}
)
,
{
rl
}
:]
)
)
+
(
(
(
rp
)
|
[:
(
(
cl_Ball
(
rp
,
rg
)
)
\
{
rl
}
)
,
{
rl
}
:]
)
(#)
(
()
|
[:
(
(
cl_Ball
(
rp
,
rg
)
)
\
{
rl
}
)
,
{
rl
}
:]
)
)
)
)
-
(
AR
(#)
DR
)
)
)
is
Relation-like
the
carrier
of
(
[:
(
TOP-REAL
2
)
,
(
TOP-REAL
2
)
:]
|
[:
(
(
cl_Ball
(
rp
,
rg
)
)
\
{
rl
}
)
,
{
rl
}
:]
)
-defined
the
carrier
of
(
[:
(
TOP-REAL
2
)
,
(
TOP-REAL
2
)
:]
|
[:
(
(
cl_Ball
(
rp
,
rg
)
)
\
{
rl
}
)
,
{
rl
}
:]
)
-defined
REAL
-valued
Function-like
non
empty
total
total
quasi_total
quasi_total
V156
()
V157
()
V158
()
continuous
Element
of
bool
[:
the
carrier
of
(
[:
(
TOP-REAL
2
)
,
(
TOP-REAL
2
)
:]
|
[:
(
(
cl_Ball
(
rp
,
rg
)
)
\
{
rl
}
)
,
{
rl
}
:]
)
,
REAL
:]
(
(
-
(
(
(
(
rp
)
|
[:
(
(
cl_Ball
(
rp
,
rg
)
)
\
{
rl
}
)
,
{
rl
}
:]
)
(#)
(
()
|
[:
(
(
cl_Ball
(
rp
,
rg
)
)
\
{
rl
}
)
,
{
rl
}
:]
)
)
+
(
(
(
rp
)
|
[:
(
(
cl_Ball
(
rp
,
rg
)
)
\
{
rl
}
)
,
{
rl
}
:]
)
(#)
(
()
|
[:
(
(
cl_Ball
(
rp
,
rg
)
)
\
{
rl
}
)
,
{
rl
}
:]
)
)
)
)
+
(
sqrt
(
(
(
(
(
(
rp
)
|
[:
(
(
cl_Ball
(
rp
,
rg
)
)
\
{
rl
}
)
,
{
rl
}
:]
)
(#)
(
()
|
[:
(
(
cl_Ball
(
rp
,
rg
)
)
\
{
rl
}
)
,
{
rl
}
:]
)
)
+
(
(
(
rp
)
|
[:
(
(
cl_Ball
(
rp
,
rg
)
)
\
{
rl
}
)
,
{
rl
}
:]
)
(#)
(
()
|
[:
(
(
cl_Ball
(
rp
,
rg
)
)
\
{
rl
}
)
,
{
rl
}
:]
)
)
)
(#)
(
(
(
(
rp
)
|
[:
(
(
cl_Ball
(
rp
,
rg
)
)
\
{
rl
}
)
,
{
rl
}
:]
)
(#)
(
()
|
[:
(
(
cl_Ball
(
rp
,
rg
)
)
\
{
rl
}
)
,
{
rl
}
:]
)
)
+
(
(
(
rp
)
|
[:
(
(
cl_Ball
(
rp
,
rg
)
)
\
{
rl
}
)
,
{
rl
}
:]
)
(#)
(
()
|
[:
(
(
cl_Ball
(
rp
,
rg
)
)
\
{
rl
}
)
,
{
rl
}
:]
)
)
)
)
-
(
AR
(#)
DR
)
)
)
)
/
AR
is
Relation-like
the
carrier
of
(
[:
(
TOP-REAL
2
)
,
(
TOP-REAL
2
)
:]
|
[:
(
(
cl_Ball
(
rp
,
rg
)
)
\
{
rl
}
)
,
{
rl
}
:]
)
-defined
the
carrier
of
(
[:
(
TOP-REAL
2
)
,
(
TOP-REAL
2
)
:]
|
[:
(
(
cl_Ball
(
rp
,
rg
)
)
\
{
rl
}
)
,
{
rl
}
:]
)
-defined
REAL
-valued
Function-like
non
empty
total
total
quasi_total
quasi_total
V156
()
V157
()
V158
()
continuous
Element
of
bool
[:
the
carrier
of
(
[:
(
TOP-REAL
2
)
,
(
TOP-REAL
2
)
:]
|
[:
(
(
cl_Ball
(
rp
,
rg
)
)
\
{
rl
}
)
,
{
rl
}
:]
)
,
REAL
:]
(
(
(
-
(
(
(
(
rp
)
|
[:
(
(
cl_Ball
(
rp
,
rg
)
)
\
{
rl
}
)
,
{
rl
}
:]
)
(#)
(
()
|
[:
(
(
cl_Ball
(
rp
,
rg
)
)
\
{
rl
}
)
,
{
rl
}
:]
)
)
+
(
(
(
rp
)
|
[:
(
(
cl_Ball
(
rp
,
rg
)
)
\
{
rl
}
)
,
{
rl
}
:]
)
(#)
(
()
|
[:
(
(
cl_Ball
(
rp
,
rg
)
)
\
{
rl
}
)
,
{
rl
}
:]
)
)
)
)
+
(
sqrt
(
(
(
(
(
(
rp
)
|
[:
(
(
cl_Ball
(
rp
,
rg
)
)
\
{
rl
}
)
,
{
rl
}
:]
)
(#)
(
()
|
[:
(
(
cl_Ball
(
rp
,
rg
)
)
\
{
rl
}
)
,
{
rl
}
:]
)
)
+
(
(
(
rp
)
|
[:
(
(
cl_Ball
(
rp
,
rg
)
)
\
{
rl
}
)
,
{
rl
}
:]
)
(#)
(
()
|
[:
(
(
cl_Ball
(
rp
,
rg
)
)
\
{
rl
}
)
,
{
rl
}
:]
)
)
)
(#)
(
(
(
(
rp
)
|
[:
(
(
cl_Ball
(
rp
,
rg
)
)
\
{
rl
}
)
,
{
rl
}
:]
)
(#)
(
()
|
[:
(
(
cl_Ball
(
rp
,
rg
)
)
\
{
rl
}
)
,
{
rl
}
:]
)
)
+
(
(
(
rp
)
|
[:
(
(
cl_Ball
(
rp
,
rg
)
)
\
{
rl
}
)
,
{
rl
}
:]
)
(#)
(
()
|
[:
(
(
cl_Ball
(
rp
,
rg
)
)
\
{
rl
}
)
,
{
rl
}
:]
)
)
)
)
-
(
AR
(#)
DR
)
)
)
)
/
AR
)
(#)
(
()
|
[:
(
(
cl_Ball
(
rp
,
rg
)
)
\
{
rl
}
)
,
{
rl
}
:]
)
is
Relation-like
the
carrier
of
[:
(
TOP-REAL
2
)
,
(
TOP-REAL
2
)
:]
-defined
the
carrier
of
(
[:
(
TOP-REAL
2
)
,
(
TOP-REAL
2
)
:]
|
[:
(
(
cl_Ball
(
rp
,
rg
)
)
\
{
rl
}
)
,
{
rl
}
:]
)
-defined
the
carrier
of
(
[:
(
TOP-REAL
2
)
,
(
TOP-REAL
2
)
:]
|
[:
(
(
cl_Ball
(
rp
,
rg
)
)
\
{
rl
}
)
,
{
rl
}
:]
)
-defined
REAL
-valued
Function-like
non
empty
total
total
quasi_total
quasi_total
V156
()
V157
()
V158
()
continuous
Element
of
bool
[:
the
carrier
of
(
[:
(
TOP-REAL
2
)
,
(
TOP-REAL
2
)
:]
|
[:
(
(
cl_Ball
(
rp
,
rg
)
)
\
{
rl
}
)
,
{
rl
}
:]
)
,
REAL
:]
(
()
|
[:
(
(
cl_Ball
(
rp
,
rg
)
)
\
{
rl
}
)
,
{
rl
}
:]
)
+
(
(
(
(
-
(
(
(
(
rp
)
|
[:
(
(
cl_Ball
(
rp
,
rg
)
)
\
{
rl
}
)
,
{
rl
}
:]
)
(#)
(
()
|
[:
(
(
cl_Ball
(
rp
,
rg
)
)
\
{
rl
}
)
,
{
rl
}
:]
)
)
+
(
(
(
rp
)
|
[:
(
(
cl_Ball
(
rp
,
rg
)
)
\
{
rl
}
)
,
{
rl
}
:]
)
(#)
(
()
|
[:
(
(
cl_Ball
(
rp
,
rg
)
)
\
{
rl
}
)
,
{
rl
}
:]
)
)
)
)
+
(
sqrt
(
(
(
(
(
(
rp
)
|
[:
(
(
cl_Ball
(
rp
,
rg
)
)
\
{
rl
}
)
,
{
rl
}
:]
)
(#)
(
()
|
[:
(
(
cl_Ball
(
rp
,
rg
)
)
\
{
rl
}
)
,
{
rl
}
:]
)
)
+
(
(
(
rp
)
|
[:
(
(
cl_Ball
(
rp
,
rg
)
)
\
{
rl
}
)
,
{
rl
}
:]
)
(#)
(
()
|
[:
(
(
cl_Ball
(
rp
,
rg
)
)
\
{
rl
}
)
,
{
rl
}
:]
)
)
)
(#)
(
(
(
(
rp
)
|
[:
(
(
cl_Ball
(
rp
,
rg
)
)
\
{
rl
}
)
,
{
rl
}
:]
)
(#)
(
()
|
[:
(
(
cl_Ball
(
rp
,
rg
)
)
\
{
rl
}
)
,
{
rl
}
:]
)
)
+
(
(
(
rp
)
|
[:
(
(
cl_Ball
(
rp
,
rg
)
)
\
{
rl
}
)
,
{
rl
}
:]
)
(#)
(
()
|
[:
(
(
cl_Ball
(
rp
,
rg
)
)
\
{
rl
}
)
,
{
rl
}
:]
)
)
)
)
-
(
AR
(#)
DR
)
)
)
)
/
AR
)
(#)
(
()
|
[:
(
(
cl_Ball
(
rp
,
rg
)
)
\
{
rl
}
)
,
{
rl
}
:]
)
)
is
Relation-like
the
carrier
of
[:
(
TOP-REAL
2
)
,
(
TOP-REAL
2
)
:]
-defined
the
carrier
of
(
[:
(
TOP-REAL
2
)
,
(
TOP-REAL
2
)
:]
|
[:
(
(
cl_Ball
(
rp
,
rg
)
)
\
{
rl
}
)
,
{
rl
}
:]
)
-defined
the
carrier
of
(
[:
(
TOP-REAL
2
)
,
(
TOP-REAL
2
)
:]
|
[:
(
(
cl_Ball
(
rp
,
rg
)
)
\
{
rl
}
)
,
{
rl
}
:]
)
-defined
REAL
-valued
Function-like
non
empty
total
total
quasi_total
quasi_total
V156
()
V157
()
V158
()
continuous
Element
of
bool
[:
the
carrier
of
(
[:
(
TOP-REAL
2
)
,
(
TOP-REAL
2
)
:]
|
[:
(
(
cl_Ball
(
rp
,
rg
)
)
\
{
rl
}
)
,
{
rl
}
:]
)
,
REAL
:]
(
(
(
-
(
(
(
(
rp
)
|
[:
(
(
cl_Ball
(
rp
,
rg
)
)
\
{
rl
}
)
,
{
rl
}
:]
)
(#)
(
()
|
[:
(
(
cl_Ball
(
rp
,
rg
)
)
\
{
rl
}
)
,
{
rl
}
:]
)
)
+
(
(
(
rp
)
|
[:
(
(
cl_Ball
(
rp
,
rg
)
)
\
{
rl
}
)
,
{
rl
}
:]
)
(#)
(
()
|
[:
(
(
cl_Ball
(
rp
,
rg
)
)
\
{
rl
}
)
,
{
rl
}
:]
)
)
)
)
+
(
sqrt
(
(
(
(
(
(
rp
)
|
[:
(
(
cl_Ball
(
rp
,
rg
)
)
\
{
rl
}
)
,
{
rl
}
:]
)
(#)
(
()
|
[:
(
(
cl_Ball
(
rp
,
rg
)
)
\
{
rl
}
)
,
{
rl
}
:]
)
)
+
(
(
(
rp
)
|
[:
(
(
cl_Ball
(
rp
,
rg
)
)
\
{
rl
}
)
,
{
rl
}
:]
)
(#)
(
()
|
[:
(
(
cl_Ball
(
rp
,
rg
)
)
\
{
rl
}
)
,
{
rl
}
:]
)
)
)
(#)
(
(
(
(
rp
)
|
[:
(
(
cl_Ball
(
rp
,
rg
)
)
\
{
rl
}
)
,
{
rl
}
:]
)
(#)
(
()
|
[:
(
(
cl_Ball
(
rp
,
rg
)
)
\
{
rl
}
)
,
{
rl
}
:]
)
)
+
(
(
(
rp
)
|
[:
(
(
cl_Ball
(
rp
,
rg
)
)
\
{
rl
}
)
,
{
rl
}
:]
)
(#)
(
()
|
[:
(
(
cl_Ball
(
rp
,
rg
)
)
\
{
rl
}
)
,
{
rl
}
:]
)
)
)
)
-
(
AR
(#)
DR
)
)
)
)
/
AR
)
(#)
(
()
|
[:
(
(
cl_Ball
(
rp
,
rg
)
)
\
{
rl
}
)
,
{
rl
}
:]
)
is
Relation-like
the
carrier
of
[:
(
TOP-REAL
2
)
,
(
TOP-REAL
2
)
:]
-defined
the
carrier
of
(
[:
(
TOP-REAL
2
)
,
(
TOP-REAL
2
)
:]
|
[:
(
(
cl_Ball
(
rp
,
rg
)
)
\
{
rl
}
)
,
{
rl
}
:]
)
-defined
the
carrier
of
(
[:
(
TOP-REAL
2
)
,
(
TOP-REAL
2
)
:]
|
[:
(
(
cl_Ball
(
rp
,
rg
)
)
\
{
rl
}
)
,
{
rl
}
:]
)
-defined
REAL
-valued
Function-like
non
empty
total
total
quasi_total
quasi_total
V156
()
V157
()
V158
()
continuous
Element
of
bool
[:
the
carrier
of
(
[:
(
TOP-REAL
2
)
,
(
TOP-REAL
2
)
:]
|
[:
(
(
cl_Ball
(
rp
,
rg
)
)
\
{
rl
}
)
,
{
rl
}
:]
)
,
REAL
:]
(
()
|
[:
(
(
cl_Ball
(
rp
,
rg
)
)
\
{
rl
}
)
,
{
rl
}
:]
)
+
(
(
(
(
-
(
(
(
(
rp
)
|
[:
(
(
cl_Ball
(
rp
,
rg
)
)
\
{
rl
}
)
,
{
rl
}
:]
)
(#)
(
()
|
[:
(
(
cl_Ball
(
rp
,
rg
)
)
\
{
rl
}
)
,
{
rl
}
:]
)
)
+
(
(
(
rp
)
|
[:
(
(
cl_Ball
(
rp
,
rg
)
)
\
{
rl
}
)
,
{
rl
}
:]
)
(#)
(
()
|
[:
(
(
cl_Ball
(
rp
,
rg
)
)
\
{
rl
}
)
,
{
rl
}
:]
)
)
)
)
+
(
sqrt
(
(
(
(
(
(
rp
)
|
[:
(
(
cl_Ball
(
rp
,
rg
)
)
\
{
rl
}
)
,
{
rl
}
:]
)
(#)
(
()
|
[:
(
(
cl_Ball
(
rp
,
rg
)
)
\
{
rl
}
)
,
{
rl
}
:]
)
)
+
(
(
(
rp
)
|
[:
(
(
cl_Ball
(
rp
,
rg
)
)
\
{
rl
}
)
,
{
rl
}
:]
)
(#)
(
()
|
[:
(
(
cl_Ball
(
rp
,
rg
)
)
\
{
rl
}
)
,
{
rl
}
:]
)
)
)
(#)
(
(
(
(
rp
)
|
[:
(
(
cl_Ball
(
rp
,
rg
)
)
\
{
rl
}
)
,
{
rl
}
:]
)
(#)
(
()
|
[:
(
(
cl_Ball
(
rp
,
rg
)
)
\
{
rl
}
)
,
{
rl
}
:]
)
)
+
(
(
(
rp
)
|
[:
(
(
cl_Ball
(
rp
,
rg
)
)
\
{
rl
}
)
,
{
rl
}
:]
)
(#)
(
()
|
[:
(
(
cl_Ball
(
rp
,
rg
)
)
\
{
rl
}
)
,
{
rl
}
:]
)
)
)
)
-
(
AR
(#)
DR
)
)
)
)
/
AR
)
(#)
(
()
|
[:
(
(
cl_Ball
(
rp
,
rg
)
)
\
{
rl
}
)
,
{
rl
}
:]
)
)
is
Relation-like
the
carrier
of
[:
(
TOP-REAL
2
)
,
(
TOP-REAL
2
)
:]
-defined
the
carrier
of
(
[:
(
TOP-REAL
2
)
,
(
TOP-REAL
2
)
:]
|
[:
(
(
cl_Ball
(
rp
,
rg
)
)
\
{
rl
}
)
,
{
rl
}
:]
)
-defined
the
carrier
of
(
[:
(
TOP-REAL
2
)
,
(
TOP-REAL
2
)
:]
|
[:
(
(
cl_Ball
(
rp
,
rg
)
)
\
{
rl
}
)
,
{
rl
}
:]
)
-defined
REAL
-valued
Function-like
non
empty
total
total
quasi_total
quasi_total
V156
()
V157
()
V158
()
continuous
Element
of
bool
[:
the
carrier
of
(
[:
(
TOP-REAL
2
)
,
(
TOP-REAL
2
)
:]
|
[:
(
(
cl_Ball
(
rp
,
rg
)
)
\
{
rl
}
)
,
{
rl
}
:]
)
,
REAL
:]
[:
the
carrier
of
(
[:
(
TOP-REAL
2
)
,
(
TOP-REAL
2
)
:]
|
[:
(
(
cl_Ball
(
rp
,
rg
)
)
\
{
rl
}
)
,
{
rl
}
:]
)
, the
carrier
of
R^1
:]
is
Relation-like
non
empty
V156
()
V157
()
V158
()
set
bool
[:
the
carrier
of
(
[:
(
TOP-REAL
2
)
,
(
TOP-REAL
2
)
:]
|
[:
(
(
cl_Ball
(
rp
,
rg
)
)
\
{
rl
}
)
,
{
rl
}
:]
)
, the
carrier
of
R^1
:]
is non
empty
set
T2C
is
Relation-like
the
carrier
of
(
[:
(
TOP-REAL
2
)
,
(
TOP-REAL
2
)
:]
|
[:
(
(
cl_Ball
(
rp
,
rg
)
)
\
{
rl
}
)
,
{
rl
}
:]
)
-defined
the
carrier
of
R^1
-valued
Function-like
non
empty
total
quasi_total
V156
()
V157
()
V158
()
Element
of
bool
[:
the
carrier
of
(
[:
(
TOP-REAL
2
)
,
(
TOP-REAL
2
)
:]
|
[:
(
(
cl_Ball
(
rp
,
rg
)
)
\
{
rl
}
)
,
{
rl
}
:]
)
, the
carrier
of
R^1
:]
VP
is
Relation-like
the
carrier
of
(
[:
(
TOP-REAL
2
)
,
(
TOP-REAL
2
)
:]
|
[:
(
(
cl_Ball
(
rp
,
rg
)
)
\
{
rl
}
)
,
{
rl
}
:]
)
-defined
the
carrier
of
R^1
-valued
Function-like
non
empty
total
quasi_total
V156
()
V157
()
V158
()
Element
of
bool
[:
the
carrier
of
(
[:
(
TOP-REAL
2
)
,
(
TOP-REAL
2
)
:]
|
[:
(
(
cl_Ball
(
rp
,
rg
)
)
\
{
rl
}
)
,
{
rl
}
:]
)
, the
carrier
of
R^1
:]
<:
T2C
,
VP
:>
is
Relation-like
the
carrier
of
(
[:
(
TOP-REAL
2
)
,
(
TOP-REAL
2
)
:]
|
[:
(
(
cl_Ball
(
rp
,
rg
)
)
\
{
rl
}
)
,
{
rl
}
:]
)
-defined
[:
the
carrier
of
R^1
, the
carrier
of
R^1
:]
-valued
Function-like
non
empty
total
quasi_total
Element
of
bool
[:
the
carrier
of
(
[:
(
TOP-REAL
2
)
,
(
TOP-REAL
2
)
:]
|
[:
(
(
cl_Ball
(
rp
,
rg
)
)
\
{
rl
}
)
,
{
rl
}
:]
)
,
[:
the
carrier
of
R^1
, the
carrier
of
R^1
:]
:]
[:
the
carrier
of
R^1
, the
carrier
of
R^1
:]
is
Relation-like
non
empty
V156
()
V157
()
V158
()
set
[:
the
carrier
of
(
[:
(
TOP-REAL
2
)
,
(
TOP-REAL
2
)
:]
|
[:
(
(
cl_Ball
(
rp
,
rg
)
)
\
{
rl
}
)
,
{
rl
}
:]
)
,
[:
the
carrier
of
R^1
, the
carrier
of
R^1
:]
:]
is
Relation-like
non
empty
set
bool
[:
the
carrier
of
(
[:
(
TOP-REAL
2
)
,
(
TOP-REAL
2
)
:]
|
[:
(
(
cl_Ball
(
rp
,
rg
)
)
\
{
rl
}
)
,
{
rl
}
:]
)
,
[:
the
carrier
of
R^1
, the
carrier
of
R^1
:]
:]
is non
empty
set
R2Homeomorphism
*
<:
T2C
,
VP
:>
is
Relation-like
the
carrier
of
(
[:
(
TOP-REAL
2
)
,
(
TOP-REAL
2
)
:]
|
[:
(
(
cl_Ball
(
rp
,
rg
)
)
\
{
rl
}
)
,
{
rl
}
:]
)
-defined
the
carrier
of
(
TOP-REAL
2
)
-valued
Function-like
Element
of
bool
[:
the
carrier
of
(
[:
(
TOP-REAL
2
)
,
(
TOP-REAL
2
)
:]
|
[:
(
(
cl_Ball
(
rp
,
rg
)
)
\
{
rl
}
)
,
{
rl
}
:]
)
, the
carrier
of
(
TOP-REAL
2
)
:]
[:
the
carrier
of
(
[:
(
TOP-REAL
2
)
,
(
TOP-REAL
2
)
:]
|
[:
(
(
cl_Ball
(
rp
,
rg
)
)
\
{
rl
}
)
,
{
rl
}
:]
)
, the
carrier
of
(
TOP-REAL
2
)
:]
is
Relation-like
non
empty
set
bool
[:
the
carrier
of
(
[:
(
TOP-REAL
2
)
,
(
TOP-REAL
2
)
:]
|
[:
(
(
cl_Ball
(
rp
,
rg
)
)
\
{
rl
}
)
,
{
rl
}
:]
)
, the
carrier
of
(
TOP-REAL
2
)
:]
is non
empty
set
Plk
is
Element
of the
carrier
of
(
(
TOP-REAL
2
)
|
(
(
cl_Ball
(
rp
,
rg
)
)
\
{
rl
}
)
)
(2,
rp
,
rl
,
rg
)
.
Plk
is
Element
of the
carrier
of
(
Tcircle
(
rp
,
rg
)
)
[
Plk
,
rl
]
is
V15
()
Element
of the
carrier
of
[:
(
(
TOP-REAL
2
)
|
(
(
cl_Ball
(
rp
,
rg
)
)
\
{
rl
}
)
)
,
(
TOP-REAL
2
)
:]
[:
(
(
TOP-REAL
2
)
|
(
(
cl_Ball
(
rp
,
rg
)
)
\
{
rl
}
)
)
,
(
TOP-REAL
2
)
:]
is non
empty
strict
TopSpace-like
T_0
T_1
T_2
TopStruct
the
carrier
of
[:
(
(
TOP-REAL
2
)
|
(
(
cl_Ball
(
rp
,
rg
)
)
\
{
rl
}
)
)
,
(
TOP-REAL
2
)
:]
is non
empty
set
{
Plk
,
rl
}
is non
empty
set
{
Plk
}
is non
empty
set
{
{
Plk
,
rl
}
,
{
Plk
}
}
is non
empty
set
(
R2Homeomorphism
*
<:
T2C
,
VP
:>
)
.
[
Plk
,
rl
]
is
Relation-like
Function-like
set
flk
is
Relation-like
Function-like
V49
(2)
V50
()
V156
()
V157
()
V158
()
Element
of the
carrier
of
(
TOP-REAL
2
)
HC
(
rl
,
flk
,
rp
,
rg
) is
Relation-like
Function-like
V49
(2)
V50
()
V156
()
V157
()
V158
()
Element
of the
carrier
of
(
TOP-REAL
2
)
[
flk
,
rl
]
is
V15
()
Element
of the
carrier
of
[:
(
TOP-REAL
2
)
,
(
TOP-REAL
2
)
:]
{
flk
,
rl
}
is
functional
non
empty
set
{
flk
}
is
functional
non
empty
set
{
{
flk
,
rl
}
,
{
flk
}
}
is non
empty
set
flk
`1
is
complex
ext-real
real
Element
of
REAL
rl
`1
is
complex
ext-real
real
Element
of
REAL
(
flk
`1
)
-
(
rl
`1
)
is
complex
ext-real
real
Element
of
REAL
flk
`2
is
complex
ext-real
real
Element
of
REAL
rl
`2
is
complex
ext-real
real
Element
of
REAL
(
flk
`2
)
-
(
rl
`2
)
is
complex
ext-real
real
Element
of
REAL
(
rl
`1
)
-
(
rp
`1
)
is
complex
ext-real
real
Element
of
REAL
(
rl
`2
)
-
(
rp
`2
)
is
complex
ext-real
real
Element
of
REAL
(
(
rl
`1
)
-
(
rp
`1
)
)
*
(
(
flk
`1
)
-
(
rl
`1
)
)
is
complex
ext-real
real
Element
of
REAL
(
(
rl
`2
)
-
(
rp
`2
)
)
*
(
(
flk
`2
)
-
(
rl
`2
)
)
is
complex
ext-real
real
Element
of
REAL
(
(
(
rl
`1
)
-
(
rp
`1
)
)
*
(
(
flk
`1
)
-
(
rl
`1
)
)
)
+
(
(
(
rl
`2
)
-
(
rp
`2
)
)
*
(
(
flk
`2
)
-
(
rl
`2
)
)
)
is
complex
ext-real
real
Element
of
REAL
-
(
(
(
(
rl
`1
)
-
(
rp
`1
)
)
*
(
(
flk
`1
)
-
(
rl
`1
)
)
)
+
(
(
(
rl
`2
)
-
(
rp
`2
)
)
*
(
(
flk
`2
)
-
(
rl
`2
)
)
)
)
is
complex
ext-real
real
Element
of
REAL
(
(
(
(
rl
`1
)
-
(
rp
`1
)
)
*
(
(
flk
`1
)
-
(
rl
`1
)
)
)
+
(
(
(
rl
`2
)
-
(
rp
`2
)
)
*
(
(
flk
`2
)
-
(
rl
`2
)
)
)
)
^2
is
complex
ext-real
real
Element
of
REAL
(
(
(
(
rl
`1
)
-
(
rp
`1
)
)
*
(
(
flk
`1
)
-
(
rl
`1
)
)
)
+
(
(
(
rl
`2
)
-
(
rp
`2
)
)
*
(
(
flk
`2
)
-
(
rl
`2
)
)
)
)
*
(
(
(
(
rl
`1
)
-
(
rp
`1
)
)
*
(
(
flk
`1
)
-
(
rl
`1
)
)
)
+
(
(
(
rl
`2
)
-
(
rp
`2
)
)
*
(
(
flk
`2
)
-
(
rl
`2
)
)
)
)
is
complex
ext-real
non
negative
real
set
(
(
flk
`1
)
-
(
rl
`1
)
)
^2
is
complex
ext-real
real
Element
of
REAL
(
(
flk
`1
)
-
(
rl
`1
)
)
*
(
(
flk
`1
)
-
(
rl
`1
)
)
is
complex
ext-real
non
negative
real
set
(
(
flk
`2
)
-
(
rl
`2
)
)
^2
is
complex
ext-real
real
Element
of
REAL
(
(
flk
`2
)
-
(
rl
`2
)
)
*
(
(
flk
`2
)
-
(
rl
`2
)
)
is
complex
ext-real
non
negative
real
set
(
(
(
flk
`1
)
-
(
rl
`1
)
)
^2
)
+
(
(
(
flk
`2
)
-
(
rl
`2
)
)
^2
)
is
complex
ext-real
real
Element
of
REAL
(
(
rl
`1
)
-
(
rp
`1
)
)
^2
is
complex
ext-real
real
Element
of
REAL
(
(
rl
`1
)
-
(
rp
`1
)
)
*
(
(
rl
`1
)
-
(
rp
`1
)
)
is
complex
ext-real
non
negative
real
set
(
(
rl
`2
)
-
(
rp
`2
)
)
^2
is
complex
ext-real
real
Element
of
REAL
(
(
rl
`2
)
-
(
rp
`2
)
)
*
(
(
rl
`2
)
-
(
rp
`2
)
)
is
complex
ext-real
non
negative
real
set
(
(
(
rl
`1
)
-
(
rp
`1
)
)
^2
)
+
(
(
(
rl
`2
)
-
(
rp
`2
)
)
^2
)
is
complex
ext-real
real
Element
of
REAL
(
(
(
(
rl
`1
)
-
(
rp
`1
)
)
^2
)
+
(
(
(
rl
`2
)
-
(
rp
`2
)
)
^2
)
)
-
(
rg
^2
)
is
complex
ext-real
real
Element
of
REAL
(
(
(
(
flk
`1
)
-
(
rl
`1
)
)
^2
)
+
(
(
(
flk
`2
)
-
(
rl
`2
)
)
^2
)
)
*
(
(
(
(
(
rl
`1
)
-
(
rp
`1
)
)
^2
)
+
(
(
(
rl
`2
)
-
(
rp
`2
)
)
^2
)
)
-
(
rg
^2
)
)
is
complex
ext-real
real
Element
of
REAL
(
(
(
(
(
rl
`1
)
-
(
rp
`1
)
)
*
(
(
flk
`1
)
-
(
rl
`1
)
)
)
+
(
(
(
rl
`2
)
-
(
rp
`2
)
)
*
(
(
flk
`2
)
-
(
rl
`2
)
)
)
)
^2
)
-
(
(
(
(
(
flk
`1
)
-
(
rl
`1
)
)
^2
)
+
(
(
(
flk
`2
)
-
(
rl
`2
)
)
^2
)
)
*
(
(
(
(
(
rl
`1
)
-
(
rp
`1
)
)
^2
)
+
(
(
(
rl
`2
)
-
(
rp
`2
)
)
^2
)
)
-
(
rg
^2
)
)
)
is
complex
ext-real
real
Element
of
REAL
sqrt
(
(
(
(
(
(
rl
`1
)
-
(
rp
`1
)
)
*
(
(
flk
`1
)
-
(
rl
`1
)
)
)
+
(
(
(
rl
`2
)
-
(
rp
`2
)
)
*
(
(
flk
`2
)
-
(
rl
`2
)
)
)
)
^2
)
-
(
(
(
(
(
flk
`1
)
-
(
rl
`1
)
)
^2
)
+
(
(
(
flk
`2
)
-
(
rl
`2
)
)
^2
)
)
*
(
(
(
(
(
rl
`1
)
-
(
rp
`1
)
)
^2
)
+
(
(
(
rl
`2
)
-
(
rp
`2
)
)
^2
)
)
-
(
rg
^2
)
)
)
)
is
complex
ext-real
real
Element
of
REAL
(
-
(
(
(
(
rl
`1
)
-
(
rp
`1
)
)
*
(
(
flk
`1
)
-
(
rl
`1
)
)
)
+
(
(
(
rl
`2
)
-
(
rp
`2
)
)
*
(
(
flk
`2
)
-
(
rl
`2
)
)
)
)
)
+
(
sqrt
(
(
(
(
(
(
rl
`1
)
-
(
rp
`1
)
)
*
(
(
flk
`1
)
-
(
rl
`1
)
)
)
+
(
(
(
rl
`2
)
-
(
rp
`2
)
)
*
(
(
flk
`2
)
-
(
rl
`2
)
)
)
)
^2
)
-
(
(
(
(
(
flk
`1
)
-
(
rl
`1
)
)
^2
)
+
(
(
(
flk
`2
)
-
(
rl
`2
)
)
^2
)
)
*
(
(
(
(
(
rl
`1
)
-
(
rp
`1
)
)
^2
)
+
(
(
(
rl
`2
)
-
(
rp
`2
)
)
^2
)
)
-
(
rg
^2
)
)
)
)
)
is
complex
ext-real
real
Element
of
REAL
(
(
-
(
(
(
(
rl
`1
)
-
(
rp
`1
)
)
*
(
(
flk
`1
)
-
(
rl
`1
)
)
)
+
(
(
(
rl
`2
)
-
(
rp
`2
)
)
*
(
(
flk
`2
)
-
(
rl
`2
)
)
)
)
)
+
(
sqrt
(
(
(
(
(
(
rl
`1
)
-
(
rp
`1
)
)
*
(
(
flk
`1
)
-
(
rl
`1
)
)
)
+
(
(
(
rl
`2
)
-
(
rp
`2
)
)
*
(
(
flk
`2
)
-
(
rl
`2
)
)
)
)
^2
)
-
(
(
(
(
(
flk
`1
)
-
(
rl
`1
)
)
^2
)
+
(
(
(
flk
`2
)
-
(
rl
`2
)
)
^2
)
)
*
(
(
(
(
(
rl
`1
)
-
(
rp
`1
)
)
^2
)
+
(
(
(
rl
`2
)
-
(
rp
`2
)
)
^2
)
)
-
(
rg
^2
)
)
)
)
)
)
/
(
(
(
(
flk
`1
)
-
(
rl
`1
)
)
^2
)
+
(
(
(
flk
`2
)
-
(
rl
`2
)
)
^2
)
)
is
complex
ext-real
real
Element
of
REAL
()
.
[
flk
,
rl
]
is
complex
ext-real
real
Element
of
REAL
(
(
TOP-REAL
2
)
,
(
TOP-REAL
2
)
,
[
flk
,
rl
]
) is
Relation-like
Function-like
V49
(2)
V50
()
V156
()
V157
()
V158
()
Element
of the
carrier
of
(
TOP-REAL
2
)
(
(
TOP-REAL
2
)
,
(
TOP-REAL
2
)
,
[
flk
,
rl
]
)
`1
is
complex
ext-real
real
Element
of
REAL
()
.
[
flk
,
rl
]
is
complex
ext-real
real
Element
of
REAL
(
(
TOP-REAL
2
)
,
(
TOP-REAL
2
)
,
[
flk
,
rl
]
)
`2
is
complex
ext-real
real
Element
of
REAL
()
.
[
flk
,
rl
]
is
complex
ext-real
real
Element
of
REAL
(
(
TOP-REAL
2
)
,
(
TOP-REAL
2
)
,
[
flk
,
rl
]
) is
Relation-like
Function-like
V49
(2)
V50
()
V156
()
V157
()
V158
()
Element
of the
carrier
of
(
TOP-REAL
2
)
(
(
TOP-REAL
2
)
,
(
TOP-REAL
2
)
,
[
flk
,
rl
]
)
`1
is
complex
ext-real
real
Element
of
REAL
(
(
(
TOP-REAL
2
)
,
(
TOP-REAL
2
)
,
[
flk
,
rl
]
)
`1
)
-
(
(
(
TOP-REAL
2
)
,
(
TOP-REAL
2
)
,
[
flk
,
rl
]
)
`1
)
is
complex
ext-real
real
Element
of
REAL
()
.
[
flk
,
rl
]
is
complex
ext-real
real
Element
of
REAL
(
(
TOP-REAL
2
)
,
(
TOP-REAL
2
)
,
[
flk
,
rl
]
)
`2
is
complex
ext-real
real
Element
of
REAL
(
(
(
TOP-REAL
2
)
,
(
TOP-REAL
2
)
,
[
flk
,
rl
]
)
`2
)
-
(
(
(
TOP-REAL
2
)
,
(
TOP-REAL
2
)
,
[
flk
,
rl
]
)
`2
)
is
complex
ext-real
real
Element
of
REAL
(
rp
)
.
[
flk
,
rl
]
is
complex
ext-real
real
Element
of
REAL
(
(
(
TOP-REAL
2
)
,
(
TOP-REAL
2
)
,
[
flk
,
rl
]
)
`1
)
-
(
rp
`1
)
is
complex
ext-real
real
Element
of
REAL
(
rp
)
.
[
flk
,
rl
]
is
complex
ext-real
real
Element
of
REAL
(
(
(
TOP-REAL
2
)
,
(
TOP-REAL
2
)
,
[
flk
,
rl
]
)
`2
)
-
(
rp
`2
)
is
complex
ext-real
real
Element
of
REAL
dom
T2C
is non
empty
Element
of
bool
the
carrier
of
(
[:
(
TOP-REAL
2
)
,
(
TOP-REAL
2
)
:]
|
[:
(
(
cl_Ball
(
rp
,
rg
)
)
\
{
rl
}
)
,
{
rl
}
:]
)
bool
the
carrier
of
(
[:
(
TOP-REAL
2
)
,
(
TOP-REAL
2
)
:]
|
[:
(
(
cl_Ball
(
rp
,
rg
)
)
\
{
rl
}
)
,
{
rl
}
:]
)
is non
empty
set
dom
VP
is non
empty
Element
of
bool
the
carrier
of
(
[:
(
TOP-REAL
2
)
,
(
TOP-REAL
2
)
:]
|
[:
(
(
cl_Ball
(
rp
,
rg
)
)
\
{
rl
}
)
,
{
rl
}
:]
)
dom
(
(
(
(
(
(
rp
)
|
[:
(
(
cl_Ball
(
rp
,
rg
)
)
\
{
rl
}
)
,
{
rl
}
:]
)
(#)
(
()
|
[:
(
(
cl_Ball
(
rp
,
rg
)
)
\
{
rl
}
)
,
{
rl
}
:]
)
)
+
(
(
(
rp
)
|
[:
(
(
cl_Ball
(
rp
,
rg
)
)
\
{
rl
}
)
,
{
rl
}
:]
)
(#)
(
()
|
[:
(
(
cl_Ball
(
rp
,
rg
)
)
\
{
rl
}
)
,
{
rl
}
:]
)
)
)
(#)
(
(
(
(
rp
)
|
[:
(
(
cl_Ball
(
rp
,
rg
)
)
\
{
rl
}
)
,
{
rl
}
:]
)
(#)
(
()
|
[:
(
(
cl_Ball
(
rp
,
rg
)
)
\
{
rl
}
)
,
{
rl
}
:]
)
)
+
(
(
(
rp
)
|
[:
(
(
cl_Ball
(
rp
,
rg
)
)
\
{
rl
}
)
,
{
rl
}
:]
)
(#)
(
()
|
[:
(
(
cl_Ball
(
rp
,
rg
)
)
\
{
rl
}
)
,
{
rl
}
:]
)
)
)
)
-
(
AR
(#)
DR
)
)
is non
empty
Element
of
bool
the
carrier
of
(
[:
(
TOP-REAL
2
)
,
(
TOP-REAL
2
)
:]
|
[:
(
(
cl_Ball
(
rp
,
rg
)
)
\
{
rl
}
)
,
{
rl
}
:]
)
(
()
|
[:
(
(
cl_Ball
(
rp
,
rg
)
)
\
{
rl
}
)
,
{
rl
}
:]
)
.
[
flk
,
rl
]
is
complex
ext-real
real
set
(
()
|
[:
(
(
cl_Ball
(
rp
,
rg
)
)
\
{
rl
}
)
,
{
rl
}
:]
)
.
[
flk
,
rl
]
is
complex
ext-real
real
set
(
k
|
[:
(
(
cl_Ball
(
rp
,
rg
)
)
\
{
rl
}
)
,
{
rl
}
:]
)
.
[
flk
,
rl
]
is
complex
ext-real
real
set
k
.
[
flk
,
rl
]
is
complex
ext-real
real
Element
of
REAL
(
(
rp
)
|
[:
(
(
cl_Ball
(
rp
,
rg
)
)
\
{
rl
}
)
,
{
rl
}
:]
)
.
[
flk
,
rl
]
is
complex
ext-real
real
set
(
(
rp
)
|
[:
(
(
cl_Ball
(
rp
,
rg
)
)
\
{
rl
}
)
,
{
rl
}
:]
)
.
[
flk
,
rl
]
is
complex
ext-real
real
set
AR
.
[
flk
,
rl
]
is
complex
ext-real
real
set
(
(
()
|
[:
(
(
cl_Ball
(
rp
,
rg
)
)
\
{
rl
}
)
,
{
rl
}
:]
)
(#)
(
()
|
[:
(
(
cl_Ball
(
rp
,
rg
)
)
\
{
rl
}
)
,
{
rl
}
:]
)
)
.
[
flk
,
rl
]
is
complex
ext-real
real
set
(
(
()
|
[:
(
(
cl_Ball
(
rp
,
rg
)
)
\
{
rl
}
)
,
{
rl
}
:]
)
(#)
(
()
|
[:
(
(
cl_Ball
(
rp
,
rg
)
)
\
{
rl
}
)
,
{
rl
}
:]
)
)
.
[
flk
,
rl
]
is
complex
ext-real
real
set
(
(
(
()
|
[:
(
(
cl_Ball
(
rp
,
rg
)
)
\
{
rl
}
)
,
{
rl
}
:]
)
(#)
(
()
|
[:
(
(
cl_Ball
(
rp
,
rg
)
)
\
{
rl
}
)
,
{
rl
}
:]
)
)
.
[
flk
,
rl
]
)
+
(
(
(
()
|
[:
(
(
cl_Ball
(
rp
,
rg
)
)
\
{
rl
}
)
,
{
rl
}
:]
)
(#)
(
()
|
[:
(
(
cl_Ball
(
rp
,
rg
)
)
\
{
rl
}
)
,
{
rl
}
:]
)
)
.
[
flk
,
rl
]
)
is
complex
ext-real
real
set
(
(
()
|
[:
(
(
cl_Ball
(
rp
,
rg
)
)
\
{
rl
}
)
,
{
rl
}
:]
)
.
[
flk
,
rl
]
)
*
(
(
()
|
[:
(
(
cl_Ball
(
rp
,
rg
)
)
\
{
rl
}
)
,
{
rl
}
:]
)
.
[
flk
,
rl
]
)
is
complex
ext-real
non
negative
real
set
(
(
(
()
|
[:
(
(
cl_Ball
(
rp
,
rg
)
)
\
{
rl
}
)
,
{
rl
}
:]
)
.
[
flk
,
rl
]
)
*
(
(
()
|
[:
(
(
cl_Ball
(
rp
,
rg
)
)
\
{
rl
}
)
,
{
rl
}
:]
)
.
[
flk
,
rl
]
)
)
+
(
(
(
()
|
[:
(
(
cl_Ball
(
rp
,
rg
)
)
\
{
rl
}
)
,
{
rl
}
:]
)
(#)
(
()
|
[:
(
(
cl_Ball
(
rp
,
rg
)
)
\
{
rl
}
)
,
{
rl
}
:]
)
)
.
[
flk
,
rl
]
)
is
complex
ext-real
real
set
(
(
(
rp
)
|
[:
(
(
cl_Ball
(
rp
,
rg
)
)
\
{
rl
}
)
,
{
rl
}
:]
)
(#)
(
()
|
[:
(
(
cl_Ball
(
rp
,
rg
)
)
\
{
rl
}
)
,
{
rl
}
:]
)
)
.
[
flk
,
rl
]
is
complex
ext-real
real
set
(
(
(
rp
)
|
[:
(
(
cl_Ball
(
rp
,
rg
)
)
\
{
rl
}
)
,
{
rl
}
:]
)
.
[
flk
,
rl
]
)
*
(
(
()
|
[:
(
(
cl_Ball
(
rp
,
rg
)
)
\
{
rl
}
)
,
{
rl
}
:]
)
.
[
flk
,
rl
]
)
is
complex
ext-real
real
set
(
(
(
rp
)
|
[:
(
(
cl_Ball
(
rp
,
rg
)
)
\
{
rl
}
)
,
{
rl
}
:]
)
(#)
(
()
|
[:
(
(
cl_Ball
(
rp
,
rg
)
)
\
{
rl
}
)
,
{
rl
}
:]
)
)
.
[
flk
,
rl
]
is
complex
ext-real
real
set
(
(
(
rp
)
|
[:
(
(
cl_Ball
(
rp
,
rg
)
)
\
{
rl
}
)
,
{
rl
}
:]
)
.
[
flk
,
rl
]
)
*
(
(
()
|
[:
(
(
cl_Ball
(
rp
,
rg
)
)
\
{
rl
}
)
,
{
rl
}
:]
)
.
[
flk
,
rl
]
)
is
complex
ext-real
real
set
(
(
(
(
rp
)
|
[:
(
(
cl_Ball
(
rp
,
rg
)
)
\
{
rl
}
)
,
{
rl
}
:]
)
(#)
(
()
|
[:
(
(
cl_Ball
(
rp
,
rg
)
)
\
{
rl
}
)
,
{
rl
}
:]
)
)
+
(
(
(
rp
)
|
[:
(
(
cl_Ball
(
rp
,
rg
)
)
\
{
rl
}
)
,
{
rl
}
:]
)
(#)
(
()
|
[:
(
(
cl_Ball
(
rp
,
rg
)
)
\
{
rl
}
)
,
{
rl
}
:]
)
)
)
.
[
flk
,
rl
]
is
complex
ext-real
real
set
(
(
(
(
rp
)
|
[:
(
(
cl_Ball
(
rp
,
rg
)
)
\
{
rl
}
)
,
{
rl
}
:]
)
(#)
(
()
|
[:
(
(
cl_Ball
(
rp
,
rg
)
)
\
{
rl
}
)
,
{
rl
}
:]
)
)
.
[
flk
,
rl
]
)
+
(
(
(
(
rp
)
|
[:
(
(
cl_Ball
(
rp
,
rg
)
)
\
{
rl
}
)
,
{
rl
}
:]
)
(#)
(
()
|
[:
(
(
cl_Ball
(
rp
,
rg
)
)
\
{
rl
}
)
,
{
rl
}
:]
)
)
.
[
flk
,
rl
]
)
is
complex
ext-real
real
set
(
(
(
(
(
rp
)
|
[:
(
(
cl_Ball
(
rp
,
rg
)
)
\
{
rl
}
)
,
{
rl
}
:]
)
(#)
(
()
|
[:
(
(
cl_Ball
(
rp
,
rg
)
)
\
{
rl
}
)
,
{
rl
}
:]
)
)
+
(
(
(
rp
)
|
[:
(
(
cl_Ball
(
rp
,
rg
)
)
\
{
rl
}
)
,
{
rl
}
:]
)
(#)
(
()
|
[:
(
(
cl_Ball
(
rp
,
rg
)
)
\
{
rl
}
)
,
{
rl
}
:]
)
)
)
(#)
(
(
(
(
rp
)
|
[:
(
(
cl_Ball
(
rp
,
rg
)
)
\
{
rl
}
)
,
{
rl
}
:]
)
(#)
(
()
|
[:
(
(
cl_Ball
(
rp
,
rg
)
)
\
{
rl
}
)
,
{
rl
}
:]
)
)
+
(
(
(
rp
)
|
[:
(
(
cl_Ball
(
rp
,
rg
)
)
\
{
rl
}
)
,
{
rl
}
:]
)
(#)
(
()
|
[:
(
(
cl_Ball
(
rp
,
rg
)
)
\
{
rl
}
)
,
{
rl
}
:]
)
)
)
)
.
[
flk
,
rl
]
is
complex
ext-real
real
set
DR
.
[
flk
,
rl
]
is
complex
ext-real
real
set
(
(
(
(
rp
)
|
[:
(
(
cl_Ball
(
rp
,
rg
)
)
\
{
rl
}
)
,
{
rl
}
:]
)
(#)
(
(
rp
)
|
[:
(
(
cl_Ball
(
rp
,
rg
)
)
\
{
rl
}
)
,
{
rl
}
:]
)
)
+
(
(
(
rp
)
|
[:
(
(
cl_Ball
(
rp
,
rg
)
)
\
{
rl
}
)
,
{
rl
}
:]
)
(#)
(
(
rp
)
|
[:
(
(
cl_Ball
(
rp
,
rg
)
)
\
{
rl
}
)
,
{
rl
}
:]
)
)
)
.
[
flk
,
rl
]
is
complex
ext-real
real
set
(
(
(
(
(
rp
)
|
[:
(
(
cl_Ball
(
rp
,
rg
)
)
\
{
rl
}
)
,
{
rl
}
:]
)
(#)
(
(
rp
)
|
[:
(
(
cl_Ball
(
rp
,
rg
)
)
\
{
rl
}
)
,
{
rl
}
:]
)
)
+
(
(
(
rp
)
|
[:
(
(
cl_Ball
(
rp
,
rg
)
)
\
{
rl
}
)
,
{
rl
}
:]
)
(#)
(
(
rp
)
|
[:
(
(
cl_Ball
(
rp
,
rg
)
)
\
{
rl
}
)
,
{
rl
}
:]
)
)
)
.
[
flk
,
rl
]
)
-
(
(
k
|
[:
(
(
cl_Ball
(
rp
,
rg
)
)
\
{
rl
}
)
,
{
rl
}
:]
)
.
[
flk
,
rl
]
)
is
complex
ext-real
real
set
(
(
(
(
(
rp
)
|
[:
(
(
cl_Ball
(
rp
,
rg
)
)
\
{
rl
}
)
,
{
rl
}
:]
)
(#)
(
(
rp
)
|
[:
(
(
cl_Ball
(
rp
,
rg
)
)
\
{
rl
}
)
,
{
rl
}
:]
)
)
+
(
(
(
rp
)
|
[:
(
(
cl_Ball
(
rp
,
rg
)
)
\
{
rl
}
)
,
{
rl
}
:]
)
(#)
(
(
rp
)
|
[:
(
(
cl_Ball
(
rp
,
rg
)
)
\
{
rl
}
)
,
{
rl
}
:]
)
)
)
.
[
flk
,
rl
]
)
-
(
rg
^2
)
is
complex
ext-real
real
set
(
(
(
rp
)
|
[:
(
(
cl_Ball
(
rp
,
rg
)
)
\
{
rl
}
)
,
{
rl
}
:]
)
(#)
(
(
rp
)
|
[:
(
(
cl_Ball
(
rp
,
rg
)
)
\
{
rl
}
)
,
{
rl
}
:]
)
)
.
[
flk
,
rl
]
is
complex
ext-real
real
set
(
(
(
rp
)
|
[:
(
(
cl_Ball
(
rp
,
rg
)
)
\
{
rl
}
)
,
{
rl
}
:]
)
(#)
(
(
rp
)
|
[:
(
(
cl_Ball
(
rp
,
rg
)
)
\
{
rl
}
)
,
{
rl
}
:]
)
)
.
[
flk
,
rl
]
is
complex
ext-real
real
set
(
(
(
(
rp
)
|
[:
(
(
cl_Ball
(
rp
,
rg
)
)
\
{
rl
}
)
,
{
rl
}
:]
)
(#)
(
(
rp
)
|
[:
(
(
cl_Ball
(
rp
,
rg
)
)
\
{
rl
}
)
,
{
rl
}
:]
)
)
.
[
flk
,
rl
]
)
+
(
(
(
(
rp
)
|
[:
(
(
cl_Ball
(
rp
,
rg
)
)
\
{
rl
}
)
,
{
rl
}
:]
)
(#)
(
(
rp
)
|
[:
(
(
cl_Ball
(
rp
,
rg
)
)
\
{
rl
}
)
,
{
rl
}
:]
)
)
.
[
flk
,
rl
]
)
is
complex
ext-real
real
set
(
(
(
(
(
rp
)
|
[:
(
(
cl_Ball
(
rp
,
rg
)
)
\
{
rl
}
)
,
{
rl
}
:]
)
(#)
(
(
rp
)
|
[:
(
(
cl_Ball
(
rp
,
rg
)
)
\
{
rl
}
)
,
{
rl
}
:]
)
)
.
[
flk
,
rl
]
)
+
(
(
(
(
rp
)
|
[:
(
(
cl_Ball
(
rp
,
rg
)
)
\
{
rl
}
)
,
{
rl
}
:]
)
(#)
(
(
rp
)
|
[:
(
(
cl_Ball
(
rp
,
rg
)
)
\
{
rl
}
)
,
{
rl
}
:]
)
)
.
[
flk
,
rl
]
)
)
-
(
rg
^2
)
is
complex
ext-real
real
set
(
(
(
rp
)
|
[:
(
(
cl_Ball
(
rp
,
rg
)
)
\
{
rl
}
)
,
{
rl
}
:]
)
.
[
flk
,
rl
]
)
*
(
(
(
rp
)
|
[:
(
(
cl_Ball
(
rp
,
rg
)
)
\
{
rl
}
)
,
{
rl
}
:]
)
.
[
flk
,
rl
]
)
is
complex
ext-real
non
negative
real
set
(
(
(
(
rp
)
|
[:
(
(
cl_Ball
(
rp
,
rg
)
)
\
{
rl
}
)
,
{
rl
}
:]
)
.
[
flk
,
rl
]
)
*
(
(
(
rp
)
|
[:
(
(
cl_Ball
(
rp
,
rg
)
)
\
{
rl
}
)
,
{
rl
}
:]
)
.
[
flk
,
rl
]
)
)
+
(
(
(
(
rp
)
|
[:
(
(
cl_Ball
(
rp
,
rg
)
)
\
{
rl
}
)
,
{
rl
}
:]
)
(#)
(
(
rp
)
|
[:
(
(
cl_Ball
(
rp
,
rg
)
)
\
{
rl
}
)
,
{
rl
}
:]
)
)
.
[
flk
,
rl
]
)
is
complex
ext-real
real
set
(
(
(
(
(
rp
)
|
[:
(
(
cl_Ball
(
rp
,
rg
)
)
\
{
rl
}
)
,
{
rl
}
:]
)
.
[
flk
,
rl
]
)
*
(
(
(
rp
)
|
[:
(
(
cl_Ball
(
rp
,
rg
)
)
\
{
rl
}
)
,
{
rl
}
:]
)
.
[
flk
,
rl
]
)
)
+
(
(
(
(
rp
)
|
[:
(
(
cl_Ball
(
rp
,
rg
)
)
\
{
rl
}
)
,
{
rl
}
:]
)
(#)
(
(
rp
)
|
[:
(
(
cl_Ball
(
rp
,
rg
)
)
\
{
rl
}
)
,
{
rl
}
:]
)
)
.
[
flk
,
rl
]
)
)
-
(
rg
^2
)
is
complex
ext-real
real
set
dom
(
sqrt
(
(
(
(
(
(
rp
)
|
[:
(
(
cl_Ball
(
rp
,
rg
)
)
\
{
rl
}
)
,
{
rl
}
:]
)
(#)
(
()
|
[:
(
(
cl_Ball
(
rp
,
rg
)
)
\
{
rl
}
)
,
{
rl
}
:]
)
)
+
(
(
(
rp
)
|
[:
(
(
cl_Ball
(
rp
,
rg
)
)
\
{
rl
}
)
,
{
rl
}
:]
)
(#)
(
()
|
[:
(
(
cl_Ball
(
rp
,
rg
)
)
\
{
rl
}
)
,
{
rl
}
:]
)
)
)
(#)
(
(
(
(
rp
)
|
[:
(
(
cl_Ball
(
rp
,
rg
)
)
\
{
rl
}
)
,
{
rl
}
:]
)
(#)
(
()
|
[:
(
(
cl_Ball
(
rp
,
rg
)
)
\
{
rl
}
)
,
{
rl
}
:]
)
)
+
(
(
(
rp
)
|
[:
(
(
cl_Ball
(
rp
,
rg
)
)
\
{
rl
}
)
,
{
rl
}
:]
)
(#)
(
()
|
[:
(
(
cl_Ball
(
rp
,
rg
)
)
\
{
rl
}
)
,
{
rl
}
:]
)
)
)
)
-
(
AR
(#)
DR
)
)
)
is non
empty
Element
of
bool
the
carrier
of
(
[:
(
TOP-REAL
2
)
,
(
TOP-REAL
2
)
:]
|
[:
(
(
cl_Ball
(
rp
,
rg
)
)
\
{
rl
}
)
,
{
rl
}
:]
)
(
sqrt
(
(
(
(
(
(
rp
)
|
[:
(
(
cl_Ball
(
rp
,
rg
)
)
\
{
rl
}
)
,
{
rl
}
:]
)
(#)
(
()
|
[:
(
(
cl_Ball
(
rp
,
rg
)
)
\
{
rl
}
)
,
{
rl
}
:]
)
)
+
(
(
(
rp
)
|
[:
(
(
cl_Ball
(
rp
,
rg
)
)
\
{
rl
}
)
,
{
rl
}
:]
)
(#)
(
()
|
[:
(
(
cl_Ball
(
rp
,
rg
)
)
\
{
rl
}
)
,
{
rl
}
:]
)
)
)
(#)
(
(
(
(
rp
)
|
[:
(
(
cl_Ball
(
rp
,
rg
)
)
\
{
rl
}
)
,
{
rl
}
:]
)
(#)
(
()
|
[:
(
(
cl_Ball
(
rp
,
rg
)
)
\
{
rl
}
)
,
{
rl
}
:]
)
)
+
(
(
(
rp
)
|
[:
(
(
cl_Ball
(
rp
,
rg
)
)
\
{
rl
}
)
,
{
rl
}
:]
)
(#)
(
()
|
[:
(
(
cl_Ball
(
rp
,
rg
)
)
\
{
rl
}
)
,
{
rl
}
:]
)
)
)
)
-
(
AR
(#)
DR
)
)
)
.
[
flk
,
rl
]
is
complex
ext-real
real
set
(
(
(
(
(
(
rp
)
|
[:
(
(
cl_Ball
(
rp
,
rg
)
)
\
{
rl
}
)
,
{
rl
}
:]
)
(#)
(
()
|
[:
(
(
cl_Ball
(
rp
,
rg
)
)
\
{
rl
}
)
,
{
rl
}
:]
)
)
+
(
(
(
rp
)
|
[:
(
(
cl_Ball
(
rp
,
rg
)
)
\
{
rl
}
)
,
{
rl
}
:]
)
(#)
(
()
|
[:
(
(
cl_Ball
(
rp
,
rg
)
)
\
{
rl
}
)
,
{
rl
}
:]
)
)
)
(#)
(
(
(
(
rp
)
|
[:
(
(
cl_Ball
(
rp
,
rg
)
)
\
{
rl
}
)
,
{
rl
}
:]
)
(#)
(
()
|
[:
(
(
cl_Ball
(
rp
,
rg
)
)
\
{
rl
}
)
,
{
rl
}
:]
)
)
+
(
(
(
rp
)
|
[:
(
(
cl_Ball
(
rp
,
rg
)
)
\
{
rl
}
)
,
{
rl
}
:]
)
(#)
(
()
|
[:
(
(
cl_Ball
(
rp
,
rg
)
)
\
{
rl
}
)
,
{
rl
}
:]
)
)
)
)
-
(
AR
(#)
DR
)
)
.
[
flk
,
rl
]
is
complex
ext-real
real
set
sqrt
(
(
(
(
(
(
(
rp
)
|
[:
(
(
cl_Ball
(
rp
,
rg
)
)
\
{
rl
}
)
,
{
rl
}
:]
)
(#)
(
()
|
[:
(
(
cl_Ball
(
rp
,
rg
)
)
\
{
rl
}
)
,
{
rl
}
:]
)
)
+
(
(
(
rp
)
|
[:
(
(
cl_Ball
(
rp
,
rg
)
)
\
{
rl
}
)
,
{
rl
}
:]
)
(#)
(
()
|
[:
(
(
cl_Ball
(
rp
,
rg
)
)
\
{
rl
}
)
,
{
rl
}
:]
)
)
)
(#)
(
(
(
(
rp
)
|
[:
(
(
cl_Ball
(
rp
,
rg
)
)
\
{
rl
}
)
,
{
rl
}
:]
)
(#)
(
()
|
[:
(
(
cl_Ball
(
rp
,
rg
)
)
\
{
rl
}
)
,
{
rl
}
:]
)
)
+
(
(
(
rp
)
|
[:
(
(
cl_Ball
(
rp
,
rg
)
)
\
{
rl
}
)
,
{
rl
}
:]
)
(#)
(
()
|
[:
(
(
cl_Ball
(
rp
,
rg
)
)
\
{
rl
}
)
,
{
rl
}
:]
)
)
)
)
-
(
AR
(#)
DR
)
)
.
[
flk
,
rl
]
)
is
complex
ext-real
real
set
(
AR
(#)
DR
)
.
[
flk
,
rl
]
is
complex
ext-real
real
set
(
(
(
(
(
(
rp
)
|
[:
(
(
cl_Ball
(
rp
,
rg
)
)
\
{
rl
}
)
,
{
rl
}
:]
)
(#)
(
()
|
[:
(
(
cl_Ball
(
rp
,
rg
)
)
\
{
rl
}
)
,
{
rl
}
:]
)
)
+
(
(
(
rp
)
|
[:
(
(
cl_Ball
(
rp
,
rg
)
)
\
{
rl
}
)
,
{
rl
}
:]
)
(#)
(
()
|
[:
(
(
cl_Ball
(
rp
,
rg
)
)
\
{
rl
}
)
,
{
rl
}
:]
)
)
)
(#)
(
(
(
(
rp
)
|
[:
(
(
cl_Ball
(
rp
,
rg
)
)
\
{
rl
}
)
,
{
rl
}
:]
)
(#)
(
()
|
[:
(
(
cl_Ball
(
rp
,
rg
)
)
\
{
rl
}
)
,
{
rl
}
:]
)
)
+
(
(
(
rp
)
|
[:
(
(
cl_Ball
(
rp
,
rg
)
)
\
{
rl
}
)
,
{
rl
}
:]
)
(#)
(
()
|
[:
(
(
cl_Ball
(
rp
,
rg
)
)
\
{
rl
}
)
,
{
rl
}
:]
)
)
)
)
.
[
flk
,
rl
]
)
-
(
(
AR
(#)
DR
)
.
[
flk
,
rl
]
)
is
complex
ext-real
real
set
sqrt
(
(
(
(
(
(
(
rp
)
|
[:
(
(
cl_Ball
(
rp
,
rg
)
)
\
{
rl
}
)
,
{
rl
}
:]
)
(#)
(
()
|
[:
(
(
cl_Ball
(
rp
,
rg
)
)
\
{
rl
}
)
,
{
rl
}
:]
)
)
+
(
(
(
rp
)
|
[:
(
(
cl_Ball
(
rp
,
rg
)
)
\
{
rl
}
)
,
{
rl
}
:]
)
(#)
(
()
|
[:
(
(
cl_Ball
(
rp
,
rg
)
)
\
{
rl
}
)
,
{
rl
}
:]
)
)
)
(#)
(
(
(
(
rp
)
|
[:
(
(
cl_Ball
(
rp
,
rg
)
)
\
{
rl
}
)
,
{
rl
}
:]
)
(#)
(
()
|
[:
(
(
cl_Ball
(
rp
,
rg
)
)
\
{
rl
}
)
,
{
rl
}
:]
)
)
+
(
(
(
rp
)
|
[:
(
(
cl_Ball
(
rp
,
rg
)
)
\
{
rl
}
)
,
{
rl
}
:]
)
(#)
(
()
|
[:
(
(
cl_Ball
(
rp
,
rg
)
)
\
{
rl
}
)
,
{
rl
}
:]
)
)
)
)
.
[
flk
,
rl
]
)
-
(
(
AR
(#)
DR
)
.
[
flk
,
rl
]
)
)
is
complex
ext-real
real
set
dom
(
(
(
-
(
(
(
(
rp
)
|
[:
(
(
cl_Ball
(
rp
,
rg
)
)
\
{
rl
}
)
,
{
rl
}
:]
)
(#)
(
()
|
[:
(
(
cl_Ball
(
rp
,
rg
)
)
\
{
rl
}
)
,
{
rl
}
:]
)
)
+
(
(
(
rp
)
|
[:
(
(
cl_Ball
(
rp
,
rg
)
)
\
{
rl
}
)
,
{
rl
}
:]
)
(#)
(
()
|
[:
(
(
cl_Ball
(
rp
,
rg
)
)
\
{
rl
}
)
,
{
rl
}
:]
)
)
)
)
+
(
sqrt
(
(
(
(
(
(
rp
)
|
[:
(
(
cl_Ball
(
rp
,
rg
)
)
\
{
rl
}
)
,
{
rl
}
:]
)
(#)
(
()
|
[:
(
(
cl_Ball
(
rp
,
rg
)
)
\
{
rl
}
)
,
{
rl
}
:]
)
)
+
(
(
(
rp
)
|
[:
(
(
cl_Ball
(
rp
,
rg
)
)
\
{
rl
}
)
,
{
rl
}
:]
)
(#)
(
()
|
[:
(
(
cl_Ball
(
rp
,
rg
)
)
\
{
rl
}
)
,
{
rl
}
:]
)
)
)
(#)
(
(
(
(
rp
)
|
[:
(
(
cl_Ball
(
rp
,
rg
)
)
\
{
rl
}
)
,
{
rl
}
:]
)
(#)
(
()
|
[:
(
(
cl_Ball
(
rp
,
rg
)
)
\
{
rl
}
)
,
{
rl
}
:]
)
)
+
(
(
(
rp
)
|
[:
(
(
cl_Ball
(
rp
,
rg
)
)
\
{
rl
}
)
,
{
rl
}
:]
)
(#)
(
()
|
[:
(
(
cl_Ball
(
rp
,
rg
)
)
\
{
rl
}
)
,
{
rl
}
:]
)
)
)
)
-
(
AR
(#)
DR
)
)
)
)
/
AR
)
is non
empty
Element
of
bool
the
carrier
of
(
[:
(
TOP-REAL
2
)
,
(
TOP-REAL
2
)
:]
|
[:
(
(
cl_Ball
(
rp
,
rg
)
)
\
{
rl
}
)
,
{
rl
}
:]
)
(
(
(
-
(
(
(
(
rp
)
|
[:
(
(
cl_Ball
(
rp
,
rg
)
)
\
{
rl
}
)
,
{
rl
}
:]
)
(#)
(
()
|
[:
(
(
cl_Ball
(
rp
,
rg
)
)
\
{
rl
}
)
,
{
rl
}
:]
)
)
+
(
(
(
rp
)
|
[:
(
(
cl_Ball
(
rp
,
rg
)
)
\
{
rl
}
)
,
{
rl
}
:]
)
(#)
(
()
|
[:
(
(
cl_Ball
(
rp
,
rg
)
)
\
{
rl
}
)
,
{
rl
}
:]
)
)
)
)
+
(
sqrt
(
(
(
(
(
(
rp
)
|
[:
(
(
cl_Ball
(
rp
,
rg
)
)
\
{
rl
}
)
,
{
rl
}
:]
)
(#)
(
()
|
[:
(
(
cl_Ball
(
rp
,
rg
)
)
\
{
rl
}
)
,
{
rl
}
:]
)
)
+
(
(
(
rp
)
|
[:
(
(
cl_Ball
(
rp
,
rg
)
)
\
{
rl
}
)
,
{
rl
}
:]
)
(#)
(
()
|
[:
(
(
cl_Ball
(
rp
,
rg
)
)
\
{
rl
}
)
,
{
rl
}
:]
)
)
)
(#)
(
(
(
(
rp
)
|
[:
(
(
cl_Ball
(
rp
,
rg
)
)
\
{
rl
}
)
,
{
rl
}
:]
)
(#)
(
()
|
[:
(
(
cl_Ball
(
rp
,
rg
)
)
\
{
rl
}
)
,
{
rl
}
:]
)
)
+
(
(
(
rp
)
|
[:
(
(
cl_Ball
(
rp
,
rg
)
)
\
{
rl
}
)
,
{
rl
}
:]
)
(#)
(
()
|
[:
(
(
cl_Ball
(
rp
,
rg
)
)
\
{
rl
}
)
,
{
rl
}
:]
)
)
)
)
-
(
AR
(#)
DR
)
)
)
)
/
AR
)
.
[
flk
,
rl
]
is
complex
ext-real
real
set
(
(
-
(
(
(
(
rp
)
|
[:
(
(
cl_Ball
(
rp
,
rg
)
)
\
{
rl
}
)
,
{
rl
}
:]
)
(#)
(
()
|
[:
(
(
cl_Ball
(
rp
,
rg
)
)
\
{
rl
}
)
,
{
rl
}
:]
)
)
+
(
(
(
rp
)
|
[:
(
(
cl_Ball
(
rp
,
rg
)
)
\
{
rl
}
)
,
{
rl
}
:]
)
(#)
(
()
|
[:
(
(
cl_Ball
(
rp
,
rg
)
)
\
{
rl
}
)
,
{
rl
}
:]
)
)
)
)
+
(
sqrt
(
(
(
(
(
(
rp
)
|
[:
(
(
cl_Ball
(
rp
,
rg
)
)
\
{
rl
}
)
,
{
rl
}
:]
)
(#)
(
()
|
[:
(
(
cl_Ball
(
rp
,
rg
)
)
\
{
rl
}
)
,
{
rl
}
:]
)
)
+
(
(
(
rp
)
|
[:
(
(
cl_Ball
(
rp
,
rg
)
)
\
{
rl
}
)
,
{
rl
}
:]
)
(#)
(
()
|
[:
(
(
cl_Ball
(
rp
,
rg
)
)
\
{
rl
}
)
,
{
rl
}
:]
)
)
)
(#)
(
(
(
(
rp
)
|
[:
(
(
cl_Ball
(
rp
,
rg
)
)
\
{
rl
}
)
,
{
rl
}
:]
)
(#)
(
()
|
[:
(
(
cl_Ball
(
rp
,
rg
)
)
\
{
rl
}
)
,
{
rl
}
:]
)
)
+
(
(
(
rp
)
|
[:
(
(
cl_Ball
(
rp
,
rg
)
)
\
{
rl
}
)
,
{
rl
}
:]
)
(#)
(
()
|
[:
(
(
cl_Ball
(
rp
,
rg
)
)
\
{
rl
}
)
,
{
rl
}
:]
)
)
)
)
-
(
AR
(#)
DR
)
)
)
)
.
[
flk
,
rl
]
is
complex
ext-real
real
set
(
AR
.
[
flk
,
rl
]
)
"
is
complex
ext-real
real
set
(
(
(
-
(
(
(
(
rp
)
|
[:
(
(
cl_Ball
(
rp
,
rg
)
)
\
{
rl
}
)
,
{
rl
}
:]
)
(#)
(
()
|
[:
(
(
cl_Ball
(
rp
,
rg
)
)
\
{
rl
}
)
,
{
rl
}
:]
)
)
+
(
(
(
rp
)
|
[:
(
(
cl_Ball
(
rp
,
rg
)
)
\
{
rl
}
)
,
{
rl
}
:]
)
(#)
(
()
|
[:
(
(
cl_Ball
(
rp
,
rg
)
)
\
{
rl
}
)
,
{
rl
}
:]
)
)
)
)
+
(
sqrt
(
(
(
(
(
(
rp
)
|
[:
(
(
cl_Ball
(
rp
,
rg
)
)
\
{
rl
}
)
,
{
rl
}
:]
)
(#)
(
()
|
[:
(
(
cl_Ball
(
rp
,
rg
)
)
\
{
rl
}
)
,
{
rl
}
:]
)
)
+
(
(
(
rp
)
|
[:
(
(
cl_Ball
(
rp
,
rg
)
)
\
{
rl
}
)
,
{
rl
}
:]
)
(#)
(
()
|
[:
(
(
cl_Ball
(
rp
,
rg
)
)
\
{
rl
}
)
,
{
rl
}
:]
)
)
)
(#)
(
(
(
(
rp
)
|
[:
(
(
cl_Ball
(
rp
,
rg
)
)
\
{
rl
}
)
,
{
rl
}
:]
)
(#)
(
()
|
[:
(
(
cl_Ball
(
rp
,
rg
)
)
\
{
rl
}
)
,
{
rl
}
:]
)
)
+
(
(
(
rp
)
|
[:
(
(
cl_Ball
(
rp
,
rg
)
)
\
{
rl
}
)
,
{
rl
}
:]
)
(#)
(
()
|
[:
(
(
cl_Ball
(
rp
,
rg
)
)
\
{
rl
}
)
,
{
rl
}
:]
)
)
)
)
-
(
AR
(#)
DR
)
)
)
)
.
[
flk
,
rl
]
)
*
(
(
AR
.
[
flk
,
rl
]
)
"
)
is
complex
ext-real
real
set
(
(
(
-
(
(
(
(
rp
)
|
[:
(
(
cl_Ball
(
rp
,
rg
)
)
\
{
rl
}
)
,
{
rl
}
:]
)
(#)
(
()
|
[:
(
(
cl_Ball
(
rp
,
rg
)
)
\
{
rl
}
)
,
{
rl
}
:]
)
)
+
(
(
(
rp
)
|
[:
(
(
cl_Ball
(
rp
,
rg
)
)
\
{
rl
}
)
,
{
rl
}
:]
)
(#)
(
()
|
[:
(
(
cl_Ball
(
rp
,
rg
)
)
\
{
rl
}
)
,
{
rl
}
:]
)
)
)
)
+
(
sqrt
(
(
(
(
(
(
rp
)
|
[:
(
(
cl_Ball
(
rp
,
rg
)
)
\
{
rl
}
)
,
{
rl
}
:]
)
(#)
(
()
|
[:
(
(
cl_Ball
(
rp
,
rg
)
)
\
{
rl
}
)
,
{
rl
}
:]
)
)
+
(
(
(
rp
)
|
[:
(
(
cl_Ball
(
rp
,
rg
)
)
\
{
rl
}
)
,
{
rl
}
:]
)
(#)
(
()
|
[:
(
(
cl_Ball
(
rp
,
rg
)
)
\
{
rl
}
)
,
{
rl
}
:]
)
)
)
(#)
(
(
(
(
rp
)
|
[:
(
(
cl_Ball
(
rp
,
rg
)
)
\
{
rl
}
)
,
{
rl
}
:]
)
(#)
(
()
|
[:
(
(
cl_Ball
(
rp
,
rg
)
)
\
{
rl
}
)
,
{
rl
}
:]
)
)
+
(
(
(
rp
)
|
[:
(
(
cl_Ball
(
rp
,
rg
)
)
\
{
rl
}
)
,
{
rl
}
:]
)
(#)
(
()
|
[:
(
(
cl_Ball
(
rp
,
rg
)
)
\
{
rl
}
)
,
{
rl
}
:]
)
)
)
)
-
(
AR
(#)
DR
)
)
)
)
.
[
flk
,
rl
]
)
/
(
AR
.
[
flk
,
rl
]
)
is
complex
ext-real
real
Element
of
COMPLEX
(
-
(
(
(
(
rp
)
|
[:
(
(
cl_Ball
(
rp
,
rg
)
)
\
{
rl
}
)
,
{
rl
}
:]
)
(#)
(
()
|
[:
(
(
cl_Ball
(
rp
,
rg
)
)
\
{
rl
}
)
,
{
rl
}
:]
)
)
+
(
(
(
rp
)
|
[:
(
(
cl_Ball
(
rp
,
rg
)
)
\
{
rl
}
)
,
{
rl
}
:]
)
(#)
(
()
|
[:
(
(
cl_Ball
(
rp
,
rg
)
)
\
{
rl
}
)
,
{
rl
}
:]
)
)
)
)
.
[
flk
,
rl
]
is
complex
ext-real
real
set
(
(
-
(
(
(
(
rp
)
|
[:
(
(
cl_Ball
(
rp
,
rg
)
)
\
{
rl
}
)
,
{
rl
}
:]
)
(#)
(
()
|
[:
(
(
cl_Ball
(
rp
,
rg
)
)
\
{
rl
}
)
,
{
rl
}
:]
)
)
+
(
(
(
rp
)
|
[:
(
(
cl_Ball
(
rp
,
rg
)
)
\
{
rl
}
)
,
{
rl
}
:]
)
(#)
(
()
|
[:
(
(
cl_Ball
(
rp
,
rg
)
)
\
{
rl
}
)
,
{
rl
}
:]
)
)
)
)
.
[
flk
,
rl
]
)
+
(
(
sqrt
(
(
(
(
(
(
rp
)
|
[:
(
(
cl_Ball
(
rp
,
rg
)
)
\
{
rl
}
)
,
{
rl
}
:]
)
(#)
(
()
|
[:
(
(
cl_Ball
(
rp
,
rg
)
)
\
{
rl
}
)
,
{
rl
}
:]
)
)
+
(
(
(
rp
)
|
[:
(
(
cl_Ball
(
rp
,
rg
)
)
\
{
rl
}
)
,
{
rl
}
:]
)
(#)
(
()
|
[:
(
(
cl_Ball
(
rp
,
rg
)
)
\
{
rl
}
)
,
{
rl
}
:]
)
)
)
(#)
(
(
(
(
rp
)
|
[:
(
(
cl_Ball
(
rp
,
rg
)
)
\
{
rl
}
)
,
{
rl
}
:]
)
(#)
(
()
|
[:
(
(
cl_Ball
(
rp
,
rg
)
)
\
{
rl
}
)
,
{
rl
}
:]
)
)
+
(
(
(
rp
)
|
[:
(
(
cl_Ball
(
rp
,
rg
)
)
\
{
rl
}
)
,
{
rl
}
:]
)
(#)
(
()
|
[:
(
(
cl_Ball
(
rp
,
rg
)
)
\
{
rl
}
)
,
{
rl
}
:]
)
)
)
)
-
(
AR
(#)
DR
)
)
)
.
[
flk
,
rl
]
)
is
complex
ext-real
real
set
(
(
(
-
(
(
(
(
rp
)
|
[:
(
(
cl_Ball
(
rp
,
rg
)
)
\
{
rl
}
)
,
{
rl
}
:]
)
(#)
(
()
|
[:
(
(
cl_Ball
(
rp
,
rg
)
)
\
{
rl
}
)
,
{
rl
}
:]
)
)
+
(
(
(
rp
)
|
[:
(
(
cl_Ball
(
rp
,
rg
)
)
\
{
rl
}
)
,
{
rl
}
:]
)
(#)
(
()
|
[:
(
(
cl_Ball
(
rp
,
rg
)
)
\
{
rl
}
)
,
{
rl
}
:]
)
)
)
)
.
[
flk
,
rl
]
)
+
(
(
sqrt
(
(
(
(
(
(
rp
)
|
[:
(
(
cl_Ball
(
rp
,
rg
)
)
\
{
rl
}
)
,
{
rl
}
:]
)
(#)
(
()
|
[:
(
(
cl_Ball
(
rp
,
rg
)
)
\
{
rl
}
)
,
{
rl
}
:]
)
)
+
(
(
(
rp
)
|
[:
(
(
cl_Ball
(
rp
,
rg
)
)
\
{
rl
}
)
,
{
rl
}
:]
)
(#)
(
()
|
[:
(
(
cl_Ball
(
rp
,
rg
)
)
\
{
rl
}
)
,
{
rl
}
:]
)
)
)
(#)
(
(
(
(
rp
)
|
[:
(
(
cl_Ball
(
rp
,
rg
)
)
\
{
rl
}
)
,
{
rl
}
:]
)
(#)
(
()
|
[:
(
(
cl_Ball
(
rp
,
rg
)
)
\
{
rl
}
)
,
{
rl
}
:]
)
)
+
(
(
(
rp
)
|
[:
(
(
cl_Ball
(
rp
,
rg
)
)
\
{
rl
}
)
,
{
rl
}
:]
)
(#)
(
()
|
[:
(
(
cl_Ball
(
rp
,
rg
)
)
\
{
rl
}
)
,
{
rl
}
:]
)
)
)
)
-
(
AR
(#)
DR
)
)
)
.
[
flk
,
rl
]
)
)
/
(
(
(
(
flk
`1
)
-
(
rl
`1
)
)
^2
)
+
(
(
(
flk
`2
)
-
(
rl
`2
)
)
^2
)
)
is
complex
ext-real
real
Element
of
REAL
T2C
.
[
flk
,
rl
]
is
complex
ext-real
real
set
(
()
|
[:
(
(
cl_Ball
(
rp
,
rg
)
)
\
{
rl
}
)
,
{
rl
}
:]
)
.
[
flk
,
rl
]
is
complex
ext-real
real
set
(
(
(
(
-
(
(
(
(
rp
)
|
[:
(
(
cl_Ball
(
rp
,
rg
)
)
\
{
rl
}
)
,
{
rl
}
:]
)
(#)
(
()
|
[:
(
(
cl_Ball
(
rp
,
rg
)
)
\
{
rl
}
)
,
{
rl
}
:]
)
)
+
(
(
(
rp
)
|
[:
(
(
cl_Ball
(
rp
,
rg
)
)
\
{
rl
}
)
,
{
rl
}
:]
)
(#)
(
()
|
[:
(
(
cl_Ball
(
rp
,
rg
)
)
\
{
rl
}
)
,
{
rl
}
:]
)
)
)
)
+
(
sqrt
(
(
(
(
(
(
rp
)
|
[:
(
(
cl_Ball
(
rp
,
rg
)
)
\
{
rl
}
)
,
{
rl
}
:]
)
(#)
(
()
|
[:
(
(
cl_Ball
(
rp
,
rg
)
)
\
{
rl
}
)
,
{
rl
}
:]
)
)
+
(
(
(
rp
)
|
[:
(
(
cl_Ball
(
rp
,
rg
)
)
\
{
rl
}
)
,
{
rl
}
:]
)
(#)
(
()
|
[:
(
(
cl_Ball
(
rp
,
rg
)
)
\
{
rl
}
)
,
{
rl
}
:]
)
)
)
(#)
(
(
(
(
rp
)
|
[:
(
(
cl_Ball
(
rp
,
rg
)
)
\
{
rl
}
)
,
{
rl
}
:]
)
(#)
(
()
|
[:
(
(
cl_Ball
(
rp
,
rg
)
)
\
{
rl
}
)
,
{
rl
}
:]
)
)
+
(
(
(
rp
)
|
[:
(
(
cl_Ball
(
rp
,
rg
)
)
\
{
rl
}
)
,
{
rl
}
:]
)
(#)
(
()
|
[:
(
(
cl_Ball
(
rp
,
rg
)
)
\
{
rl
}
)
,
{
rl
}
:]
)
)
)
)
-
(
AR
(#)
DR
)
)
)
)
/
AR
)
(#)
(
()
|
[:
(
(
cl_Ball
(
rp
,
rg
)
)
\
{
rl
}
)
,
{
rl
}
:]
)
)
.
[
flk
,
rl
]
is
complex
ext-real
real
set
(
(
()
|
[:
(
(
cl_Ball
(
rp
,
rg
)
)
\
{
rl
}
)
,
{
rl
}
:]
)
.
[
flk
,
rl
]
)
+
(
(
(
(
(
-
(
(
(
(
rp
)
|
[:
(
(
cl_Ball
(
rp
,
rg
)
)
\
{
rl
}
)
,
{
rl
}
:]
)
(#)
(
()
|
[:
(
(
cl_Ball
(
rp
,
rg
)
)
\
{
rl
}
)
,
{
rl
}
:]
)
)
+
(
(
(
rp
)
|
[:
(
(
cl_Ball
(
rp
,
rg
)
)
\
{
rl
}
)
,
{
rl
}
:]
)
(#)
(
()
|
[:
(
(
cl_Ball
(
rp
,
rg
)
)
\
{
rl
}
)
,
{
rl
}
:]
)
)
)
)
+
(
sqrt
(
(
(
(
(
(
rp
)
|
[:
(
(
cl_Ball
(
rp
,
rg
)
)
\
{
rl
}
)
,
{
rl
}
:]
)
(#)
(
()
|
[:
(
(
cl_Ball
(
rp
,
rg
)
)
\
{
rl
}
)
,
{
rl
}
:]
)
)
+
(
(
(
rp
)
|
[:
(
(
cl_Ball
(
rp
,
rg
)
)
\
{
rl
}
)
,
{
rl
}
:]
)
(#)
(
()
|
[:
(
(
cl_Ball
(
rp
,
rg
)
)
\
{
rl
}
)
,
{
rl
}
:]
)
)
)
(#)
(
(
(
(
rp
)
|
[:
(
(
cl_Ball
(
rp
,
rg
)
)
\
{
rl
}
)
,
{
rl
}
:]
)
(#)
(
()
|
[:
(
(
cl_Ball
(
rp
,
rg
)
)
\
{
rl
}
)
,
{
rl
}
:]
)
)
+
(
(
(
rp
)
|
[:
(
(
cl_Ball
(
rp
,
rg
)
)
\
{
rl
}
)
,
{
rl
}
:]
)
(#)
(
()
|
[:
(
(
cl_Ball
(
rp
,
rg
)
)
\
{
rl
}
)
,
{
rl
}
:]
)
)
)
)
-
(
AR
(#)
DR
)
)
)
)
/
AR
)
(#)
(
()
|
[:
(
(
cl_Ball
(
rp
,
rg
)
)
\
{
rl
}
)
,
{
rl
}
:]
)
)
.
[
flk
,
rl
]
)
is
complex
ext-real
real
set
(
rl
`1
)
+
(
(
(
(
(
-
(
(
(
(
rp
)
|
[:
(
(
cl_Ball
(
rp
,
rg
)
)
\
{
rl
}
)
,
{
rl
}
:]
)
(#)
(
()
|
[:
(
(
cl_Ball
(
rp
,
rg
)
)
\
{
rl
}
)
,
{
rl
}
:]
)
)
+
(
(
(
rp
)
|
[:
(
(
cl_Ball
(
rp
,
rg
)
)
\
{
rl
}
)
,
{
rl
}
:]
)
(#)
(
()
|
[:
(
(
cl_Ball
(
rp
,
rg
)
)
\
{
rl
}
)
,
{
rl
}
:]
)
)
)
)
+
(
sqrt
(
(
(
(
(
(
rp
)
|
[:
(
(
cl_Ball
(
rp
,
rg
)
)
\
{
rl
}
)
,
{
rl
}
:]
)
(#)
(
()
|
[:
(
(
cl_Ball
(
rp
,
rg
)
)
\
{
rl
}
)
,
{
rl
}
:]
)
)
+
(
(
(
rp
)
|
[:
(
(
cl_Ball
(
rp
,
rg
)
)
\
{
rl
}
)
,
{
rl
}
:]
)
(#)
(
()
|
[:
(
(
cl_Ball
(
rp
,
rg
)
)
\
{
rl
}
)
,
{
rl
}
:]
)
)
)
(#)
(
(
(
(
rp
)
|
[:
(
(
cl_Ball
(
rp
,
rg
)
)
\
{
rl
}
)
,
{
rl
}
:]
)
(#)
(
()
|
[:
(
(
cl_Ball
(
rp
,
rg
)
)
\
{
rl
}
)
,
{
rl
}
:]
)
)
+
(
(
(
rp
)
|
[:
(
(
cl_Ball
(
rp
,
rg
)
)
\
{
rl
}
)
,
{
rl
}
:]
)
(#)
(
()
|
[:
(
(
cl_Ball
(
rp
,
rg
)
)
\
{
rl
}
)
,
{
rl
}
:]
)
)
)
)
-
(
AR
(#)
DR
)
)
)
)
/
AR
)
(#)
(
()
|
[:
(
(
cl_Ball
(
rp
,
rg
)
)
\
{
rl
}
)
,
{
rl
}
:]
)
)
.
[
flk
,
rl
]
)
is
complex
ext-real
real
Element
of
REAL
(
(
(
-
(
(
(
(
rl
`1
)
-
(
rp
`1
)
)
*
(
(
flk
`1
)
-
(
rl
`1
)
)
)
+
(
(
(
rl
`2
)
-
(
rp
`2
)
)
*
(
(
flk
`2
)
-
(
rl
`2
)
)
)
)
)
+
(
sqrt
(
(
(
(
(
(
rl
`1
)
-
(
rp
`1
)
)
*
(
(
flk
`1
)
-
(
rl
`1
)
)
)
+
(
(
(
rl
`2
)
-
(
rp
`2
)
)
*
(
(
flk
`2
)
-
(
rl
`2
)
)
)
)
^2
)
-
(
(
(
(
(
flk
`1
)
-
(
rl
`1
)
)
^2
)
+
(
(
(
flk
`2
)
-
(
rl
`2
)
)
^2
)
)
*
(
(
(
(
(
rl
`1
)
-
(
rp
`1
)
)
^2
)
+
(
(
(
rl
`2
)
-
(
rp
`2
)
)
^2
)
)
-
(
rg
^2
)
)
)
)
)
)
/
(
(
(
(
flk
`1
)
-
(
rl
`1
)
)
^2
)
+
(
(
(
flk
`2
)
-
(
rl
`2
)
)
^2
)
)
)
*
(
(
flk
`1
)
-
(
rl
`1
)
)
is
complex
ext-real
real
Element
of
REAL
(
rl
`1
)
+
(
(
(
(
-
(
(
(
(
rl
`1
)
-
(
rp
`1
)
)
*
(
(
flk
`1
)
-
(
rl
`1
)
)
)
+
(
(
(
rl
`2
)
-
(
rp
`2
)
)
*
(
(
flk
`2
)
-
(
rl
`2
)
)
)
)
)
+
(
sqrt
(
(
(
(
(
(
rl
`1
)
-
(
rp
`1
)
)
*
(
(
flk
`1
)
-
(
rl
`1
)
)
)
+
(
(
(
rl
`2
)
-
(
rp
`2
)
)
*
(
(
flk
`2
)
-
(
rl
`2
)
)
)
)
^2
)
-
(
(
(
(
(
flk
`1
)
-
(
rl
`1
)
)
^2
)
+
(
(
(
flk
`2
)
-
(
rl
`2
)
)
^2
)
)
*
(
(
(
(
(
rl
`1
)
-
(
rp
`1
)
)
^2
)
+
(
(
(
rl
`2
)
-
(
rp
`2
)
)
^2
)
)
-
(
rg
^2
)
)
)
)
)
)
/
(
(
(
(
flk
`1
)
-
(
rl
`1
)
)
^2
)
+
(
(
(
flk
`2
)
-
(
rl
`2
)
)
^2
)
)
)
*
(
(
flk
`1
)
-
(
rl
`1
)
)
)
is
complex
ext-real
real
Element
of
REAL
VP
.
[
flk
,
rl
]
is
complex
ext-real
real
set
(
()
|
[:
(
(
cl_Ball
(
rp
,
rg
)
)
\
{
rl
}
)
,
{
rl
}
:]
)
.
[
flk
,
rl
]
is
complex
ext-real
real
set
(
(
(
(
-
(
(
(
(
rp
)
|
[:
(
(
cl_Ball
(
rp
,
rg
)
)
\
{
rl
}
)
,
{
rl
}
:]
)
(#)
(
()
|
[:
(
(
cl_Ball
(
rp
,
rg
)
)
\
{
rl
}
)
,
{
rl
}
:]
)
)
+
(
(
(
rp
)
|
[:
(
(
cl_Ball
(
rp
,
rg
)
)
\
{
rl
}
)
,
{
rl
}
:]
)
(#)
(
()
|
[:
(
(
cl_Ball
(
rp
,
rg
)
)
\
{
rl
}
)
,
{
rl
}
:]
)
)
)
)
+
(
sqrt
(
(
(
(
(
(
rp
)
|
[:
(
(
cl_Ball
(
rp
,
rg
)
)
\
{
rl
}
)
,
{
rl
}
:]
)
(#)
(
()
|
[:
(
(
cl_Ball
(
rp
,
rg
)
)
\
{
rl
}
)
,
{
rl
}
:]
)
)
+
(
(
(
rp
)
|
[:
(
(
cl_Ball
(
rp
,
rg
)
)
\
{
rl
}
)
,
{
rl
}
:]
)
(#)
(
()
|
[:
(
(
cl_Ball
(
rp
,
rg
)
)
\
{
rl
}
)
,
{
rl
}
:]
)
)
)
(#)
(
(
(
(
rp
)
|
[:
(
(
cl_Ball
(
rp
,
rg
)
)
\
{
rl
}
)
,
{
rl
}
:]
)
(#)
(
()
|
[:
(
(
cl_Ball
(
rp
,
rg
)
)
\
{
rl
}
)
,
{
rl
}
:]
)
)
+
(
(
(
rp
)
|
[:
(
(
cl_Ball
(
rp
,
rg
)
)
\
{
rl
}
)
,
{
rl
}
:]
)
(#)
(
()
|
[:
(
(
cl_Ball
(
rp
,
rg
)
)
\
{
rl
}
)
,
{
rl
}
:]
)
)
)
)
-
(
AR
(#)
DR
)
)
)
)
/
AR
)
(#)
(
()
|
[:
(
(
cl_Ball
(
rp
,
rg
)
)
\
{
rl
}
)
,
{
rl
}
:]
)
)
.
[
flk
,
rl
]
is
complex
ext-real
real
set
(
(
()
|
[:
(
(
cl_Ball
(
rp
,
rg
)
)
\
{
rl
}
)
,
{
rl
}
:]
)
.
[
flk
,
rl
]
)
+
(
(
(
(
(
-
(
(
(
(
rp
)
|
[:
(
(
cl_Ball
(
rp
,
rg
)
)
\
{
rl
}
)
,
{
rl
}
:]
)
(#)
(
()
|
[:
(
(
cl_Ball
(
rp
,
rg
)
)
\
{
rl
}
)
,
{
rl
}
:]
)
)
+
(
(
(
rp
)
|
[:
(
(
cl_Ball
(
rp
,
rg
)
)
\
{
rl
}
)
,
{
rl
}
:]
)
(#)
(
()
|
[:
(
(
cl_Ball
(
rp
,
rg
)
)
\
{
rl
}
)
,
{
rl
}
:]
)
)
)
)
+
(
sqrt
(
(
(
(
(
(
rp
)
|
[:
(
(
cl_Ball
(
rp
,
rg
)
)
\
{
rl
}
)
,
{
rl
}
:]
)
(#)
(
()
|
[:
(
(
cl_Ball
(
rp
,
rg
)
)
\
{
rl
}
)
,
{
rl
}
:]
)
)
+
(
(
(
rp
)
|
[:
(
(
cl_Ball
(
rp
,
rg
)
)
\
{
rl
}
)
,
{
rl
}
:]
)
(#)
(
()
|
[:
(
(
cl_Ball
(
rp
,
rg
)
)
\
{
rl
}
)
,
{
rl
}
:]
)
)
)
(#)
(
(
(
(
rp
)
|
[:
(
(
cl_Ball
(
rp
,
rg
)
)
\
{
rl
}
)
,
{
rl
}
:]
)
(#)
(
()
|
[:
(
(
cl_Ball
(
rp
,
rg
)
)
\
{
rl
}
)
,
{
rl
}
:]
)
)
+
(
(
(
rp
)
|
[:
(
(
cl_Ball
(
rp
,
rg
)
)
\
{
rl
}
)
,
{
rl
}
:]
)
(#)
(
()
|
[:
(
(
cl_Ball
(
rp
,
rg
)
)
\
{
rl
}
)
,
{
rl
}
:]
)
)
)
)
-
(
AR
(#)
DR
)
)
)
)
/
AR
)
(#)
(
()
|
[:
(
(
cl_Ball
(
rp
,
rg
)
)
\
{
rl
}
)
,
{
rl
}
:]
)
)
.
[
flk
,
rl
]
)
is
complex
ext-real
real
set
(
rl
`2
)
+
(
(
(
(
(
-
(
(
(
(
rp
)
|
[:
(
(
cl_Ball
(
rp
,
rg
)
)
\
{
rl
}
)
,
{
rl
}
:]
)
(#)
(
()
|
[:
(
(
cl_Ball
(
rp
,
rg
)
)
\
{
rl
}
)
,
{
rl
}
:]
)
)
+
(
(
(
rp
)
|
[:
(
(
cl_Ball
(
rp
,
rg
)
)
\
{
rl
}
)
,
{
rl
}
:]
)
(#)
(
()
|
[:
(
(
cl_Ball
(
rp
,
rg
)
)
\
{
rl
}
)
,
{
rl
}
:]
)
)
)
)
+
(
sqrt
(
(
(
(
(
(
rp
)
|
[:
(
(
cl_Ball
(
rp
,
rg
)
)
\
{
rl
}
)
,
{
rl
}
:]
)
(#)
(
()
|
[:
(
(
cl_Ball
(
rp
,
rg
)
)
\
{
rl
}
)
,
{
rl
}
:]
)
)
+
(
(
(
rp
)
|
[:
(
(
cl_Ball
(
rp
,
rg
)
)
\
{
rl
}
)
,
{
rl
}
:]
)
(#)
(
()
|
[:
(
(
cl_Ball
(
rp
,
rg
)
)
\
{
rl
}
)
,
{
rl
}
:]
)
)
)
(#)
(
(
(
(
rp
)
|
[:
(
(
cl_Ball
(
rp
,
rg
)
)
\
{
rl
}
)
,
{
rl
}
:]
)
(#)
(
()
|
[:
(
(
cl_Ball
(
rp
,
rg
)
)
\
{
rl
}
)
,
{
rl
}
:]
)
)
+
(
(
(
rp
)
|
[:
(
(
cl_Ball
(
rp
,
rg
)
)
\
{
rl
}
)
,
{
rl
}
:]
)
(#)
(
()
|
[:
(
(
cl_Ball
(
rp
,
rg
)
)
\
{
rl
}
)
,
{
rl
}
:]
)
)
)
)
-
(
AR
(#)
DR
)
)
)
)
/
AR
)
(#)
(
()
|
[:
(
(
cl_Ball
(
rp
,
rg
)
)
\
{
rl
}
)
,
{
rl
}
:]
)
)
.
[
flk
,
rl
]
)
is
complex
ext-real
real
Element
of
REAL
(
(
(
-
(
(
(
(
rl
`1
)
-
(
rp
`1
)
)
*
(
(
flk
`1
)
-
(
rl
`1
)
)
)
+
(
(
(
rl
`2
)
-
(
rp
`2
)
)
*
(
(
flk
`2
)
-
(
rl
`2
)
)
)
)
)
+
(
sqrt
(
(
(
(
(
(
rl
`1
)
-
(
rp
`1
)
)
*
(
(
flk
`1
)
-
(
rl
`1
)
)
)
+
(
(
(
rl
`2
)
-
(
rp
`2
)
)
*
(
(
flk
`2
)
-
(
rl
`2
)
)
)
)
^2
)
-
(
(
(
(
(
flk
`1
)
-
(
rl
`1
)
)
^2
)
+
(
(
(
flk
`2
)
-
(
rl
`2
)
)
^2
)
)
*
(
(
(
(
(
rl
`1
)
-
(
rp
`1
)
)
^2
)
+
(
(
(
rl
`2
)
-
(
rp
`2
)
)
^2
)
)
-
(
rg
^2
)
)
)
)
)
)
/
(
(
(
(
flk
`1
)
-
(
rl
`1
)
)
^2
)
+
(
(
(
flk
`2
)
-
(
rl
`2
)
)
^2
)
)
)
*
(
(
flk
`2
)
-
(
rl
`2
)
)
is
complex
ext-real
real
Element
of
REAL
(
rl
`2
)
+
(
(
(
(
-
(
(
(
(
rl
`1
)
-
(
rp
`1
)
)
*
(
(
flk
`1
)
-
(
rl
`1
)
)
)
+
(
(
(
rl
`2
)
-
(
rp
`2
)
)
*
(
(
flk
`2
)
-
(
rl
`2
)
)
)
)
)
+
(
sqrt
(
(
(
(
(
(
rl
`1
)
-
(
rp
`1
)
)
*
(
(
flk
`1
)
-
(
rl
`1
)
)
)
+
(
(
(
rl
`2
)
-
(
rp
`2
)
)
*
(
(
flk
`2
)
-
(
rl
`2
)
)
)
)
^2
)
-
(
(
(
(
(
flk
`1
)
-
(
rl
`1
)
)
^2
)
+
(
(
(
flk
`2
)
-
(
rl
`2
)
)
^2
)
)
*
(
(
(
(
(
rl
`1
)
-
(
rp
`1
)
)
^2
)
+
(
(
(
rl
`2
)
-
(
rp
`2
)
)
^2
)
)
-
(
rg
^2
)
)
)
)
)
)
/
(
(
(
(
flk
`1
)
-
(
rl
`1
)
)
^2
)
+
(
(
(
flk
`2
)
-
(
rl
`2
)
)
^2
)
)
)
*
(
(
flk
`2
)
-
(
rl
`2
)
)
)
is
complex
ext-real
real
Element
of
REAL
|[
(
(
rl
`1
)
+
(
(
(
(
-
(
(
(
(
rl
`1
)
-
(
rp
`1
)
)
*
(
(
flk
`1
)
-
(
rl
`1
)
)
)
+
(
(
(
rl
`2
)
-
(
rp
`2
)
)
*
(
(
flk
`2
)
-
(
rl
`2
)
)
)
)
)
+
(
sqrt
(
(
(
(
(
(
rl
`1
)
-
(
rp
`1
)
)
*
(
(
flk
`1
)
-
(
rl
`1
)
)
)
+
(
(
(
rl
`2
)
-
(
rp
`2
)
)
*
(
(
flk
`2
)
-
(
rl
`2
)
)
)
)
^2
)
-
(
(
(
(
(
flk
`1
)
-
(
rl
`1
)
)
^2
)
+
(
(
(
flk
`2
)
-
(
rl
`2
)
)
^2
)
)
*
(
(
(
(
(
rl
`1
)
-
(
rp
`1
)
)
^2
)
+
(
(
(
rl
`2
)
-
(
rp
`2
)
)
^2
)
)
-
(
rg
^2
)
)
)
)
)
)
/
(
(
(
(
flk
`1
)
-
(
rl
`1
)
)
^2
)
+
(
(
(
flk
`2
)
-
(
rl
`2
)
)
^2
)
)
)
*
(
(
flk
`1
)
-
(
rl
`1
)
)
)
)
,
(
(
rl
`2
)
+
(
(
(
(
-
(
(
(
(
rl
`1
)
-
(
rp
`1
)
)
*
(
(
flk
`1
)
-
(
rl
`1
)
)
)
+
(
(
(
rl
`2
)
-
(
rp
`2
)
)
*
(
(
flk
`2
)
-
(
rl
`2
)
)
)
)
)
+
(
sqrt
(
(
(
(
(
(
rl
`1
)
-
(
rp
`1
)
)
*
(
(
flk
`1
)
-
(
rl
`1
)
)
)
+
(
(
(
rl
`2
)
-
(
rp
`2
)
)
*
(
(
flk
`2
)
-
(
rl
`2
)
)
)
)
^2
)
-
(
(
(
(
(
flk
`1
)
-
(
rl
`1
)
)
^2
)
+
(
(
(
flk
`2
)
-
(
rl
`2
)
)
^2
)
)
*
(
(
(
(
(
rl
`1
)
-
(
rp
`1
)
)
^2
)
+
(
(
(
rl
`2
)
-
(
rp
`2
)
)
^2
)
)
-
(
rg
^2
)
)
)
)
)
)
/
(
(
(
(
flk
`1
)
-
(
rl
`1
)
)
^2
)
+
(
(
(
flk
`2
)
-
(
rl
`2
)
)
^2
)
)
)
*
(
(
flk
`2
)
-
(
rl
`2
)
)
)
)
]|
is
Relation-like
Function-like
V49
(2)
V50
()
V156
()
V157
()
V158
()
Element
of the
carrier
of
(
TOP-REAL
2
)
[
(
T2C
.
[
flk
,
rl
]
)
,
(
VP
.
[
flk
,
rl
]
)
]
is
V15
()
set
{
(
T2C
.
[
flk
,
rl
]
)
,
(
VP
.
[
flk
,
rl
]
)
}
is non
empty
V166
()
V167
()
V168
()
set
{
(
T2C
.
[
flk
,
rl
]
)
}
is non
empty
V166
()
V167
()
V168
()
set
{
{
(
T2C
.
[
flk
,
rl
]
)
,
(
VP
.
[
flk
,
rl
]
)
}
,
{
(
T2C
.
[
flk
,
rl
]
)
}
}
is non
empty
set
R2Homeomorphism
.
[
(
T2C
.
[
flk
,
rl
]
)
,
(
VP
.
[
flk
,
rl
]
)
]
is
Relation-like
Function-like
set
<:
T2C
,
VP
:>
.
[
flk
,
rl
]
is
set
R2Homeomorphism
.
(
<:
T2C
,
VP
:>
.
[
flk
,
rl
]
)
is
Relation-like
Function-like
set
[:
the
carrier
of
(
[:
(
TOP-REAL
2
)
,
(
TOP-REAL
2
)
:]
|
[:
(
(
cl_Ball
(
rp
,
rg
)
)
\
{
rl
}
)
,
{
rl
}
:]
)
, the
carrier
of
[:
R^1
,
R^1
:]
:]
is
Relation-like
non
empty
set
bool
[:
the
carrier
of
(
[:
(
TOP-REAL
2
)
,
(
TOP-REAL
2
)
:]
|
[:
(
(
cl_Ball
(
rp
,
rg
)
)
\
{
rl
}
)
,
{
rl
}
:]
)
, the
carrier
of
[:
R^1
,
R^1
:]
:]
is non
empty
set
bool
the
carrier
of
(
Tcircle
(
rp
,
rg
)
)
is non
empty
set
bool
the
carrier
of
(
(
TOP-REAL
2
)
|
(
(
cl_Ball
(
rp
,
rg
)
)
\
{
rl
}
)
)
is non
empty
set
flk
is
Element
of the
carrier
of
(
(
TOP-REAL
2
)
|
(
(
cl_Ball
(
rp
,
rg
)
)
\
{
rl
}
)
)
(2,
rp
,
rl
,
rg
)
.
flk
is
Element
of the
carrier
of
(
Tcircle
(
rp
,
rg
)
)
beta
is
Element
of
bool
the
carrier
of
(
Tcircle
(
rp
,
rg
)
)
[
flk
,
rl
]
is
V15
()
Element
of the
carrier
of
[:
(
(
TOP-REAL
2
)
|
(
(
cl_Ball
(
rp
,
rg
)
)
\
{
rl
}
)
)
,
(
TOP-REAL
2
)
:]
[:
(
(
TOP-REAL
2
)
|
(
(
cl_Ball
(
rp
,
rg
)
)
\
{
rl
}
)
)
,
(
TOP-REAL
2
)
:]
is non
empty
strict
TopSpace-like
T_0
T_1
T_2
TopStruct
the
carrier
of
[:
(
(
TOP-REAL
2
)
|
(
(
cl_Ball
(
rp
,
rg
)
)
\
{
rl
}
)
)
,
(
TOP-REAL
2
)
:]
is non
empty
set
{
flk
,
rl
}
is non
empty
set
{
flk
}
is non
empty
set
{
{
flk
,
rl
}
,
{
flk
}
}
is non
empty
set
[#]
(
Tcircle
(
rp
,
rg
)
)
is non
empty
non
proper
open
closed
dense
non
boundary
compact
Element
of
bool
the
carrier
of
(
Tcircle
(
rp
,
rg
)
)
A
is
functional
Element
of
bool
the
carrier
of
(
TOP-REAL
2
)
A
/\
(
[#]
(
Tcircle
(
rp
,
rg
)
)
)
is
Element
of
bool
the
carrier
of
(
Tcircle
(
rp
,
rg
)
)
Plk
is
Relation-like
the
carrier
of
(
[:
(
TOP-REAL
2
)
,
(
TOP-REAL
2
)
:]
|
[:
(
(
cl_Ball
(
rp
,
rg
)
)
\
{
rl
}
)
,
{
rl
}
:]
)
-defined
the
carrier
of
[:
R^1
,
R^1
:]
-valued
Function-like
non
empty
total
quasi_total
continuous
Element
of
bool
[:
the
carrier
of
(
[:
(
TOP-REAL
2
)
,
(
TOP-REAL
2
)
:]
|
[:
(
(
cl_Ball
(
rp
,
rg
)
)
\
{
rl
}
)
,
{
rl
}
:]
)
, the
carrier
of
[:
R^1
,
R^1
:]
:]
R2Homeomorphism
*
Plk
is
Relation-like
the
carrier
of
(
[:
(
TOP-REAL
2
)
,
(
TOP-REAL
2
)
:]
|
[:
(
(
cl_Ball
(
rp
,
rg
)
)
\
{
rl
}
)
,
{
rl
}
:]
)
-defined
the
carrier
of
(
TOP-REAL
2
)
-valued
Function-like
non
empty
total
quasi_total
Element
of
bool
[:
the
carrier
of
(
[:
(
TOP-REAL
2
)
,
(
TOP-REAL
2
)
:]
|
[:
(
(
cl_Ball
(
rp
,
rg
)
)
\
{
rl
}
)
,
{
rl
}
:]
)
, the
carrier
of
(
TOP-REAL
2
)
:]
(
R2Homeomorphism
*
Plk
)
.
[
flk
,
rl
]
is
Relation-like
Function-like
set
R2Homeomorphism
/"
is
Relation-like
the
carrier
of
(
TOP-REAL
2
)
-defined
the
carrier
of
[:
R^1
,
R^1
:]
-valued
Function-like
non
empty
total
quasi_total
Element
of
bool
[:
the
carrier
of
(
TOP-REAL
2
)
, the
carrier
of
[:
R^1
,
R^1
:]
:]
[:
the
carrier
of
(
TOP-REAL
2
)
, the
carrier
of
[:
R^1
,
R^1
:]
:]
is
Relation-like
non
empty
set
bool
[:
the
carrier
of
(
TOP-REAL
2
)
, the
carrier
of
[:
R^1
,
R^1
:]
:]
is non
empty
set
(
R2Homeomorphism
/"
)
.:
A
is
Element
of
bool
the
carrier
of
[:
R^1
,
R^1
:]
bool
the
carrier
of
[:
R^1
,
R^1
:]
is non
empty
set
dom
Plk
is non
empty
Element
of
bool
the
carrier
of
(
[:
(
TOP-REAL
2
)
,
(
TOP-REAL
2
)
:]
|
[:
(
(
cl_Ball
(
rp
,
rg
)
)
\
{
rl
}
)
,
{
rl
}
:]
)
bool
the
carrier
of
(
[:
(
TOP-REAL
2
)
,
(
TOP-REAL
2
)
:]
|
[:
(
(
cl_Ball
(
rp
,
rg
)
)
\
{
rl
}
)
,
{
rl
}
:]
)
is non
empty
set
dom
R2Homeomorphism
is non
empty
Element
of
bool
the
carrier
of
[:
R^1
,
R^1
:]
rng
Plk
is non
empty
Element
of
bool
the
carrier
of
[:
R^1
,
R^1
:]
dom
(
R2Homeomorphism
*
Plk
)
is non
empty
Element
of
bool
the
carrier
of
(
[:
(
TOP-REAL
2
)
,
(
TOP-REAL
2
)
:]
|
[:
(
(
cl_Ball
(
rp
,
rg
)
)
\
{
rl
}
)
,
{
rl
}
:]
)
rng
R2Homeomorphism
is
functional
non
empty
Element
of
bool
the
carrier
of
(
TOP-REAL
2
)
[#]
(
TOP-REAL
2
)
is
functional
non
empty
non
proper
non
proper
open
open
closed
closed
dense
dense
non
boundary
non
boundary
connected
a_component
being_Region
convex
Element
of
bool
the
carrier
of
(
TOP-REAL
2
)
(
R2Homeomorphism
/"
)
*
(
R2Homeomorphism
*
Plk
)
is
Relation-like
the
carrier
of
(
[:
(
TOP-REAL
2
)
,
(
TOP-REAL
2
)
:]
|
[:
(
(
cl_Ball
(
rp
,
rg
)
)
\
{
rl
}
)
,
{
rl
}
:]
)
-defined
the
carrier
of
[:
R^1
,
R^1
:]
-valued
Function-like
non
empty
total
quasi_total
Element
of
bool
[:
the
carrier
of
(
[:
(
TOP-REAL
2
)
,
(
TOP-REAL
2
)
:]
|
[:
(
(
cl_Ball
(
rp
,
rg
)
)
\
{
rl
}
)
,
{
rl
}
:]
)
, the
carrier
of
[:
R^1
,
R^1
:]
:]
(
R2Homeomorphism
/"
)
*
R2Homeomorphism
is
Relation-like
the
carrier
of
[:
R^1
,
R^1
:]
-defined
the
carrier
of
[:
R^1
,
R^1
:]
-valued
Function-like
non
empty
total
quasi_total
Element
of
bool
[:
the
carrier
of
[:
R^1
,
R^1
:]
, the
carrier
of
[:
R^1
,
R^1
:]
:]
[:
the
carrier
of
[:
R^1
,
R^1
:]
, the
carrier
of
[:
R^1
,
R^1
:]
:]
is
Relation-like
non
empty
set
bool
[:
the
carrier
of
[:
R^1
,
R^1
:]
, the
carrier
of
[:
R^1
,
R^1
:]
:]
is non
empty
set
(
(
R2Homeomorphism
/"
)
*
R2Homeomorphism
)
*
Plk
is
Relation-like
the
carrier
of
(
[:
(
TOP-REAL
2
)
,
(
TOP-REAL
2
)
:]
|
[:
(
(
cl_Ball
(
rp
,
rg
)
)
\
{
rl
}
)
,
{
rl
}
:]
)
-defined
the
carrier
of
[:
R^1
,
R^1
:]
-valued
Function-like
non
empty
total
quasi_total
Element
of
bool
[:
the
carrier
of
(
[:
(
TOP-REAL
2
)
,
(
TOP-REAL
2
)
:]
|
[:
(
(
cl_Ball
(
rp
,
rg
)
)
\
{
rl
}
)
,
{
rl
}
:]
)
, the
carrier
of
[:
R^1
,
R^1
:]
:]
id
(
dom
R2Homeomorphism
)
is
Relation-like
dom
R2Homeomorphism
-defined
dom
R2Homeomorphism
-valued
Function-like
one-to-one
non
empty
total
quasi_total
Element
of
bool
[:
(
dom
R2Homeomorphism
)
,
(
dom
R2Homeomorphism
)
:]
[:
(
dom
R2Homeomorphism
)
,
(
dom
R2Homeomorphism
)
:]
is
Relation-like
non
empty
set
bool
[:
(
dom
R2Homeomorphism
)
,
(
dom
R2Homeomorphism
)
:]
is non
empty
set
(
id
(
dom
R2Homeomorphism
)
)
*
Plk
is
Relation-like
the
carrier
of
(
[:
(
TOP-REAL
2
)
,
(
TOP-REAL
2
)
:]
|
[:
(
(
cl_Ball
(
rp
,
rg
)
)
\
{
rl
}
)
,
{
rl
}
:]
)
-defined
dom
R2Homeomorphism
-valued
Function-like
Element
of
bool
[:
the
carrier
of
(
[:
(
TOP-REAL
2
)
,
(
TOP-REAL
2
)
:]
|
[:
(
(
cl_Ball
(
rp
,
rg
)
)
\
{
rl
}
)
,
{
rl
}
:]
)
,
(
dom
R2Homeomorphism
)
:]
[:
the
carrier
of
(
[:
(
TOP-REAL
2
)
,
(
TOP-REAL
2
)
:]
|
[:
(
(
cl_Ball
(
rp
,
rg
)
)
\
{
rl
}
)
,
{
rl
}
:]
)
,
(
dom
R2Homeomorphism
)
:]
is
Relation-like
non
empty
set
bool
[:
the
carrier
of
(
[:
(
TOP-REAL
2
)
,
(
TOP-REAL
2
)
:]
|
[:
(
(
cl_Ball
(
rp
,
rg
)
)
\
{
rl
}
)
,
{
rl
}
:]
)
,
(
dom
R2Homeomorphism
)
:]
is non
empty
set
dom
(
id
(
dom
R2Homeomorphism
)
)
is non
empty
Element
of
bool
(
dom
R2Homeomorphism
)
bool
(
dom
R2Homeomorphism
)
is non
empty
set
dom
(
(
id
(
dom
R2Homeomorphism
)
)
*
Plk
)
is
Element
of
bool
the
carrier
of
(
[:
(
TOP-REAL
2
)
,
(
TOP-REAL
2
)
:]
|
[:
(
(
cl_Ball
(
rp
,
rg
)
)
\
{
rl
}
)
,
{
rl
}
:]
)
B
is
set
(
(
id
(
dom
R2Homeomorphism
)
)
*
Plk
)
.
B
is
set
Plk
.
B
is
set
(
id
(
dom
R2Homeomorphism
)
)
.
(
Plk
.
B
)
is
set
ra
is
Relation-like
Function-like
V49
(2)
V50
()
V156
()
V157
()
V158
()
Element
of the
carrier
of
(
TOP-REAL
2
)
rb
is
Relation-like
Function-like
V49
(2)
V50
()
V156
()
V157
()
V158
()
Element
of the
carrier
of
(
TOP-REAL
2
)
[
ra
,
rb
]
is
V15
()
Element
of the
carrier
of
[:
(
TOP-REAL
2
)
,
(
TOP-REAL
2
)
:]
{
ra
,
rb
}
is
functional
non
empty
set
{
ra
}
is
functional
non
empty
set
{
{
ra
,
rb
}
,
{
ra
}
}
is non
empty
set
(
R2Homeomorphism
*
Plk
)
.
[
ra
,
rb
]
is
Relation-like
Function-like
set
(
R2Homeomorphism
/"
)
.
(
(
R2Homeomorphism
*
Plk
)
.
[
ra
,
rb
]
)
is
set
(
(
R2Homeomorphism
/"
)
*
(
R2Homeomorphism
*
Plk
)
)
.
[
ra
,
rb
]
is
set
B
is
Element
of
bool
the
carrier
of
(
[:
(
TOP-REAL
2
)
,
(
TOP-REAL
2
)
:]
|
[:
(
(
cl_Ball
(
rp
,
rg
)
)
\
{
rl
}
)
,
{
rl
}
:]
)
Plk
.:
B
is
Element
of
bool
the
carrier
of
[:
R^1
,
R^1
:]
[#]
(
[:
(
TOP-REAL
2
)
,
(
TOP-REAL
2
)
:]
|
[:
(
(
cl_Ball
(
rp
,
rg
)
)
\
{
rl
}
)
,
{
rl
}
:]
)
is non
empty
non
proper
open
closed
dense
non
boundary
Element
of
bool
the
carrier
of
(
[:
(
TOP-REAL
2
)
,
(
TOP-REAL
2
)
:]
|
[:
(
(
cl_Ball
(
rp
,
rg
)
)
\
{
rl
}
)
,
{
rl
}
:]
)
t
is
Element
of
bool
the
carrier
of
[:
(
TOP-REAL
2
)
,
(
TOP-REAL
2
)
:]
t
/\
(
[#]
(
[:
(
TOP-REAL
2
)
,
(
TOP-REAL
2
)
:]
|
[:
(
(
cl_Ball
(
rp
,
rg
)
)
\
{
rl
}
)
,
{
rl
}
:]
)
)
is
Element
of
bool
the
carrier
of
(
[:
(
TOP-REAL
2
)
,
(
TOP-REAL
2
)
:]
|
[:
(
(
cl_Ball
(
rp
,
rg
)
)
\
{
rl
}
)
,
{
rl
}
:]
)
bool
(
bool
the
carrier
of
[:
(
TOP-REAL
2
)
,
(
TOP-REAL
2
)
:]
)
is non
empty
set
u
is
Element
of
bool
(
bool
the
carrier
of
[:
(
TOP-REAL
2
)
,
(
TOP-REAL
2
)
:]
)
union
u
is
set
v
is
set
u
is
functional
Element
of
bool
the
carrier
of
(
TOP-REAL
2
)
v
is
functional
Element
of
bool
the
carrier
of
(
TOP-REAL
2
)
[:
u
,
v
:]
is
Relation-like
Element
of
bool
the
carrier
of
[:
(
TOP-REAL
2
)
,
(
TOP-REAL
2
)
:]
v
/\
(
[#]
(
[:
(
TOP-REAL
2
)
,
(
TOP-REAL
2
)
:]
|
[:
(
(
cl_Ball
(
rp
,
rg
)
)
\
{
rl
}
)
,
{
rl
}
:]
)
)
is
Element
of
bool
the
carrier
of
(
[:
(
TOP-REAL
2
)
,
(
TOP-REAL
2
)
:]
|
[:
(
(
cl_Ball
(
rp
,
rg
)
)
\
{
rl
}
)
,
{
rl
}
:]
)
[#]
(
(
TOP-REAL
2
)
|
(
(
cl_Ball
(
rp
,
rg
)
)
\
{
rl
}
)
)
is non
empty
non
proper
open
closed
dense
non
boundary
Element
of
bool
the
carrier
of
(
(
TOP-REAL
2
)
|
(
(
cl_Ball
(
rp
,
rg
)
)
\
{
rl
}
)
)
u
/\
(
[#]
(
(
TOP-REAL
2
)
|
(
(
cl_Ball
(
rp
,
rg
)
)
\
{
rl
}
)
)
)
is
Element
of
bool
the
carrier
of
(
(
TOP-REAL
2
)
|
(
(
cl_Ball
(
rp
,
rg
)
)
\
{
rl
}
)
)
v1
is
open
Element
of
bool
the
carrier
of
(
(
TOP-REAL
2
)
|
(
(
cl_Ball
(
rp
,
rg
)
)
\
{
rl
}
)
)
(2,
rp
,
rl
,
rg
)
.:
v1
is
Element
of
bool
the
carrier
of
(
Tcircle
(
rp
,
rg
)
)
fuv
is
set
uv
is
Element
of the
carrier
of
(
(
TOP-REAL
2
)
|
(
(
cl_Ball
(
rp
,
rg
)
)
\
{
rl
}
)
)
(2,
rp
,
rl
,
rg
)
.
uv
is
Element
of the
carrier
of
(
Tcircle
(
rp
,
rg
)
)
[
uv
,
rl
]
is
V15
()
Element
of the
carrier
of
[:
(
(
TOP-REAL
2
)
|
(
(
cl_Ball
(
rp
,
rg
)
)
\
{
rl
}
)
)
,
(
TOP-REAL
2
)
:]
{
uv
,
rl
}
is non
empty
set
{
uv
}
is non
empty
set
{
{
uv
,
rl
}
,
{
uv
}
}
is non
empty
set
fau
is
Relation-like
Function-like
V49
(2)
V50
()
V156
()
V157
()
V158
()
Element
of the
carrier
of
(
TOP-REAL
2
)
[
uv
,
fau
]
is
V15
()
Element
of the
carrier
of
[:
(
(
TOP-REAL
2
)
|
(
(
cl_Ball
(
rp
,
rg
)
)
\
{
rl
}
)
)
,
(
TOP-REAL
2
)
:]
{
uv
,
fau
}
is non
empty
set
{
{
uv
,
fau
}
,
{
uv
}
}
is non
empty
set
au
is
Relation-like
Function-like
V49
(2)
V50
()
V156
()
V157
()
V158
()
Element
of the
carrier
of
(
TOP-REAL
2
)
[
au
,
fau
]
is
V15
()
Element
of the
carrier
of
[:
(
TOP-REAL
2
)
,
(
TOP-REAL
2
)
:]
{
au
,
fau
}
is
functional
non
empty
set
{
au
}
is
functional
non
empty
set
{
{
au
,
fau
}
,
{
au
}
}
is non
empty
set
Plk
.
[
au
,
fau
]
is
set
Plk
.:
(
v
/\
(
[#]
(
[:
(
TOP-REAL
2
)
,
(
TOP-REAL
2
)
:]
|
[:
(
(
cl_Ball
(
rp
,
rg
)
)
\
{
rl
}
)
,
{
rl
}
:]
)
)
)
is
Element
of
bool
the
carrier
of
[:
R^1
,
R^1
:]
R2Homeomorphism
"
is
Relation-like
Function-like
set
dom
(
R2Homeomorphism
/"
)
is
functional
non
empty
Element
of
bool
the
carrier
of
(
TOP-REAL
2
)
R2Homeomorphism
.
(
Plk
.
[
au
,
fau
]
)
is
Relation-like
Function-like
set
R2Homeomorphism
.:
(
(
R2Homeomorphism
/"
)
.:
A
)
is
functional
Element
of
bool
the
carrier
of
(
TOP-REAL
2
)
(
R2Homeomorphism
*
Plk
)
.
[
au
,
fau
]
is
Relation-like
Function-like
set
rp
is non
empty
ordinal
natural
complex
ext-real
positive
non
negative
real
V33
()
V119
()
V166
()
V167
()
V168
()
V169
()
V170
()
V171
()
left_end
bounded_below
Element
of
NAT
TOP-REAL
rp
is non
empty
TopSpace-like
T_0
T_1
T_2
connected
V132
()
V178
()
V179
()
V180
()
V181
()
V182
()
V183
()
V184
()
strict
add-continuous
Mult-continuous
pathwise_connected
RLTopStruct
the
carrier
of
(
TOP-REAL
rp
)
is
functional
non
empty
set
rg
is
Relation-like
Function-like
V49
(
rp
)
V50
()
V156
()
V157
()
V158
()
Element
of the
carrier
of
(
TOP-REAL
rp
)
rl
is
Relation-like
Function-like
V49
(
rp
)
V50
()
V156
()
V157
()
V158
()
Element
of the
carrier
of
(
TOP-REAL
rp
)
{
rg
}
is
functional
non
empty
proper
closed
compact
bounded
Element
of
bool
the
carrier
of
(
TOP-REAL
rp
)
bool
the
carrier
of
(
TOP-REAL
rp
)
is non
empty
set
rd
is non
empty
complex
ext-real
positive
non
negative
real
set
Ball
(
rl
,
rd
) is
functional
non
empty
proper
open
connected
bounded
convex
Element
of
bool
the
carrier
of
(
TOP-REAL
rp
)
cl_Ball
(
rl
,
rd
) is
functional
non
empty
proper
closed
connected
bounded
convex
Element
of
bool
the
carrier
of
(
TOP-REAL
rp
)
(
cl_Ball
(
rl
,
rd
)
)
\
{
rg
}
is
functional
non
empty
Element
of
bool
the
carrier
of
(
TOP-REAL
rp
)
(
TOP-REAL
rp
)
|
(
(
cl_Ball
(
rl
,
rd
)
)
\
{
rg
}
)
is non
empty
strict
TopSpace-like
T_0
T_1
T_2
SubSpace
of
TOP-REAL
rp
the
carrier
of
(
(
TOP-REAL
rp
)
|
(
(
cl_Ball
(
rl
,
rd
)
)
\
{
rg
}
)
)
is non
empty
set
Tcircle
(
rl
,
rd
) is non
empty
strict
TopSpace-like
T_0
T_1
T_2
SubSpace
of
TOP-REAL
rp
the
carrier
of
(
Tcircle
(
rl
,
rd
)
)
is non
empty
set
(
rp
,
rl
,
rg
,
rd
) is
Relation-like
the
carrier
of
(
(
TOP-REAL
rp
)
|
(
(
cl_Ball
(
rl
,
rd
)
)
\
{
rg
}
)
)
-defined
the
carrier
of
(
Tcircle
(
rl
,
rd
)
)
-valued
Function-like
non
empty
total
quasi_total
Element
of
bool
[:
the
carrier
of
(
(
TOP-REAL
rp
)
|
(
(
cl_Ball
(
rl
,
rd
)
)
\
{
rg
}
)
)
, the
carrier
of
(
Tcircle
(
rl
,
rd
)
)
:]
[:
the
carrier
of
(
(
TOP-REAL
rp
)
|
(
(
cl_Ball
(
rl
,
rd
)
)
\
{
rg
}
)
)
, the
carrier
of
(
Tcircle
(
rl
,
rd
)
)
:]
is
Relation-like
non
empty
set
bool
[:
the
carrier
of
(
(
TOP-REAL
rp
)
|
(
(
cl_Ball
(
rl
,
rd
)
)
\
{
rg
}
)
)
, the
carrier
of
(
Tcircle
(
rl
,
rd
)
)
:]
is non
empty
set
Sphere
(
rl
,
rd
) is
functional
non
empty
proper
closed
bounded
Element
of
bool
the
carrier
of
(
TOP-REAL
rp
)
(
rp
,
rl
,
rg
,
rd
)
|
(
Sphere
(
rl
,
rd
)
)
is
Relation-like
the
carrier
of
(
(
TOP-REAL
rp
)
|
(
(
cl_Ball
(
rl
,
rd
)
)
\
{
rg
}
)
)
-defined
Sphere
(
rl
,
rd
)
-defined
the
carrier
of
(
(
TOP-REAL
rp
)
|
(
(
cl_Ball
(
rl
,
rd
)
)
\
{
rg
}
)
)
-defined
the
carrier
of
(
Tcircle
(
rl
,
rd
)
)
-valued
Function-like
Element
of
bool
[:
the
carrier
of
(
(
TOP-REAL
rp
)
|
(
(
cl_Ball
(
rl
,
rd
)
)
\
{
rg
}
)
)
, the
carrier
of
(
Tcircle
(
rl
,
rd
)
)
:]
id
(
Sphere
(
rl
,
rd
)
)
is
Relation-like
Sphere
(
rl
,
rd
)
-defined
Sphere
(
rl
,
rd
)
-valued
Function-like
one-to-one
non
empty
total
quasi_total
Element
of
bool
[:
(
Sphere
(
rl
,
rd
)
)
,
(
Sphere
(
rl
,
rd
)
)
:]
[:
(
Sphere
(
rl
,
rd
)
)
,
(
Sphere
(
rl
,
rd
)
)
:]
is
Relation-like
non
empty
set
bool
[:
(
Sphere
(
rl
,
rd
)
)
,
(
Sphere
(
rl
,
rd
)
)
:]
is non
empty
set
Tdisk
(
rl
,
rd
) is non
empty
TopSpace-like
T_0
T_1
T_2
V270
(
rp
)
SubSpace
of
TOP-REAL
rp
the
carrier
of
(
Tdisk
(
rl
,
rd
)
)
is non
empty
set
dom
(
rp
,
rl
,
rg
,
rd
) is non
empty
Element
of
bool
the
carrier
of
(
(
TOP-REAL
rp
)
|
(
(
cl_Ball
(
rl
,
rd
)
)
\
{
rg
}
)
)
bool
the
carrier
of
(
(
TOP-REAL
rp
)
|
(
(
cl_Ball
(
rl
,
rd
)
)
\
{
rg
}
)
)
is non
empty
set
a
is
set
dom
(
(
rp
,
rl
,
rg
,
rd
)
|
(
Sphere
(
rl
,
rd
)
)
)
is
functional
Element
of
bool
(
Sphere
(
rl
,
rd
)
)
bool
(
Sphere
(
rl
,
rd
)
)
is non
empty
set
dom
(
id
(
Sphere
(
rl
,
rd
)
)
)
is
functional
non
empty
Element
of
bool
(
Sphere
(
rl
,
rd
)
)
a
is
set
(
rp
,
rl
,
rg
,
rd
)
.
a
is
set
b
is
Relation-like
Function-like
V49
(
rp
)
V50
()
V156
()
V157
()
V158
()
Element
of the
carrier
of
(
TOP-REAL
rp
)
HC
(
rg
,
b
,
rl
,
rd
) is
Relation-like
Function-like
V49
(
rp
)
V50
()
V156
()
V157
()
V158
()
Element
of the
carrier
of
(
TOP-REAL
rp
)
halfline
(
rg
,
b
) is
functional
non
empty
connected
convex
Element
of
bool
the
carrier
of
(
TOP-REAL
rp
)
(
halfline
(
rg
,
b
)
)
/\
(
Sphere
(
rl
,
rd
)
)
is
functional
Element
of
bool
the
carrier
of
(
TOP-REAL
rp
)
(
(
rp
,
rl
,
rg
,
rd
)
|
(
Sphere
(
rl
,
rd
)
)
)
.
a
is
set
(
id
(
Sphere
(
rl
,
rd
)
)
)
.
a
is
Relation-like
Function-like
set
rp
is non
empty
ordinal
natural
complex
ext-real
positive
non
negative
real
V33
()
V119
()
V166
()
V167
()
V168
()
V169
()
V170
()
V171
()
left_end
bounded_below
Element
of
NAT
TOP-REAL
rp
is non
empty
TopSpace-like
T_0
T_1
T_2
connected
V132
()
V178
()
V179
()
V180
()
V181
()
V182
()
V183
()
V184
()
strict
add-continuous
Mult-continuous
pathwise_connected
RLTopStruct
the
carrier
of
(
TOP-REAL
rp
)
is
functional
non
empty
set
rg
is
Relation-like
Function-like
V49
(
rp
)
V50
()
V156
()
V157
()
V158
()
Element
of the
carrier
of
(
TOP-REAL
rp
)
rl
is
Relation-like
Function-like
V49
(
rp
)
V50
()
V156
()
V157
()
V158
()
Element
of the
carrier
of
(
TOP-REAL
rp
)
rd
is non
empty
complex
ext-real
positive
non
negative
real
set
Ball
(
rl
,
rd
) is
functional
non
empty
proper
open
connected
bounded
convex
Element
of
bool
the
carrier
of
(
TOP-REAL
rp
)
bool
the
carrier
of
(
TOP-REAL
rp
)
is non
empty
set
Tcircle
(
rl
,
rd
) is non
empty
strict
TopSpace-like
T_0
T_1
T_2
SubSpace
of
TOP-REAL
rp
the
carrier
of
(
Tcircle
(
rl
,
rd
)
)
is non
empty
set
[:
the
carrier
of
(
Tcircle
(
rl
,
rd
)
)
, the
carrier
of
(
Tcircle
(
rl
,
rd
)
)
:]
is
Relation-like
non
empty
set
bool
[:
the
carrier
of
(
Tcircle
(
rl
,
rd
)
)
, the
carrier
of
(
Tcircle
(
rl
,
rd
)
)
:]
is non
empty
set
Sphere
(
rl
,
rd
) is
functional
non
empty
proper
closed
bounded
Element
of
bool
the
carrier
of
(
TOP-REAL
rp
)
b
is
set
cl_Ball
(
rl
,
rd
) is
functional
non
empty
proper
closed
connected
bounded
convex
Element
of
bool
the
carrier
of
(
TOP-REAL
rp
)
c
is
Relation-like
Function-like
V49
(
rp
)
V50
()
V156
()
V157
()
V158
()
Element
of the
carrier
of
(
TOP-REAL
rp
)
Tdisk
(
rl
,
rd
) is non
empty
TopSpace-like
T_0
T_1
T_2
V270
(
rp
)
SubSpace
of
TOP-REAL
rp
the
carrier
of
(
Tdisk
(
rl
,
rd
)
)
is non
empty
set
HC
(
c
,
rg
,
rl
,
rd
) is
Relation-like
Function-like
V49
(
rp
)
V50
()
V156
()
V157
()
V158
()
Element
of the
carrier
of
(
TOP-REAL
rp
)
b
is
Relation-like
the
carrier
of
(
Tcircle
(
rl
,
rd
)
)
-defined
the
carrier
of
(
Tcircle
(
rl
,
rd
)
)
-valued
Function-like
non
empty
total
quasi_total
Element
of
bool
[:
the
carrier
of
(
Tcircle
(
rl
,
rd
)
)
, the
carrier
of
(
Tcircle
(
rl
,
rd
)
)
:]
c
is
Relation-like
the
carrier
of
(
Tcircle
(
rl
,
rd
)
)
-defined
the
carrier
of
(
Tcircle
(
rl
,
rd
)
)
-valued
Function-like
non
empty
total
quasi_total
Element
of
bool
[:
the
carrier
of
(
Tcircle
(
rl
,
rd
)
)
, the
carrier
of
(
Tcircle
(
rl
,
rd
)
)
:]
d
is
Element
of the
carrier
of
(
Tcircle
(
rl
,
rd
)
)
c
.
d
is
Element
of the
carrier
of
(
Tcircle
(
rl
,
rd
)
)
b
is
Relation-like
the
carrier
of
(
Tcircle
(
rl
,
rd
)
)
-defined
the
carrier
of
(
Tcircle
(
rl
,
rd
)
)
-valued
Function-like
non
empty
total
quasi_total
Element
of
bool
[:
the
carrier
of
(
Tcircle
(
rl
,
rd
)
)
, the
carrier
of
(
Tcircle
(
rl
,
rd
)
)
:]
c
is
Relation-like
the
carrier
of
(
Tcircle
(
rl
,
rd
)
)
-defined
the
carrier
of
(
Tcircle
(
rl
,
rd
)
)
-valued
Function-like
non
empty
total
quasi_total
Element
of
bool
[:
the
carrier
of
(
Tcircle
(
rl
,
rd
)
)
, the
carrier
of
(
Tcircle
(
rl
,
rd
)
)
:]
d
is
set
b
.
d
is
set
c
.
d
is
set
lg
is
Relation-like
Function-like
V49
(
rp
)
V50
()
V156
()
V157
()
V158
()
Element
of the
carrier
of
(
TOP-REAL
rp
)
HC
(
lg
,
rg
,
rl
,
rd
) is
Relation-like
Function-like
V49
(
rp
)
V50
()
V156
()
V157
()
V158
()
Element
of the
carrier
of
(
TOP-REAL
rp
)
pg
is
Relation-like
Function-like
V49
(
rp
)
V50
()
V156
()
V157
()
V158
()
Element
of the
carrier
of
(
TOP-REAL
rp
)
HC
(
pg
,
rg
,
rl
,
rd
) is
Relation-like
Function-like
V49
(
rp
)
V50
()
V156
()
V157
()
V158
()
Element
of the
carrier
of
(
TOP-REAL
rp
)
rl
is
Relation-like
Function-like
V49
(2)
V50
()
V156
()
V157
()
V158
()
Element
of the
carrier
of
(
TOP-REAL
2
)
rp
is
Relation-like
Function-like
V49
(2)
V50
()
V156
()
V157
()
V158
()
Element
of the
carrier
of
(
TOP-REAL
2
)
rg
is non
empty
complex
ext-real
positive
non
negative
real
set
Ball
(
rp
,
rg
) is
functional
non
empty
proper
open
connected
bounded
being_Region
convex
Element
of
bool
the
carrier
of
(
TOP-REAL
2
)
Tcircle
(
rp
,
rg
) is non
empty
strict
TopSpace-like
T_0
T_1
T_2
V82
()
normal
T_3
T_4
connected
compact
V246
()
being_simple_closed_curve
pathwise_connected
pseudocompact
SubSpace
of
TOP-REAL
2
(2,
rp
,
rl
,
rg
) is
Relation-like
the
carrier
of
(
Tcircle
(
rp
,
rg
)
)
-defined
the
carrier
of
(
Tcircle
(
rp
,
rg
)
)
-valued
Function-like
non
empty
total
quasi_total
Element
of
bool
[:
the
carrier
of
(
Tcircle
(
rp
,
rg
)
)
, the
carrier
of
(
Tcircle
(
rp
,
rg
)
)
:]
the
carrier
of
(
Tcircle
(
rp
,
rg
)
)
is non
empty
set
[:
the
carrier
of
(
Tcircle
(
rp
,
rg
)
)
, the
carrier
of
(
Tcircle
(
rp
,
rg
)
)
:]
is
Relation-like
non
empty
set
bool
[:
the
carrier
of
(
Tcircle
(
rp
,
rg
)
)
, the
carrier
of
(
Tcircle
(
rp
,
rg
)
)
:]
is non
empty
set
Tdisk
(
rp
,
rg
) is non
empty
TopSpace-like
T_0
T_1
T_2
V82
()
normal
T_3
T_4
compact
closed
V246
()
V270
(2)
pseudocompact
SubSpace
of
TOP-REAL
2
cl_Ball
(
rp
,
rg
) is
functional
non
empty
proper
closed
connected
bounded
convex
Element
of
bool
the
carrier
of
(
TOP-REAL
2
)
Sphere
(
rp
,
rg
) is
functional
non
empty
proper
closed
closed
connected
compact
bounded
bounded
being_simple_closed_curve
with_the_max_arc
Element
of
bool
the
carrier
of
(
TOP-REAL
2
)
{
rl
}
is
functional
non
empty
proper
closed
compact
bounded
Element
of
bool
the
carrier
of
(
TOP-REAL
2
)
[:
{
rl
}
,
(
Sphere
(
rp
,
rg
)
)
:]
is
Relation-like
non
empty
Element
of
bool
the
carrier
of
[:
(
TOP-REAL
2
)
,
(
TOP-REAL
2
)
:]
bool
the
carrier
of
[:
(
TOP-REAL
2
)
,
(
TOP-REAL
2
)
:]
is non
empty
set
(
TOP-REAL
2
)
|
{
rl
}
is non
empty
strict
TopSpace-like
T_0
T_1
T_2
V82
()
normal
T_3
T_4
compact
V246
()
pseudocompact
SubSpace
of
TOP-REAL
2
(
TOP-REAL
2
)
|
(
Sphere
(
rp
,
rg
)
)
is non
empty
strict
TopSpace-like
T_0
T_1
T_2
V82
()
normal
T_3
T_4
compact
V246
()
pseudocompact
SubSpace
of
TOP-REAL
2
the
carrier
of
(
Tdisk
(
rp
,
rg
)
)
is non
empty
set
the
carrier
of
(
(
TOP-REAL
2
)
|
{
rl
}
)
is non
empty
set
the
carrier
of
(
(
TOP-REAL
2
)
|
(
Sphere
(
rp
,
rg
)
)
)
is non
empty
set
[:
(
TOP-REAL
2
)
,
(
TOP-REAL
2
)
:]
|
[:
{
rl
}
,
(
Sphere
(
rp
,
rg
)
)
:]
is non
empty
strict
TopSpace-like
T_0
T_1
T_2
SubSpace
of
[:
(
TOP-REAL
2
)
,
(
TOP-REAL
2
)
:]
(
rp
) is
Relation-like
the
carrier
of
[:
(
TOP-REAL
2
)
,
(
TOP-REAL
2
)
:]
-defined
REAL
-valued
Function-like
non
empty
total
quasi_total
V156
()
V157
()
V158
()
continuous
Element
of
bool
[:
the
carrier
of
[:
(
TOP-REAL
2
)
,
(
TOP-REAL
2
)
:]
,
REAL
:]
(
rp
) is
Relation-like
the
carrier
of
[:
(
TOP-REAL
2
)
,
(
TOP-REAL
2
)
:]
-defined
REAL
-valued
Function-like
non
empty
total
quasi_total
V156
()
V157
()
V158
()
continuous
Element
of
bool
[:
the
carrier
of
[:
(
TOP-REAL
2
)
,
(
TOP-REAL
2
)
:]
,
REAL
:]
rg
^2
is
complex
ext-real
real
set
rg
*
rg
is
complex
ext-real
non
negative
real
set
l
is
complex
ext-real
real
Element
of
REAL
the
carrier
of
[:
(
TOP-REAL
2
)
,
(
TOP-REAL
2
)
:]
-->
l
is
Relation-like
the
carrier
of
[:
(
TOP-REAL
2
)
,
(
TOP-REAL
2
)
:]
-defined
REAL
-valued
Function-like
non
empty
total
quasi_total
V156
()
V157
()
V158
()
Element
of
bool
[:
the
carrier
of
[:
(
TOP-REAL
2
)
,
(
TOP-REAL
2
)
:]
,
REAL
:]
k
is
Relation-like
the
carrier
of
[:
(
TOP-REAL
2
)
,
(
TOP-REAL
2
)
:]
-defined
REAL
-valued
Function-like
non
empty
total
quasi_total
V156
()
V157
()
V158
()
continuous
Element
of
bool
[:
the
carrier
of
[:
(
TOP-REAL
2
)
,
(
TOP-REAL
2
)
:]
,
REAL
:]
k
|
[:
{
rl
}
,
(
Sphere
(
rp
,
rg
)
)
:]
is
Relation-like
[:
{
rl
}
,
(
Sphere
(
rp
,
rg
)
)
:]
-defined
the
carrier
of
[:
(
TOP-REAL
2
)
,
(
TOP-REAL
2
)
:]
-defined
the
carrier
of
(
[:
(
TOP-REAL
2
)
,
(
TOP-REAL
2
)
:]
|
[:
{
rl
}
,
(
Sphere
(
rp
,
rg
)
)
:]
)
-defined
REAL
-valued
Function-like
non
empty
total
quasi_total
V156
()
V157
()
V158
()
continuous
Element
of
bool
[:
the
carrier
of
(
[:
(
TOP-REAL
2
)
,
(
TOP-REAL
2
)
:]
|
[:
{
rl
}
,
(
Sphere
(
rp
,
rg
)
)
:]
)
,
REAL
:]
the
carrier
of
(
[:
(
TOP-REAL
2
)
,
(
TOP-REAL
2
)
:]
|
[:
{
rl
}
,
(
Sphere
(
rp
,
rg
)
)
:]
)
is non
empty
set
[:
the
carrier
of
(
[:
(
TOP-REAL
2
)
,
(
TOP-REAL
2
)
:]
|
[:
{
rl
}
,
(
Sphere
(
rp
,
rg
)
)
:]
)
,
REAL
:]
is
Relation-like
non
empty
V156
()
V157
()
V158
()
set
bool
[:
the
carrier
of
(
[:
(
TOP-REAL
2
)
,
(
TOP-REAL
2
)
:]
|
[:
{
rl
}
,
(
Sphere
(
rp
,
rg
)
)
:]
)
,
REAL
:]
is non
empty
set
()
|
[:
{
rl
}
,
(
Sphere
(
rp
,
rg
)
)
:]
is
Relation-like
[:
{
rl
}
,
(
Sphere
(
rp
,
rg
)
)
:]
-defined
the
carrier
of
[:
(
TOP-REAL
2
)
,
(
TOP-REAL
2
)
:]
-defined
the
carrier
of
(
[:
(
TOP-REAL
2
)
,
(
TOP-REAL
2
)
:]
|
[:
{
rl
}
,
(
Sphere
(
rp
,
rg
)
)
:]
)
-defined
REAL
-valued
Function-like
non
empty
total
quasi_total
V156
()
V157
()
V158
()
continuous
Element
of
bool
[:
the
carrier
of
(
[:
(
TOP-REAL
2
)
,
(
TOP-REAL
2
)
:]
|
[:
{
rl
}
,
(
Sphere
(
rp
,
rg
)
)
:]
)
,
REAL
:]
()
|
[:
{
rl
}
,
(
Sphere
(
rp
,
rg
)
)
:]
is
Relation-like
[:
{
rl
}
,
(
Sphere
(
rp
,
rg
)
)
:]
-defined
the
carrier
of
[:
(
TOP-REAL
2
)
,
(
TOP-REAL
2
)
:]
-defined
the
carrier
of
(
[:
(
TOP-REAL
2
)
,
(
TOP-REAL
2
)
:]
|
[:
{
rl
}
,
(
Sphere
(
rp
,
rg
)
)
:]
)
-defined
REAL
-valued
Function-like
non
empty
total
quasi_total
V156
()
V157
()
V158
()
continuous
Element
of
bool
[:
the
carrier
of
(
[:
(
TOP-REAL
2
)
,
(
TOP-REAL
2
)
:]
|
[:
{
rl
}
,
(
Sphere
(
rp
,
rg
)
)
:]
)
,
REAL
:]
()
|
[:
{
rl
}
,
(
Sphere
(
rp
,
rg
)
)
:]
is
Relation-like
[:
{
rl
}
,
(
Sphere
(
rp
,
rg
)
)
:]
-defined
the
carrier
of
[:
(
TOP-REAL
2
)
,
(
TOP-REAL
2
)
:]
-defined
the
carrier
of
(
[:
(
TOP-REAL
2
)
,
(
TOP-REAL
2
)
:]
|
[:
{
rl
}
,
(
Sphere
(
rp
,
rg
)
)
:]
)
-defined
REAL
-valued
Function-like
non
empty
total
quasi_total
V156
()
V157
()
V158
()
continuous
Element
of
bool
[:
the
carrier
of
(
[:
(
TOP-REAL
2
)
,
(
TOP-REAL
2
)
:]
|
[:
{
rl
}
,
(
Sphere
(
rp
,
rg
)
)
:]
)
,
REAL
:]
()
|
[:
{
rl
}
,
(
Sphere
(
rp
,
rg
)
)
:]
is
Relation-like
[:
{
rl
}
,
(
Sphere
(
rp
,
rg
)
)
:]
-defined
the
carrier
of
[:
(
TOP-REAL
2
)
,
(
TOP-REAL
2
)
:]
-defined
the
carrier
of
(
[:
(
TOP-REAL
2
)
,
(
TOP-REAL
2
)
:]
|
[:
{
rl
}
,
(
Sphere
(
rp
,
rg
)
)
:]
)
-defined
REAL
-valued
Function-like
non
empty
total
quasi_total
V156
()
V157
()
V158
()
continuous
Element
of
bool
[:
the
carrier
of
(
[:
(
TOP-REAL
2
)
,
(
TOP-REAL
2
)
:]
|
[:
{
rl
}
,
(
Sphere
(
rp
,
rg
)
)
:]
)
,
REAL
:]
(
rp
)
|
[:
{
rl
}
,
(
Sphere
(
rp
,
rg
)
)
:]
is
Relation-like
[:
{
rl
}
,
(
Sphere
(
rp
,
rg
)
)
:]
-defined
the
carrier
of
[:
(
TOP-REAL
2
)
,
(
TOP-REAL
2
)
:]
-defined
the
carrier
of
(
[:
(
TOP-REAL
2
)
,
(
TOP-REAL
2
)
:]
|
[:
{
rl
}
,
(
Sphere
(
rp
,
rg
)
)
:]
)
-defined
REAL
-valued
Function-like
non
empty
total
quasi_total
V156
()
V157
()
V158
()
continuous
Element
of
bool
[:
the
carrier
of
(
[:
(
TOP-REAL
2
)
,
(
TOP-REAL
2
)
:]
|
[:
{
rl
}
,
(
Sphere
(
rp
,
rg
)
)
:]
)
,
REAL
:]
(
rp
)
|
[:
{
rl
}
,
(
Sphere
(
rp
,
rg
)
)
:]
is
Relation-like
[:
{
rl
}
,
(
Sphere
(
rp
,
rg
)
)
:]
-defined
the
carrier
of
[:
(
TOP-REAL
2
)
,
(
TOP-REAL
2
)
:]
-defined
the
carrier
of
(
[:
(
TOP-REAL
2
)
,
(
TOP-REAL
2
)
:]
|
[:
{
rl
}
,
(
Sphere
(
rp
,
rg
)
)
:]
)
-defined
REAL
-valued
Function-like
non
empty
total
quasi_total
V156
()
V157
()
V158
()
continuous
Element
of
bool
[:
the
carrier
of
(
[:
(
TOP-REAL
2
)
,
(
TOP-REAL
2
)
:]
|
[:
{
rl
}
,
(
Sphere
(
rp
,
rg
)
)
:]
)
,
REAL
:]
(
(
rp
)
|
[:
{
rl
}
,
(
Sphere
(
rp
,
rg
)
)
:]
)
(#)
(
()
|
[:
{
rl
}
,
(
Sphere
(
rp
,
rg
)
)
:]
)
is
Relation-like
the
carrier
of
[:
(
TOP-REAL
2
)
,
(
TOP-REAL
2
)
:]
-defined
the
carrier
of
(
[:
(
TOP-REAL
2
)
,
(
TOP-REAL
2
)
:]
|
[:
{
rl
}
,
(
Sphere
(
rp
,
rg
)
)
:]
)
-defined
the
carrier
of
(
[:
(
TOP-REAL
2
)
,
(
TOP-REAL
2
)
:]
|
[:
{
rl
}
,
(
Sphere
(
rp
,
rg
)
)
:]
)
-defined
REAL
-valued
Function-like
non
empty
total
total
quasi_total
quasi_total
V156
()
V157
()
V158
()
continuous
Element
of
bool
[:
the
carrier
of
(
[:
(
TOP-REAL
2
)
,
(
TOP-REAL
2
)
:]
|
[:
{
rl
}
,
(
Sphere
(
rp
,
rg
)
)
:]
)
,
REAL
:]
(
(
rp
)
|
[:
{
rl
}
,
(
Sphere
(
rp
,
rg
)
)
:]
)
(#)
(
()
|
[:
{
rl
}
,
(
Sphere
(
rp
,
rg
)
)
:]
)
is
Relation-like
the
carrier
of
[:
(
TOP-REAL
2
)
,
(
TOP-REAL
2
)
:]
-defined
the
carrier
of
(
[:
(
TOP-REAL
2
)
,
(
TOP-REAL
2
)
:]
|
[:
{
rl
}
,
(
Sphere
(
rp
,
rg
)
)
:]
)
-defined
the
carrier
of
(
[:
(
TOP-REAL
2
)
,
(
TOP-REAL
2
)
:]
|
[:
{
rl
}
,
(
Sphere
(
rp
,
rg
)
)
:]
)
-defined
REAL
-valued
Function-like
non
empty
total
total
quasi_total
quasi_total
V156
()
V157
()
V158
()
continuous
Element
of
bool
[:
the
carrier
of
(
[:
(
TOP-REAL
2
)
,
(
TOP-REAL
2
)
:]
|
[:
{
rl
}
,
(
Sphere
(
rp
,
rg
)
)
:]
)
,
REAL
:]
(
()
|
[:
{
rl
}
,
(
Sphere
(
rp
,
rg
)
)
:]
)
(#)
(
()
|
[:
{
rl
}
,
(
Sphere
(
rp
,
rg
)
)
:]
)
is
Relation-like
the
carrier
of
[:
(
TOP-REAL
2
)
,
(
TOP-REAL
2
)
:]
-defined
the
carrier
of
(
[:
(
TOP-REAL
2
)
,
(
TOP-REAL
2
)
:]
|
[:
{
rl
}
,
(
Sphere
(
rp
,
rg
)
)
:]
)
-defined
the
carrier
of
(
[:
(
TOP-REAL
2
)
,
(
TOP-REAL
2
)
:]
|
[:
{
rl
}
,
(
Sphere
(
rp
,
rg
)
)
:]
)
-defined
REAL
-valued
Function-like
non
empty
total
total
quasi_total
quasi_total
V156
()
V157
()
V158
()
nonnegative-yielding
continuous
Element
of
bool
[:
the
carrier
of
(
[:
(
TOP-REAL
2
)
,
(
TOP-REAL
2
)
:]
|
[:
{
rl
}
,
(
Sphere
(
rp
,
rg
)
)
:]
)
,
REAL
:]
(
()
|
[:
{
rl
}
,
(
Sphere
(
rp
,
rg
)
)
:]
)
(#)
(
()
|
[:
{
rl
}
,
(
Sphere
(
rp
,
rg
)
)
:]
)
is
Relation-like
the
carrier
of
[:
(
TOP-REAL
2
)
,
(
TOP-REAL
2
)
:]
-defined
the
carrier
of
(
[:
(
TOP-REAL
2
)
,
(
TOP-REAL
2
)
:]
|
[:
{
rl
}
,
(
Sphere
(
rp
,
rg
)
)
:]
)
-defined
the
carrier
of
(
[:
(
TOP-REAL
2
)
,
(
TOP-REAL
2
)
:]
|
[:
{
rl
}
,
(
Sphere
(
rp
,
rg
)
)
:]
)
-defined
REAL
-valued
Function-like
non
empty
total
total
quasi_total
quasi_total
V156
()
V157
()
V158
()
nonnegative-yielding
continuous
Element
of
bool
[:
the
carrier
of
(
[:
(
TOP-REAL
2
)
,
(
TOP-REAL
2
)
:]
|
[:
{
rl
}
,
(
Sphere
(
rp
,
rg
)
)
:]
)
,
REAL
:]
(
(
()
|
[:
{
rl
}
,
(
Sphere
(
rp
,
rg
)
)
:]
)
(#)
(
()
|
[:
{
rl
}
,
(
Sphere
(
rp
,
rg
)
)
:]
)
)
+
(
(
()
|
[:
{
rl
}
,
(
Sphere
(
rp
,
rg
)
)
:]
)
(#)
(
()
|
[:
{
rl
}
,
(
Sphere
(
rp
,
rg
)
)
:]
)
)
is
Relation-like
the
carrier
of
[:
(
TOP-REAL
2
)
,
(
TOP-REAL
2
)
:]
-defined
the
carrier
of
(
[:
(
TOP-REAL
2
)
,
(
TOP-REAL
2
)
:]
|
[:
{
rl
}
,
(
Sphere
(
rp
,
rg
)
)
:]
)
-defined
the
carrier
of
(
[:
(
TOP-REAL
2
)
,
(
TOP-REAL
2
)
:]
|
[:
{
rl
}
,
(
Sphere
(
rp
,
rg
)
)
:]
)
-defined
REAL
-valued
Function-like
non
empty
total
total
quasi_total
quasi_total
V156
()
V157
()
V158
()
nonnegative-yielding
continuous
Element
of
bool
[:
the
carrier
of
(
[:
(
TOP-REAL
2
)
,
(
TOP-REAL
2
)
:]
|
[:
{
rl
}
,
(
Sphere
(
rp
,
rg
)
)
:]
)
,
REAL
:]
AR
is
Element
of the
carrier
of
(
(
TOP-REAL
2
)
|
{
rl
}
)
BR
is
Element
of the
carrier
of
(
(
TOP-REAL
2
)
|
(
Sphere
(
rp
,
rg
)
)
)
[
AR
,
BR
]
is
V15
()
Element
of the
carrier
of
[:
(
(
TOP-REAL
2
)
|
{
rl
}
)
,
(
(
TOP-REAL
2
)
|
(
Sphere
(
rp
,
rg
)
)
)
:]
[:
(
(
TOP-REAL
2
)
|
{
rl
}
)
,
(
(
TOP-REAL
2
)
|
(
Sphere
(
rp
,
rg
)
)
)
:]
is non
empty
strict
TopSpace-like
T_0
T_1
T_2
TopStruct
the
carrier
of
[:
(
(
TOP-REAL
2
)
|
{
rl
}
)
,
(
(
TOP-REAL
2
)
|
(
Sphere
(
rp
,
rg
)
)
)
:]
is non
empty
set
{
AR
,
BR
}
is non
empty
set
{
AR
}
is non
empty
set
{
{
AR
,
BR
}
,
{
AR
}
}
is non
empty
set
(
()
|
[:
{
rl
}
,
(
Sphere
(
rp
,
rg
)
)
:]
)
.
[
AR
,
BR
]
is
complex
ext-real
real
set
()
.
[
AR
,
BR
]
is
complex
ext-real
real
set
AR
is
Element
of the
carrier
of
(
(
TOP-REAL
2
)
|
{
rl
}
)
BR
is
Element
of the
carrier
of
(
(
TOP-REAL
2
)
|
(
Sphere
(
rp
,
rg
)
)
)
[
AR
,
BR
]
is
V15
()
Element
of the
carrier
of
[:
(
(
TOP-REAL
2
)
|
{
rl
}
)
,
(
(
TOP-REAL
2
)
|
(
Sphere
(
rp
,
rg
)
)
)
:]
[:
(
(
TOP-REAL
2
)
|
{
rl
}
)
,
(
(
TOP-REAL
2
)
|
(
Sphere
(
rp
,
rg
)
)
)
:]
is non
empty
strict
TopSpace-like
T_0
T_1
T_2
TopStruct
the
carrier
of
[:
(
(
TOP-REAL
2
)
|
{
rl
}
)
,
(
(
TOP-REAL
2
)
|
(
Sphere
(
rp
,
rg
)
)
)
:]
is non
empty
set
{
AR
,
BR
}
is non
empty
set
{
AR
}
is non
empty
set
{
{
AR
,
BR
}
,
{
AR
}
}
is non
empty
set
(
()
|
[:
{
rl
}
,
(
Sphere
(
rp
,
rg
)
)
:]
)
.
[
AR
,
BR
]
is
complex
ext-real
real
set
()
.
[
AR
,
BR
]
is
complex
ext-real
real
set
AR
is
Element
of the
carrier
of
(
(
TOP-REAL
2
)
|
{
rl
}
)
BR
is
Element
of the
carrier
of
(
(
TOP-REAL
2
)
|
(
Sphere
(
rp
,
rg
)
)
)
[
AR
,
BR
]
is
V15
()
Element
of the
carrier
of
[:
(
(
TOP-REAL
2
)
|
{
rl
}
)
,
(
(
TOP-REAL
2
)
|
(
Sphere
(
rp
,
rg
)
)
)
:]
[:
(
(
TOP-REAL
2
)
|
{
rl
}
)
,
(
(
TOP-REAL
2
)
|
(
Sphere
(
rp
,
rg
)
)
)
:]
is non
empty
strict
TopSpace-like
T_0
T_1
T_2
TopStruct
the
carrier
of
[:
(
(
TOP-REAL
2
)
|
{
rl
}
)
,
(
(
TOP-REAL
2
)
|
(
Sphere
(
rp
,
rg
)
)
)
:]
is non
empty
set
{
AR
,
BR
}
is non
empty
set
{
AR
}
is non
empty
set
{
{
AR
,
BR
}
,
{
AR
}
}
is non
empty
set
(
()
|
[:
{
rl
}
,
(
Sphere
(
rp
,
rg
)
)
:]
)
.
[
AR
,
BR
]
is
complex
ext-real
real
set
()
.
[
AR
,
BR
]
is
complex
ext-real
real
set
AR
is
Element
of the
carrier
of
(
(
TOP-REAL
2
)
|
{
rl
}
)
BR
is
Element
of the
carrier
of
(
(
TOP-REAL
2
)
|
(
Sphere
(
rp
,
rg
)
)
)
[
AR
,
BR
]
is
V15
()
Element
of the
carrier
of
[:
(
(
TOP-REAL
2
)
|
{
rl
}
)
,
(
(
TOP-REAL
2
)
|
(
Sphere
(
rp
,
rg
)
)
)
:]
[:
(
(
TOP-REAL
2
)
|
{
rl
}
)
,
(
(
TOP-REAL
2
)
|
(
Sphere
(
rp
,
rg
)
)
)
:]
is non
empty
strict
TopSpace-like
T_0
T_1
T_2
TopStruct
the
carrier
of
[:
(
(
TOP-REAL
2
)
|
{
rl
}
)
,
(
(
TOP-REAL
2
)
|
(
Sphere
(
rp
,
rg
)
)
)
:]
is non
empty
set
{
AR
,
BR
}
is non
empty
set
{
AR
}
is non
empty
set
{
{
AR
,
BR
}
,
{
AR
}
}
is non
empty
set
(
()
|
[:
{
rl
}
,
(
Sphere
(
rp
,
rg
)
)
:]
)
.
[
AR
,
BR
]
is
complex
ext-real
real
set
()
.
[
AR
,
BR
]
is
complex
ext-real
real
set
AR
is
Element
of the
carrier
of
(
(
TOP-REAL
2
)
|
{
rl
}
)
BR
is
Element
of the
carrier
of
(
(
TOP-REAL
2
)
|
(
Sphere
(
rp
,
rg
)
)
)
[
AR
,
BR
]
is
V15
()
Element
of the
carrier
of
[:
(
(
TOP-REAL
2
)
|
{
rl
}
)
,
(
(
TOP-REAL
2
)
|
(
Sphere
(
rp
,
rg
)
)
)
:]
[:
(
(
TOP-REAL
2
)
|
{
rl
}
)
,
(
(
TOP-REAL
2
)
|
(
Sphere
(
rp
,
rg
)
)
)
:]
is non
empty
strict
TopSpace-like
T_0
T_1
T_2
TopStruct
the
carrier
of
[:
(
(
TOP-REAL
2
)
|
{
rl
}
)
,
(
(
TOP-REAL
2
)
|
(
Sphere
(
rp
,
rg
)
)
)
:]
is non
empty
set
{
AR
,
BR
}
is non
empty
set
{
AR
}
is non
empty
set
{
{
AR
,
BR
}
,
{
AR
}
}
is non
empty
set
(
k
|
[:
{
rl
}
,
(
Sphere
(
rp
,
rg
)
)
:]
)
.
[
AR
,
BR
]
is
complex
ext-real
real
set
k
.
[
AR
,
BR
]
is
complex
ext-real
real
set
AR
is
Element
of the
carrier
of
(
(
TOP-REAL
2
)
|
{
rl
}
)
BR
is
Element
of the
carrier
of
(
(
TOP-REAL
2
)
|
(
Sphere
(
rp
,
rg
)
)
)
[
AR
,
BR
]
is
V15
()
Element
of the
carrier
of
[:
(
(
TOP-REAL
2
)
|
{
rl
}
)
,
(
(
TOP-REAL
2
)
|
(
Sphere
(
rp
,
rg
)
)
)
:]
[:
(
(
TOP-REAL
2
)
|
{
rl
}
)
,
(
(
TOP-REAL
2
)
|
(
Sphere
(
rp
,
rg
)
)
)
:]
is non
empty
strict
TopSpace-like
T_0
T_1
T_2
TopStruct
the
carrier
of
[:
(
(
TOP-REAL
2
)
|
{
rl
}
)
,
(
(
TOP-REAL
2
)
|
(
Sphere
(
rp
,
rg
)
)
)
:]
is non
empty
set
{
AR
,
BR
}
is non
empty
set
{
AR
}
is non
empty
set
{
{
AR
,
BR
}
,
{
AR
}
}
is non
empty
set
(
(
rp
)
|
[:
{
rl
}
,
(
Sphere
(
rp
,
rg
)
)
:]
)
.
[
AR
,
BR
]
is
complex
ext-real
real
set
(
rp
)
.
[
AR
,
BR
]
is
complex
ext-real
real
set
AR
is
Element
of the
carrier
of
(
(
TOP-REAL
2
)
|
{
rl
}
)
BR
is
Element
of the
carrier
of
(
(
TOP-REAL
2
)
|
(
Sphere
(
rp
,
rg
)
)
)
[
AR
,
BR
]
is
V15
()
Element
of the
carrier
of
[:
(
(
TOP-REAL
2
)
|
{
rl
}
)
,
(
(
TOP-REAL
2
)
|
(
Sphere
(
rp
,
rg
)
)
)
:]
[:
(
(
TOP-REAL
2
)
|
{
rl
}
)
,
(
(
TOP-REAL
2
)
|
(
Sphere
(
rp
,
rg
)
)
)
:]
is non
empty
strict
TopSpace-like
T_0
T_1
T_2
TopStruct
the
carrier
of
[:
(
(
TOP-REAL
2
)
|
{
rl
}
)
,
(
(
TOP-REAL
2
)
|
(
Sphere
(
rp
,
rg
)
)
)
:]
is non
empty
set
{
AR
,
BR
}
is non
empty
set
{
AR
}
is non
empty
set
{
{
AR
,
BR
}
,
{
AR
}
}
is non
empty
set
(
(
rp
)
|
[:
{
rl
}
,
(
Sphere
(
rp
,
rg
)
)
:]
)
.
[
AR
,
BR
]
is
complex
ext-real
real
set
(
rp
)
.
[
AR
,
BR
]
is
complex
ext-real
real
set
AR
is
complex
ext-real
real
set
rng
(
(
(
()
|
[:
{
rl
}
,
(
Sphere
(
rp
,
rg
)
)
:]
)
(#)
(
()
|
[:
{
rl
}
,
(
Sphere
(
rp
,
rg
)
)
:]
)
)
+
(
(
()
|
[:
{
rl
}
,
(
Sphere
(
rp
,
rg
)
)
:]
)
(#)
(
()
|
[:
{
rl
}
,
(
Sphere
(
rp
,
rg
)
)
:]
)
)
)
is non
empty
V166
()
V167
()
V168
()
Element
of
bool
REAL
dom
(
(
(
()
|
[:
{
rl
}
,
(
Sphere
(
rp
,
rg
)
)
:]
)
(#)
(
()
|
[:
{
rl
}
,
(
Sphere
(
rp
,
rg
)
)
:]
)
)
+
(
(
()
|
[:
{
rl
}
,
(
Sphere
(
rp
,
rg
)
)
:]
)
(#)
(
()
|
[:
{
rl
}
,
(
Sphere
(
rp
,
rg
)
)
:]
)
)
)
is
Relation-like
{
rl
}
-defined
Sphere
(
rp
,
rg
)
-valued
non
empty
Element
of
bool
[:
{
rl
}
,
(
Sphere
(
rp
,
rg
)
)
:]
bool
[:
{
rl
}
,
(
Sphere
(
rp
,
rg
)
)
:]
is non
empty
set
BR
is
set
(
(
(
()
|
[:
{
rl
}
,
(
Sphere
(
rp
,
rg
)
)
:]
)
(#)
(
()
|
[:
{
rl
}
,
(
Sphere
(
rp
,
rg
)
)
:]
)
)
+
(
(
()
|
[:
{
rl
}
,
(
Sphere
(
rp
,
rg
)
)
:]
)
(#)
(
()
|
[:
{
rl
}
,
(
Sphere
(
rp
,
rg
)
)
:]
)
)
)
.
BR
is
complex
ext-real
real
set
CR
is
set
DR
is
set
[
CR
,
DR
]
is
V15
()
set
{
CR
,
DR
}
is non
empty
set
{
CR
}
is non
empty
set
{
{
CR
,
DR
}
,
{
CR
}
}
is non
empty
set
Pcm
is
Relation-like
Function-like
V49
(2)
V50
()
V156
()
V157
()
V158
()
Element
of the
carrier
of
(
TOP-REAL
2
)
fcm
is
Relation-like
Function-like
V49
(2)
V50
()
V156
()
V157
()
V158
()
Element
of the
carrier
of
(
TOP-REAL
2
)
[
Pcm
,
fcm
]
is
V15
()
Element
of the
carrier
of
[:
(
TOP-REAL
2
)
,
(
TOP-REAL
2
)
:]
{
Pcm
,
fcm
}
is
functional
non
empty
set
{
Pcm
}
is
functional
non
empty
set
{
{
Pcm
,
fcm
}
,
{
Pcm
}
}
is non
empty
set
()
.
[
Pcm
,
fcm
]
is
complex
ext-real
real
Element
of
REAL
(
(
TOP-REAL
2
)
,
(
TOP-REAL
2
)
,
[
Pcm
,
fcm
]
) is
Relation-like
Function-like
V49
(2)
V50
()
V156
()
V157
()
V158
()
Element
of the
carrier
of
(
TOP-REAL
2
)
(
(
TOP-REAL
2
)
,
(
TOP-REAL
2
)
,
[
Pcm
,
fcm
]
)
`1
is
complex
ext-real
real
Element
of
REAL
(
(
TOP-REAL
2
)
,
(
TOP-REAL
2
)
,
[
Pcm
,
fcm
]
) is
Relation-like
Function-like
V49
(2)
V50
()
V156
()
V157
()
V158
()
Element
of the
carrier
of
(
TOP-REAL
2
)
(
(
TOP-REAL
2
)
,
(
TOP-REAL
2
)
,
[
Pcm
,
fcm
]
)
`1
is
complex
ext-real
real
Element
of
REAL
(
(
(
TOP-REAL
2
)
,
(
TOP-REAL
2
)
,
[
Pcm
,
fcm
]
)
`1
)
-
(
(
(
TOP-REAL
2
)
,
(
TOP-REAL
2
)
,
[
Pcm
,
fcm
]
)
`1
)
is
complex
ext-real
real
Element
of
REAL
()
.
[
Pcm
,
fcm
]
is
complex
ext-real
real
Element
of
REAL
(
(
TOP-REAL
2
)
,
(
TOP-REAL
2
)
,
[
Pcm
,
fcm
]
)
`2
is
complex
ext-real
real
Element
of
REAL
(
(
TOP-REAL
2
)
,
(
TOP-REAL
2
)
,
[
Pcm
,
fcm
]
)
`2
is
complex
ext-real
real
Element
of
REAL
(
(
(
TOP-REAL
2
)
,
(
TOP-REAL
2
)
,
[
Pcm
,
fcm
]
)
`2
)
-
(
(
(
TOP-REAL
2
)
,
(
TOP-REAL
2
)
,
[
Pcm
,
fcm
]
)
`2
)
is
complex
ext-real
real
Element
of
REAL
Pcm
`1
is
complex
ext-real
real
Element
of
REAL
fcm
`1
is
complex
ext-real
real
Element
of
REAL
(
Pcm
`1
)
-
(
fcm
`1
)
is
complex
ext-real
real
Element
of
REAL
Pcm
`2
is
complex
ext-real
real
Element
of
REAL
fcm
`2
is
complex
ext-real
real
Element
of
REAL
(
Pcm
`2
)
-
(
fcm
`2
)
is
complex
ext-real
real
Element
of
REAL
(
()
|
[:
{
rl
}
,
(
Sphere
(
rp
,
rg
)
)
:]
)
.
[
Pcm
,
fcm
]
is
complex
ext-real
real
set
(
()
|
[:
{
rl
}
,
(
Sphere
(
rp
,
rg
)
)
:]
)
.
[
Pcm
,
fcm
]
is
complex
ext-real
real
set
(
(
(
()
|
[:
{
rl
}
,
(
Sphere
(
rp
,
rg
)
)
:]
)
(#)
(
()
|
[:
{
rl
}
,
(
Sphere
(
rp
,
rg
)
)
:]
)
)
+
(
(
()
|
[:
{
rl
}
,
(
Sphere
(
rp
,
rg
)
)
:]
)
(#)
(
()
|
[:
{
rl
}
,
(
Sphere
(
rp
,
rg
)
)
:]
)
)
)
.
[
Pcm
,
fcm
]
is
complex
ext-real
real
set
(
(
()
|
[:
{
rl
}
,
(
Sphere
(
rp
,
rg
)
)
:]
)
(#)
(
()
|
[:
{
rl
}
,
(
Sphere
(
rp
,
rg
)
)
:]
)
)
.
[
Pcm
,
fcm
]
is
complex
ext-real
real
set
(
(
()
|
[:
{
rl
}
,
(
Sphere
(
rp
,
rg
)
)
:]
)
(#)
(
()
|
[:
{
rl
}
,
(
Sphere
(
rp
,
rg
)
)
:]
)
)
.
[
Pcm
,
fcm
]
is
complex
ext-real
real
set
(
(
(
()
|
[:
{
rl
}
,
(
Sphere
(
rp
,
rg
)
)
:]
)
(#)
(
()
|
[:
{
rl
}
,
(
Sphere
(
rp
,
rg
)
)
:]
)
)
.
[
Pcm
,
fcm
]
)
+
(
(
(
()
|
[:
{
rl
}
,
(
Sphere
(
rp
,
rg
)
)
:]
)
(#)
(
()
|
[:
{
rl
}
,
(
Sphere
(
rp
,
rg
)
)
:]
)
)
.
[
Pcm
,
fcm
]
)
is
complex
ext-real
real
set
(
(
()
|
[:
{
rl
}
,
(
Sphere
(
rp
,
rg
)
)
:]
)
.
[
Pcm
,
fcm
]
)
*
(
(
()
|
[:
{
rl
}
,
(
Sphere
(
rp
,
rg
)
)
:]
)
.
[
Pcm
,
fcm
]
)
is
complex
ext-real
non
negative
real
set
(
(
(
()
|
[:
{
rl
}
,
(
Sphere
(
rp
,
rg
)
)
:]
)
.
[
Pcm
,
fcm
]
)
*
(
(
()
|
[:
{
rl
}
,
(
Sphere
(
rp
,
rg
)
)
:]
)
.
[
Pcm
,
fcm
]
)
)
+
(
(
(
()
|
[:
{
rl
}
,
(
Sphere
(
rp
,
rg
)
)
:]
)
(#)
(
()
|
[:
{
rl
}
,
(
Sphere
(
rp
,
rg
)
)
:]
)
)
.
[
Pcm
,
fcm
]
)
is
complex
ext-real
real
set
(
(
Pcm
`1
)
-
(
fcm
`1
)
)
^2
is
complex
ext-real
real
Element
of
REAL
(
(
Pcm
`1
)
-
(
fcm
`1
)
)
*
(
(
Pcm
`1
)
-
(
fcm
`1
)
)
is
complex
ext-real
non
negative
real
set
(
(
Pcm
`2
)
-
(
fcm
`2
)
)
^2
is
complex
ext-real
real
Element
of
REAL
(
(
Pcm
`2
)
-
(
fcm
`2
)
)
*
(
(
Pcm
`2
)
-
(
fcm
`2
)
)
is
complex
ext-real
non
negative
real
set
(
(
(
Pcm
`1
)
-
(
fcm
`1
)
)
^2
)
+
(
(
(
Pcm
`2
)
-
(
fcm
`2
)
)
^2
)
is
complex
ext-real
real
Element
of
REAL
(
(
(
rp
)
|
[:
{
rl
}
,
(
Sphere
(
rp
,
rg
)
)
:]
)
(#)
(
()
|
[:
{
rl
}
,
(
Sphere
(
rp
,
rg
)
)
:]
)
)
+
(
(
(
rp
)
|
[:
{
rl
}
,
(
Sphere
(
rp
,
rg
)
)
:]
)
(#)
(
()
|
[:
{
rl
}
,
(
Sphere
(
rp
,
rg
)
)
:]
)
)
is
Relation-like
the
carrier
of
[:
(
TOP-REAL
2
)
,
(
TOP-REAL
2
)
:]
-defined
the
carrier
of
(
[:
(
TOP-REAL
2
)
,
(
TOP-REAL
2
)
:]
|
[:
{
rl
}
,
(
Sphere
(
rp
,
rg
)
)
:]
)
-defined
the
carrier
of
(
[:
(
TOP-REAL
2
)
,
(
TOP-REAL
2
)
:]
|
[:
{
rl
}
,
(
Sphere
(
rp
,
rg
)
)
:]
)
-defined
REAL
-valued
Function-like
non
empty
total
total
quasi_total
quasi_total
V156
()
V157
()
V158
()
continuous
Element
of
bool
[:
the
carrier
of
(
[:
(
TOP-REAL
2
)
,
(
TOP-REAL
2
)
:]
|
[:
{
rl
}
,
(
Sphere
(
rp
,
rg
)
)
:]
)
,
REAL
:]
(
(
(
(
rp
)
|
[:
{
rl
}
,
(
Sphere
(
rp
,
rg
)
)
:]
)
(#)
(
()
|
[:
{
rl
}
,
(
Sphere
(
rp
,
rg
)
)
:]
)
)
+
(
(
(
rp
)
|
[:
{
rl
}
,
(
Sphere
(
rp
,
rg
)
)
:]
)
(#)
(
()
|
[:
{
rl
}
,
(
Sphere
(
rp
,
rg
)
)
:]
)
)
)
(#)
(
(
(
(
rp
)
|
[:
{
rl
}
,
(
Sphere
(
rp
,
rg
)
)
:]
)
(#)
(
()
|
[:
{
rl
}
,
(
Sphere
(
rp
,
rg
)
)
:]
)
)
+
(
(
(
rp
)
|
[:
{
rl
}
,
(
Sphere
(
rp
,
rg
)
)
:]
)
(#)
(
()
|
[:
{
rl
}
,
(
Sphere
(
rp
,
rg
)
)
:]
)
)
)
is
Relation-like
the
carrier
of
[:
(
TOP-REAL
2
)
,
(
TOP-REAL
2
)
:]
-defined
the
carrier
of
(
[:
(
TOP-REAL
2
)
,
(
TOP-REAL
2
)
:]
|
[:
{
rl
}
,
(
Sphere
(
rp
,
rg
)
)
:]
)
-defined
the
carrier
of
(
[:
(
TOP-REAL
2
)
,
(
TOP-REAL
2
)
:]
|
[:
{
rl
}
,
(
Sphere
(
rp
,
rg
)
)
:]
)
-defined
REAL
-valued
Function-like
non
empty
total
total
quasi_total
quasi_total
V156
()
V157
()
V158
()
nonnegative-yielding
continuous
Element
of
bool
[:
the
carrier
of
(
[:
(
TOP-REAL
2
)
,
(
TOP-REAL
2
)
:]
|
[:
{
rl
}
,
(
Sphere
(
rp
,
rg
)
)
:]
)
,
REAL
:]
(
(
rp
)
|
[:
{
rl
}
,
(
Sphere
(
rp
,
rg
)
)
:]
)
(#)
(
(
rp
)
|
[:
{
rl
}
,
(
Sphere
(
rp
,
rg
)
)
:]
)
is
Relation-like
the
carrier
of
[:
(
TOP-REAL
2
)
,
(
TOP-REAL
2
)
:]
-defined
the
carrier
of
(
[:
(
TOP-REAL
2
)
,
(
TOP-REAL
2
)
:]
|
[:
{
rl
}
,
(
Sphere
(
rp
,
rg
)
)
:]
)
-defined
the
carrier
of
(
[:
(
TOP-REAL
2
)
,
(
TOP-REAL
2
)
:]
|
[:
{
rl
}
,
(
Sphere
(
rp
,
rg
)
)
:]
)
-defined
REAL
-valued
Function-like
non
empty
total
total
quasi_total
quasi_total
V156
()
V157
()
V158
()
nonnegative-yielding
continuous
Element
of
bool
[:
the
carrier
of
(
[:
(
TOP-REAL
2
)
,
(
TOP-REAL
2
)
:]
|
[:
{
rl
}
,
(
Sphere
(
rp
,
rg
)
)
:]
)
,
REAL
:]
(
(
rp
)
|
[:
{
rl
}
,
(
Sphere
(
rp
,
rg
)
)
:]
)
(#)
(
(
rp
)
|
[:
{
rl
}
,
(
Sphere
(
rp
,
rg
)
)
:]
)
is
Relation-like
the
carrier
of
[:
(
TOP-REAL
2
)
,
(
TOP-REAL
2
)
:]
-defined
the
carrier
of
(
[:
(
TOP-REAL
2
)
,
(
TOP-REAL
2
)
:]
|
[:
{
rl
}
,
(
Sphere
(
rp
,
rg
)
)
:]
)
-defined
the
carrier
of
(
[:
(
TOP-REAL
2
)
,
(
TOP-REAL
2
)
:]
|
[:
{
rl
}
,
(
Sphere
(
rp
,
rg
)
)
:]
)
-defined
REAL
-valued
Function-like
non
empty
total
total
quasi_total
quasi_total
V156
()
V157
()
V158
()
nonnegative-yielding
continuous
Element
of
bool
[:
the
carrier
of
(
[:
(
TOP-REAL
2
)
,
(
TOP-REAL
2
)
:]
|
[:
{
rl
}
,
(
Sphere
(
rp
,
rg
)
)
:]
)
,
REAL
:]
(
(
(
rp
)
|
[:
{
rl
}
,
(
Sphere
(
rp
,
rg
)
)
:]
)
(#)
(
(
rp
)
|
[:
{
rl
}
,
(
Sphere
(
rp
,
rg
)
)
:]
)
)
+
(
(
(
rp
)
|
[:
{
rl
}
,
(
Sphere
(
rp
,
rg
)
)
:]
)
(#)
(
(
rp
)
|
[:
{
rl
}
,
(
Sphere
(
rp
,
rg
)
)
:]
)
)
is
Relation-like
the
carrier
of
[:
(
TOP-REAL
2
)
,
(
TOP-REAL
2
)
:]
-defined
the
carrier
of
(
[:
(
TOP-REAL
2
)
,
(
TOP-REAL
2
)
:]
|
[:
{
rl
}
,
(
Sphere
(
rp
,
rg
)
)
:]
)
-defined
the
carrier
of
(
[:
(
TOP-REAL
2
)
,
(
TOP-REAL
2
)
:]
|
[:
{
rl
}
,
(
Sphere
(
rp
,
rg
)
)
:]
)
-defined
REAL
-valued
Function-like
non
empty
total
total
quasi_total
quasi_total
V156
()
V157
()
V158
()
nonnegative-yielding
continuous
Element
of
bool
[:
the
carrier
of
(
[:
(
TOP-REAL
2
)
,
(
TOP-REAL
2
)
:]
|
[:
{
rl
}
,
(
Sphere
(
rp
,
rg
)
)
:]
)
,
REAL
:]
(
(
(
(
rp
)
|
[:
{
rl
}
,
(
Sphere
(
rp
,
rg
)
)
:]
)
(#)
(
(
rp
)
|
[:
{
rl
}
,
(
Sphere
(
rp
,
rg
)
)
:]
)
)
+
(
(
(
rp
)
|
[:
{
rl
}
,
(
Sphere
(
rp
,
rg
)
)
:]
)
(#)
(
(
rp
)
|
[:
{
rl
}
,
(
Sphere
(
rp
,
rg
)
)
:]
)
)
)
-
(
k
|
[:
{
rl
}
,
(
Sphere
(
rp
,
rg
)
)
:]
)
is
Relation-like
the
carrier
of
[:
(
TOP-REAL
2
)
,
(
TOP-REAL
2
)
:]
-defined
the
carrier
of
(
[:
(
TOP-REAL
2
)
,
(
TOP-REAL
2
)
:]
|
[:
{
rl
}
,
(
Sphere
(
rp
,
rg
)
)
:]
)
-defined
the
carrier
of
(
[:
(
TOP-REAL
2
)
,
(
TOP-REAL
2
)
:]
|
[:
{
rl
}
,
(
Sphere
(
rp
,
rg
)
)
:]
)
-defined
REAL
-valued
Function-like
non
empty
total
total
quasi_total
quasi_total
V156
()
V157
()
V158
()
continuous
Element
of
bool
[:
the
carrier
of
(
[:
(
TOP-REAL
2
)
,
(
TOP-REAL
2
)
:]
|
[:
{
rl
}
,
(
Sphere
(
rp
,
rg
)
)
:]
)
,
REAL
:]
dom
(
(
(
(
(
rp
)
|
[:
{
rl
}
,
(
Sphere
(
rp
,
rg
)
)
:]
)
(#)
(
(
rp
)
|
[:
{
rl
}
,
(
Sphere
(
rp
,
rg
)
)
:]
)
)
+
(
(
(
rp
)
|
[:
{
rl
}
,
(
Sphere
(
rp
,
rg
)
)
:]
)
(#)
(
(
rp
)
|
[:
{
rl
}
,
(
Sphere
(
rp
,
rg
)
)
:]
)
)
)
-
(
k
|
[:
{
rl
}
,
(
Sphere
(
rp
,
rg
)
)
:]
)
)
is
Relation-like
{
rl
}
-defined
Sphere
(
rp
,
rg
)
-valued
non
empty
Element
of
bool
[:
{
rl
}
,
(
Sphere
(
rp
,
rg
)
)
:]
DR
is
complex
ext-real
real
set
rng
(
(
(
(
(
rp
)
|
[:
{
rl
}
,
(
Sphere
(
rp
,
rg
)
)
:]
)
(#)
(
(
rp
)
|
[:
{
rl
}
,
(
Sphere
(
rp
,
rg
)
)
:]
)
)
+
(
(
(
rp
)
|
[:
{
rl
}
,
(
Sphere
(
rp
,
rg
)
)
:]
)
(#)
(
(
rp
)
|
[:
{
rl
}
,
(
Sphere
(
rp
,
rg
)
)
:]
)
)
)
-
(
k
|
[:
{
rl
}
,
(
Sphere
(
rp
,
rg
)
)
:]
)
)
is non
empty
V166
()
V167
()
V168
()
Element
of
bool
REAL
Pcm
is
set
(
(
(
(
(
rp
)
|
[:
{
rl
}
,
(
Sphere
(
rp
,
rg
)
)
:]
)
(#)
(
(
rp
)
|
[:
{
rl
}
,
(
Sphere
(
rp
,
rg
)
)
:]
)
)
+
(
(
(
rp
)
|
[:
{
rl
}
,
(
Sphere
(
rp
,
rg
)
)
:]
)
(#)
(
(
rp
)
|
[:
{
rl
}
,
(
Sphere
(
rp
,
rg
)
)
:]
)
)
)
-
(
k
|
[:
{
rl
}
,
(
Sphere
(
rp
,
rg
)
)
:]
)
)
.
Pcm
is
complex
ext-real
real
set
fcm
is
set
V
is
set
[
fcm
,
V
]
is
V15
()
set
{
fcm
,
V
}
is non
empty
set
{
fcm
}
is non
empty
set
{
{
fcm
,
V
}
,
{
fcm
}
}
is non
empty
set
T2C
is
Relation-like
Function-like
V49
(2)
V50
()
V156
()
V157
()
V158
()
Element
of the
carrier
of
(
TOP-REAL
2
)
T2C
`1
is
complex
ext-real
real
Element
of
REAL
rp
`1
is
complex
ext-real
real
Element
of
REAL
(
T2C
`1
)
-
(
rp
`1
)
is
complex
ext-real
real
Element
of
REAL
T2C
`2
is
complex
ext-real
real
Element
of
REAL
rp
`2
is
complex
ext-real
real
Element
of
REAL
(
T2C
`2
)
-
(
rp
`2
)
is
complex
ext-real
real
Element
of
REAL
VP
is
Relation-like
Function-like
V49
(2)
V50
()
V156
()
V157
()
V158
()
Element
of the
carrier
of
(
TOP-REAL
2
)
[
VP
,
T2C
]
is
V15
()
Element
of the
carrier
of
[:
(
TOP-REAL
2
)
,
(
TOP-REAL
2
)
:]
{
VP
,
T2C
}
is
functional
non
empty
set
{
VP
}
is
functional
non
empty
set
{
{
VP
,
T2C
}
,
{
VP
}
}
is non
empty
set
(
k
|
[:
{
rl
}
,
(
Sphere
(
rp
,
rg
)
)
:]
)
.
[
VP
,
T2C
]
is
complex
ext-real
real
set
k
.
[
VP
,
T2C
]
is
complex
ext-real
real
Element
of
REAL
(
(
rp
)
|
[:
{
rl
}
,
(
Sphere
(
rp
,
rg
)
)
:]
)
.
[
VP
,
T2C
]
is
complex
ext-real
real
set
(
rp
)
.
[
VP
,
T2C
]
is
complex
ext-real
real
Element
of
REAL
(
(
rp
)
|
[:
{
rl
}
,
(
Sphere
(
rp
,
rg
)
)
:]
)
.
[
VP
,
T2C
]
is
complex
ext-real
real
set
(
rp
)
.
[
VP
,
T2C
]
is
complex
ext-real
real
Element
of
REAL
(
(
TOP-REAL
2
)
,
(
TOP-REAL
2
)
,
[
VP
,
T2C
]
) is
Relation-like
Function-like
V49
(2)
V50
()
V156
()
V157
()
V158
()
Element
of the
carrier
of
(
TOP-REAL
2
)
(
(
TOP-REAL
2
)
,
(
TOP-REAL
2
)
,
[
VP
,
T2C
]
)
`1
is
complex
ext-real
real
Element
of
REAL
(
(
(
TOP-REAL
2
)
,
(
TOP-REAL
2
)
,
[
VP
,
T2C
]
)
`1
)
-
(
rp
`1
)
is
complex
ext-real
real
Element
of
REAL
(
(
TOP-REAL
2
)
,
(
TOP-REAL
2
)
,
[
VP
,
T2C
]
)
`2
is
complex
ext-real
real
Element
of
REAL
(
(
(
TOP-REAL
2
)
,
(
TOP-REAL
2
)
,
[
VP
,
T2C
]
)
`2
)
-
(
rp
`2
)
is
complex
ext-real
real
Element
of
REAL
(
(
(
(
(
rp
)
|
[:
{
rl
}
,
(
Sphere
(
rp
,
rg
)
)
:]
)
(#)
(
(
rp
)
|
[:
{
rl
}
,
(
Sphere
(
rp
,
rg
)
)
:]
)
)
+
(
(
(
rp
)
|
[:
{
rl
}
,
(
Sphere
(
rp
,
rg
)
)
:]
)
(#)
(
(
rp
)
|
[:
{
rl
}
,
(
Sphere
(
rp
,
rg
)
)
:]
)
)
)
-
(
k
|
[:
{
rl
}
,
(
Sphere
(
rp
,
rg
)
)
:]
)
)
.
[
VP
,
T2C
]
is
complex
ext-real
real
set
(
(
(
(
rp
)
|
[:
{
rl
}
,
(
Sphere
(
rp
,
rg
)
)
:]
)
(#)
(
(
rp
)
|
[:
{
rl
}
,
(
Sphere
(
rp
,
rg
)
)
:]
)
)
+
(
(
(
rp
)
|
[:
{
rl
}
,
(
Sphere
(
rp
,
rg
)
)
:]
)
(#)
(
(
rp
)
|
[:
{
rl
}
,
(
Sphere
(
rp
,
rg
)
)
:]
)
)
)
.
[
VP
,
T2C
]
is
complex
ext-real
real
set
(
(
(
(
(
rp
)
|
[:
{
rl
}
,
(
Sphere
(
rp
,
rg
)
)
:]
)
(#)
(
(
rp
)
|
[:
{
rl
}
,
(
Sphere
(
rp
,
rg
)
)
:]
)
)
+
(
(
(
rp
)
|
[:
{
rl
}
,
(
Sphere
(
rp
,
rg
)
)
:]
)
(#)
(
(
rp
)
|
[:
{
rl
}
,
(
Sphere
(
rp
,
rg
)
)
:]
)
)
)
.
[
VP
,
T2C
]
)
-
(
(
k
|
[:
{
rl
}
,
(
Sphere
(
rp
,
rg
)
)
:]
)
.
[
VP
,
T2C
]
)
is
complex
ext-real
real
set
(
(
(
(
(
rp
)
|
[:
{
rl
}
,
(
Sphere
(
rp
,
rg
)
)
:]
)
(#)
(
(
rp
)
|
[:
{
rl
}
,
(
Sphere
(
rp
,
rg
)
)
:]
)
)
+
(
(
(
rp
)
|
[:
{
rl
}
,
(
Sphere
(
rp
,
rg
)
)
:]
)
(#)
(
(
rp
)
|
[:
{
rl
}
,
(
Sphere
(
rp
,
rg
)
)
:]
)
)
)
.
[
VP
,
T2C
]
)
-
(
rg
^2
)
is
complex
ext-real
real
set
(
(
(
rp
)
|
[:
{
rl
}
,
(
Sphere
(
rp
,
rg
)
)
:]
)
(#)
(
(
rp
)
|
[:
{
rl
}
,
(
Sphere
(
rp
,
rg
)
)
:]
)
)
.
[
VP
,
T2C
]
is
complex
ext-real
real
set
(
(
(
rp
)
|
[:
{
rl
}
,
(
Sphere
(
rp
,
rg
)
)
:]
)
(#)
(
(
rp
)
|
[:
{
rl
}
,
(
Sphere
(
rp
,
rg
)
)
:]
)
)
.
[
VP
,
T2C
]
is
complex
ext-real
real
set
(
(
(
(
rp
)
|
[:
{
rl
}
,
(
Sphere
(
rp
,
rg
)
)
:]
)
(#)
(
(
rp
)
|
[:
{
rl
}
,
(
Sphere
(
rp
,
rg
)
)
:]
)
)
.
[
VP
,
T2C
]
)
+
(
(
(
(
rp
)
|
[:
{
rl
}
,
(
Sphere
(
rp
,
rg
)
)
:]
)
(#)
(
(
rp
)
|
[:
{
rl
}
,
(
Sphere
(
rp
,
rg
)
)
:]
)
)
.
[
VP
,
T2C
]
)
is
complex
ext-real
real
set
(
(
(
(
(
rp
)
|
[:
{
rl
}
,
(
Sphere
(
rp
,
rg
)
)
:]
)
(#)
(
(
rp
)
|
[:
{
rl
}
,
(
Sphere
(
rp
,
rg
)
)
:]
)
)
.
[
VP
,
T2C
]
)
+
(
(
(
(
rp
)
|
[:
{
rl
}
,
(
Sphere
(
rp
,
rg
)
)
:]
)
(#)
(
(
rp
)
|
[:
{
rl
}
,
(
Sphere
(
rp
,
rg
)
)
:]
)
)
.
[
VP
,
T2C
]
)
)
-
(
rg
^2
)
is
complex
ext-real
real
set
(
(
(
rp
)
|
[:
{
rl
}
,
(
Sphere
(
rp
,
rg
)
)
:]
)
.
[
VP
,
T2C
]
)
*
(
(
(
rp
)
|
[:
{
rl
}
,
(
Sphere
(
rp
,
rg
)
)
:]
)
.
[
VP
,
T2C
]
)
is
complex
ext-real
non
negative
real
set
(
(
(
(
rp
)
|
[:
{
rl
}
,
(
Sphere
(
rp
,
rg
)
)
:]
)
.
[
VP
,
T2C
]
)
*
(
(
(
rp
)
|
[:
{
rl
}
,
(
Sphere
(
rp
,
rg
)
)
:]
)
.
[
VP
,
T2C
]
)
)
+
(
(
(
(
rp
)
|
[:
{
rl
}
,
(
Sphere
(
rp
,
rg
)
)
:]
)
(#)
(
(
rp
)
|
[:
{
rl
}
,
(
Sphere
(
rp
,
rg
)
)
:]
)
)
.
[
VP
,
T2C
]
)
is
complex
ext-real
real
set
(
(
(
(
(
rp
)
|
[:
{
rl
}
,
(
Sphere
(
rp
,
rg
)
)
:]
)
.
[
VP
,
T2C
]
)
*
(
(
(
rp
)
|
[:
{
rl
}
,
(
Sphere
(
rp
,
rg
)
)
:]
)
.
[
VP
,
T2C
]
)
)
+
(
(
(
(
rp
)
|
[:
{
rl
}
,
(
Sphere
(
rp
,
rg
)
)
:]
)
(#)
(
(
rp
)
|
[:
{
rl
}
,
(
Sphere
(
rp
,
rg
)
)
:]
)
)
.
[
VP
,
T2C
]
)
)
-
(
rg
^2
)
is
complex
ext-real
real
set
(
(
T2C
`1
)
-
(
rp
`1
)
)
^2
is
complex
ext-real
real
Element
of
REAL
(
(
T2C
`1
)
-
(
rp
`1
)
)
*
(
(
T2C
`1
)
-
(
rp
`1
)
)
is
complex
ext-real
non
negative
real
set
(
(
T2C
`2
)
-
(
rp
`2
)
)
^2
is
complex
ext-real
real
Element
of
REAL
(
(
T2C
`2
)
-
(
rp
`2
)
)
*
(
(
T2C
`2
)
-
(
rp
`2
)
)
is
complex
ext-real
non
negative
real
set
(
(
(
T2C
`1
)
-
(
rp
`1
)
)
^2
)
+
(
(
(
T2C
`2
)
-
(
rp
`2
)
)
^2
)
is
complex
ext-real
real
Element
of
REAL
(
(
(
(
T2C
`1
)
-
(
rp
`1
)
)
^2
)
+
(
(
(
T2C
`2
)
-
(
rp
`2
)
)
^2
)
)
-
(
rg
^2
)
is
complex
ext-real
real
Element
of
REAL
T2C
-
rp
is
Relation-like
Function-like
V49
(2)
V50
()
V156
()
V157
()
V158
()
Element
of the
carrier
of
(
TOP-REAL
2
)
-
rp
is
Relation-like
Function-like
V49
(2)
V50
()
V156
()
V157
()
V158
()
Element
of the
carrier
of
(
TOP-REAL
2
)
K270
(
(
TOP-REAL
2
)
,
T2C
,
(
-
rp
)
) is
Relation-like
Function-like
V49
(2)
V50
()
V156
()
V157
()
V158
()
Element
of the
carrier
of
(
TOP-REAL
2
)
the
U7
of
(
TOP-REAL
2
)
is
Relation-like
[:
the
carrier
of
(
TOP-REAL
2
)
, the
carrier
of
(
TOP-REAL
2
)
:]
-defined
the
carrier
of
(
TOP-REAL
2
)
-valued
Function-like
non
empty
total
quasi_total
Element
of
bool
[:
[:
the
carrier
of
(
TOP-REAL
2
)
, the
carrier
of
(
TOP-REAL
2
)
:]
, the
carrier
of
(
TOP-REAL
2
)
:]
[:
[:
the
carrier
of
(
TOP-REAL
2
)
, the
carrier
of
(
TOP-REAL
2
)
:]
, the
carrier
of
(
TOP-REAL
2
)
:]
is
Relation-like
non
empty
set
bool
[:
[:
the
carrier
of
(
TOP-REAL
2
)
, the
carrier
of
(
TOP-REAL
2
)
:]
, the
carrier
of
(
TOP-REAL
2
)
:]
is non
empty
set
K224
( the
carrier
of
(
TOP-REAL
2
)
, the
U7
of
(
TOP-REAL
2
)
,
T2C
,
(
-
rp
)
) is
Relation-like
Function-like
V49
(2)
V50
()
V156
()
V157
()
V158
()
Element
of the
carrier
of
(
TOP-REAL
2
)
|.
(
T2C
-
rp
)
.|
is
complex
ext-real
non
negative
real
Element
of
REAL
|.
(
T2C
-
rp
)
.|
^2
is
complex
ext-real
real
Element
of
REAL
|.
(
T2C
-
rp
)
.|
*
|.
(
T2C
-
rp
)
.|
is
complex
ext-real
non
negative
real
set
(
T2C
-
rp
)
`1
is
complex
ext-real
real
Element
of
REAL
(
(
T2C
-
rp
)
`1
)
^2
is
complex
ext-real
real
Element
of
REAL
(
(
T2C
-
rp
)
`1
)
*
(
(
T2C
-
rp
)
`1
)
is
complex
ext-real
non
negative
real
set
(
T2C
-
rp
)
`2
is
complex
ext-real
real
Element
of
REAL
(
(
T2C
-
rp
)
`2
)
^2
is
complex
ext-real
real
Element
of
REAL
(
(
T2C
-
rp
)
`2
)
*
(
(
T2C
-
rp
)
`2
)
is
complex
ext-real
non
negative
real
set
(
(
(
T2C
-
rp
)
`1
)
^2
)
+
(
(
(
T2C
-
rp
)
`2
)
^2
)
is
complex
ext-real
real
Element
of
REAL
(
(
(
T2C
`1
)
-
(
rp
`1
)
)
^2
)
+
(
(
(
T2C
-
rp
)
`2
)
^2
)
is
complex
ext-real
real
Element
of
REAL
(
rg
^2
)
-
(
rg
^2
)
is
complex
ext-real
real
set
AR
is
Relation-like
non-empty
the
carrier
of
(
[:
(
TOP-REAL
2
)
,
(
TOP-REAL
2
)
:]
|
[:
{
rl
}
,
(
Sphere
(
rp
,
rg
)
)
:]
)
-defined
REAL
-valued
Function-like
non
empty
total
quasi_total
V156
()
V157
()
V158
()
positive-yielding
nonnegative-yielding
continuous
Element
of
bool
[:
the
carrier
of
(
[:
(
TOP-REAL
2
)
,
(
TOP-REAL
2
)
:]
|
[:
{
rl
}
,
(
Sphere
(
rp
,
rg
)
)
:]
)
,
REAL
:]
DR
is
Relation-like
the
carrier
of
(
[:
(
TOP-REAL
2
)
,
(
TOP-REAL
2
)
:]
|
[:
{
rl
}
,
(
Sphere
(
rp
,
rg
)
)
:]
)
-defined
REAL
-valued
Function-like
non
empty
total
quasi_total
V156
()
V157
()
V158
()
nonpositive-yielding
continuous
Element
of
bool
[:
the
carrier
of
(
[:
(
TOP-REAL
2
)
,
(
TOP-REAL
2
)
:]
|
[:
{
rl
}
,
(
Sphere
(
rp
,
rg
)
)
:]
)
,
REAL
:]
AR
(#)
DR
is
Relation-like
the
carrier
of
(
[:
(
TOP-REAL
2
)
,
(
TOP-REAL
2
)
:]
|
[:
{
rl
}
,
(
Sphere
(
rp
,
rg
)
)
:]
)
-defined
the
carrier
of
(
[:
(
TOP-REAL
2
)
,
(
TOP-REAL
2
)
:]
|
[:
{
rl
}
,
(
Sphere
(
rp
,
rg
)
)
:]
)
-defined
REAL
-valued
Function-like
non
empty
total
total
quasi_total
quasi_total
V156
()
V157
()
V158
()
nonpositive-yielding
continuous
Element
of
bool
[:
the
carrier
of
(
[:
(
TOP-REAL
2
)
,
(
TOP-REAL
2
)
:]
|
[:
{
rl
}
,
(
Sphere
(
rp
,
rg
)
)
:]
)
,
REAL
:]
(
(
(
(
(
rp
)
|
[:
{
rl
}
,
(
Sphere
(
rp
,
rg
)
)
:]
)
(#)
(
()
|
[:
{
rl
}
,
(
Sphere
(
rp
,
rg
)
)
:]
)
)
+
(
(
(
rp
)
|
[:
{
rl
}
,
(
Sphere
(
rp
,
rg
)
)
:]
)
(#)
(
()
|
[:
{
rl
}
,
(
Sphere
(
rp
,
rg
)
)
:]
)
)
)
(#)
(
(
(
(
rp
)
|
[:
{
rl
}
,
(
Sphere
(
rp
,
rg
)
)
:]
)
(#)
(
()
|
[:
{
rl
}
,
(
Sphere
(
rp
,
rg
)
)
:]
)
)
+
(
(
(
rp
)
|
[:
{
rl
}
,
(
Sphere
(
rp
,
rg
)
)
:]
)
(#)
(
()
|
[:
{
rl
}
,
(
Sphere
(
rp
,
rg
)
)
:]
)
)
)
)
-
(
AR
(#)
DR
)
is
Relation-like
the
carrier
of
(
[:
(
TOP-REAL
2
)
,
(
TOP-REAL
2
)
:]
|
[:
{
rl
}
,
(
Sphere
(
rp
,
rg
)
)
:]
)
-defined
the
carrier
of
(
[:
(
TOP-REAL
2
)
,
(
TOP-REAL
2
)
:]
|
[:
{
rl
}
,
(
Sphere
(
rp
,
rg
)
)
:]
)
-defined
REAL
-valued
Function-like
non
empty
total
total
quasi_total
quasi_total
V156
()
V157
()
V158
()
nonnegative-yielding
continuous
Element
of
bool
[:
the
carrier
of
(
[:
(
TOP-REAL
2
)
,
(
TOP-REAL
2
)
:]
|
[:
{
rl
}
,
(
Sphere
(
rp
,
rg
)
)
:]
)
,
REAL
:]
-
(
(
(
(
rp
)
|
[:
{
rl
}
,
(
Sphere
(
rp
,
rg
)
)
:]
)
(#)
(
()
|
[:
{
rl
}
,
(
Sphere
(
rp
,
rg
)
)
:]
)
)
+
(
(
(
rp
)
|
[:
{
rl
}
,
(
Sphere
(
rp
,
rg
)
)
:]
)
(#)
(
()
|
[:
{
rl
}
,
(
Sphere
(
rp
,
rg
)
)
:]
)
)
)
is
Relation-like
the
carrier
of
[:
(
TOP-REAL
2
)
,
(
TOP-REAL
2
)
:]
-defined
the
carrier
of
(
[:
(
TOP-REAL
2
)
,
(
TOP-REAL
2
)
:]
|
[:
{
rl
}
,
(
Sphere
(
rp
,
rg
)
)
:]
)
-defined
the
carrier
of
(
[:
(
TOP-REAL
2
)
,
(
TOP-REAL
2
)
:]
|
[:
{
rl
}
,
(
Sphere
(
rp
,
rg
)
)
:]
)
-defined
REAL
-valued
Function-like
non
empty
total
total
quasi_total
quasi_total
V156
()
V157
()
V158
()
continuous
Element
of
bool
[:
the
carrier
of
(
[:
(
TOP-REAL
2
)
,
(
TOP-REAL
2
)
:]
|
[:
{
rl
}
,
(
Sphere
(
rp
,
rg
)
)
:]
)
,
REAL
:]
sqrt
(
(
(
(
(
(
rp
)
|
[:
{
rl
}
,
(
Sphere
(
rp
,
rg
)
)
:]
)
(#)
(
()
|
[:
{
rl
}
,
(
Sphere
(
rp
,
rg
)
)
:]
)
)
+
(
(
(
rp
)
|
[:
{
rl
}
,
(
Sphere
(
rp
,
rg
)
)
:]
)
(#)
(
()
|
[:
{
rl
}
,
(
Sphere
(
rp
,
rg
)
)
:]
)
)
)
(#)
(
(
(
(
rp
)
|
[:
{
rl
}
,
(
Sphere
(
rp
,
rg
)
)
:]
)
(#)
(
()
|
[:
{
rl
}
,
(
Sphere
(
rp
,
rg
)
)
:]
)
)
+
(
(
(
rp
)
|
[:
{
rl
}
,
(
Sphere
(
rp
,
rg
)
)
:]
)
(#)
(
()
|
[:
{
rl
}
,
(
Sphere
(
rp
,
rg
)
)
:]
)
)
)
)
-
(
AR
(#)
DR
)
)
is
Relation-like
the
carrier
of
(
[:
(
TOP-REAL
2
)
,
(
TOP-REAL
2
)
:]
|
[:
{
rl
}
,
(
Sphere
(
rp
,
rg
)
)
:]
)
-defined
the
carrier
of
(
[:
(
TOP-REAL
2
)
,
(
TOP-REAL
2
)
:]
|
[:
{
rl
}
,
(
Sphere
(
rp
,
rg
)
)
:]
)
-defined
REAL
-valued
Function-like
non
empty
total
total
quasi_total
quasi_total
V156
()
V157
()
V158
()
nonnegative-yielding
continuous
Element
of
bool
[:
the
carrier
of
(
[:
(
TOP-REAL
2
)
,
(
TOP-REAL
2
)
:]
|
[:
{
rl
}
,
(
Sphere
(
rp
,
rg
)
)
:]
)
,
REAL
:]
(
-
(
(
(
(
rp
)
|
[:
{
rl
}
,
(
Sphere
(
rp
,
rg
)
)
:]
)
(#)
(
()
|
[:
{
rl
}
,
(
Sphere
(
rp
,
rg
)
)
:]
)
)
+
(
(
(
rp
)
|
[:
{
rl
}
,
(
Sphere
(
rp
,
rg
)
)
:]
)
(#)
(
()
|
[:
{
rl
}
,
(
Sphere
(
rp
,
rg
)
)
:]
)
)
)
)
+
(
sqrt
(
(
(
(
(
(
rp
)
|
[:
{
rl
}
,
(
Sphere
(
rp
,
rg
)
)
:]
)
(#)
(
()
|
[:
{
rl
}
,
(
Sphere
(
rp
,
rg
)
)
:]
)
)
+
(
(
(
rp
)
|
[:
{
rl
}
,
(
Sphere
(
rp
,
rg
)
)
:]
)
(#)
(
()
|
[:
{
rl
}
,
(
Sphere
(
rp
,
rg
)
)
:]
)
)
)
(#)
(
(
(
(
rp
)
|
[:
{
rl
}
,
(
Sphere
(
rp
,
rg
)
)
:]
)
(#)
(
()
|
[:
{
rl
}
,
(
Sphere
(
rp
,
rg
)
)
:]
)
)
+
(
(
(
rp
)
|
[:
{
rl
}
,
(
Sphere
(
rp
,
rg
)
)
:]
)
(#)
(
()
|
[:
{
rl
}
,
(
Sphere
(
rp
,
rg
)
)
:]
)
)
)
)
-
(
AR
(#)
DR
)
)
)
is
Relation-like
the
carrier
of
(
[:
(
TOP-REAL
2
)
,
(
TOP-REAL
2
)
:]
|
[:
{
rl
}
,
(
Sphere
(
rp
,
rg
)
)
:]
)
-defined
the
carrier
of
(
[:
(
TOP-REAL
2
)
,
(
TOP-REAL
2
)
:]
|
[:
{
rl
}
,
(
Sphere
(
rp
,
rg
)
)
:]
)
-defined
REAL
-valued
Function-like
non
empty
total
total
quasi_total
quasi_total
V156
()
V157
()
V158
()
continuous
Element
of
bool
[:
the
carrier
of
(
[:
(
TOP-REAL
2
)
,
(
TOP-REAL
2
)
:]
|
[:
{
rl
}
,
(
Sphere
(
rp
,
rg
)
)
:]
)
,
REAL
:]
(
(
-
(
(
(
(
rp
)
|
[:
{
rl
}
,
(
Sphere
(
rp
,
rg
)
)
:]
)
(#)
(
()
|
[:
{
rl
}
,
(
Sphere
(
rp
,
rg
)
)
:]
)
)
+
(
(
(
rp
)
|
[:
{
rl
}
,
(
Sphere
(
rp
,
rg
)
)
:]
)
(#)
(
()
|
[:
{
rl
}
,
(
Sphere
(
rp
,
rg
)
)
:]
)
)
)
)
+
(
sqrt
(
(
(
(
(
(
rp
)
|
[:
{
rl
}
,
(
Sphere
(
rp
,
rg
)
)
:]
)
(#)
(
()
|
[:
{
rl
}
,
(
Sphere
(
rp
,
rg
)
)
:]
)
)
+
(
(
(
rp
)
|
[:
{
rl
}
,
(
Sphere
(
rp
,
rg
)
)
:]
)
(#)
(
()
|
[:
{
rl
}
,
(
Sphere
(
rp
,
rg
)
)
:]
)
)
)
(#)
(
(
(
(
rp
)
|
[:
{
rl
}
,
(
Sphere
(
rp
,
rg
)
)
:]
)
(#)
(
()
|
[:
{
rl
}
,
(
Sphere
(
rp
,
rg
)
)
:]
)
)
+
(
(
(
rp
)
|
[:
{
rl
}
,
(
Sphere
(
rp
,
rg
)
)
:]
)
(#)
(
()
|
[:
{
rl
}
,
(
Sphere
(
rp
,
rg
)
)
:]
)
)
)
)
-
(
AR
(#)
DR
)
)
)
)
/
AR
is
Relation-like
the
carrier
of
(
[:
(
TOP-REAL
2
)
,
(
TOP-REAL
2
)
:]
|
[:
{
rl
}
,
(
Sphere
(
rp
,
rg
)
)
:]
)
-defined
the
carrier
of
(
[:
(
TOP-REAL
2
)
,
(
TOP-REAL
2
)
:]
|
[:
{
rl
}
,
(
Sphere
(
rp
,
rg
)
)
:]
)
-defined
REAL
-valued
Function-like
non
empty
total
total
quasi_total
quasi_total
V156
()
V157
()
V158
()
continuous
Element
of
bool
[:
the
carrier
of
(
[:
(
TOP-REAL
2
)
,
(
TOP-REAL
2
)
:]
|
[:
{
rl
}
,
(
Sphere
(
rp
,
rg
)
)
:]
)
,
REAL
:]
(
(
(
-
(
(
(
(
rp
)
|
[:
{
rl
}
,
(
Sphere
(
rp
,
rg
)
)
:]
)
(#)
(
()
|
[:
{
rl
}
,
(
Sphere
(
rp
,
rg
)
)
:]
)
)
+
(
(
(
rp
)
|
[:
{
rl
}
,
(
Sphere
(
rp
,
rg
)
)
:]
)
(#)
(
()
|
[:
{
rl
}
,
(
Sphere
(
rp
,
rg
)
)
:]
)
)
)
)
+
(
sqrt
(
(
(
(
(
(
rp
)
|
[:
{
rl
}
,
(
Sphere
(
rp
,
rg
)
)
:]
)
(#)
(
()
|
[:
{
rl
}
,
(
Sphere
(
rp
,
rg
)
)
:]
)
)
+
(
(
(
rp
)
|
[:
{
rl
}
,
(
Sphere
(
rp
,
rg
)
)
:]
)
(#)
(
()
|
[:
{
rl
}
,
(
Sphere
(
rp
,
rg
)
)
:]
)
)
)
(#)
(
(
(
(
rp
)
|
[:
{
rl
}
,
(
Sphere
(
rp
,
rg
)
)
:]
)
(#)
(
()
|
[:
{
rl
}
,
(
Sphere
(
rp
,
rg
)
)
:]
)
)
+
(
(
(
rp
)
|
[:
{
rl
}
,
(
Sphere
(
rp
,
rg
)
)
:]
)
(#)
(
()
|
[:
{
rl
}
,
(
Sphere
(
rp
,
rg
)
)
:]
)
)
)
)
-
(
AR
(#)
DR
)
)
)
)
/
AR
)
(#)
(
()
|
[:
{
rl
}
,
(
Sphere
(
rp
,
rg
)
)
:]
)
is
Relation-like
the
carrier
of
[:
(
TOP-REAL
2
)
,
(
TOP-REAL
2
)
:]
-defined
the
carrier
of
(
[:
(
TOP-REAL
2
)
,
(
TOP-REAL
2
)
:]
|
[:
{
rl
}
,
(
Sphere
(
rp
,
rg
)
)
:]
)
-defined
the
carrier
of
(
[:
(
TOP-REAL
2
)
,
(
TOP-REAL
2
)
:]
|
[:
{
rl
}
,
(
Sphere
(
rp
,
rg
)
)
:]
)
-defined
REAL
-valued
Function-like
non
empty
total
total
quasi_total
quasi_total
V156
()
V157
()
V158
()
continuous
Element
of
bool
[:
the
carrier
of
(
[:
(
TOP-REAL
2
)
,
(
TOP-REAL
2
)
:]
|
[:
{
rl
}
,
(
Sphere
(
rp
,
rg
)
)
:]
)
,
REAL
:]
(
()
|
[:
{
rl
}
,
(
Sphere
(
rp
,
rg
)
)
:]
)
+
(
(
(
(
-
(
(
(
(
rp
)
|
[:
{
rl
}
,
(
Sphere
(
rp
,
rg
)
)
:]
)
(#)
(
()
|
[:
{
rl
}
,
(
Sphere
(
rp
,
rg
)
)
:]
)
)
+
(
(
(
rp
)
|
[:
{
rl
}
,
(
Sphere
(
rp
,
rg
)
)
:]
)
(#)
(
()
|
[:
{
rl
}
,
(
Sphere
(
rp
,
rg
)
)
:]
)
)
)
)
+
(
sqrt
(
(
(
(
(
(
rp
)
|
[:
{
rl
}
,
(
Sphere
(
rp
,
rg
)
)
:]
)
(#)
(
()
|
[:
{
rl
}
,
(
Sphere
(
rp
,
rg
)
)
:]
)
)
+
(
(
(
rp
)
|
[:
{
rl
}
,
(
Sphere
(
rp
,
rg
)
)
:]
)
(#)
(
()
|
[:
{
rl
}
,
(
Sphere
(
rp
,
rg
)
)
:]
)
)
)
(#)
(
(
(
(
rp
)
|
[:
{
rl
}
,
(
Sphere
(
rp
,
rg
)
)
:]
)
(#)
(
()
|
[:
{
rl
}
,
(
Sphere
(
rp
,
rg
)
)
:]
)
)
+
(
(
(
rp
)
|
[:
{
rl
}
,
(
Sphere
(
rp
,
rg
)
)
:]
)
(#)
(
()
|
[:
{
rl
}
,
(
Sphere
(
rp
,
rg
)
)
:]
)
)
)
)
-
(
AR
(#)
DR
)
)
)
)
/
AR
)
(#)
(
()
|
[:
{
rl
}
,
(
Sphere
(
rp
,
rg
)
)
:]
)
)
is
Relation-like
the
carrier
of
[:
(
TOP-REAL
2
)
,
(
TOP-REAL
2
)
:]
-defined
the
carrier
of
(
[:
(
TOP-REAL
2
)
,
(
TOP-REAL
2
)
:]
|
[:
{
rl
}
,
(
Sphere
(
rp
,
rg
)
)
:]
)
-defined
the
carrier
of
(
[:
(
TOP-REAL
2
)
,
(
TOP-REAL
2
)
:]
|
[:
{
rl
}
,
(
Sphere
(
rp
,
rg
)
)
:]
)
-defined
REAL
-valued
Function-like
non
empty
total
total
quasi_total
quasi_total
V156
()
V157
()
V158
()
continuous
Element
of
bool
[:
the
carrier
of
(
[:
(
TOP-REAL
2
)
,
(
TOP-REAL
2
)
:]
|
[:
{
rl
}
,
(
Sphere
(
rp
,
rg
)
)
:]
)
,
REAL
:]
(
(
(
-
(
(
(
(
rp
)
|
[:
{
rl
}
,
(
Sphere
(
rp
,
rg
)
)
:]
)
(#)
(
()
|
[:
{
rl
}
,
(
Sphere
(
rp
,
rg
)
)
:]
)
)
+
(
(
(
rp
)
|
[:
{
rl
}
,
(
Sphere
(
rp
,
rg
)
)
:]
)
(#)
(
()
|
[:
{
rl
}
,
(
Sphere
(
rp
,
rg
)
)
:]
)
)
)
)
+
(
sqrt
(
(
(
(
(
(
rp
)
|
[:
{
rl
}
,
(
Sphere
(
rp
,
rg
)
)
:]
)
(#)
(
()
|
[:
{
rl
}
,
(
Sphere
(
rp
,
rg
)
)
:]
)
)
+
(
(
(
rp
)
|
[:
{
rl
}
,
(
Sphere
(
rp
,
rg
)
)
:]
)
(#)
(
()
|
[:
{
rl
}
,
(
Sphere
(
rp
,
rg
)
)
:]
)
)
)
(#)
(
(
(
(
rp
)
|
[:
{
rl
}
,
(
Sphere
(
rp
,
rg
)
)
:]
)
(#)
(
()
|
[:
{
rl
}
,
(
Sphere
(
rp
,
rg
)
)
:]
)
)
+
(
(
(
rp
)
|
[:
{
rl
}
,
(
Sphere
(
rp
,
rg
)
)
:]
)
(#)
(
()
|
[:
{
rl
}
,
(
Sphere
(
rp
,
rg
)
)
:]
)
)
)
)
-
(
AR
(#)
DR
)
)
)
)
/
AR
)
(#)
(
()
|
[:
{
rl
}
,
(
Sphere
(
rp
,
rg
)
)
:]
)
is
Relation-like
the
carrier
of
[:
(
TOP-REAL
2
)
,
(
TOP-REAL
2
)
:]
-defined
the
carrier
of
(
[:
(
TOP-REAL
2
)
,
(
TOP-REAL
2
)
:]
|
[:
{
rl
}
,
(
Sphere
(
rp
,
rg
)
)
:]
)
-defined
the
carrier
of
(
[:
(
TOP-REAL
2
)
,
(
TOP-REAL
2
)
:]
|
[:
{
rl
}
,
(
Sphere
(
rp
,
rg
)
)
:]
)
-defined
REAL
-valued
Function-like
non
empty
total
total
quasi_total
quasi_total
V156
()
V157
()
V158
()
continuous
Element
of
bool
[:
the
carrier
of
(
[:
(
TOP-REAL
2
)
,
(
TOP-REAL
2
)
:]
|
[:
{
rl
}
,
(
Sphere
(
rp
,
rg
)
)
:]
)
,
REAL
:]
(
()
|
[:
{
rl
}
,
(
Sphere
(
rp
,
rg
)
)
:]
)
+
(
(
(
(
-
(
(
(
(
rp
)
|
[:
{
rl
}
,
(
Sphere
(
rp
,
rg
)
)
:]
)
(#)
(
()
|
[:
{
rl
}
,
(
Sphere
(
rp
,
rg
)
)
:]
)
)
+
(
(
(
rp
)
|
[:
{
rl
}
,
(
Sphere
(
rp
,
rg
)
)
:]
)
(#)
(
()
|
[:
{
rl
}
,
(
Sphere
(
rp
,
rg
)
)
:]
)
)
)
)
+
(
sqrt
(
(
(
(
(
(
rp
)
|
[:
{
rl
}
,
(
Sphere
(
rp
,
rg
)
)
:]
)
(#)
(
()
|
[:
{
rl
}
,
(
Sphere
(
rp
,
rg
)
)
:]
)
)
+
(
(
(
rp
)
|
[:
{
rl
}
,
(
Sphere
(
rp
,
rg
)
)
:]
)
(#)
(
()
|
[:
{
rl
}
,
(
Sphere
(
rp
,
rg
)
)
:]
)
)
)
(#)
(
(
(
(
rp
)
|
[:
{
rl
}
,
(
Sphere
(
rp
,
rg
)
)
:]
)
(#)
(
()
|
[:
{
rl
}
,
(
Sphere
(
rp
,
rg
)
)
:]
)
)
+
(
(
(
rp
)
|
[:
{
rl
}
,
(
Sphere
(
rp
,
rg
)
)
:]
)
(#)
(
()
|
[:
{
rl
}
,
(
Sphere
(
rp
,
rg
)
)
:]
)
)
)
)
-
(
AR
(#)
DR
)
)
)
)
/
AR
)
(#)
(
()
|
[:
{
rl
}
,
(
Sphere
(
rp
,
rg
)
)
:]
)
)
is
Relation-like
the
carrier
of
[:
(
TOP-REAL
2
)
,
(
TOP-REAL
2
)
:]
-defined
the
carrier
of
(
[:
(
TOP-REAL
2
)
,
(
TOP-REAL
2
)
:]
|
[:
{
rl
}
,
(
Sphere
(
rp
,
rg
)
)
:]
)
-defined
the
carrier
of
(
[:
(
TOP-REAL
2
)
,
(
TOP-REAL
2
)
:]
|
[:
{
rl
}
,
(
Sphere
(
rp
,
rg
)
)
:]
)
-defined
REAL
-valued
Function-like
non
empty
total
total
quasi_total
quasi_total
V156
()
V157
()
V158
()
continuous
Element
of
bool
[:
the
carrier
of
(
[:
(
TOP-REAL
2
)
,
(
TOP-REAL
2
)
:]
|
[:
{
rl
}
,
(
Sphere
(
rp
,
rg
)
)
:]
)
,
REAL
:]
[:
the
carrier
of
(
[:
(
TOP-REAL
2
)
,
(
TOP-REAL
2
)
:]
|
[:
{
rl
}
,
(
Sphere
(
rp
,
rg
)
)
:]
)
, the
carrier
of
R^1
:]
is
Relation-like
non
empty
V156
()
V157
()
V158
()
set
bool
[:
the
carrier
of
(
[:
(
TOP-REAL
2
)
,
(
TOP-REAL
2
)
:]
|
[:
{
rl
}
,
(
Sphere
(
rp
,
rg
)
)
:]
)
, the
carrier
of
R^1
:]
is non
empty
set
T2C
is
Relation-like
the
carrier
of
(
[:
(
TOP-REAL
2
)
,
(
TOP-REAL
2
)
:]
|
[:
{
rl
}
,
(
Sphere
(
rp
,
rg
)
)
:]
)
-defined
the
carrier
of
R^1
-valued
Function-like
non
empty
total
quasi_total
V156
()
V157
()
V158
()
Element
of
bool
[:
the
carrier
of
(
[:
(
TOP-REAL
2
)
,
(
TOP-REAL
2
)
:]
|
[:
{
rl
}
,
(
Sphere
(
rp
,
rg
)
)
:]
)
, the
carrier
of
R^1
:]
VP
is
Relation-like
the
carrier
of
(
[:
(
TOP-REAL
2
)
,
(
TOP-REAL
2
)
:]
|
[:
{
rl
}
,
(
Sphere
(
rp
,
rg
)
)
:]
)
-defined
the
carrier
of
R^1
-valued
Function-like
non
empty
total
quasi_total
V156
()
V157
()
V158
()
Element
of
bool
[:
the
carrier
of
(
[:
(
TOP-REAL
2
)
,
(
TOP-REAL
2
)
:]
|
[:
{
rl
}
,
(
Sphere
(
rp
,
rg
)
)
:]
)
, the
carrier
of
R^1
:]
<:
T2C
,
VP
:>
is
Relation-like
the
carrier
of
(
[:
(
TOP-REAL
2
)
,
(
TOP-REAL
2
)
:]
|
[:
{
rl
}
,
(
Sphere
(
rp
,
rg
)
)
:]
)
-defined
[:
the
carrier
of
R^1
, the
carrier
of
R^1
:]
-valued
Function-like
non
empty
total
quasi_total
Element
of
bool
[:
the
carrier
of
(
[:
(
TOP-REAL
2
)
,
(
TOP-REAL
2
)
:]
|
[:
{
rl
}
,
(
Sphere
(
rp
,
rg
)
)
:]
)
,
[:
the
carrier
of
R^1
, the
carrier
of
R^1
:]
:]
[:
the
carrier
of
R^1
, the
carrier
of
R^1
:]
is
Relation-like
non
empty
V156
()
V157
()
V158
()
set
[:
the
carrier
of
(
[:
(
TOP-REAL
2
)
,
(
TOP-REAL
2
)
:]
|
[:
{
rl
}
,
(
Sphere
(
rp
,
rg
)
)
:]
)
,
[:
the
carrier
of
R^1
, the
carrier
of
R^1
:]
:]
is
Relation-like
non
empty
set
bool
[:
the
carrier
of
(
[:
(
TOP-REAL
2
)
,
(
TOP-REAL
2
)
:]
|
[:
{
rl
}
,
(
Sphere
(
rp
,
rg
)
)
:]
)
,
[:
the
carrier
of
R^1
, the
carrier
of
R^1
:]
:]
is non
empty
set
R2Homeomorphism
*
<:
T2C
,
VP
:>
is
Relation-like
the
carrier
of
(
[:
(
TOP-REAL
2
)
,
(
TOP-REAL
2
)
:]
|
[:
{
rl
}
,
(
Sphere
(
rp
,
rg
)
)
:]
)
-defined
the
carrier
of
(
TOP-REAL
2
)
-valued
Function-like
Element
of
bool
[:
the
carrier
of
(
[:
(
TOP-REAL
2
)
,
(
TOP-REAL
2
)
:]
|
[:
{
rl
}
,
(
Sphere
(
rp
,
rg
)
)
:]
)
, the
carrier
of
(
TOP-REAL
2
)
:]
[:
the
carrier
of
(
[:
(
TOP-REAL
2
)
,
(
TOP-REAL
2
)
:]
|
[:
{
rl
}
,
(
Sphere
(
rp
,
rg
)
)
:]
)
, the
carrier
of
(
TOP-REAL
2
)
:]
is
Relation-like
non
empty
set
bool
[:
the
carrier
of
(
[:
(
TOP-REAL
2
)
,
(
TOP-REAL
2
)
:]
|
[:
{
rl
}
,
(
Sphere
(
rp
,
rg
)
)
:]
)
, the
carrier
of
(
TOP-REAL
2
)
:]
is non
empty
set
Plk
is
Element
of the
carrier
of
(
(
TOP-REAL
2
)
|
(
Sphere
(
rp
,
rg
)
)
)
(2,
rp
,
rl
,
rg
)
.
Plk
is
set
[
rl
,
Plk
]
is
V15
()
Element
of the
carrier
of
[:
(
TOP-REAL
2
)
,
(
(
TOP-REAL
2
)
|
(
Sphere
(
rp
,
rg
)
)
)
:]
[:
(
TOP-REAL
2
)
,
(
(
TOP-REAL
2
)
|
(
Sphere
(
rp
,
rg
)
)
)
:]
is non
empty
strict
TopSpace-like
T_0
T_1
T_2
TopStruct
the
carrier
of
[:
(
TOP-REAL
2
)
,
(
(
TOP-REAL
2
)
|
(
Sphere
(
rp
,
rg
)
)
)
:]
is non
empty
set
{
rl
,
Plk
}
is non
empty
set
{
rl
}
is
functional
non
empty
set
{
{
rl
,
Plk
}
,
{
rl
}
}
is non
empty
set
(
R2Homeomorphism
*
<:
T2C
,
VP
:>
)
.
[
rl
,
Plk
]
is
Relation-like
Function-like
set
flk
is
Relation-like
Function-like
V49
(2)
V50
()
V156
()
V157
()
V158
()
Element
of the
carrier
of
(
TOP-REAL
2
)
HC
(
flk
,
rl
,
rp
,
rg
) is
Relation-like
Function-like
V49
(2)
V50
()
V156
()
V157
()
V158
()
Element
of the
carrier
of
(
TOP-REAL
2
)
[
rl
,
flk
]
is
V15
()
Element
of the
carrier
of
[:
(
TOP-REAL
2
)
,
(
TOP-REAL
2
)
:]
{
rl
,
flk
}
is
functional
non
empty
set
{
{
rl
,
flk
}
,
{
rl
}
}
is non
empty
set
rl
`1
is
complex
ext-real
real
Element
of
REAL
flk
`1
is
complex
ext-real
real
Element
of
REAL
(
rl
`1
)
-
(
flk
`1
)
is
complex
ext-real
real
Element
of
REAL
rl
`2
is
complex
ext-real
real
Element
of
REAL
flk
`2
is
complex
ext-real
real
Element
of
REAL
(
rl
`2
)
-
(
flk
`2
)
is
complex
ext-real
real
Element
of
REAL
(
flk
`1
)
-
(
rp
`1
)
is
complex
ext-real
real
Element
of
REAL
(
flk
`2
)
-
(
rp
`2
)
is
complex
ext-real
real
Element
of
REAL
(
(
flk
`1
)
-
(
rp
`1
)
)
*
(
(
rl
`1
)
-
(
flk
`1
)
)
is
complex
ext-real
real
Element
of
REAL
(
(
flk
`2
)
-
(
rp
`2
)
)
*
(
(
rl
`2
)
-
(
flk
`2
)
)
is
complex
ext-real
real
Element
of
REAL
(
(
(
flk
`1
)
-
(
rp
`1
)
)
*
(
(
rl
`1
)
-
(
flk
`1
)
)
)
+
(
(
(
flk
`2
)
-
(
rp
`2
)
)
*
(
(
rl
`2
)
-
(
flk
`2
)
)
)
is
complex
ext-real
real
Element
of
REAL
-
(
(
(
(
flk
`1
)
-
(
rp
`1
)
)
*
(
(
rl
`1
)
-
(
flk
`1
)
)
)
+
(
(
(
flk
`2
)
-
(
rp
`2
)
)
*
(
(
rl
`2
)
-
(
flk
`2
)
)
)
)
is
complex
ext-real
real
Element
of
REAL
(
(
(
(
flk
`1
)
-
(
rp
`1
)
)
*
(
(
rl
`1
)
-
(
flk
`1
)
)
)
+
(
(
(
flk
`2
)
-
(
rp
`2
)
)
*
(
(
rl
`2
)
-
(
flk
`2
)
)
)
)
^2
is
complex
ext-real
real
Element
of
REAL
(
(
(
(
flk
`1
)
-
(
rp
`1
)
)
*
(
(
rl
`1
)
-
(
flk
`1
)
)
)
+
(
(
(
flk
`2
)
-
(
rp
`2
)
)
*
(
(
rl
`2
)
-
(
flk
`2
)
)
)
)
*
(
(
(
(
flk
`1
)
-
(
rp
`1
)
)
*
(
(
rl
`1
)
-
(
flk
`1
)
)
)
+
(
(
(
flk
`2
)
-
(
rp
`2
)
)
*
(
(
rl
`2
)
-
(
flk
`2
)
)
)
)
is
complex
ext-real
non
negative
real
set
(
(
rl
`1
)
-
(
flk
`1
)
)
^2
is
complex
ext-real
real
Element
of
REAL
(
(
rl
`1
)
-
(
flk
`1
)
)
*
(
(
rl
`1
)
-
(
flk
`1
)
)
is
complex
ext-real
non
negative
real
set
(
(
rl
`2
)
-
(
flk
`2
)
)
^2
is
complex
ext-real
real
Element
of
REAL
(
(
rl
`2
)
-
(
flk
`2
)
)
*
(
(
rl
`2
)
-
(
flk
`2
)
)
is
complex
ext-real
non
negative
real
set
(
(
(
rl
`1
)
-
(
flk
`1
)
)
^2
)
+
(
(
(
rl
`2
)
-
(
flk
`2
)
)
^2
)
is
complex
ext-real
real
Element
of
REAL
(
(
flk
`1
)
-
(
rp
`1
)
)
^2
is
complex
ext-real
real
Element
of
REAL
(
(
flk
`1
)
-
(
rp
`1
)
)
*
(
(
flk
`1
)
-
(
rp
`1
)
)
is
complex
ext-real
non
negative
real
set
(
(
flk
`2
)
-
(
rp
`2
)
)
^2
is
complex
ext-real
real
Element
of
REAL
(
(
flk
`2
)
-
(
rp
`2
)
)
*
(
(
flk
`2
)
-
(
rp
`2
)
)
is
complex
ext-real
non
negative
real
set
(
(
(
flk
`1
)
-
(
rp
`1
)
)
^2
)
+
(
(
(
flk
`2
)
-
(
rp
`2
)
)
^2
)
is
complex
ext-real
real
Element
of
REAL
(
(
(
(
flk
`1
)
-
(
rp
`1
)
)
^2
)
+
(
(
(
flk
`2
)
-
(
rp
`2
)
)
^2
)
)
-
(
rg
^2
)
is
complex
ext-real
real
Element
of
REAL
(
(
(
(
rl
`1
)
-
(
flk
`1
)
)
^2
)
+
(
(
(
rl
`2
)
-
(
flk
`2
)
)
^2
)
)
*
(
(
(
(
(
flk
`1
)
-
(
rp
`1
)
)
^2
)
+
(
(
(
flk
`2
)
-
(
rp
`2
)
)
^2
)
)
-
(
rg
^2
)
)
is
complex
ext-real
real
Element
of
REAL
(
(
(
(
(
flk
`1
)
-
(
rp
`1
)
)
*
(
(
rl
`1
)
-
(
flk
`1
)
)
)
+
(
(
(
flk
`2
)
-
(
rp
`2
)
)
*
(
(
rl
`2
)
-
(
flk
`2
)
)
)
)
^2
)
-
(
(
(
(
(
rl
`1
)
-
(
flk
`1
)
)
^2
)
+
(
(
(
rl
`2
)
-
(
flk
`2
)
)
^2
)
)
*
(
(
(
(
(
flk
`1
)
-
(
rp
`1
)
)
^2
)
+
(
(
(
flk
`2
)
-
(
rp
`2
)
)
^2
)
)
-
(
rg
^2
)
)
)
is
complex
ext-real
real
Element
of
REAL
sqrt
(
(
(
(
(
(
flk
`1
)
-
(
rp
`1
)
)
*
(
(
rl
`1
)
-
(
flk
`1
)
)
)
+
(
(
(
flk
`2
)
-
(
rp
`2
)
)
*
(
(
rl
`2
)
-
(
flk
`2
)
)
)
)
^2
)
-
(
(
(
(
(
rl
`1
)
-
(
flk
`1
)
)
^2
)
+
(
(
(
rl
`2
)
-
(
flk
`2
)
)
^2
)
)
*
(
(
(
(
(
flk
`1
)
-
(
rp
`1
)
)
^2
)
+
(
(
(
flk
`2
)
-
(
rp
`2
)
)
^2
)
)
-
(
rg
^2
)
)
)
)
is
complex
ext-real
real
Element
of
REAL
(
-
(
(
(
(
flk
`1
)
-
(
rp
`1
)
)
*
(
(
rl
`1
)
-
(
flk
`1
)
)
)
+
(
(
(
flk
`2
)
-
(
rp
`2
)
)
*
(
(
rl
`2
)
-
(
flk
`2
)
)
)
)
)
+
(
sqrt
(
(
(
(
(
(
flk
`1
)
-
(
rp
`1
)
)
*
(
(
rl
`1
)
-
(
flk
`1
)
)
)
+
(
(
(
flk
`2
)
-
(
rp
`2
)
)
*
(
(
rl
`2
)
-
(
flk
`2
)
)
)
)
^2
)
-
(
(
(
(
(
rl
`1
)
-
(
flk
`1
)
)
^2
)
+
(
(
(
rl
`2
)
-
(
flk
`2
)
)
^2
)
)
*
(
(
(
(
(
flk
`1
)
-
(
rp
`1
)
)
^2
)
+
(
(
(
flk
`2
)
-
(
rp
`2
)
)
^2
)
)
-
(
rg
^2
)
)
)
)
)
is
complex
ext-real
real
Element
of
REAL
(
(
-
(
(
(
(
flk
`1
)
-
(
rp
`1
)
)
*
(
(
rl
`1
)
-
(
flk
`1
)
)
)
+
(
(
(
flk
`2
)
-
(
rp
`2
)
)
*
(
(
rl
`2
)
-
(
flk
`2
)
)
)
)
)
+
(
sqrt
(
(
(
(
(
(
flk
`1
)
-
(
rp
`1
)
)
*
(
(
rl
`1
)
-
(
flk
`1
)
)
)
+
(
(
(
flk
`2
)
-
(
rp
`2
)
)
*
(
(
rl
`2
)
-
(
flk
`2
)
)
)
)
^2
)
-
(
(
(
(
(
rl
`1
)
-
(
flk
`1
)
)
^2
)
+
(
(
(
rl
`2
)
-
(
flk
`2
)
)
^2
)
)
*
(
(
(
(
(
flk
`1
)
-
(
rp
`1
)
)
^2
)
+
(
(
(
flk
`2
)
-
(
rp
`2
)
)
^2
)
)
-
(
rg
^2
)
)
)
)
)
)
/
(
(
(
(
rl
`1
)
-
(
flk
`1
)
)
^2
)
+
(
(
(
rl
`2
)
-
(
flk
`2
)
)
^2
)
)
is
complex
ext-real
real
Element
of
REAL
()
.
[
rl
,
flk
]
is
complex
ext-real
real
Element
of
REAL
(
(
TOP-REAL
2
)
,
(
TOP-REAL
2
)
,
[
rl
,
flk
]
) is
Relation-like
Function-like
V49
(2)
V50
()
V156
()
V157
()
V158
()
Element
of the
carrier
of
(
TOP-REAL
2
)
(
(
TOP-REAL
2
)
,
(
TOP-REAL
2
)
,
[
rl
,
flk
]
)
`1
is
complex
ext-real
real
Element
of
REAL
()
.
[
rl
,
flk
]
is
complex
ext-real
real
Element
of
REAL
(
(
TOP-REAL
2
)
,
(
TOP-REAL
2
)
,
[
rl
,
flk
]
)
`2
is
complex
ext-real
real
Element
of
REAL
()
.
[
rl
,
flk
]
is
complex
ext-real
real
Element
of
REAL
(
(
TOP-REAL
2
)
,
(
TOP-REAL
2
)
,
[
rl
,
flk
]
) is
Relation-like
Function-like
V49
(2)
V50
()
V156
()
V157
()
V158
()
Element
of the
carrier
of
(
TOP-REAL
2
)
(
(
TOP-REAL
2
)
,
(
TOP-REAL
2
)
,
[
rl
,
flk
]
)
`1
is
complex
ext-real
real
Element
of
REAL
(
(
(
TOP-REAL
2
)
,
(
TOP-REAL
2
)
,
[
rl
,
flk
]
)
`1
)
-
(
(
(
TOP-REAL
2
)
,
(
TOP-REAL
2
)
,
[
rl
,
flk
]
)
`1
)
is
complex
ext-real
real
Element
of
REAL
()
.
[
rl
,
flk
]
is
complex
ext-real
real
Element
of
REAL
(
(
TOP-REAL
2
)
,
(
TOP-REAL
2
)
,
[
rl
,
flk
]
)
`2
is
complex
ext-real
real
Element
of
REAL
(
(
(
TOP-REAL
2
)
,
(
TOP-REAL
2
)
,
[
rl
,
flk
]
)
`2
)
-
(
(
(
TOP-REAL
2
)
,
(
TOP-REAL
2
)
,
[
rl
,
flk
]
)
`2
)
is
complex
ext-real
real
Element
of
REAL
(
rp
)
.
[
rl
,
flk
]
is
complex
ext-real
real
Element
of
REAL
(
(
(
TOP-REAL
2
)
,
(
TOP-REAL
2
)
,
[
rl
,
flk
]
)
`1
)
-
(
rp
`1
)
is
complex
ext-real
real
Element
of
REAL
(
rp
)
.
[
rl
,
flk
]
is
complex
ext-real
real
Element
of
REAL
(
(
(
TOP-REAL
2
)
,
(
TOP-REAL
2
)
,
[
rl
,
flk
]
)
`2
)
-
(
rp
`2
)
is
complex
ext-real
real
Element
of
REAL
dom
T2C
is non
empty
Element
of
bool
the
carrier
of
(
[:
(
TOP-REAL
2
)
,
(
TOP-REAL
2
)
:]
|
[:
{
rl
}
,
(
Sphere
(
rp
,
rg
)
)
:]
)
bool
the
carrier
of
(
[:
(
TOP-REAL
2
)
,
(
TOP-REAL
2
)
:]
|
[:
{
rl
}
,
(
Sphere
(
rp
,
rg
)
)
:]
)
is non
empty
set
dom
VP
is non
empty
Element
of
bool
the
carrier
of
(
[:
(
TOP-REAL
2
)
,
(
TOP-REAL
2
)
:]
|
[:
{
rl
}
,
(
Sphere
(
rp
,
rg
)
)
:]
)
dom
(
(
(
(
(
(
rp
)
|
[:
{
rl
}
,
(
Sphere
(
rp
,
rg
)
)
:]
)
(#)
(
()
|
[:
{
rl
}
,
(
Sphere
(
rp
,
rg
)
)
:]
)
)
+
(
(
(
rp
)
|
[:
{
rl
}
,
(
Sphere
(
rp
,
rg
)
)
:]
)
(#)
(
()
|
[:
{
rl
}
,
(
Sphere
(
rp
,
rg
)
)
:]
)
)
)
(#)
(
(
(
(
rp
)
|
[:
{
rl
}
,
(
Sphere
(
rp
,
rg
)
)
:]
)
(#)
(
()
|
[:
{
rl
}
,
(
Sphere
(
rp
,
rg
)
)
:]
)
)
+
(
(
(
rp
)
|
[:
{
rl
}
,
(
Sphere
(
rp
,
rg
)
)
:]
)
(#)
(
()
|
[:
{
rl
}
,
(
Sphere
(
rp
,
rg
)
)
:]
)
)
)
)
-
(
AR
(#)
DR
)
)
is non
empty
Element
of
bool
the
carrier
of
(
[:
(
TOP-REAL
2
)
,
(
TOP-REAL
2
)
:]
|
[:
{
rl
}
,
(
Sphere
(
rp
,
rg
)
)
:]
)
(
()
|
[:
{
rl
}
,
(
Sphere
(
rp
,
rg
)
)
:]
)
.
[
rl
,
flk
]
is
complex
ext-real
real
set
(
()
|
[:
{
rl
}
,
(
Sphere
(
rp
,
rg
)
)
:]
)
.
[
rl
,
flk
]
is
complex
ext-real
real
set
(
k
|
[:
{
rl
}
,
(
Sphere
(
rp
,
rg
)
)
:]
)
.
[
rl
,
flk
]
is
complex
ext-real
real
set
k
.
[
rl
,
flk
]
is
complex
ext-real
real
Element
of
REAL
(
(
rp
)
|
[:
{
rl
}
,
(
Sphere
(
rp
,
rg
)
)
:]
)
.
[
rl
,
flk
]
is
complex
ext-real
real
set
(
(
rp
)
|
[:
{
rl
}
,
(
Sphere
(
rp
,
rg
)
)
:]
)
.
[
rl
,
flk
]
is
complex
ext-real
real
set
AR
.
[
rl
,
flk
]
is
complex
ext-real
real
set
(
(
()
|
[:
{
rl
}
,
(
Sphere
(
rp
,
rg
)
)
:]
)
(#)
(
()
|
[:
{
rl
}
,
(
Sphere
(
rp
,
rg
)
)
:]
)
)
.
[
rl
,
flk
]
is
complex
ext-real
real
set
(
(
()
|
[:
{
rl
}
,
(
Sphere
(
rp
,
rg
)
)
:]
)
(#)
(
()
|
[:
{
rl
}
,
(
Sphere
(
rp
,
rg
)
)
:]
)
)
.
[
rl
,
flk
]
is
complex
ext-real
real
set
(
(
(
()
|
[:
{
rl
}
,
(
Sphere
(
rp
,
rg
)
)
:]
)
(#)
(
()
|
[:
{
rl
}
,
(
Sphere
(
rp
,
rg
)
)
:]
)
)
.
[
rl
,
flk
]
)
+
(
(
(
()
|
[:
{
rl
}
,
(
Sphere
(
rp
,
rg
)
)
:]
)
(#)
(
()
|
[:
{
rl
}
,
(
Sphere
(
rp
,
rg
)
)
:]
)
)
.
[
rl
,
flk
]
)
is
complex
ext-real
real
set
(
(
()
|
[:
{
rl
}
,
(
Sphere
(
rp
,
rg
)
)
:]
)
.
[
rl
,
flk
]
)
*
(
(
()
|
[:
{
rl
}
,
(
Sphere
(
rp
,
rg
)
)
:]
)
.
[
rl
,
flk
]
)
is
complex
ext-real
non
negative
real
set
(
(
(
()
|
[:
{
rl
}
,
(
Sphere
(
rp
,
rg
)
)
:]
)
.
[
rl
,
flk
]
)
*
(
(
()
|
[:
{
rl
}
,
(
Sphere
(
rp
,
rg
)
)
:]
)
.
[
rl
,
flk
]
)
)
+
(
(
(
()
|
[:
{
rl
}
,
(
Sphere
(
rp
,
rg
)
)
:]
)
(#)
(
()
|
[:
{
rl
}
,
(
Sphere
(
rp
,
rg
)
)
:]
)
)
.
[
rl
,
flk
]
)
is
complex
ext-real
real
set
(
(
(
rp
)
|
[:
{
rl
}
,
(
Sphere
(
rp
,
rg
)
)
:]
)
(#)
(
()
|
[:
{
rl
}
,
(
Sphere
(
rp
,
rg
)
)
:]
)
)
.
[
rl
,
flk
]
is
complex
ext-real
real
set
(
(
(
rp
)
|
[:
{
rl
}
,
(
Sphere
(
rp
,
rg
)
)
:]
)
.
[
rl
,
flk
]
)
*
(
(
()
|
[:
{
rl
}
,
(
Sphere
(
rp
,
rg
)
)
:]
)
.
[
rl
,
flk
]
)
is
complex
ext-real
real
set
(
(
(
rp
)
|
[:
{
rl
}
,
(
Sphere
(
rp
,
rg
)
)
:]
)
(#)
(
()
|
[:
{
rl
}
,
(
Sphere
(
rp
,
rg
)
)
:]
)
)
.
[
rl
,
flk
]
is
complex
ext-real
real
set
(
(
(
rp
)
|
[:
{
rl
}
,
(
Sphere
(
rp
,
rg
)
)
:]
)
.
[
rl
,
flk
]
)
*
(
(
()
|
[:
{
rl
}
,
(
Sphere
(
rp
,
rg
)
)
:]
)
.
[
rl
,
flk
]
)
is
complex
ext-real
real
set
(
(
(
(
rp
)
|
[:
{
rl
}
,
(
Sphere
(
rp
,
rg
)
)
:]
)
(#)
(
()
|
[:
{
rl
}
,
(
Sphere
(
rp
,
rg
)
)
:]
)
)
+
(
(
(
rp
)
|
[:
{
rl
}
,
(
Sphere
(
rp
,
rg
)
)
:]
)
(#)
(
()
|
[:
{
rl
}
,
(
Sphere
(
rp
,
rg
)
)
:]
)
)
)
.
[
rl
,
flk
]
is
complex
ext-real
real
set
(
(
(
(
rp
)
|
[:
{
rl
}
,
(
Sphere
(
rp
,
rg
)
)
:]
)
(#)
(
()
|
[:
{
rl
}
,
(
Sphere
(
rp
,
rg
)
)
:]
)
)
.
[
rl
,
flk
]
)
+
(
(
(
(
rp
)
|
[:
{
rl
}
,
(
Sphere
(
rp
,
rg
)
)
:]
)
(#)
(
()
|
[:
{
rl
}
,
(
Sphere
(
rp
,
rg
)
)
:]
)
)
.
[
rl
,
flk
]
)
is
complex
ext-real
real
set
(
(
(
(
(
rp
)
|
[:
{
rl
}
,
(
Sphere
(
rp
,
rg
)
)
:]
)
(#)
(
()
|
[:
{
rl
}
,
(
Sphere
(
rp
,
rg
)
)
:]
)
)
+
(
(
(
rp
)
|
[:
{
rl
}
,
(
Sphere
(
rp
,
rg
)
)
:]
)
(#)
(
()
|
[:
{
rl
}
,
(
Sphere
(
rp
,
rg
)
)
:]
)
)
)
(#)
(
(
(
(
rp
)
|
[:
{
rl
}
,
(
Sphere
(
rp
,
rg
)
)
:]
)
(#)
(
()
|
[:
{
rl
}
,
(
Sphere
(
rp
,
rg
)
)
:]
)
)
+
(
(
(
rp
)
|
[:
{
rl
}
,
(
Sphere
(
rp
,
rg
)
)
:]
)
(#)
(
()
|
[:
{
rl
}
,
(
Sphere
(
rp
,
rg
)
)
:]
)
)
)
)
.
[
rl
,
flk
]
is
complex
ext-real
real
set
DR
.
[
rl
,
flk
]
is
complex
ext-real
real
set
(
(
(
(
rp
)
|
[:
{
rl
}
,
(
Sphere
(
rp
,
rg
)
)
:]
)
(#)
(
(
rp
)
|
[:
{
rl
}
,
(
Sphere
(
rp
,
rg
)
)
:]
)
)
+
(
(
(
rp
)
|
[:
{
rl
}
,
(
Sphere
(
rp
,
rg
)
)
:]
)
(#)
(
(
rp
)
|
[:
{
rl
}
,
(
Sphere
(
rp
,
rg
)
)
:]
)
)
)
.
[
rl
,
flk
]
is
complex
ext-real
real
set
(
(
(
(
(
rp
)
|
[:
{
rl
}
,
(
Sphere
(
rp
,
rg
)
)
:]
)
(#)
(
(
rp
)
|
[:
{
rl
}
,
(
Sphere
(
rp
,
rg
)
)
:]
)
)
+
(
(
(
rp
)
|
[:
{
rl
}
,
(
Sphere
(
rp
,
rg
)
)
:]
)
(#)
(
(
rp
)
|
[:
{
rl
}
,
(
Sphere
(
rp
,
rg
)
)
:]
)
)
)
.
[
rl
,
flk
]
)
-
(
(
k
|
[:
{
rl
}
,
(
Sphere
(
rp
,
rg
)
)
:]
)
.
[
rl
,
flk
]
)
is
complex
ext-real
real
set
(
(
(
(
(
rp
)
|
[:
{
rl
}
,
(
Sphere
(
rp
,
rg
)
)
:]
)
(#)
(
(
rp
)
|
[:
{
rl
}
,
(
Sphere
(
rp
,
rg
)
)
:]
)
)
+
(
(
(
rp
)
|
[:
{
rl
}
,
(
Sphere
(
rp
,
rg
)
)
:]
)
(#)
(
(
rp
)
|
[:
{
rl
}
,
(
Sphere
(
rp
,
rg
)
)
:]
)
)
)
.
[
rl
,
flk
]
)
-
(
rg
^2
)
is
complex
ext-real
real
set
(
(
(
rp
)
|
[:
{
rl
}
,
(
Sphere
(
rp
,
rg
)
)
:]
)
(#)
(
(
rp
)
|
[:
{
rl
}
,
(
Sphere
(
rp
,
rg
)
)
:]
)
)
.
[
rl
,
flk
]
is
complex
ext-real
real
set
(
(
(
rp
)
|
[:
{
rl
}
,
(
Sphere
(
rp
,
rg
)
)
:]
)
(#)
(
(
rp
)
|
[:
{
rl
}
,
(
Sphere
(
rp
,
rg
)
)
:]
)
)
.
[
rl
,
flk
]
is
complex
ext-real
real
set
(
(
(
(
rp
)
|
[:
{
rl
}
,
(
Sphere
(
rp
,
rg
)
)
:]
)
(#)
(
(
rp
)
|
[:
{
rl
}
,
(
Sphere
(
rp
,
rg
)
)
:]
)
)
.
[
rl
,
flk
]
)
+
(
(
(
(
rp
)
|
[:
{
rl
}
,
(
Sphere
(
rp
,
rg
)
)
:]
)
(#)
(
(
rp
)
|
[:
{
rl
}
,
(
Sphere
(
rp
,
rg
)
)
:]
)
)
.
[
rl
,
flk
]
)
is
complex
ext-real
real
set
(
(
(
(
(
rp
)
|
[:
{
rl
}
,
(
Sphere
(
rp
,
rg
)
)
:]
)
(#)
(
(
rp
)
|
[:
{
rl
}
,
(
Sphere
(
rp
,
rg
)
)
:]
)
)
.
[
rl
,
flk
]
)
+
(
(
(
(
rp
)
|
[:
{
rl
}
,
(
Sphere
(
rp
,
rg
)
)
:]
)
(#)
(
(
rp
)
|
[:
{
rl
}
,
(
Sphere
(
rp
,
rg
)
)
:]
)
)
.
[
rl
,
flk
]
)
)
-
(
rg
^2
)
is
complex
ext-real
real
set
(
(
(
rp
)
|
[:
{
rl
}
,
(
Sphere
(
rp
,
rg
)
)
:]
)
.
[
rl
,
flk
]
)
*
(
(
(
rp
)
|
[:
{
rl
}
,
(
Sphere
(
rp
,
rg
)
)
:]
)
.
[
rl
,
flk
]
)
is
complex
ext-real
non
negative
real
set
(
(
(
(
rp
)
|
[:
{
rl
}
,
(
Sphere
(
rp
,
rg
)
)
:]
)
.
[
rl
,
flk
]
)
*
(
(
(
rp
)
|
[:
{
rl
}
,
(
Sphere
(
rp
,
rg
)
)
:]
)
.
[
rl
,
flk
]
)
)
+
(
(
(
(
rp
)
|
[:
{
rl
}
,
(
Sphere
(
rp
,
rg
)
)
:]
)
(#)
(
(
rp
)
|
[:
{
rl
}
,
(
Sphere
(
rp
,
rg
)
)
:]
)
)
.
[
rl
,
flk
]
)
is
complex
ext-real
real
set
(
(
(
(
(
rp
)
|
[:
{
rl
}
,
(
Sphere
(
rp
,
rg
)
)
:]
)
.
[
rl
,
flk
]
)
*
(
(
(
rp
)
|
[:
{
rl
}
,
(
Sphere
(
rp
,
rg
)
)
:]
)
.
[
rl
,
flk
]
)
)
+
(
(
(
(
rp
)
|
[:
{
rl
}
,
(
Sphere
(
rp
,
rg
)
)
:]
)
(#)
(
(
rp
)
|
[:
{
rl
}
,
(
Sphere
(
rp
,
rg
)
)
:]
)
)
.
[
rl
,
flk
]
)
)
-
(
rg
^2
)
is
complex
ext-real
real
set
dom
(
sqrt
(
(
(
(
(
(
rp
)
|
[:
{
rl
}
,
(
Sphere
(
rp
,
rg
)
)
:]
)
(#)
(
()
|
[:
{
rl
}
,
(
Sphere
(
rp
,
rg
)
)
:]
)
)
+
(
(
(
rp
)
|
[:
{
rl
}
,
(
Sphere
(
rp
,
rg
)
)
:]
)
(#)
(
()
|
[:
{
rl
}
,
(
Sphere
(
rp
,
rg
)
)
:]
)
)
)
(#)
(
(
(
(
rp
)
|
[:
{
rl
}
,
(
Sphere
(
rp
,
rg
)
)
:]
)
(#)
(
()
|
[:
{
rl
}
,
(
Sphere
(
rp
,
rg
)
)
:]
)
)
+
(
(
(
rp
)
|
[:
{
rl
}
,
(
Sphere
(
rp
,
rg
)
)
:]
)
(#)
(
()
|
[:
{
rl
}
,
(
Sphere
(
rp
,
rg
)
)
:]
)
)
)
)
-
(
AR
(#)
DR
)
)
)
is non
empty
Element
of
bool
the
carrier
of
(
[:
(
TOP-REAL
2
)
,
(
TOP-REAL
2
)
:]
|
[:
{
rl
}
,
(
Sphere
(
rp
,
rg
)
)
:]
)
(
sqrt
(
(
(
(
(
(
rp
)
|
[:
{
rl
}
,
(
Sphere
(
rp
,
rg
)
)
:]
)
(#)
(
()
|
[:
{
rl
}
,
(
Sphere
(
rp
,
rg
)
)
:]
)
)
+
(
(
(
rp
)
|
[:
{
rl
}
,
(
Sphere
(
rp
,
rg
)
)
:]
)
(#)
(
()
|
[:
{
rl
}
,
(
Sphere
(
rp
,
rg
)
)
:]
)
)
)
(#)
(
(
(
(
rp
)
|
[:
{
rl
}
,
(
Sphere
(
rp
,
rg
)
)
:]
)
(#)
(
()
|
[:
{
rl
}
,
(
Sphere
(
rp
,
rg
)
)
:]
)
)
+
(
(
(
rp
)
|
[:
{
rl
}
,
(
Sphere
(
rp
,
rg
)
)
:]
)
(#)
(
()
|
[:
{
rl
}
,
(
Sphere
(
rp
,
rg
)
)
:]
)
)
)
)
-
(
AR
(#)
DR
)
)
)
.
[
rl
,
flk
]
is
complex
ext-real
real
set
(
(
(
(
(
(
rp
)
|
[:
{
rl
}
,
(
Sphere
(
rp
,
rg
)
)
:]
)
(#)
(
()
|
[:
{
rl
}
,
(
Sphere
(
rp
,
rg
)
)
:]
)
)
+
(
(
(
rp
)
|
[:
{
rl
}
,
(
Sphere
(
rp
,
rg
)
)
:]
)
(#)
(
()
|
[:
{
rl
}
,
(
Sphere
(
rp
,
rg
)
)
:]
)
)
)
(#)
(
(
(
(
rp
)
|
[:
{
rl
}
,
(
Sphere
(
rp
,
rg
)
)
:]
)
(#)
(
()
|
[:
{
rl
}
,
(
Sphere
(
rp
,
rg
)
)
:]
)
)
+
(
(
(
rp
)
|
[:
{
rl
}
,
(
Sphere
(
rp
,
rg
)
)
:]
)
(#)
(
()
|
[:
{
rl
}
,
(
Sphere
(
rp
,
rg
)
)
:]
)
)
)
)
-
(
AR
(#)
DR
)
)
.
[
rl
,
flk
]
is
complex
ext-real
real
set
sqrt
(
(
(
(
(
(
(
rp
)
|
[:
{
rl
}
,
(
Sphere
(
rp
,
rg
)
)
:]
)
(#)
(
()
|
[:
{
rl
}
,
(
Sphere
(
rp
,
rg
)
)
:]
)
)
+
(
(
(
rp
)
|
[:
{
rl
}
,
(
Sphere
(
rp
,
rg
)
)
:]
)
(#)
(
()
|
[:
{
rl
}
,
(
Sphere
(
rp
,
rg
)
)
:]
)
)
)
(#)
(
(
(
(
rp
)
|
[:
{
rl
}
,
(
Sphere
(
rp
,
rg
)
)
:]
)
(#)
(
()
|
[:
{
rl
}
,
(
Sphere
(
rp
,
rg
)
)
:]
)
)
+
(
(
(
rp
)
|
[:
{
rl
}
,
(
Sphere
(
rp
,
rg
)
)
:]
)
(#)
(
()
|
[:
{
rl
}
,
(
Sphere
(
rp
,
rg
)
)
:]
)
)
)
)
-
(
AR
(#)
DR
)
)
.
[
rl
,
flk
]
)
is
complex
ext-real
real
set
(
AR
(#)
DR
)
.
[
rl
,
flk
]
is
complex
ext-real
real
set
(
(
(
(
(
(
rp
)
|
[:
{
rl
}
,
(
Sphere
(
rp
,
rg
)
)
:]
)
(#)
(
()
|
[:
{
rl
}
,
(
Sphere
(
rp
,
rg
)
)
:]
)
)
+
(
(
(
rp
)
|
[:
{
rl
}
,
(
Sphere
(
rp
,
rg
)
)
:]
)
(#)
(
()
|
[:
{
rl
}
,
(
Sphere
(
rp
,
rg
)
)
:]
)
)
)
(#)
(
(
(
(
rp
)
|
[:
{
rl
}
,
(
Sphere
(
rp
,
rg
)
)
:]
)
(#)
(
()
|
[:
{
rl
}
,
(
Sphere
(
rp
,
rg
)
)
:]
)
)
+
(
(
(
rp
)
|
[:
{
rl
}
,
(
Sphere
(
rp
,
rg
)
)
:]
)
(#)
(
()
|
[:
{
rl
}
,
(
Sphere
(
rp
,
rg
)
)
:]
)
)
)
)
.
[
rl
,
flk
]
)
-
(
(
AR
(#)
DR
)
.
[
rl
,
flk
]
)
is
complex
ext-real
real
set
sqrt
(
(
(
(
(
(
(
rp
)
|
[:
{
rl
}
,
(
Sphere
(
rp
,
rg
)
)
:]
)
(#)
(
()
|
[:
{
rl
}
,
(
Sphere
(
rp
,
rg
)
)
:]
)
)
+
(
(
(
rp
)
|
[:
{
rl
}
,
(
Sphere
(
rp
,
rg
)
)
:]
)
(#)
(
()
|
[:
{
rl
}
,
(
Sphere
(
rp
,
rg
)
)
:]
)
)
)
(#)
(
(
(
(
rp
)
|
[:
{
rl
}
,
(
Sphere
(
rp
,
rg
)
)
:]
)
(#)
(
()
|
[:
{
rl
}
,
(
Sphere
(
rp
,
rg
)
)
:]
)
)
+
(
(
(
rp
)
|
[:
{
rl
}
,
(
Sphere
(
rp
,
rg
)
)
:]
)
(#)
(
()
|
[:
{
rl
}
,
(
Sphere
(
rp
,
rg
)
)
:]
)
)
)
)
.
[
rl
,
flk
]
)
-
(
(
AR
(#)
DR
)
.
[
rl
,
flk
]
)
)
is
complex
ext-real
real
set
dom
(
(
(
-
(
(
(
(
rp
)
|
[:
{
rl
}
,
(
Sphere
(
rp
,
rg
)
)
:]
)
(#)
(
()
|
[:
{
rl
}
,
(
Sphere
(
rp
,
rg
)
)
:]
)
)
+
(
(
(
rp
)
|
[:
{
rl
}
,
(
Sphere
(
rp
,
rg
)
)
:]
)
(#)
(
()
|
[:
{
rl
}
,
(
Sphere
(
rp
,
rg
)
)
:]
)
)
)
)
+
(
sqrt
(
(
(
(
(
(
rp
)
|
[:
{
rl
}
,
(
Sphere
(
rp
,
rg
)
)
:]
)
(#)
(
()
|
[:
{
rl
}
,
(
Sphere
(
rp
,
rg
)
)
:]
)
)
+
(
(
(
rp
)
|
[:
{
rl
}
,
(
Sphere
(
rp
,
rg
)
)
:]
)
(#)
(
()
|
[:
{
rl
}
,
(
Sphere
(
rp
,
rg
)
)
:]
)
)
)
(#)
(
(
(
(
rp
)
|
[:
{
rl
}
,
(
Sphere
(
rp
,
rg
)
)
:]
)
(#)
(
()
|
[:
{
rl
}
,
(
Sphere
(
rp
,
rg
)
)
:]
)
)
+
(
(
(
rp
)
|
[:
{
rl
}
,
(
Sphere
(
rp
,
rg
)
)
:]
)
(#)
(
()
|
[:
{
rl
}
,
(
Sphere
(
rp
,
rg
)
)
:]
)
)
)
)
-
(
AR
(#)
DR
)
)
)
)
/
AR
)
is non
empty
Element
of
bool
the
carrier
of
(
[:
(
TOP-REAL
2
)
,
(
TOP-REAL
2
)
:]
|
[:
{
rl
}
,
(
Sphere
(
rp
,
rg
)
)
:]
)
(
(
(
-
(
(
(
(
rp
)
|
[:
{
rl
}
,
(
Sphere
(
rp
,
rg
)
)
:]
)
(#)
(
()
|
[:
{
rl
}
,
(
Sphere
(
rp
,
rg
)
)
:]
)
)
+
(
(
(
rp
)
|
[:
{
rl
}
,
(
Sphere
(
rp
,
rg
)
)
:]
)
(#)
(
()
|
[:
{
rl
}
,
(
Sphere
(
rp
,
rg
)
)
:]
)
)
)
)
+
(
sqrt
(
(
(
(
(
(
rp
)
|
[:
{
rl
}
,
(
Sphere
(
rp
,
rg
)
)
:]
)
(#)
(
()
|
[:
{
rl
}
,
(
Sphere
(
rp
,
rg
)
)
:]
)
)
+
(
(
(
rp
)
|
[:
{
rl
}
,
(
Sphere
(
rp
,
rg
)
)
:]
)
(#)
(
()
|
[:
{
rl
}
,
(
Sphere
(
rp
,
rg
)
)
:]
)
)
)
(#)
(
(
(
(
rp
)
|
[:
{
rl
}
,
(
Sphere
(
rp
,
rg
)
)
:]
)
(#)
(
()
|
[:
{
rl
}
,
(
Sphere
(
rp
,
rg
)
)
:]
)
)
+
(
(
(
rp
)
|
[:
{
rl
}
,
(
Sphere
(
rp
,
rg
)
)
:]
)
(#)
(
()
|
[:
{
rl
}
,
(
Sphere
(
rp
,
rg
)
)
:]
)
)
)
)
-
(
AR
(#)
DR
)
)
)
)
/
AR
)
.
[
rl
,
flk
]
is
complex
ext-real
real
set
(
(
-
(
(
(
(
rp
)
|
[:
{
rl
}
,
(
Sphere
(
rp
,
rg
)
)
:]
)
(#)
(
()
|
[:
{
rl
}
,
(
Sphere
(
rp
,
rg
)
)
:]
)
)
+
(
(
(
rp
)
|
[:
{
rl
}
,
(
Sphere
(
rp
,
rg
)
)
:]
)
(#)
(
()
|
[:
{
rl
}
,
(
Sphere
(
rp
,
rg
)
)
:]
)
)
)
)
+
(
sqrt
(
(
(
(
(
(
rp
)
|
[:
{
rl
}
,
(
Sphere
(
rp
,
rg
)
)
:]
)
(#)
(
()
|
[:
{
rl
}
,
(
Sphere
(
rp
,
rg
)
)
:]
)
)
+
(
(
(
rp
)
|
[:
{
rl
}
,
(
Sphere
(
rp
,
rg
)
)
:]
)
(#)
(
()
|
[:
{
rl
}
,
(
Sphere
(
rp
,
rg
)
)
:]
)
)
)
(#)
(
(
(
(
rp
)
|
[:
{
rl
}
,
(
Sphere
(
rp
,
rg
)
)
:]
)
(#)
(
()
|
[:
{
rl
}
,
(
Sphere
(
rp
,
rg
)
)
:]
)
)
+
(
(
(
rp
)
|
[:
{
rl
}
,
(
Sphere
(
rp
,
rg
)
)
:]
)
(#)
(
()
|
[:
{
rl
}
,
(
Sphere
(
rp
,
rg
)
)
:]
)
)
)
)
-
(
AR
(#)
DR
)
)
)
)
.
[
rl
,
flk
]
is
complex
ext-real
real
set
(
AR
.
[
rl
,
flk
]
)
"
is
complex
ext-real
real
set
(
(
(
-
(
(
(
(
rp
)
|
[:
{
rl
}
,
(
Sphere
(
rp
,
rg
)
)
:]
)
(#)
(
()
|
[:
{
rl
}
,
(
Sphere
(
rp
,
rg
)
)
:]
)
)
+
(
(
(
rp
)
|
[:
{
rl
}
,
(
Sphere
(
rp
,
rg
)
)
:]
)
(#)
(
()
|
[:
{
rl
}
,
(
Sphere
(
rp
,
rg
)
)
:]
)
)
)
)
+
(
sqrt
(
(
(
(
(
(
rp
)
|
[:
{
rl
}
,
(
Sphere
(
rp
,
rg
)
)
:]
)
(#)
(
()
|
[:
{
rl
}
,
(
Sphere
(
rp
,
rg
)
)
:]
)
)
+
(
(
(
rp
)
|
[:
{
rl
}
,
(
Sphere
(
rp
,
rg
)
)
:]
)
(#)
(
()
|
[:
{
rl
}
,
(
Sphere
(
rp
,
rg
)
)
:]
)
)
)
(#)
(
(
(
(
rp
)
|
[:
{
rl
}
,
(
Sphere
(
rp
,
rg
)
)
:]
)
(#)
(
()
|
[:
{
rl
}
,
(
Sphere
(
rp
,
rg
)
)
:]
)
)
+
(
(
(
rp
)
|
[:
{
rl
}
,
(
Sphere
(
rp
,
rg
)
)
:]
)
(#)
(
()
|
[:
{
rl
}
,
(
Sphere
(
rp
,
rg
)
)
:]
)
)
)
)
-
(
AR
(#)
DR
)
)
)
)
.
[
rl
,
flk
]
)
*
(
(
AR
.
[
rl
,
flk
]
)
"
)
is
complex
ext-real
real
set
(
(
(
-
(
(
(
(
rp
)
|
[:
{
rl
}
,
(
Sphere
(
rp
,
rg
)
)
:]
)
(#)
(
()
|
[:
{
rl
}
,
(
Sphere
(
rp
,
rg
)
)
:]
)
)
+
(
(
(
rp
)
|
[:
{
rl
}
,
(
Sphere
(
rp
,
rg
)
)
:]
)
(#)
(
()
|
[:
{
rl
}
,
(
Sphere
(
rp
,
rg
)
)
:]
)
)
)
)
+
(
sqrt
(
(
(
(
(
(
rp
)
|
[:
{
rl
}
,
(
Sphere
(
rp
,
rg
)
)
:]
)
(#)
(
()
|
[:
{
rl
}
,
(
Sphere
(
rp
,
rg
)
)
:]
)
)
+
(
(
(
rp
)
|
[:
{
rl
}
,
(
Sphere
(
rp
,
rg
)
)
:]
)
(#)
(
()
|
[:
{
rl
}
,
(
Sphere
(
rp
,
rg
)
)
:]
)
)
)
(#)
(
(
(
(
rp
)
|
[:
{
rl
}
,
(
Sphere
(
rp
,
rg
)
)
:]
)
(#)
(
()
|
[:
{
rl
}
,
(
Sphere
(
rp
,
rg
)
)
:]
)
)
+
(
(
(
rp
)
|
[:
{
rl
}
,
(
Sphere
(
rp
,
rg
)
)
:]
)
(#)
(
()
|
[:
{
rl
}
,
(
Sphere
(
rp
,
rg
)
)
:]
)
)
)
)
-
(
AR
(#)
DR
)
)
)
)
.
[
rl
,
flk
]
)
/
(
AR
.
[
rl
,
flk
]
)
is
complex
ext-real
real
Element
of
COMPLEX
(
-
(
(
(
(
rp
)
|
[:
{
rl
}
,
(
Sphere
(
rp
,
rg
)
)
:]
)
(#)
(
()
|
[:
{
rl
}
,
(
Sphere
(
rp
,
rg
)
)
:]
)
)
+
(
(
(
rp
)
|
[:
{
rl
}
,
(
Sphere
(
rp
,
rg
)
)
:]
)
(#)
(
()
|
[:
{
rl
}
,
(
Sphere
(
rp
,
rg
)
)
:]
)
)
)
)
.
[
rl
,
flk
]
is
complex
ext-real
real
set
(
(
-
(
(
(
(
rp
)
|
[:
{
rl
}
,
(
Sphere
(
rp
,
rg
)
)
:]
)
(#)
(
()
|
[:
{
rl
}
,
(
Sphere
(
rp
,
rg
)
)
:]
)
)
+
(
(
(
rp
)
|
[:
{
rl
}
,
(
Sphere
(
rp
,
rg
)
)
:]
)
(#)
(
()
|
[:
{
rl
}
,
(
Sphere
(
rp
,
rg
)
)
:]
)
)
)
)
.
[
rl
,
flk
]
)
+
(
(
sqrt
(
(
(
(
(
(
rp
)
|
[:
{
rl
}
,
(
Sphere
(
rp
,
rg
)
)
:]
)
(#)
(
()
|
[:
{
rl
}
,
(
Sphere
(
rp
,
rg
)
)
:]
)
)
+
(
(
(
rp
)
|
[:
{
rl
}
,
(
Sphere
(
rp
,
rg
)
)
:]
)
(#)
(
()
|
[:
{
rl
}
,
(
Sphere
(
rp
,
rg
)
)
:]
)
)
)
(#)
(
(
(
(
rp
)
|
[:
{
rl
}
,
(
Sphere
(
rp
,
rg
)
)
:]
)
(#)
(
()
|
[:
{
rl
}
,
(
Sphere
(
rp
,
rg
)
)
:]
)
)
+
(
(
(
rp
)
|
[:
{
rl
}
,
(
Sphere
(
rp
,
rg
)
)
:]
)
(#)
(
()
|
[:
{
rl
}
,
(
Sphere
(
rp
,
rg
)
)
:]
)
)
)
)
-
(
AR
(#)
DR
)
)
)
.
[
rl
,
flk
]
)
is
complex
ext-real
real
set
(
(
(
-
(
(
(
(
rp
)
|
[:
{
rl
}
,
(
Sphere
(
rp
,
rg
)
)
:]
)
(#)
(
()
|
[:
{
rl
}
,
(
Sphere
(
rp
,
rg
)
)
:]
)
)
+
(
(
(
rp
)
|
[:
{
rl
}
,
(
Sphere
(
rp
,
rg
)
)
:]
)
(#)
(
()
|
[:
{
rl
}
,
(
Sphere
(
rp
,
rg
)
)
:]
)
)
)
)
.
[
rl
,
flk
]
)
+
(
(
sqrt
(
(
(
(
(
(
rp
)
|
[:
{
rl
}
,
(
Sphere
(
rp
,
rg
)
)
:]
)
(#)
(
()
|
[:
{
rl
}
,
(
Sphere
(
rp
,
rg
)
)
:]
)
)
+
(
(
(
rp
)
|
[:
{
rl
}
,
(
Sphere
(
rp
,
rg
)
)
:]
)
(#)
(
()
|
[:
{
rl
}
,
(
Sphere
(
rp
,
rg
)
)
:]
)
)
)
(#)
(
(
(
(
rp
)
|
[:
{
rl
}
,
(
Sphere
(
rp
,
rg
)
)
:]
)
(#)
(
()
|
[:
{
rl
}
,
(
Sphere
(
rp
,
rg
)
)
:]
)
)
+
(
(
(
rp
)
|
[:
{
rl
}
,
(
Sphere
(
rp
,
rg
)
)
:]
)
(#)
(
()
|
[:
{
rl
}
,
(
Sphere
(
rp
,
rg
)
)
:]
)
)
)
)
-
(
AR
(#)
DR
)
)
)
.
[
rl
,
flk
]
)
)
/
(
(
(
(
rl
`1
)
-
(
flk
`1
)
)
^2
)
+
(
(
(
rl
`2
)
-
(
flk
`2
)
)
^2
)
)
is
complex
ext-real
real
Element
of
REAL
T2C
.
[
rl
,
flk
]
is
complex
ext-real
real
set
(
()
|
[:
{
rl
}
,
(
Sphere
(
rp
,
rg
)
)
:]
)
.
[
rl
,
flk
]
is
complex
ext-real
real
set
(
(
(
(
-
(
(
(
(
rp
)
|
[:
{
rl
}
,
(
Sphere
(
rp
,
rg
)
)
:]
)
(#)
(
()
|
[:
{
rl
}
,
(
Sphere
(
rp
,
rg
)
)
:]
)
)
+
(
(
(
rp
)
|
[:
{
rl
}
,
(
Sphere
(
rp
,
rg
)
)
:]
)
(#)
(
()
|
[:
{
rl
}
,
(
Sphere
(
rp
,
rg
)
)
:]
)
)
)
)
+
(
sqrt
(
(
(
(
(
(
rp
)
|
[:
{
rl
}
,
(
Sphere
(
rp
,
rg
)
)
:]
)
(#)
(
()
|
[:
{
rl
}
,
(
Sphere
(
rp
,
rg
)
)
:]
)
)
+
(
(
(
rp
)
|
[:
{
rl
}
,
(
Sphere
(
rp
,
rg
)
)
:]
)
(#)
(
()
|
[:
{
rl
}
,
(
Sphere
(
rp
,
rg
)
)
:]
)
)
)
(#)
(
(
(
(
rp
)
|
[:
{
rl
}
,
(
Sphere
(
rp
,
rg
)
)
:]
)
(#)
(
()
|
[:
{
rl
}
,
(
Sphere
(
rp
,
rg
)
)
:]
)
)
+
(
(
(
rp
)
|
[:
{
rl
}
,
(
Sphere
(
rp
,
rg
)
)
:]
)
(#)
(
()
|
[:
{
rl
}
,
(
Sphere
(
rp
,
rg
)
)
:]
)
)
)
)
-
(
AR
(#)
DR
)
)
)
)
/
AR
)
(#)
(
()
|
[:
{
rl
}
,
(
Sphere
(
rp
,
rg
)
)
:]
)
)
.
[
rl
,
flk
]
is
complex
ext-real
real
set
(
(
()
|
[:
{
rl
}
,
(
Sphere
(
rp
,
rg
)
)
:]
)
.
[
rl
,
flk
]
)
+
(
(
(
(
(
-
(
(
(
(
rp
)
|
[:
{
rl
}
,
(
Sphere
(
rp
,
rg
)
)
:]
)
(#)
(
()
|
[:
{
rl
}
,
(
Sphere
(
rp
,
rg
)
)
:]
)
)
+
(
(
(
rp
)
|
[:
{
rl
}
,
(
Sphere
(
rp
,
rg
)
)
:]
)
(#)
(
()
|
[:
{
rl
}
,
(
Sphere
(
rp
,
rg
)
)
:]
)
)
)
)
+
(
sqrt
(
(
(
(
(
(
rp
)
|
[:
{
rl
}
,
(
Sphere
(
rp
,
rg
)
)
:]
)
(#)
(
()
|
[:
{
rl
}
,
(
Sphere
(
rp
,
rg
)
)
:]
)
)
+
(
(
(
rp
)
|
[:
{
rl
}
,
(
Sphere
(
rp
,
rg
)
)
:]
)
(#)
(
()
|
[:
{
rl
}
,
(
Sphere
(
rp
,
rg
)
)
:]
)
)
)
(#)
(
(
(
(
rp
)
|
[:
{
rl
}
,
(
Sphere
(
rp
,
rg
)
)
:]
)
(#)
(
()
|
[:
{
rl
}
,
(
Sphere
(
rp
,
rg
)
)
:]
)
)
+
(
(
(
rp
)
|
[:
{
rl
}
,
(
Sphere
(
rp
,
rg
)
)
:]
)
(#)
(
()
|
[:
{
rl
}
,
(
Sphere
(
rp
,
rg
)
)
:]
)
)
)
)
-
(
AR
(#)
DR
)
)
)
)
/
AR
)
(#)
(
()
|
[:
{
rl
}
,
(
Sphere
(
rp
,
rg
)
)
:]
)
)
.
[
rl
,
flk
]
)
is
complex
ext-real
real
set
(
flk
`1
)
+
(
(
(
(
(
-
(
(
(
(
rp
)
|
[:
{
rl
}
,
(
Sphere
(
rp
,
rg
)
)
:]
)
(#)
(
()
|
[:
{
rl
}
,
(
Sphere
(
rp
,
rg
)
)
:]
)
)
+
(
(
(
rp
)
|
[:
{
rl
}
,
(
Sphere
(
rp
,
rg
)
)
:]
)
(#)
(
()
|
[:
{
rl
}
,
(
Sphere
(
rp
,
rg
)
)
:]
)
)
)
)
+
(
sqrt
(
(
(
(
(
(
rp
)
|
[:
{
rl
}
,
(
Sphere
(
rp
,
rg
)
)
:]
)
(#)
(
()
|
[:
{
rl
}
,
(
Sphere
(
rp
,
rg
)
)
:]
)
)
+
(
(
(
rp
)
|
[:
{
rl
}
,
(
Sphere
(
rp
,
rg
)
)
:]
)
(#)
(
()
|
[:
{
rl
}
,
(
Sphere
(
rp
,
rg
)
)
:]
)
)
)
(#)
(
(
(
(
rp
)
|
[:
{
rl
}
,
(
Sphere
(
rp
,
rg
)
)
:]
)
(#)
(
()
|
[:
{
rl
}
,
(
Sphere
(
rp
,
rg
)
)
:]
)
)
+
(
(
(
rp
)
|
[:
{
rl
}
,
(
Sphere
(
rp
,
rg
)
)
:]
)
(#)
(
()
|
[:
{
rl
}
,
(
Sphere
(
rp
,
rg
)
)
:]
)
)
)
)
-
(
AR
(#)
DR
)
)
)
)
/
AR
)
(#)
(
()
|
[:
{
rl
}
,
(
Sphere
(
rp
,
rg
)
)
:]
)
)
.
[
rl
,
flk
]
)
is
complex
ext-real
real
Element
of
REAL
(
(
(
-
(
(
(
(
flk
`1
)
-
(
rp
`1
)
)
*
(
(
rl
`1
)
-
(
flk
`1
)
)
)
+
(
(
(
flk
`2
)
-
(
rp
`2
)
)
*
(
(
rl
`2
)
-
(
flk
`2
)
)
)
)
)
+
(
sqrt
(
(
(
(
(
(
flk
`1
)
-
(
rp
`1
)
)
*
(
(
rl
`1
)
-
(
flk
`1
)
)
)
+
(
(
(
flk
`2
)
-
(
rp
`2
)
)
*
(
(
rl
`2
)
-
(
flk
`2
)
)
)
)
^2
)
-
(
(
(
(
(
rl
`1
)
-
(
flk
`1
)
)
^2
)
+
(
(
(
rl
`2
)
-
(
flk
`2
)
)
^2
)
)
*
(
(
(
(
(
flk
`1
)
-
(
rp
`1
)
)
^2
)
+
(
(
(
flk
`2
)
-
(
rp
`2
)
)
^2
)
)
-
(
rg
^2
)
)
)
)
)
)
/
(
(
(
(
rl
`1
)
-
(
flk
`1
)
)
^2
)
+
(
(
(
rl
`2
)
-
(
flk
`2
)
)
^2
)
)
)
*
(
(
rl
`1
)
-
(
flk
`1
)
)
is
complex
ext-real
real
Element
of
REAL
(
flk
`1
)
+
(
(
(
(
-
(
(
(
(
flk
`1
)
-
(
rp
`1
)
)
*
(
(
rl
`1
)
-
(
flk
`1
)
)
)
+
(
(
(
flk
`2
)
-
(
rp
`2
)
)
*
(
(
rl
`2
)
-
(
flk
`2
)
)
)
)
)
+
(
sqrt
(
(
(
(
(
(
flk
`1
)
-
(
rp
`1
)
)
*
(
(
rl
`1
)
-
(
flk
`1
)
)
)
+
(
(
(
flk
`2
)
-
(
rp
`2
)
)
*
(
(
rl
`2
)
-
(
flk
`2
)
)
)
)
^2
)
-
(
(
(
(
(
rl
`1
)
-
(
flk
`1
)
)
^2
)
+
(
(
(
rl
`2
)
-
(
flk
`2
)
)
^2
)
)
*
(
(
(
(
(
flk
`1
)
-
(
rp
`1
)
)
^2
)
+
(
(
(
flk
`2
)
-
(
rp
`2
)
)
^2
)
)
-
(
rg
^2
)
)
)
)
)
)
/
(
(
(
(
rl
`1
)
-
(
flk
`1
)
)
^2
)
+
(
(
(
rl
`2
)
-
(
flk
`2
)
)
^2
)
)
)
*
(
(
rl
`1
)
-
(
flk
`1
)
)
)
is
complex
ext-real
real
Element
of
REAL
VP
.
[
rl
,
flk
]
is
complex
ext-real
real
set
(
()
|
[:
{
rl
}
,
(
Sphere
(
rp
,
rg
)
)
:]
)
.
[
rl
,
flk
]
is
complex
ext-real
real
set
(
(
(
(
-
(
(
(
(
rp
)
|
[:
{
rl
}
,
(
Sphere
(
rp
,
rg
)
)
:]
)
(#)
(
()
|
[:
{
rl
}
,
(
Sphere
(
rp
,
rg
)
)
:]
)
)
+
(
(
(
rp
)
|
[:
{
rl
}
,
(
Sphere
(
rp
,
rg
)
)
:]
)
(#)
(
()
|
[:
{
rl
}
,
(
Sphere
(
rp
,
rg
)
)
:]
)
)
)
)
+
(
sqrt
(
(
(
(
(
(
rp
)
|
[:
{
rl
}
,
(
Sphere
(
rp
,
rg
)
)
:]
)
(#)
(
()
|
[:
{
rl
}
,
(
Sphere
(
rp
,
rg
)
)
:]
)
)
+
(
(
(
rp
)
|
[:
{
rl
}
,
(
Sphere
(
rp
,
rg
)
)
:]
)
(#)
(
()
|
[:
{
rl
}
,
(
Sphere
(
rp
,
rg
)
)
:]
)
)
)
(#)
(
(
(
(
rp
)
|
[:
{
rl
}
,
(
Sphere
(
rp
,
rg
)
)
:]
)
(#)
(
()
|
[:
{
rl
}
,
(
Sphere
(
rp
,
rg
)
)
:]
)
)
+
(
(
(
rp
)
|
[:
{
rl
}
,
(
Sphere
(
rp
,
rg
)
)
:]
)
(#)
(
()
|
[:
{
rl
}
,
(
Sphere
(
rp
,
rg
)
)
:]
)
)
)
)
-
(
AR
(#)
DR
)
)
)
)
/
AR
)
(#)
(
()
|
[:
{
rl
}
,
(
Sphere
(
rp
,
rg
)
)
:]
)
)
.
[
rl
,
flk
]
is
complex
ext-real
real
set
(
(
()
|
[:
{
rl
}
,
(
Sphere
(
rp
,
rg
)
)
:]
)
.
[
rl
,
flk
]
)
+
(
(
(
(
(
-
(
(
(
(
rp
)
|
[:
{
rl
}
,
(
Sphere
(
rp
,
rg
)
)
:]
)
(#)
(
()
|
[:
{
rl
}
,
(
Sphere
(
rp
,
rg
)
)
:]
)
)
+
(
(
(
rp
)
|
[:
{
rl
}
,
(
Sphere
(
rp
,
rg
)
)
:]
)
(#)
(
()
|
[:
{
rl
}
,
(
Sphere
(
rp
,
rg
)
)
:]
)
)
)
)
+
(
sqrt
(
(
(
(
(
(
rp
)
|
[:
{
rl
}
,
(
Sphere
(
rp
,
rg
)
)
:]
)
(#)
(
()
|
[:
{
rl
}
,
(
Sphere
(
rp
,
rg
)
)
:]
)
)
+
(
(
(
rp
)
|
[:
{
rl
}
,
(
Sphere
(
rp
,
rg
)
)
:]
)
(#)
(
()
|
[:
{
rl
}
,
(
Sphere
(
rp
,
rg
)
)
:]
)
)
)
(#)
(
(
(
(
rp
)
|
[:
{
rl
}
,
(
Sphere
(
rp
,
rg
)
)
:]
)
(#)
(
()
|
[:
{
rl
}
,
(
Sphere
(
rp
,
rg
)
)
:]
)
)
+
(
(
(
rp
)
|
[:
{
rl
}
,
(
Sphere
(
rp
,
rg
)
)
:]
)
(#)
(
()
|
[:
{
rl
}
,
(
Sphere
(
rp
,
rg
)
)
:]
)
)
)
)
-
(
AR
(#)
DR
)
)
)
)
/
AR
)
(#)
(
()
|
[:
{
rl
}
,
(
Sphere
(
rp
,
rg
)
)
:]
)
)
.
[
rl
,
flk
]
)
is
complex
ext-real
real
set
(
flk
`2
)
+
(
(
(
(
(
-
(
(
(
(
rp
)
|
[:
{
rl
}
,
(
Sphere
(
rp
,
rg
)
)
:]
)
(#)
(
()
|
[:
{
rl
}
,
(
Sphere
(
rp
,
rg
)
)
:]
)
)
+
(
(
(
rp
)
|
[:
{
rl
}
,
(
Sphere
(
rp
,
rg
)
)
:]
)
(#)
(
()
|
[:
{
rl
}
,
(
Sphere
(
rp
,
rg
)
)
:]
)
)
)
)
+
(
sqrt
(
(
(
(
(
(
rp
)
|
[:
{
rl
}
,
(
Sphere
(
rp
,
rg
)
)
:]
)
(#)
(
()
|
[:
{
rl
}
,
(
Sphere
(
rp
,
rg
)
)
:]
)
)
+
(
(
(
rp
)
|
[:
{
rl
}
,
(
Sphere
(
rp
,
rg
)
)
:]
)
(#)
(
()
|
[:
{
rl
}
,
(
Sphere
(
rp
,
rg
)
)
:]
)
)
)
(#)
(
(
(
(
rp
)
|
[:
{
rl
}
,
(
Sphere
(
rp
,
rg
)
)
:]
)
(#)
(
()
|
[:
{
rl
}
,
(
Sphere
(
rp
,
rg
)
)
:]
)
)
+
(
(
(
rp
)
|
[:
{
rl
}
,
(
Sphere
(
rp
,
rg
)
)
:]
)
(#)
(
()
|
[:
{
rl
}
,
(
Sphere
(
rp
,
rg
)
)
:]
)
)
)
)
-
(
AR
(#)
DR
)
)
)
)
/
AR
)
(#)
(
()
|
[:
{
rl
}
,
(
Sphere
(
rp
,
rg
)
)
:]
)
)
.
[
rl
,
flk
]
)
is
complex
ext-real
real
Element
of
REAL
(
(
(
-
(
(
(
(
flk
`1
)
-
(
rp
`1
)
)
*
(
(
rl
`1
)
-
(
flk
`1
)
)
)
+
(
(
(
flk
`2
)
-
(
rp
`2
)
)
*
(
(
rl
`2
)
-
(
flk
`2
)
)
)
)
)
+
(
sqrt
(
(
(
(
(
(
flk
`1
)
-
(
rp
`1
)
)
*
(
(
rl
`1
)
-
(
flk
`1
)
)
)
+
(
(
(
flk
`2
)
-
(
rp
`2
)
)
*
(
(
rl
`2
)
-
(
flk
`2
)
)
)
)
^2
)
-
(
(
(
(
(
rl
`1
)
-
(
flk
`1
)
)
^2
)
+
(
(
(
rl
`2
)
-
(
flk
`2
)
)
^2
)
)
*
(
(
(
(
(
flk
`1
)
-
(
rp
`1
)
)
^2
)
+
(
(
(
flk
`2
)
-
(
rp
`2
)
)
^2
)
)
-
(
rg
^2
)
)
)
)
)
)
/
(
(
(
(
rl
`1
)
-
(
flk
`1
)
)
^2
)
+
(
(
(
rl
`2
)
-
(
flk
`2
)
)
^2
)
)
)
*
(
(
rl
`2
)
-
(
flk
`2
)
)
is
complex
ext-real
real
Element
of
REAL
(
flk
`2
)
+
(
(
(
(
-
(
(
(
(
flk
`1
)
-
(
rp
`1
)
)
*
(
(
rl
`1
)
-
(
flk
`1
)
)
)
+
(
(
(
flk
`2
)
-
(
rp
`2
)
)
*
(
(
rl
`2
)
-
(
flk
`2
)
)
)
)
)
+
(
sqrt
(
(
(
(
(
(
flk
`1
)
-
(
rp
`1
)
)
*
(
(
rl
`1
)
-
(
flk
`1
)
)
)
+
(
(
(
flk
`2
)
-
(
rp
`2
)
)
*
(
(
rl
`2
)
-
(
flk
`2
)
)
)
)
^2
)
-
(
(
(
(
(
rl
`1
)
-
(
flk
`1
)
)
^2
)
+
(
(
(
rl
`2
)
-
(
flk
`2
)
)
^2
)
)
*
(
(
(
(
(
flk
`1
)
-
(
rp
`1
)
)
^2
)
+
(
(
(
flk
`2
)
-
(
rp
`2
)
)
^2
)
)
-
(
rg
^2
)
)
)
)
)
)
/
(
(
(
(
rl
`1
)
-
(
flk
`1
)
)
^2
)
+
(
(
(
rl
`2
)
-
(
flk
`2
)
)
^2
)
)
)
*
(
(
rl
`2
)
-
(
flk
`2
)
)
)
is
complex
ext-real
real
Element
of
REAL
|[
(
(
flk
`1
)
+
(
(
(
(
-
(
(
(
(
flk
`1
)
-
(
rp
`1
)
)
*
(
(
rl
`1
)
-
(
flk
`1
)
)
)
+
(
(
(
flk
`2
)
-
(
rp
`2
)
)
*
(
(
rl
`2
)
-
(
flk
`2
)
)
)
)
)
+
(
sqrt
(
(
(
(
(
(
flk
`1
)
-
(
rp
`1
)
)
*
(
(
rl
`1
)
-
(
flk
`1
)
)
)
+
(
(
(
flk
`2
)
-
(
rp
`2
)
)
*
(
(
rl
`2
)
-
(
flk
`2
)
)
)
)
^2
)
-
(
(
(
(
(
rl
`1
)
-
(
flk
`1
)
)
^2
)
+
(
(
(
rl
`2
)
-
(
flk
`2
)
)
^2
)
)
*
(
(
(
(
(
flk
`1
)
-
(
rp
`1
)
)
^2
)
+
(
(
(
flk
`2
)
-
(
rp
`2
)
)
^2
)
)
-
(
rg
^2
)
)
)
)
)
)
/
(
(
(
(
rl
`1
)
-
(
flk
`1
)
)
^2
)
+
(
(
(
rl
`2
)
-
(
flk
`2
)
)
^2
)
)
)
*
(
(
rl
`1
)
-
(
flk
`1
)
)
)
)
,
(
(
flk
`2
)
+
(
(
(
(
-
(
(
(
(
flk
`1
)
-
(
rp
`1
)
)
*
(
(
rl
`1
)
-
(
flk
`1
)
)
)
+
(
(
(
flk
`2
)
-
(
rp
`2
)
)
*
(
(
rl
`2
)
-
(
flk
`2
)
)
)
)
)
+
(
sqrt
(
(
(
(
(
(
flk
`1
)
-
(
rp
`1
)
)
*
(
(
rl
`1
)
-
(
flk
`1
)
)
)
+
(
(
(
flk
`2
)
-
(
rp
`2
)
)
*
(
(
rl
`2
)
-
(
flk
`2
)
)
)
)
^2
)
-
(
(
(
(
(
rl
`1
)
-
(
flk
`1
)
)
^2
)
+
(
(
(
rl
`2
)
-
(
flk
`2
)
)
^2
)
)
*
(
(
(
(
(
flk
`1
)
-
(
rp
`1
)
)
^2
)
+
(
(
(
flk
`2
)
-
(
rp
`2
)
)
^2
)
)
-
(
rg
^2
)
)
)
)
)
)
/
(
(
(
(
rl
`1
)
-
(
flk
`1
)
)
^2
)
+
(
(
(
rl
`2
)
-
(
flk
`2
)
)
^2
)
)
)
*
(
(
rl
`2
)
-
(
flk
`2
)
)
)
)
]|
is
Relation-like
Function-like
V49
(2)
V50
()
V156
()
V157
()
V158
()
Element
of the
carrier
of
(
TOP-REAL
2
)
[
(
T2C
.
[
rl
,
flk
]
)
,
(
VP
.
[
rl
,
flk
]
)
]
is
V15
()
set
{
(
T2C
.
[
rl
,
flk
]
)
,
(
VP
.
[
rl
,
flk
]
)
}
is non
empty
V166
()
V167
()
V168
()
set
{
(
T2C
.
[
rl
,
flk
]
)
}
is non
empty
V166
()
V167
()
V168
()
set
{
{
(
T2C
.
[
rl
,
flk
]
)
,
(
VP
.
[
rl
,
flk
]
)
}
,
{
(
T2C
.
[
rl
,
flk
]
)
}
}
is non
empty
set
R2Homeomorphism
.
[
(
T2C
.
[
rl
,
flk
]
)
,
(
VP
.
[
rl
,
flk
]
)
]
is
Relation-like
Function-like
set
<:
T2C
,
VP
:>
.
[
rl
,
flk
]
is
set
R2Homeomorphism
.
(
<:
T2C
,
VP
:>
.
[
rl
,
flk
]
)
is
Relation-like
Function-like
set
[:
the
carrier
of
(
[:
(
TOP-REAL
2
)
,
(
TOP-REAL
2
)
:]
|
[:
{
rl
}
,
(
Sphere
(
rp
,
rg
)
)
:]
)
, the
carrier
of
[:
R^1
,
R^1
:]
:]
is
Relation-like
non
empty
set
bool
[:
the
carrier
of
(
[:
(
TOP-REAL
2
)
,
(
TOP-REAL
2
)
:]
|
[:
{
rl
}
,
(
Sphere
(
rp
,
rg
)
)
:]
)
, the
carrier
of
[:
R^1
,
R^1
:]
:]
is non
empty
set
bool
the
carrier
of
(
Tcircle
(
rp
,
rg
)
)
is non
empty
set
bool
the
carrier
of
(
(
TOP-REAL
2
)
|
(
Sphere
(
rp
,
rg
)
)
)
is non
empty
set
flk
is
Element
of the
carrier
of
(
(
TOP-REAL
2
)
|
(
Sphere
(
rp
,
rg
)
)
)
(2,
rp
,
rl
,
rg
)
.
flk
is
set
beta
is
Element
of
bool
the
carrier
of
(
Tcircle
(
rp
,
rg
)
)
[
rl
,
flk
]
is
V15
()
Element
of the
carrier
of
[:
(
TOP-REAL
2
)
,
(
(
TOP-REAL
2
)
|
(
Sphere
(
rp
,
rg
)
)
)
:]
[:
(
TOP-REAL
2
)
,
(
(
TOP-REAL
2
)
|
(
Sphere
(
rp
,
rg
)
)
)
:]
is non
empty
strict
TopSpace-like
T_0
T_1
T_2
TopStruct
the
carrier
of
[:
(
TOP-REAL
2
)
,
(
(
TOP-REAL
2
)
|
(
Sphere
(
rp
,
rg
)
)
)
:]
is non
empty
set
{
rl
,
flk
}
is non
empty
set
{
rl
}
is
functional
non
empty
set
{
{
rl
,
flk
}
,
{
rl
}
}
is non
empty
set
[#]
(
Tcircle
(
rp
,
rg
)
)
is non
empty
non
proper
open
closed
dense
non
boundary
compact
Element
of
bool
the
carrier
of
(
Tcircle
(
rp
,
rg
)
)
A
is
functional
Element
of
bool
the
carrier
of
(
TOP-REAL
2
)
A
/\
(
[#]
(
Tcircle
(
rp
,
rg
)
)
)
is
Element
of
bool
the
carrier
of
(
Tcircle
(
rp
,
rg
)
)
Plk
is
Relation-like
the
carrier
of
(
[:
(
TOP-REAL
2
)
,
(
TOP-REAL
2
)
:]
|
[:
{
rl
}
,
(
Sphere
(
rp
,
rg
)
)
:]
)
-defined
the
carrier
of
[:
R^1
,
R^1
:]
-valued
Function-like
non
empty
total
quasi_total
continuous
Element
of
bool
[:
the
carrier
of
(
[:
(
TOP-REAL
2
)
,
(
TOP-REAL
2
)
:]
|
[:
{
rl
}
,
(
Sphere
(
rp
,
rg
)
)
:]
)
, the
carrier
of
[:
R^1
,
R^1
:]
:]
R2Homeomorphism
*
Plk
is
Relation-like
the
carrier
of
(
[:
(
TOP-REAL
2
)
,
(
TOP-REAL
2
)
:]
|
[:
{
rl
}
,
(
Sphere
(
rp
,
rg
)
)
:]
)
-defined
the
carrier
of
(
TOP-REAL
2
)
-valued
Function-like
non
empty
total
quasi_total
Element
of
bool
[:
the
carrier
of
(
[:
(
TOP-REAL
2
)
,
(
TOP-REAL
2
)
:]
|
[:
{
rl
}
,
(
Sphere
(
rp
,
rg
)
)
:]
)
, the
carrier
of
(
TOP-REAL
2
)
:]
(
R2Homeomorphism
*
Plk
)
.
[
rl
,
flk
]
is
Relation-like
Function-like
set
R2Homeomorphism
/"
is
Relation-like
the
carrier
of
(
TOP-REAL
2
)
-defined
the
carrier
of
[:
R^1
,
R^1
:]
-valued
Function-like
non
empty
total
quasi_total
Element
of
bool
[:
the
carrier
of
(
TOP-REAL
2
)
, the
carrier
of
[:
R^1
,
R^1
:]
:]
[:
the
carrier
of
(
TOP-REAL
2
)
, the
carrier
of
[:
R^1
,
R^1
:]
:]
is
Relation-like
non
empty
set
bool
[:
the
carrier
of
(
TOP-REAL
2
)
, the
carrier
of
[:
R^1
,
R^1
:]
:]
is non
empty
set
(
R2Homeomorphism
/"
)
.:
A
is
Element
of
bool
the
carrier
of
[:
R^1
,
R^1
:]
bool
the
carrier
of
[:
R^1
,
R^1
:]
is non
empty
set
dom
Plk
is non
empty
Element
of
bool
the
carrier
of
(
[:
(
TOP-REAL
2
)
,
(
TOP-REAL
2
)
:]
|
[:
{
rl
}
,
(
Sphere
(
rp
,
rg
)
)
:]
)
bool
the
carrier
of
(
[:
(
TOP-REAL
2
)
,
(
TOP-REAL
2
)
:]
|
[:
{
rl
}
,
(
Sphere
(
rp
,
rg
)
)
:]
)
is non
empty
set
dom
R2Homeomorphism
is non
empty
Element
of
bool
the
carrier
of
[:
R^1
,
R^1
:]
rng
Plk
is non
empty
Element
of
bool
the
carrier
of
[:
R^1
,
R^1
:]
dom
(
R2Homeomorphism
*
Plk
)
is non
empty
Element
of
bool
the
carrier
of
(
[:
(
TOP-REAL
2
)
,
(
TOP-REAL
2
)
:]
|
[:
{
rl
}
,
(
Sphere
(
rp
,
rg
)
)
:]
)
rng
R2Homeomorphism
is
functional
non
empty
Element
of
bool
the
carrier
of
(
TOP-REAL
2
)
[#]
(
TOP-REAL
2
)
is
functional
non
empty
non
proper
non
proper
open
open
closed
closed
dense
dense
non
boundary
non
boundary
connected
a_component
being_Region
convex
Element
of
bool
the
carrier
of
(
TOP-REAL
2
)
(
R2Homeomorphism
/"
)
*
(
R2Homeomorphism
*
Plk
)
is
Relation-like
the
carrier
of
(
[:
(
TOP-REAL
2
)
,
(
TOP-REAL
2
)
:]
|
[:
{
rl
}
,
(
Sphere
(
rp
,
rg
)
)
:]
)
-defined
the
carrier
of
[:
R^1
,
R^1
:]
-valued
Function-like
non
empty
total
quasi_total
Element
of
bool
[:
the
carrier
of
(
[:
(
TOP-REAL
2
)
,
(
TOP-REAL
2
)
:]
|
[:
{
rl
}
,
(
Sphere
(
rp
,
rg
)
)
:]
)
, the
carrier
of
[:
R^1
,
R^1
:]
:]
(
R2Homeomorphism
/"
)
*
R2Homeomorphism
is
Relation-like
the
carrier
of
[:
R^1
,
R^1
:]
-defined
the
carrier
of
[:
R^1
,
R^1
:]
-valued
Function-like
non
empty
total
quasi_total
Element
of
bool
[:
the
carrier
of
[:
R^1
,
R^1
:]
, the
carrier
of
[:
R^1
,
R^1
:]
:]
[:
the
carrier
of
[:
R^1
,
R^1
:]
, the
carrier
of
[:
R^1
,
R^1
:]
:]
is
Relation-like
non
empty
set
bool
[:
the
carrier
of
[:
R^1
,
R^1
:]
, the
carrier
of
[:
R^1
,
R^1
:]
:]
is non
empty
set
(
(
R2Homeomorphism
/"
)
*
R2Homeomorphism
)
*
Plk
is
Relation-like
the
carrier
of
(
[:
(
TOP-REAL
2
)
,
(
TOP-REAL
2
)
:]
|
[:
{
rl
}
,
(
Sphere
(
rp
,
rg
)
)
:]
)
-defined
the
carrier
of
[:
R^1
,
R^1
:]
-valued
Function-like
non
empty
total
quasi_total
Element
of
bool
[:
the
carrier
of
(
[:
(
TOP-REAL
2
)
,
(
TOP-REAL
2
)
:]
|
[:
{
rl
}
,
(
Sphere
(
rp
,
rg
)
)
:]
)
, the
carrier
of
[:
R^1
,
R^1
:]
:]
id
(
dom
R2Homeomorphism
)
is
Relation-like
dom
R2Homeomorphism
-defined
dom
R2Homeomorphism
-valued
Function-like
one-to-one
non
empty
total
quasi_total
Element
of
bool
[:
(
dom
R2Homeomorphism
)
,
(
dom
R2Homeomorphism
)
:]
[:
(
dom
R2Homeomorphism
)
,
(
dom
R2Homeomorphism
)
:]
is
Relation-like
non
empty
set
bool
[:
(
dom
R2Homeomorphism
)
,
(
dom
R2Homeomorphism
)
:]
is non
empty
set
(
id
(
dom
R2Homeomorphism
)
)
*
Plk
is
Relation-like
the
carrier
of
(
[:
(
TOP-REAL
2
)
,
(
TOP-REAL
2
)
:]
|
[:
{
rl
}
,
(
Sphere
(
rp
,
rg
)
)
:]
)
-defined
dom
R2Homeomorphism
-valued
Function-like
Element
of
bool
[:
the
carrier
of
(
[:
(
TOP-REAL
2
)
,
(
TOP-REAL
2
)
:]
|
[:
{
rl
}
,
(
Sphere
(
rp
,
rg
)
)
:]
)
,
(
dom
R2Homeomorphism
)
:]
[:
the
carrier
of
(
[:
(
TOP-REAL
2
)
,
(
TOP-REAL
2
)
:]
|
[:
{
rl
}
,
(
Sphere
(
rp
,
rg
)
)
:]
)
,
(
dom
R2Homeomorphism
)
:]
is
Relation-like
non
empty
set
bool
[:
the
carrier
of
(
[:
(
TOP-REAL
2
)
,
(
TOP-REAL
2
)
:]
|
[:
{
rl
}
,
(
Sphere
(
rp
,
rg
)
)
:]
)
,
(
dom
R2Homeomorphism
)
:]
is non
empty
set
dom
(
id
(
dom
R2Homeomorphism
)
)
is non
empty
Element
of
bool
(
dom
R2Homeomorphism
)
bool
(
dom
R2Homeomorphism
)
is non
empty
set
dom
(
(
id
(
dom
R2Homeomorphism
)
)
*
Plk
)
is
Element
of
bool
the
carrier
of
(
[:
(
TOP-REAL
2
)
,
(
TOP-REAL
2
)
:]
|
[:
{
rl
}
,
(
Sphere
(
rp
,
rg
)
)
:]
)
B
is
set
(
(
id
(
dom
R2Homeomorphism
)
)
*
Plk
)
.
B
is
set
Plk
.
B
is
set
(
id
(
dom
R2Homeomorphism
)
)
.
(
Plk
.
B
)
is
set
rb
is
Relation-like
Function-like
V49
(2)
V50
()
V156
()
V157
()
V158
()
Element
of the
carrier
of
(
TOP-REAL
2
)
ra
is
Relation-like
Function-like
V49
(2)
V50
()
V156
()
V157
()
V158
()
Element
of the
carrier
of
(
TOP-REAL
2
)
[
rb
,
ra
]
is
V15
()
Element
of the
carrier
of
[:
(
TOP-REAL
2
)
,
(
TOP-REAL
2
)
:]
{
rb
,
ra
}
is
functional
non
empty
set
{
rb
}
is
functional
non
empty
set
{
{
rb
,
ra
}
,
{
rb
}
}
is non
empty
set
(
R2Homeomorphism
*
Plk
)
.
[
rb
,
ra
]
is
Relation-like
Function-like
set
(
R2Homeomorphism
/"
)
.
(
(
R2Homeomorphism
*
Plk
)
.
[
rb
,
ra
]
)
is
set
(
(
R2Homeomorphism
/"
)
*
(
R2Homeomorphism
*
Plk
)
)
.
[
rb
,
ra
]
is
set
B
is
Element
of
bool
the
carrier
of
(
[:
(
TOP-REAL
2
)
,
(
TOP-REAL
2
)
:]
|
[:
{
rl
}
,
(
Sphere
(
rp
,
rg
)
)
:]
)
Plk
.:
B
is
Element
of
bool
the
carrier
of
[:
R^1
,
R^1
:]
[#]
(
[:
(
TOP-REAL
2
)
,
(
TOP-REAL
2
)
:]
|
[:
{
rl
}
,
(
Sphere
(
rp
,
rg
)
)
:]
)
is non
empty
non
proper
open
closed
dense
non
boundary
Element
of
bool
the
carrier
of
(
[:
(
TOP-REAL
2
)
,
(
TOP-REAL
2
)
:]
|
[:
{
rl
}
,
(
Sphere
(
rp
,
rg
)
)
:]
)
t
is
Element
of
bool
the
carrier
of
[:
(
TOP-REAL
2
)
,
(
TOP-REAL
2
)
:]
t
/\
(
[#]
(
[:
(
TOP-REAL
2
)
,
(
TOP-REAL
2
)
:]
|
[:
{
rl
}
,
(
Sphere
(
rp
,
rg
)
)
:]
)
)
is
Element
of
bool
the
carrier
of
(
[:
(
TOP-REAL
2
)
,
(
TOP-REAL
2
)
:]
|
[:
{
rl
}
,
(
Sphere
(
rp
,
rg
)
)
:]
)
bool
(
bool
the
carrier
of
[:
(
TOP-REAL
2
)
,
(
TOP-REAL
2
)
:]
)
is non
empty
set
u
is
Element
of
bool
(
bool
the
carrier
of
[:
(
TOP-REAL
2
)
,
(
TOP-REAL
2
)
:]
)
union
u
is
set
v
is
set
u
is
functional
Element
of
bool
the
carrier
of
(
TOP-REAL
2
)
v
is
functional
Element
of
bool
the
carrier
of
(
TOP-REAL
2
)
[:
u
,
v
:]
is
Relation-like
Element
of
bool
the
carrier
of
[:
(
TOP-REAL
2
)
,
(
TOP-REAL
2
)
:]
v
/\
(
[#]
(
[:
(
TOP-REAL
2
)
,
(
TOP-REAL
2
)
:]
|
[:
{
rl
}
,
(
Sphere
(
rp
,
rg
)
)
:]
)
)
is
Element
of
bool
the
carrier
of
(
[:
(
TOP-REAL
2
)
,
(
TOP-REAL
2
)
:]
|
[:
{
rl
}
,
(
Sphere
(
rp
,
rg
)
)
:]
)
[#]
(
(
TOP-REAL
2
)
|
(
Sphere
(
rp
,
rg
)
)
)
is non
empty
non
proper
open
closed
dense
non
boundary
compact
Element
of
bool
the
carrier
of
(
(
TOP-REAL
2
)
|
(
Sphere
(
rp
,
rg
)
)
)
v
/\
(
[#]
(
(
TOP-REAL
2
)
|
(
Sphere
(
rp
,
rg
)
)
)
)
is
Element
of
bool
the
carrier
of
(
(
TOP-REAL
2
)
|
(
Sphere
(
rp
,
rg
)
)
)
v1
is
open
Element
of
bool
the
carrier
of
(
(
TOP-REAL
2
)
|
(
Sphere
(
rp
,
rg
)
)
)
(2,
rp
,
rl
,
rg
)
.:
v1
is
Element
of
bool
the
carrier
of
(
Tcircle
(
rp
,
rg
)
)
fuv
is
set
uv
is
Element
of the
carrier
of
(
(
TOP-REAL
2
)
|
(
Sphere
(
rp
,
rg
)
)
)
(2,
rp
,
rl
,
rg
)
.
uv
is
set
[
rl
,
uv
]
is
V15
()
Element
of the
carrier
of
[:
(
TOP-REAL
2
)
,
(
(
TOP-REAL
2
)
|
(
Sphere
(
rp
,
rg
)
)
)
:]
{
rl
,
uv
}
is non
empty
set
{
{
rl
,
uv
}
,
{
rl
}
}
is non
empty
set
fau
is
Relation-like
Function-like
V49
(2)
V50
()
V156
()
V157
()
V158
()
Element
of the
carrier
of
(
TOP-REAL
2
)
[
fau
,
uv
]
is
V15
()
Element
of the
carrier
of
[:
(
TOP-REAL
2
)
,
(
(
TOP-REAL
2
)
|
(
Sphere
(
rp
,
rg
)
)
)
:]
{
fau
,
uv
}
is non
empty
set
{
fau
}
is
functional
non
empty
set
{
{
fau
,
uv
}
,
{
fau
}
}
is non
empty
set
au
is
Relation-like
Function-like
V49
(2)
V50
()
V156
()
V157
()
V158
()
Element
of the
carrier
of
(
TOP-REAL
2
)
[
fau
,
au
]
is
V15
()
Element
of the
carrier
of
[:
(
TOP-REAL
2
)
,
(
TOP-REAL
2
)
:]
{
fau
,
au
}
is
functional
non
empty
set
{
{
fau
,
au
}
,
{
fau
}
}
is non
empty
set
Plk
.
[
fau
,
au
]
is
set
Plk
.:
(
v
/\
(
[#]
(
[:
(
TOP-REAL
2
)
,
(
TOP-REAL
2
)
:]
|
[:
{
rl
}
,
(
Sphere
(
rp
,
rg
)
)
:]
)
)
)
is
Element
of
bool
the
carrier
of
[:
R^1
,
R^1
:]
R2Homeomorphism
"
is
Relation-like
Function-like
set
dom
(
R2Homeomorphism
/"
)
is
functional
non
empty
Element
of
bool
the
carrier
of
(
TOP-REAL
2
)
(2,
rp
,
rl
,
rg
)
.
au
is
set
R2Homeomorphism
.
(
Plk
.
[
fau
,
au
]
)
is
Relation-like
Function-like
set
R2Homeomorphism
.:
(
(
R2Homeomorphism
/"
)
.:
A
)
is
functional
Element
of
bool
the
carrier
of
(
TOP-REAL
2
)
(
R2Homeomorphism
*
Plk
)
.
[
fau
,
au
]
is
Relation-like
Function-like
set
rp
is non
empty
ordinal
natural
complex
ext-real
positive
non
negative
real
V33
()
V119
()
V166
()
V167
()
V168
()
V169
()
V170
()
V171
()
left_end
bounded_below
Element
of
NAT
TOP-REAL
rp
is non
empty
TopSpace-like
T_0
T_1
T_2
connected
V132
()
V178
()
V179
()
V180
()
V181
()
V182
()
V183
()
V184
()
strict
add-continuous
Mult-continuous
pathwise_connected
RLTopStruct
the
carrier
of
(
TOP-REAL
rp
)
is
functional
non
empty
set
rg
is
Relation-like
Function-like
V49
(
rp
)
V50
()
V156
()
V157
()
V158
()
Element
of the
carrier
of
(
TOP-REAL
rp
)
rl
is
Relation-like
Function-like
V49
(
rp
)
V50
()
V156
()
V157
()
V158
()
Element
of the
carrier
of
(
TOP-REAL
rp
)
rd
is non
empty
complex
ext-real
positive
non
negative
real
set
Ball
(
rl
,
rd
) is
functional
non
empty
proper
open
connected
bounded
convex
Element
of
bool
the
carrier
of
(
TOP-REAL
rp
)
bool
the
carrier
of
(
TOP-REAL
rp
)
is non
empty
set
(
rp
,
rl
,
rg
,
rd
) is
Relation-like
the
carrier
of
(
Tcircle
(
rl
,
rd
)
)
-defined
the
carrier
of
(
Tcircle
(
rl
,
rd
)
)
-valued
Function-like
non
empty
total
quasi_total
Element
of
bool
[:
the
carrier
of
(
Tcircle
(
rl
,
rd
)
)
, the
carrier
of
(
Tcircle
(
rl
,
rd
)
)
:]
Tcircle
(
rl
,
rd
) is non
empty
strict
TopSpace-like
T_0
T_1
T_2
SubSpace
of
TOP-REAL
rp
the
carrier
of
(
Tcircle
(
rl
,
rd
)
)
is non
empty
set
[:
the
carrier
of
(
Tcircle
(
rl
,
rd
)
)
, the
carrier
of
(
Tcircle
(
rl
,
rd
)
)
:]
is
Relation-like
non
empty
set
bool
[:
the
carrier
of
(
Tcircle
(
rl
,
rd
)
)
, the
carrier
of
(
Tcircle
(
rl
,
rd
)
)
:]
is non
empty
set
b
is
set
dom
(
rp
,
rl
,
rg
,
rd
) is non
empty
Element
of
bool
the
carrier
of
(
Tcircle
(
rl
,
rd
)
)
bool
the
carrier
of
(
Tcircle
(
rl
,
rd
)
)
is non
empty
set
(
rp
,
rl
,
rg
,
rd
)
.
b
is
set
d
is
Relation-like
Function-like
V49
(
rp
)
V50
()
V156
()
V157
()
V158
()
Element
of the
carrier
of
(
TOP-REAL
rp
)
HC
(
d
,
rg
,
rl
,
rd
) is
Relation-like
Function-like
V49
(
rp
)
V50
()
V156
()
V157
()
V158
()
Element
of the
carrier
of
(
TOP-REAL
rp
)
Sphere
(
rl
,
rd
) is
functional
non
empty
proper
closed
bounded
Element
of
bool
the
carrier
of
(
TOP-REAL
rp
)
cl_Ball
(
rl
,
rd
) is
functional
non
empty
proper
closed
connected
bounded
convex
Element
of
bool
the
carrier
of
(
TOP-REAL
rp
)
Tdisk
(
rl
,
rd
) is non
empty
TopSpace-like
T_0
T_1
T_2
V270
(
rp
)
SubSpace
of
TOP-REAL
rp
the
carrier
of
(
Tdisk
(
rl
,
rd
)
)
is non
empty
set
rp
is
functional
non
empty
proper
closed
connected
compact
bounded
being_simple_closed_curve
with_the_max_arc
Element
of
bool
the
carrier
of
(
TOP-REAL
2
)
rp
`
is
functional
non
empty
open
Element
of
bool
the
carrier
of
(
TOP-REAL
2
)
the
carrier
of
(
TOP-REAL
2
)
\
rp
is
set
(
TOP-REAL
2
)
|
(
rp
`
)
is non
empty
strict
TopSpace-like
T_0
T_1
T_2
V118
(
TOP-REAL
2)
SubSpace
of
TOP-REAL
2
the
carrier
of
(
(
TOP-REAL
2
)
|
(
rp
`
)
)
is non
empty
set
bool
the
carrier
of
(
(
TOP-REAL
2
)
|
(
rp
`
)
)
is non
empty
set
rl
is
functional
Element
of
bool
the
carrier
of
(
TOP-REAL
2
)
Cl
rl
is
functional
closed
Element
of
bool
the
carrier
of
(
TOP-REAL
2
)
rg
is
Element
of
bool
the
carrier
of
(
(
TOP-REAL
2
)
|
(
rp
`
)
)
rd
is
Element
of
bool
the
carrier
of
(
(
TOP-REAL
2
)
|
(
rp
`
)
)
b
is non
empty
TopSpace-like
T_0
T_1
T_2
SubSpace
of
TOP-REAL
2
a
is
functional
Element
of
bool
the
carrier
of
(
TOP-REAL
2
)
c
is
set
rp
is
functional
non
empty
proper
closed
connected
compact
bounded
being_simple_closed_curve
with_the_max_arc
Element
of
bool
the
carrier
of
(
TOP-REAL
2
)
rp
`
is
functional
non
empty
open
Element
of
bool
the
carrier
of
(
TOP-REAL
2
)
the
carrier
of
(
TOP-REAL
2
)
\
rp
is
set
(
TOP-REAL
2
)
|
(
rp
`
)
is non
empty
strict
TopSpace-like
T_0
T_1
T_2
V118
(
TOP-REAL
2)
SubSpace
of
TOP-REAL
2
the
carrier
of
(
(
TOP-REAL
2
)
|
(
rp
`
)
)
is non
empty
set
bool
the
carrier
of
(
(
TOP-REAL
2
)
|
(
rp
`
)
)
is non
empty
set
rl
is
Element
of
bool
the
carrier
of
(
(
TOP-REAL
2
)
|
(
rp
`
)
)
(
(
TOP-REAL
2
)
|
(
rp
`
)
)
|
rl
is
strict
TopSpace-like
T_0
T_1
T_2
SubSpace
of
(
TOP-REAL
2
)
|
(
rp
`
)
the
carrier
of
(
(
(
TOP-REAL
2
)
|
(
rp
`
)
)
|
rl
)
is
set
rd
is
Element
of the
carrier
of
(
(
(
TOP-REAL
2
)
|
(
rp
`
)
)
|
rl
)
a
is
Element
of the
carrier
of
(
(
(
TOP-REAL
2
)
|
(
rp
`
)
)
|
rl
)
{}
(
(
TOP-REAL
2
)
|
(
rp
`
)
)
is
Relation-like
non-empty
empty-yielding
RAT
-valued
Function-like
one-to-one
constant
functional
empty
proper
open
closed
boundary
nowhere_dense
connected
compact
V156
()
V157
()
V158
()
V159
()
V166
()
V167
()
V168
()
V169
()
V170
()
V171
()
V172
()
bounded_below
interval
Element
of
bool
the
carrier
of
(
(
TOP-REAL
2
)
|
(
rp
`
)
)
b
is non
empty
TopSpace-like
TopStruct
the
carrier
of
b
is non
empty
set
[:
the
carrier
of
I[01]
, the
carrier
of
(
(
(
TOP-REAL
2
)
|
(
rp
`
)
)
|
rl
)
:]
is
Relation-like
set
bool
[:
the
carrier
of
I[01]
, the
carrier
of
(
(
(
TOP-REAL
2
)
|
(
rp
`
)
)
|
rl
)
:]
is non
empty
set
c
is
Element
of the
carrier
of
b
I[01]
-->
c
is
Relation-like
the
carrier
of
I[01]
-defined
the
carrier
of
b
-valued
Function-like
non
empty
total
quasi_total
continuous
Element
of
bool
[:
the
carrier
of
I[01]
, the
carrier
of
b
:]
[:
the
carrier
of
I[01]
, the
carrier
of
b
:]
is
Relation-like
non
empty
set
bool
[:
the
carrier
of
I[01]
, the
carrier
of
b
:]
is non
empty
set
the
carrier
of
I[01]
-->
c
is
Relation-like
the
carrier
of
I[01]
-defined
the
carrier
of
b
-valued
Function-like
non
empty
total
quasi_total
Element
of
bool
[:
the
carrier
of
I[01]
, the
carrier
of
b
:]
d
is
Relation-like
the
carrier
of
I[01]
-defined
the
carrier
of
(
(
(
TOP-REAL
2
)
|
(
rp
`
)
)
|
rl
)
-valued
Function-like
quasi_total
Element
of
bool
[:
the
carrier
of
I[01]
, the
carrier
of
(
(
(
TOP-REAL
2
)
|
(
rp
`
)
)
|
rl
)
:]
d
.
0
is
set
d
.
1 is
set
d
is
functional
Element
of
bool
the
carrier
of
(
TOP-REAL
2
)
b
is
Relation-like
Function-like
V49
(2)
V50
()
V156
()
V157
()
V158
()
Element
of the
carrier
of
(
TOP-REAL
2
)
c
is
Relation-like
Function-like
V49
(2)
V50
()
V156
()
V157
()
V158
()
Element
of the
carrier
of
(
TOP-REAL
2
)
lg
is
functional
Element
of
bool
the
carrier
of
(
TOP-REAL
2
)
(
TOP-REAL
2
)
|
lg
is
strict
TopSpace-like
T_0
T_1
T_2
SubSpace
of
TOP-REAL
2
the
carrier
of
(
(
TOP-REAL
2
)
|
lg
)
is
set
[:
the
carrier
of
I[01]
, the
carrier
of
(
(
TOP-REAL
2
)
|
lg
)
:]
is
Relation-like
set
bool
[:
the
carrier
of
I[01]
, the
carrier
of
(
(
TOP-REAL
2
)
|
lg
)
:]
is non
empty
set
pg
is
Relation-like
the
carrier
of
I[01]
-defined
the
carrier
of
(
(
TOP-REAL
2
)
|
lg
)
-valued
Function-like
quasi_total
Element
of
bool
[:
the
carrier
of
I[01]
, the
carrier
of
(
(
TOP-REAL
2
)
|
lg
)
:]
pg
.
0
is
set
pg
.
1 is
set
[:
the
carrier
of
I[01]
, the
carrier
of
(
(
(
TOP-REAL
2
)
|
(
rp
`
)
)
|
rl
)
:]
is
Relation-like
set
bool
[:
the
carrier
of
I[01]
, the
carrier
of
(
(
(
TOP-REAL
2
)
|
(
rp
`
)
)
|
rl
)
:]
is non
empty
set
ld
is
Relation-like
the
carrier
of
I[01]
-defined
the
carrier
of
(
(
(
TOP-REAL
2
)
|
(
rp
`
)
)
|
rl
)
-valued
Function-like
quasi_total
Element
of
bool
[:
the
carrier
of
I[01]
, the
carrier
of
(
(
(
TOP-REAL
2
)
|
(
rp
`
)
)
|
rl
)
:]
ld
.
0
is
set
ld
.
1 is
set
rp
is
Relation-like
Function-like
V49
(2)
V50
()
V156
()
V157
()
V158
()
Element
of the
carrier
of
(
TOP-REAL
2
)
rl
is
Relation-like
Function-like
V49
(2)
V50
()
V156
()
V157
()
V158
()
Element
of the
carrier
of
(
TOP-REAL
2
)
rg
is
Relation-like
Function-like
V49
(2)
V50
()
V156
()
V157
()
V158
()
Element
of the
carrier
of
(
TOP-REAL
2
)
rd
is
functional
Element
of
bool
the
carrier
of
(
TOP-REAL
2
)
(
TOP-REAL
2
)
|
rd
is
strict
TopSpace-like
T_0
T_1
T_2
SubSpace
of
TOP-REAL
2
the
carrier
of
(
(
TOP-REAL
2
)
|
rd
)
is
set
id
rd
is
Relation-like
rd
-defined
rd
-valued
Function-like
one-to-one
total
quasi_total
Element
of
bool
[:
rd
,
rd
:]
[:
rd
,
rd
:]
is
Relation-like
set
bool
[:
rd
,
rd
:]
is non
empty
set
a
is
complex
ext-real
non
negative
real
set
Tdisk
(
rg
,
a
) is non
empty
TopSpace-like
T_0
T_1
T_2
V82
()
normal
T_3
T_4
compact
closed
V246
()
V270
(2)
pseudocompact
SubSpace
of
TOP-REAL
2
the
carrier
of
(
Tdisk
(
rg
,
a
)
)
is non
empty
set
bool
the
carrier
of
(
Tdisk
(
rg
,
a
)
)
is non
empty
set
[:
the
carrier
of
(
Tdisk
(
rg
,
a
)
)
, the
carrier
of
(
(
TOP-REAL
2
)
|
rd
)
:]
is
Relation-like
set
bool
[:
the
carrier
of
(
Tdisk
(
rg
,
a
)
)
, the
carrier
of
(
(
TOP-REAL
2
)
|
rd
)
:]
is non
empty
set
d
is
functional
non
empty
Element
of
bool
the
carrier
of
(
TOP-REAL
2
)
(
TOP-REAL
2
)
|
d
is non
empty
strict
TopSpace-like
T_0
T_1
T_2
SubSpace
of
TOP-REAL
2
the
carrier
of
(
(
TOP-REAL
2
)
|
d
)
is non
empty
set
[:
the
carrier
of
I[01]
, the
carrier
of
(
(
TOP-REAL
2
)
|
d
)
:]
is
Relation-like
non
empty
set
bool
[:
the
carrier
of
I[01]
, the
carrier
of
(
(
TOP-REAL
2
)
|
d
)
:]
is non
empty
set
pg
is
Relation-like
the
carrier
of
I[01]
-defined
the
carrier
of
(
(
TOP-REAL
2
)
|
d
)
-valued
Function-like
non
empty
total
quasi_total
Element
of
bool
[:
the
carrier
of
I[01]
, the
carrier
of
(
(
TOP-REAL
2
)
|
d
)
:]
pg
.
0
is
set
pg
.
1 is
set
[:
the
carrier
of
(
Closed-Interval-TSpace
(
0
,1)
)
, the
carrier
of
(
(
TOP-REAL
2
)
|
d
)
:]
is
Relation-like
non
empty
set
bool
[:
the
carrier
of
(
Closed-Interval-TSpace
(
0
,1)
)
, the
carrier
of
(
(
TOP-REAL
2
)
|
d
)
:]
is non
empty
set
c
is non
empty
Element
of
bool
the
carrier
of
(
Tdisk
(
rg
,
a
)
)
(
Tdisk
(
rg
,
a
)
)
|
c
is non
empty
strict
TopSpace-like
T_0
T_1
T_2
SubSpace
of
Tdisk
(
rg
,
a
)
the
carrier
of
(
(
Tdisk
(
rg
,
a
)
)
|
c
)
is non
empty
set
[:
the
carrier
of
(
(
Tdisk
(
rg
,
a
)
)
|
c
)
, the
carrier
of
(
Closed-Interval-TSpace
(
(
-
1
)
,1)
)
:]
is
Relation-like
non
empty
V156
()
V157
()
V158
()
set
bool
[:
the
carrier
of
(
(
Tdisk
(
rg
,
a
)
)
|
c
)
, the
carrier
of
(
Closed-Interval-TSpace
(
(
-
1
)
,1)
)
:]
is non
empty
set
ld
is
Relation-like
the
carrier
of
(
Closed-Interval-TSpace
(
0
,1)
)
-defined
the
carrier
of
(
(
TOP-REAL
2
)
|
d
)
-valued
Function-like
non
empty
total
quasi_total
Element
of
bool
[:
the
carrier
of
(
Closed-Interval-TSpace
(
0
,1)
)
, the
carrier
of
(
(
TOP-REAL
2
)
|
d
)
:]
ld
/"
is
Relation-like
the
carrier
of
(
(
TOP-REAL
2
)
|
d
)
-defined
the
carrier
of
(
Closed-Interval-TSpace
(
0
,1)
)
-valued
Function-like
non
empty
total
quasi_total
V156
()
V157
()
V158
()
Element
of
bool
[:
the
carrier
of
(
(
TOP-REAL
2
)
|
d
)
, the
carrier
of
(
Closed-Interval-TSpace
(
0
,1)
)
:]
[:
the
carrier
of
(
(
TOP-REAL
2
)
|
d
)
, the
carrier
of
(
Closed-Interval-TSpace
(
0
,1)
)
:]
is
Relation-like
non
empty
V156
()
V157
()
V158
()
set
bool
[:
the
carrier
of
(
(
TOP-REAL
2
)
|
d
)
, the
carrier
of
(
Closed-Interval-TSpace
(
0
,1)
)
:]
is non
empty
set
(
L[01]
(
(
(#)
(
(
-
1
)
,1)
)
,
(
(
(
-
1
)
,1)
(#)
)
)
)
*
(
ld
/"
)
is
Relation-like
the
carrier
of
(
(
TOP-REAL
2
)
|
d
)
-defined
the
carrier
of
(
Closed-Interval-TSpace
(
(
-
1
)
,1)
)
-valued
Function-like
non
empty
total
quasi_total
V156
()
V157
()
V158
()
Element
of
bool
[:
the
carrier
of
(
(
TOP-REAL
2
)
|
d
)
, the
carrier
of
(
Closed-Interval-TSpace
(
(
-
1
)
,1)
)
:]
[:
the
carrier
of
(
(
TOP-REAL
2
)
|
d
)
, the
carrier
of
(
Closed-Interval-TSpace
(
(
-
1
)
,1)
)
:]
is
Relation-like
non
empty
V156
()
V157
()
V158
()
set
bool
[:
the
carrier
of
(
(
TOP-REAL
2
)
|
d
)
, the
carrier
of
(
Closed-Interval-TSpace
(
(
-
1
)
,1)
)
:]
is non
empty
set
[:
the
carrier
of
(
Tdisk
(
rg
,
a
)
)
, the
carrier
of
(
Closed-Interval-TSpace
(
(
-
1
)
,1)
)
:]
is
Relation-like
non
empty
V156
()
V157
()
V158
()
set
bool
[:
the
carrier
of
(
Tdisk
(
rg
,
a
)
)
, the
carrier
of
(
Closed-Interval-TSpace
(
(
-
1
)
,1)
)
:]
is non
empty
set
pd
is
Relation-like
the
carrier
of
(
(
Tdisk
(
rg
,
a
)
)
|
c
)
-defined
the
carrier
of
(
Closed-Interval-TSpace
(
(
-
1
)
,1)
)
-valued
Function-like
non
empty
total
quasi_total
V156
()
V157
()
V158
()
Element
of
bool
[:
the
carrier
of
(
(
Tdisk
(
rg
,
a
)
)
|
c
)
, the
carrier
of
(
Closed-Interval-TSpace
(
(
-
1
)
,1)
)
:]
R
is
Relation-like
the
carrier
of
(
Tdisk
(
rg
,
a
)
)
-defined
the
carrier
of
(
Closed-Interval-TSpace
(
(
-
1
)
,1)
)
-valued
Function-like
non
empty
total
quasi_total
continuous
V156
()
V157
()
V158
()
Element
of
bool
[:
the
carrier
of
(
Tdisk
(
rg
,
a
)
)
, the
carrier
of
(
Closed-Interval-TSpace
(
(
-
1
)
,1)
)
:]
R
|
c
is
Relation-like
the
carrier
of
(
Tdisk
(
rg
,
a
)
)
-defined
c
-defined
the
carrier
of
(
Tdisk
(
rg
,
a
)
)
-defined
the
carrier
of
(
Closed-Interval-TSpace
(
(
-
1
)
,1)
)
-valued
Function-like
V156
()
V157
()
V158
()
Element
of
bool
[:
the
carrier
of
(
Tdisk
(
rg
,
a
)
)
, the
carrier
of
(
Closed-Interval-TSpace
(
(
-
1
)
,1)
)
:]
(
L[01]
(
(
(#)
(
(
-
1
)
,1)
)
,
(
(
(
-
1
)
,1)
(#)
)
)
)
/"
is
Relation-like
the
carrier
of
(
Closed-Interval-TSpace
(
(
-
1
)
,1)
)
-defined
the
carrier
of
(
Closed-Interval-TSpace
(
0
,1)
)
-valued
Function-like
non
empty
total
quasi_total
V156
()
V157
()
V158
()
Element
of
bool
[:
the
carrier
of
(
Closed-Interval-TSpace
(
(
-
1
)
,1)
)
, the
carrier
of
(
Closed-Interval-TSpace
(
0
,1)
)
:]
[:
the
carrier
of
(
Closed-Interval-TSpace
(
(
-
1
)
,1)
)
, the
carrier
of
(
Closed-Interval-TSpace
(
0
,1)
)
:]
is
Relation-like
non
empty
V156
()
V157
()
V158
()
set
bool
[:
the
carrier
of
(
Closed-Interval-TSpace
(
(
-
1
)
,1)
)
, the
carrier
of
(
Closed-Interval-TSpace
(
0
,1)
)
:]
is non
empty
set
ld
*
(
(
L[01]
(
(
(#)
(
(
-
1
)
,1)
)
,
(
(
(
-
1
)
,1)
(#)
)
)
)
/"
)
is
Relation-like
the
carrier
of
(
Closed-Interval-TSpace
(
(
-
1
)
,1)
)
-defined
the
carrier
of
(
(
TOP-REAL
2
)
|
d
)
-valued
Function-like
non
empty
total
quasi_total
Element
of
bool
[:
the
carrier
of
(
Closed-Interval-TSpace
(
(
-
1
)
,1)
)
, the
carrier
of
(
(
TOP-REAL
2
)
|
d
)
:]
[:
the
carrier
of
(
Closed-Interval-TSpace
(
(
-
1
)
,1)
)
, the
carrier
of
(
(
TOP-REAL
2
)
|
d
)
:]
is
Relation-like
non
empty
set
bool
[:
the
carrier
of
(
Closed-Interval-TSpace
(
(
-
1
)
,1)
)
, the
carrier
of
(
(
TOP-REAL
2
)
|
d
)
:]
is non
empty
set
(
ld
*
(
(
L[01]
(
(
(#)
(
(
-
1
)
,1)
)
,
(
(
(
-
1
)
,1)
(#)
)
)
)
/"
)
)
*
R
is
Relation-like
the
carrier
of
(
Tdisk
(
rg
,
a
)
)
-defined
the
carrier
of
(
(
TOP-REAL
2
)
|
d
)
-valued
Function-like
non
empty
total
quasi_total
Element
of
bool
[:
the
carrier
of
(
Tdisk
(
rg
,
a
)
)
, the
carrier
of
(
(
TOP-REAL
2
)
|
d
)
:]
[:
the
carrier
of
(
Tdisk
(
rg
,
a
)
)
, the
carrier
of
(
(
TOP-REAL
2
)
|
d
)
:]
is
Relation-like
non
empty
set
bool
[:
the
carrier
of
(
Tdisk
(
rg
,
a
)
)
, the
carrier
of
(
(
TOP-REAL
2
)
|
d
)
:]
is non
empty
set
dR
is
Relation-like
the
carrier
of
(
Tdisk
(
rg
,
a
)
)
-defined
the
carrier
of
(
(
TOP-REAL
2
)
|
rd
)
-valued
Function-like
quasi_total
Element
of
bool
[:
the
carrier
of
(
Tdisk
(
rg
,
a
)
)
, the
carrier
of
(
(
TOP-REAL
2
)
|
rd
)
:]
dR
|
rd
is
Relation-like
rd
-defined
the
carrier
of
(
Tdisk
(
rg
,
a
)
)
-defined
the
carrier
of
(
(
TOP-REAL
2
)
|
rd
)
-valued
Function-like
Element
of
bool
[:
the
carrier
of
(
Tdisk
(
rg
,
a
)
)
, the
carrier
of
(
(
TOP-REAL
2
)
|
rd
)
:]
dom
dR
is
Element
of
bool
the
carrier
of
(
Tdisk
(
rg
,
a
)
)
dom
(
id
rd
)
is
functional
Element
of
bool
rd
bool
rd
is non
empty
set
TR
is
set
dom
(
dR
|
rd
)
is
functional
Element
of
bool
rd
dom
R
is non
empty
Element
of
bool
the
carrier
of
(
Tdisk
(
rg
,
a
)
)
dom
(
(
L[01]
(
(
(#)
(
(
-
1
)
,1)
)
,
(
(
(
-
1
)
,1)
(#)
)
)
)
*
(
ld
/"
)
)
is non
empty
Element
of
bool
the
carrier
of
(
(
TOP-REAL
2
)
|
d
)
bool
the
carrier
of
(
(
TOP-REAL
2
)
|
d
)
is non
empty
set
(
ld
*
(
(
L[01]
(
(
(#)
(
(
-
1
)
,1)
)
,
(
(
(
-
1
)
,1)
(#)
)
)
)
/"
)
)
*
(
(
L[01]
(
(
(#)
(
(
-
1
)
,1)
)
,
(
(
(
-
1
)
,1)
(#)
)
)
)
*
(
ld
/"
)
)
is
Relation-like
the
carrier
of
(
(
TOP-REAL
2
)
|
d
)
-defined
the
carrier
of
(
(
TOP-REAL
2
)
|
d
)
-valued
Function-like
non
empty
total
quasi_total
Element
of
bool
[:
the
carrier
of
(
(
TOP-REAL
2
)
|
d
)
, the
carrier
of
(
(
TOP-REAL
2
)
|
d
)
:]
[:
the
carrier
of
(
(
TOP-REAL
2
)
|
d
)
, the
carrier
of
(
(
TOP-REAL
2
)
|
d
)
:]
is
Relation-like
non
empty
set
bool
[:
the
carrier
of
(
(
TOP-REAL
2
)
|
d
)
, the
carrier
of
(
(
TOP-REAL
2
)
|
d
)
:]
is non
empty
set
(
ld
*
(
(
L[01]
(
(
(#)
(
(
-
1
)
,1)
)
,
(
(
(
-
1
)
,1)
(#)
)
)
)
/"
)
)
*
(
L[01]
(
(
(#)
(
(
-
1
)
,1)
)
,
(
(
(
-
1
)
,1)
(#)
)
)
)
is
Relation-like
the
carrier
of
(
Closed-Interval-TSpace
(
0
,1)
)
-defined
the
carrier
of
(
(
TOP-REAL
2
)
|
d
)
-valued
Function-like
non
empty
total
quasi_total
Element
of
bool
[:
the
carrier
of
(
Closed-Interval-TSpace
(
0
,1)
)
, the
carrier
of
(
(
TOP-REAL
2
)
|
d
)
:]
(
(
ld
*
(
(
L[01]
(
(
(#)
(
(
-
1
)
,1)
)
,
(
(
(
-
1
)
,1)
(#)
)
)
)
/"
)
)
*
(
L[01]
(
(
(#)
(
(
-
1
)
,1)
)
,
(
(
(
-
1
)
,1)
(#)
)
)
)
)
*
(
ld
/"
)
is
Relation-like
the
carrier
of
(
(
TOP-REAL
2
)
|
d
)
-defined
the
carrier
of
(
(
TOP-REAL
2
)
|
d
)
-valued
Function-like
non
empty
total
quasi_total
Element
of
bool
[:
the
carrier
of
(
(
TOP-REAL
2
)
|
d
)
, the
carrier
of
(
(
TOP-REAL
2
)
|
d
)
:]
(
(
L[01]
(
(
(#)
(
(
-
1
)
,1)
)
,
(
(
(
-
1
)
,1)
(#)
)
)
)
/"
)
*
(
L[01]
(
(
(#)
(
(
-
1
)
,1)
)
,
(
(
(
-
1
)
,1)
(#)
)
)
)
is
Relation-like
the
carrier
of
(
Closed-Interval-TSpace
(
0
,1)
)
-defined
the
carrier
of
(
Closed-Interval-TSpace
(
0
,1)
)
-valued
Function-like
non
empty
total
quasi_total
V156
()
V157
()
V158
()
Element
of
bool
[:
the
carrier
of
(
Closed-Interval-TSpace
(
0
,1)
)
, the
carrier
of
(
Closed-Interval-TSpace
(
0
,1)
)
:]
[:
the
carrier
of
(
Closed-Interval-TSpace
(
0
,1)
)
, the
carrier
of
(
Closed-Interval-TSpace
(
0
,1)
)
:]
is
Relation-like
non
empty
V156
()
V157
()
V158
()
set
bool
[:
the
carrier
of
(
Closed-Interval-TSpace
(
0
,1)
)
, the
carrier
of
(
Closed-Interval-TSpace
(
0
,1)
)
:]
is non
empty
set
ld
*
(
(
(
L[01]
(
(
(#)
(
(
-
1
)
,1)
)
,
(
(
(
-
1
)
,1)
(#)
)
)
)
/"
)
*
(
L[01]
(
(
(#)
(
(
-
1
)
,1)
)
,
(
(
(
-
1
)
,1)
(#)
)
)
)
)
is
Relation-like
the
carrier
of
(
Closed-Interval-TSpace
(
0
,1)
)
-defined
the
carrier
of
(
(
TOP-REAL
2
)
|
d
)
-valued
Function-like
non
empty
total
quasi_total
Element
of
bool
[:
the
carrier
of
(
Closed-Interval-TSpace
(
0
,1)
)
, the
carrier
of
(
(
TOP-REAL
2
)
|
d
)
:]
(
ld
*
(
(
(
L[01]
(
(
(#)
(
(
-
1
)
,1)
)
,
(
(
(
-
1
)
,1)
(#)
)
)
)
/"
)
*
(
L[01]
(
(
(#)
(
(
-
1
)
,1)
)
,
(
(
(
-
1
)
,1)
(#)
)
)
)
)
)
*
(
ld
/"
)
is
Relation-like
the
carrier
of
(
(
TOP-REAL
2
)
|
d
)
-defined
the
carrier
of
(
(
TOP-REAL
2
)
|
d
)
-valued
Function-like
non
empty
total
quasi_total
Element
of
bool
[:
the
carrier
of
(
(
TOP-REAL
2
)
|
d
)
, the
carrier
of
(
(
TOP-REAL
2
)
|
d
)
:]
id
(
Closed-Interval-TSpace
(
0
,1)
)
is
Relation-like
the
carrier
of
(
Closed-Interval-TSpace
(
0
,1)
)
-defined
the
carrier
of
(
Closed-Interval-TSpace
(
0
,1)
)
-valued
Function-like
one-to-one
non
empty
total
quasi_total
onto
bijective
continuous
V156
()
V157
()
V158
()
being_homeomorphism
Homeomorphism
of
Closed-Interval-TSpace
(
0
,1)
id
the
carrier
of
(
Closed-Interval-TSpace
(
0
,1)
)
is
Relation-like
the
carrier
of
(
Closed-Interval-TSpace
(
0
,1)
)
-defined
the
carrier
of
(
Closed-Interval-TSpace
(
0
,1)
)
-valued
Function-like
one-to-one
non
empty
total
quasi_total
V156
()
V157
()
V158
()
V160
()
V162
()
Element
of
bool
[:
the
carrier
of
(
Closed-Interval-TSpace
(
0
,1)
)
, the
carrier
of
(
Closed-Interval-TSpace
(
0
,1)
)
:]
ld
*
(
id
(
Closed-Interval-TSpace
(
0
,1)
)
)
is
Relation-like
the
carrier
of
(
Closed-Interval-TSpace
(
0
,1)
)
-defined
the
carrier
of
(
(
TOP-REAL
2
)
|
d
)
-valued
Function-like
non
empty
total
quasi_total
Element
of
bool
[:
the
carrier
of
(
Closed-Interval-TSpace
(
0
,1)
)
, the
carrier
of
(
(
TOP-REAL
2
)
|
d
)
:]
(
ld
*
(
id
(
Closed-Interval-TSpace
(
0
,1)
)
)
)
*
(
ld
/"
)
is
Relation-like
the
carrier
of
(
(
TOP-REAL
2
)
|
d
)
-defined
the
carrier
of
(
(
TOP-REAL
2
)
|
d
)
-valued
Function-like
non
empty
total
quasi_total
Element
of
bool
[:
the
carrier
of
(
(
TOP-REAL
2
)
|
d
)
, the
carrier
of
(
(
TOP-REAL
2
)
|
d
)
:]
ld
*
(
ld
/"
)
is
Relation-like
the
carrier
of
(
(
TOP-REAL
2
)
|
d
)
-defined
the
carrier
of
(
(
TOP-REAL
2
)
|
d
)
-valued
Function-like
non
empty
total
quasi_total
Element
of
bool
[:
the
carrier
of
(
(
TOP-REAL
2
)
|
d
)
, the
carrier
of
(
(
TOP-REAL
2
)
|
d
)
:]
id
(
(
TOP-REAL
2
)
|
d
)
is
Relation-like
the
carrier
of
(
(
TOP-REAL
2
)
|
d
)
-defined
the
carrier
of
(
(
TOP-REAL
2
)
|
d
)
-valued
Function-like
one-to-one
non
empty
total
quasi_total
onto
bijective
continuous
being_homeomorphism
Homeomorphism
of
(
TOP-REAL
2
)
|
d
id
the
carrier
of
(
(
TOP-REAL
2
)
|
d
)
is
Relation-like
the
carrier
of
(
(
TOP-REAL
2
)
|
d
)
-defined
the
carrier
of
(
(
TOP-REAL
2
)
|
d
)
-valued
Function-like
one-to-one
non
empty
total
quasi_total
Element
of
bool
[:
the
carrier
of
(
(
TOP-REAL
2
)
|
d
)
, the
carrier
of
(
(
TOP-REAL
2
)
|
d
)
:]
(
dR
|
rd
)
.
TR
is
set
dR
.
TR
is
set
R
.
TR
is
complex
ext-real
real
set
(
ld
*
(
(
L[01]
(
(
(#)
(
(
-
1
)
,1)
)
,
(
(
(
-
1
)
,1)
(#)
)
)
)
/"
)
)
.
(
R
.
TR
)
is
set
(
(
L[01]
(
(
(#)
(
(
-
1
)
,1)
)
,
(
(
(
-
1
)
,1)
(#)
)
)
)
*
(
ld
/"
)
)
.
TR
is
complex
ext-real
real
set
(
ld
*
(
(
L[01]
(
(
(#)
(
(
-
1
)
,1)
)
,
(
(
(
-
1
)
,1)
(#)
)
)
)
/"
)
)
.
(
(
(
L[01]
(
(
(#)
(
(
-
1
)
,1)
)
,
(
(
(
-
1
)
,1)
(#)
)
)
)
*
(
ld
/"
)
)
.
TR
)
is
set
(
id
rd
)
.
TR
is
Relation-like
Function-like
set
rp
is
Relation-like
Function-like
V49
(2)
V50
()
V156
()
V157
()
V158
()
Element
of the
carrier
of
(
TOP-REAL
2
)
rl
is
Relation-like
Function-like
V49
(2)
V50
()
V156
()
V157
()
V158
()
Element
of the
carrier
of
(
TOP-REAL
2
)
rg
is
Relation-like
Function-like
V49
(2)
V50
()
V156
()
V157
()
V158
()
Element
of the
carrier
of
(
TOP-REAL
2
)
{
rg
}
is
functional
non
empty
proper
closed
compact
bounded
Element
of
bool
the
carrier
of
(
TOP-REAL
2
)
rd
is
functional
non
empty
proper
closed
connected
compact
bounded
being_simple_closed_curve
with_the_max_arc
Element
of
bool
the
carrier
of
(
TOP-REAL
2
)
rd
`
is
functional
non
empty
open
Element
of
bool
the
carrier
of
(
TOP-REAL
2
)
the
carrier
of
(
TOP-REAL
2
)
\
rd
is
set
(
TOP-REAL
2
)
|
(
rd
`
)
is non
empty
strict
TopSpace-like
T_0
T_1
T_2
V118
(
TOP-REAL
2)
SubSpace
of
TOP-REAL
2
the
carrier
of
(
(
TOP-REAL
2
)
|
(
rd
`
)
)
is non
empty
set
bool
the
carrier
of
(
(
TOP-REAL
2
)
|
(
rd
`
)
)
is non
empty
set
a
is
functional
Element
of
bool
the
carrier
of
(
TOP-REAL
2
)
(
TOP-REAL
2
)
|
a
is
strict
TopSpace-like
T_0
T_1
T_2
SubSpace
of
TOP-REAL
2
the
carrier
of
(
(
TOP-REAL
2
)
|
a
)
is
set
id
a
is
Relation-like
a
-defined
a
-valued
Function-like
one-to-one
total
quasi_total
Element
of
bool
[:
a
,
a
:]
[:
a
,
a
:]
is
Relation-like
set
bool
[:
a
,
a
:]
is non
empty
set
b
is
functional
Element
of
bool
the
carrier
of
(
TOP-REAL
2
)
Cl
b
is
functional
closed
Element
of
bool
the
carrier
of
(
TOP-REAL
2
)
b
`
is
functional
Element
of
bool
the
carrier
of
(
TOP-REAL
2
)
the
carrier
of
(
TOP-REAL
2
)
\
b
is
set
(
Cl
b
)
/\
(
b
`
)
is
functional
Element
of
bool
the
carrier
of
(
TOP-REAL
2
)
c
is
functional
Element
of
bool
the
carrier
of
(
TOP-REAL
2
)
(
TOP-REAL
2
)
|
c
is
strict
TopSpace-like
T_0
T_1
T_2
SubSpace
of
TOP-REAL
2
the
carrier
of
(
(
TOP-REAL
2
)
|
c
)
is
set
d
is
Element
of
bool
the
carrier
of
(
(
TOP-REAL
2
)
|
(
rd
`
)
)
lg
is non
empty
complex
ext-real
positive
non
negative
real
set
Ball
(
rg
,
lg
) is
functional
non
empty
proper
open
connected
bounded
being_Region
convex
Element
of
bool
the
carrier
of
(
TOP-REAL
2
)
Tdisk
(
rg
,
lg
) is non
empty
TopSpace-like
T_0
T_1
T_2
V82
()
normal
T_3
T_4
compact
closed
V246
()
V270
(2)
pseudocompact
SubSpace
of
TOP-REAL
2
the
carrier
of
(
Tdisk
(
rg
,
lg
)
)
is non
empty
set
[:
the
carrier
of
(
Tdisk
(
rg
,
lg
)
)
, the
carrier
of
(
(
TOP-REAL
2
)
|
a
)
:]
is
Relation-like
set
bool
[:
the
carrier
of
(
Tdisk
(
rg
,
lg
)
)
, the
carrier
of
(
(
TOP-REAL
2
)
|
a
)
:]
is non
empty
set
cl_Ball
(
rg
,
lg
) is
functional
non
empty
proper
closed
connected
bounded
convex
Element
of
bool
the
carrier
of
(
TOP-REAL
2
)
(
cl_Ball
(
rg
,
lg
)
)
\
{
rg
}
is
functional
non
empty
Element
of
bool
the
carrier
of
(
TOP-REAL
2
)
[:
the
carrier
of
(
Tdisk
(
rg
,
lg
)
)
, the
carrier
of
(
(
TOP-REAL
2
)
|
c
)
:]
is
Relation-like
set
bool
[:
the
carrier
of
(
Tdisk
(
rg
,
lg
)
)
, the
carrier
of
(
(
TOP-REAL
2
)
|
c
)
:]
is non
empty
set
ld
is
Relation-like
the
carrier
of
(
Tdisk
(
rg
,
lg
)
)
-defined
the
carrier
of
(
(
TOP-REAL
2
)
|
a
)
-valued
Function-like
quasi_total
Element
of
bool
[:
the
carrier
of
(
Tdisk
(
rg
,
lg
)
)
, the
carrier
of
(
(
TOP-REAL
2
)
|
a
)
:]
ld
|
a
is
Relation-like
a
-defined
the
carrier
of
(
Tdisk
(
rg
,
lg
)
)
-defined
the
carrier
of
(
(
TOP-REAL
2
)
|
a
)
-valued
Function-like
Element
of
bool
[:
the
carrier
of
(
Tdisk
(
rg
,
lg
)
)
, the
carrier
of
(
(
TOP-REAL
2
)
|
a
)
:]
pd
is
functional
non
empty
Element
of
bool
the
carrier
of
(
TOP-REAL
2
)
(
TOP-REAL
2
)
|
pd
is non
empty
strict
TopSpace-like
T_0
T_1
T_2
SubSpace
of
TOP-REAL
2
rg
-
rg
is
Relation-like
Function-like
V49
(2)
V50
()
V156
()
V157
()
V158
()
Element
of the
carrier
of
(
TOP-REAL
2
)
-
rg
is
Relation-like
Function-like
V49
(2)
V50
()
V156
()
V157
()
V158
()
Element
of the
carrier
of
(
TOP-REAL
2
)
K270
(
(
TOP-REAL
2
)
,
rg
,
(
-
rg
)
) is
Relation-like
Function-like
V49
(2)
V50
()
V156
()
V157
()
V158
()
Element
of the
carrier
of
(
TOP-REAL
2
)
the
U7
of
(
TOP-REAL
2
)
is
Relation-like
[:
the
carrier
of
(
TOP-REAL
2
)
, the
carrier
of
(
TOP-REAL
2
)
:]
-defined
the
carrier
of
(
TOP-REAL
2
)
-valued
Function-like
non
empty
total
quasi_total
Element
of
bool
[:
[:
the
carrier
of
(
TOP-REAL
2
)
, the
carrier
of
(
TOP-REAL
2
)
:]
, the
carrier
of
(
TOP-REAL
2
)
:]
[:
[:
the
carrier
of
(
TOP-REAL
2
)
, the
carrier
of
(
TOP-REAL
2
)
:]
, the
carrier
of
(
TOP-REAL
2
)
:]
is
Relation-like
non
empty
set
bool
[:
[:
the
carrier
of
(
TOP-REAL
2
)
, the
carrier
of
(
TOP-REAL
2
)
:]
, the
carrier
of
(
TOP-REAL
2
)
:]
is non
empty
set
K224
( the
carrier
of
(
TOP-REAL
2
)
, the
U7
of
(
TOP-REAL
2
)
,
rg
,
(
-
rg
)
) is
Relation-like
Function-like
V49
(2)
V50
()
V156
()
V157
()
V158
()
Element
of the
carrier
of
(
TOP-REAL
2
)
|.
(
rg
-
rg
)
.|
is
complex
ext-real
non
negative
real
Element
of
REAL
[#]
(
Tdisk
(
rg
,
lg
)
)
is non
empty
non
proper
open
closed
dense
non
boundary
compact
Element
of
bool
the
carrier
of
(
Tdisk
(
rg
,
lg
)
)
bool
the
carrier
of
(
Tdisk
(
rg
,
lg
)
)
is non
empty
set
(
Cl
b
)
/\
(
[#]
(
Tdisk
(
rg
,
lg
)
)
)
is
Element
of
bool
the
carrier
of
(
Tdisk
(
rg
,
lg
)
)
Sphere
(
rg
,
lg
) is
functional
non
empty
proper
closed
closed
connected
compact
bounded
bounded
being_simple_closed_curve
with_the_max_arc
Element
of
bool
the
carrier
of
(
TOP-REAL
2
)
C
is
Relation-like
Function-like
V49
(2)
V50
()
V156
()
V157
()
V158
()
Element
of the
carrier
of
(
TOP-REAL
2
)
(
b
`
)
/\
(
[#]
(
Tdisk
(
rg
,
lg
)
)
)
is
Element
of
bool
the
carrier
of
(
Tdisk
(
rg
,
lg
)
)
TR
is non
empty
Element
of
bool
the
carrier
of
(
Tdisk
(
rg
,
lg
)
)
(
Tdisk
(
rg
,
lg
)
)
|
TR
is non
empty
strict
TopSpace-like
T_0
T_1
T_2
SubSpace
of
Tdisk
(
rg
,
lg
)
P
is non
empty
Element
of
bool
the
carrier
of
(
Tdisk
(
rg
,
lg
)
)
(
Tdisk
(
rg
,
lg
)
)
|
P
is non
empty
strict
TopSpace-like
T_0
T_1
T_2
SubSpace
of
Tdisk
(
rg
,
lg
)
U
is non
empty
TopSpace-like
T_0
T_1
T_2
SubSpace
of
Tdisk
(
rg
,
lg
)
the
carrier
of
U
is non
empty
set
l
is non
empty
TopSpace-like
T_0
T_1
T_2
SubSpace
of
Tdisk
(
rg
,
lg
)
the
carrier
of
l
is non
empty
set
R
is non
empty
TopSpace-like
T_0
T_1
T_2
SubSpace
of
TOP-REAL
2
the
carrier
of
R
is non
empty
set
LJ
is
set
LJ
is
set
ld
|
TR
is
Relation-like
the
carrier
of
(
Tdisk
(
rg
,
lg
)
)
-defined
TR
-defined
the
carrier
of
(
Tdisk
(
rg
,
lg
)
)
-defined
the
carrier
of
(
(
TOP-REAL
2
)
|
a
)
-valued
Function-like
Element
of
bool
[:
the
carrier
of
(
Tdisk
(
rg
,
lg
)
)
, the
carrier
of
(
(
TOP-REAL
2
)
|
a
)
:]
[:
TR
,
a
:]
is
Relation-like
set
bool
[:
TR
,
a
:]
is non
empty
set
[:
the
carrier
of
U
, the
carrier
of
R
:]
is
Relation-like
non
empty
set
bool
[:
the
carrier
of
U
, the
carrier
of
R
:]
is non
empty
set
[:
the
carrier
of
l
, the
carrier
of
R
:]
is
Relation-like
non
empty
set
bool
[:
the
carrier
of
l
, the
carrier
of
R
:]
is non
empty
set
id
P
is
Relation-like
P
-defined
P
-valued
Function-like
one-to-one
non
empty
total
quasi_total
Element
of
bool
[:
P
,
P
:]
[:
P
,
P
:]
is
Relation-like
non
empty
set
bool
[:
P
,
P
:]
is non
empty
set
[#]
U
is non
empty
non
proper
open
closed
dense
non
boundary
Element
of
bool
the
carrier
of
U
bool
the
carrier
of
U
is non
empty
set
[#]
l
is non
empty
non
proper
open
closed
dense
non
boundary
Element
of
bool
the
carrier
of
l
bool
the
carrier
of
l
is non
empty
set
(
[#]
U
)
\/
(
[#]
l
)
is non
empty
set
x
is
set
x
is
functional
closed
Element
of
bool
the
carrier
of
(
TOP-REAL
2
)
x
/\
(
Cl
b
)
is
functional
closed
Element
of
bool
the
carrier
of
(
TOP-REAL
2
)
x
/\
(
b
`
)
is
functional
Element
of
bool
the
carrier
of
(
TOP-REAL
2
)
dR
is
functional
non
empty
Element
of
bool
the
carrier
of
(
TOP-REAL
2
)
(
TOP-REAL
2
)
|
dR
is non
empty
strict
TopSpace-like
T_0
T_1
T_2
SubSpace
of
TOP-REAL
2
the
carrier
of
(
(
TOP-REAL
2
)
|
dR
)
is non
empty
set
[:
the
carrier
of
U
, the
carrier
of
(
(
TOP-REAL
2
)
|
dR
)
:]
is
Relation-like
non
empty
set
bool
[:
the
carrier
of
U
, the
carrier
of
(
(
TOP-REAL
2
)
|
dR
)
:]
is non
empty
set
A1
is
Relation-like
the
carrier
of
U
-defined
the
carrier
of
(
(
TOP-REAL
2
)
|
dR
)
-valued
Function-like
non
empty
total
quasi_total
Element
of
bool
[:
the
carrier
of
U
, the
carrier
of
(
(
TOP-REAL
2
)
|
dR
)
:]
LJ
is
Relation-like
the
carrier
of
U
-defined
the
carrier
of
R
-valued
Function-like
non
empty
total
quasi_total
Element
of
bool
[:
the
carrier
of
U
, the
carrier
of
R
:]
[:
the
carrier
of
l
, the
carrier
of
l
:]
is
Relation-like
non
empty
set
bool
[:
the
carrier
of
l
, the
carrier
of
l
:]
is non
empty
set
A2
is
Relation-like
the
carrier
of
l
-defined
the
carrier
of
l
-valued
Function-like
non
empty
total
quasi_total
Element
of
bool
[:
the
carrier
of
l
, the
carrier
of
l
:]
id
l
is
Relation-like
the
carrier
of
l
-defined
the
carrier
of
l
-valued
Function-like
one-to-one
non
empty
total
quasi_total
onto
bijective
continuous
being_homeomorphism
Homeomorphism
of
l
id
the
carrier
of
l
is
Relation-like
the
carrier
of
l
-defined
the
carrier
of
l
-valued
Function-like
one-to-one
non
empty
total
quasi_total
Element
of
bool
[:
the
carrier
of
l
, the
carrier
of
l
:]
k
is
Relation-like
the
carrier
of
l
-defined
the
carrier
of
R
-valued
Function-like
non
empty
total
quasi_total
Element
of
bool
[:
the
carrier
of
l
, the
carrier
of
R
:]
w
is
set
ld
.
w
is
set
(
id
a
)
.
w
is
Relation-like
Function-like
set
(
[#]
U
)
/\
(
[#]
l
)
is
Element
of
bool
the
carrier
of
l
w
is
set
LJ
.
w
is
set
k
.
w
is
set
ld
.
w
is
set
LJ
+*
k
is
Relation-like
Function-like
set
w
is
Relation-like
the
carrier
of
(
Tdisk
(
rg
,
lg
)
)
-defined
the
carrier
of
(
(
TOP-REAL
2
)
|
c
)
-valued
Function-like
quasi_total
Element
of
bool
[:
the
carrier
of
(
Tdisk
(
rg
,
lg
)
)
, the
carrier
of
(
(
TOP-REAL
2
)
|
c
)
:]
Ux
is
Element
of the
carrier
of
(
Tdisk
(
rg
,
lg
)
)
w
.
Ux
is
Element
of the
carrier
of
(
(
TOP-REAL
2
)
|
c
)
ld
.
Ux
is
Element
of the
carrier
of
(
(
TOP-REAL
2
)
|
a
)
dom
k
is non
empty
Element
of
bool
the
carrier
of
l
LJ
.
Ux
is
set
k
.
Ux
is
set
k
.
Ux
is
set
rp
is
Relation-like
Function-like
V49
(2)
V50
()
V156
()
V157
()
V158
()
Element
of the
carrier
of
(
TOP-REAL
2
)
{
rp
}
is
functional
non
empty
proper
closed
compact
bounded
Element
of
bool
the
carrier
of
(
TOP-REAL
2
)
rl
is
functional
non
empty
proper
closed
connected
compact
bounded
being_simple_closed_curve
with_the_max_arc
Element
of
bool
the
carrier
of
(
TOP-REAL
2
)
rl
`
is
functional
non
empty
open
Element
of
bool
the
carrier
of
(
TOP-REAL
2
)
the
carrier
of
(
TOP-REAL
2
)
\
rl
is
set
(
TOP-REAL
2
)
|
(
rl
`
)
is non
empty
strict
TopSpace-like
T_0
T_1
T_2
V118
(
TOP-REAL
2)
SubSpace
of
TOP-REAL
2
the
carrier
of
(
(
TOP-REAL
2
)
|
(
rl
`
)
)
is non
empty
set
bool
the
carrier
of
(
(
TOP-REAL
2
)
|
(
rl
`
)
)
is non
empty
set
rg
is
functional
Element
of
bool
the
carrier
of
(
TOP-REAL
2
)
Cl
rg
is
functional
closed
Element
of
bool
the
carrier
of
(
TOP-REAL
2
)
rg
`
is
functional
Element
of
bool
the
carrier
of
(
TOP-REAL
2
)
the
carrier
of
(
TOP-REAL
2
)
\
rg
is
set
(
Cl
rg
)
/\
(
rg
`
)
is
functional
Element
of
bool
the
carrier
of
(
TOP-REAL
2
)
rd
is
functional
Element
of
bool
the
carrier
of
(
TOP-REAL
2
)
(
TOP-REAL
2
)
|
rd
is
strict
TopSpace-like
T_0
T_1
T_2
SubSpace
of
TOP-REAL
2
the
carrier
of
(
(
TOP-REAL
2
)
|
rd
)
is
set
a
is
Element
of
bool
the
carrier
of
(
(
TOP-REAL
2
)
|
(
rl
`
)
)
b
is
Element
of
bool
the
carrier
of
(
(
TOP-REAL
2
)
|
(
rl
`
)
)
c
is
functional
non
empty
Element
of
bool
the
carrier
of
(
TOP-REAL
2
)
(
TOP-REAL
2
)
|
c
is non
empty
strict
TopSpace-like
T_0
T_1
T_2
SubSpace
of
TOP-REAL
2
the
carrier
of
(
(
TOP-REAL
2
)
|
c
)
is non
empty
set
id
c
is
Relation-like
c
-defined
c
-valued
Function-like
one-to-one
non
empty
total
quasi_total
Element
of
bool
[:
c
,
c
:]
[:
c
,
c
:]
is
Relation-like
non
empty
set
bool
[:
c
,
c
:]
is non
empty
set
d
is non
empty
complex
ext-real
positive
non
negative
real
set
Ball
(
rp
,
d
) is
functional
non
empty
proper
open
connected
bounded
being_Region
convex
Element
of
bool
the
carrier
of
(
TOP-REAL
2
)
Tdisk
(
rp
,
d
) is non
empty
TopSpace-like
T_0
T_1
T_2
V82
()
normal
T_3
T_4
compact
closed
V246
()
V270
(2)
pseudocompact
SubSpace
of
TOP-REAL
2
the
carrier
of
(
Tdisk
(
rp
,
d
)
)
is non
empty
set
[:
the
carrier
of
(
Tdisk
(
rp
,
d
)
)
, the
carrier
of
(
(
TOP-REAL
2
)
|
c
)
:]
is
Relation-like
non
empty
set
bool
[:
the
carrier
of
(
Tdisk
(
rp
,
d
)
)
, the
carrier
of
(
(
TOP-REAL
2
)
|
c
)
:]
is non
empty
set
cl_Ball
(
rp
,
d
) is
functional
non
empty
proper
closed
connected
bounded
convex
Element
of
bool
the
carrier
of
(
TOP-REAL
2
)
(
cl_Ball
(
rp
,
d
)
)
\
{
rp
}
is
functional
non
empty
Element
of
bool
the
carrier
of
(
TOP-REAL
2
)
[:
the
carrier
of
(
Tdisk
(
rp
,
d
)
)
, the
carrier
of
(
(
TOP-REAL
2
)
|
rd
)
:]
is
Relation-like
set
bool
[:
the
carrier
of
(
Tdisk
(
rp
,
d
)
)
, the
carrier
of
(
(
TOP-REAL
2
)
|
rd
)
:]
is non
empty
set
pg
is
Relation-like
the
carrier
of
(
Tdisk
(
rp
,
d
)
)
-defined
the
carrier
of
(
(
TOP-REAL
2
)
|
c
)
-valued
Function-like
non
empty
total
quasi_total
Element
of
bool
[:
the
carrier
of
(
Tdisk
(
rp
,
d
)
)
, the
carrier
of
(
(
TOP-REAL
2
)
|
c
)
:]
pg
|
c
is
Relation-like
c
-defined
the
carrier
of
(
Tdisk
(
rp
,
d
)
)
-defined
the
carrier
of
(
(
TOP-REAL
2
)
|
c
)
-valued
Function-like
Element
of
bool
[:
the
carrier
of
(
Tdisk
(
rp
,
d
)
)
, the
carrier
of
(
(
TOP-REAL
2
)
|
c
)
:]
ld
is
functional
non
empty
Element
of
bool
the
carrier
of
(
TOP-REAL
2
)
(
TOP-REAL
2
)
|
ld
is non
empty
strict
TopSpace-like
T_0
T_1
T_2
SubSpace
of
TOP-REAL
2
rp
-
rp
is
Relation-like
Function-like
V49
(2)
V50
()
V156
()
V157
()
V158
()
Element
of the
carrier
of
(
TOP-REAL
2
)
-
rp
is
Relation-like
Function-like
V49
(2)
V50
()
V156
()
V157
()
V158
()
Element
of the
carrier
of
(
TOP-REAL
2
)
K270
(
(
TOP-REAL
2
)
,
rp
,
(
-
rp
)
) is
Relation-like
Function-like
V49
(2)
V50
()
V156
()
V157
()
V158
()
Element
of the
carrier
of
(
TOP-REAL
2
)
the
U7
of
(
TOP-REAL
2
)
is
Relation-like
[:
the
carrier
of
(
TOP-REAL
2
)
, the
carrier
of
(
TOP-REAL
2
)
:]
-defined
the
carrier
of
(
TOP-REAL
2
)
-valued
Function-like
non
empty
total
quasi_total
Element
of
bool
[:
[:
the
carrier
of
(
TOP-REAL
2
)
, the
carrier
of
(
TOP-REAL
2
)
:]
, the
carrier
of
(
TOP-REAL
2
)
:]
[:
[:
the
carrier
of
(
TOP-REAL
2
)
, the
carrier
of
(
TOP-REAL
2
)
:]
, the
carrier
of
(
TOP-REAL
2
)
:]
is
Relation-like
non
empty
set
bool
[:
[:
the
carrier
of
(
TOP-REAL
2
)
, the
carrier
of
(
TOP-REAL
2
)
:]
, the
carrier
of
(
TOP-REAL
2
)
:]
is non
empty
set
K224
( the
carrier
of
(
TOP-REAL
2
)
, the
U7
of
(
TOP-REAL
2
)
,
rp
,
(
-
rp
)
) is
Relation-like
Function-like
V49
(2)
V50
()
V156
()
V157
()
V158
()
Element
of the
carrier
of
(
TOP-REAL
2
)
|.
(
rp
-
rp
)
.|
is
complex
ext-real
non
negative
real
Element
of
REAL
[#]
(
Tdisk
(
rp
,
d
)
)
is non
empty
non
proper
open
closed
dense
non
boundary
compact
Element
of
bool
the
carrier
of
(
Tdisk
(
rp
,
d
)
)
bool
the
carrier
of
(
Tdisk
(
rp
,
d
)
)
is non
empty
set
(
Cl
rg
)
/\
(
[#]
(
Tdisk
(
rp
,
d
)
)
)
is
Element
of
bool
the
carrier
of
(
Tdisk
(
rp
,
d
)
)
dR
is
set
(
rg
`
)
/\
(
[#]
(
Tdisk
(
rp
,
d
)
)
)
is
Element
of
bool
the
carrier
of
(
Tdisk
(
rp
,
d
)
)
R
is non
empty
Element
of
bool
the
carrier
of
(
Tdisk
(
rp
,
d
)
)
(
Tdisk
(
rp
,
d
)
)
|
R
is non
empty
strict
TopSpace-like
T_0
T_1
T_2
SubSpace
of
Tdisk
(
rp
,
d
)
dR
is non
empty
Element
of
bool
the
carrier
of
(
Tdisk
(
rp
,
d
)
)
(
Tdisk
(
rp
,
d
)
)
|
dR
is non
empty
strict
TopSpace-like
T_0
T_1
T_2
SubSpace
of
Tdisk
(
rp
,
d
)
the
carrier
of
(
(
Tdisk
(
rp
,
d
)
)
|
R
)
is non
empty
set
the
carrier
of
(
(
Tdisk
(
rp
,
d
)
)
|
dR
)
is non
empty
set
the
carrier
of
(
(
TOP-REAL
2
)
|
ld
)
is non
empty
set
P
is
set
P
is
set
pd
is non
empty
TopSpace-like
T_0
T_1
T_2
SubSpace
of
TOP-REAL
2
the
carrier
of
pd
is non
empty
set
[:
the
carrier
of
(
(
Tdisk
(
rp
,
d
)
)
|
R
)
, the
carrier
of
pd
:]
is
Relation-like
non
empty
set
bool
[:
the
carrier
of
(
(
Tdisk
(
rp
,
d
)
)
|
R
)
, the
carrier
of
pd
:]
is non
empty
set
id
R
is
Relation-like
R
-defined
R
-valued
Function-like
one-to-one
non
empty
total
quasi_total
Element
of
bool
[:
R
,
R
:]
[:
R
,
R
:]
is
Relation-like
non
empty
set
bool
[:
R
,
R
:]
is non
empty
set
pg
|
dR
is
Relation-like
the
carrier
of
(
Tdisk
(
rp
,
d
)
)
-defined
dR
-defined
the
carrier
of
(
Tdisk
(
rp
,
d
)
)
-defined
the
carrier
of
(
(
TOP-REAL
2
)
|
c
)
-valued
Function-like
Element
of
bool
[:
the
carrier
of
(
Tdisk
(
rp
,
d
)
)
, the
carrier
of
(
(
TOP-REAL
2
)
|
c
)
:]
[:
dR
,
c
:]
is
Relation-like
non
empty
set
bool
[:
dR
,
c
:]
is non
empty
set
[:
the
carrier
of
(
(
Tdisk
(
rp
,
d
)
)
|
dR
)
, the
carrier
of
pd
:]
is
Relation-like
non
empty
set
bool
[:
the
carrier
of
(
(
Tdisk
(
rp
,
d
)
)
|
dR
)
, the
carrier
of
pd
:]
is non
empty
set
[#]
(
(
Tdisk
(
rp
,
d
)
)
|
R
)
is non
empty
non
proper
open
closed
dense
non
boundary
Element
of
bool
the
carrier
of
(
(
Tdisk
(
rp
,
d
)
)
|
R
)
bool
the
carrier
of
(
(
Tdisk
(
rp
,
d
)
)
|
R
)
is non
empty
set
[#]
(
(
Tdisk
(
rp
,
d
)
)
|
dR
)
is non
empty
non
proper
open
closed
dense
non
boundary
Element
of
bool
the
carrier
of
(
(
Tdisk
(
rp
,
d
)
)
|
dR
)
bool
the
carrier
of
(
(
Tdisk
(
rp
,
d
)
)
|
dR
)
is non
empty
set
(
[#]
(
(
Tdisk
(
rp
,
d
)
)
|
R
)
)
\/
(
[#]
(
(
Tdisk
(
rp
,
d
)
)
|
dR
)
)
is non
empty
set
l
is
set
l
is
functional
closed
Element
of
bool
the
carrier
of
(
TOP-REAL
2
)
l
/\
(
Cl
rg
)
is
functional
closed
Element
of
bool
the
carrier
of
(
TOP-REAL
2
)
l
/\
(
rg
`
)
is
functional
Element
of
bool
the
carrier
of
(
TOP-REAL
2
)
id
(
(
Tdisk
(
rp
,
d
)
)
|
R
)
is
Relation-like
the
carrier
of
(
(
Tdisk
(
rp
,
d
)
)
|
R
)
-defined
the
carrier
of
(
(
Tdisk
(
rp
,
d
)
)
|
R
)
-valued
Function-like
one-to-one
non
empty
total
quasi_total
onto
bijective
continuous
being_homeomorphism
Homeomorphism
of
(
Tdisk
(
rp
,
d
)
)
|
R
id
the
carrier
of
(
(
Tdisk
(
rp
,
d
)
)
|
R
)
is
Relation-like
the
carrier
of
(
(
Tdisk
(
rp
,
d
)
)
|
R
)
-defined
the
carrier
of
(
(
Tdisk
(
rp
,
d
)
)
|
R
)
-valued
Function-like
one-to-one
non
empty
total
quasi_total
Element
of
bool
[:
the
carrier
of
(
(
Tdisk
(
rp
,
d
)
)
|
R
)
, the
carrier
of
(
(
Tdisk
(
rp
,
d
)
)
|
R
)
:]
[:
the
carrier
of
(
(
Tdisk
(
rp
,
d
)
)
|
R
)
, the
carrier
of
(
(
Tdisk
(
rp
,
d
)
)
|
R
)
:]
is
Relation-like
non
empty
set
bool
[:
the
carrier
of
(
(
Tdisk
(
rp
,
d
)
)
|
R
)
, the
carrier
of
(
(
Tdisk
(
rp
,
d
)
)
|
R
)
:]
is non
empty
set
P
is
Relation-like
the
carrier
of
(
(
Tdisk
(
rp
,
d
)
)
|
R
)
-defined
the
carrier
of
pd
-valued
Function-like
non
empty
total
quasi_total
Element
of
bool
[:
the
carrier
of
(
(
Tdisk
(
rp
,
d
)
)
|
R
)
, the
carrier
of
pd
:]
[:
the
carrier
of
(
(
Tdisk
(
rp
,
d
)
)
|
dR
)
, the
carrier
of
(
(
TOP-REAL
2
)
|
c
)
:]
is
Relation-like
non
empty
set
bool
[:
the
carrier
of
(
(
Tdisk
(
rp
,
d
)
)
|
dR
)
, the
carrier
of
(
(
TOP-REAL
2
)
|
c
)
:]
is non
empty
set
U
is
Relation-like
the
carrier
of
(
(
Tdisk
(
rp
,
d
)
)
|
dR
)
-defined
the
carrier
of
pd
-valued
Function-like
non
empty
total
quasi_total
Element
of
bool
[:
the
carrier
of
(
(
Tdisk
(
rp
,
d
)
)
|
dR
)
, the
carrier
of
pd
:]
LJ
is
Relation-like
the
carrier
of
(
(
Tdisk
(
rp
,
d
)
)
|
dR
)
-defined
the
carrier
of
(
(
TOP-REAL
2
)
|
c
)
-valued
Function-like
non
empty
total
quasi_total
Element
of
bool
[:
the
carrier
of
(
(
Tdisk
(
rp
,
d
)
)
|
dR
)
, the
carrier
of
(
(
TOP-REAL
2
)
|
c
)
:]
k
is
set
pg
.
k
is
set
(
id
c
)
.
k
is
Relation-like
Function-like
set
(
[#]
(
(
Tdisk
(
rp
,
d
)
)
|
R
)
)
/\
(
[#]
(
(
Tdisk
(
rp
,
d
)
)
|
dR
)
)
is
Element
of
bool
the
carrier
of
(
(
Tdisk
(
rp
,
d
)
)
|
dR
)
k
is
set
P
.
k
is
set
U
.
k
is
set
pg
.
k
is
set
P
+*
U
is
Relation-like
Function-like
set
k
is
Relation-like
the
carrier
of
(
Tdisk
(
rp
,
d
)
)
-defined
the
carrier
of
(
(
TOP-REAL
2
)
|
rd
)
-valued
Function-like
quasi_total
Element
of
bool
[:
the
carrier
of
(
Tdisk
(
rp
,
d
)
)
, the
carrier
of
(
(
TOP-REAL
2
)
|
rd
)
:]
x
is
Element
of the
carrier
of
(
Tdisk
(
rp
,
d
)
)
k
.
x
is
Element
of the
carrier
of
(
(
TOP-REAL
2
)
|
rd
)
pg
.
x
is
Element
of the
carrier
of
(
(
TOP-REAL
2
)
|
c
)
dom
U
is non
empty
Element
of
bool
the
carrier
of
(
(
Tdisk
(
rp
,
d
)
)
|
dR
)
P
.
x
is
set
U
.
x
is
set
U
.
x
is
set
rp
is
functional
non
empty
proper
closed
connected
compact
bounded
being_simple_closed_curve
with_the_max_arc
Element
of
bool
the
carrier
of
(
TOP-REAL
2
)
rp
`
is
functional
non
empty
open
Element
of
bool
the
carrier
of
(
TOP-REAL
2
)
the
carrier
of
(
TOP-REAL
2
)
\
rp
is
set
(
TOP-REAL
2
)
|
(
rp
`
)
is non
empty
strict
TopSpace-like
T_0
T_1
T_2
V118
(
TOP-REAL
2)
SubSpace
of
TOP-REAL
2
the
carrier
of
(
(
TOP-REAL
2
)
|
(
rp
`
)
)
is non
empty
set
bool
the
carrier
of
(
(
TOP-REAL
2
)
|
(
rp
`
)
)
is non
empty
set
BDD
rp
is
functional
open
Element
of
bool
the
carrier
of
(
TOP-REAL
2
)
{
b
1
where
b
1
is
functional
Element
of
bool
the
carrier
of
(
TOP-REAL
2
)
:
b
1
is_inside_component_of
rp
}
is
set
union
{
b
1
where
b
1
is
functional
Element
of
bool
the
carrier
of
(
TOP-REAL
2
)
:
b
1
is_inside_component_of
rp
}
is
set
rl
is
functional
Element
of
bool
the
carrier
of
(
TOP-REAL
2
)
Fr
rl
is
functional
closed
Element
of
bool
the
carrier
of
(
TOP-REAL
2
)
Cl
rl
is
functional
closed
Element
of
bool
the
carrier
of
(
TOP-REAL
2
)
rl
`
is
functional
Element
of
bool
the
carrier
of
(
TOP-REAL
2
)
the
carrier
of
(
TOP-REAL
2
)
\
rl
is
set
Cl
(
rl
`
)
is
functional
closed
Element
of
bool
the
carrier
of
(
TOP-REAL
2
)
(
Cl
rl
)
/\
(
Cl
(
rl
`
)
)
is
functional
closed
Element
of
bool
the
carrier
of
(
TOP-REAL
2
)
rg
is
Element
of
bool
the
carrier
of
(
(
TOP-REAL
2
)
|
(
rp
`
)
)
rd
is non
empty
TopSpace-like
T_0
T_1
T_2
SubSpace
of
TOP-REAL
2
a
is
functional
open
Element
of
bool
the
carrier
of
(
TOP-REAL
2
)
Fr
a
is
functional
closed
boundary
nowhere_dense
Element
of
bool
the
carrier
of
(
TOP-REAL
2
)
Cl
a
is
functional
closed
Element
of
bool
the
carrier
of
(
TOP-REAL
2
)
a
`
is
functional
closed
Element
of
bool
the
carrier
of
(
TOP-REAL
2
)
the
carrier
of
(
TOP-REAL
2
)
\
a
is
set
Cl
(
a
`
)
is
functional
closed
Element
of
bool
the
carrier
of
(
TOP-REAL
2
)
(
Cl
a
)
/\
(
Cl
(
a
`
)
)
is
functional
closed
Element
of
bool
the
carrier
of
(
TOP-REAL
2
)
(
Cl
a
)
/\
(
a
`
)
is
functional
closed
Element
of
bool
the
carrier
of
(
TOP-REAL
2
)
{
b
1
where
b
1
is
Element
of
bool
the
carrier
of
(
(
TOP-REAL
2
)
|
(
rp
`
)
)
: (
b
1
is
a_component
& not
b
1
=
rg
)
}
is
set
union
{
b
1
where
b
1
is
Element
of
bool
the
carrier
of
(
(
TOP-REAL
2
)
|
(
rp
`
)
)
: (
b
1
is
a_component
& not
b
1
=
rg
)
}
is
set
(
union
{
b
1
where
b
1
is
Element
of
bool
the
carrier
of
(
(
TOP-REAL
2
)
|
(
rp
`
)
)
: (
b
1
is
a_component
& not
b
1
=
rg
)
}
)
\/
rg
is
set
(
(
union
{
b
1
where
b
1
is
Element
of
bool
the
carrier
of
(
(
TOP-REAL
2
)
|
(
rp
`
)
)
: (
b
1
is
a_component
& not
b
1
=
rg
)
}
)
\/
rg
)
\/
rp
is non
empty
set
d
is
set
lg
is
set
pg
is
Element
of
bool
the
carrier
of
(
(
TOP-REAL
2
)
|
(
rp
`
)
)
d
is
set
lg
is
Element
of the
carrier
of
(
(
TOP-REAL
2
)
|
(
rp
`
)
)
Component_of
lg
is
Element
of
bool
the
carrier
of
(
(
TOP-REAL
2
)
|
(
rp
`
)
)
d
is
set
lg
is
set
pg
is
Element
of
bool
the
carrier
of
(
(
TOP-REAL
2
)
|
(
rp
`
)
)
d
is
Relation-like
Function-like
V49
(2)
V50
()
V156
()
V157
()
V158
()
Element
of the
carrier
of
(
TOP-REAL
2
)
lg
is
Relation-like
Function-like
V49
(2)
V50
()
V156
()
V157
()
V158
()
Element
of the
carrier
of
(
TOP-REAL
2
)
pg
is
functional
Element
of
bool
the
carrier
of
(
TOP-REAL
2
)
{}
(
(
TOP-REAL
2
)
|
(
rp
`
)
)
is
Relation-like
non-empty
empty-yielding
RAT
-valued
Function-like
one-to-one
constant
functional
empty
proper
open
closed
boundary
nowhere_dense
connected
compact
V156
()
V157
()
V158
()
V159
()
V166
()
V167
()
V168
()
V169
()
V170
()
V171
()
V172
()
bounded_below
interval
Element
of
bool
the
carrier
of
(
(
TOP-REAL
2
)
|
(
rp
`
)
)
pd
is
set
ld
is
functional
proper
bounded
Element
of
bool
the
carrier
of
(
TOP-REAL
2
)
ld
\/
rp
is
functional
non
empty
Element
of
bool
the
carrier
of
(
TOP-REAL
2
)
Euclid
2 is non
empty
strict
Reflexive
discerning
symmetric
triangle
Discerning
MetrStruct
the
carrier
of
(
Euclid
2
)
is non
empty
set
bool
the
carrier
of
(
Euclid
2
)
is non
empty
set
dR
is
bounded
Element
of
bool
the
carrier
of
(
Euclid
2
)
R
is
Relation-like
Function-like
V49
(2)
V50
()
V156
()
V157
()
V158
()
Element
of the
carrier
of
(
TOP-REAL
2
)
TR
is non
empty
complex
ext-real
positive
non
negative
real
set
Ball
(
R
,
TR
) is
functional
non
empty
proper
open
connected
bounded
being_Region
convex
Element
of
bool
the
carrier
of
(
TOP-REAL
2
)
Tdisk
(
R
,
TR
) is non
empty
TopSpace-like
T_0
T_1
T_2
V82
()
normal
T_3
T_4
compact
closed
V246
()
V270
(2)
pseudocompact
SubSpace
of
TOP-REAL
2
Tcircle
(
R
,
TR
) is non
empty
strict
TopSpace-like
T_0
T_1
T_2
V82
()
normal
T_3
T_4
connected
compact
V246
()
being_simple_closed_curve
pathwise_connected
pseudocompact
SubSpace
of
TOP-REAL
2
cl_Ball
(
R
,
TR
) is
functional
non
empty
proper
closed
connected
bounded
convex
Element
of
bool
the
carrier
of
(
TOP-REAL
2
)
{
R
}
is
functional
non
empty
proper
closed
compact
bounded
Element
of
bool
the
carrier
of
(
TOP-REAL
2
)
(
cl_Ball
(
R
,
TR
)
)
\
{
R
}
is
functional
non
empty
Element
of
bool
the
carrier
of
(
TOP-REAL
2
)
the
carrier
of
(
Tcircle
(
R
,
TR
)
)
is non
empty
set
Sphere
(
R
,
TR
) is
functional
non
empty
proper
closed
closed
connected
compact
bounded
bounded
being_simple_closed_curve
with_the_max_arc
Element
of
bool
the
carrier
of
(
TOP-REAL
2
)
the
carrier
of
(
Tdisk
(
R
,
TR
)
)
is non
empty
set
bool
the
carrier
of
(
Tdisk
(
R
,
TR
)
)
is non
empty
set
(
TOP-REAL
2
)
|
pg
is
strict
TopSpace-like
T_0
T_1
T_2
SubSpace
of
TOP-REAL
2
the
carrier
of
(
(
TOP-REAL
2
)
|
pg
)
is
set
[:
the
carrier
of
(
Tdisk
(
R
,
TR
)
)
, the
carrier
of
(
(
TOP-REAL
2
)
|
pg
)
:]
is
Relation-like
set
bool
[:
the
carrier
of
(
Tdisk
(
R
,
TR
)
)
, the
carrier
of
(
(
TOP-REAL
2
)
|
pg
)
:]
is non
empty
set
id
pg
is
Relation-like
pg
-defined
pg
-valued
Function-like
one-to-one
total
quasi_total
Element
of
bool
[:
pg
,
pg
:]
[:
pg
,
pg
:]
is
Relation-like
set
bool
[:
pg
,
pg
:]
is non
empty
set
l
is
Relation-like
the
carrier
of
(
Tdisk
(
R
,
TR
)
)
-defined
the
carrier
of
(
(
TOP-REAL
2
)
|
pg
)
-valued
Function-like
quasi_total
Element
of
bool
[:
the
carrier
of
(
Tdisk
(
R
,
TR
)
)
, the
carrier
of
(
(
TOP-REAL
2
)
|
pg
)
:]
l
|
pg
is
Relation-like
pg
-defined
the
carrier
of
(
Tdisk
(
R
,
TR
)
)
-defined
the
carrier
of
(
(
TOP-REAL
2
)
|
pg
)
-valued
Function-like
Element
of
bool
[:
the
carrier
of
(
Tdisk
(
R
,
TR
)
)
, the
carrier
of
(
(
TOP-REAL
2
)
|
pg
)
:]
(
TOP-REAL
2
)
|
(
(
cl_Ball
(
R
,
TR
)
)
\
{
R
}
)
is non
empty
strict
TopSpace-like
T_0
T_1
T_2
SubSpace
of
TOP-REAL
2
the
carrier
of
(
(
TOP-REAL
2
)
|
(
(
cl_Ball
(
R
,
TR
)
)
\
{
R
}
)
)
is non
empty
set
[:
the
carrier
of
(
Tdisk
(
R
,
TR
)
)
, the
carrier
of
(
(
TOP-REAL
2
)
|
(
(
cl_Ball
(
R
,
TR
)
)
\
{
R
}
)
)
:]
is
Relation-like
non
empty
set
bool
[:
the
carrier
of
(
Tdisk
(
R
,
TR
)
)
, the
carrier
of
(
(
TOP-REAL
2
)
|
(
(
cl_Ball
(
R
,
TR
)
)
\
{
R
}
)
)
:]
is non
empty
set
Cl
ld
is
functional
proper
closed
closed
bounded
Element
of
bool
the
carrier
of
(
TOP-REAL
2
)
ld
`
is
functional
non
empty
Element
of
bool
the
carrier
of
(
TOP-REAL
2
)
the
carrier
of
(
TOP-REAL
2
)
\
ld
is
set
LJ
is
Relation-like
the
carrier
of
(
Tdisk
(
R
,
TR
)
)
-defined
the
carrier
of
(
(
TOP-REAL
2
)
|
(
(
cl_Ball
(
R
,
TR
)
)
\
{
R
}
)
)
-valued
Function-like
non
empty
total
quasi_total
Element
of
bool
[:
the
carrier
of
(
Tdisk
(
R
,
TR
)
)
, the
carrier
of
(
(
TOP-REAL
2
)
|
(
(
cl_Ball
(
R
,
TR
)
)
\
{
R
}
)
)
:]
(2,
R
,
R
,
TR
) is
Relation-like
the
carrier
of
(
(
TOP-REAL
2
)
|
(
(
cl_Ball
(
R
,
TR
)
)
\
{
R
}
)
)
-defined
the
carrier
of
(
Tcircle
(
R
,
TR
)
)
-valued
Function-like
non
empty
total
quasi_total
Element
of
bool
[:
the
carrier
of
(
(
TOP-REAL
2
)
|
(
(
cl_Ball
(
R
,
TR
)
)
\
{
R
}
)
)
, the
carrier
of
(
Tcircle
(
R
,
TR
)
)
:]
[:
the
carrier
of
(
(
TOP-REAL
2
)
|
(
(
cl_Ball
(
R
,
TR
)
)
\
{
R
}
)
)
, the
carrier
of
(
Tcircle
(
R
,
TR
)
)
:]
is
Relation-like
non
empty
set
bool
[:
the
carrier
of
(
(
TOP-REAL
2
)
|
(
(
cl_Ball
(
R
,
TR
)
)
\
{
R
}
)
)
, the
carrier
of
(
Tcircle
(
R
,
TR
)
)
:]
is non
empty
set
(2,
R
,
R
,
TR
) is
Relation-like
the
carrier
of
(
Tcircle
(
R
,
TR
)
)
-defined
the
carrier
of
(
Tcircle
(
R
,
TR
)
)
-valued
Function-like
non
empty
total
quasi_total
Element
of
bool
[:
the
carrier
of
(
Tcircle
(
R
,
TR
)
)
, the
carrier
of
(
Tcircle
(
R
,
TR
)
)
:]
[:
the
carrier
of
(
Tcircle
(
R
,
TR
)
)
, the
carrier
of
(
Tcircle
(
R
,
TR
)
)
:]
is
Relation-like
non
empty
set
bool
[:
the
carrier
of
(
Tcircle
(
R
,
TR
)
)
, the
carrier
of
(
Tcircle
(
R
,
TR
)
)
:]
is non
empty
set
[:
the
carrier
of
(
Tdisk
(
R
,
TR
)
)
, the
carrier
of
(
Tdisk
(
R
,
TR
)
)
:]
is
Relation-like
non
empty
set
bool
[:
the
carrier
of
(
Tdisk
(
R
,
TR
)
)
, the
carrier
of
(
Tdisk
(
R
,
TR
)
)
:]
is non
empty
set
(2,
R
,
R
,
TR
)
*
LJ
is
Relation-like
the
carrier
of
(
Tdisk
(
R
,
TR
)
)
-defined
the
carrier
of
(
Tcircle
(
R
,
TR
)
)
-valued
Function-like
non
empty
total
quasi_total
Element
of
bool
[:
the
carrier
of
(
Tdisk
(
R
,
TR
)
)
, the
carrier
of
(
Tcircle
(
R
,
TR
)
)
:]
[:
the
carrier
of
(
Tdisk
(
R
,
TR
)
)
, the
carrier
of
(
Tcircle
(
R
,
TR
)
)
:]
is
Relation-like
non
empty
set
bool
[:
the
carrier
of
(
Tdisk
(
R
,
TR
)
)
, the
carrier
of
(
Tcircle
(
R
,
TR
)
)
:]
is non
empty
set
(2,
R
,
R
,
TR
)
*
(
(2,
R
,
R
,
TR
)
*
LJ
)
is
Relation-like
the
carrier
of
(
Tdisk
(
R
,
TR
)
)
-defined
the
carrier
of
(
Tcircle
(
R
,
TR
)
)
-valued
Function-like
non
empty
total
quasi_total
Element
of
bool
[:
the
carrier
of
(
Tdisk
(
R
,
TR
)
)
, the
carrier
of
(
Tcircle
(
R
,
TR
)
)
:]
R
-
R
is
Relation-like
Function-like
V49
(2)
V50
()
V156
()
V157
()
V158
()
Element
of the
carrier
of
(
TOP-REAL
2
)
-
R
is
Relation-like
Function-like
V49
(2)
V50
()
V156
()
V157
()
V158
()
Element
of the
carrier
of
(
TOP-REAL
2
)
K270
(
(
TOP-REAL
2
)
,
R
,
(
-
R
)
) is
Relation-like
Function-like
V49
(2)
V50
()
V156
()
V157
()
V158
()
Element
of the
carrier
of
(
TOP-REAL
2
)
the
U7
of
(
TOP-REAL
2
)
is
Relation-like
[:
the
carrier
of
(
TOP-REAL
2
)
, the
carrier
of
(
TOP-REAL
2
)
:]
-defined
the
carrier
of
(
TOP-REAL
2
)
-valued
Function-like
non
empty
total
quasi_total
Element
of
bool
[:
[:
the
carrier
of
(
TOP-REAL
2
)
, the
carrier
of
(
TOP-REAL
2
)
:]
, the
carrier
of
(
TOP-REAL
2
)
:]
[:
[:
the
carrier
of
(
TOP-REAL
2
)
, the
carrier
of
(
TOP-REAL
2
)
:]
, the
carrier
of
(
TOP-REAL
2
)
:]
is
Relation-like
non
empty
set
bool
[:
[:
the
carrier
of
(
TOP-REAL
2
)
, the
carrier
of
(
TOP-REAL
2
)
:]
, the
carrier
of
(
TOP-REAL
2
)
:]
is non
empty
set
K224
( the
carrier
of
(
TOP-REAL
2
)
, the
U7
of
(
TOP-REAL
2
)
,
R
,
(
-
R
)
) is
Relation-like
Function-like
V49
(2)
V50
()
V156
()
V157
()
V158
()
Element
of the
carrier
of
(
TOP-REAL
2
)
|.
(
R
-
R
)
.|
is
complex
ext-real
non
negative
real
Element
of
REAL
A1
is
Relation-like
the
carrier
of
(
Tdisk
(
R
,
TR
)
)
-defined
the
carrier
of
(
Tdisk
(
R
,
TR
)
)
-valued
Function-like
non
empty
total
quasi_total
Element
of
bool
[:
the
carrier
of
(
Tdisk
(
R
,
TR
)
)
, the
carrier
of
(
Tdisk
(
R
,
TR
)
)
:]
A2
is
set
dom
A1
is non
empty
Element
of
bool
the
carrier
of
(
Tdisk
(
R
,
TR
)
)
(
Ball
(
R
,
TR
)
)
\/
(
Sphere
(
R
,
TR
)
)
is
functional
non
empty
Element
of
bool
the
carrier
of
(
TOP-REAL
2
)
A1
.
A2
is
set
dom
LJ
is non
empty
Element
of
bool
the
carrier
of
(
Tdisk
(
R
,
TR
)
)
(2,
R
,
R
,
TR
)
|
(
Sphere
(
R
,
TR
)
)
is
Relation-like
Sphere
(
R
,
TR
)
-defined
the
carrier
of
(
(
TOP-REAL
2
)
|
(
(
cl_Ball
(
R
,
TR
)
)
\
{
R
}
)
)
-defined
the
carrier
of
(
Tcircle
(
R
,
TR
)
)
-valued
Function-like
Element
of
bool
[:
the
carrier
of
(
(
TOP-REAL
2
)
|
(
(
cl_Ball
(
R
,
TR
)
)
\
{
R
}
)
)
, the
carrier
of
(
Tcircle
(
R
,
TR
)
)
:]
id
(
Sphere
(
R
,
TR
)
)
is
Relation-like
Sphere
(
R
,
TR
)
-defined
Sphere
(
R
,
TR
)
-valued
Function-like
one-to-one
non
empty
total
quasi_total
Element
of
bool
[:
(
Sphere
(
R
,
TR
)
)
,
(
Sphere
(
R
,
TR
)
)
:]
[:
(
Sphere
(
R
,
TR
)
)
,
(
Sphere
(
R
,
TR
)
)
:]
is
Relation-like
non
empty
set
bool
[:
(
Sphere
(
R
,
TR
)
)
,
(
Sphere
(
R
,
TR
)
)
:]
is non
empty
set
dom
(2,
R
,
R
,
TR
) is non
empty
Element
of
bool
the
carrier
of
(
Tcircle
(
R
,
TR
)
)
bool
the
carrier
of
(
Tcircle
(
R
,
TR
)
)
is non
empty
set
A1
.
A2
is
set
(
(2,
R
,
R
,
TR
)
*
LJ
)
.
A2
is
set
(2,
R
,
R
,
TR
)
.
(
(
(2,
R
,
R
,
TR
)
*
LJ
)
.
A2
)
is
set
LJ
.
A2
is
set
(2,
R
,
R
,
TR
)
.
(
LJ
.
A2
)
is
set
(2,
R
,
R
,
TR
)
.
(
(2,
R
,
R
,
TR
)
.
(
LJ
.
A2
)
)
is
set
(2,
R
,
R
,
TR
)
.
A2
is
set
(2,
R
,
R
,
TR
)
.
(
(2,
R
,
R
,
TR
)
.
A2
)
is
set
(
id
(
Sphere
(
R
,
TR
)
)
)
.
A2
is
Relation-like
Function-like
set
(2,
R
,
R
,
TR
)
.
(
(
id
(
Sphere
(
R
,
TR
)
)
)
.
A2
)
is
set
(2,
R
,
R
,
TR
)
.
A2
is
set
A1
.
A2
is
set
A1
.
A2
is
set
A2
is
set
dom
A1
is non
empty
Element
of
bool
the
carrier
of
(
Tdisk
(
R
,
TR
)
)
A2
is
set
dom
A1
is non
empty
Element
of
bool
the
carrier
of
(
Tdisk
(
R
,
TR
)
)
ld
is
set
pd
is
set
R
is
functional
Element
of
bool
the
carrier
of
(
TOP-REAL
2
)
Euclid
2 is non
empty
strict
Reflexive
discerning
symmetric
triangle
Discerning
MetrStruct
the
carrier
of
(
Euclid
2
)
is non
empty
set
bool
the
carrier
of
(
Euclid
2
)
is non
empty
set
dR
is
Element
of
bool
the
carrier
of
(
(
TOP-REAL
2
)
|
(
rp
`
)
)
C
is
Relation-like
Function-like
V49
(2)
V50
()
V156
()
V157
()
V158
()
Element
of the
carrier
of
(
TOP-REAL
2
)
TR
is
functional
non
empty
proper
open
bounded
Element
of
bool
the
carrier
of
(
TOP-REAL
2
)
TR
\/
rp
is
functional
non
empty
Element
of
bool
the
carrier
of
(
TOP-REAL
2
)
P
is
bounded
Element
of
bool
the
carrier
of
(
Euclid
2
)
U
is non
empty
complex
ext-real
positive
non
negative
real
set
Ball
(
C
,
U
) is
functional
non
empty
proper
open
connected
bounded
being_Region
convex
Element
of
bool
the
carrier
of
(
TOP-REAL
2
)
l
is
set
LJ
is
Relation-like
Function-like
V49
(2)
V50
()
V156
()
V157
()
V158
()
Element
of the
carrier
of
(
TOP-REAL
2
)
LJ
-
C
is
Relation-like
Function-like
V49
(2)
V50
()
V156
()
V157
()
V158
()
Element
of the
carrier
of
(
TOP-REAL
2
)
-
C
is
Relation-like
Function-like
V49
(2)
V50
()
V156
()
V157
()
V158
()
Element
of the
carrier
of
(
TOP-REAL
2
)
K270
(
(
TOP-REAL
2
)
,
LJ
,
(
-
C
)
) is
Relation-like
Function-like
V49
(2)
V50
()
V156
()
V157
()
V158
()
Element
of the
carrier
of
(
TOP-REAL
2
)
the
U7
of
(
TOP-REAL
2
)
is
Relation-like
[:
the
carrier
of
(
TOP-REAL
2
)
, the
carrier
of
(
TOP-REAL
2
)
:]
-defined
the
carrier
of
(
TOP-REAL
2
)
-valued
Function-like
non
empty
total
quasi_total
Element
of
bool
[:
[:
the
carrier
of
(
TOP-REAL
2
)
, the
carrier
of
(
TOP-REAL
2
)
:]
, the
carrier
of
(
TOP-REAL
2
)
:]
[:
[:
the
carrier
of
(
TOP-REAL
2
)
, the
carrier
of
(
TOP-REAL
2
)
:]
, the
carrier
of
(
TOP-REAL
2
)
:]
is
Relation-like
non
empty
set
bool
[:
[:
the
carrier
of
(
TOP-REAL
2
)
, the
carrier
of
(
TOP-REAL
2
)
:]
, the
carrier
of
(
TOP-REAL
2
)
:]
is non
empty
set
K224
( the
carrier
of
(
TOP-REAL
2
)
, the
U7
of
(
TOP-REAL
2
)
,
LJ
,
(
-
C
)
) is
Relation-like
Function-like
V49
(2)
V50
()
V156
()
V157
()
V158
()
Element
of the
carrier
of
(
TOP-REAL
2
)
|.
(
LJ
-
C
)
.|
is
complex
ext-real
non
negative
real
Element
of
REAL
x
is non
empty
complex
ext-real
positive
non
negative
real
set
Ball
(
C
,
x
) is
functional
non
empty
proper
open
connected
bounded
being_Region
convex
Element
of
bool
the
carrier
of
(
TOP-REAL
2
)
Fr
(
Ball
(
C
,
x
)
)
is
functional
proper
closed
closed
boundary
nowhere_dense
bounded
Element
of
bool
the
carrier
of
(
TOP-REAL
2
)
Cl
(
Ball
(
C
,
x
)
)
is
functional
non
empty
proper
closed
closed
bounded
Element
of
bool
the
carrier
of
(
TOP-REAL
2
)
(
Ball
(
C
,
x
)
)
`
is
functional
non
empty
closed
Element
of
bool
the
carrier
of
(
TOP-REAL
2
)
the
carrier
of
(
TOP-REAL
2
)
\
(
Ball
(
C
,
x
)
)
is
set
Cl
(
(
Ball
(
C
,
x
)
)
`
)
is
functional
non
empty
closed
Element
of
bool
the
carrier
of
(
TOP-REAL
2
)
(
Cl
(
Ball
(
C
,
x
)
)
)
/\
(
Cl
(
(
Ball
(
C
,
x
)
)
`
)
)
is
functional
closed
Element
of
bool
the
carrier
of
(
TOP-REAL
2
)
Sphere
(
C
,
x
) is
functional
non
empty
proper
closed
closed
connected
compact
bounded
bounded
being_simple_closed_curve
with_the_max_arc
Element
of
bool
the
carrier
of
(
TOP-REAL
2
)
Tdisk
(
C
,
x
) is non
empty
TopSpace-like
T_0
T_1
T_2
V82
()
normal
T_3
T_4
compact
closed
V246
()
V270
(2)
pseudocompact
SubSpace
of
TOP-REAL
2
Tcircle
(
C
,
x
) is non
empty
strict
TopSpace-like
T_0
T_1
T_2
V82
()
normal
T_3
T_4
connected
compact
V246
()
being_simple_closed_curve
pathwise_connected
pseudocompact
SubSpace
of
TOP-REAL
2
cl_Ball
(
C
,
x
) is
functional
non
empty
proper
closed
connected
bounded
convex
Element
of
bool
the
carrier
of
(
TOP-REAL
2
)
{
C
}
is
functional
non
empty
proper
closed
compact
bounded
Element
of
bool
the
carrier
of
(
TOP-REAL
2
)
(
cl_Ball
(
C
,
x
)
)
\
{
C
}
is
functional
non
empty
Element
of
bool
the
carrier
of
(
TOP-REAL
2
)
the
carrier
of
(
Tcircle
(
C
,
x
)
)
is non
empty
set
the
carrier
of
(
Tdisk
(
C
,
x
)
)
is non
empty
set
bool
the
carrier
of
(
Tdisk
(
C
,
x
)
)
is non
empty
set
(
TOP-REAL
2
)
|
pg
is
strict
TopSpace-like
T_0
T_1
T_2
SubSpace
of
TOP-REAL
2
the
carrier
of
(
(
TOP-REAL
2
)
|
pg
)
is
set
[:
the
carrier
of
(
Tdisk
(
C
,
x
)
)
, the
carrier
of
(
(
TOP-REAL
2
)
|
pg
)
:]
is
Relation-like
set
bool
[:
the
carrier
of
(
Tdisk
(
C
,
x
)
)
, the
carrier
of
(
(
TOP-REAL
2
)
|
pg
)
:]
is non
empty
set
id
pg
is
Relation-like
pg
-defined
pg
-valued
Function-like
one-to-one
total
quasi_total
Element
of
bool
[:
pg
,
pg
:]
[:
pg
,
pg
:]
is
Relation-like
set
bool
[:
pg
,
pg
:]
is non
empty
set
Ux
is
Relation-like
the
carrier
of
(
Tdisk
(
C
,
x
)
)
-defined
the
carrier
of
(
(
TOP-REAL
2
)
|
pg
)
-valued
Function-like
quasi_total
Element
of
bool
[:
the
carrier
of
(
Tdisk
(
C
,
x
)
)
, the
carrier
of
(
(
TOP-REAL
2
)
|
pg
)
:]
Ux
|
pg
is
Relation-like
pg
-defined
the
carrier
of
(
Tdisk
(
C
,
x
)
)
-defined
the
carrier
of
(
(
TOP-REAL
2
)
|
pg
)
-valued
Function-like
Element
of
bool
[:
the
carrier
of
(
Tdisk
(
C
,
x
)
)
, the
carrier
of
(
(
TOP-REAL
2
)
|
pg
)
:]
(
TOP-REAL
2
)
|
(
(
cl_Ball
(
C
,
x
)
)
\
{
C
}
)
is non
empty
strict
TopSpace-like
T_0
T_1
T_2
SubSpace
of
TOP-REAL
2
the
carrier
of
(
(
TOP-REAL
2
)
|
(
(
cl_Ball
(
C
,
x
)
)
\
{
C
}
)
)
is non
empty
set
[:
the
carrier
of
(
Tdisk
(
C
,
x
)
)
, the
carrier
of
(
(
TOP-REAL
2
)
|
(
(
cl_Ball
(
C
,
x
)
)
\
{
C
}
)
)
:]
is
Relation-like
non
empty
set
bool
[:
the
carrier
of
(
Tdisk
(
C
,
x
)
)
, the
carrier
of
(
(
TOP-REAL
2
)
|
(
(
cl_Ball
(
C
,
x
)
)
\
{
C
}
)
)
:]
is non
empty
set
Pml
is
Relation-like
the
carrier
of
(
Tdisk
(
C
,
x
)
)
-defined
the
carrier
of
(
(
TOP-REAL
2
)
|
(
(
cl_Ball
(
C
,
x
)
)
\
{
C
}
)
)
-valued
Function-like
non
empty
total
quasi_total
Element
of
bool
[:
the
carrier
of
(
Tdisk
(
C
,
x
)
)
, the
carrier
of
(
(
TOP-REAL
2
)
|
(
(
cl_Ball
(
C
,
x
)
)
\
{
C
}
)
)
:]
(2,
C
,
C
,
x
) is
Relation-like
the
carrier
of
(
(
TOP-REAL
2
)
|
(
(
cl_Ball
(
C
,
x
)
)
\
{
C
}
)
)
-defined
the
carrier
of
(
Tcircle
(
C
,
x
)
)
-valued
Function-like
non
empty
total
quasi_total
Element
of
bool
[:
the
carrier
of
(
(
TOP-REAL
2
)
|
(
(
cl_Ball
(
C
,
x
)
)
\
{
C
}
)
)
, the
carrier
of
(
Tcircle
(
C
,
x
)
)
:]
[:
the
carrier
of
(
(
TOP-REAL
2
)
|
(
(
cl_Ball
(
C
,
x
)
)
\
{
C
}
)
)
, the
carrier
of
(
Tcircle
(
C
,
x
)
)
:]
is
Relation-like
non
empty
set
bool
[:
the
carrier
of
(
(
TOP-REAL
2
)
|
(
(
cl_Ball
(
C
,
x
)
)
\
{
C
}
)
)
, the
carrier
of
(
Tcircle
(
C
,
x
)
)
:]
is non
empty
set
(2,
C
,
C
,
x
) is
Relation-like
the
carrier
of
(
Tcircle
(
C
,
x
)
)
-defined
the
carrier
of
(
Tcircle
(
C
,
x
)
)
-valued
Function-like
non
empty
total
quasi_total
Element
of
bool
[:
the
carrier
of
(
Tcircle
(
C
,
x
)
)
, the
carrier
of
(
Tcircle
(
C
,
x
)
)
:]
[:
the
carrier
of
(
Tcircle
(
C
,
x
)
)
, the
carrier
of
(
Tcircle
(
C
,
x
)
)
:]
is
Relation-like
non
empty
set
bool
[:
the
carrier
of
(
Tcircle
(
C
,
x
)
)
, the
carrier
of
(
Tcircle
(
C
,
x
)
)
:]
is non
empty
set
[:
the
carrier
of
(
Tdisk
(
C
,
x
)
)
, the
carrier
of
(
Tdisk
(
C
,
x
)
)
:]
is
Relation-like
non
empty
set
bool
[:
the
carrier
of
(
Tdisk
(
C
,
x
)
)
, the
carrier
of
(
Tdisk
(
C
,
x
)
)
:]
is non
empty
set
(2,
C
,
C
,
x
)
*
Pml
is
Relation-like
the
carrier
of
(
Tdisk
(
C
,
x
)
)
-defined
the
carrier
of
(
Tcircle
(
C
,
x
)
)
-valued
Function-like
non
empty
total
quasi_total
Element
of
bool
[:
the
carrier
of
(
Tdisk
(
C
,
x
)
)
, the
carrier
of
(
Tcircle
(
C
,
x
)
)
:]
[:
the
carrier
of
(
Tdisk
(
C
,
x
)
)
, the
carrier
of
(
Tcircle
(
C
,
x
)
)
:]
is
Relation-like
non
empty
set
bool
[:
the
carrier
of
(
Tdisk
(
C
,
x
)
)
, the
carrier
of
(
Tcircle
(
C
,
x
)
)
:]
is non
empty
set
(2,
C
,
C
,
x
)
*
(
(2,
C
,
C
,
x
)
*
Pml
)
is
Relation-like
the
carrier
of
(
Tdisk
(
C
,
x
)
)
-defined
the
carrier
of
(
Tcircle
(
C
,
x
)
)
-valued
Function-like
non
empty
total
quasi_total
Element
of
bool
[:
the
carrier
of
(
Tdisk
(
C
,
x
)
)
, the
carrier
of
(
Tcircle
(
C
,
x
)
)
:]
C
-
C
is
Relation-like
Function-like
V49
(2)
V50
()
V156
()
V157
()
V158
()
Element
of the
carrier
of
(
TOP-REAL
2
)
K270
(
(
TOP-REAL
2
)
,
C
,
(
-
C
)
) is
Relation-like
Function-like
V49
(2)
V50
()
V156
()
V157
()
V158
()
Element
of the
carrier
of
(
TOP-REAL
2
)
K224
( the
carrier
of
(
TOP-REAL
2
)
, the
U7
of
(
TOP-REAL
2
)
,
C
,
(
-
C
)
) is
Relation-like
Function-like
V49
(2)
V50
()
V156
()
V157
()
V158
()
Element
of the
carrier
of
(
TOP-REAL
2
)
|.
(
C
-
C
)
.|
is
complex
ext-real
non
negative
real
Element
of
REAL
kj
is
Relation-like
the
carrier
of
(
Tdisk
(
C
,
x
)
)
-defined
the
carrier
of
(
Tdisk
(
C
,
x
)
)
-valued
Function-like
non
empty
total
quasi_total
Element
of
bool
[:
the
carrier
of
(
Tdisk
(
C
,
x
)
)
, the
carrier
of
(
Tdisk
(
C
,
x
)
)
:]
X
is
set
dom
kj
is non
empty
Element
of
bool
the
carrier
of
(
Tdisk
(
C
,
x
)
)
(
Ball
(
C
,
x
)
)
\/
(
Sphere
(
C
,
x
)
)
is
functional
non
empty
Element
of
bool
the
carrier
of
(
TOP-REAL
2
)
kj
.
X
is
set
dom
Pml
is non
empty
Element
of
bool
the
carrier
of
(
Tdisk
(
C
,
x
)
)
BR
is
set
CR
is
Relation-like
Function-like
V49
(2)
V50
()
V156
()
V157
()
V158
()
Element
of the
carrier
of
(
TOP-REAL
2
)
CR
-
C
is
Relation-like
Function-like
V49
(2)
V50
()
V156
()
V157
()
V158
()
Element
of the
carrier
of
(
TOP-REAL
2
)
K270
(
(
TOP-REAL
2
)
,
CR
,
(
-
C
)
) is
Relation-like
Function-like
V49
(2)
V50
()
V156
()
V157
()
V158
()
Element
of the
carrier
of
(
TOP-REAL
2
)
K224
( the
carrier
of
(
TOP-REAL
2
)
, the
U7
of
(
TOP-REAL
2
)
,
CR
,
(
-
C
)
) is
Relation-like
Function-like
V49
(2)
V50
()
V156
()
V157
()
V158
()
Element
of the
carrier
of
(
TOP-REAL
2
)
|.
(
CR
-
C
)
.|
is
complex
ext-real
non
negative
real
Element
of
REAL
BR
is
Element
of
bool
the
carrier
of
(
(
TOP-REAL
2
)
|
(
rp
`
)
)
(2,
C
,
C
,
x
)
|
(
Sphere
(
C
,
x
)
)
is
Relation-like
Sphere
(
C
,
x
)
-defined
the
carrier
of
(
(
TOP-REAL
2
)
|
(
(
cl_Ball
(
C
,
x
)
)
\
{
C
}
)
)
-defined
the
carrier
of
(
Tcircle
(
C
,
x
)
)
-valued
Function-like
Element
of
bool
[:
the
carrier
of
(
(
TOP-REAL
2
)
|
(
(
cl_Ball
(
C
,
x
)
)
\
{
C
}
)
)
, the
carrier
of
(
Tcircle
(
C
,
x
)
)
:]
id
(
Sphere
(
C
,
x
)
)
is
Relation-like
Sphere
(
C
,
x
)
-defined
Sphere
(
C
,
x
)
-valued
Function-like
one-to-one
non
empty
total
quasi_total
Element
of
bool
[:
(
Sphere
(
C
,
x
)
)
,
(
Sphere
(
C
,
x
)
)
:]
[:
(
Sphere
(
C
,
x
)
)
,
(
Sphere
(
C
,
x
)
)
:]
is
Relation-like
non
empty
set
bool
[:
(
Sphere
(
C
,
x
)
)
,
(
Sphere
(
C
,
x
)
)
:]
is non
empty
set
dom
(2,
C
,
C
,
x
) is non
empty
Element
of
bool
the
carrier
of
(
Tcircle
(
C
,
x
)
)
bool
the
carrier
of
(
Tcircle
(
C
,
x
)
)
is non
empty
set
kj
.
X
is
set
(
(2,
C
,
C
,
x
)
*
Pml
)
.
X
is
set
(2,
C
,
C
,
x
)
.
(
(
(2,
C
,
C
,
x
)
*
Pml
)
.
X
)
is
set
Pml
.
X
is
set
(2,
C
,
C
,
x
)
.
(
Pml
.
X
)
is
set
(2,
C
,
C
,
x
)
.
(
(2,
C
,
C
,
x
)
.
(
Pml
.
X
)
)
is
set
(2,
C
,
C
,
x
)
.
X
is
set
(2,
C
,
C
,
x
)
.
(
(2,
C
,
C
,
x
)
.
X
)
is
set
(
id
(
Sphere
(
C
,
x
)
)
)
.
X
is
Relation-like
Function-like
set
(2,
C
,
C
,
x
)
.
(
(
id
(
Sphere
(
C
,
x
)
)
)
.
X
)
is
set
(2,
C
,
C
,
x
)
.
X
is
set
kj
.
X
is
set
kj
.
X
is
set
X
is
set
dom
kj
is non
empty
Element
of
bool
the
carrier
of
(
Tdisk
(
C
,
x
)
)
X
is
set
dom
kj
is non
empty
Element
of
bool
the
carrier
of
(
Tdisk
(
C
,
x
)
)
-
3 is
complex
ext-real
non
positive
real
Element
of
REAL
|[
0
,3
]|
is
Relation-like
Function-like
V49
(2)
V50
()
V156
()
V157
()
V158
()
Element
of the
carrier
of
(
TOP-REAL
2
)
|[
0
,
(
-
3
)
]|
is
Relation-like
Function-like
V49
(2)
V50
()
V156
()
V157
()
V158
()
Element
of the
carrier
of
(
TOP-REAL
2
)
|[
(
-
1
)
,3
]|
is
Relation-like
Function-like
V49
(2)
V50
()
V156
()
V157
()
V158
()
Element
of the
carrier
of
(
TOP-REAL
2
)
|[
1,3
]|
is
Relation-like
Function-like
V49
(2)
V50
()
V156
()
V157
()
V158
()
Element
of the
carrier
of
(
TOP-REAL
2
)
|[
(
-
1
)
,
(
-
3
)
]|
is
Relation-like
Function-like
V49
(2)
V50
()
V156
()
V157
()
V158
()
Element
of the
carrier
of
(
TOP-REAL
2
)
|[
1,
(
-
3
)
]|
is
Relation-like
Function-like
V49
(2)
V50
()
V156
()
V157
()
V158
()
Element
of the
carrier
of
(
TOP-REAL
2
)
closed_inside_of_rectangle
(
(
-
1
)
,1,
(
-
3
)
,3) is
functional
closed
connected
convex
Element
of
bool
the
carrier
of
(
TOP-REAL
2
)
{
b
1
where
b
1
is
Relation-like
Function-like
V49
(2)
V50
()
V156
()
V157
()
V158
()
Element
of the
carrier
of
(
TOP-REAL
2
)
: (
-
1
<=
b
1
`1
&
b
1
`1
<=
1 &
-
3
<=
b
1
`2
&
b
1
`2
<=
3 )
}
is
set
rectangle
(
(
-
1
)
,1,
(
-
3
)
,3) is
functional
non
empty
proper
closed
compact
bounded
Element
of
bool
the
carrier
of
(
TOP-REAL
2
)
Trectangle
(
(
-
1
)
,1,
(
-
3
)
,3) is non
empty
TopSpace-like
T_0
T_1
T_2
V270
(2)
SubSpace
of
TOP-REAL
2
(
TOP-REAL
2
)
|
(
closed_inside_of_rectangle
(
(
-
1
)
,1,
(
-
3
)
,3)
)
is
strict
TopSpace-like
T_0
T_1
T_2
SubSpace
of
TOP-REAL
2
|[
(
-
1
)
,
0
]|
`1
is
complex
ext-real
real
Element
of
REAL
|[
1,
0
]|
`1
is
complex
ext-real
real
Element
of
REAL
|[
(
-
1
)
,
0
]|
`2
is
complex
ext-real
real
Element
of
REAL
|[
1,
0
]|
`2
is
complex
ext-real
real
Element
of
REAL
|[
0
,3
]|
`1
is
complex
ext-real
real
Element
of
REAL
|[
0
,3
]|
`2
is
complex
ext-real
real
Element
of
REAL
|[
0
,
(
-
3
)
]|
`1
is
complex
ext-real
real
Element
of
REAL
|[
0
,
(
-
3
)
]|
`2
is
complex
ext-real
real
Element
of
REAL
|[
(
-
1
)
,3
]|
`1
is
complex
ext-real
real
Element
of
REAL
|[
(
-
1
)
,3
]|
`2
is
complex
ext-real
real
Element
of
REAL
|[
(
-
1
)
,
(
-
3
)
]|
`1
is
complex
ext-real
real
Element
of
REAL
|[
(
-
1
)
,
(
-
3
)
]|
`2
is
complex
ext-real
real
Element
of
REAL
|[
1,3
]|
`1
is
complex
ext-real
real
Element
of
REAL
|[
1,3
]|
`2
is
complex
ext-real
real
Element
of
REAL
|[
1,
(
-
3
)
]|
`1
is
complex
ext-real
real
Element
of
REAL
|[
1,
(
-
3
)
]|
`2
is
complex
ext-real
real
Element
of
REAL
|[
(
|[
(
-
1
)
,
(
-
3
)
]|
`1
)
,
(
|[
(
-
1
)
,
(
-
3
)
]|
`2
)
]|
is
Relation-like
Function-like
V49
(2)
V50
()
V156
()
V157
()
V158
()
Element
of the
carrier
of
(
TOP-REAL
2
)
|[
(
|[
(
-
1
)
,3
]|
`1
)
,
(
|[
(
-
1
)
,3
]|
`2
)
]|
is
Relation-like
Function-like
V49
(2)
V50
()
V156
()
V157
()
V158
()
Element
of the
carrier
of
(
TOP-REAL
2
)
|[
(
|[
1,
(
-
3
)
]|
`1
)
,
(
|[
1,
(
-
3
)
]|
`2
)
]|
is
Relation-like
Function-like
V49
(2)
V50
()
V156
()
V157
()
V158
()
Element
of the
carrier
of
(
TOP-REAL
2
)
|[
(
|[
1,3
]|
`1
)
,
(
|[
1,3
]|
`2
)
]|
is
Relation-like
Function-like
V49
(2)
V50
()
V156
()
V157
()
V158
()
Element
of the
carrier
of
(
TOP-REAL
2
)
LSeg
(
|[
(
-
1
)
,
(
-
3
)
]|
,
|[
(
-
1
)
,3
]|
) is
functional
proper
closed
closed
boundary
nowhere_dense
connected
compact
compact
bounded
bounded
Element
of
bool
the
carrier
of
(
TOP-REAL
2
)
{
(
(
(
1
-
b
1
)
*
|[
(
-
1
)
,
(
-
3
)
]|
)
+
(
b
1
*
|[
(
-
1
)
,3
]|
)
)
where
b
1
is
complex
ext-real
real
Element
of
REAL
: (
0
<=
b
1
&
b
1
<=
1 )
}
is
set
LSeg
(
|[
(
-
1
)
,3
]|
,
|[
1,3
]|
) is
functional
proper
closed
closed
boundary
nowhere_dense
connected
compact
compact
bounded
bounded
Element
of
bool
the
carrier
of
(
TOP-REAL
2
)
{
(
(
(
1
-
b
1
)
*
|[
(
-
1
)
,3
]|
)
+
(
b
1
*
|[
1,3
]|
)
)
where
b
1
is
complex
ext-real
real
Element
of
REAL
: (
0
<=
b
1
&
b
1
<=
1 )
}
is
set
(
LSeg
(
|[
(
-
1
)
,
(
-
3
)
]|
,
|[
(
-
1
)
,3
]|
)
)
\/
(
LSeg
(
|[
(
-
1
)
,3
]|
,
|[
1,3
]|
)
)
is
functional
closed
Element
of
bool
the
carrier
of
(
TOP-REAL
2
)
LSeg
(
|[
1,3
]|
,
|[
1,
(
-
3
)
]|
) is
functional
proper
closed
closed
boundary
nowhere_dense
connected
compact
compact
bounded
bounded
Element
of
bool
the
carrier
of
(
TOP-REAL
2
)
{
(
(
(
1
-
b
1
)
*
|[
1,3
]|
)
+
(
b
1
*
|[
1,
(
-
3
)
]|
)
)
where
b
1
is
complex
ext-real
real
Element
of
REAL
: (
0
<=
b
1
&
b
1
<=
1 )
}
is
set
LSeg
(
|[
1,
(
-
3
)
]|
,
|[
(
-
1
)
,
(
-
3
)
]|
) is
functional
proper
closed
closed
boundary
nowhere_dense
connected
compact
compact
bounded
bounded
Element
of
bool
the
carrier
of
(
TOP-REAL
2
)
{
(
(
(
1
-
b
1
)
*
|[
1,
(
-
3
)
]|
)
+
(
b
1
*
|[
(
-
1
)
,
(
-
3
)
]|
)
)
where
b
1
is
complex
ext-real
real
Element
of
REAL
: (
0
<=
b
1
&
b
1
<=
1 )
}
is
set
(
LSeg
(
|[
1,3
]|
,
|[
1,
(
-
3
)
]|
)
)
\/
(
LSeg
(
|[
1,
(
-
3
)
]|
,
|[
(
-
1
)
,
(
-
3
)
]|
)
)
is
functional
closed
Element
of
bool
the
carrier
of
(
TOP-REAL
2
)
(
(
LSeg
(
|[
(
-
1
)
,
(
-
3
)
]|
,
|[
(
-
1
)
,3
]|
)
)
\/
(
LSeg
(
|[
(
-
1
)
,3
]|
,
|[
1,3
]|
)
)
)
\/
(
(
LSeg
(
|[
1,3
]|
,
|[
1,
(
-
3
)
]|
)
)
\/
(
LSeg
(
|[
1,
(
-
3
)
]|
,
|[
(
-
1
)
,
(
-
3
)
]|
)
)
)
is
functional
closed
Element
of
bool
the
carrier
of
(
TOP-REAL
2
)
LSeg
(
|[
1,
(
-
3
)
]|
,
|[
1,3
]|
) is
functional
proper
closed
closed
boundary
nowhere_dense
connected
compact
compact
bounded
bounded
Element
of
bool
the
carrier
of
(
TOP-REAL
2
)
{
(
(
(
1
-
b
1
)
*
|[
1,
(
-
3
)
]|
)
+
(
b
1
*
|[
1,3
]|
)
)
where
b
1
is
complex
ext-real
real
Element
of
REAL
: (
0
<=
b
1
&
b
1
<=
1 )
}
is
set
LSeg
(
|[
(
-
1
)
,
0
]|
,
|[
(
-
1
)
,3
]|
) is
functional
proper
closed
closed
boundary
nowhere_dense
connected
compact
compact
bounded
bounded
Element
of
bool
the
carrier
of
(
TOP-REAL
2
)
{
(
(
(
1
-
b
1
)
*
|[
(
-
1
)
,
0
]|
)
+
(
b
1
*
|[
(
-
1
)
,3
]|
)
)
where
b
1
is
complex
ext-real
real
Element
of
REAL
: (
0
<=
b
1
&
b
1
<=
1 )
}
is
set
LSeg
(
|[
(
-
1
)
,
0
]|
,
|[
(
-
1
)
,
(
-
3
)
]|
) is
functional
proper
closed
closed
boundary
nowhere_dense
connected
compact
compact
bounded
bounded
Element
of
bool
the
carrier
of
(
TOP-REAL
2
)
{
(
(
(
1
-
b
1
)
*
|[
(
-
1
)
,
0
]|
)
+
(
b
1
*
|[
(
-
1
)
,
(
-
3
)
]|
)
)
where
b
1
is
complex
ext-real
real
Element
of
REAL
: (
0
<=
b
1
&
b
1
<=
1 )
}
is
set
LSeg
(
|[
1,
0
]|
,
|[
1,3
]|
) is
functional
proper
closed
closed
boundary
nowhere_dense
connected
compact
compact
bounded
bounded
Element
of
bool
the
carrier
of
(
TOP-REAL
2
)
{
(
(
(
1
-
b
1
)
*
|[
1,
0
]|
)
+
(
b
1
*
|[
1,3
]|
)
)
where
b
1
is
complex
ext-real
real
Element
of
REAL
: (
0
<=
b
1
&
b
1
<=
1 )
}
is
set
LSeg
(
|[
1,
0
]|
,
|[
1,
(
-
3
)
]|
) is
functional
proper
closed
closed
boundary
nowhere_dense
connected
compact
compact
bounded
bounded
Element
of
bool
the
carrier
of
(
TOP-REAL
2
)
{
(
(
(
1
-
b
1
)
*
|[
1,
0
]|
)
+
(
b
1
*
|[
1,
(
-
3
)
]|
)
)
where
b
1
is
complex
ext-real
real
Element
of
REAL
: (
0
<=
b
1
&
b
1
<=
1 )
}
is
set
LSeg
(
|[
(
-
1
)
,
(
-
3
)
]|
,
|[
0
,
(
-
3
)
]|
) is
functional
proper
closed
closed
boundary
nowhere_dense
connected
compact
compact
bounded
bounded
Element
of
bool
the
carrier
of
(
TOP-REAL
2
)
{
(
(
(
1
-
b
1
)
*
|[
(
-
1
)
,
(
-
3
)
]|
)
+
(
b
1
*
|[
0
,
(
-
3
)
]|
)
)
where
b
1
is
complex
ext-real
real
Element
of
REAL
: (
0
<=
b
1
&
b
1
<=
1 )
}
is
set
LSeg
(
|[
1,
(
-
3
)
]|
,
|[
0
,
(
-
3
)
]|
) is
functional
proper
closed
closed
boundary
nowhere_dense
connected
compact
compact
bounded
bounded
Element
of
bool
the
carrier
of
(
TOP-REAL
2
)
{
(
(
(
1
-
b
1
)
*
|[
1,
(
-
3
)
]|
)
+
(
b
1
*
|[
0
,
(
-
3
)
]|
)
)
where
b
1
is
complex
ext-real
real
Element
of
REAL
: (
0
<=
b
1
&
b
1
<=
1 )
}
is
set
LSeg
(
|[
(
-
1
)
,3
]|
,
|[
0
,3
]|
) is
functional
proper
closed
closed
boundary
nowhere_dense
connected
compact
compact
bounded
bounded
Element
of
bool
the
carrier
of
(
TOP-REAL
2
)
{
(
(
(
1
-
b
1
)
*
|[
(
-
1
)
,3
]|
)
+
(
b
1
*
|[
0
,3
]|
)
)
where
b
1
is
complex
ext-real
real
Element
of
REAL
: (
0
<=
b
1
&
b
1
<=
1 )
}
is
set
LSeg
(
|[
1,3
]|
,
|[
0
,3
]|
) is
functional
proper
closed
closed
boundary
nowhere_dense
connected
compact
compact
bounded
bounded
Element
of
bool
the
carrier
of
(
TOP-REAL
2
)
{
(
(
(
1
-
b
1
)
*
|[
1,3
]|
)
+
(
b
1
*
|[
0
,3
]|
)
)
where
b
1
is
complex
ext-real
real
Element
of
REAL
: (
0
<=
b
1
&
b
1
<=
1 )
}
is
set
LSeg
(
|[
(
-
1
)
,
(
-
3
)
]|
,
|[
1,
(
-
3
)
]|
) is
functional
proper
closed
closed
boundary
nowhere_dense
connected
compact
compact
bounded
bounded
Element
of
bool
the
carrier
of
(
TOP-REAL
2
)
{
(
(
(
1
-
b
1
)
*
|[
(
-
1
)
,
(
-
3
)
]|
)
+
(
b
1
*
|[
1,
(
-
3
)
]|
)
)
where
b
1
is
complex
ext-real
real
Element
of
REAL
: (
0
<=
b
1
&
b
1
<=
1 )
}
is
set
{
b
1
where
b
1
is
Relation-like
Function-like
V49
(2)
V50
()
V156
()
V157
()
V158
()
Element
of the
carrier
of
(
TOP-REAL
2
)
: ( (
b
1
`1
=
-
1 &
b
1
`2
<=
3 &
-
3
<=
b
1
`2
) or (
b
1
`1
<=
1 &
-
1
<=
b
1
`1
&
b
1
`2
=
3 ) or (
b
1
`1
<=
1 &
-
1
<=
b
1
`1
&
b
1
`2
=
-
3 ) or (
b
1
`1
=
1 &
b
1
`2
<=
3 &
-
3
<=
b
1
`2
) )
}
is
set
2
+
1 is non
empty
ordinal
natural
complex
ext-real
positive
non
negative
real
Element
of
REAL
(
2
+
1
)
^2
is
complex
ext-real
real
Element
of
REAL
(
2
+
1
)
*
(
2
+
1
)
is
ordinal
natural
complex
ext-real
non
negative
real
set
4
+
4 is non
empty
ordinal
natural
complex
ext-real
positive
non
negative
real
Element
of
REAL
(
4
+
4
)
+
1 is non
empty
ordinal
natural
complex
ext-real
positive
non
negative
real
Element
of
REAL
9 is non
empty
ordinal
natural
complex
ext-real
positive
non
negative
real
V33
()
V119
()
V166
()
V167
()
V168
()
V169
()
V170
()
V171
()
left_end
bounded_below
Element
of
NAT
sqrt
9 is non
empty
complex
ext-real
positive
non
negative
real
Element
of
REAL
dist
(
|[
(
-
1
)
,
0
]|
,
|[
1,
0
]|
) is
complex
ext-real
non
negative
real
Element
of
REAL
(
|[
(
-
1
)
,
0
]|
`1
)
-
(
|[
1,
0
]|
`1
)
is
complex
ext-real
real
Element
of
REAL
(
(
|[
(
-
1
)
,
0
]|
`1
)
-
(
|[
1,
0
]|
`1
)
)
^2
is
complex
ext-real
real
Element
of
REAL
(
(
|[
(
-
1
)
,
0
]|
`1
)
-
(
|[
1,
0
]|
`1
)
)
*
(
(
|[
(
-
1
)
,
0
]|
`1
)
-
(
|[
1,
0
]|
`1
)
)
is
complex
ext-real
non
negative
real
set
(
|[
(
-
1
)
,
0
]|
`2
)
-
(
|[
1,
0
]|
`2
)
is
complex
ext-real
real
Element
of
REAL
(
(
|[
(
-
1
)
,
0
]|
`2
)
-
(
|[
1,
0
]|
`2
)
)
^2
is
complex
ext-real
real
Element
of
REAL
(
(
|[
(
-
1
)
,
0
]|
`2
)
-
(
|[
1,
0
]|
`2
)
)
*
(
(
|[
(
-
1
)
,
0
]|
`2
)
-
(
|[
1,
0
]|
`2
)
)
is
complex
ext-real
non
negative
real
set
(
(
(
|[
(
-
1
)
,
0
]|
`1
)
-
(
|[
1,
0
]|
`1
)
)
^2
)
+
(
(
(
|[
(
-
1
)
,
0
]|
`2
)
-
(
|[
1,
0
]|
`2
)
)
^2
)
is
complex
ext-real
real
Element
of
REAL
sqrt
(
(
(
(
|[
(
-
1
)
,
0
]|
`1
)
-
(
|[
1,
0
]|
`1
)
)
^2
)
+
(
(
(
|[
(
-
1
)
,
0
]|
`2
)
-
(
|[
1,
0
]|
`2
)
)
^2
)
)
is
complex
ext-real
real
Element
of
REAL
-
2 is
complex
ext-real
non
positive
real
Element
of
REAL
-
(
-
2
)
is
complex
ext-real
non
negative
real
Element
of
REAL
C
is
functional
non
empty
proper
closed
connected
compact
bounded
being_simple_closed_curve
with_the_max_arc
Element
of
bool
the
carrier
of
(
TOP-REAL
2
)
P
is
Relation-like
the
carrier
of
(
TOP-REAL
2
)
-defined
the
carrier
of
(
TOP-REAL
2
)
-valued
Function-like
one-to-one
non
empty
total
quasi_total
onto
bijective
continuous
being_homeomorphism
Homeomorphism
of
TOP-REAL
2
P
.:
C
is
functional
non
empty
Element
of
bool
the
carrier
of
(
TOP-REAL
2
)
(
TOP-REAL
2
)
|
C
is non
empty
strict
TopSpace-like
T_0
T_1
T_2
V82
()
normal
T_3
T_4
compact
V246
()
pseudocompact
SubSpace
of
TOP-REAL
2
the
carrier
of
(
(
TOP-REAL
2
)
|
C
)
is non
empty
set
[:
the
carrier
of
(
(
TOP-REAL
2
)
|
R^2-unit_square
)
, the
carrier
of
(
(
TOP-REAL
2
)
|
C
)
:]
is
Relation-like
non
empty
set
bool
[:
the
carrier
of
(
(
TOP-REAL
2
)
|
R^2-unit_square
)
, the
carrier
of
(
(
TOP-REAL
2
)
|
C
)
:]
is non
empty
set
U
is
Relation-like
the
carrier
of
(
(
TOP-REAL
2
)
|
R^2-unit_square
)
-defined
the
carrier
of
(
(
TOP-REAL
2
)
|
C
)
-valued
Function-like
non
empty
total
quasi_total
Element
of
bool
[:
the
carrier
of
(
(
TOP-REAL
2
)
|
R^2-unit_square
)
, the
carrier
of
(
(
TOP-REAL
2
)
|
C
)
:]
(
TOP-REAL
2
)
|
(
P
.:
C
)
is non
empty
strict
TopSpace-like
T_0
T_1
T_2
SubSpace
of
TOP-REAL
2
the
carrier
of
(
(
TOP-REAL
2
)
|
(
P
.:
C
)
)
is non
empty
set
[:
the
carrier
of
(
(
TOP-REAL
2
)
|
C
)
, the
carrier
of
(
(
TOP-REAL
2
)
|
(
P
.:
C
)
)
:]
is
Relation-like
non
empty
set
bool
[:
the
carrier
of
(
(
TOP-REAL
2
)
|
C
)
, the
carrier
of
(
(
TOP-REAL
2
)
|
(
P
.:
C
)
)
:]
is non
empty
set
P
|
C
is
Relation-like
the
carrier
of
(
TOP-REAL
2
)
-defined
C
-defined
the
carrier
of
(
TOP-REAL
2
)
-defined
the
carrier
of
(
TOP-REAL
2
)
-valued
Function-like
Element
of
bool
[:
the
carrier
of
(
TOP-REAL
2
)
, the
carrier
of
(
TOP-REAL
2
)
:]
l
is
Relation-like
the
carrier
of
(
(
TOP-REAL
2
)
|
C
)
-defined
the
carrier
of
(
(
TOP-REAL
2
)
|
(
P
.:
C
)
)
-valued
Function-like
non
empty
total
quasi_total
Element
of
bool
[:
the
carrier
of
(
(
TOP-REAL
2
)
|
C
)
, the
carrier
of
(
(
TOP-REAL
2
)
|
(
P
.:
C
)
)
:]
l
*
U
is
Relation-like
the
carrier
of
(
(
TOP-REAL
2
)
|
R^2-unit_square
)
-defined
the
carrier
of
(
(
TOP-REAL
2
)
|
(
P
.:
C
)
)
-valued
Function-like
non
empty
total
quasi_total
Element
of
bool
[:
the
carrier
of
(
(
TOP-REAL
2
)
|
R^2-unit_square
)
, the
carrier
of
(
(
TOP-REAL
2
)
|
(
P
.:
C
)
)
:]
[:
the
carrier
of
(
(
TOP-REAL
2
)
|
R^2-unit_square
)
, the
carrier
of
(
(
TOP-REAL
2
)
|
(
P
.:
C
)
)
:]
is
Relation-like
non
empty
set
bool
[:
the
carrier
of
(
(
TOP-REAL
2
)
|
R^2-unit_square
)
, the
carrier
of
(
(
TOP-REAL
2
)
|
(
P
.:
C
)
)
:]
is non
empty
set
C
is
functional
Element
of
bool
the
carrier
of
(
TOP-REAL
2
)
P
is
set
U
is
Relation-like
Function-like
V49
(2)
V50
()
V156
()
V157
()
V158
()
Element
of the
carrier
of
(
TOP-REAL
2
)
dist
(
|[
(
-
1
)
,
0
]|
,
U
) is
complex
ext-real
non
negative
real
Element
of
REAL
U
`1
is
complex
ext-real
real
Element
of
REAL
(
-
1
)
-
(
U
`1
)
is
complex
ext-real
real
Element
of
REAL
(
(
-
1
)
-
(
U
`1
)
)
^2
is
complex
ext-real
real
Element
of
REAL
(
(
-
1
)
-
(
U
`1
)
)
*
(
(
-
1
)
-
(
U
`1
)
)
is
complex
ext-real
non
negative
real
set
U
`2
is
complex
ext-real
real
Element
of
REAL
0
-
(
U
`2
)
is
complex
ext-real
real
Element
of
REAL
(
0
-
(
U
`2
)
)
^2
is
complex
ext-real
real
Element
of
REAL
(
0
-
(
U
`2
)
)
*
(
0
-
(
U
`2
)
)
is
complex
ext-real
non
negative
real
set
(
(
(
-
1
)
-
(
U
`1
)
)
^2
)
+
(
(
0
-
(
U
`2
)
)
^2
)
is
complex
ext-real
real
Element
of
REAL
sqrt
(
(
(
(
-
1
)
-
(
U
`1
)
)
^2
)
+
(
(
0
-
(
U
`2
)
)
^2
)
)
is
complex
ext-real
real
Element
of
REAL
(
U
`2
)
^2
is
complex
ext-real
real
Element
of
REAL
(
U
`2
)
*
(
U
`2
)
is
complex
ext-real
non
negative
real
set
(
(
(
-
1
)
-
(
U
`1
)
)
^2
)
+
(
(
U
`2
)
^2
)
is
complex
ext-real
real
Element
of
REAL
sqrt
(
(
(
(
-
1
)
-
(
U
`1
)
)
^2
)
+
(
(
U
`2
)
^2
)
)
is
complex
ext-real
real
Element
of
REAL
0
+
9 is non
empty
ordinal
natural
complex
ext-real
positive
non
negative
real
Element
of
REAL
LSeg
(
U
,
|[
1,
0
]|
) is
functional
proper
closed
closed
boundary
nowhere_dense
connected
compact
compact
bounded
bounded
Element
of
bool
the
carrier
of
(
TOP-REAL
2
)
{
(
(
(
1
-
b
1
)
*
U
)
+
(
b
1
*
|[
1,
0
]|
)
)
where
b
1
is
complex
ext-real
real
Element
of
REAL
: (
0
<=
b
1
&
b
1
<=
1 )
}
is
set
Vertical_Line
(
-
1
)
is
functional
Element
of
bool
the
carrier
of
(
TOP-REAL
2
)
l
is
set
LJ
is
Relation-like
Function-like
V49
(2)
V50
()
V156
()
V157
()
V158
()
Element
of the
carrier
of
(
TOP-REAL
2
)
LJ
`1
is
complex
ext-real
real
Element
of
REAL
dist
(
U
,
|[
1,
0
]|
) is
complex
ext-real
non
negative
real
Element
of
REAL
dist
(
U
,
LJ
) is
complex
ext-real
non
negative
real
Element
of
REAL
dist
(
LJ
,
|[
1,
0
]|
) is
complex
ext-real
non
negative
real
Element
of
REAL
(
dist
(
U
,
LJ
)
)
+
(
dist
(
LJ
,
|[
1,
0
]|
)
)
is
complex
ext-real
non
negative
real
Element
of
REAL
(
LJ
`1
)
-
(
|[
1,
0
]|
`1
)
is
complex
ext-real
real
Element
of
REAL
(
(
LJ
`1
)
-
(
|[
1,
0
]|
`1
)
)
^2
is
complex
ext-real
real
Element
of
REAL
(
(
LJ
`1
)
-
(
|[
1,
0
]|
`1
)
)
*
(
(
LJ
`1
)
-
(
|[
1,
0
]|
`1
)
)
is
complex
ext-real
non
negative
real
set
LJ
`2
is
complex
ext-real
real
Element
of
REAL
(
LJ
`2
)
-
(
|[
1,
0
]|
`2
)
is
complex
ext-real
real
Element
of
REAL
(
(
LJ
`2
)
-
(
|[
1,
0
]|
`2
)
)
^2
is
complex
ext-real
real
Element
of
REAL
(
(
LJ
`2
)
-
(
|[
1,
0
]|
`2
)
)
*
(
(
LJ
`2
)
-
(
|[
1,
0
]|
`2
)
)
is
complex
ext-real
non
negative
real
set
(
(
(
LJ
`1
)
-
(
|[
1,
0
]|
`1
)
)
^2
)
+
(
(
(
LJ
`2
)
-
(
|[
1,
0
]|
`2
)
)
^2
)
is
complex
ext-real
real
Element
of
REAL
sqrt
(
(
(
(
LJ
`1
)
-
(
|[
1,
0
]|
`1
)
)
^2
)
+
(
(
(
LJ
`2
)
-
(
|[
1,
0
]|
`2
)
)
^2
)
)
is
complex
ext-real
real
Element
of
REAL
(
-
2
)
^2
is
complex
ext-real
real
Element
of
REAL
(
-
2
)
*
(
-
2
)
is
complex
ext-real
non
negative
real
set
(
LJ
`2
)
-
0
is
complex
ext-real
real
Element
of
REAL
(
(
LJ
`2
)
-
0
)
^2
is
complex
ext-real
real
Element
of
REAL
(
(
LJ
`2
)
-
0
)
*
(
(
LJ
`2
)
-
0
)
is
complex
ext-real
non
negative
real
set
(
(
-
2
)
^2
)
+
(
(
(
LJ
`2
)
-
0
)
^2
)
is
complex
ext-real
real
Element
of
REAL
sqrt
(
(
(
-
2
)
^2
)
+
(
(
(
LJ
`2
)
-
0
)
^2
)
)
is
complex
ext-real
real
Element
of
REAL
(
LJ
`2
)
^2
is
complex
ext-real
real
Element
of
REAL
(
LJ
`2
)
*
(
LJ
`2
)
is
complex
ext-real
non
negative
real
set
4
+
(
(
LJ
`2
)
^2
)
is
complex
ext-real
real
Element
of
REAL
sqrt
(
4
+
(
(
LJ
`2
)
^2
)
)
is
complex
ext-real
real
Element
of
REAL
4
+
0
is non
empty
ordinal
natural
complex
ext-real
positive
non
negative
real
Element
of
REAL
(
dist
(
U
,
|[
1,
0
]|
)
)
+
0
is
complex
ext-real
non
negative
real
Element
of
REAL
(
dist
(
|[
(
-
1
)
,
0
]|
,
|[
1,
0
]|
)
)
+
0
is
complex
ext-real
non
negative
real
Element
of
REAL
LSeg
(
U
,
|[
(
-
1
)
,
0
]|
) is
functional
proper
closed
closed
boundary
nowhere_dense
connected
compact
compact
bounded
bounded
Element
of
bool
the
carrier
of
(
TOP-REAL
2
)
{
(
(
(
1
-
b
1
)
*
U
)
+
(
b
1
*
|[
(
-
1
)
,
0
]|
)
)
where
b
1
is
complex
ext-real
real
Element
of
REAL
: (
0
<=
b
1
&
b
1
<=
1 )
}
is
set
Vertical_Line
1 is
functional
Element
of
bool
the
carrier
of
(
TOP-REAL
2
)
l
is
set
LJ
is
Relation-like
Function-like
V49
(2)
V50
()
V156
()
V157
()
V158
()
Element
of the
carrier
of
(
TOP-REAL
2
)
LJ
`1
is
complex
ext-real
real
Element
of
REAL
dist
(
U
,
|[
(
-
1
)
,
0
]|
) is
complex
ext-real
non
negative
real
Element
of
REAL
dist
(
U
,
LJ
) is
complex
ext-real
non
negative
real
Element
of
REAL
dist
(
LJ
,
|[
(
-
1
)
,
0
]|
) is
complex
ext-real
non
negative
real
Element
of
REAL
(
dist
(
U
,
LJ
)
)
+
(
dist
(
LJ
,
|[
(
-
1
)
,
0
]|
)
)
is
complex
ext-real
non
negative
real
Element
of
REAL
(
LJ
`1
)
-
(
|[
(
-
1
)
,
0
]|
`1
)
is
complex
ext-real
real
Element
of
REAL
(
(
LJ
`1
)
-
(
|[
(
-
1
)
,
0
]|
`1
)
)
^2
is
complex
ext-real
real
Element
of
REAL
(
(
LJ
`1
)
-
(
|[
(
-
1
)
,
0
]|
`1
)
)
*
(
(
LJ
`1
)
-
(
|[
(
-
1
)
,
0
]|
`1
)
)
is
complex
ext-real
non
negative
real
set
LJ
`2
is
complex
ext-real
real
Element
of
REAL
(
LJ
`2
)
-
(
|[
(
-
1
)
,
0
]|
`2
)
is
complex
ext-real
real
Element
of
REAL
(
(
LJ
`2
)
-
(
|[
(
-
1
)
,
0
]|
`2
)
)
^2
is
complex
ext-real
real
Element
of
REAL
(
(
LJ
`2
)
-
(
|[
(
-
1
)
,
0
]|
`2
)
)
*
(
(
LJ
`2
)
-
(
|[
(
-
1
)
,
0
]|
`2
)
)
is
complex
ext-real
non
negative
real
set
(
(
(
LJ
`1
)
-
(
|[
(
-
1
)
,
0
]|
`1
)
)
^2
)
+
(
(
(
LJ
`2
)
-
(
|[
(
-
1
)
,
0
]|
`2
)
)
^2
)
is
complex
ext-real
real
Element
of
REAL
sqrt
(
(
(
(
LJ
`1
)
-
(
|[
(
-
1
)
,
0
]|
`1
)
)
^2
)
+
(
(
(
LJ
`2
)
-
(
|[
(
-
1
)
,
0
]|
`2
)
)
^2
)
)
is
complex
ext-real
real
Element
of
REAL
(
LJ
`2
)
^2
is
complex
ext-real
real
Element
of
REAL
(
LJ
`2
)
*
(
LJ
`2
)
is
complex
ext-real
non
negative
real
set
4
+
(
(
LJ
`2
)
^2
)
is
complex
ext-real
real
Element
of
REAL
sqrt
(
4
+
(
(
LJ
`2
)
^2
)
)
is
complex
ext-real
real
Element
of
REAL
(
dist
(
U
,
|[
(
-
1
)
,
0
]|
)
)
+
0
is
complex
ext-real
non
negative
real
Element
of
REAL
(
-
3
)
^2
is
complex
ext-real
real
Element
of
REAL
(
-
3
)
*
(
-
3
)
is
complex
ext-real
non
negative
real
set
LSeg
(
|[
0
,3
]|
,
|[
1,3
]|
) is
functional
proper
closed
closed
boundary
nowhere_dense
connected
compact
compact
bounded
bounded
Element
of
bool
the
carrier
of
(
TOP-REAL
2
)
{
(
(
(
1
-
b
1
)
*
|[
0
,3
]|
)
+
(
b
1
*
|[
1,3
]|
)
)
where
b
1
is
complex
ext-real
real
Element
of
REAL
: (
0
<=
b
1
&
b
1
<=
1 )
}
is
set
LSeg
(
|[
1,3
]|
,
|[
1,
0
]|
) is
functional
proper
closed
closed
boundary
nowhere_dense
connected
compact
compact
bounded
bounded
Element
of
bool
the
carrier
of
(
TOP-REAL
2
)
{
(
(
(
1
-
b
1
)
*
|[
1,3
]|
)
+
(
b
1
*
|[
1,
0
]|
)
)
where
b
1
is
complex
ext-real
real
Element
of
REAL
: (
0
<=
b
1
&
b
1
<=
1 )
}
is
set
C
is
Relation-like
Function-like
V49
(2)
V50
()
V156
()
V157
()
V158
()
Element
of the
carrier
of
(
TOP-REAL
2
)
C
`2
is
complex
ext-real
real
Element
of
REAL
P
is
Relation-like
Function-like
V49
(2)
V50
()
V156
()
V157
()
V158
()
Element
of the
carrier
of
(
TOP-REAL
2
)
P
`1
is
complex
ext-real
real
Element
of
REAL
P
`2
is
complex
ext-real
real
Element
of
REAL
LSeg
(
|[
0
,
(
-
3
)
]|
,
|[
1,
(
-
3
)
]|
) is
functional
proper
closed
closed
boundary
nowhere_dense
connected
compact
compact
bounded
bounded
Element
of
bool
the
carrier
of
(
TOP-REAL
2
)
{
(
(
(
1
-
b
1
)
*
|[
0
,
(
-
3
)
]|
)
+
(
b
1
*
|[
1,
(
-
3
)
]|
)
)
where
b
1
is
complex
ext-real
real
Element
of
REAL
: (
0
<=
b
1
&
b
1
<=
1 )
}
is
set
LSeg
(
|[
1,
(
-
3
)
]|
,
|[
1,
0
]|
) is
functional
proper
closed
closed
boundary
nowhere_dense
connected
compact
compact
bounded
bounded
Element
of
bool
the
carrier
of
(
TOP-REAL
2
)
{
(
(
(
1
-
b
1
)
*
|[
1,
(
-
3
)
]|
)
+
(
b
1
*
|[
1,
0
]|
)
)
where
b
1
is
complex
ext-real
real
Element
of
REAL
: (
0
<=
b
1
&
b
1
<=
1 )
}
is
set
C
is
Relation-like
Function-like
V49
(2)
V50
()
V156
()
V157
()
V158
()
Element
of the
carrier
of
(
TOP-REAL
2
)
C
`2
is
complex
ext-real
real
Element
of
REAL
P
is
Relation-like
Function-like
V49
(2)
V50
()
V156
()
V157
()
V158
()
Element
of the
carrier
of
(
TOP-REAL
2
)
P
`1
is
complex
ext-real
real
Element
of
REAL
P
`2
is
complex
ext-real
real
Element
of
REAL
C
is
functional
Element
of
bool
the
carrier
of
(
TOP-REAL
2
)
P
is
set
U
is
Relation-like
Function-like
V49
(2)
V50
()
V156
()
V157
()
V158
()
Element
of the
carrier
of
(
TOP-REAL
2
)
U
`2
is
complex
ext-real
real
Element
of
REAL
dist
(
|[
(
-
1
)
,
0
]|
,
U
) is
complex
ext-real
non
negative
real
Element
of
REAL
U
`1
is
complex
ext-real
real
Element
of
REAL
(
|[
(
-
1
)
,
0
]|
`1
)
-
(
U
`1
)
is
complex
ext-real
real
Element
of
REAL
(
(
|[
(
-
1
)
,
0
]|
`1
)
-
(
U
`1
)
)
^2
is
complex
ext-real
real
Element
of
REAL
(
(
|[
(
-
1
)
,
0
]|
`1
)
-
(
U
`1
)
)
*
(
(
|[
(
-
1
)
,
0
]|
`1
)
-
(
U
`1
)
)
is
complex
ext-real
non
negative
real
set
(
|[
(
-
1
)
,
0
]|
`2
)
-
(
U
`2
)
is
complex
ext-real
real
Element
of
REAL
(
(
|[
(
-
1
)
,
0
]|
`2
)
-
(
U
`2
)
)
^2
is
complex
ext-real
real
Element
of
REAL
(
(
|[
(
-
1
)
,
0
]|
`2
)
-
(
U
`2
)
)
*
(
(
|[
(
-
1
)
,
0
]|
`2
)
-
(
U
`2
)
)
is
complex
ext-real
non
negative
real
set
(
(
(
|[
(
-
1
)
,
0
]|
`1
)
-
(
U
`1
)
)
^2
)
+
(
(
(
|[
(
-
1
)
,
0
]|
`2
)
-
(
U
`2
)
)
^2
)
is
complex
ext-real
real
Element
of
REAL
sqrt
(
(
(
(
|[
(
-
1
)
,
0
]|
`1
)
-
(
U
`1
)
)
^2
)
+
(
(
(
|[
(
-
1
)
,
0
]|
`2
)
-
(
U
`2
)
)
^2
)
)
is
complex
ext-real
real
Element
of
REAL
(
-
1
)
-
(
U
`1
)
is
complex
ext-real
real
Element
of
REAL
(
(
-
1
)
-
(
U
`1
)
)
^2
is
complex
ext-real
real
Element
of
REAL
(
(
-
1
)
-
(
U
`1
)
)
*
(
(
-
1
)
-
(
U
`1
)
)
is
complex
ext-real
non
negative
real
set
3
^2
is
complex
ext-real
real
Element
of
REAL
3
*
3 is
ordinal
natural
complex
ext-real
non
negative
real
set
(
(
(
-
1
)
-
(
U
`1
)
)
^2
)
+
(
3
^2
)
is
complex
ext-real
real
Element
of
REAL
sqrt
(
(
(
(
-
1
)
-
(
U
`1
)
)
^2
)
+
(
3
^2
)
)
is
complex
ext-real
real
Element
of
REAL
(
(
(
-
1
)
-
(
U
`1
)
)
^2
)
+
9 is
complex
ext-real
real
Element
of
REAL
0
+
4 is non
empty
ordinal
natural
complex
ext-real
positive
non
negative
real
Element
of
REAL
C
is
functional
Element
of
bool
the
carrier
of
(
TOP-REAL
2
)
P
is
set
U
is
Relation-like
Function-like
V49
(2)
V50
()
V156
()
V157
()
V158
()
Element
of the
carrier
of
(
TOP-REAL
2
)
U
`2
is
complex
ext-real
real
Element
of
REAL
dist
(
|[
(
-
1
)
,
0
]|
,
U
) is
complex
ext-real
non
negative
real
Element
of
REAL
U
`1
is
complex
ext-real
real
Element
of
REAL
(
|[
(
-
1
)
,
0
]|
`1
)
-
(
U
`1
)
is
complex
ext-real
real
Element
of
REAL
(
(
|[
(
-
1
)
,
0
]|
`1
)
-
(
U
`1
)
)
^2
is
complex
ext-real
real
Element
of
REAL
(
(
|[
(
-
1
)
,
0
]|
`1
)
-
(
U
`1
)
)
*
(
(
|[
(
-
1
)
,
0
]|
`1
)
-
(
U
`1
)
)
is
complex
ext-real
non
negative
real
set
(
|[
(
-
1
)
,
0
]|
`2
)
-
(
U
`2
)
is
complex
ext-real
real
Element
of
REAL
(
(
|[
(
-
1
)
,
0
]|
`2
)
-
(
U
`2
)
)
^2
is
complex
ext-real
real
Element
of
REAL
(
(
|[
(
-
1
)
,
0
]|
`2
)
-
(
U
`2
)
)
*
(
(
|[
(
-
1
)
,
0
]|
`2
)
-
(
U
`2
)
)
is
complex
ext-real
non
negative
real
set
(
(
(
|[
(
-
1
)
,
0
]|
`1
)
-
(
U
`1
)
)
^2
)
+
(
(
(
|[
(
-
1
)
,
0
]|
`2
)
-
(
U
`2
)
)
^2
)
is
complex
ext-real
real
Element
of
REAL
sqrt
(
(
(
(
|[
(
-
1
)
,
0
]|
`1
)
-
(
U
`1
)
)
^2
)
+
(
(
(
|[
(
-
1
)
,
0
]|
`2
)
-
(
U
`2
)
)
^2
)
)
is
complex
ext-real
real
Element
of
REAL
(
-
1
)
-
(
U
`1
)
is
complex
ext-real
real
Element
of
REAL
(
(
-
1
)
-
(
U
`1
)
)
^2
is
complex
ext-real
real
Element
of
REAL
(
(
-
1
)
-
(
U
`1
)
)
*
(
(
-
1
)
-
(
U
`1
)
)
is
complex
ext-real
non
negative
real
set
-
(
-
3
)
is
complex
ext-real
non
negative
real
Element
of
REAL
(
-
(
-
3
)
)
^2
is
complex
ext-real
real
Element
of
REAL
(
-
(
-
3
)
)
*
(
-
(
-
3
)
)
is
complex
ext-real
non
negative
real
set
(
(
(
-
1
)
-
(
U
`1
)
)
^2
)
+
(
(
-
(
-
3
)
)
^2
)
is
complex
ext-real
real
Element
of
REAL
sqrt
(
(
(
(
-
1
)
-
(
U
`1
)
)
^2
)
+
(
(
-
(
-
3
)
)
^2
)
)
is
complex
ext-real
real
Element
of
REAL
(
(
(
-
1
)
-
(
U
`1
)
)
^2
)
+
9 is
complex
ext-real
real
Element
of
REAL
0
+
4 is non
empty
ordinal
natural
complex
ext-real
positive
non
negative
real
Element
of
REAL
{
|[
(
-
1
)
,
0
]|
,
|[
1,
0
]|
}
is
functional
non
empty
Element
of
bool
the
carrier
of
(
TOP-REAL
2
)
C
is
functional
Element
of
bool
the
carrier
of
(
TOP-REAL
2
)
C
/\
(
rectangle
(
(
-
1
)
,1,
(
-
3
)
,3)
)
is
functional
Element
of
bool
the
carrier
of
(
TOP-REAL
2
)
P
is
set
U
is
Relation-like
Function-like
V49
(2)
V50
()
V156
()
V157
()
V158
()
Element
of the
carrier
of
(
TOP-REAL
2
)
U
`1
is
complex
ext-real
real
Element
of
REAL
U
`2
is
complex
ext-real
real
Element
of
REAL
U
`2
is
complex
ext-real
real
Element
of
REAL
(
U
`2
)
^2
is
complex
ext-real
real
Element
of
REAL
(
U
`2
)
*
(
U
`2
)
is
complex
ext-real
non
negative
real
set
dist
(
|[
1,
0
]|
,
U
) is
complex
ext-real
non
negative
real
Element
of
REAL
1
-
(
-
1
)
is non
empty
complex
ext-real
positive
non
negative
real
Element
of
REAL
(
1
-
(
-
1
)
)
^2
is
complex
ext-real
real
Element
of
REAL
(
1
-
(
-
1
)
)
*
(
1
-
(
-
1
)
)
is
complex
ext-real
non
negative
real
set
0
-
(
U
`2
)
is
complex
ext-real
real
Element
of
REAL
(
0
-
(
U
`2
)
)
^2
is
complex
ext-real
real
Element
of
REAL
(
0
-
(
U
`2
)
)
*
(
0
-
(
U
`2
)
)
is
complex
ext-real
non
negative
real
set
(
(
1
-
(
-
1
)
)
^2
)
+
(
(
0
-
(
U
`2
)
)
^2
)
is
complex
ext-real
real
Element
of
REAL
sqrt
(
(
(
1
-
(
-
1
)
)
^2
)
+
(
(
0
-
(
U
`2
)
)
^2
)
)
is
complex
ext-real
real
Element
of
REAL
4
+
(
(
U
`2
)
^2
)
is
complex
ext-real
real
Element
of
REAL
sqrt
(
4
+
(
(
U
`2
)
^2
)
)
is
complex
ext-real
real
Element
of
REAL
(
(
U
`2
)
^2
)
+
4 is
complex
ext-real
real
Element
of
REAL
0
+
4 is non
empty
ordinal
natural
complex
ext-real
positive
non
negative
real
Element
of
REAL
sqrt
(
(
(
U
`2
)
^2
)
+
4
)
is
complex
ext-real
real
Element
of
REAL
U
`2
is
complex
ext-real
real
Element
of
REAL
U
is
Relation-like
Function-like
V49
(2)
V50
()
V156
()
V157
()
V158
()
Element
of the
carrier
of
(
TOP-REAL
2
)
U
is
Relation-like
Function-like
V49
(2)
V50
()
V156
()
V157
()
V158
()
Element
of the
carrier
of
(
TOP-REAL
2
)
U
`1
is
complex
ext-real
real
Element
of
REAL
U
`2
is
complex
ext-real
real
Element
of
REAL
U
`2
is
complex
ext-real
real
Element
of
REAL
(
U
`2
)
^2
is
complex
ext-real
real
Element
of
REAL
(
U
`2
)
*
(
U
`2
)
is
complex
ext-real
non
negative
real
set
dist
(
U
,
|[
(
-
1
)
,
0
]|
) is
complex
ext-real
non
negative
real
Element
of
REAL
(
U
`1
)
-
(
|[
(
-
1
)
,
0
]|
`1
)
is
complex
ext-real
real
Element
of
REAL
(
(
U
`1
)
-
(
|[
(
-
1
)
,
0
]|
`1
)
)
^2
is
complex
ext-real
real
Element
of
REAL
(
(
U
`1
)
-
(
|[
(
-
1
)
,
0
]|
`1
)
)
*
(
(
U
`1
)
-
(
|[
(
-
1
)
,
0
]|
`1
)
)
is
complex
ext-real
non
negative
real
set
(
U
`2
)
-
(
|[
(
-
1
)
,
0
]|
`2
)
is
complex
ext-real
real
Element
of
REAL
(
(
U
`2
)
-
(
|[
(
-
1
)
,
0
]|
`2
)
)
^2
is
complex
ext-real
real
Element
of
REAL
(
(
U
`2
)
-
(
|[
(
-
1
)
,
0
]|
`2
)
)
*
(
(
U
`2
)
-
(
|[
(
-
1
)
,
0
]|
`2
)
)
is
complex
ext-real
non
negative
real
set
(
(
(
U
`1
)
-
(
|[
(
-
1
)
,
0
]|
`1
)
)
^2
)
+
(
(
(
U
`2
)
-
(
|[
(
-
1
)
,
0
]|
`2
)
)
^2
)
is
complex
ext-real
real
Element
of
REAL
sqrt
(
(
(
(
U
`1
)
-
(
|[
(
-
1
)
,
0
]|
`1
)
)
^2
)
+
(
(
(
U
`2
)
-
(
|[
(
-
1
)
,
0
]|
`2
)
)
^2
)
)
is
complex
ext-real
real
Element
of
REAL
4
+
(
(
U
`2
)
^2
)
is
complex
ext-real
real
Element
of
REAL
sqrt
(
4
+
(
(
U
`2
)
^2
)
)
is
complex
ext-real
real
Element
of
REAL
(
(
U
`2
)
^2
)
+
4 is
complex
ext-real
real
Element
of
REAL
0
+
4 is non
empty
ordinal
natural
complex
ext-real
positive
non
negative
real
Element
of
REAL
sqrt
(
(
(
U
`2
)
^2
)
+
4
)
is
complex
ext-real
real
Element
of
REAL
U
`2
is
complex
ext-real
real
Element
of
REAL
U
is
Relation-like
Function-like
V49
(2)
V50
()
V156
()
V157
()
V158
()
Element
of the
carrier
of
(
TOP-REAL
2
)
U
is
Relation-like
Function-like
V49
(2)
V50
()
V156
()
V157
()
V158
()
Element
of the
carrier
of
(
TOP-REAL
2
)
P
is
set
C
is
functional
non
empty
proper
closed
connected
compact
bounded
being_simple_closed_curve
with_the_max_arc
Element
of
bool
the
carrier
of
(
TOP-REAL
2
)
C
/\
(
rectangle
(
(
-
1
)
,1,
(
-
3
)
,3)
)
is
functional
proper
closed
compact
bounded
Element
of
bool
the
carrier
of
(
TOP-REAL
2
)
P
is
set
U
is
Relation-like
Function-like
V49
(2)
V50
()
V156
()
V157
()
V158
()
Element
of the
carrier
of
(
TOP-REAL
2
)
(
rectangle
(
(
-
1
)
,1,
(
-
3
)
,3)
)
/\
C
is
functional
proper
closed
compact
bounded
Element
of
bool
the
carrier
of
(
TOP-REAL
2
)
C
is
functional
non
empty
proper
closed
connected
compact
bounded
being_simple_closed_curve
with_the_max_arc
Element
of
bool
the
carrier
of
(
TOP-REAL
2
)
C
/\
(
rectangle
(
(
-
1
)
,1,
(
-
3
)
,3)
)
is
functional
proper
closed
compact
bounded
Element
of
bool
the
carrier
of
(
TOP-REAL
2
)
P
is
set
U
is
Relation-like
Function-like
V49
(2)
V50
()
V156
()
V157
()
V158
()
Element
of the
carrier
of
(
TOP-REAL
2
)
(
rectangle
(
(
-
1
)
,1,
(
-
3
)
,3)
)
/\
C
is
functional
proper
closed
compact
bounded
Element
of
bool
the
carrier
of
(
TOP-REAL
2
)
C
is
functional
non
empty
proper
closed
connected
compact
bounded
being_simple_closed_curve
with_the_max_arc
Element
of
bool
the
carrier
of
(
TOP-REAL
2
)
C
/\
(
rectangle
(
(
-
1
)
,1,
(
-
3
)
,3)
)
is
functional
proper
closed
compact
bounded
Element
of
bool
the
carrier
of
(
TOP-REAL
2
)
P
is
set
U
is
Relation-like
Function-like
V49
(2)
V50
()
V156
()
V157
()
V158
()
Element
of the
carrier
of
(
TOP-REAL
2
)
(
rectangle
(
(
-
1
)
,1,
(
-
3
)
,3)
)
/\
C
is
functional
proper
closed
compact
bounded
Element
of
bool
the
carrier
of
(
TOP-REAL
2
)
C
is
functional
non
empty
proper
closed
connected
compact
bounded
being_simple_closed_curve
with_the_max_arc
Element
of
bool
the
carrier
of
(
TOP-REAL
2
)
C
/\
(
rectangle
(
(
-
1
)
,1,
(
-
3
)
,3)
)
is
functional
proper
closed
compact
bounded
Element
of
bool
the
carrier
of
(
TOP-REAL
2
)
P
is
set
U
is
Relation-like
Function-like
V49
(2)
V50
()
V156
()
V157
()
V158
()
Element
of the
carrier
of
(
TOP-REAL
2
)
(
rectangle
(
(
-
1
)
,1,
(
-
3
)
,3)
)
/\
C
is
functional
proper
closed
compact
bounded
Element
of
bool
the
carrier
of
(
TOP-REAL
2
)
C
is
Relation-like
Function-like
V49
(2)
V50
()
V156
()
V157
()
V158
()
Element
of the
carrier
of
(
TOP-REAL
2
)
LSeg
(
C
,
|[
(
-
1
)
,3
]|
) is
functional
proper
closed
closed
boundary
nowhere_dense
connected
compact
compact
bounded
bounded
Element
of
bool
the
carrier
of
(
TOP-REAL
2
)
{
(
(
(
1
-
b
1
)
*
C
)
+
(
b
1
*
|[
(
-
1
)
,3
]|
)
)
where
b
1
is
complex
ext-real
real
Element
of
REAL
: (
0
<=
b
1
&
b
1
<=
1 )
}
is
set
P
is
functional
non
empty
proper
closed
connected
compact
bounded
being_simple_closed_curve
with_the_max_arc
Element
of
bool
the
carrier
of
(
TOP-REAL
2
)
P
`
is
functional
non
empty
open
Element
of
bool
the
carrier
of
(
TOP-REAL
2
)
the
carrier
of
(
TOP-REAL
2
)
\
P
is
set
P
/\
(
rectangle
(
(
-
1
)
,1,
(
-
3
)
,3)
)
is
functional
proper
closed
compact
bounded
Element
of
bool
the
carrier
of
(
TOP-REAL
2
)
U
is
set
C
`1
is
complex
ext-real
real
Element
of
REAL
C
`2
is
complex
ext-real
real
Element
of
REAL
l
is
Relation-like
Function-like
V49
(2)
V50
()
V156
()
V157
()
V158
()
Element
of the
carrier
of
(
TOP-REAL
2
)
(
rectangle
(
(
-
1
)
,1,
(
-
3
)
,3)
)
/\
P
is
functional
proper
closed
compact
bounded
Element
of
bool
the
carrier
of
(
TOP-REAL
2
)
|[
(
C
`1
)
,
(
C
`2
)
]|
is
Relation-like
Function-like
V49
(2)
V50
()
V156
()
V157
()
V158
()
Element
of the
carrier
of
(
TOP-REAL
2
)
C
is
Relation-like
Function-like
V49
(2)
V50
()
V156
()
V157
()
V158
()
Element
of the
carrier
of
(
TOP-REAL
2
)
LSeg
(
C
,
|[
1,3
]|
) is
functional
proper
closed
closed
boundary
nowhere_dense
connected
compact
compact
bounded
bounded
Element
of
bool
the
carrier
of
(
TOP-REAL
2
)
{
(
(
(
1
-
b
1
)
*
C
)
+
(
b
1
*
|[
1,3
]|
)
)
where
b
1
is
complex
ext-real
real
Element
of
REAL
: (
0
<=
b
1
&
b
1
<=
1 )
}
is
set
P
is
functional
non
empty
proper
closed
connected
compact
bounded
being_simple_closed_curve
with_the_max_arc
Element
of
bool
the
carrier
of
(
TOP-REAL
2
)
P
`
is
functional
non
empty
open
Element
of
bool
the
carrier
of
(
TOP-REAL
2
)
the
carrier
of
(
TOP-REAL
2
)
\
P
is
set
P
/\
(
rectangle
(
(
-
1
)
,1,
(
-
3
)
,3)
)
is
functional
proper
closed
compact
bounded
Element
of
bool
the
carrier
of
(
TOP-REAL
2
)
U
is
set
C
`1
is
complex
ext-real
real
Element
of
REAL
C
`2
is
complex
ext-real
real
Element
of
REAL
l
is
Relation-like
Function-like
V49
(2)
V50
()
V156
()
V157
()
V158
()
Element
of the
carrier
of
(
TOP-REAL
2
)
(
rectangle
(
(
-
1
)
,1,
(
-
3
)
,3)
)
/\
P
is
functional
proper
closed
compact
bounded
Element
of
bool
the
carrier
of
(
TOP-REAL
2
)
|[
(
C
`1
)
,
(
C
`2
)
]|
is
Relation-like
Function-like
V49
(2)
V50
()
V156
()
V157
()
V158
()
Element
of the
carrier
of
(
TOP-REAL
2
)
C
is
Relation-like
Function-like
V49
(2)
V50
()
V156
()
V157
()
V158
()
Element
of the
carrier
of
(
TOP-REAL
2
)
LSeg
(
C
,
|[
(
-
1
)
,
(
-
3
)
]|
) is
functional
proper
closed
closed
boundary
nowhere_dense
connected
compact
compact
bounded
bounded
Element
of
bool
the
carrier
of
(
TOP-REAL
2
)
{
(
(
(
1
-
b
1
)
*
C
)
+
(
b
1
*
|[
(
-
1
)
,
(
-
3
)
]|
)
)
where
b
1
is
complex
ext-real
real
Element
of
REAL
: (
0
<=
b
1
&
b
1
<=
1 )
}
is
set
P
is
functional
non
empty
proper
closed
connected
compact
bounded
being_simple_closed_curve
with_the_max_arc
Element
of
bool
the
carrier
of
(
TOP-REAL
2
)
P
`
is
functional
non
empty
open
Element
of
bool
the
carrier
of
(
TOP-REAL
2
)
the
carrier
of
(
TOP-REAL
2
)
\
P
is
set
P
/\
(
rectangle
(
(
-
1
)
,1,
(
-
3
)
,3)
)
is
functional
proper
closed
compact
bounded
Element
of
bool
the
carrier
of
(
TOP-REAL
2
)
U
is
set
C
`1
is
complex
ext-real
real
Element
of
REAL
C
`2
is
complex
ext-real
real
Element
of
REAL
l
is
Relation-like
Function-like
V49
(2)
V50
()
V156
()
V157
()
V158
()
Element
of the
carrier
of
(
TOP-REAL
2
)
(
rectangle
(
(
-
1
)
,1,
(
-
3
)
,3)
)
/\
P
is
functional
proper
closed
compact
bounded
Element
of
bool
the
carrier
of
(
TOP-REAL
2
)
|[
(
C
`1
)
,
(
C
`2
)
]|
is
Relation-like
Function-like
V49
(2)
V50
()
V156
()
V157
()
V158
()
Element
of the
carrier
of
(
TOP-REAL
2
)
C
is
Relation-like
Function-like
V49
(2)
V50
()
V156
()
V157
()
V158
()
Element
of the
carrier
of
(
TOP-REAL
2
)
LSeg
(
C
,
|[
1,
(
-
3
)
]|
) is
functional
proper
closed
closed
boundary
nowhere_dense
connected
compact
compact
bounded
bounded
Element
of
bool
the
carrier
of
(
TOP-REAL
2
)
{
(
(
(
1
-
b
1
)
*
C
)
+
(
b
1
*
|[
1,
(
-
3
)
]|
)
)
where
b
1
is
complex
ext-real
real
Element
of
REAL
: (
0
<=
b
1
&
b
1
<=
1 )
}
is
set
P
is
functional
non
empty
proper
closed
connected
compact
bounded
being_simple_closed_curve
with_the_max_arc
Element
of
bool
the
carrier
of
(
TOP-REAL
2
)
P
`
is
functional
non
empty
open
Element
of
bool
the
carrier
of
(
TOP-REAL
2
)
the
carrier
of
(
TOP-REAL
2
)
\
P
is
set
P
/\
(
rectangle
(
(
-
1
)
,1,
(
-
3
)
,3)
)
is
functional
proper
closed
compact
bounded
Element
of
bool
the
carrier
of
(
TOP-REAL
2
)
U
is
set
C
`1
is
complex
ext-real
real
Element
of
REAL
C
`2
is
complex
ext-real
real
Element
of
REAL
l
is
Relation-like
Function-like
V49
(2)
V50
()
V156
()
V157
()
V158
()
Element
of the
carrier
of
(
TOP-REAL
2
)
(
rectangle
(
(
-
1
)
,1,
(
-
3
)
,3)
)
/\
P
is
functional
proper
closed
compact
bounded
Element
of
bool
the
carrier
of
(
TOP-REAL
2
)
|[
(
C
`1
)
,
(
C
`2
)
]|
is
Relation-like
Function-like
V49
(2)
V50
()
V156
()
V157
()
V158
()
Element
of the
carrier
of
(
TOP-REAL
2
)
C
is
complex
ext-real
real
set
|[
0
,
C
]|
is
Relation-like
Function-like
V49
(2)
V50
()
V156
()
V157
()
V158
()
Element
of the
carrier
of
(
TOP-REAL
2
)
P
is
Relation-like
Function-like
V49
(2)
V50
()
V156
()
V157
()
V158
()
Element
of the
carrier
of
(
TOP-REAL
2
)
P
`1
is
complex
ext-real
real
Element
of
REAL
P
`2
is
complex
ext-real
real
Element
of
REAL
C
is
functional
Element
of
bool
the
carrier
of
(
TOP-REAL
2
)
W-bound
C
is
complex
ext-real
real
Element
of
REAL
(
TOP-REAL
2
)
|
C
is
strict
TopSpace-like
T_0
T_1
T_2
SubSpace
of
TOP-REAL
2
proj1
|
C
is
Relation-like
C
-defined
the
carrier
of
(
TOP-REAL
2
)
-defined
the
carrier
of
(
(
TOP-REAL
2
)
|
C
)
-defined
REAL
-valued
Function-like
total
quasi_total
V156
()
V157
()
V158
()
continuous
Element
of
bool
[:
the
carrier
of
(
(
TOP-REAL
2
)
|
C
)
,
REAL
:]
the
carrier
of
(
(
TOP-REAL
2
)
|
C
)
is
set
[:
the
carrier
of
(
(
TOP-REAL
2
)
|
C
)
,
REAL
:]
is
Relation-like
V156
()
V157
()
V158
()
set
bool
[:
the
carrier
of
(
(
TOP-REAL
2
)
|
C
)
,
REAL
:]
is non
empty
set
lower_bound
(
proj1
|
C
)
is
complex
ext-real
real
Element
of
REAL
(
proj1
|
C
)
.:
the
carrier
of
(
(
TOP-REAL
2
)
|
C
)
is
V166
()
V167
()
V168
()
Element
of
bool
REAL
K663
(
(
(
proj1
|
C
)
.:
the
carrier
of
(
(
TOP-REAL
2
)
|
C
)
)
) is
complex
ext-real
real
Element
of
REAL
P
is
functional
non
empty
Element
of
bool
the
carrier
of
(
TOP-REAL
2
)
(
TOP-REAL
2
)
|
P
is non
empty
strict
TopSpace-like
T_0
T_1
T_2
SubSpace
of
TOP-REAL
2
the
carrier
of
(
(
TOP-REAL
2
)
|
P
)
is non
empty
set
proj1
|
P
is
Relation-like
P
-defined
the
carrier
of
(
TOP-REAL
2
)
-defined
the
carrier
of
(
(
TOP-REAL
2
)
|
P
)
-defined
REAL
-valued
Function-like
non
empty
total
quasi_total
V156
()
V157
()
V158
()
continuous
Element
of
bool
[:
the
carrier
of
(
(
TOP-REAL
2
)
|
P
)
,
REAL
:]
[:
the
carrier
of
(
(
TOP-REAL
2
)
|
P
)
,
REAL
:]
is
Relation-like
non
empty
V156
()
V157
()
V158
()
set
bool
[:
the
carrier
of
(
(
TOP-REAL
2
)
|
P
)
,
REAL
:]
is non
empty
set
(
proj1
|
P
)
.:
the
carrier
of
(
(
TOP-REAL
2
)
|
P
)
is non
empty
V166
()
V167
()
V168
()
Element
of
bool
REAL
U
is
V166
()
V167
()
V168
()
Element
of
bool
REAL
l
is
complex
ext-real
real
set
LJ
is
set
(
proj1
|
P
)
.
LJ
is
complex
ext-real
real
set
k
is
Relation-like
Function-like
V49
(2)
V50
()
V156
()
V157
()
V158
()
Element
of the
carrier
of
(
TOP-REAL
2
)
k
`1
is
complex
ext-real
real
Element
of
REAL
k
`2
is
complex
ext-real
real
Element
of
REAL
l
is
complex
ext-real
real
set
(
proj1
|
P
)
.
|[
(
-
1
)
,
0
]|
is
complex
ext-real
real
set
C
is
functional
Element
of
bool
the
carrier
of
(
TOP-REAL
2
)
E-bound
C
is
complex
ext-real
real
Element
of
REAL
(
TOP-REAL
2
)
|
C
is
strict
TopSpace-like
T_0
T_1
T_2
SubSpace
of
TOP-REAL
2
proj1
|
C
is
Relation-like
C
-defined
the
carrier
of
(
TOP-REAL
2
)
-defined
the
carrier
of
(
(
TOP-REAL
2
)
|
C
)
-defined
REAL
-valued
Function-like
total
quasi_total
V156
()
V157
()
V158
()
continuous
Element
of
bool
[:
the
carrier
of
(
(
TOP-REAL
2
)
|
C
)
,
REAL
:]
the
carrier
of
(
(
TOP-REAL
2
)
|
C
)
is
set
[:
the
carrier
of
(
(
TOP-REAL
2
)
|
C
)
,
REAL
:]
is
Relation-like
V156
()
V157
()
V158
()
set
bool
[:
the
carrier
of
(
(
TOP-REAL
2
)
|
C
)
,
REAL
:]
is non
empty
set
upper_bound
(
proj1
|
C
)
is
complex
ext-real
real
Element
of
REAL
(
proj1
|
C
)
.:
the
carrier
of
(
(
TOP-REAL
2
)
|
C
)
is
V166
()
V167
()
V168
()
Element
of
bool
REAL
K662
(
(
(
proj1
|
C
)
.:
the
carrier
of
(
(
TOP-REAL
2
)
|
C
)
)
) is
complex
ext-real
real
Element
of
REAL
P
is
functional
non
empty
Element
of
bool
the
carrier
of
(
TOP-REAL
2
)
(
TOP-REAL
2
)
|
P
is non
empty
strict
TopSpace-like
T_0
T_1
T_2
SubSpace
of
TOP-REAL
2
the
carrier
of
(
(
TOP-REAL
2
)
|
P
)
is non
empty
set
proj1
|
P
is
Relation-like
P
-defined
the
carrier
of
(
TOP-REAL
2
)
-defined
the
carrier
of
(
(
TOP-REAL
2
)
|
P
)
-defined
REAL
-valued
Function-like
non
empty
total
quasi_total
V156
()
V157
()
V158
()
continuous
Element
of
bool
[:
the
carrier
of
(
(
TOP-REAL
2
)
|
P
)
,
REAL
:]
[:
the
carrier
of
(
(
TOP-REAL
2
)
|
P
)
,
REAL
:]
is
Relation-like
non
empty
V156
()
V157
()
V158
()
set
bool
[:
the
carrier
of
(
(
TOP-REAL
2
)
|
P
)
,
REAL
:]
is non
empty
set
(
proj1
|
P
)
.:
the
carrier
of
(
(
TOP-REAL
2
)
|
P
)
is non
empty
V166
()
V167
()
V168
()
Element
of
bool
REAL
U
is
V166
()
V167
()
V168
()
Element
of
bool
REAL
l
is
complex
ext-real
real
set
LJ
is
set
(
proj1
|
P
)
.
LJ
is
complex
ext-real
real
set
k
is
Relation-like
Function-like
V49
(2)
V50
()
V156
()
V157
()
V158
()
Element
of the
carrier
of
(
TOP-REAL
2
)
k
`1
is
complex
ext-real
real
Element
of
REAL
k
`2
is
complex
ext-real
real
Element
of
REAL
l
is
complex
ext-real
real
set
(
proj1
|
P
)
.
|[
1,
0
]|
is
complex
ext-real
real
set
{
|[
(
-
1
)
,
0
]|
}
is
functional
non
empty
proper
closed
compact
bounded
Element
of
bool
the
carrier
of
(
TOP-REAL
2
)
C
is
functional
proper
closed
compact
bounded
Element
of
bool
the
carrier
of
(
TOP-REAL
2
)
W-most
C
is
functional
Element
of
bool
the
carrier
of
(
TOP-REAL
2
)
SW-corner
C
is
Relation-like
Function-like
V49
(2)
V50
()
V156
()
V157
()
V158
()
Element
of the
carrier
of
(
TOP-REAL
2
)
W-bound
C
is
complex
ext-real
real
Element
of
REAL
(
TOP-REAL
2
)
|
C
is
strict
TopSpace-like
T_0
T_1
T_2
SubSpace
of
TOP-REAL
2
proj1
|
C
is
Relation-like
C
-defined
the
carrier
of
(
TOP-REAL
2
)
-defined
the
carrier
of
(
(
TOP-REAL
2
)
|
C
)
-defined
REAL
-valued
Function-like
total
quasi_total
V156
()
V157
()
V158
()
continuous
Element
of
bool
[:
the
carrier
of
(
(
TOP-REAL
2
)
|
C
)
,
REAL
:]
the
carrier
of
(
(
TOP-REAL
2
)
|
C
)
is
set
[:
the
carrier
of
(
(
TOP-REAL
2
)
|
C
)
,
REAL
:]
is
Relation-like
V156
()
V157
()
V158
()
set
bool
[:
the
carrier
of
(
(
TOP-REAL
2
)
|
C
)
,
REAL
:]
is non
empty
set
lower_bound
(
proj1
|
C
)
is
complex
ext-real
real
Element
of
REAL
(
proj1
|
C
)
.:
the
carrier
of
(
(
TOP-REAL
2
)
|
C
)
is
V166
()
V167
()
V168
()
Element
of
bool
REAL
K663
(
(
(
proj1
|
C
)
.:
the
carrier
of
(
(
TOP-REAL
2
)
|
C
)
)
) is
complex
ext-real
real
Element
of
REAL
S-bound
C
is
complex
ext-real
real
Element
of
REAL
proj2
|
C
is
Relation-like
C
-defined
the
carrier
of
(
TOP-REAL
2
)
-defined
the
carrier
of
(
(
TOP-REAL
2
)
|
C
)
-defined
REAL
-valued
Function-like
total
quasi_total
V156
()
V157
()
V158
()
continuous
Element
of
bool
[:
the
carrier
of
(
(
TOP-REAL
2
)
|
C
)
,
REAL
:]
lower_bound
(
proj2
|
C
)
is
complex
ext-real
real
Element
of
REAL
(
proj2
|
C
)
.:
the
carrier
of
(
(
TOP-REAL
2
)
|
C
)
is
V166
()
V167
()
V168
()
Element
of
bool
REAL
K663
(
(
(
proj2
|
C
)
.:
the
carrier
of
(
(
TOP-REAL
2
)
|
C
)
)
) is
complex
ext-real
real
Element
of
REAL
|[
(
W-bound
C
)
,
(
S-bound
C
)
]|
is
Relation-like
Function-like
V49
(2)
V50
()
V156
()
V157
()
V158
()
Element
of the
carrier
of
(
TOP-REAL
2
)
NW-corner
C
is
Relation-like
Function-like
V49
(2)
V50
()
V156
()
V157
()
V158
()
Element
of the
carrier
of
(
TOP-REAL
2
)
N-bound
C
is
complex
ext-real
real
Element
of
REAL
upper_bound
(
proj2
|
C
)
is
complex
ext-real
real
Element
of
REAL
K662
(
(
(
proj2
|
C
)
.:
the
carrier
of
(
(
TOP-REAL
2
)
|
C
)
)
) is
complex
ext-real
real
Element
of
REAL
|[
(
W-bound
C
)
,
(
N-bound
C
)
]|
is
Relation-like
Function-like
V49
(2)
V50
()
V156
()
V157
()
V158
()
Element
of the
carrier
of
(
TOP-REAL
2
)
LSeg
(
(
SW-corner
C
)
,
(
NW-corner
C
)
) is
functional
proper
closed
closed
boundary
nowhere_dense
connected
compact
compact
bounded
bounded
vertical
Element
of
bool
the
carrier
of
(
TOP-REAL
2
)
{
(
(
(
1
-
b
1
)
*
(
SW-corner
C
)
)
+
(
b
1
*
(
NW-corner
C
)
)
)
where
b
1
is
complex
ext-real
real
Element
of
REAL
: (
0
<=
b
1
&
b
1
<=
1 )
}
is
set
(
LSeg
(
(
SW-corner
C
)
,
(
NW-corner
C
)
)
)
/\
C
is
functional
proper
closed
compact
bounded
Element
of
bool
the
carrier
of
(
TOP-REAL
2
)
(
SW-corner
C
)
`1
is
complex
ext-real
real
Element
of
REAL
|[
(
-
1
)
,
(
S-bound
C
)
]|
is
Relation-like
Function-like
V49
(2)
V50
()
V156
()
V157
()
V158
()
Element
of the
carrier
of
(
TOP-REAL
2
)
|[
(
-
1
)
,
(
S-bound
C
)
]|
`1
is
complex
ext-real
real
Element
of
REAL
(
NW-corner
C
)
`1
is
complex
ext-real
real
Element
of
REAL
|[
(
-
1
)
,
(
N-bound
C
)
]|
is
Relation-like
Function-like
V49
(2)
V50
()
V156
()
V157
()
V158
()
Element
of the
carrier
of
(
TOP-REAL
2
)
|[
(
-
1
)
,
(
N-bound
C
)
]|
`1
is
complex
ext-real
real
Element
of
REAL
U
is
set
l
is
Relation-like
Function-like
V49
(2)
V50
()
V156
()
V157
()
V158
()
Element
of the
carrier
of
(
TOP-REAL
2
)
l
`1
is
complex
ext-real
real
Element
of
REAL
LJ
is
Relation-like
Function-like
V49
(2)
V50
()
V156
()
V157
()
V158
()
Element
of the
carrier
of
(
TOP-REAL
2
)
LJ
`1
is
complex
ext-real
real
Element
of
REAL
LJ
`2
is
complex
ext-real
real
Element
of
REAL
C
/\
(
rectangle
(
(
-
1
)
,1,
(
-
3
)
,3)
)
is
functional
proper
closed
compact
bounded
Element
of
bool
the
carrier
of
(
TOP-REAL
2
)
U
is
set
(
SW-corner
C
)
`2
is
complex
ext-real
real
Element
of
REAL
(
NW-corner
C
)
`2
is
complex
ext-real
real
Element
of
REAL
{
|[
1,
0
]|
}
is
functional
non
empty
proper
closed
compact
bounded
Element
of
bool
the
carrier
of
(
TOP-REAL
2
)
C
is
functional
proper
closed
compact
bounded
Element
of
bool
the
carrier
of
(
TOP-REAL
2
)
E-most
C
is
functional
Element
of
bool
the
carrier
of
(
TOP-REAL
2
)
SE-corner
C
is
Relation-like
Function-like
V49
(2)
V50
()
V156
()
V157
()
V158
()
Element
of the
carrier
of
(
TOP-REAL
2
)
E-bound
C
is
complex
ext-real
real
Element
of
REAL
(
TOP-REAL
2
)
|
C
is
strict
TopSpace-like
T_0
T_1
T_2
SubSpace
of
TOP-REAL
2
proj1
|
C
is
Relation-like
C
-defined
the
carrier
of
(
TOP-REAL
2
)
-defined
the
carrier
of
(
(
TOP-REAL
2
)
|
C
)
-defined
REAL
-valued
Function-like
total
quasi_total
V156
()
V157
()
V158
()
continuous
Element
of
bool
[:
the
carrier
of
(
(
TOP-REAL
2
)
|
C
)
,
REAL
:]
the
carrier
of
(
(
TOP-REAL
2
)
|
C
)
is
set
[:
the
carrier
of
(
(
TOP-REAL
2
)
|
C
)
,
REAL
:]
is
Relation-like
V156
()
V157
()
V158
()
set
bool
[:
the
carrier
of
(
(
TOP-REAL
2
)
|
C
)
,
REAL
:]
is non
empty
set
upper_bound
(
proj1
|
C
)
is
complex
ext-real
real
Element
of
REAL
(
proj1
|
C
)
.:
the
carrier
of
(
(
TOP-REAL
2
)
|
C
)
is
V166
()
V167
()
V168
()
Element
of
bool
REAL
K662
(
(
(
proj1
|
C
)
.:
the
carrier
of
(
(
TOP-REAL
2
)
|
C
)
)
) is
complex
ext-real
real
Element
of
REAL
S-bound
C
is
complex
ext-real
real
Element
of
REAL
proj2
|
C
is
Relation-like
C
-defined
the
carrier
of
(
TOP-REAL
2
)
-defined
the
carrier
of
(
(
TOP-REAL
2
)
|
C
)
-defined
REAL
-valued
Function-like
total
quasi_total
V156
()
V157
()
V158
()
continuous
Element
of
bool
[:
the
carrier
of
(
(
TOP-REAL
2
)
|
C
)
,
REAL
:]
lower_bound
(
proj2
|
C
)
is
complex
ext-real
real
Element
of
REAL
(
proj2
|
C
)
.:
the
carrier
of
(
(
TOP-REAL
2
)
|
C
)
is
V166
()
V167
()
V168
()
Element
of
bool
REAL
K663
(
(
(
proj2
|
C
)
.:
the
carrier
of
(
(
TOP-REAL
2
)
|
C
)
)
) is
complex
ext-real
real
Element
of
REAL
|[
(
E-bound
C
)
,
(
S-bound
C
)
]|
is
Relation-like
Function-like
V49
(2)
V50
()
V156
()
V157
()
V158
()
Element
of the
carrier
of
(
TOP-REAL
2
)
NE-corner
C
is
Relation-like
Function-like
V49
(2)
V50
()
V156
()
V157
()
V158
()
Element
of the
carrier
of
(
TOP-REAL
2
)
N-bound
C
is
complex
ext-real
real
Element
of
REAL
upper_bound
(
proj2
|
C
)
is
complex
ext-real
real
Element
of
REAL
K662
(
(
(
proj2
|
C
)
.:
the
carrier
of
(
(
TOP-REAL
2
)
|
C
)
)
) is
complex
ext-real
real
Element
of
REAL
|[
(
E-bound
C
)
,
(
N-bound
C
)
]|
is
Relation-like
Function-like
V49
(2)
V50
()
V156
()
V157
()
V158
()
Element
of the
carrier
of
(
TOP-REAL
2
)
LSeg
(
(
SE-corner
C
)
,
(
NE-corner
C
)
) is
functional
proper
closed
closed
boundary
nowhere_dense
connected
compact
compact
bounded
bounded
vertical
Element
of
bool
the
carrier
of
(
TOP-REAL
2
)
{
(
(
(
1
-
b
1
)
*
(
SE-corner
C
)
)
+
(
b
1
*
(
NE-corner
C
)
)
)
where
b
1
is
complex
ext-real
real
Element
of
REAL
: (
0
<=
b
1
&
b
1
<=
1 )
}
is
set
(
LSeg
(
(
SE-corner
C
)
,
(
NE-corner
C
)
)
)
/\
C
is
functional
proper
closed
compact
bounded
Element
of
bool
the
carrier
of
(
TOP-REAL
2
)
(
SE-corner
C
)
`1
is
complex
ext-real
real
Element
of
REAL
|[
1,
(
S-bound
C
)
]|
is
Relation-like
Function-like
V49
(2)
V50
()
V156
()
V157
()
V158
()
Element
of the
carrier
of
(
TOP-REAL
2
)
|[
1,
(
S-bound
C
)
]|
`1
is
complex
ext-real
real
Element
of
REAL
(
NE-corner
C
)
`1
is
complex
ext-real
real
Element
of
REAL
|[
1,
(
N-bound
C
)
]|
is
Relation-like
Function-like
V49
(2)
V50
()
V156
()
V157
()
V158
()
Element
of the
carrier
of
(
TOP-REAL
2
)
|[
1,
(
N-bound
C
)
]|
`1
is
complex
ext-real
real
Element
of
REAL
U
is
set
l
is
Relation-like
Function-like
V49
(2)
V50
()
V156
()
V157
()
V158
()
Element
of the
carrier
of
(
TOP-REAL
2
)
l
`1
is
complex
ext-real
real
Element
of
REAL
LJ
is
Relation-like
Function-like
V49
(2)
V50
()
V156
()
V157
()
V158
()
Element
of the
carrier
of
(
TOP-REAL
2
)
LJ
`1
is
complex
ext-real
real
Element
of
REAL
LJ
`2
is
complex
ext-real
real
Element
of
REAL
C
/\
(
rectangle
(
(
-
1
)
,1,
(
-
3
)
,3)
)
is
functional
proper
closed
compact
bounded
Element
of
bool
the
carrier
of
(
TOP-REAL
2
)
U
is
set
(
SE-corner
C
)
`2
is
complex
ext-real
real
Element
of
REAL
(
NE-corner
C
)
`2
is
complex
ext-real
real
Element
of
REAL
C
is
functional
proper
closed
compact
bounded
Element
of
bool
the
carrier
of
(
TOP-REAL
2
)
W-min
C
is
Relation-like
Function-like
V49
(2)
V50
()
V156
()
V157
()
V158
()
Element
of the
carrier
of
(
TOP-REAL
2
)
W-bound
C
is
complex
ext-real
real
Element
of
REAL
(
TOP-REAL
2
)
|
C
is
strict
TopSpace-like
T_0
T_1
T_2
SubSpace
of
TOP-REAL
2
proj1
|
C
is
Relation-like
C
-defined
the
carrier
of
(
TOP-REAL
2
)
-defined
the
carrier
of
(
(
TOP-REAL
2
)
|
C
)
-defined
REAL
-valued
Function-like
total
quasi_total
V156
()
V157
()
V158
()
continuous
Element
of
bool
[:
the
carrier
of
(
(
TOP-REAL
2
)
|
C
)
,
REAL
:]
the
carrier
of
(
(
TOP-REAL
2
)
|
C
)
is
set
[:
the
carrier
of
(
(
TOP-REAL
2
)
|
C
)
,
REAL
:]
is
Relation-like
V156
()
V157
()
V158
()
set
bool
[:
the
carrier
of
(
(
TOP-REAL
2
)
|
C
)
,
REAL
:]
is non
empty
set
lower_bound
(
proj1
|
C
)
is
complex
ext-real
real
Element
of
REAL
(
proj1
|
C
)
.:
the
carrier
of
(
(
TOP-REAL
2
)
|
C
)
is
V166
()
V167
()
V168
()
Element
of
bool
REAL
K663
(
(
(
proj1
|
C
)
.:
the
carrier
of
(
(
TOP-REAL
2
)
|
C
)
)
) is
complex
ext-real
real
Element
of
REAL
W-most
C
is
functional
Element
of
bool
the
carrier
of
(
TOP-REAL
2
)
SW-corner
C
is
Relation-like
Function-like
V49
(2)
V50
()
V156
()
V157
()
V158
()
Element
of the
carrier
of
(
TOP-REAL
2
)
S-bound
C
is
complex
ext-real
real
Element
of
REAL
proj2
|
C
is
Relation-like
C
-defined
the
carrier
of
(
TOP-REAL
2
)
-defined
the
carrier
of
(
(
TOP-REAL
2
)
|
C
)
-defined
REAL
-valued
Function-like
total
quasi_total
V156
()
V157
()
V158
()
continuous
Element
of
bool
[:
the
carrier
of
(
(
TOP-REAL
2
)
|
C
)
,
REAL
:]
lower_bound
(
proj2
|
C
)
is
complex
ext-real
real
Element
of
REAL
(
proj2
|
C
)
.:
the
carrier
of
(
(
TOP-REAL
2
)
|
C
)
is
V166
()
V167
()
V168
()
Element
of
bool
REAL
K663
(
(
(
proj2
|
C
)
.:
the
carrier
of
(
(
TOP-REAL
2
)
|
C
)
)
) is
complex
ext-real
real
Element
of
REAL
|[
(
W-bound
C
)
,
(
S-bound
C
)
]|
is
Relation-like
Function-like
V49
(2)
V50
()
V156
()
V157
()
V158
()
Element
of the
carrier
of
(
TOP-REAL
2
)
NW-corner
C
is
Relation-like
Function-like
V49
(2)
V50
()
V156
()
V157
()
V158
()
Element
of the
carrier
of
(
TOP-REAL
2
)
N-bound
C
is
complex
ext-real
real
Element
of
REAL
upper_bound
(
proj2
|
C
)
is
complex
ext-real
real
Element
of
REAL
K662
(
(
(
proj2
|
C
)
.:
the
carrier
of
(
(
TOP-REAL
2
)
|
C
)
)
) is
complex
ext-real
real
Element
of
REAL
|[
(
W-bound
C
)
,
(
N-bound
C
)
]|
is
Relation-like
Function-like
V49
(2)
V50
()
V156
()
V157
()
V158
()
Element
of the
carrier
of
(
TOP-REAL
2
)
LSeg
(
(
SW-corner
C
)
,
(
NW-corner
C
)
) is
functional
proper
closed
closed
boundary
nowhere_dense
connected
compact
compact
bounded
bounded
vertical
Element
of
bool
the
carrier
of
(
TOP-REAL
2
)
{
(
(
(
1
-
b
1
)
*
(
SW-corner
C
)
)
+
(
b
1
*
(
NW-corner
C
)
)
)
where
b
1
is
complex
ext-real
real
Element
of
REAL
: (
0
<=
b
1
&
b
1
<=
1 )
}
is
set
(
LSeg
(
(
SW-corner
C
)
,
(
NW-corner
C
)
)
)
/\
C
is
functional
proper
closed
compact
bounded
Element
of
bool
the
carrier
of
(
TOP-REAL
2
)
(
TOP-REAL
2
)
|
(
W-most
C
)
is
strict
TopSpace-like
T_0
T_1
T_2
SubSpace
of
TOP-REAL
2
proj2
|
(
W-most
C
)
is
Relation-like
W-most
C
-defined
the
carrier
of
(
TOP-REAL
2
)
-defined
the
carrier
of
(
(
TOP-REAL
2
)
|
(
W-most
C
)
)
-defined
REAL
-valued
Function-like
total
quasi_total
V156
()
V157
()
V158
()
continuous
Element
of
bool
[:
the
carrier
of
(
(
TOP-REAL
2
)
|
(
W-most
C
)
)
,
REAL
:]
the
carrier
of
(
(
TOP-REAL
2
)
|
(
W-most
C
)
)
is
set
[:
the
carrier
of
(
(
TOP-REAL
2
)
|
(
W-most
C
)
)
,
REAL
:]
is
Relation-like
V156
()
V157
()
V158
()
set
bool
[:
the
carrier
of
(
(
TOP-REAL
2
)
|
(
W-most
C
)
)
,
REAL
:]
is non
empty
set
lower_bound
(
proj2
|
(
W-most
C
)
)
is
complex
ext-real
real
Element
of
REAL
(
proj2
|
(
W-most
C
)
)
.:
the
carrier
of
(
(
TOP-REAL
2
)
|
(
W-most
C
)
)
is
V166
()
V167
()
V168
()
Element
of
bool
REAL
K663
(
(
(
proj2
|
(
W-most
C
)
)
.:
the
carrier
of
(
(
TOP-REAL
2
)
|
(
W-most
C
)
)
)
) is
complex
ext-real
real
Element
of
REAL
|[
(
W-bound
C
)
,
(
lower_bound
(
proj2
|
(
W-most
C
)
)
)
]|
is
Relation-like
Function-like
V49
(2)
V50
()
V156
()
V157
()
V158
()
Element
of the
carrier
of
(
TOP-REAL
2
)
W-max
C
is
Relation-like
Function-like
V49
(2)
V50
()
V156
()
V157
()
V158
()
Element
of the
carrier
of
(
TOP-REAL
2
)
upper_bound
(
proj2
|
(
W-most
C
)
)
is
complex
ext-real
real
Element
of
REAL
K662
(
(
(
proj2
|
(
W-most
C
)
)
.:
the
carrier
of
(
(
TOP-REAL
2
)
|
(
W-most
C
)
)
)
) is
complex
ext-real
real
Element
of
REAL
|[
(
W-bound
C
)
,
(
upper_bound
(
proj2
|
(
W-most
C
)
)
)
]|
is
Relation-like
Function-like
V49
(2)
V50
()
V156
()
V157
()
V158
()
Element
of the
carrier
of
(
TOP-REAL
2
)
dom
(
proj2
|
(
W-most
C
)
)
is
functional
Element
of
bool
(
W-most
C
)
bool
(
W-most
C
)
is non
empty
set
Im
(
(
proj2
|
(
W-most
C
)
)
,
|[
(
-
1
)
,
0
]|
) is
V166
()
V167
()
V168
()
set
{
|[
(
-
1
)
,
0
]|
}
is
functional
non
empty
set
(
proj2
|
(
W-most
C
)
)
.:
{
|[
(
-
1
)
,
0
]|
}
is
V166
()
V167
()
V168
()
set
(
proj2
|
(
W-most
C
)
)
.
|[
(
-
1
)
,
0
]|
is
complex
ext-real
real
set
{
(
(
proj2
|
(
W-most
C
)
)
.
|[
(
-
1
)
,
0
]|
)
}
is non
empty
V166
()
V167
()
V168
()
set
proj2
.
|[
(
-
1
)
,
0
]|
is
complex
ext-real
real
Element
of
REAL
{
(
proj2
.
|[
(
-
1
)
,
0
]|
)
}
is non
empty
V166
()
V167
()
V168
()
Element
of
bool
REAL
{
(
|[
(
-
1
)
,
0
]|
`2
)
}
is non
empty
V166
()
V167
()
V168
()
Element
of
bool
REAL
|[
(
|[
(
-
1
)
,
0
]|
`1
)
,
(
|[
(
-
1
)
,
0
]|
`2
)
]|
is
Relation-like
Function-like
V49
(2)
V50
()
V156
()
V157
()
V158
()
Element
of the
carrier
of
(
TOP-REAL
2
)
C
is
functional
proper
closed
compact
bounded
Element
of
bool
the
carrier
of
(
TOP-REAL
2
)
E-min
C
is
Relation-like
Function-like
V49
(2)
V50
()
V156
()
V157
()
V158
()
Element
of the
carrier
of
(
TOP-REAL
2
)
E-bound
C
is
complex
ext-real
real
Element
of
REAL
(
TOP-REAL
2
)
|
C
is
strict
TopSpace-like
T_0
T_1
T_2
SubSpace
of
TOP-REAL
2
proj1
|
C
is
Relation-like
C
-defined
the
carrier
of
(
TOP-REAL
2
)
-defined
the
carrier
of
(
(
TOP-REAL
2
)
|
C
)
-defined
REAL
-valued
Function-like
total
quasi_total
V156
()
V157
()
V158
()
continuous
Element
of
bool
[:
the
carrier
of
(
(
TOP-REAL
2
)
|
C
)
,
REAL
:]
the
carrier
of
(
(
TOP-REAL
2
)
|
C
)
is
set
[:
the
carrier
of
(
(
TOP-REAL
2
)
|
C
)
,
REAL
:]
is
Relation-like
V156
()
V157
()
V158
()
set
bool
[:
the
carrier
of
(
(
TOP-REAL
2
)
|
C
)
,
REAL
:]
is non
empty
set
upper_bound
(
proj1
|
C
)
is
complex
ext-real
real
Element
of
REAL
(
proj1
|
C
)
.:
the
carrier
of
(
(
TOP-REAL
2
)
|
C
)
is
V166
()
V167
()
V168
()
Element
of
bool
REAL
K662
(
(
(
proj1
|
C
)
.:
the
carrier
of
(
(
TOP-REAL
2
)
|
C
)
)
) is
complex
ext-real
real
Element
of
REAL
E-most
C
is
functional
Element
of
bool
the
carrier
of
(
TOP-REAL
2
)
SE-corner
C
is
Relation-like
Function-like
V49
(2)
V50
()
V156
()
V157
()
V158
()
Element
of the
carrier
of
(
TOP-REAL
2
)
S-bound
C
is
complex
ext-real
real
Element
of
REAL
proj2
|
C
is
Relation-like
C
-defined
the
carrier
of
(
TOP-REAL
2
)
-defined
the
carrier
of
(
(
TOP-REAL
2
)
|
C
)
-defined
REAL
-valued
Function-like
total
quasi_total
V156
()
V157
()
V158
()
continuous
Element
of
bool
[:
the
carrier
of
(
(
TOP-REAL
2
)
|
C
)
,
REAL
:]
lower_bound
(
proj2
|
C
)
is
complex
ext-real
real
Element
of
REAL
(
proj2
|
C
)
.:
the
carrier
of
(
(
TOP-REAL
2
)
|
C
)
is
V166
()
V167
()
V168
()
Element
of
bool
REAL
K663
(
(
(
proj2
|
C
)
.:
the
carrier
of
(
(
TOP-REAL
2
)
|
C
)
)
) is
complex
ext-real
real
Element
of
REAL
|[
(
E-bound
C
)
,
(
S-bound
C
)
]|
is
Relation-like
Function-like
V49
(2)
V50
()
V156
()
V157
()
V158
()
Element
of the
carrier
of
(
TOP-REAL
2
)
NE-corner
C
is
Relation-like
Function-like
V49
(2)
V50
()
V156
()
V157
()
V158
()
Element
of the
carrier
of
(
TOP-REAL
2
)
N-bound
C
is
complex
ext-real
real
Element
of
REAL
upper_bound
(
proj2
|
C
)
is
complex
ext-real
real
Element
of
REAL
K662
(
(
(
proj2
|
C
)
.:
the
carrier
of
(
(
TOP-REAL
2
)
|
C
)
)
) is
complex
ext-real
real
Element
of
REAL
|[
(
E-bound
C
)
,
(
N-bound
C
)
]|
is
Relation-like
Function-like
V49
(2)
V50
()
V156
()
V157
()
V158
()
Element
of the
carrier
of
(
TOP-REAL
2
)
LSeg
(
(
SE-corner
C
)
,
(
NE-corner
C
)
) is
functional
proper
closed
closed
boundary
nowhere_dense
connected
compact
compact
bounded
bounded
vertical
Element
of
bool
the
carrier
of
(
TOP-REAL
2
)
{
(
(
(
1
-
b
1
)
*
(
SE-corner
C
)
)
+
(
b
1
*
(
NE-corner
C
)
)
)
where
b
1
is
complex
ext-real
real
Element
of
REAL
: (
0
<=
b
1
&
b
1
<=
1 )
}
is
set
(
LSeg
(
(
SE-corner
C
)
,
(
NE-corner
C
)
)
)
/\
C
is
functional
proper
closed
compact
bounded
Element
of
bool
the
carrier
of
(
TOP-REAL
2
)
(
TOP-REAL
2
)
|
(
E-most
C
)
is
strict
TopSpace-like
T_0
T_1
T_2
SubSpace
of
TOP-REAL
2
proj2
|
(
E-most
C
)
is
Relation-like
E-most
C
-defined
the
carrier
of
(
TOP-REAL
2
)
-defined
the
carrier
of
(
(
TOP-REAL
2
)
|
(
E-most
C
)
)
-defined
REAL
-valued
Function-like
total
quasi_total
V156
()
V157
()
V158
()
continuous
Element
of
bool
[:
the
carrier
of
(
(
TOP-REAL
2
)
|
(
E-most
C
)
)
,
REAL
:]
the
carrier
of
(
(
TOP-REAL
2
)
|
(
E-most
C
)
)
is
set
[:
the
carrier
of
(
(
TOP-REAL
2
)
|
(
E-most
C
)
)
,
REAL
:]
is
Relation-like
V156
()
V157
()
V158
()
set
bool
[:
the
carrier
of
(
(
TOP-REAL
2
)
|
(
E-most
C
)
)
,
REAL
:]
is non
empty
set
lower_bound
(
proj2
|
(
E-most
C
)
)
is
complex
ext-real
real
Element
of
REAL
(
proj2
|
(
E-most
C
)
)
.:
the
carrier
of
(
(
TOP-REAL
2
)
|
(
E-most
C
)
)
is
V166
()
V167
()
V168
()
Element
of
bool
REAL
K663
(
(
(
proj2
|
(
E-most
C
)
)
.:
the
carrier
of
(
(
TOP-REAL
2
)
|
(
E-most
C
)
)
)
) is
complex
ext-real
real
Element
of
REAL
|[
(
E-bound
C
)
,
(
lower_bound
(
proj2
|
(
E-most
C
)
)
)
]|
is
Relation-like
Function-like
V49
(2)
V50
()
V156
()
V157
()
V158
()
Element
of the
carrier
of
(
TOP-REAL
2
)
E-max
C
is
Relation-like
Function-like
V49
(2)
V50
()
V156
()
V157
()
V158
()
Element
of the
carrier
of
(
TOP-REAL
2
)
upper_bound
(
proj2
|
(
E-most
C
)
)
is
complex
ext-real
real
Element
of
REAL
K662
(
(
(
proj2
|
(
E-most
C
)
)
.:
the
carrier
of
(
(
TOP-REAL
2
)
|
(
E-most
C
)
)
)
) is
complex
ext-real
real
Element
of
REAL
|[
(
E-bound
C
)
,
(
upper_bound
(
proj2
|
(
E-most
C
)
)
)
]|
is
Relation-like
Function-like
V49
(2)
V50
()
V156
()
V157
()
V158
()
Element
of the
carrier
of
(
TOP-REAL
2
)
dom
(
proj2
|
(
E-most
C
)
)
is
functional
Element
of
bool
(
E-most
C
)
bool
(
E-most
C
)
is non
empty
set
Im
(
(
proj2
|
(
E-most
C
)
)
,
|[
1,
0
]|
) is
V166
()
V167
()
V168
()
set
{
|[
1,
0
]|
}
is
functional
non
empty
set
(
proj2
|
(
E-most
C
)
)
.:
{
|[
1,
0
]|
}
is
V166
()
V167
()
V168
()
set
(
proj2
|
(
E-most
C
)
)
.
|[
1,
0
]|
is
complex
ext-real
real
set
{
(
(
proj2
|
(
E-most
C
)
)
.
|[
1,
0
]|
)
}
is non
empty
V166
()
V167
()
V168
()
set
proj2
.
|[
1,
0
]|
is
complex
ext-real
real
Element
of
REAL
{
(
proj2
.
|[
1,
0
]|
)
}
is non
empty
V166
()
V167
()
V168
()
Element
of
bool
REAL
{
(
|[
1,
0
]|
`2
)
}
is non
empty
V166
()
V167
()
V168
()
Element
of
bool
REAL
|[
(
|[
1,
0
]|
`1
)
,
(
|[
1,
0
]|
`2
)
]|
is
Relation-like
Function-like
V49
(2)
V50
()
V156
()
V157
()
V158
()
Element
of the
carrier
of
(
TOP-REAL
2
)
C
is
functional
Element
of
bool
the
carrier
of
(
TOP-REAL
2
)
W-bound
C
is
complex
ext-real
real
Element
of
REAL
(
TOP-REAL
2
)
|
C
is
strict
TopSpace-like
T_0
T_1
T_2
SubSpace
of
TOP-REAL
2
proj1
|
C
is
Relation-like
C
-defined
the
carrier
of
(
TOP-REAL
2
)
-defined
the
carrier
of
(
(
TOP-REAL
2
)
|
C
)
-defined
REAL
-valued
Function-like
total
quasi_total
V156
()
V157
()
V158
()
continuous
Element
of
bool
[:
the
carrier
of
(
(
TOP-REAL
2
)
|
C
)
,
REAL
:]
the
carrier
of
(
(
TOP-REAL
2
)
|
C
)
is
set
[:
the
carrier
of
(
(
TOP-REAL
2
)
|
C
)
,
REAL
:]
is
Relation-like
V156
()
V157
()
V158
()
set
bool
[:
the
carrier
of
(
(
TOP-REAL
2
)
|
C
)
,
REAL
:]
is non
empty
set
lower_bound
(
proj1
|
C
)
is
complex
ext-real
real
Element
of
REAL
(
proj1
|
C
)
.:
the
carrier
of
(
(
TOP-REAL
2
)
|
C
)
is
V166
()
V167
()
V168
()
Element
of
bool
REAL
K663
(
(
(
proj1
|
C
)
.:
the
carrier
of
(
(
TOP-REAL
2
)
|
C
)
)
) is
complex
ext-real
real
Element
of
REAL
E-bound
C
is
complex
ext-real
real
Element
of
REAL
upper_bound
(
proj1
|
C
)
is
complex
ext-real
real
Element
of
REAL
K662
(
(
(
proj1
|
C
)
.:
the
carrier
of
(
(
TOP-REAL
2
)
|
C
)
)
) is
complex
ext-real
real
Element
of
REAL
(
W-bound
C
)
+
(
E-bound
C
)
is
complex
ext-real
real
Element
of
REAL
(
(
W-bound
C
)
+
(
E-bound
C
)
)
/
2 is
complex
ext-real
real
Element
of
REAL
C
is
functional
Element
of
bool
the
carrier
of
(
TOP-REAL
2
)
W-bound
C
is
complex
ext-real
real
Element
of
REAL
(
TOP-REAL
2
)
|
C
is
strict
TopSpace-like
T_0
T_1
T_2
SubSpace
of
TOP-REAL
2
proj1
|
C
is
Relation-like
C
-defined
the
carrier
of
(
TOP-REAL
2
)
-defined
the
carrier
of
(
(
TOP-REAL
2
)
|
C
)
-defined
REAL
-valued
Function-like
total
quasi_total
V156
()
V157
()
V158
()
continuous
Element
of
bool
[:
the
carrier
of
(
(
TOP-REAL
2
)
|
C
)
,
REAL
:]
the
carrier
of
(
(
TOP-REAL
2
)
|
C
)
is
set
[:
the
carrier
of
(
(
TOP-REAL
2
)
|
C
)
,
REAL
:]
is
Relation-like
V156
()
V157
()
V158
()
set
bool
[:
the
carrier
of
(
(
TOP-REAL
2
)
|
C
)
,
REAL
:]
is non
empty
set
lower_bound
(
proj1
|
C
)
is
complex
ext-real
real
Element
of
REAL
(
proj1
|
C
)
.:
the
carrier
of
(
(
TOP-REAL
2
)
|
C
)
is
V166
()
V167
()
V168
()
Element
of
bool
REAL
K663
(
(
(
proj1
|
C
)
.:
the
carrier
of
(
(
TOP-REAL
2
)
|
C
)
)
) is
complex
ext-real
real
Element
of
REAL
E-bound
C
is
complex
ext-real
real
Element
of
REAL
upper_bound
(
proj1
|
C
)
is
complex
ext-real
real
Element
of
REAL
K662
(
(
(
proj1
|
C
)
.:
the
carrier
of
(
(
TOP-REAL
2
)
|
C
)
)
) is
complex
ext-real
real
Element
of
REAL
(
W-bound
C
)
+
(
E-bound
C
)
is
complex
ext-real
real
Element
of
REAL
(
(
W-bound
C
)
+
(
E-bound
C
)
)
/
2 is
complex
ext-real
real
Element
of
REAL
C
is
functional
Element
of
bool
the
carrier
of
(
TOP-REAL
2
)
UMP
C
is
Relation-like
Function-like
V49
(2)
V50
()
V156
()
V157
()
V158
()
Element
of the
carrier
of
(
TOP-REAL
2
)
E-bound
C
is
complex
ext-real
real
Element
of
REAL
(
TOP-REAL
2
)
|
C
is
strict
TopSpace-like
T_0
T_1
T_2
SubSpace
of
TOP-REAL
2
proj1
|
C
is
Relation-like
C
-defined
the
carrier
of
(
TOP-REAL
2
)
-defined
the
carrier
of
(
(
TOP-REAL
2
)
|
C
)
-defined
REAL
-valued
Function-like
total
quasi_total
V156
()
V157
()
V158
()
continuous
Element
of
bool
[:
the
carrier
of
(
(
TOP-REAL
2
)
|
C
)
,
REAL
:]
the
carrier
of
(
(
TOP-REAL
2
)
|
C
)
is
set
[:
the
carrier
of
(
(
TOP-REAL
2
)
|
C
)
,
REAL
:]
is
Relation-like
V156
()
V157
()
V158
()
set
bool
[:
the
carrier
of
(
(
TOP-REAL
2
)
|
C
)
,
REAL
:]
is non
empty
set
upper_bound
(
proj1
|
C
)
is
complex
ext-real
real
Element
of
REAL
(
proj1
|
C
)
.:
the
carrier
of
(
(
TOP-REAL
2
)
|
C
)
is
V166
()
V167
()
V168
()
Element
of
bool
REAL
K662
(
(
(
proj1
|
C
)
.:
the
carrier
of
(
(
TOP-REAL
2
)
|
C
)
)
) is
complex
ext-real
real
Element
of
REAL
W-bound
C
is
complex
ext-real
real
Element
of
REAL
lower_bound
(
proj1
|
C
)
is
complex
ext-real
real
Element
of
REAL
K663
(
(
(
proj1
|
C
)
.:
the
carrier
of
(
(
TOP-REAL
2
)
|
C
)
)
) is
complex
ext-real
real
Element
of
REAL
(
E-bound
C
)
+
(
W-bound
C
)
is
complex
ext-real
real
Element
of
REAL
(
(
E-bound
C
)
+
(
W-bound
C
)
)
/
2 is
complex
ext-real
real
Element
of
REAL
Vertical_Line
(
(
(
E-bound
C
)
+
(
W-bound
C
)
)
/
2
)
is
functional
Element
of
bool
the
carrier
of
(
TOP-REAL
2
)
C
/\
(
Vertical_Line
(
(
(
E-bound
C
)
+
(
W-bound
C
)
)
/
2
)
)
is
functional
Element
of
bool
the
carrier
of
(
TOP-REAL
2
)
proj2
.:
(
C
/\
(
Vertical_Line
(
(
(
E-bound
C
)
+
(
W-bound
C
)
)
/
2
)
)
)
is
V166
()
V167
()
V168
()
Element
of
bool
REAL
K662
(
(
proj2
.:
(
C
/\
(
Vertical_Line
(
(
(
E-bound
C
)
+
(
W-bound
C
)
)
/
2
)
)
)
)
) is
complex
ext-real
real
Element
of
REAL
|[
(
(
(
E-bound
C
)
+
(
W-bound
C
)
)
/
2
)
,
K662
(
(
proj2
.:
(
C
/\
(
Vertical_Line
(
(
(
E-bound
C
)
+
(
W-bound
C
)
)
/
2
)
)
)
)
)
]|
is
Relation-like
Function-like
V49
(2)
V50
()
V156
()
V157
()
V158
()
Element
of the
carrier
of
(
TOP-REAL
2
)
LSeg
(
|[
0
,3
]|
,
(
UMP
C
)
) is
functional
proper
closed
closed
boundary
nowhere_dense
connected
compact
compact
bounded
bounded
Element
of
bool
the
carrier
of
(
TOP-REAL
2
)
{
(
(
(
1
-
b
1
)
*
|[
0
,3
]|
)
+
(
b
1
*
(
UMP
C
)
)
)
where
b
1
is
complex
ext-real
real
Element
of
REAL
: (
0
<=
b
1
&
b
1
<=
1 )
}
is
set
(
W-bound
C
)
+
(
E-bound
C
)
is
complex
ext-real
real
Element
of
REAL
(
(
W-bound
C
)
+
(
E-bound
C
)
)
/
2 is
complex
ext-real
real
Element
of
REAL
(
UMP
C
)
`1
is
complex
ext-real
real
Element
of
REAL
C
is
functional
Element
of
bool
the
carrier
of
(
TOP-REAL
2
)
LMP
C
is
Relation-like
Function-like
V49
(2)
V50
()
V156
()
V157
()
V158
()
Element
of the
carrier
of
(
TOP-REAL
2
)
E-bound
C
is
complex
ext-real
real
Element
of
REAL
(
TOP-REAL
2
)
|
C
is
strict
TopSpace-like
T_0
T_1
T_2
SubSpace
of
TOP-REAL
2
proj1
|
C
is
Relation-like
C
-defined
the
carrier
of
(
TOP-REAL
2
)
-defined
the
carrier
of
(
(
TOP-REAL
2
)
|
C
)
-defined
REAL
-valued
Function-like
total
quasi_total
V156
()
V157
()
V158
()
continuous
Element
of
bool
[:
the
carrier
of
(
(
TOP-REAL
2
)
|
C
)
,
REAL
:]
the
carrier
of
(
(
TOP-REAL
2
)
|
C
)
is
set
[:
the
carrier
of
(
(
TOP-REAL
2
)
|
C
)
,
REAL
:]
is
Relation-like
V156
()
V157
()
V158
()
set
bool
[:
the
carrier
of
(
(
TOP-REAL
2
)
|
C
)
,
REAL
:]
is non
empty
set
upper_bound
(
proj1
|
C
)
is
complex
ext-real
real
Element
of
REAL
(
proj1
|
C
)
.:
the
carrier
of
(
(
TOP-REAL
2
)
|
C
)
is
V166
()
V167
()
V168
()
Element
of
bool
REAL
K662
(
(
(
proj1
|
C
)
.:
the
carrier
of
(
(
TOP-REAL
2
)
|
C
)
)
) is
complex
ext-real
real
Element
of
REAL
W-bound
C
is
complex
ext-real
real
Element
of
REAL
lower_bound
(
proj1
|
C
)
is
complex
ext-real
real
Element
of
REAL
K663
(
(
(
proj1
|
C
)
.:
the
carrier
of
(
(
TOP-REAL
2
)
|
C
)
)
) is
complex
ext-real
real
Element
of
REAL
(
E-bound
C
)
+
(
W-bound
C
)
is
complex
ext-real
real
Element
of
REAL
(
(
E-bound
C
)
+
(
W-bound
C
)
)
/
2 is
complex
ext-real
real
Element
of
REAL
Vertical_Line
(
(
(
E-bound
C
)
+
(
W-bound
C
)
)
/
2
)
is
functional
Element
of
bool
the
carrier
of
(
TOP-REAL
2
)
C
/\
(
Vertical_Line
(
(
(
E-bound
C
)
+
(
W-bound
C
)
)
/
2
)
)
is
functional
Element
of
bool
the
carrier
of
(
TOP-REAL
2
)
proj2
.:
(
C
/\
(
Vertical_Line
(
(
(
E-bound
C
)
+
(
W-bound
C
)
)
/
2
)
)
)
is
V166
()
V167
()
V168
()
Element
of
bool
REAL
K663
(
(
proj2
.:
(
C
/\
(
Vertical_Line
(
(
(
E-bound
C
)
+
(
W-bound
C
)
)
/
2
)
)
)
)
) is
complex
ext-real
real
Element
of
REAL
|[
(
(
(
E-bound
C
)
+
(
W-bound
C
)
)
/
2
)
,
K663
(
(
proj2
.:
(
C
/\
(
Vertical_Line
(
(
(
E-bound
C
)
+
(
W-bound
C
)
)
/
2
)
)
)
)
)
]|
is
Relation-like
Function-like
V49
(2)
V50
()
V156
()
V157
()
V158
()
Element
of the
carrier
of
(
TOP-REAL
2
)
LSeg
(
(
LMP
C
)
,
|[
0
,
(
-
3
)
]|
) is
functional
proper
closed
closed
boundary
nowhere_dense
connected
compact
compact
bounded
bounded
Element
of
bool
the
carrier
of
(
TOP-REAL
2
)
{
(
(
(
1
-
b
1
)
*
(
LMP
C
)
)
+
(
b
1
*
|[
0
,
(
-
3
)
]|
)
)
where
b
1
is
complex
ext-real
real
Element
of
REAL
: (
0
<=
b
1
&
b
1
<=
1 )
}
is
set
(
W-bound
C
)
+
(
E-bound
C
)
is
complex
ext-real
real
Element
of
REAL
(
(
W-bound
C
)
+
(
E-bound
C
)
)
/
2 is
complex
ext-real
real
Element
of
REAL
(
LMP
C
)
`1
is
complex
ext-real
real
Element
of
REAL
C
is
Relation-like
Function-like
V49
(2)
V50
()
V156
()
V157
()
V158
()
Element
of the
carrier
of
(
TOP-REAL
2
)
C
`2
is
complex
ext-real
real
Element
of
REAL
P
is
functional
Element
of
bool
the
carrier
of
(
TOP-REAL
2
)
P
/\
(
rectangle
(
(
-
1
)
,1,
(
-
3
)
,3)
)
is
functional
Element
of
bool
the
carrier
of
(
TOP-REAL
2
)
U
is
Relation-like
Function-like
V49
(2)
V50
()
V156
()
V157
()
V158
()
Element
of the
carrier
of
(
TOP-REAL
2
)
U
`1
is
complex
ext-real
real
Element
of
REAL
U
`2
is
complex
ext-real
real
Element
of
REAL
U
is
Relation-like
Function-like
V49
(2)
V50
()
V156
()
V157
()
V158
()
Element
of the
carrier
of
(
TOP-REAL
2
)
U
`1
is
complex
ext-real
real
Element
of
REAL
U
`2
is
complex
ext-real
real
Element
of
REAL
C
is
Relation-like
Function-like
V49
(2)
V50
()
V156
()
V157
()
V158
()
Element
of the
carrier
of
(
TOP-REAL
2
)
C
`2
is
complex
ext-real
real
Element
of
REAL
P
is
functional
Element
of
bool
the
carrier
of
(
TOP-REAL
2
)
P
/\
(
rectangle
(
(
-
1
)
,1,
(
-
3
)
,3)
)
is
functional
Element
of
bool
the
carrier
of
(
TOP-REAL
2
)
U
is
Relation-like
Function-like
V49
(2)
V50
()
V156
()
V157
()
V158
()
Element
of the
carrier
of
(
TOP-REAL
2
)
U
`1
is
complex
ext-real
real
Element
of
REAL
U
`2
is
complex
ext-real
real
Element
of
REAL
U
is
Relation-like
Function-like
V49
(2)
V50
()
V156
()
V157
()
V158
()
Element
of the
carrier
of
(
TOP-REAL
2
)
U
`1
is
complex
ext-real
real
Element
of
REAL
U
`2
is
complex
ext-real
real
Element
of
REAL
C
is
Relation-like
Function-like
V49
(2)
V50
()
V156
()
V157
()
V158
()
Element
of the
carrier
of
(
TOP-REAL
2
)
C
`2
is
complex
ext-real
real
Element
of
REAL
P
is
functional
non
empty
proper
closed
compact
bounded
with_the_max_arc
Element
of
bool
the
carrier
of
(
TOP-REAL
2
)
UMP
P
is
Relation-like
Function-like
V49
(2)
V50
()
V156
()
V157
()
V158
()
Element
of the
carrier
of
(
TOP-REAL
2
)
E-bound
P
is
complex
ext-real
real
Element
of
REAL
(
TOP-REAL
2
)
|
P
is non
empty
strict
TopSpace-like
T_0
T_1
T_2
V82
()
normal
T_3
T_4
compact
V246
()
pseudocompact
SubSpace
of
TOP-REAL
2
proj1
|
P
is
Relation-like
P
-defined
the
carrier
of
(
TOP-REAL
2
)
-defined
the
carrier
of
(
(
TOP-REAL
2
)
|
P
)
-defined
REAL
-valued
Function-like
non
empty
total
quasi_total
V156
()
V157
()
V158
()
continuous
Element
of
bool
[:
the
carrier
of
(
(
TOP-REAL
2
)
|
P
)
,
REAL
:]
the
carrier
of
(
(
TOP-REAL
2
)
|
P
)
is non
empty
set
[:
the
carrier
of
(
(
TOP-REAL
2
)
|
P
)
,
REAL
:]
is
Relation-like
non
empty
V156
()
V157
()
V158
()
set
bool
[:
the
carrier
of
(
(
TOP-REAL
2
)
|
P
)
,
REAL
:]
is non
empty
set
upper_bound
(
proj1
|
P
)
is
complex
ext-real
real
Element
of
REAL
(
proj1
|
P
)
.:
the
carrier
of
(
(
TOP-REAL
2
)
|
P
)
is non
empty
V166
()
V167
()
V168
()
Element
of
bool
REAL
K662
(
(
(
proj1
|
P
)
.:
the
carrier
of
(
(
TOP-REAL
2
)
|
P
)
)
) is
complex
ext-real
real
Element
of
REAL
W-bound
P
is
complex
ext-real
real
Element
of
REAL
lower_bound
(
proj1
|
P
)
is
complex
ext-real
real
Element
of
REAL
K663
(
(
(
proj1
|
P
)
.:
the
carrier
of
(
(
TOP-REAL
2
)
|
P
)
)
) is
complex
ext-real
real
Element
of
REAL
(
E-bound
P
)
+
(
W-bound
P
)
is
complex
ext-real
real
Element
of
REAL
(
(
E-bound
P
)
+
(
W-bound
P
)
)
/
2 is
complex
ext-real
real
Element
of
REAL
Vertical_Line
(
(
(
E-bound
P
)
+
(
W-bound
P
)
)
/
2
)
is
functional
Element
of
bool
the
carrier
of
(
TOP-REAL
2
)
P
/\
(
Vertical_Line
(
(
(
E-bound
P
)
+
(
W-bound
P
)
)
/
2
)
)
is
functional
Element
of
bool
the
carrier
of
(
TOP-REAL
2
)
proj2
.:
(
P
/\
(
Vertical_Line
(
(
(
E-bound
P
)
+
(
W-bound
P
)
)
/
2
)
)
)
is
V166
()
V167
()
V168
()
Element
of
bool
REAL
K662
(
(
proj2
.:
(
P
/\
(
Vertical_Line
(
(
(
E-bound
P
)
+
(
W-bound
P
)
)
/
2
)
)
)
)
) is
complex
ext-real
real
Element
of
REAL
|[
(
(
(
E-bound
P
)
+
(
W-bound
P
)
)
/
2
)
,
K662
(
(
proj2
.:
(
P
/\
(
Vertical_Line
(
(
(
E-bound
P
)
+
(
W-bound
P
)
)
/
2
)
)
)
)
)
]|
is
Relation-like
Function-like
V49
(2)
V50
()
V156
()
V157
()
V158
()
Element
of the
carrier
of
(
TOP-REAL
2
)
LSeg
(
|[
0
,3
]|
,
(
UMP
P
)
) is
functional
proper
closed
closed
boundary
nowhere_dense
connected
compact
compact
bounded
bounded
Element
of
bool
the
carrier
of
(
TOP-REAL
2
)
{
(
(
(
1
-
b
1
)
*
|[
0
,3
]|
)
+
(
b
1
*
(
UMP
P
)
)
)
where
b
1
is
complex
ext-real
real
Element
of
REAL
: (
0
<=
b
1
&
b
1
<=
1 )
}
is
set
(
UMP
P
)
`2
is
complex
ext-real
real
Element
of
REAL
|[
(
|[
0
,3
]|
`1
)
,
(
|[
0
,3
]|
`2
)
]|
is
Relation-like
Function-like
V49
(2)
V50
()
V156
()
V157
()
V158
()
Element
of the
carrier
of
(
TOP-REAL
2
)
(
UMP
P
)
`1
is
complex
ext-real
real
Element
of
REAL
|[
(
(
UMP
P
)
`1
)
,
(
(
UMP
P
)
`2
)
]|
is
Relation-like
Function-like
V49
(2)
V50
()
V156
()
V157
()
V158
()
Element
of the
carrier
of
(
TOP-REAL
2
)
C
is
Relation-like
Function-like
V49
(2)
V50
()
V156
()
V157
()
V158
()
Element
of the
carrier
of
(
TOP-REAL
2
)
C
`2
is
complex
ext-real
real
Element
of
REAL
P
is
functional
non
empty
proper
closed
compact
bounded
with_the_max_arc
Element
of
bool
the
carrier
of
(
TOP-REAL
2
)
LMP
P
is
Relation-like
Function-like
V49
(2)
V50
()
V156
()
V157
()
V158
()
Element
of the
carrier
of
(
TOP-REAL
2
)
E-bound
P
is
complex
ext-real
real
Element
of
REAL
(
TOP-REAL
2
)
|
P
is non
empty
strict
TopSpace-like
T_0
T_1
T_2
V82
()
normal
T_3
T_4
compact
V246
()
pseudocompact
SubSpace
of
TOP-REAL
2
proj1
|
P
is
Relation-like
P
-defined
the
carrier
of
(
TOP-REAL
2
)
-defined
the
carrier
of
(
(
TOP-REAL
2
)
|
P
)
-defined
REAL
-valued
Function-like
non
empty
total
quasi_total
V156
()
V157
()
V158
()
continuous
Element
of
bool
[:
the
carrier
of
(
(
TOP-REAL
2
)
|
P
)
,
REAL
:]
the
carrier
of
(
(
TOP-REAL
2
)
|
P
)
is non
empty
set
[:
the
carrier
of
(
(
TOP-REAL
2
)
|
P
)
,
REAL
:]
is
Relation-like
non
empty
V156
()
V157
()
V158
()
set
bool
[:
the
carrier
of
(
(
TOP-REAL
2
)
|
P
)
,
REAL
:]
is non
empty
set
upper_bound
(
proj1
|
P
)
is
complex
ext-real
real
Element
of
REAL
(
proj1
|
P
)
.:
the
carrier
of
(
(
TOP-REAL
2
)
|
P
)
is non
empty
V166
()
V167
()
V168
()
Element
of
bool
REAL
K662
(
(
(
proj1
|
P
)
.:
the
carrier
of
(
(
TOP-REAL
2
)
|
P
)
)
) is
complex
ext-real
real
Element
of
REAL
W-bound
P
is
complex
ext-real
real
Element
of
REAL
lower_bound
(
proj1
|
P
)
is
complex
ext-real
real
Element
of
REAL
K663
(
(
(
proj1
|
P
)
.:
the
carrier
of
(
(
TOP-REAL
2
)
|
P
)
)
) is
complex
ext-real
real
Element
of
REAL
(
E-bound
P
)
+
(
W-bound
P
)
is
complex
ext-real
real
Element
of
REAL
(
(
E-bound
P
)
+
(
W-bound
P
)
)
/
2 is
complex
ext-real
real
Element
of
REAL
Vertical_Line
(
(
(
E-bound
P
)
+
(
W-bound
P
)
)
/
2
)
is
functional
Element
of
bool
the
carrier
of
(
TOP-REAL
2
)
P
/\
(
Vertical_Line
(
(
(
E-bound
P
)
+
(
W-bound
P
)
)
/
2
)
)
is
functional
Element
of
bool
the
carrier
of
(
TOP-REAL
2
)
proj2
.:
(
P
/\
(
Vertical_Line
(
(
(
E-bound
P
)
+
(
W-bound
P
)
)
/
2
)
)
)
is
V166
()
V167
()
V168
()
Element
of
bool
REAL
K663
(
(
proj2
.:
(
P
/\
(
Vertical_Line
(
(
(
E-bound
P
)
+
(
W-bound
P
)
)
/
2
)
)
)
)
) is
complex
ext-real
real
Element
of
REAL
|[
(
(
(
E-bound
P
)
+
(
W-bound
P
)
)
/
2
)
,
K663
(
(
proj2
.:
(
P
/\
(
Vertical_Line
(
(
(
E-bound
P
)
+
(
W-bound
P
)
)
/
2
)
)
)
)
)
]|
is
Relation-like
Function-like
V49
(2)
V50
()
V156
()
V157
()
V158
()
Element
of the
carrier
of
(
TOP-REAL
2
)
LSeg
(
(
LMP
P
)
,
|[
0
,
(
-
3
)
]|
) is
functional
proper
closed
closed
boundary
nowhere_dense
connected
compact
compact
bounded
bounded
Element
of
bool
the
carrier
of
(
TOP-REAL
2
)
{
(
(
(
1
-
b
1
)
*
(
LMP
P
)
)
+
(
b
1
*
|[
0
,
(
-
3
)
]|
)
)
where
b
1
is
complex
ext-real
real
Element
of
REAL
: (
0
<=
b
1
&
b
1
<=
1 )
}
is
set
(
LMP
P
)
`2
is
complex
ext-real
real
Element
of
REAL
|[
(
|[
0
,
(
-
3
)
]|
`1
)
,
(
|[
0
,
(
-
3
)
]|
`2
)
]|
is
Relation-like
Function-like
V49
(2)
V50
()
V156
()
V157
()
V158
()
Element
of the
carrier
of
(
TOP-REAL
2
)
(
LMP
P
)
`1
is
complex
ext-real
real
Element
of
REAL
|[
(
(
LMP
P
)
`1
)
,
(
(
LMP
P
)
`2
)
]|
is
Relation-like
Function-like
V49
(2)
V50
()
V156
()
V157
()
V158
()
Element
of the
carrier
of
(
TOP-REAL
2
)
C
is
functional
non
empty
proper
closed
compact
bounded
with_the_max_arc
Element
of
bool
the
carrier
of
(
TOP-REAL
2
)
UMP
C
is
Relation-like
Function-like
V49
(2)
V50
()
V156
()
V157
()
V158
()
Element
of the
carrier
of
(
TOP-REAL
2
)
E-bound
C
is
complex
ext-real
real
Element
of
REAL
(
TOP-REAL
2
)
|
C
is non
empty
strict
TopSpace-like
T_0
T_1
T_2
V82
()
normal
T_3
T_4
compact
V246
()
pseudocompact
SubSpace
of
TOP-REAL
2
proj1
|
C
is
Relation-like
C
-defined
the
carrier
of
(
TOP-REAL
2
)
-defined
the
carrier
of
(
(
TOP-REAL
2
)
|
C
)
-defined
REAL
-valued
Function-like
non
empty
total
quasi_total
V156
()
V157
()
V158
()
continuous
Element
of
bool
[:
the
carrier
of
(
(
TOP-REAL
2
)
|
C
)
,
REAL
:]
the
carrier
of
(
(
TOP-REAL
2
)
|
C
)
is non
empty
set
[:
the
carrier
of
(
(
TOP-REAL
2
)
|
C
)
,
REAL
:]
is
Relation-like
non
empty
V156
()
V157
()
V158
()
set
bool
[:
the
carrier
of
(
(
TOP-REAL
2
)
|
C
)
,
REAL
:]
is non
empty
set
upper_bound
(
proj1
|
C
)
is
complex
ext-real
real
Element
of
REAL
(
proj1
|
C
)
.:
the
carrier
of
(
(
TOP-REAL
2
)
|
C
)
is non
empty
V166
()
V167
()
V168
()
Element
of
bool
REAL
K662
(
(
(
proj1
|
C
)
.:
the
carrier
of
(
(
TOP-REAL
2
)
|
C
)
)
) is
complex
ext-real
real
Element
of
REAL
W-bound
C
is
complex
ext-real
real
Element
of
REAL
lower_bound
(
proj1
|
C
)
is
complex
ext-real
real
Element
of
REAL
K663
(
(
(
proj1
|
C
)
.:
the
carrier
of
(
(
TOP-REAL
2
)
|
C
)
)
) is
complex
ext-real
real
Element
of
REAL
(
E-bound
C
)
+
(
W-bound
C
)
is
complex
ext-real
real
Element
of
REAL
(
(
E-bound
C
)
+
(
W-bound
C
)
)
/
2 is
complex
ext-real
real
Element
of
REAL
Vertical_Line
(
(
(
E-bound
C
)
+
(
W-bound
C
)
)
/
2
)
is
functional
Element
of
bool
the
carrier
of
(
TOP-REAL
2
)
C
/\
(
Vertical_Line
(
(
(
E-bound
C
)
+
(
W-bound
C
)
)
/
2
)
)
is
functional
Element
of
bool
the
carrier
of
(
TOP-REAL
2
)
proj2
.:
(
C
/\
(
Vertical_Line
(
(
(
E-bound
C
)
+
(
W-bound
C
)
)
/
2
)
)
)
is
V166
()
V167
()
V168
()
Element
of
bool
REAL
K662
(
(
proj2
.:
(
C
/\
(
Vertical_Line
(
(
(
E-bound
C
)
+
(
W-bound
C
)
)
/
2
)
)
)
)
) is
complex
ext-real
real
Element
of
REAL
|[
(
(
(
E-bound
C
)
+
(
W-bound
C
)
)
/
2
)
,
K662
(
(
proj2
.:
(
C
/\
(
Vertical_Line
(
(
(
E-bound
C
)
+
(
W-bound
C
)
)
/
2
)
)
)
)
)
]|
is
Relation-like
Function-like
V49
(2)
V50
()
V156
()
V157
()
V158
()
Element
of the
carrier
of
(
TOP-REAL
2
)
LSeg
(
|[
0
,3
]|
,
(
UMP
C
)
) is
functional
proper
closed
closed
boundary
nowhere_dense
connected
compact
compact
bounded
bounded
Element
of
bool
the
carrier
of
(
TOP-REAL
2
)
{
(
(
(
1
-
b
1
)
*
|[
0
,3
]|
)
+
(
b
1
*
(
UMP
C
)
)
)
where
b
1
is
complex
ext-real
real
Element
of
REAL
: (
0
<=
b
1
&
b
1
<=
1 )
}
is
set
north_halfline
(
UMP
C
)
is
functional
non
empty
connected
convex
Element
of
bool
the
carrier
of
(
TOP-REAL
2
)
U
is
set
l
is
Relation-like
Function-like
V49
(2)
V50
()
V156
()
V157
()
V158
()
Element
of the
carrier
of
(
TOP-REAL
2
)
l
`1
is
complex
ext-real
real
Element
of
REAL
(
UMP
C
)
`1
is
complex
ext-real
real
Element
of
REAL
(
UMP
C
)
`2
is
complex
ext-real
real
Element
of
REAL
l
`2
is
complex
ext-real
real
Element
of
REAL
C
is
functional
non
empty
proper
closed
compact
bounded
with_the_max_arc
Element
of
bool
the
carrier
of
(
TOP-REAL
2
)
LMP
C
is
Relation-like
Function-like
V49
(2)
V50
()
V156
()
V157
()
V158
()
Element
of the
carrier
of
(
TOP-REAL
2
)
E-bound
C
is
complex
ext-real
real
Element
of
REAL
(
TOP-REAL
2
)
|
C
is non
empty
strict
TopSpace-like
T_0
T_1
T_2
V82
()
normal
T_3
T_4
compact
V246
()
pseudocompact
SubSpace
of
TOP-REAL
2
proj1
|
C
is
Relation-like
C
-defined
the
carrier
of
(
TOP-REAL
2
)
-defined
the
carrier
of
(
(
TOP-REAL
2
)
|
C
)
-defined
REAL
-valued
Function-like
non
empty
total
quasi_total
V156
()
V157
()
V158
()
continuous
Element
of
bool
[:
the
carrier
of
(
(
TOP-REAL
2
)
|
C
)
,
REAL
:]
the
carrier
of
(
(
TOP-REAL
2
)
|
C
)
is non
empty
set
[:
the
carrier
of
(
(
TOP-REAL
2
)
|
C
)
,
REAL
:]
is
Relation-like
non
empty
V156
()
V157
()
V158
()
set
bool
[:
the
carrier
of
(
(
TOP-REAL
2
)
|
C
)
,
REAL
:]
is non
empty
set
upper_bound
(
proj1
|
C
)
is
complex
ext-real
real
Element
of
REAL
(
proj1
|
C
)
.:
the
carrier
of
(
(
TOP-REAL
2
)
|
C
)
is non
empty
V166
()
V167
()
V168
()
Element
of
bool
REAL
K662
(
(
(
proj1
|
C
)
.:
the
carrier
of
(
(
TOP-REAL
2
)
|
C
)
)
) is
complex
ext-real
real
Element
of
REAL
W-bound
C
is
complex
ext-real
real
Element
of
REAL
lower_bound
(
proj1
|
C
)
is
complex
ext-real
real
Element
of
REAL
K663
(
(
(
proj1
|
C
)
.:
the
carrier
of
(
(
TOP-REAL
2
)
|
C
)
)
) is
complex
ext-real
real
Element
of
REAL
(
E-bound
C
)
+
(
W-bound
C
)
is
complex
ext-real
real
Element
of
REAL
(
(
E-bound
C
)
+
(
W-bound
C
)
)
/
2 is
complex
ext-real
real
Element
of
REAL
Vertical_Line
(
(
(
E-bound
C
)
+
(
W-bound
C
)
)
/
2
)
is
functional
Element
of
bool
the
carrier
of
(
TOP-REAL
2
)
C
/\
(
Vertical_Line
(
(
(
E-bound
C
)
+
(
W-bound
C
)
)
/
2
)
)
is
functional
Element
of
bool
the
carrier
of
(
TOP-REAL
2
)
proj2
.:
(
C
/\
(
Vertical_Line
(
(
(
E-bound
C
)
+
(
W-bound
C
)
)
/
2
)
)
)
is
V166
()
V167
()
V168
()
Element
of
bool
REAL
K663
(
(
proj2
.:
(
C
/\
(
Vertical_Line
(
(
(
E-bound
C
)
+
(
W-bound
C
)
)
/
2
)
)
)
)
) is
complex
ext-real
real
Element
of
REAL
|[
(
(
(
E-bound
C
)
+
(
W-bound
C
)
)
/
2
)
,
K663
(
(
proj2
.:
(
C
/\
(
Vertical_Line
(
(
(
E-bound
C
)
+
(
W-bound
C
)
)
/
2
)
)
)
)
)
]|
is
Relation-like
Function-like
V49
(2)
V50
()
V156
()
V157
()
V158
()
Element
of the
carrier
of
(
TOP-REAL
2
)
LSeg
(
(
LMP
C
)
,
|[
0
,
(
-
3
)
]|
) is
functional
proper
closed
closed
boundary
nowhere_dense
connected
compact
compact
bounded
bounded
Element
of
bool
the
carrier
of
(
TOP-REAL
2
)
{
(
(
(
1
-
b
1
)
*
(
LMP
C
)
)
+
(
b
1
*
|[
0
,
(
-
3
)
]|
)
)
where
b
1
is
complex
ext-real
real
Element
of
REAL
: (
0
<=
b
1
&
b
1
<=
1 )
}
is
set
south_halfline
(
LMP
C
)
is
functional
non
empty
connected
convex
Element
of
bool
the
carrier
of
(
TOP-REAL
2
)
U
is
set
l
is
Relation-like
Function-like
V49
(2)
V50
()
V156
()
V157
()
V158
()
Element
of the
carrier
of
(
TOP-REAL
2
)
l
`1
is
complex
ext-real
real
Element
of
REAL
(
LMP
C
)
`1
is
complex
ext-real
real
Element
of
REAL
|[
(
|[
0
,
(
-
3
)
]|
`1
)
,
(
|[
0
,
(
-
3
)
]|
`2
)
]|
is
Relation-like
Function-like
V49
(2)
V50
()
V156
()
V157
()
V158
()
Element
of the
carrier
of
(
TOP-REAL
2
)
(
LMP
C
)
`2
is
complex
ext-real
real
Element
of
REAL
|[
(
(
LMP
C
)
`1
)
,
(
(
LMP
C
)
`2
)
]|
is
Relation-like
Function-like
V49
(2)
V50
()
V156
()
V157
()
V158
()
Element
of the
carrier
of
(
TOP-REAL
2
)
l
`2
is
complex
ext-real
real
Element
of
REAL
C
is
functional
non
empty
proper
closed
connected
compact
bounded
being_simple_closed_curve
with_the_max_arc
Element
of
bool
the
carrier
of
(
TOP-REAL
2
)
UMP
C
is
Relation-like
Function-like
V49
(2)
V50
()
V156
()
V157
()
V158
()
Element
of the
carrier
of
(
TOP-REAL
2
)
E-bound
C
is
complex
ext-real
real
Element
of
REAL
(
TOP-REAL
2
)
|
C
is non
empty
strict
TopSpace-like
T_0
T_1
T_2
V82
()
normal
T_3
T_4
compact
V246
()
pseudocompact
SubSpace
of
TOP-REAL
2
proj1
|
C
is
Relation-like
C
-defined
the
carrier
of
(
TOP-REAL
2
)
-defined
the
carrier
of
(
(
TOP-REAL
2
)
|
C
)
-defined
REAL
-valued
Function-like
non
empty
total
quasi_total
V156
()
V157
()
V158
()
continuous
Element
of
bool
[:
the
carrier
of
(
(
TOP-REAL
2
)
|
C
)
,
REAL
:]
the
carrier
of
(
(
TOP-REAL
2
)
|
C
)
is non
empty
set
[:
the
carrier
of
(
(
TOP-REAL
2
)
|
C
)
,
REAL
:]
is
Relation-like
non
empty
V156
()
V157
()
V158
()
set
bool
[:
the
carrier
of
(
(
TOP-REAL
2
)
|
C
)
,
REAL
:]
is non
empty
set
upper_bound
(
proj1
|
C
)
is
complex
ext-real
real
Element
of
REAL
(
proj1
|
C
)
.:
the
carrier
of
(
(
TOP-REAL
2
)
|
C
)
is non
empty
V166
()
V167
()
V168
()
Element
of
bool
REAL
K662
(
(
(
proj1
|
C
)
.:
the
carrier
of
(
(
TOP-REAL
2
)
|
C
)
)
) is
complex
ext-real
real
Element
of
REAL
W-bound
C
is
complex
ext-real
real
Element
of
REAL
lower_bound
(
proj1
|
C
)
is
complex
ext-real
real
Element
of
REAL
K663
(
(
(
proj1
|
C
)
.:
the
carrier
of
(
(
TOP-REAL
2
)
|
C
)
)
) is
complex
ext-real
real
Element
of
REAL
(
E-bound
C
)
+
(
W-bound
C
)
is
complex
ext-real
real
Element
of
REAL
(
(
E-bound
C
)
+
(
W-bound
C
)
)
/
2 is
complex
ext-real
real
Element
of
REAL
Vertical_Line
(
(
(
E-bound
C
)
+
(
W-bound
C
)
)
/
2
)
is
functional
Element
of
bool
the
carrier
of
(
TOP-REAL
2
)
C
/\
(
Vertical_Line
(
(
(
E-bound
C
)
+
(
W-bound
C
)
)
/
2
)
)
is
functional
Element
of
bool
the
carrier
of
(
TOP-REAL
2
)
proj2
.:
(
C
/\
(
Vertical_Line
(
(
(
E-bound
C
)
+
(
W-bound
C
)
)
/
2
)
)
)
is
V166
()
V167
()
V168
()
Element
of
bool
REAL
K662
(
(
proj2
.:
(
C
/\
(
Vertical_Line
(
(
(
E-bound
C
)
+
(
W-bound
C
)
)
/
2
)
)
)
)
) is
complex
ext-real
real
Element
of
REAL
|[
(
(
(
E-bound
C
)
+
(
W-bound
C
)
)
/
2
)
,
K662
(
(
proj2
.:
(
C
/\
(
Vertical_Line
(
(
(
E-bound
C
)
+
(
W-bound
C
)
)
/
2
)
)
)
)
)
]|
is
Relation-like
Function-like
V49
(2)
V50
()
V156
()
V157
()
V158
()
Element
of the
carrier
of
(
TOP-REAL
2
)
LSeg
(
|[
0
,3
]|
,
(
UMP
C
)
) is
functional
proper
closed
closed
boundary
nowhere_dense
connected
compact
compact
bounded
bounded
Element
of
bool
the
carrier
of
(
TOP-REAL
2
)
{
(
(
(
1
-
b
1
)
*
|[
0
,3
]|
)
+
(
b
1
*
(
UMP
C
)
)
)
where
b
1
is
complex
ext-real
real
Element
of
REAL
: (
0
<=
b
1
&
b
1
<=
1 )
}
is
set
P
is
functional
Element
of
bool
the
carrier
of
(
TOP-REAL
2
)
C
`
is
functional
non
empty
open
Element
of
bool
the
carrier
of
(
TOP-REAL
2
)
the
carrier
of
(
TOP-REAL
2
)
\
C
is
set
(
TOP-REAL
2
)
|
(
C
`
)
is non
empty
strict
TopSpace-like
T_0
T_1
T_2
V118
(
TOP-REAL
2)
SubSpace
of
TOP-REAL
2
the
carrier
of
(
(
TOP-REAL
2
)
|
(
C
`
)
)
is non
empty
set
bool
the
carrier
of
(
(
TOP-REAL
2
)
|
(
C
`
)
)
is non
empty
set
Euclid
2 is non
empty
strict
Reflexive
discerning
symmetric
triangle
Discerning
MetrStruct
the
carrier
of
(
Euclid
2
)
is non
empty
set
bool
the
carrier
of
(
Euclid
2
)
is non
empty
set
{
(
UMP
C
)
}
is
functional
non
empty
proper
closed
compact
bounded
Element
of
bool
the
carrier
of
(
TOP-REAL
2
)
(
LSeg
(
|[
0
,3
]|
,
(
UMP
C
)
)
)
\
{
(
UMP
C
)
}
is
functional
Element
of
bool
the
carrier
of
(
TOP-REAL
2
)
(
(
LSeg
(
|[
0
,3
]|
,
(
UMP
C
)
)
)
\
{
(
UMP
C
)
}
)
\/
{
(
UMP
C
)
}
is
functional
non
empty
Element
of
bool
the
carrier
of
(
TOP-REAL
2
)
north_halfline
(
UMP
C
)
is
functional
non
empty
connected
convex
Element
of
bool
the
carrier
of
(
TOP-REAL
2
)
(
north_halfline
(
UMP
C
)
)
\
{
(
UMP
C
)
}
is
functional
Element
of
bool
the
carrier
of
(
TOP-REAL
2
)
UBD
C
is
functional
non
empty
open
connected
being_Region
Element
of
bool
the
carrier
of
(
TOP-REAL
2
)
{
b
1
where
b
1
is
functional
Element
of
bool
the
carrier
of
(
TOP-REAL
2
)
:
b
1
is_outside_component_of
C
}
is
set
union
{
b
1
where
b
1
is
functional
Element
of
bool
the
carrier
of
(
TOP-REAL
2
)
:
b
1
is_outside_component_of
C
}
is
set
LJ
is
Element
of
bool
the
carrier
of
(
(
TOP-REAL
2
)
|
(
C
`
)
)
C
is
functional
non
empty
proper
closed
connected
compact
bounded
being_simple_closed_curve
with_the_max_arc
Element
of
bool
the
carrier
of
(
TOP-REAL
2
)
LMP
C
is
Relation-like
Function-like
V49
(2)
V50
()
V156
()
V157
()
V158
()
Element
of the
carrier
of
(
TOP-REAL
2
)
E-bound
C
is
complex
ext-real
real
Element
of
REAL
(
TOP-REAL
2
)
|
C
is non
empty
strict
TopSpace-like
T_0
T_1
T_2
V82
()
normal
T_3
T_4
compact
V246
()
pseudocompact
SubSpace
of
TOP-REAL
2
proj1
|
C
is
Relation-like
C
-defined
the
carrier
of
(
TOP-REAL
2
)
-defined
the
carrier
of
(
(
TOP-REAL
2
)
|
C
)
-defined
REAL
-valued
Function-like
non
empty
total
quasi_total
V156
()
V157
()
V158
()
continuous
Element
of
bool
[:
the
carrier
of
(
(
TOP-REAL
2
)
|
C
)
,
REAL
:]
the
carrier
of
(
(
TOP-REAL
2
)
|
C
)
is non
empty
set
[:
the
carrier
of
(
(
TOP-REAL
2
)
|
C
)
,
REAL
:]
is
Relation-like
non
empty
V156
()
V157
()
V158
()
set
bool
[:
the
carrier
of
(
(
TOP-REAL
2
)
|
C
)
,
REAL
:]
is non
empty
set
upper_bound
(
proj1
|
C
)
is
complex
ext-real
real
Element
of
REAL
(
proj1
|
C
)
.:
the
carrier
of
(
(
TOP-REAL
2
)
|
C
)
is non
empty
V166
()
V167
()
V168
()
Element
of
bool
REAL
K662
(
(
(
proj1
|
C
)
.:
the
carrier
of
(
(
TOP-REAL
2
)
|
C
)
)
) is
complex
ext-real
real
Element
of
REAL
W-bound
C
is
complex
ext-real
real
Element
of
REAL
lower_bound
(
proj1
|
C
)
is
complex
ext-real
real
Element
of
REAL
K663
(
(
(
proj1
|
C
)
.:
the
carrier
of
(
(
TOP-REAL
2
)
|
C
)
)
) is
complex
ext-real
real
Element
of
REAL
(
E-bound
C
)
+
(
W-bound
C
)
is
complex
ext-real
real
Element
of
REAL
(
(
E-bound
C
)
+
(
W-bound
C
)
)
/
2 is
complex
ext-real
real
Element
of
REAL
Vertical_Line
(
(
(
E-bound
C
)
+
(
W-bound
C
)
)
/
2
)
is
functional
Element
of
bool
the
carrier
of
(
TOP-REAL
2
)
C
/\
(
Vertical_Line
(
(
(
E-bound
C
)
+
(
W-bound
C
)
)
/
2
)
)
is
functional
Element
of
bool
the
carrier
of
(
TOP-REAL
2
)
proj2
.:
(
C
/\
(
Vertical_Line
(
(
(
E-bound
C
)
+
(
W-bound
C
)
)
/
2
)
)
)
is
V166
()
V167
()
V168
()
Element
of
bool
REAL
K663
(
(
proj2
.:
(
C
/\
(
Vertical_Line
(
(
(
E-bound
C
)
+
(
W-bound
C
)
)
/
2
)
)
)
)
) is
complex
ext-real
real
Element
of
REAL
|[
(
(
(
E-bound
C
)
+
(
W-bound
C
)
)
/
2
)
,
K663
(
(
proj2
.:
(
C
/\
(
Vertical_Line
(
(
(
E-bound
C
)
+
(
W-bound
C
)
)
/
2
)
)
)
)
)
]|
is
Relation-like
Function-like
V49
(2)
V50
()
V156
()
V157
()
V158
()
Element
of the
carrier
of
(
TOP-REAL
2
)
LSeg
(
(
LMP
C
)
,
|[
0
,
(
-
3
)
]|
) is
functional
proper
closed
closed
boundary
nowhere_dense
connected
compact
compact
bounded
bounded
Element
of
bool
the
carrier
of
(
TOP-REAL
2
)
{
(
(
(
1
-
b
1
)
*
(
LMP
C
)
)
+
(
b
1
*
|[
0
,
(
-
3
)
]|
)
)
where
b
1
is
complex
ext-real
real
Element
of
REAL
: (
0
<=
b
1
&
b
1
<=
1 )
}
is
set
P
is
functional
Element
of
bool
the
carrier
of
(
TOP-REAL
2
)
C
`
is
functional
non
empty
open
Element
of
bool
the
carrier
of
(
TOP-REAL
2
)
the
carrier
of
(
TOP-REAL
2
)
\
C
is
set
(
TOP-REAL
2
)
|
(
C
`
)
is non
empty
strict
TopSpace-like
T_0
T_1
T_2
V118
(
TOP-REAL
2)
SubSpace
of
TOP-REAL
2
the
carrier
of
(
(
TOP-REAL
2
)
|
(
C
`
)
)
is non
empty
set
bool
the
carrier
of
(
(
TOP-REAL
2
)
|
(
C
`
)
)
is non
empty
set
Euclid
2 is non
empty
strict
Reflexive
discerning
symmetric
triangle
Discerning
MetrStruct
the
carrier
of
(
Euclid
2
)
is non
empty
set
bool
the
carrier
of
(
Euclid
2
)
is non
empty
set
{
(
LMP
C
)
}
is
functional
non
empty
proper
closed
compact
bounded
Element
of
bool
the
carrier
of
(
TOP-REAL
2
)
(
LSeg
(
(
LMP
C
)
,
|[
0
,
(
-
3
)
]|
)
)
\
{
(
LMP
C
)
}
is
functional
Element
of
bool
the
carrier
of
(
TOP-REAL
2
)
(
(
LSeg
(
(
LMP
C
)
,
|[
0
,
(
-
3
)
]|
)
)
\
{
(
LMP
C
)
}
)
\/
{
(
LMP
C
)
}
is
functional
non
empty
Element
of
bool
the
carrier
of
(
TOP-REAL
2
)
south_halfline
(
LMP
C
)
is
functional
non
empty
connected
convex
Element
of
bool
the
carrier
of
(
TOP-REAL
2
)
(
south_halfline
(
LMP
C
)
)
\
{
(
LMP
C
)
}
is
functional
Element
of
bool
the
carrier
of
(
TOP-REAL
2
)
UBD
C
is
functional
non
empty
open
connected
being_Region
Element
of
bool
the
carrier
of
(
TOP-REAL
2
)
{
b
1
where
b
1
is
functional
Element
of
bool
the
carrier
of
(
TOP-REAL
2
)
:
b
1
is_outside_component_of
C
}
is
set
union
{
b
1
where
b
1
is
functional
Element
of
bool
the
carrier
of
(
TOP-REAL
2
)
:
b
1
is_outside_component_of
C
}
is
set
LJ
is
Element
of
bool
the
carrier
of
(
(
TOP-REAL
2
)
|
(
C
`
)
)
C
is
functional
non
empty
proper
closed
compact
bounded
with_the_max_arc
Element
of
bool
the
carrier
of
(
TOP-REAL
2
)
UMP
C
is
Relation-like
Function-like
V49
(2)
V50
()
V156
()
V157
()
V158
()
Element
of the
carrier
of
(
TOP-REAL
2
)
E-bound
C
is
complex
ext-real
real
Element
of
REAL
(
TOP-REAL
2
)
|
C
is non
empty
strict
TopSpace-like
T_0
T_1
T_2
V82
()
normal
T_3
T_4
compact
V246
()
pseudocompact
SubSpace
of
TOP-REAL
2
proj1
|
C
is
Relation-like
C
-defined
the
carrier
of
(
TOP-REAL
2
)
-defined
the
carrier
of
(
(
TOP-REAL
2
)
|
C
)
-defined
REAL
-valued
Function-like
non
empty
total
quasi_total
V156
()
V157
()
V158
()
continuous
Element
of
bool
[:
the
carrier
of
(
(
TOP-REAL
2
)
|
C
)
,
REAL
:]
the
carrier
of
(
(
TOP-REAL
2
)
|
C
)
is non
empty
set
[:
the
carrier
of
(
(
TOP-REAL
2
)
|
C
)
,
REAL
:]
is
Relation-like
non
empty
V156
()
V157
()
V158
()
set
bool
[:
the
carrier
of
(
(
TOP-REAL
2
)
|
C
)
,
REAL
:]
is non
empty
set
upper_bound
(
proj1
|
C
)
is
complex
ext-real
real
Element
of
REAL
(
proj1
|
C
)
.:
the
carrier
of
(
(
TOP-REAL
2
)
|
C
)
is non
empty
V166
()
V167
()
V168
()
Element
of
bool
REAL
K662
(
(
(
proj1
|
C
)
.:
the
carrier
of
(
(
TOP-REAL
2
)
|
C
)
)
) is
complex
ext-real
real
Element
of
REAL
W-bound
C
is
complex
ext-real
real
Element
of
REAL
lower_bound
(
proj1
|
C
)
is
complex
ext-real
real
Element
of
REAL
K663
(
(
(
proj1
|
C
)
.:
the
carrier
of
(
(
TOP-REAL
2
)
|
C
)
)
) is
complex
ext-real
real
Element
of
REAL
(
E-bound
C
)
+
(
W-bound
C
)
is
complex
ext-real
real
Element
of
REAL
(
(
E-bound
C
)
+
(
W-bound
C
)
)
/
2 is
complex
ext-real
real
Element
of
REAL
Vertical_Line
(
(
(
E-bound
C
)
+
(
W-bound
C
)
)
/
2
)
is
functional
Element
of
bool
the
carrier
of
(
TOP-REAL
2
)
C
/\
(
Vertical_Line
(
(
(
E-bound
C
)
+
(
W-bound
C
)
)
/
2
)
)
is
functional
Element
of
bool
the
carrier
of
(
TOP-REAL
2
)
proj2
.:
(
C
/\
(
Vertical_Line
(
(
(
E-bound
C
)
+
(
W-bound
C
)
)
/
2
)
)
)
is
V166
()
V167
()
V168
()
Element
of
bool
REAL
K662
(
(
proj2
.:
(
C
/\
(
Vertical_Line
(
(
(
E-bound
C
)
+
(
W-bound
C
)
)
/
2
)
)
)
)
) is
complex
ext-real
real
Element
of
REAL
|[
(
(
(
E-bound
C
)
+
(
W-bound
C
)
)
/
2
)
,
K662
(
(
proj2
.:
(
C
/\
(
Vertical_Line
(
(
(
E-bound
C
)
+
(
W-bound
C
)
)
/
2
)
)
)
)
)
]|
is
Relation-like
Function-like
V49
(2)
V50
()
V156
()
V157
()
V158
()
Element
of the
carrier
of
(
TOP-REAL
2
)
LSeg
(
|[
0
,3
]|
,
(
UMP
C
)
) is
functional
proper
closed
closed
boundary
nowhere_dense
connected
compact
compact
bounded
bounded
Element
of
bool
the
carrier
of
(
TOP-REAL
2
)
{
(
(
(
1
-
b
1
)
*
|[
0
,3
]|
)
+
(
b
1
*
(
UMP
C
)
)
)
where
b
1
is
complex
ext-real
real
Element
of
REAL
: (
0
<=
b
1
&
b
1
<=
1 )
}
is
set
(
LSeg
(
|[
0
,3
]|
,
(
UMP
C
)
)
)
/\
C
is
functional
proper
closed
compact
bounded
Element
of
bool
the
carrier
of
(
TOP-REAL
2
)
{
(
UMP
C
)
}
is
functional
non
empty
proper
closed
compact
bounded
Element
of
bool
the
carrier
of
(
TOP-REAL
2
)
(
W-bound
C
)
+
(
E-bound
C
)
is
complex
ext-real
real
Element
of
REAL
(
(
W-bound
C
)
+
(
E-bound
C
)
)
/
2 is
complex
ext-real
real
Element
of
REAL
(
UMP
C
)
`1
is
complex
ext-real
real
Element
of
REAL
l
is
set
LJ
is
Relation-like
Function-like
V49
(2)
V50
()
V156
()
V157
()
V158
()
Element
of the
carrier
of
(
TOP-REAL
2
)
LJ
`1
is
complex
ext-real
real
Element
of
REAL
Vertical_Line
(
(
(
W-bound
C
)
+
(
E-bound
C
)
)
/
2
)
is
functional
Element
of
bool
the
carrier
of
(
TOP-REAL
2
)
C
/\
(
Vertical_Line
(
(
(
W-bound
C
)
+
(
E-bound
C
)
)
/
2
)
)
is
functional
Element
of
bool
the
carrier
of
(
TOP-REAL
2
)
LJ
`2
is
complex
ext-real
real
Element
of
REAL
(
UMP
C
)
`2
is
complex
ext-real
real
Element
of
REAL
l
is
set
C
is
functional
non
empty
proper
closed
compact
bounded
with_the_max_arc
Element
of
bool
the
carrier
of
(
TOP-REAL
2
)
LMP
C
is
Relation-like
Function-like
V49
(2)
V50
()
V156
()
V157
()
V158
()
Element
of the
carrier
of
(
TOP-REAL
2
)
E-bound
C
is
complex
ext-real
real
Element
of
REAL
(
TOP-REAL
2
)
|
C
is non
empty
strict
TopSpace-like
T_0
T_1
T_2
V82
()
normal
T_3
T_4
compact
V246
()
pseudocompact
SubSpace
of
TOP-REAL
2
proj1
|
C
is
Relation-like
C
-defined
the
carrier
of
(
TOP-REAL
2
)
-defined
the
carrier
of
(
(
TOP-REAL
2
)
|
C
)
-defined
REAL
-valued
Function-like
non
empty
total
quasi_total
V156
()
V157
()
V158
()
continuous
Element
of
bool
[:
the
carrier
of
(
(
TOP-REAL
2
)
|
C
)
,
REAL
:]
the
carrier
of
(
(
TOP-REAL
2
)
|
C
)
is non
empty
set
[:
the
carrier
of
(
(
TOP-REAL
2
)
|
C
)
,
REAL
:]
is
Relation-like
non
empty
V156
()
V157
()
V158
()
set
bool
[:
the
carrier
of
(
(
TOP-REAL
2
)
|
C
)
,
REAL
:]
is non
empty
set
upper_bound
(
proj1
|
C
)
is
complex
ext-real
real
Element
of
REAL
(
proj1
|
C
)
.:
the
carrier
of
(
(
TOP-REAL
2
)
|
C
)
is non
empty
V166
()
V167
()
V168
()
Element
of
bool
REAL
K662
(
(
(
proj1
|
C
)
.:
the
carrier
of
(
(
TOP-REAL
2
)
|
C
)
)
) is
complex
ext-real
real
Element
of
REAL
W-bound
C
is
complex
ext-real
real
Element
of
REAL
lower_bound
(
proj1
|
C
)
is
complex
ext-real
real
Element
of
REAL
K663
(
(
(
proj1
|
C
)
.:
the
carrier
of
(
(
TOP-REAL
2
)
|
C
)
)
) is
complex
ext-real
real
Element
of
REAL
(
E-bound
C
)
+
(
W-bound
C
)
is
complex
ext-real
real
Element
of
REAL
(
(
E-bound
C
)
+
(
W-bound
C
)
)
/
2 is
complex
ext-real
real
Element
of
REAL
Vertical_Line
(
(
(
E-bound
C
)
+
(
W-bound
C
)
)
/
2
)
is
functional
Element
of
bool
the
carrier
of
(
TOP-REAL
2
)
C
/\
(
Vertical_Line
(
(
(
E-bound
C
)
+
(
W-bound
C
)
)
/
2
)
)
is
functional
Element
of
bool
the
carrier
of
(
TOP-REAL
2
)
proj2
.:
(
C
/\
(
Vertical_Line
(
(
(
E-bound
C
)
+
(
W-bound
C
)
)
/
2
)
)
)
is
V166
()
V167
()
V168
()
Element
of
bool
REAL
K663
(
(
proj2
.:
(
C
/\
(
Vertical_Line
(
(
(
E-bound
C
)
+
(
W-bound
C
)
)
/
2
)
)
)
)
) is
complex
ext-real
real
Element
of
REAL
|[
(
(
(
E-bound
C
)
+
(
W-bound
C
)
)
/
2
)
,
K663
(
(
proj2
.:
(
C
/\
(
Vertical_Line
(
(
(
E-bound
C
)
+
(
W-bound
C
)
)
/
2
)
)
)
)
)
]|
is
Relation-like
Function-like
V49
(2)
V50
()
V156
()
V157
()
V158
()
Element
of the
carrier
of
(
TOP-REAL
2
)
LSeg
(
|[
0
,
(
-
3
)
]|
,
(
LMP
C
)
) is
functional
proper
closed
closed
boundary
nowhere_dense
connected
compact
compact
bounded
bounded
Element
of
bool
the
carrier
of
(
TOP-REAL
2
)
{
(
(
(
1
-
b
1
)
*
|[
0
,
(
-
3
)
]|
)
+
(
b
1
*
(
LMP
C
)
)
)
where
b
1
is
complex
ext-real
real
Element
of
REAL
: (
0
<=
b
1
&
b
1
<=
1 )
}
is
set
(
LSeg
(
|[
0
,
(
-
3
)
]|
,
(
LMP
C
)
)
)
/\
C
is
functional
proper
closed
compact
bounded
Element
of
bool
the
carrier
of
(
TOP-REAL
2
)
{
(
LMP
C
)
}
is
functional
non
empty
proper
closed
compact
bounded
Element
of
bool
the
carrier
of
(
TOP-REAL
2
)
(
W-bound
C
)
+
(
E-bound
C
)
is
complex
ext-real
real
Element
of
REAL
(
(
W-bound
C
)
+
(
E-bound
C
)
)
/
2 is
complex
ext-real
real
Element
of
REAL
(
LMP
C
)
`1
is
complex
ext-real
real
Element
of
REAL
l
is
set
LJ
is
Relation-like
Function-like
V49
(2)
V50
()
V156
()
V157
()
V158
()
Element
of the
carrier
of
(
TOP-REAL
2
)
LJ
`1
is
complex
ext-real
real
Element
of
REAL
Vertical_Line
(
(
(
W-bound
C
)
+
(
E-bound
C
)
)
/
2
)
is
functional
Element
of
bool
the
carrier
of
(
TOP-REAL
2
)
C
/\
(
Vertical_Line
(
(
(
W-bound
C
)
+
(
E-bound
C
)
)
/
2
)
)
is
functional
Element
of
bool
the
carrier
of
(
TOP-REAL
2
)
(
LMP
C
)
`2
is
complex
ext-real
real
Element
of
REAL
LJ
`2
is
complex
ext-real
real
Element
of
REAL
l
is
set
C
is
functional
Element
of
bool
the
carrier
of
(
TOP-REAL
2
)
P
is
functional
Element
of
bool
the
carrier
of
(
TOP-REAL
2
)
U
is
set
(
closed_inside_of_rectangle
(
(
-
1
)
,1,
(
-
3
)
,3)
)
`
is
functional
open
Element
of
bool
the
carrier
of
(
TOP-REAL
2
)
the
carrier
of
(
TOP-REAL
2
)
\
(
closed_inside_of_rectangle
(
(
-
1
)
,1,
(
-
3
)
,3)
)
is
set
C
`
is
functional
Element
of
bool
the
carrier
of
(
TOP-REAL
2
)
the
carrier
of
(
TOP-REAL
2
)
\
C
is
set
l
is
Relation-like
Function-like
V49
(2)
V50
()
V156
()
V157
()
V158
()
Element
of the
carrier
of
(
TOP-REAL
2
)
l
`1
is
complex
ext-real
real
Element
of
REAL
l
`2
is
complex
ext-real
real
Element
of
REAL
east_halfline
l
is
functional
non
empty
connected
convex
Element
of
bool
the
carrier
of
(
TOP-REAL
2
)
k
is
set
x
is
Relation-like
Function-like
V49
(2)
V50
()
V156
()
V157
()
V158
()
Element
of the
carrier
of
(
TOP-REAL
2
)
x
`1
is
complex
ext-real
real
Element
of
REAL
A1
is
Relation-like
Function-like
V49
(2)
V50
()
V156
()
V157
()
V158
()
Element
of the
carrier
of
(
TOP-REAL
2
)
A1
`1
is
complex
ext-real
real
Element
of
REAL
A1
`2
is
complex
ext-real
real
Element
of
REAL
UBD
C
is
functional
Element
of
bool
the
carrier
of
(
TOP-REAL
2
)
{
b
1
where
b
1
is
functional
Element
of
bool
the
carrier
of
(
TOP-REAL
2
)
:
b
1
is_outside_component_of
C
}
is
set
union
{
b
1
where
b
1
is
functional
Element
of
bool
the
carrier
of
(
TOP-REAL
2
)
:
b
1
is_outside_component_of
C
}
is
set
west_halfline
l
is
functional
non
empty
connected
convex
Element
of
bool
the
carrier
of
(
TOP-REAL
2
)
k
is
set
x
is
Relation-like
Function-like
V49
(2)
V50
()
V156
()
V157
()
V158
()
Element
of the
carrier
of
(
TOP-REAL
2
)
x
`1
is
complex
ext-real
real
Element
of
REAL
A1
is
Relation-like
Function-like
V49
(2)
V50
()
V156
()
V157
()
V158
()
Element
of the
carrier
of
(
TOP-REAL
2
)
A1
`1
is
complex
ext-real
real
Element
of
REAL
A1
`2
is
complex
ext-real
real
Element
of
REAL
UBD
C
is
functional
Element
of
bool
the
carrier
of
(
TOP-REAL
2
)
{
b
1
where
b
1
is
functional
Element
of
bool
the
carrier
of
(
TOP-REAL
2
)
:
b
1
is_outside_component_of
C
}
is
set
union
{
b
1
where
b
1
is
functional
Element
of
bool
the
carrier
of
(
TOP-REAL
2
)
:
b
1
is_outside_component_of
C
}
is
set
10 is non
empty
ordinal
natural
complex
ext-real
positive
non
negative
real
V33
()
V119
()
V166
()
V167
()
V168
()
V169
()
V170
()
V171
()
left_end
bounded_below
Element
of
NAT
C
is
Relation-like
Function-like
V49
(2)
V50
()
V156
()
V157
()
V158
()
Element
of the
carrier
of
(
TOP-REAL
2
)
Ball
(
C
,10) is
functional
non
empty
proper
open
connected
bounded
being_Region
convex
Element
of
bool
the
carrier
of
(
TOP-REAL
2
)
P
is
Relation-like
Function-like
V49
(2)
V50
()
V156
()
V157
()
V158
()
Element
of the
carrier
of
(
TOP-REAL
2
)
P
`1
is
complex
ext-real
real
Element
of
REAL
P
`2
is
complex
ext-real
real
Element
of
REAL
U
is
set
l
is
Relation-like
Function-like
V49
(2)
V50
()
V156
()
V157
()
V158
()
Element
of the
carrier
of
(
TOP-REAL
2
)
LJ
is
Relation-like
Function-like
V49
(2)
V50
()
V156
()
V157
()
V158
()
Element
of the
carrier
of
(
TOP-REAL
2
)
LJ
`1
is
complex
ext-real
real
Element
of
REAL
LJ
`2
is
complex
ext-real
real
Element
of
REAL
Euclid
2 is non
empty
strict
Reflexive
discerning
symmetric
triangle
Discerning
MetrStruct
the
carrier
of
(
Euclid
2
)
is non
empty
set
dist
(
P
,
LJ
) is
complex
ext-real
non
negative
real
Element
of
REAL
1
-
(
-
1
)
is non
empty
complex
ext-real
positive
non
negative
real
Element
of
REAL
3
-
(
-
3
)
is non
empty
complex
ext-real
positive
non
negative
real
Element
of
REAL
(
1
-
(
-
1
)
)
+
(
3
-
(
-
3
)
)
is non
empty
complex
ext-real
positive
non
negative
real
Element
of
REAL
l
-
C
is
Relation-like
Function-like
V49
(2)
V50
()
V156
()
V157
()
V158
()
Element
of the
carrier
of
(
TOP-REAL
2
)
-
C
is
Relation-like
Function-like
V49
(2)
V50
()
V156
()
V157
()
V158
()
Element
of the
carrier
of
(
TOP-REAL
2
)
K270
(
(
TOP-REAL
2
)
,
l
,
(
-
C
)
) is
Relation-like
Function-like
V49
(2)
V50
()
V156
()
V157
()
V158
()
Element
of the
carrier
of
(
TOP-REAL
2
)
the
U7
of
(
TOP-REAL
2
)
is
Relation-like
[:
the
carrier
of
(
TOP-REAL
2
)
, the
carrier
of
(
TOP-REAL
2
)
:]
-defined
the
carrier
of
(
TOP-REAL
2
)
-valued
Function-like
non
empty
total
quasi_total
Element
of
bool
[:
[:
the
carrier
of
(
TOP-REAL
2
)
, the
carrier
of
(
TOP-REAL
2
)
:]
, the
carrier
of
(
TOP-REAL
2
)
:]
[:
[:
the
carrier
of
(
TOP-REAL
2
)
, the
carrier
of
(
TOP-REAL
2
)
:]
, the
carrier
of
(
TOP-REAL
2
)
:]
is
Relation-like
non
empty
set
bool
[:
[:
the
carrier
of
(
TOP-REAL
2
)
, the
carrier
of
(
TOP-REAL
2
)
:]
, the
carrier
of
(
TOP-REAL
2
)
:]
is non
empty
set
K224
( the
carrier
of
(
TOP-REAL
2
)
, the
U7
of
(
TOP-REAL
2
)
,
l
,
(
-
C
)
) is
Relation-like
Function-like
V49
(2)
V50
()
V156
()
V157
()
V158
()
Element
of the
carrier
of
(
TOP-REAL
2
)
|.
(
l
-
C
)
.|
is
complex
ext-real
non
negative
real
Element
of
REAL
k
is
Element
of the
carrier
of
(
Euclid
2
)
x
is
Element
of the
carrier
of
(
Euclid
2
)
dist
(
k
,
x
) is
complex
ext-real
non
negative
real
Element
of
REAL
LSeg
(
|[
0
,3
]|
,
|[
0
,
(
-
3
)
]|
) is
functional
proper
closed
closed
boundary
nowhere_dense
connected
compact
compact
bounded
bounded
Element
of
bool
the
carrier
of
(
TOP-REAL
2
)
{
(
(
(
1
-
b
1
)
*
|[
0
,3
]|
)
+
(
b
1
*
|[
0
,
(
-
3
)
]|
)
)
where
b
1
is
complex
ext-real
real
Element
of
REAL
: (
0
<=
b
1
&
b
1
<=
1 )
}
is
set
C
is
functional
non
empty
proper
closed
connected
compact
bounded
being_simple_closed_curve
with_the_max_arc
Element
of
bool
the
carrier
of
(
TOP-REAL
2
)
Upper_Arc
C
is
functional
non
empty
proper
closed
compact
bounded
with_the_max_arc
Element
of
bool
the
carrier
of
(
TOP-REAL
2
)
(
TOP-REAL
2
)
|
(
LSeg
(
|[
0
,3
]|
,
|[
0
,
(
-
3
)
]|
)
)
is
strict
TopSpace-like
T_0
T_1
T_2
SubSpace
of
TOP-REAL
2
the
carrier
of
(
(
TOP-REAL
2
)
|
(
LSeg
(
|[
0
,3
]|
,
|[
0
,
(
-
3
)
]|
)
)
)
is
set
[:
the
carrier
of
I[01]
, the
carrier
of
(
(
TOP-REAL
2
)
|
(
LSeg
(
|[
0
,3
]|
,
|[
0
,
(
-
3
)
]|
)
)
)
:]
is
Relation-like
set
bool
[:
the
carrier
of
I[01]
, the
carrier
of
(
(
TOP-REAL
2
)
|
(
LSeg
(
|[
0
,3
]|
,
|[
0
,
(
-
3
)
]|
)
)
)
:]
is non
empty
set
l
is
Relation-like
the
carrier
of
I[01]
-defined
the
carrier
of
(
(
TOP-REAL
2
)
|
(
LSeg
(
|[
0
,3
]|
,
|[
0
,
(
-
3
)
]|
)
)
)
-valued
Function-like
quasi_total
Element
of
bool
[:
the
carrier
of
I[01]
, the
carrier
of
(
(
TOP-REAL
2
)
|
(
LSeg
(
|[
0
,3
]|
,
|[
0
,
(
-
3
)
]|
)
)
)
:]
rng
l
is
Element
of
bool
the
carrier
of
(
(
TOP-REAL
2
)
|
(
LSeg
(
|[
0
,3
]|
,
|[
0
,
(
-
3
)
]|
)
)
)
bool
the
carrier
of
(
(
TOP-REAL
2
)
|
(
LSeg
(
|[
0
,3
]|
,
|[
0
,
(
-
3
)
]|
)
)
)
is non
empty
set
U
is
Relation-like
the
carrier
of
I[01]
-defined
the
carrier
of
(
TOP-REAL
2
)
-valued
Function-like
non
empty
total
quasi_total
continuous
Path
of
|[
0
,3
]|
,
|[
0
,
(
-
3
)
]|
W-min
C
is
Relation-like
Function-like
V49
(2)
V50
()
V156
()
V157
()
V158
()
Element
of the
carrier
of
(
TOP-REAL
2
)
W-bound
C
is
complex
ext-real
real
Element
of
REAL
(
TOP-REAL
2
)
|
C
is non
empty
strict
TopSpace-like
T_0
T_1
T_2
V82
()
normal
T_3
T_4
compact
V246
()
pseudocompact
SubSpace
of
TOP-REAL
2
proj1
|
C
is
Relation-like
C
-defined
the
carrier
of
(
TOP-REAL
2
)
-defined
the
carrier
of
(
(
TOP-REAL
2
)
|
C
)
-defined
REAL
-valued
Function-like
non
empty
total
quasi_total
V156
()
V157
()
V158
()
continuous
Element
of
bool
[:
the
carrier
of
(
(
TOP-REAL
2
)
|
C
)
,
REAL
:]
the
carrier
of
(
(
TOP-REAL
2
)
|
C
)
is non
empty
set
[:
the
carrier
of
(
(
TOP-REAL
2
)
|
C
)
,
REAL
:]
is
Relation-like
non
empty
V156
()
V157
()
V158
()
set
bool
[:
the
carrier
of
(
(
TOP-REAL
2
)
|
C
)
,
REAL
:]
is non
empty
set
lower_bound
(
proj1
|
C
)
is
complex
ext-real
real
Element
of
REAL
(
proj1
|
C
)
.:
the
carrier
of
(
(
TOP-REAL
2
)
|
C
)
is non
empty
V166
()
V167
()
V168
()
Element
of
bool
REAL
K663
(
(
(
proj1
|
C
)
.:
the
carrier
of
(
(
TOP-REAL
2
)
|
C
)
)
) is
complex
ext-real
real
Element
of
REAL
W-most
C
is
functional
non
empty
proper
closed
compact
bounded
Element
of
bool
the
carrier
of
(
TOP-REAL
2
)
SW-corner
C
is
Relation-like
Function-like
V49
(2)
V50
()
V156
()
V157
()
V158
()
Element
of the
carrier
of
(
TOP-REAL
2
)
S-bound
C
is
complex
ext-real
real
Element
of
REAL
proj2
|
C
is
Relation-like
C
-defined
the
carrier
of
(
TOP-REAL
2
)
-defined
the
carrier
of
(
(
TOP-REAL
2
)
|
C
)
-defined
REAL
-valued
Function-like
non
empty
total
quasi_total
V156
()
V157
()
V158
()
continuous
Element
of
bool
[:
the
carrier
of
(
(
TOP-REAL
2
)
|
C
)
,
REAL
:]
lower_bound
(
proj2
|
C
)
is
complex
ext-real
real
Element
of
REAL
(
proj2
|
C
)
.:
the
carrier
of
(
(
TOP-REAL
2
)
|
C
)
is non
empty
V166
()
V167
()
V168
()
Element
of
bool
REAL
K663
(
(
(
proj2
|
C
)
.:
the
carrier
of
(
(
TOP-REAL
2
)
|
C
)
)
) is
complex
ext-real
real
Element
of
REAL
|[
(
W-bound
C
)
,
(
S-bound
C
)
]|
is
Relation-like
Function-like
V49
(2)
V50
()
V156
()
V157
()
V158
()
Element
of the
carrier
of
(
TOP-REAL
2
)
NW-corner
C
is
Relation-like
Function-like
V49
(2)
V50
()
V156
()
V157
()
V158
()
Element
of the
carrier
of
(
TOP-REAL
2
)
N-bound
C
is
complex
ext-real
real
Element
of
REAL
upper_bound
(
proj2
|
C
)
is
complex
ext-real
real
Element
of
REAL
K662
(
(
(
proj2
|
C
)
.:
the
carrier
of
(
(
TOP-REAL
2
)
|
C
)
)
) is
complex
ext-real
real
Element
of
REAL
|[
(
W-bound
C
)
,
(
N-bound
C
)
]|
is
Relation-like
Function-like
V49
(2)
V50
()
V156
()
V157
()
V158
()
Element
of the
carrier
of
(
TOP-REAL
2
)
LSeg
(
(
SW-corner
C
)
,
(
NW-corner
C
)
) is
functional
proper
closed
closed
boundary
nowhere_dense
connected
compact
compact
bounded
bounded
vertical
Element
of
bool
the
carrier
of
(
TOP-REAL
2
)
{
(
(
(
1
-
b
1
)
*
(
SW-corner
C
)
)
+
(
b
1
*
(
NW-corner
C
)
)
)
where
b
1
is
complex
ext-real
real
Element
of
REAL
: (
0
<=
b
1
&
b
1
<=
1 )
}
is
set
(
LSeg
(
(
SW-corner
C
)
,
(
NW-corner
C
)
)
)
/\
C
is
functional
proper
closed
compact
bounded
Element
of
bool
the
carrier
of
(
TOP-REAL
2
)
(
TOP-REAL
2
)
|
(
W-most
C
)
is non
empty
strict
TopSpace-like
T_0
T_1
T_2
V82
()
normal
T_3
T_4
compact
V246
()
pseudocompact
SubSpace
of
TOP-REAL
2
proj2
|
(
W-most
C
)
is
Relation-like
W-most
C
-defined
the
carrier
of
(
TOP-REAL
2
)
-defined
the
carrier
of
(
(
TOP-REAL
2
)
|
(
W-most
C
)
)
-defined
REAL
-valued
Function-like
non
empty
total
quasi_total
V156
()
V157
()
V158
()
continuous
Element
of
bool
[:
the
carrier
of
(
(
TOP-REAL
2
)
|
(
W-most
C
)
)
,
REAL
:]
the
carrier
of
(
(
TOP-REAL
2
)
|
(
W-most
C
)
)
is non
empty
set
[:
the
carrier
of
(
(
TOP-REAL
2
)
|
(
W-most
C
)
)
,
REAL
:]
is
Relation-like
non
empty
V156
()
V157
()
V158
()
set
bool
[:
the
carrier
of
(
(
TOP-REAL
2
)
|
(
W-most
C
)
)
,
REAL
:]
is non
empty
set
lower_bound
(
proj2
|
(
W-most
C
)
)
is
complex
ext-real
real
Element
of
REAL
(
proj2
|
(
W-most
C
)
)
.:
the
carrier
of
(
(
TOP-REAL
2
)
|
(
W-most
C
)
)
is non
empty
V166
()
V167
()
V168
()
Element
of
bool
REAL
K663
(
(
(
proj2
|
(
W-most
C
)
)
.:
the
carrier
of
(
(
TOP-REAL
2
)
|
(
W-most
C
)
)
)
) is
complex
ext-real
real
Element
of
REAL
|[
(
W-bound
C
)
,
(
lower_bound
(
proj2
|
(
W-most
C
)
)
)
]|
is
Relation-like
Function-like
V49
(2)
V50
()
V156
()
V157
()
V158
()
Element
of the
carrier
of
(
TOP-REAL
2
)
E-max
C
is
Relation-like
Function-like
V49
(2)
V50
()
V156
()
V157
()
V158
()
Element
of the
carrier
of
(
TOP-REAL
2
)
E-bound
C
is
complex
ext-real
real
Element
of
REAL
upper_bound
(
proj1
|
C
)
is
complex
ext-real
real
Element
of
REAL
K662
(
(
(
proj1
|
C
)
.:
the
carrier
of
(
(
TOP-REAL
2
)
|
C
)
)
) is
complex
ext-real
real
Element
of
REAL
E-most
C
is
functional
non
empty
proper
closed
compact
bounded
Element
of
bool
the
carrier
of
(
TOP-REAL
2
)
SE-corner
C
is
Relation-like
Function-like
V49
(2)
V50
()
V156
()
V157
()
V158
()
Element
of the
carrier
of
(
TOP-REAL
2
)
|[
(
E-bound
C
)
,
(
S-bound
C
)
]|
is
Relation-like
Function-like
V49
(2)
V50
()
V156
()
V157
()
V158
()
Element
of the
carrier
of
(
TOP-REAL
2
)
NE-corner
C
is
Relation-like
Function-like
V49
(2)
V50
()
V156
()
V157
()
V158
()
Element
of the
carrier
of
(
TOP-REAL
2
)
|[
(
E-bound
C
)
,
(
N-bound
C
)
]|
is
Relation-like
Function-like
V49
(2)
V50
()
V156
()
V157
()
V158
()
Element
of the
carrier
of
(
TOP-REAL
2
)
LSeg
(
(
SE-corner
C
)
,
(
NE-corner
C
)
) is
functional
proper
closed
closed
boundary
nowhere_dense
connected
compact
compact
bounded
bounded
vertical
Element
of
bool
the
carrier
of
(
TOP-REAL
2
)
{
(
(
(
1
-
b
1
)
*
(
SE-corner
C
)
)
+
(
b
1
*
(
NE-corner
C
)
)
)
where
b
1
is
complex
ext-real
real
Element
of
REAL
: (
0
<=
b
1
&
b
1
<=
1 )
}
is
set
(
LSeg
(
(
SE-corner
C
)
,
(
NE-corner
C
)
)
)
/\
C
is
functional
proper
closed
compact
bounded
Element
of
bool
the
carrier
of
(
TOP-REAL
2
)
(
TOP-REAL
2
)
|
(
E-most
C
)
is non
empty
strict
TopSpace-like
T_0
T_1
T_2
V82
()
normal
T_3
T_4
compact
V246
()
pseudocompact
SubSpace
of
TOP-REAL
2
proj2
|
(
E-most
C
)
is
Relation-like
E-most
C
-defined
the
carrier
of
(
TOP-REAL
2
)
-defined
the
carrier
of
(
(
TOP-REAL
2
)
|
(
E-most
C
)
)
-defined
REAL
-valued
Function-like
non
empty
total
quasi_total
V156
()
V157
()
V158
()
continuous
Element
of
bool
[:
the
carrier
of
(
(
TOP-REAL
2
)
|
(
E-most
C
)
)
,
REAL
:]
the
carrier
of
(
(
TOP-REAL
2
)
|
(
E-most
C
)
)
is non
empty
set
[:
the
carrier
of
(
(
TOP-REAL
2
)
|
(
E-most
C
)
)
,
REAL
:]
is
Relation-like
non
empty
V156
()
V157
()
V158
()
set
bool
[:
the
carrier
of
(
(
TOP-REAL
2
)
|
(
E-most
C
)
)
,
REAL
:]
is non
empty
set
upper_bound
(
proj2
|
(
E-most
C
)
)
is
complex
ext-real
real
Element
of
REAL
(
proj2
|
(
E-most
C
)
)
.:
the
carrier
of
(
(
TOP-REAL
2
)
|
(
E-most
C
)
)
is non
empty
V166
()
V167
()
V168
()
Element
of
bool
REAL
K662
(
(
(
proj2
|
(
E-most
C
)
)
.:
the
carrier
of
(
(
TOP-REAL
2
)
|
(
E-most
C
)
)
)
) is
complex
ext-real
real
Element
of
REAL
|[
(
E-bound
C
)
,
(
upper_bound
(
proj2
|
(
E-most
C
)
)
)
]|
is
Relation-like
Function-like
V49
(2)
V50
()
V156
()
V157
()
V158
()
Element
of the
carrier
of
(
TOP-REAL
2
)
(
TOP-REAL
2
)
|
(
Upper_Arc
C
)
is non
empty
strict
TopSpace-like
T_0
T_1
T_2
V82
()
normal
T_3
T_4
compact
V246
()
pseudocompact
SubSpace
of
TOP-REAL
2
the
carrier
of
(
(
TOP-REAL
2
)
|
(
Upper_Arc
C
)
)
is non
empty
set
[:
the
carrier
of
I[01]
, the
carrier
of
(
(
TOP-REAL
2
)
|
(
Upper_Arc
C
)
)
:]
is
Relation-like
non
empty
set
bool
[:
the
carrier
of
I[01]
, the
carrier
of
(
(
TOP-REAL
2
)
|
(
Upper_Arc
C
)
)
:]
is non
empty
set
k
is
Relation-like
the
carrier
of
I[01]
-defined
the
carrier
of
(
(
TOP-REAL
2
)
|
(
Upper_Arc
C
)
)
-valued
Function-like
non
empty
total
quasi_total
Element
of
bool
[:
the
carrier
of
I[01]
, the
carrier
of
(
(
TOP-REAL
2
)
|
(
Upper_Arc
C
)
)
:]
rng
k
is non
empty
Element
of
bool
the
carrier
of
(
(
TOP-REAL
2
)
|
(
Upper_Arc
C
)
)
bool
the
carrier
of
(
(
TOP-REAL
2
)
|
(
Upper_Arc
C
)
)
is non
empty
set
LJ
is
Relation-like
the
carrier
of
I[01]
-defined
the
carrier
of
(
TOP-REAL
2
)
-valued
Function-like
non
empty
total
quasi_total
continuous
Path
of
|[
(
-
1
)
,
0
]|
,
|[
1,
0
]|
the
carrier
of
(
Trectangle
(
(
-
1
)
,1,
(
-
3
)
,3)
)
is non
empty
set
rng
LJ
is
functional
non
empty
Element
of
bool
the
carrier
of
(
TOP-REAL
2
)
x
is
Element
of the
carrier
of
(
Trectangle
(
(
-
1
)
,1,
(
-
3
)
,3)
)
A1
is
Element
of the
carrier
of
(
Trectangle
(
(
-
1
)
,1,
(
-
3
)
,3)
)
A2
is
Element
of the
carrier
of
(
Trectangle
(
(
-
1
)
,1,
(
-
3
)
,3)
)
w
is
Element
of the
carrier
of
(
Trectangle
(
(
-
1
)
,1,
(
-
3
)
,3)
)
Ux
is
Relation-like
the
carrier
of
I[01]
-defined
the
carrier
of
(
Trectangle
(
(
-
1
)
,1,
(
-
3
)
,3)
)
-valued
Function-like
non
empty
total
quasi_total
Path
of
x
,
A1
Pml
is
Relation-like
the
carrier
of
I[01]
-defined
the
carrier
of
(
Trectangle
(
(
-
1
)
,1,
(
-
3
)
,3)
)
-valued
Function-like
non
empty
total
quasi_total
Path
of
A2
,
w
ml
is
complex
ext-real
real
Element
of the
carrier
of
I[01]
Ux
.
ml
is
Element
of the
carrier
of
(
Trectangle
(
(
-
1
)
,1,
(
-
3
)
,3)
)
Pkj
is
complex
ext-real
real
Element
of the
carrier
of
I[01]
Pml
.
Pkj
is
Element
of the
carrier
of
(
Trectangle
(
(
-
1
)
,1,
(
-
3
)
,3)
)
dom
Ux
is non
empty
V166
()
V167
()
V168
()
Element
of
bool
the
carrier
of
I[01]
bool
the
carrier
of
I[01]
is non
empty
set
dom
Pml
is non
empty
V166
()
V167
()
V168
()
Element
of
bool
the
carrier
of
I[01]
rng
U
is
functional
non
empty
Element
of
bool
the
carrier
of
(
TOP-REAL
2
)
C
is
functional
non
empty
proper
closed
connected
compact
bounded
being_simple_closed_curve
with_the_max_arc
Element
of
bool
the
carrier
of
(
TOP-REAL
2
)
UMP
C
is
Relation-like
Function-like
V49
(2)
V50
()
V156
()
V157
()
V158
()
Element
of the
carrier
of
(
TOP-REAL
2
)
E-bound
C
is
complex
ext-real
real
Element
of
REAL
(
TOP-REAL
2
)
|
C
is non
empty
strict
TopSpace-like
T_0
T_1
T_2
V82
()
normal
T_3
T_4
compact
V246
()
pseudocompact
SubSpace
of
TOP-REAL
2
proj1
|
C
is
Relation-like
C
-defined
the
carrier
of
(
TOP-REAL
2
)
-defined
the
carrier
of
(
(
TOP-REAL
2
)
|
C
)
-defined
REAL
-valued
Function-like
non
empty
total
quasi_total
V156
()
V157
()
V158
()
continuous
Element
of
bool
[:
the
carrier
of
(
(
TOP-REAL
2
)
|
C
)
,
REAL
:]
the
carrier
of
(
(
TOP-REAL
2
)
|
C
)
is non
empty
set
[:
the
carrier
of
(
(
TOP-REAL
2
)
|
C
)
,
REAL
:]
is
Relation-like
non
empty
V156
()
V157
()
V158
()
set
bool
[:
the
carrier
of
(
(
TOP-REAL
2
)
|
C
)
,
REAL
:]
is non
empty
set
upper_bound
(
proj1
|
C
)
is
complex
ext-real
real
Element
of
REAL
(
proj1
|
C
)
.:
the
carrier
of
(
(
TOP-REAL
2
)
|
C
)
is non
empty
V166
()
V167
()
V168
()
Element
of
bool
REAL
K662
(
(
(
proj1
|
C
)
.:
the
carrier
of
(
(
TOP-REAL
2
)
|
C
)
)
) is
complex
ext-real
real
Element
of
REAL
W-bound
C
is
complex
ext-real
real
Element
of
REAL
lower_bound
(
proj1
|
C
)
is
complex
ext-real
real
Element
of
REAL
K663
(
(
(
proj1
|
C
)
.:
the
carrier
of
(
(
TOP-REAL
2
)
|
C
)
)
) is
complex
ext-real
real
Element
of
REAL
(
E-bound
C
)
+
(
W-bound
C
)
is
complex
ext-real
real
Element
of
REAL
(
(
E-bound
C
)
+
(
W-bound
C
)
)
/
2 is
complex
ext-real
real
Element
of
REAL
Vertical_Line
(
(
(
E-bound
C
)
+
(
W-bound
C
)
)
/
2
)
is
functional
Element
of
bool
the
carrier
of
(
TOP-REAL
2
)
C
/\
(
Vertical_Line
(
(
(
E-bound
C
)
+
(
W-bound
C
)
)
/
2
)
)
is
functional
Element
of
bool
the
carrier
of
(
TOP-REAL
2
)
proj2
.:
(
C
/\
(
Vertical_Line
(
(
(
E-bound
C
)
+
(
W-bound
C
)
)
/
2
)
)
)
is
V166
()
V167
()
V168
()
Element
of
bool
REAL
K662
(
(
proj2
.:
(
C
/\
(
Vertical_Line
(
(
(
E-bound
C
)
+
(
W-bound
C
)
)
/
2
)
)
)
)
) is
complex
ext-real
real
Element
of
REAL
|[
(
(
(
E-bound
C
)
+
(
W-bound
C
)
)
/
2
)
,
K662
(
(
proj2
.:
(
C
/\
(
Vertical_Line
(
(
(
E-bound
C
)
+
(
W-bound
C
)
)
/
2
)
)
)
)
)
]|
is
Relation-like
Function-like
V49
(2)
V50
()
V156
()
V157
()
V158
()
Element
of the
carrier
of
(
TOP-REAL
2
)
LMP
C
is
Relation-like
Function-like
V49
(2)
V50
()
V156
()
V157
()
V158
()
Element
of the
carrier
of
(
TOP-REAL
2
)
K663
(
(
proj2
.:
(
C
/\
(
Vertical_Line
(
(
(
E-bound
C
)
+
(
W-bound
C
)
)
/
2
)
)
)
)
) is
complex
ext-real
real
Element
of
REAL
|[
(
(
(
E-bound
C
)
+
(
W-bound
C
)
)
/
2
)
,
K663
(
(
proj2
.:
(
C
/\
(
Vertical_Line
(
(
(
E-bound
C
)
+
(
W-bound
C
)
)
/
2
)
)
)
)
)
]|
is
Relation-like
Function-like
V49
(2)
V50
()
V156
()
V157
()
V158
()
Element
of the
carrier
of
(
TOP-REAL
2
)
Upper_Arc
C
is
functional
non
empty
proper
closed
compact
bounded
with_the_max_arc
Element
of
bool
the
carrier
of
(
TOP-REAL
2
)
Lower_Arc
C
is
functional
non
empty
proper
closed
compact
bounded
with_the_max_arc
Element
of
bool
the
carrier
of
(
TOP-REAL
2
)
(
Upper_Arc
C
)
\/
(
Lower_Arc
C
)
is
functional
non
empty
closed
Element
of
bool
the
carrier
of
(
TOP-REAL
2
)
W-min
C
is
Relation-like
Function-like
V49
(2)
V50
()
V156
()
V157
()
V158
()
Element
of the
carrier
of
(
TOP-REAL
2
)
W-most
C
is
functional
non
empty
proper
closed
compact
bounded
Element
of
bool
the
carrier
of
(
TOP-REAL
2
)
SW-corner
C
is
Relation-like
Function-like
V49
(2)
V50
()
V156
()
V157
()
V158
()
Element
of the
carrier
of
(
TOP-REAL
2
)
S-bound
C
is
complex
ext-real
real
Element
of
REAL
proj2
|
C
is
Relation-like
C
-defined
the
carrier
of
(
TOP-REAL
2
)
-defined
the
carrier
of
(
(
TOP-REAL
2
)
|
C
)
-defined
REAL
-valued
Function-like
non
empty
total
quasi_total
V156
()
V157
()
V158
()
continuous
Element
of
bool
[:
the
carrier
of
(
(
TOP-REAL
2
)
|
C
)
,
REAL
:]
lower_bound
(
proj2
|
C
)
is
complex
ext-real
real
Element
of
REAL
(
proj2
|
C
)
.:
the
carrier
of
(
(
TOP-REAL
2
)
|
C
)
is non
empty
V166
()
V167
()
V168
()
Element
of
bool
REAL
K663
(
(
(
proj2
|
C
)
.:
the
carrier
of
(
(
TOP-REAL
2
)
|
C
)
)
) is
complex
ext-real
real
Element
of
REAL
|[
(
W-bound
C
)
,
(
S-bound
C
)
]|
is
Relation-like
Function-like
V49
(2)
V50
()
V156
()
V157
()
V158
()
Element
of the
carrier
of
(
TOP-REAL
2
)
NW-corner
C
is
Relation-like
Function-like
V49
(2)
V50
()
V156
()
V157
()
V158
()
Element
of the
carrier
of
(
TOP-REAL
2
)
N-bound
C
is
complex
ext-real
real
Element
of
REAL
upper_bound
(
proj2
|
C
)
is
complex
ext-real
real
Element
of
REAL
K662
(
(
(
proj2
|
C
)
.:
the
carrier
of
(
(
TOP-REAL
2
)
|
C
)
)
) is
complex
ext-real
real
Element
of
REAL
|[
(
W-bound
C
)
,
(
N-bound
C
)
]|
is
Relation-like
Function-like
V49
(2)
V50
()
V156
()
V157
()
V158
()
Element
of the
carrier
of
(
TOP-REAL
2
)
LSeg
(
(
SW-corner
C
)
,
(
NW-corner
C
)
) is
functional
proper
closed
closed
boundary
nowhere_dense
connected
compact
compact
bounded
bounded
vertical
Element
of
bool
the
carrier
of
(
TOP-REAL
2
)
{
(
(
(
1
-
b
1
)
*
(
SW-corner
C
)
)
+
(
b
1
*
(
NW-corner
C
)
)
)
where
b
1
is
complex
ext-real
real
Element
of
REAL
: (
0
<=
b
1
&
b
1
<=
1 )
}
is
set
(
LSeg
(
(
SW-corner
C
)
,
(
NW-corner
C
)
)
)
/\
C
is
functional
proper
closed
compact
bounded
Element
of
bool
the
carrier
of
(
TOP-REAL
2
)
(
TOP-REAL
2
)
|
(
W-most
C
)
is non
empty
strict
TopSpace-like
T_0
T_1
T_2
V82
()
normal
T_3
T_4
compact
V246
()
pseudocompact
SubSpace
of
TOP-REAL
2
proj2
|
(
W-most
C
)
is
Relation-like
W-most
C
-defined
the
carrier
of
(
TOP-REAL
2
)
-defined
the
carrier
of
(
(
TOP-REAL
2
)
|
(
W-most
C
)
)
-defined
REAL
-valued
Function-like
non
empty
total
quasi_total
V156
()
V157
()
V158
()
continuous
Element
of
bool
[:
the
carrier
of
(
(
TOP-REAL
2
)
|
(
W-most
C
)
)
,
REAL
:]
the
carrier
of
(
(
TOP-REAL
2
)
|
(
W-most
C
)
)
is non
empty
set
[:
the
carrier
of
(
(
TOP-REAL
2
)
|
(
W-most
C
)
)
,
REAL
:]
is
Relation-like
non
empty
V156
()
V157
()
V158
()
set
bool
[:
the
carrier
of
(
(
TOP-REAL
2
)
|
(
W-most
C
)
)
,
REAL
:]
is non
empty
set
lower_bound
(
proj2
|
(
W-most
C
)
)
is
complex
ext-real
real
Element
of
REAL
(
proj2
|
(
W-most
C
)
)
.:
the
carrier
of
(
(
TOP-REAL
2
)
|
(
W-most
C
)
)
is non
empty
V166
()
V167
()
V168
()
Element
of
bool
REAL
K663
(
(
(
proj2
|
(
W-most
C
)
)
.:
the
carrier
of
(
(
TOP-REAL
2
)
|
(
W-most
C
)
)
)
) is
complex
ext-real
real
Element
of
REAL
|[
(
W-bound
C
)
,
(
lower_bound
(
proj2
|
(
W-most
C
)
)
)
]|
is
Relation-like
Function-like
V49
(2)
V50
()
V156
()
V157
()
V158
()
Element
of the
carrier
of
(
TOP-REAL
2
)
E-max
C
is
Relation-like
Function-like
V49
(2)
V50
()
V156
()
V157
()
V158
()
Element
of the
carrier
of
(
TOP-REAL
2
)
E-most
C
is
functional
non
empty
proper
closed
compact
bounded
Element
of
bool
the
carrier
of
(
TOP-REAL
2
)
SE-corner
C
is
Relation-like
Function-like
V49
(2)
V50
()
V156
()
V157
()
V158
()
Element
of the
carrier
of
(
TOP-REAL
2
)
|[
(
E-bound
C
)
,
(
S-bound
C
)
]|
is
Relation-like
Function-like
V49
(2)
V50
()
V156
()
V157
()
V158
()
Element
of the
carrier
of
(
TOP-REAL
2
)
NE-corner
C
is
Relation-like
Function-like
V49
(2)
V50
()
V156
()
V157
()
V158
()
Element
of the
carrier
of
(
TOP-REAL
2
)
|[
(
E-bound
C
)
,
(
N-bound
C
)
]|
is
Relation-like
Function-like
V49
(2)
V50
()
V156
()
V157
()
V158
()
Element
of the
carrier
of
(
TOP-REAL
2
)
LSeg
(
(
SE-corner
C
)
,
(
NE-corner
C
)
) is
functional
proper
closed
closed
boundary
nowhere_dense
connected
compact
compact
bounded
bounded
vertical
Element
of
bool
the
carrier
of
(
TOP-REAL
2
)
{
(
(
(
1
-
b
1
)
*
(
SE-corner
C
)
)
+
(
b
1
*
(
NE-corner
C
)
)
)
where
b
1
is
complex
ext-real
real
Element
of
REAL
: (
0
<=
b
1
&
b
1
<=
1 )
}
is
set
(
LSeg
(
(
SE-corner
C
)
,
(
NE-corner
C
)
)
)
/\
C
is
functional
proper
closed
compact
bounded
Element
of
bool
the
carrier
of
(
TOP-REAL
2
)
(
TOP-REAL
2
)
|
(
E-most
C
)
is non
empty
strict
TopSpace-like
T_0
T_1
T_2
V82
()
normal
T_3
T_4
compact
V246
()
pseudocompact
SubSpace
of
TOP-REAL
2
proj2
|
(
E-most
C
)
is
Relation-like
E-most
C
-defined
the
carrier
of
(
TOP-REAL
2
)
-defined
the
carrier
of
(
(
TOP-REAL
2
)
|
(
E-most
C
)
)
-defined
REAL
-valued
Function-like
non
empty
total
quasi_total
V156
()
V157
()
V158
()
continuous
Element
of
bool
[:
the
carrier
of
(
(
TOP-REAL
2
)
|
(
E-most
C
)
)
,
REAL
:]
the
carrier
of
(
(
TOP-REAL
2
)
|
(
E-most
C
)
)
is non
empty
set
[:
the
carrier
of
(
(
TOP-REAL
2
)
|
(
E-most
C
)
)
,
REAL
:]
is
Relation-like
non
empty
V156
()
V157
()
V158
()
set
bool
[:
the
carrier
of
(
(
TOP-REAL
2
)
|
(
E-most
C
)
)
,
REAL
:]
is non
empty
set
upper_bound
(
proj2
|
(
E-most
C
)
)
is
complex
ext-real
real
Element
of
REAL
(
proj2
|
(
E-most
C
)
)
.:
the
carrier
of
(
(
TOP-REAL
2
)
|
(
E-most
C
)
)
is non
empty
V166
()
V167
()
V168
()
Element
of
bool
REAL
K662
(
(
(
proj2
|
(
E-most
C
)
)
.:
the
carrier
of
(
(
TOP-REAL
2
)
|
(
E-most
C
)
)
)
) is
complex
ext-real
real
Element
of
REAL
|[
(
E-bound
C
)
,
(
upper_bound
(
proj2
|
(
E-most
C
)
)
)
]|
is
Relation-like
Function-like
V49
(2)
V50
()
V156
()
V157
()
V158
()
Element
of the
carrier
of
(
TOP-REAL
2
)
W-bound
(
Upper_Arc
C
)
is
complex
ext-real
real
Element
of
REAL
(
TOP-REAL
2
)
|
(
Upper_Arc
C
)
is non
empty
strict
TopSpace-like
T_0
T_1
T_2
V82
()
normal
T_3
T_4
compact
V246
()
pseudocompact
SubSpace
of
TOP-REAL
2
proj1
|
(
Upper_Arc
C
)
is
Relation-like
Upper_Arc
C
-defined
the
carrier
of
(
TOP-REAL
2
)
-defined
the
carrier
of
(
(
TOP-REAL
2
)
|
(
Upper_Arc
C
)
)
-defined
REAL
-valued
Function-like
non
empty
total
quasi_total
V156
()
V157
()
V158
()
continuous
Element
of
bool
[:
the
carrier
of
(
(
TOP-REAL
2
)
|
(
Upper_Arc
C
)
)
,
REAL
:]
the
carrier
of
(
(
TOP-REAL
2
)
|
(
Upper_Arc
C
)
)
is non
empty
set
[:
the
carrier
of
(
(
TOP-REAL
2
)
|
(
Upper_Arc
C
)
)
,
REAL
:]
is
Relation-like
non
empty
V156
()
V157
()
V158
()
set
bool
[:
the
carrier
of
(
(
TOP-REAL
2
)
|
(
Upper_Arc
C
)
)
,
REAL
:]
is non
empty
set
lower_bound
(
proj1
|
(
Upper_Arc
C
)
)
is
complex
ext-real
real
Element
of
REAL
(
proj1
|
(
Upper_Arc
C
)
)
.:
the
carrier
of
(
(
TOP-REAL
2
)
|
(
Upper_Arc
C
)
)
is non
empty
V166
()
V167
()
V168
()
Element
of
bool
REAL
K663
(
(
(
proj1
|
(
Upper_Arc
C
)
)
.:
the
carrier
of
(
(
TOP-REAL
2
)
|
(
Upper_Arc
C
)
)
)
) is
complex
ext-real
real
Element
of
REAL
E-bound
(
Upper_Arc
C
)
is
complex
ext-real
real
Element
of
REAL
upper_bound
(
proj1
|
(
Upper_Arc
C
)
)
is
complex
ext-real
real
Element
of
REAL
K662
(
(
(
proj1
|
(
Upper_Arc
C
)
)
.:
the
carrier
of
(
(
TOP-REAL
2
)
|
(
Upper_Arc
C
)
)
)
) is
complex
ext-real
real
Element
of
REAL
(
Upper_Arc
C
)
/\
(
Lower_Arc
C
)
is
functional
proper
closed
compact
bounded
Element
of
bool
the
carrier
of
(
TOP-REAL
2
)
W-bound
(
Lower_Arc
C
)
is
complex
ext-real
real
Element
of
REAL
(
TOP-REAL
2
)
|
(
Lower_Arc
C
)
is non
empty
strict
TopSpace-like
T_0
T_1
T_2
V82
()
normal
T_3
T_4
compact
V246
()
pseudocompact
SubSpace
of
TOP-REAL
2
proj1
|
(
Lower_Arc
C
)
is
Relation-like
Lower_Arc
C
-defined
the
carrier
of
(
TOP-REAL
2
)
-defined
the
carrier
of
(
(
TOP-REAL
2
)
|
(
Lower_Arc
C
)
)
-defined
REAL
-valued
Function-like
non
empty
total
quasi_total
V156
()
V157
()
V158
()
continuous
Element
of
bool
[:
the
carrier
of
(
(
TOP-REAL
2
)
|
(
Lower_Arc
C
)
)
,
REAL
:]
the
carrier
of
(
(
TOP-REAL
2
)
|
(
Lower_Arc
C
)
)
is non
empty
set
[:
the
carrier
of
(
(
TOP-REAL
2
)
|
(
Lower_Arc
C
)
)
,
REAL
:]
is
Relation-like
non
empty
V156
()
V157
()
V158
()
set
bool
[:
the
carrier
of
(
(
TOP-REAL
2
)
|
(
Lower_Arc
C
)
)
,
REAL
:]
is non
empty
set
lower_bound
(
proj1
|
(
Lower_Arc
C
)
)
is
complex
ext-real
real
Element
of
REAL
(
proj1
|
(
Lower_Arc
C
)
)
.:
the
carrier
of
(
(
TOP-REAL
2
)
|
(
Lower_Arc
C
)
)
is non
empty
V166
()
V167
()
V168
()
Element
of
bool
REAL
K663
(
(
(
proj1
|
(
Lower_Arc
C
)
)
.:
the
carrier
of
(
(
TOP-REAL
2
)
|
(
Lower_Arc
C
)
)
)
) is
complex
ext-real
real
Element
of
REAL
E-bound
(
Lower_Arc
C
)
is
complex
ext-real
real
Element
of
REAL
upper_bound
(
proj1
|
(
Lower_Arc
C
)
)
is
complex
ext-real
real
Element
of
REAL
K662
(
(
(
proj1
|
(
Lower_Arc
C
)
)
.:
the
carrier
of
(
(
TOP-REAL
2
)
|
(
Lower_Arc
C
)
)
)
) is
complex
ext-real
real
Element
of
REAL
(
Lower_Arc
C
)
\/
(
Upper_Arc
C
)
is
functional
non
empty
closed
Element
of
bool
the
carrier
of
(
TOP-REAL
2
)
(
Lower_Arc
C
)
/\
(
Upper_Arc
C
)
is
functional
proper
closed
compact
bounded
Element
of
bool
the
carrier
of
(
TOP-REAL
2
)
C
is
functional
non
empty
proper
closed
connected
compact
bounded
being_simple_closed_curve
with_the_max_arc
Element
of
bool
the
carrier
of
(
TOP-REAL
2
)
UMP
C
is
Relation-like
Function-like
V49
(2)
V50
()
V156
()
V157
()
V158
()
Element
of the
carrier
of
(
TOP-REAL
2
)
E-bound
C
is
complex
ext-real
real
Element
of
REAL
(
TOP-REAL
2
)
|
C
is non
empty
strict
TopSpace-like
T_0
T_1
T_2
V82
()
normal
T_3
T_4
compact
V246
()
pseudocompact
SubSpace
of
TOP-REAL
2
proj1
|
C
is
Relation-like
C
-defined
the
carrier
of
(
TOP-REAL
2
)
-defined
the
carrier
of
(
(
TOP-REAL
2
)
|
C
)
-defined
REAL
-valued
Function-like
non
empty
total
quasi_total
V156
()
V157
()
V158
()
continuous
Element
of
bool
[:
the
carrier
of
(
(
TOP-REAL
2
)
|
C
)
,
REAL
:]
the
carrier
of
(
(
TOP-REAL
2
)
|
C
)
is non
empty
set
[:
the
carrier
of
(
(
TOP-REAL
2
)
|
C
)
,
REAL
:]
is
Relation-like
non
empty
V156
()
V157
()
V158
()
set
bool
[:
the
carrier
of
(
(
TOP-REAL
2
)
|
C
)
,
REAL
:]
is non
empty
set
upper_bound
(
proj1
|
C
)
is
complex
ext-real
real
Element
of
REAL
(
proj1
|
C
)
.:
the
carrier
of
(
(
TOP-REAL
2
)
|
C
)
is non
empty
V166
()
V167
()
V168
()
Element
of
bool
REAL
K662
(
(
(
proj1
|
C
)
.:
the
carrier
of
(
(
TOP-REAL
2
)
|
C
)
)
) is
complex
ext-real
real
Element
of
REAL
W-bound
C
is
complex
ext-real
real
Element
of
REAL
lower_bound
(
proj1
|
C
)
is
complex
ext-real
real
Element
of
REAL
K663
(
(
(
proj1
|
C
)
.:
the
carrier
of
(
(
TOP-REAL
2
)
|
C
)
)
) is
complex
ext-real
real
Element
of
REAL
(
E-bound
C
)
+
(
W-bound
C
)
is
complex
ext-real
real
Element
of
REAL
(
(
E-bound
C
)
+
(
W-bound
C
)
)
/
2 is
complex
ext-real
real
Element
of
REAL
Vertical_Line
(
(
(
E-bound
C
)
+
(
W-bound
C
)
)
/
2
)
is
functional
Element
of
bool
the
carrier
of
(
TOP-REAL
2
)
C
/\
(
Vertical_Line
(
(
(
E-bound
C
)
+
(
W-bound
C
)
)
/
2
)
)
is
functional
Element
of
bool
the
carrier
of
(
TOP-REAL
2
)
proj2
.:
(
C
/\
(
Vertical_Line
(
(
(
E-bound
C
)
+
(
W-bound
C
)
)
/
2
)
)
)
is
V166
()
V167
()
V168
()
Element
of
bool
REAL
K662
(
(
proj2
.:
(
C
/\
(
Vertical_Line
(
(
(
E-bound
C
)
+
(
W-bound
C
)
)
/
2
)
)
)
)
) is
complex
ext-real
real
Element
of
REAL
|[
(
(
(
E-bound
C
)
+
(
W-bound
C
)
)
/
2
)
,
K662
(
(
proj2
.:
(
C
/\
(
Vertical_Line
(
(
(
E-bound
C
)
+
(
W-bound
C
)
)
/
2
)
)
)
)
)
]|
is
Relation-like
Function-like
V49
(2)
V50
()
V156
()
V157
()
V158
()
Element
of the
carrier
of
(
TOP-REAL
2
)
LMP
C
is
Relation-like
Function-like
V49
(2)
V50
()
V156
()
V157
()
V158
()
Element
of the
carrier
of
(
TOP-REAL
2
)
K663
(
(
proj2
.:
(
C
/\
(
Vertical_Line
(
(
(
E-bound
C
)
+
(
W-bound
C
)
)
/
2
)
)
)
)
) is
complex
ext-real
real
Element
of
REAL
|[
(
(
(
E-bound
C
)
+
(
W-bound
C
)
)
/
2
)
,
K663
(
(
proj2
.:
(
C
/\
(
Vertical_Line
(
(
(
E-bound
C
)
+
(
W-bound
C
)
)
/
2
)
)
)
)
)
]|
is
Relation-like
Function-like
V49
(2)
V50
()
V156
()
V157
()
V158
()
Element
of the
carrier
of
(
TOP-REAL
2
)
C
`
is
functional
non
empty
open
Element
of
bool
the
carrier
of
(
TOP-REAL
2
)
the
carrier
of
(
TOP-REAL
2
)
\
C
is
set
(
TOP-REAL
2
)
|
(
C
`
)
is non
empty
strict
TopSpace-like
T_0
T_1
T_2
V118
(
TOP-REAL
2)
SubSpace
of
TOP-REAL
2
l
is
functional
non
empty
proper
closed
compact
bounded
with_the_max_arc
Element
of
bool
the
carrier
of
(
TOP-REAL
2
)
LJ
is
functional
non
empty
proper
closed
compact
bounded
with_the_max_arc
Element
of
bool
the
carrier
of
(
TOP-REAL
2
)
l
\/
LJ
is
functional
non
empty
closed
Element
of
bool
the
carrier
of
(
TOP-REAL
2
)
l
/\
LJ
is
functional
proper
closed
compact
bounded
Element
of
bool
the
carrier
of
(
TOP-REAL
2
)
W-bound
l
is
complex
ext-real
real
Element
of
REAL
(
TOP-REAL
2
)
|
l
is non
empty
strict
TopSpace-like
T_0
T_1
T_2
V82
()
normal
T_3
T_4
compact
V246
()
pseudocompact
SubSpace
of
TOP-REAL
2
proj1
|
l
is
Relation-like
l
-defined
the
carrier
of
(
TOP-REAL
2
)
-defined
the
carrier
of
(
(
TOP-REAL
2
)
|
l
)
-defined
REAL
-valued
Function-like
non
empty
total
quasi_total
V156
()
V157
()
V158
()
continuous
Element
of
bool
[:
the
carrier
of
(
(
TOP-REAL
2
)
|
l
)
,
REAL
:]
the
carrier
of
(
(
TOP-REAL
2
)
|
l
)
is non
empty
set
[:
the
carrier
of
(
(
TOP-REAL
2
)
|
l
)
,
REAL
:]
is
Relation-like
non
empty
V156
()
V157
()
V158
()
set
bool
[:
the
carrier
of
(
(
TOP-REAL
2
)
|
l
)
,
REAL
:]
is non
empty
set
lower_bound
(
proj1
|
l
)
is
complex
ext-real
real
Element
of
REAL
(
proj1
|
l
)
.:
the
carrier
of
(
(
TOP-REAL
2
)
|
l
)
is non
empty
V166
()
V167
()
V168
()
Element
of
bool
REAL
K663
(
(
(
proj1
|
l
)
.:
the
carrier
of
(
(
TOP-REAL
2
)
|
l
)
)
) is
complex
ext-real
real
Element
of
REAL
E-bound
l
is
complex
ext-real
real
Element
of
REAL
upper_bound
(
proj1
|
l
)
is
complex
ext-real
real
Element
of
REAL
K662
(
(
(
proj1
|
l
)
.:
the
carrier
of
(
(
TOP-REAL
2
)
|
l
)
)
) is
complex
ext-real
real
Element
of
REAL
LMP
l
is
Relation-like
Function-like
V49
(2)
V50
()
V156
()
V157
()
V158
()
Element
of the
carrier
of
(
TOP-REAL
2
)
(
E-bound
l
)
+
(
W-bound
l
)
is
complex
ext-real
real
Element
of
REAL
(
(
E-bound
l
)
+
(
W-bound
l
)
)
/
2 is
complex
ext-real
real
Element
of
REAL
Vertical_Line
(
(
(
E-bound
l
)
+
(
W-bound
l
)
)
/
2
)
is
functional
Element
of
bool
the
carrier
of
(
TOP-REAL
2
)
l
/\
(
Vertical_Line
(
(
(
E-bound
l
)
+
(
W-bound
l
)
)
/
2
)
)
is
functional
Element
of
bool
the
carrier
of
(
TOP-REAL
2
)
proj2
.:
(
l
/\
(
Vertical_Line
(
(
(
E-bound
l
)
+
(
W-bound
l
)
)
/
2
)
)
)
is
V166
()
V167
()
V168
()
Element
of
bool
REAL
K663
(
(
proj2
.:
(
l
/\
(
Vertical_Line
(
(
(
E-bound
l
)
+
(
W-bound
l
)
)
/
2
)
)
)
)
) is
complex
ext-real
real
Element
of
REAL
|[
(
(
(
E-bound
l
)
+
(
W-bound
l
)
)
/
2
)
,
K663
(
(
proj2
.:
(
l
/\
(
Vertical_Line
(
(
(
E-bound
l
)
+
(
W-bound
l
)
)
/
2
)
)
)
)
)
]|
is
Relation-like
Function-like
V49
(2)
V50
()
V156
()
V157
()
V158
()
Element
of the
carrier
of
(
TOP-REAL
2
)
LSeg
(
(
LMP
l
)
,
|[
0
,
(
-
3
)
]|
) is
functional
proper
closed
closed
boundary
nowhere_dense
connected
compact
compact
bounded
bounded
Element
of
bool
the
carrier
of
(
TOP-REAL
2
)
{
(
(
(
1
-
b
1
)
*
(
LMP
l
)
)
+
(
b
1
*
|[
0
,
(
-
3
)
]|
)
)
where
b
1
is
complex
ext-real
real
Element
of
REAL
: (
0
<=
b
1
&
b
1
<=
1 )
}
is
set
(
LSeg
(
(
LMP
l
)
,
|[
0
,
(
-
3
)
]|
)
)
/\
LJ
is
functional
proper
closed
compact
bounded
Element
of
bool
the
carrier
of
(
TOP-REAL
2
)
UMP
(
(
LSeg
(
(
LMP
l
)
,
|[
0
,
(
-
3
)
]|
)
)
/\
LJ
)
is
Relation-like
Function-like
V49
(2)
V50
()
V156
()
V157
()
V158
()
Element
of the
carrier
of
(
TOP-REAL
2
)
E-bound
(
(
LSeg
(
(
LMP
l
)
,
|[
0
,
(
-
3
)
]|
)
)
/\
LJ
)
is
complex
ext-real
real
Element
of
REAL
(
TOP-REAL
2
)
|
(
(
LSeg
(
(
LMP
l
)
,
|[
0
,
(
-
3
)
]|
)
)
/\
LJ
)
is
strict
TopSpace-like
T_0
T_1
T_2
SubSpace
of
TOP-REAL
2
proj1
|
(
(
LSeg
(
(
LMP
l
)
,
|[
0
,
(
-
3
)
]|
)
)
/\
LJ
)
is
Relation-like
(
LSeg
(
(
LMP
l
)
,
|[
0
,
(
-
3
)
]|
)
)
/\
LJ
-defined
the
carrier
of
(
TOP-REAL
2
)
-defined
the
carrier
of
(
(
TOP-REAL
2
)
|
(
(
LSeg
(
(
LMP
l
)
,
|[
0
,
(
-
3
)
]|
)
)
/\
LJ
)
)
-defined
REAL
-valued
Function-like
total
quasi_total
V156
()
V157
()
V158
()
continuous
Element
of
bool
[:
the
carrier
of
(
(
TOP-REAL
2
)
|
(
(
LSeg
(
(
LMP
l
)
,
|[
0
,
(
-
3
)
]|
)
)
/\
LJ
)
)
,
REAL
:]
the
carrier
of
(
(
TOP-REAL
2
)
|
(
(
LSeg
(
(
LMP
l
)
,
|[
0
,
(
-
3
)
]|
)
)
/\
LJ
)
)
is
set
[:
the
carrier
of
(
(
TOP-REAL
2
)
|
(
(
LSeg
(
(
LMP
l
)
,
|[
0
,
(
-
3
)
]|
)
)
/\
LJ
)
)
,
REAL
:]
is
Relation-like
V156
()
V157
()
V158
()
set
bool
[:
the
carrier
of
(
(
TOP-REAL
2
)
|
(
(
LSeg
(
(
LMP
l
)
,
|[
0
,
(
-
3
)
]|
)
)
/\
LJ
)
)
,
REAL
:]
is non
empty
set
upper_bound
(
proj1
|
(
(
LSeg
(
(
LMP
l
)
,
|[
0
,
(
-
3
)
]|
)
)
/\
LJ
)
)
is
complex
ext-real
real
Element
of
REAL
(
proj1
|
(
(
LSeg
(
(
LMP
l
)
,
|[
0
,
(
-
3
)
]|
)
)
/\
LJ
)
)
.:
the
carrier
of
(
(
TOP-REAL
2
)
|
(
(
LSeg
(
(
LMP
l
)
,
|[
0
,
(
-
3
)
]|
)
)
/\
LJ
)
)
is
V166
()
V167
()
V168
()
Element
of
bool
REAL
K662
(
(
(
proj1
|
(
(
LSeg
(
(
LMP
l
)
,
|[
0
,
(
-
3
)
]|
)
)
/\
LJ
)
)
.:
the
carrier
of
(
(
TOP-REAL
2
)
|
(
(
LSeg
(
(
LMP
l
)
,
|[
0
,
(
-
3
)
]|
)
)
/\
LJ
)
)
)
) is
complex
ext-real
real
Element
of
REAL
W-bound
(
(
LSeg
(
(
LMP
l
)
,
|[
0
,
(
-
3
)
]|
)
)
/\
LJ
)
is
complex
ext-real
real
Element
of
REAL
lower_bound
(
proj1
|
(
(
LSeg
(
(
LMP
l
)
,
|[
0
,
(
-
3
)
]|
)
)
/\
LJ
)
)
is
complex
ext-real
real
Element
of
REAL
K663
(
(
(
proj1
|
(
(
LSeg
(
(
LMP
l
)
,
|[
0
,
(
-
3
)
]|
)
)
/\
LJ
)
)
.:
the
carrier
of
(
(
TOP-REAL
2
)
|
(
(
LSeg
(
(
LMP
l
)
,
|[
0
,
(
-
3
)
]|
)
)
/\
LJ
)
)
)
) is
complex
ext-real
real
Element
of
REAL
(
E-bound
(
(
LSeg
(
(
LMP
l
)
,
|[
0
,
(
-
3
)
]|
)
)
/\
LJ
)
)
+
(
W-bound
(
(
LSeg
(
(
LMP
l
)
,
|[
0
,
(
-
3
)
]|
)
)
/\
LJ
)
)
is
complex
ext-real
real
Element
of
REAL
(
(
E-bound
(
(
LSeg
(
(
LMP
l
)
,
|[
0
,
(
-
3
)
]|
)
)
/\
LJ
)
)
+
(
W-bound
(
(
LSeg
(
(
LMP
l
)
,
|[
0
,
(
-
3
)
]|
)
)
/\
LJ
)
)
)
/
2 is
complex
ext-real
real
Element
of
REAL
Vertical_Line
(
(
(
E-bound
(
(
LSeg
(
(
LMP
l
)
,
|[
0
,
(
-
3
)
]|
)
)
/\
LJ
)
)
+
(
W-bound
(
(
LSeg
(
(
LMP
l
)
,
|[
0
,
(
-
3
)
]|
)
)
/\
LJ
)
)
)
/
2
)
is
functional
Element
of
bool
the
carrier
of
(
TOP-REAL
2
)
(
(
LSeg
(
(
LMP
l
)
,
|[
0
,
(
-
3
)
]|
)
)
/\
LJ
)
/\
(
Vertical_Line
(
(
(
E-bound
(
(
LSeg
(
(
LMP
l
)
,
|[
0
,
(
-
3
)
]|
)
)
/\
LJ
)
)
+
(
W-bound
(
(
LSeg
(
(
LMP
l
)
,
|[
0
,
(
-
3
)
]|
)
)
/\
LJ
)
)
)
/
2
)
)
is
functional
Element
of
bool
the
carrier
of
(
TOP-REAL
2
)
proj2
.:
(
(
(
LSeg
(
(
LMP
l
)
,
|[
0
,
(
-
3
)
]|
)
)
/\
LJ
)
/\
(
Vertical_Line
(
(
(
E-bound
(
(
LSeg
(
(
LMP
l
)
,
|[
0
,
(
-
3
)
]|
)
)
/\
LJ
)
)
+
(
W-bound
(
(
LSeg
(
(
LMP
l
)
,
|[
0
,
(
-
3
)
]|
)
)
/\
LJ
)
)
)
/
2
)
)
)
is
V166
()
V167
()
V168
()
Element
of
bool
REAL
K662
(
(
proj2
.:
(
(
(
LSeg
(
(
LMP
l
)
,
|[
0
,
(
-
3
)
]|
)
)
/\
LJ
)
/\
(
Vertical_Line
(
(
(
E-bound
(
(
LSeg
(
(
LMP
l
)
,
|[
0
,
(
-
3
)
]|
)
)
/\
LJ
)
)
+
(
W-bound
(
(
LSeg
(
(
LMP
l
)
,
|[
0
,
(
-
3
)
]|
)
)
/\
LJ
)
)
)
/
2
)
)
)
)
) is
complex
ext-real
real
Element
of
REAL
|[
(
(
(
E-bound
(
(
LSeg
(
(
LMP
l
)
,
|[
0
,
(
-
3
)
]|
)
)
/\
LJ
)
)
+
(
W-bound
(
(
LSeg
(
(
LMP
l
)
,
|[
0
,
(
-
3
)
]|
)
)
/\
LJ
)
)
)
/
2
)
,
K662
(
(
proj2
.:
(
(
(
LSeg
(
(
LMP
l
)
,
|[
0
,
(
-
3
)
]|
)
)
/\
LJ
)
/\
(
Vertical_Line
(
(
(
E-bound
(
(
LSeg
(
(
LMP
l
)
,
|[
0
,
(
-
3
)
]|
)
)
/\
LJ
)
)
+
(
W-bound
(
(
LSeg
(
(
LMP
l
)
,
|[
0
,
(
-
3
)
]|
)
)
/\
LJ
)
)
)
/
2
)
)
)
)
)
]|
is
Relation-like
Function-like
V49
(2)
V50
()
V156
()
V157
()
V158
()
Element
of the
carrier
of
(
TOP-REAL
2
)
(
UMP
(
(
LSeg
(
(
LMP
l
)
,
|[
0
,
(
-
3
)
]|
)
)
/\
LJ
)
)
+
(
LMP
l
)
is
Relation-like
Function-like
V49
(2)
V50
()
V156
()
V157
()
V158
()
Element
of the
carrier
of
(
TOP-REAL
2
)
the
U7
of
(
TOP-REAL
2
)
is
Relation-like
[:
the
carrier
of
(
TOP-REAL
2
)
, the
carrier
of
(
TOP-REAL
2
)
:]
-defined
the
carrier
of
(
TOP-REAL
2
)
-valued
Function-like
non
empty
total
quasi_total
Element
of
bool
[:
[:
the
carrier
of
(
TOP-REAL
2
)
, the
carrier
of
(
TOP-REAL
2
)
:]
, the
carrier
of
(
TOP-REAL
2
)
:]
[:
[:
the
carrier
of
(
TOP-REAL
2
)
, the
carrier
of
(
TOP-REAL
2
)
:]
, the
carrier
of
(
TOP-REAL
2
)
:]
is
Relation-like
non
empty
set
bool
[:
[:
the
carrier
of
(
TOP-REAL
2
)
, the
carrier
of
(
TOP-REAL
2
)
:]
, the
carrier
of
(
TOP-REAL
2
)
:]
is non
empty
set
K224
( the
carrier
of
(
TOP-REAL
2
)
, the
U7
of
(
TOP-REAL
2
)
,
(
UMP
(
(
LSeg
(
(
LMP
l
)
,
|[
0
,
(
-
3
)
]|
)
)
/\
LJ
)
)
,
(
LMP
l
)
) is
Relation-like
Function-like
V49
(2)
V50
()
V156
()
V157
()
V158
()
Element
of the
carrier
of
(
TOP-REAL
2
)
(
1
/
2
)
*
(
(
UMP
(
(
LSeg
(
(
LMP
l
)
,
|[
0
,
(
-
3
)
]|
)
)
/\
LJ
)
)
+
(
LMP
l
)
)
is
Relation-like
Function-like
V49
(2)
V50
()
V156
()
V157
()
V158
()
Element
of the
carrier
of
(
TOP-REAL
2
)
Down
(
(
(
1
/
2
)
*
(
(
UMP
(
(
LSeg
(
(
LMP
l
)
,
|[
0
,
(
-
3
)
]|
)
)
/\
LJ
)
)
+
(
LMP
l
)
)
)
,
(
C
`
)
) is
Element
of the
carrier
of
(
(
TOP-REAL
2
)
|
(
C
`
)
)
the
carrier
of
(
(
TOP-REAL
2
)
|
(
C
`
)
)
is non
empty
set
Component_of
(
Down
(
(
(
1
/
2
)
*
(
(
UMP
(
(
LSeg
(
(
LMP
l
)
,
|[
0
,
(
-
3
)
]|
)
)
/\
LJ
)
)
+
(
LMP
l
)
)
)
,
(
C
`
)
)
)
is
Element
of
bool
the
carrier
of
(
(
TOP-REAL
2
)
|
(
C
`
)
)
bool
the
carrier
of
(
(
TOP-REAL
2
)
|
(
C
`
)
)
is non
empty
set
(
W-bound
C
)
+
(
E-bound
C
)
is
complex
ext-real
real
Element
of
REAL
(
(
W-bound
C
)
+
(
E-bound
C
)
)
/
2 is
complex
ext-real
real
Element
of
REAL
Ux
is
functional
Element
of
bool
the
carrier
of
(
TOP-REAL
2
)
(
UMP
C
)
`2
is
complex
ext-real
real
Element
of
REAL
(
LMP
l
)
`1
is
complex
ext-real
real
Element
of
REAL
(
UMP
C
)
`1
is
complex
ext-real
real
Element
of
REAL
Pml
is
Relation-like
the
carrier
of
I[01]
-defined
the
carrier
of
(
TOP-REAL
2
)
-valued
Function-like
non
empty
total
quasi_total
continuous
Path
of
UMP
C
,
LMP
l
rng
Pml
is
functional
non
empty
Element
of
bool
the
carrier
of
(
TOP-REAL
2
)
(
LMP
C
)
`2
is
complex
ext-real
real
Element
of
REAL
(
LMP
C
)
`1
is
complex
ext-real
real
Element
of
REAL
Vertical_Line
(
(
(
W-bound
C
)
+
(
E-bound
C
)
)
/
2
)
is
functional
Element
of
bool
the
carrier
of
(
TOP-REAL
2
)
C
/\
(
Vertical_Line
(
(
(
W-bound
C
)
+
(
E-bound
C
)
)
/
2
)
)
is
functional
Element
of
bool
the
carrier
of
(
TOP-REAL
2
)
(
LMP
l
)
`2
is
complex
ext-real
real
Element
of
REAL
(
UMP
(
(
LSeg
(
(
LMP
l
)
,
|[
0
,
(
-
3
)
]|
)
)
/\
LJ
)
)
`1
is
complex
ext-real
real
Element
of
REAL
Pkj
is
Relation-like
the
carrier
of
I[01]
-defined
the
carrier
of
(
TOP-REAL
2
)
-valued
Function-like
non
empty
total
quasi_total
continuous
Path
of
UMP
(
(
LSeg
(
(
LMP
l
)
,
|[
0
,
(
-
3
)
]|
)
)
/\
LJ
)
,
LMP
C
rng
Pkj
is
functional
non
empty
Element
of
bool
the
carrier
of
(
TOP-REAL
2
)
LSeg
(
(
UMP
(
(
LSeg
(
(
LMP
l
)
,
|[
0
,
(
-
3
)
]|
)
)
/\
LJ
)
)
,
(
LMP
l
)
) is
functional
proper
closed
closed
boundary
nowhere_dense
connected
compact
compact
bounded
bounded
Element
of
bool
the
carrier
of
(
TOP-REAL
2
)
{
(
(
(
1
-
b
1
)
*
(
UMP
(
(
LSeg
(
(
LMP
l
)
,
|[
0
,
(
-
3
)
]|
)
)
/\
LJ
)
)
)
+
(
b
1
*
(
LMP
l
)
)
)
where
b
1
is
complex
ext-real
real
Element
of
REAL
: (
0
<=
b
1
&
b
1
<=
1 )
}
is
set
LSeg
(
(
LMP
l
)
,
(
UMP
(
(
LSeg
(
(
LMP
l
)
,
|[
0
,
(
-
3
)
]|
)
)
/\
LJ
)
)
) is
functional
proper
closed
closed
boundary
nowhere_dense
connected
compact
compact
bounded
bounded
Element
of
bool
the
carrier
of
(
TOP-REAL
2
)
{
(
(
(
1
-
b
1
)
*
(
LMP
l
)
)
+
(
b
1
*
(
UMP
(
(
LSeg
(
(
LMP
l
)
,
|[
0
,
(
-
3
)
]|
)
)
/\
LJ
)
)
)
)
where
b
1
is
complex
ext-real
real
Element
of
REAL
: (
0
<=
b
1
&
b
1
<=
1 )
}
is
set
|[
(
(
LMP
l
)
`1
)
,
(
(
LMP
l
)
`2
)
]|
is
Relation-like
Function-like
V49
(2)
V50
()
V156
()
V157
()
V158
()
Element
of the
carrier
of
(
TOP-REAL
2
)
(
UMP
(
(
LSeg
(
(
LMP
l
)
,
|[
0
,
(
-
3
)
]|
)
)
/\
LJ
)
)
`2
is
complex
ext-real
real
Element
of
REAL
|[
(
(
UMP
(
(
LSeg
(
(
LMP
l
)
,
|[
0
,
(
-
3
)
]|
)
)
/\
LJ
)
)
`1
)
,
(
(
UMP
(
(
LSeg
(
(
LMP
l
)
,
|[
0
,
(
-
3
)
]|
)
)
/\
LJ
)
)
`2
)
]|
is
Relation-like
Function-like
V49
(2)
V50
()
V156
()
V157
()
V158
()
Element
of the
carrier
of
(
TOP-REAL
2
)
|[
(
|[
0
,
(
-
3
)
]|
`1
)
,
(
|[
0
,
(
-
3
)
]|
`2
)
]|
is
Relation-like
Function-like
V49
(2)
V50
()
V156
()
V157
()
V158
()
Element
of the
carrier
of
(
TOP-REAL
2
)
{
(
LMP
l
)
,
(
UMP
(
(
LSeg
(
(
LMP
l
)
,
|[
0
,
(
-
3
)
]|
)
)
/\
LJ
)
)
}
is
functional
non
empty
Element
of
bool
the
carrier
of
(
TOP-REAL
2
)
(
LSeg
(
(
LMP
l
)
,
(
UMP
(
(
LSeg
(
(
LMP
l
)
,
|[
0
,
(
-
3
)
]|
)
)
/\
LJ
)
)
)
)
\
{
(
LMP
l
)
,
(
UMP
(
(
LSeg
(
(
LMP
l
)
,
|[
0
,
(
-
3
)
]|
)
)
/\
LJ
)
)
}
is
functional
Element
of
bool
the
carrier
of
(
TOP-REAL
2
)
X
is
set
AR
is
Relation-like
Function-like
V49
(2)
V50
()
V156
()
V157
()
V158
()
Element
of the
carrier
of
(
TOP-REAL
2
)
AR
`1
is
complex
ext-real
real
Element
of
REAL
l
/\
(
Vertical_Line
(
(
(
W-bound
C
)
+
(
E-bound
C
)
)
/
2
)
)
is
functional
Element
of
bool
the
carrier
of
(
TOP-REAL
2
)
AR
`2
is
complex
ext-real
real
Element
of
REAL
W-bound
(
LSeg
(
(
LMP
l
)
,
|[
0
,
(
-
3
)
]|
)
)
is
complex
ext-real
real
Element
of
REAL
(
TOP-REAL
2
)
|
(
LSeg
(
(
LMP
l
)
,
|[
0
,
(
-
3
)
]|
)
)
is
strict
TopSpace-like
T_0
T_1
T_2
SubSpace
of
TOP-REAL
2
proj1
|
(
LSeg
(
(
LMP
l
)
,
|[
0
,
(
-
3
)
]|
)
)
is
Relation-like
LSeg
(
(
LMP
l
)
,
|[
0
,
(
-
3
)
]|
)
-defined
the
carrier
of
(
TOP-REAL
2
)
-defined
the
carrier
of
(
(
TOP-REAL
2
)
|
(
LSeg
(
(
LMP
l
)
,
|[
0
,
(
-
3
)
]|
)
)
)
-defined
REAL
-valued
Function-like
total
quasi_total
V156
()
V157
()
V158
()
continuous
Element
of
bool
[:
the
carrier
of
(
(
TOP-REAL
2
)
|
(
LSeg
(
(
LMP
l
)
,
|[
0
,
(
-
3
)
]|
)
)
)
,
REAL
:]
the
carrier
of
(
(
TOP-REAL
2
)
|
(
LSeg
(
(
LMP
l
)
,
|[
0
,
(
-
3
)
]|
)
)
)
is
set
[:
the
carrier
of
(
(
TOP-REAL
2
)
|
(
LSeg
(
(
LMP
l
)
,
|[
0
,
(
-
3
)
]|
)
)
)
,
REAL
:]
is
Relation-like
V156
()
V157
()
V158
()
set
bool
[:
the
carrier
of
(
(
TOP-REAL
2
)
|
(
LSeg
(
(
LMP
l
)
,
|[
0
,
(
-
3
)
]|
)
)
)
,
REAL
:]
is non
empty
set
lower_bound
(
proj1
|
(
LSeg
(
(
LMP
l
)
,
|[
0
,
(
-
3
)
]|
)
)
)
is
complex
ext-real
real
Element
of
REAL
(
proj1
|
(
LSeg
(
(
LMP
l
)
,
|[
0
,
(
-
3
)
]|
)
)
)
.:
the
carrier
of
(
(
TOP-REAL
2
)
|
(
LSeg
(
(
LMP
l
)
,
|[
0
,
(
-
3
)
]|
)
)
)
is
V166
()
V167
()
V168
()
Element
of
bool
REAL
K663
(
(
(
proj1
|
(
LSeg
(
(
LMP
l
)
,
|[
0
,
(
-
3
)
]|
)
)
)
.:
the
carrier
of
(
(
TOP-REAL
2
)
|
(
LSeg
(
(
LMP
l
)
,
|[
0
,
(
-
3
)
]|
)
)
)
)
) is
complex
ext-real
real
Element
of
REAL
E-bound
(
LSeg
(
(
LMP
l
)
,
|[
0
,
(
-
3
)
]|
)
)
is
complex
ext-real
real
Element
of
REAL
upper_bound
(
proj1
|
(
LSeg
(
(
LMP
l
)
,
|[
0
,
(
-
3
)
]|
)
)
)
is
complex
ext-real
real
Element
of
REAL
K662
(
(
(
proj1
|
(
LSeg
(
(
LMP
l
)
,
|[
0
,
(
-
3
)
]|
)
)
)
.:
the
carrier
of
(
(
TOP-REAL
2
)
|
(
LSeg
(
(
LMP
l
)
,
|[
0
,
(
-
3
)
]|
)
)
)
)
) is
complex
ext-real
real
Element
of
REAL
(
W-bound
(
(
LSeg
(
(
LMP
l
)
,
|[
0
,
(
-
3
)
]|
)
)
/\
LJ
)
)
+
(
E-bound
(
(
LSeg
(
(
LMP
l
)
,
|[
0
,
(
-
3
)
]|
)
)
/\
LJ
)
)
is
complex
ext-real
real
Element
of
REAL
(
(
W-bound
(
(
LSeg
(
(
LMP
l
)
,
|[
0
,
(
-
3
)
]|
)
)
/\
LJ
)
)
+
(
E-bound
(
(
LSeg
(
(
LMP
l
)
,
|[
0
,
(
-
3
)
]|
)
)
/\
LJ
)
)
)
/
2 is
complex
ext-real
real
Element
of
REAL
Vertical_Line
(
(
(
W-bound
(
(
LSeg
(
(
LMP
l
)
,
|[
0
,
(
-
3
)
]|
)
)
/\
LJ
)
)
+
(
E-bound
(
(
LSeg
(
(
LMP
l
)
,
|[
0
,
(
-
3
)
]|
)
)
/\
LJ
)
)
)
/
2
)
is
functional
Element
of
bool
the
carrier
of
(
TOP-REAL
2
)
(
(
LSeg
(
(
LMP
l
)
,
|[
0
,
(
-
3
)
]|
)
)
/\
LJ
)
/\
(
Vertical_Line
(
(
(
W-bound
(
(
LSeg
(
(
LMP
l
)
,
|[
0
,
(
-
3
)
]|
)
)
/\
LJ
)
)
+
(
E-bound
(
(
LSeg
(
(
LMP
l
)
,
|[
0
,
(
-
3
)
]|
)
)
/\
LJ
)
)
)
/
2
)
)
is
functional
Element
of
bool
the
carrier
of
(
TOP-REAL
2
)
AR
`2
is
complex
ext-real
real
Element
of
REAL
Component_of
(
(
(
1
/
2
)
*
(
(
UMP
(
(
LSeg
(
(
LMP
l
)
,
|[
0
,
(
-
3
)
]|
)
)
/\
LJ
)
)
+
(
LMP
l
)
)
)
,
(
C
`
)
) is
functional
Element
of
bool
the
carrier
of
(
TOP-REAL
2
)
X
is
Element
of
bool
the
carrier
of
(
(
TOP-REAL
2
)
|
(
C
`
)
)
the
carrier
of
(
Trectangle
(
(
-
1
)
,1,
(
-
3
)
,3)
)
is non
empty
set
LSeg
(
|[
0
,3
]|
,
(
UMP
C
)
) is
functional
proper
closed
closed
boundary
nowhere_dense
connected
compact
compact
bounded
bounded
Element
of
bool
the
carrier
of
(
TOP-REAL
2
)
{
(
(
(
1
-
b
1
)
*
|[
0
,3
]|
)
+
(
b
1
*
(
UMP
C
)
)
)
where
b
1
is
complex
ext-real
real
Element
of
REAL
: (
0
<=
b
1
&
b
1
<=
1 )
}
is
set
(
TOP-REAL
2
)
|
(
LSeg
(
|[
0
,3
]|
,
(
UMP
C
)
)
)
is
strict
TopSpace-like
T_0
T_1
T_2
SubSpace
of
TOP-REAL
2
the
carrier
of
(
(
TOP-REAL
2
)
|
(
LSeg
(
|[
0
,3
]|
,
(
UMP
C
)
)
)
)
is
set
[:
the
carrier
of
I[01]
, the
carrier
of
(
(
TOP-REAL
2
)
|
(
LSeg
(
|[
0
,3
]|
,
(
UMP
C
)
)
)
)
:]
is
Relation-like
set
bool
[:
the
carrier
of
I[01]
, the
carrier
of
(
(
TOP-REAL
2
)
|
(
LSeg
(
|[
0
,3
]|
,
(
UMP
C
)
)
)
)
:]
is non
empty
set
fcm
is
Relation-like
the
carrier
of
I[01]
-defined
the
carrier
of
(
(
TOP-REAL
2
)
|
(
LSeg
(
|[
0
,3
]|
,
(
UMP
C
)
)
)
)
-valued
Function-like
quasi_total
Element
of
bool
[:
the
carrier
of
I[01]
, the
carrier
of
(
(
TOP-REAL
2
)
|
(
LSeg
(
|[
0
,3
]|
,
(
UMP
C
)
)
)
)
:]
rng
fcm
is
Element
of
bool
the
carrier
of
(
(
TOP-REAL
2
)
|
(
LSeg
(
|[
0
,3
]|
,
(
UMP
C
)
)
)
)
bool
the
carrier
of
(
(
TOP-REAL
2
)
|
(
LSeg
(
|[
0
,3
]|
,
(
UMP
C
)
)
)
)
is non
empty
set
Pcm
is
Relation-like
the
carrier
of
I[01]
-defined
the
carrier
of
(
TOP-REAL
2
)
-valued
Function-like
non
empty
total
quasi_total
continuous
Path
of
|[
0
,3
]|
,
UMP
C
Ball
(
(
(
1
/
2
)
*
(
(
UMP
(
(
LSeg
(
(
LMP
l
)
,
|[
0
,
(
-
3
)
]|
)
)
/\
LJ
)
)
+
(
LMP
l
)
)
)
,10) is
functional
non
empty
proper
open
connected
bounded
being_Region
convex
Element
of
bool
the
carrier
of
(
TOP-REAL
2
)
V
is
set
VP
is
Relation-like
Function-like
V49
(2)
V50
()
V156
()
V157
()
V158
()
Element
of the
carrier
of
(
TOP-REAL
2
)
T2C
is
functional
Element
of
bool
the
carrier
of
(
TOP-REAL
2
)
VP
is
Element
of
bool
the
carrier
of
(
(
TOP-REAL
2
)
|
(
C
`
)
)
(
(
1
/
2
)
*
(
(
UMP
(
(
LSeg
(
(
LMP
l
)
,
|[
0
,
(
-
3
)
]|
)
)
/\
LJ
)
)
+
(
LMP
l
)
)
)
`1
is
complex
ext-real
real
Element
of
REAL
(
(
UMP
(
(
LSeg
(
(
LMP
l
)
,
|[
0
,
(
-
3
)
]|
)
)
/\
LJ
)
)
+
(
LMP
l
)
)
`1
is
complex
ext-real
real
Element
of
REAL
(
1
/
2
)
*
(
(
(
UMP
(
(
LSeg
(
(
LMP
l
)
,
|[
0
,
(
-
3
)
]|
)
)
/\
LJ
)
)
+
(
LMP
l
)
)
`1
)
is
complex
ext-real
real
Element
of
REAL
(
(
UMP
(
(
LSeg
(
(
LMP
l
)
,
|[
0
,
(
-
3
)
]|
)
)
/\
LJ
)
)
`1
)
+
(
(
LMP
l
)
`1
)
is
complex
ext-real
real
Element
of
REAL
(
1
/
2
)
*
(
(
(
UMP
(
(
LSeg
(
(
LMP
l
)
,
|[
0
,
(
-
3
)
]|
)
)
/\
LJ
)
)
`1
)
+
(
(
LMP
l
)
`1
)
)
is
complex
ext-real
real
Element
of
REAL
LSeg
(
|[
0
,
(
-
3
)
]|
,
(
(
1
/
2
)
*
(
(
UMP
(
(
LSeg
(
(
LMP
l
)
,
|[
0
,
(
-
3
)
]|
)
)
/\
LJ
)
)
+
(
LMP
l
)
)
)
) is
functional
proper
closed
closed
boundary
nowhere_dense
connected
compact
compact
bounded
bounded
Element
of
bool
the
carrier
of
(
TOP-REAL
2
)
{
(
(
(
1
-
b
1
)
*
|[
0
,
(
-
3
)
]|
)
+
(
b
1
*
(
(
1
/
2
)
*
(
(
UMP
(
(
LSeg
(
(
LMP
l
)
,
|[
0
,
(
-
3
)
]|
)
)
/\
LJ
)
)
+
(
LMP
l
)
)
)
)
)
where
b
1
is
complex
ext-real
real
Element
of
REAL
: (
0
<=
b
1
&
b
1
<=
1 )
}
is
set
(
(
1
/
2
)
*
(
(
UMP
(
(
LSeg
(
(
LMP
l
)
,
|[
0
,
(
-
3
)
]|
)
)
/\
LJ
)
)
+
(
LMP
l
)
)
)
`2
is
complex
ext-real
real
Element
of
REAL
|[
(
(
(
1
/
2
)
*
(
(
UMP
(
(
LSeg
(
(
LMP
l
)
,
|[
0
,
(
-
3
)
]|
)
)
/\
LJ
)
)
+
(
LMP
l
)
)
)
`1
)
,
(
(
(
1
/
2
)
*
(
(
UMP
(
(
LSeg
(
(
LMP
l
)
,
|[
0
,
(
-
3
)
]|
)
)
/\
LJ
)
)
+
(
LMP
l
)
)
)
`2
)
]|
is
Relation-like
Function-like
V49
(2)
V50
()
V156
()
V157
()
V158
()
Element
of the
carrier
of
(
TOP-REAL
2
)
LSeg
(
|[
0
,
(
-
3
)
]|
,
(
LMP
l
)
) is
functional
proper
closed
closed
boundary
nowhere_dense
connected
compact
compact
bounded
bounded
Element
of
bool
the
carrier
of
(
TOP-REAL
2
)
{
(
(
(
1
-
b
1
)
*
|[
0
,
(
-
3
)
]|
)
+
(
b
1
*
(
LMP
l
)
)
)
where
b
1
is
complex
ext-real
real
Element
of
REAL
: (
0
<=
b
1
&
b
1
<=
1 )
}
is
set
Pjd
is
set
fjd
is
Relation-like
Function-like
V49
(2)
V50
()
V156
()
V157
()
V158
()
Element
of the
carrier
of
(
TOP-REAL
2
)
fjd
`2
is
complex
ext-real
real
Element
of
REAL
fjd
`1
is
complex
ext-real
real
Element
of
REAL
l
/\
(
Vertical_Line
(
(
(
W-bound
C
)
+
(
E-bound
C
)
)
/
2
)
)
is
functional
Element
of
bool
the
carrier
of
(
TOP-REAL
2
)
First_Point
(
T2C
,
(
(
1
/
2
)
*
(
(
UMP
(
(
LSeg
(
(
LMP
l
)
,
|[
0
,
(
-
3
)
]|
)
)
/\
LJ
)
)
+
(
LMP
l
)
)
)
,
VP
,
(
rectangle
(
(
-
1
)
,1,
(
-
3
)
,3)
)
) is
Relation-like
Function-like
V49
(2)
V50
()
V156
()
V157
()
V158
()
Element
of the
carrier
of
(
TOP-REAL
2
)
Fr
(
closed_inside_of_rectangle
(
(
-
1
)
,1,
(
-
3
)
,3)
)
is
functional
closed
boundary
nowhere_dense
Element
of
bool
the
carrier
of
(
TOP-REAL
2
)
Cl
(
closed_inside_of_rectangle
(
(
-
1
)
,1,
(
-
3
)
,3)
)
is
functional
closed
Element
of
bool
the
carrier
of
(
TOP-REAL
2
)
(
closed_inside_of_rectangle
(
(
-
1
)
,1,
(
-
3
)
,3)
)
`
is
functional
open
Element
of
bool
the
carrier
of
(
TOP-REAL
2
)
the
carrier
of
(
TOP-REAL
2
)
\
(
closed_inside_of_rectangle
(
(
-
1
)
,1,
(
-
3
)
,3)
)
is
set
Cl
(
(
closed_inside_of_rectangle
(
(
-
1
)
,1,
(
-
3
)
,3)
)
`
)
is
functional
closed
Element
of
bool
the
carrier
of
(
TOP-REAL
2
)
(
Cl
(
closed_inside_of_rectangle
(
(
-
1
)
,1,
(
-
3
)
,3)
)
)
/\
(
Cl
(
(
closed_inside_of_rectangle
(
(
-
1
)
,1,
(
-
3
)
,3)
)
`
)
)
is
functional
closed
Element
of
bool
the
carrier
of
(
TOP-REAL
2
)
T2C
\
(
closed_inside_of_rectangle
(
(
-
1
)
,1,
(
-
3
)
,3)
)
is
functional
Element
of
bool
the
carrier
of
(
TOP-REAL
2
)
{}
(
TOP-REAL
2
)
is
Relation-like
non-empty
empty-yielding
RAT
-valued
Function-like
one-to-one
constant
functional
empty
proper
open
closed
boundary
nowhere_dense
connected
compact
V156
()
V157
()
V158
()
V159
()
V166
()
V167
()
V168
()
V169
()
V170
()
V171
()
V172
()
bounded
being_Region
horizontal
vertical
bounded_below
interval
Element
of
bool
the
carrier
of
(
TOP-REAL
2
)
T2C
/\
(
rectangle
(
(
-
1
)
,1,
(
-
3
)
,3)
)
is
functional
Element
of
bool
the
carrier
of
(
TOP-REAL
2
)
Segment
(
T2C
,
(
(
1
/
2
)
*
(
(
UMP
(
(
LSeg
(
(
LMP
l
)
,
|[
0
,
(
-
3
)
]|
)
)
/\
LJ
)
)
+
(
LMP
l
)
)
)
,
VP
,
(
(
1
/
2
)
*
(
(
UMP
(
(
LSeg
(
(
LMP
l
)
,
|[
0
,
(
-
3
)
]|
)
)
/\
LJ
)
)
+
(
LMP
l
)
)
)
,
(
First_Point
(
T2C
,
(
(
1
/
2
)
*
(
(
UMP
(
(
LSeg
(
(
LMP
l
)
,
|[
0
,
(
-
3
)
]|
)
)
/\
LJ
)
)
+
(
LMP
l
)
)
)
,
VP
,
(
rectangle
(
(
-
1
)
,1,
(
-
3
)
,3)
)
)
)
) is
functional
Element
of
bool
the
carrier
of
(
TOP-REAL
2
)
(
TOP-REAL
2
)
|
(
LSeg
(
|[
0
,
(
-
3
)
]|
,
(
(
1
/
2
)
*
(
(
UMP
(
(
LSeg
(
(
LMP
l
)
,
|[
0
,
(
-
3
)
]|
)
)
/\
LJ
)
)
+
(
LMP
l
)
)
)
)
)
is
strict
TopSpace-like
T_0
T_1
T_2
SubSpace
of
TOP-REAL
2
the
carrier
of
(
(
TOP-REAL
2
)
|
(
LSeg
(
|[
0
,
(
-
3
)
]|
,
(
(
1
/
2
)
*
(
(
UMP
(
(
LSeg
(
(
LMP
l
)
,
|[
0
,
(
-
3
)
]|
)
)
/\
LJ
)
)
+
(
LMP
l
)
)
)
)
)
)
is
set
[:
the
carrier
of
I[01]
, the
carrier
of
(
(
TOP-REAL
2
)
|
(
LSeg
(
|[
0
,
(
-
3
)
]|
,
(
(
1
/
2
)
*
(
(
UMP
(
(
LSeg
(
(
LMP
l
)
,
|[
0
,
(
-
3
)
]|
)
)
/\
LJ
)
)
+
(
LMP
l
)
)
)
)
)
)
:]
is
Relation-like
set
bool
[:
the
carrier
of
I[01]
, the
carrier
of
(
(
TOP-REAL
2
)
|
(
LSeg
(
|[
0
,
(
-
3
)
]|
,
(
(
1
/
2
)
*
(
(
UMP
(
(
LSeg
(
(
LMP
l
)
,
|[
0
,
(
-
3
)
]|
)
)
/\
LJ
)
)
+
(
LMP
l
)
)
)
)
)
)
:]
is non
empty
set
flk
is
Relation-like
the
carrier
of
I[01]
-defined
the
carrier
of
(
(
TOP-REAL
2
)
|
(
LSeg
(
|[
0
,
(
-
3
)
]|
,
(
(
1
/
2
)
*
(
(
UMP
(
(
LSeg
(
(
LMP
l
)
,
|[
0
,
(
-
3
)
]|
)
)
/\
LJ
)
)
+
(
LMP
l
)
)
)
)
)
)
-valued
Function-like
quasi_total
Element
of
bool
[:
the
carrier
of
I[01]
, the
carrier
of
(
(
TOP-REAL
2
)
|
(
LSeg
(
|[
0
,
(
-
3
)
]|
,
(
(
1
/
2
)
*
(
(
UMP
(
(
LSeg
(
(
LMP
l
)
,
|[
0
,
(
-
3
)
]|
)
)
/\
LJ
)
)
+
(
LMP
l
)
)
)
)
)
)
:]
rng
flk
is
Element
of
bool
the
carrier
of
(
(
TOP-REAL
2
)
|
(
LSeg
(
|[
0
,
(
-
3
)
]|
,
(
(
1
/
2
)
*
(
(
UMP
(
(
LSeg
(
(
LMP
l
)
,
|[
0
,
(
-
3
)
]|
)
)
/\
LJ
)
)
+
(
LMP
l
)
)
)
)
)
)
bool
the
carrier
of
(
(
TOP-REAL
2
)
|
(
LSeg
(
|[
0
,
(
-
3
)
]|
,
(
(
1
/
2
)
*
(
(
UMP
(
(
LSeg
(
(
LMP
l
)
,
|[
0
,
(
-
3
)
]|
)
)
/\
LJ
)
)
+
(
LMP
l
)
)
)
)
)
)
is non
empty
set
Plk
is
Relation-like
the
carrier
of
I[01]
-defined
the
carrier
of
(
TOP-REAL
2
)
-valued
Function-like
non
empty
total
quasi_total
continuous
Path
of
|[
0
,
(
-
3
)
]|
,
(
1
/
2
)
*
(
(
UMP
(
(
LSeg
(
(
LMP
l
)
,
|[
0
,
(
-
3
)
]|
)
)
/\
LJ
)
)
+
(
LMP
l
)
)
[:
the
carrier
of
I[01]
, the
carrier
of
(
(
TOP-REAL
2
)
|
l
)
:]
is
Relation-like
non
empty
set
bool
[:
the
carrier
of
I[01]
, the
carrier
of
(
(
TOP-REAL
2
)
|
l
)
:]
is non
empty
set
ra
is
Relation-like
the
carrier
of
I[01]
-defined
the
carrier
of
(
(
TOP-REAL
2
)
|
l
)
-valued
Function-like
non
empty
total
quasi_total
Element
of
bool
[:
the
carrier
of
I[01]
, the
carrier
of
(
(
TOP-REAL
2
)
|
l
)
:]
rng
ra
is non
empty
Element
of
bool
the
carrier
of
(
(
TOP-REAL
2
)
|
l
)
bool
the
carrier
of
(
(
TOP-REAL
2
)
|
l
)
is non
empty
set
beta
is
Relation-like
the
carrier
of
I[01]
-defined
the
carrier
of
(
TOP-REAL
2
)
-valued
Function-like
non
empty
total
quasi_total
continuous
Path
of
|[
(
-
1
)
,
0
]|
,
|[
1,
0
]|
(
TOP-REAL
2
)
|
LJ
is non
empty
strict
TopSpace-like
T_0
T_1
T_2
V82
()
normal
T_3
T_4
compact
V246
()
pseudocompact
SubSpace
of
TOP-REAL
2
the
carrier
of
(
(
TOP-REAL
2
)
|
LJ
)
is non
empty
set
[:
the
carrier
of
I[01]
, the
carrier
of
(
(
TOP-REAL
2
)
|
LJ
)
:]
is
Relation-like
non
empty
set
bool
[:
the
carrier
of
I[01]
, the
carrier
of
(
(
TOP-REAL
2
)
|
LJ
)
:]
is non
empty
set
A
is
Relation-like
the
carrier
of
I[01]
-defined
the
carrier
of
(
(
TOP-REAL
2
)
|
LJ
)
-valued
Function-like
non
empty
total
quasi_total
Element
of
bool
[:
the
carrier
of
I[01]
, the
carrier
of
(
(
TOP-REAL
2
)
|
LJ
)
:]
rng
A
is non
empty
Element
of
bool
the
carrier
of
(
(
TOP-REAL
2
)
|
LJ
)
bool
the
carrier
of
(
(
TOP-REAL
2
)
|
LJ
)
is non
empty
set
rb
is
Relation-like
the
carrier
of
I[01]
-defined
the
carrier
of
(
TOP-REAL
2
)
-valued
Function-like
non
empty
total
quasi_total
continuous
Path
of
|[
(
-
1
)
,
0
]|
,
|[
1,
0
]|
(
TOP-REAL
2
)
|
(
Segment
(
T2C
,
(
(
1
/
2
)
*
(
(
UMP
(
(
LSeg
(
(
LMP
l
)
,
|[
0
,
(
-
3
)
]|
)
)
/\
LJ
)
)
+
(
LMP
l
)
)
)
,
VP
,
(
(
1
/
2
)
*
(
(
UMP
(
(
LSeg
(
(
LMP
l
)
,
|[
0
,
(
-
3
)
]|
)
)
/\
LJ
)
)
+
(
LMP
l
)
)
)
,
(
First_Point
(
T2C
,
(
(
1
/
2
)
*
(
(
UMP
(
(
LSeg
(
(
LMP
l
)
,
|[
0
,
(
-
3
)
]|
)
)
/\
LJ
)
)
+
(
LMP
l
)
)
)
,
VP
,
(
rectangle
(
(
-
1
)
,1,
(
-
3
)
,3)
)
)
)
)
)
is
strict
TopSpace-like
T_0
T_1
T_2
SubSpace
of
TOP-REAL
2
the
carrier
of
(
(
TOP-REAL
2
)
|
(
Segment
(
T2C
,
(
(
1
/
2
)
*
(
(
UMP
(
(
LSeg
(
(
LMP
l
)
,
|[
0
,
(
-
3
)
]|
)
)
/\
LJ
)
)
+
(
LMP
l
)
)
)
,
VP
,
(
(
1
/
2
)
*
(
(
UMP
(
(
LSeg
(
(
LMP
l
)
,
|[
0
,
(
-
3
)
]|
)
)
/\
LJ
)
)
+
(
LMP
l
)
)
)
,
(
First_Point
(
T2C
,
(
(
1
/
2
)
*
(
(
UMP
(
(
LSeg
(
(
LMP
l
)
,
|[
0
,
(
-
3
)
]|
)
)
/\
LJ
)
)
+
(
LMP
l
)
)
)
,
VP
,
(
rectangle
(
(
-
1
)
,1,
(
-
3
)
,3)
)
)
)
)
)
)
is
set
[:
the
carrier
of
I[01]
, the
carrier
of
(
(
TOP-REAL
2
)
|
(
Segment
(
T2C
,
(
(
1
/
2
)
*
(
(
UMP
(
(
LSeg
(
(
LMP
l
)
,
|[
0
,
(
-
3
)
]|
)
)
/\
LJ
)
)
+
(
LMP
l
)
)
)
,
VP
,
(
(
1
/
2
)
*
(
(
UMP
(
(
LSeg
(
(
LMP
l
)
,
|[
0
,
(
-
3
)
]|
)
)
/\
LJ
)
)
+
(
LMP
l
)
)
)
,
(
First_Point
(
T2C
,
(
(
1
/
2
)
*
(
(
UMP
(
(
LSeg
(
(
LMP
l
)
,
|[
0
,
(
-
3
)
]|
)
)
/\
LJ
)
)
+
(
LMP
l
)
)
)
,
VP
,
(
rectangle
(
(
-
1
)
,1,
(
-
3
)
,3)
)
)
)
)
)
)
:]
is
Relation-like
set
bool
[:
the
carrier
of
I[01]
, the
carrier
of
(
(
TOP-REAL
2
)
|
(
Segment
(
T2C
,
(
(
1
/
2
)
*
(
(
UMP
(
(
LSeg
(
(
LMP
l
)
,
|[
0
,
(
-
3
)
]|
)
)
/\
LJ
)
)
+
(
LMP
l
)
)
)
,
VP
,
(
(
1
/
2
)
*
(
(
UMP
(
(
LSeg
(
(
LMP
l
)
,
|[
0
,
(
-
3
)
]|
)
)
/\
LJ
)
)
+
(
LMP
l
)
)
)
,
(
First_Point
(
T2C
,
(
(
1
/
2
)
*
(
(
UMP
(
(
LSeg
(
(
LMP
l
)
,
|[
0
,
(
-
3
)
]|
)
)
/\
LJ
)
)
+
(
LMP
l
)
)
)
,
VP
,
(
rectangle
(
(
-
1
)
,1,
(
-
3
)
,3)
)
)
)
)
)
)
:]
is non
empty
set
t
is
Relation-like
the
carrier
of
I[01]
-defined
the
carrier
of
(
(
TOP-REAL
2
)
|
(
Segment
(
T2C
,
(
(
1
/
2
)
*
(
(
UMP
(
(
LSeg
(
(
LMP
l
)
,
|[
0
,
(
-
3
)
]|
)
)
/\
LJ
)
)
+
(
LMP
l
)
)
)
,
VP
,
(
(
1
/
2
)
*
(
(
UMP
(
(
LSeg
(
(
LMP
l
)
,
|[
0
,
(
-
3
)
]|
)
)
/\
LJ
)
)
+
(
LMP
l
)
)
)
,
(
First_Point
(
T2C
,
(
(
1
/
2
)
*
(
(
UMP
(
(
LSeg
(
(
LMP
l
)
,
|[
0
,
(
-
3
)
]|
)
)
/\
LJ
)
)
+
(
LMP
l
)
)
)
,
VP
,
(
rectangle
(
(
-
1
)
,1,
(
-
3
)
,3)
)
)
)
)
)
)
-valued
Function-like
quasi_total
Element
of
bool
[:
the
carrier
of
I[01]
, the
carrier
of
(
(
TOP-REAL
2
)
|
(
Segment
(
T2C
,
(
(
1
/
2
)
*
(
(
UMP
(
(
LSeg
(
(
LMP
l
)
,
|[
0
,
(
-
3
)
]|
)
)
/\
LJ
)
)
+
(
LMP
l
)
)
)
,
VP
,
(
(
1
/
2
)
*
(
(
UMP
(
(
LSeg
(
(
LMP
l
)
,
|[
0
,
(
-
3
)
]|
)
)
/\
LJ
)
)
+
(
LMP
l
)
)
)
,
(
First_Point
(
T2C
,
(
(
1
/
2
)
*
(
(
UMP
(
(
LSeg
(
(
LMP
l
)
,
|[
0
,
(
-
3
)
]|
)
)
/\
LJ
)
)
+
(
LMP
l
)
)
)
,
VP
,
(
rectangle
(
(
-
1
)
,1,
(
-
3
)
,3)
)
)
)
)
)
)
:]
rng
t
is
Element
of
bool
the
carrier
of
(
(
TOP-REAL
2
)
|
(
Segment
(
T2C
,
(
(
1
/
2
)
*
(
(
UMP
(
(
LSeg
(
(
LMP
l
)
,
|[
0
,
(
-
3
)
]|
)
)
/\
LJ
)
)
+
(
LMP
l
)
)
)
,
VP
,
(
(
1
/
2
)
*
(
(
UMP
(
(
LSeg
(
(
LMP
l
)
,
|[
0
,
(
-
3
)
]|
)
)
/\
LJ
)
)
+
(
LMP
l
)
)
)
,
(
First_Point
(
T2C
,
(
(
1
/
2
)
*
(
(
UMP
(
(
LSeg
(
(
LMP
l
)
,
|[
0
,
(
-
3
)
]|
)
)
/\
LJ
)
)
+
(
LMP
l
)
)
)
,
VP
,
(
rectangle
(
(
-
1
)
,1,
(
-
3
)
,3)
)
)
)
)
)
)
bool
the
carrier
of
(
(
TOP-REAL
2
)
|
(
Segment
(
T2C
,
(
(
1
/
2
)
*
(
(
UMP
(
(
LSeg
(
(
LMP
l
)
,
|[
0
,
(
-
3
)
]|
)
)
/\
LJ
)
)
+
(
LMP
l
)
)
)
,
VP
,
(
(
1
/
2
)
*
(
(
UMP
(
(
LSeg
(
(
LMP
l
)
,
|[
0
,
(
-
3
)
]|
)
)
/\
LJ
)
)
+
(
LMP
l
)
)
)
,
(
First_Point
(
T2C
,
(
(
1
/
2
)
*
(
(
UMP
(
(
LSeg
(
(
LMP
l
)
,
|[
0
,
(
-
3
)
]|
)
)
/\
LJ
)
)
+
(
LMP
l
)
)
)
,
VP
,
(
rectangle
(
(
-
1
)
,1,
(
-
3
)
,3)
)
)
)
)
)
)
is non
empty
set
B
is
Relation-like
the
carrier
of
I[01]
-defined
the
carrier
of
(
TOP-REAL
2
)
-valued
Function-like
non
empty
total
quasi_total
continuous
Path
of
(
1
/
2
)
*
(
(
UMP
(
(
LSeg
(
(
LMP
l
)
,
|[
0
,
(
-
3
)
]|
)
)
/\
LJ
)
)
+
(
LMP
l
)
)
,
First_Point
(
T2C
,
(
(
1
/
2
)
*
(
(
UMP
(
(
LSeg
(
(
LMP
l
)
,
|[
0
,
(
-
3
)
]|
)
)
/\
LJ
)
)
+
(
LMP
l
)
)
)
,
VP
,
(
rectangle
(
(
-
1
)
,1,
(
-
3
)
,3)
)
)
rng
beta
is
functional
non
empty
Element
of
bool
the
carrier
of
(
TOP-REAL
2
)
AR
is
Element
of the
carrier
of
(
Trectangle
(
(
-
1
)
,1,
(
-
3
)
,3)
)
BR
is
Element
of the
carrier
of
(
Trectangle
(
(
-
1
)
,1,
(
-
3
)
,3)
)
rng
rb
is
functional
non
empty
Element
of
bool
the
carrier
of
(
TOP-REAL
2
)
LSeg
(
(
LMP
l
)
,
(
(
1
/
2
)
*
(
(
UMP
(
(
LSeg
(
(
LMP
l
)
,
|[
0
,
(
-
3
)
]|
)
)
/\
LJ
)
)
+
(
LMP
l
)
)
)
) is
functional
proper
closed
closed
boundary
nowhere_dense
connected
compact
compact
bounded
bounded
Element
of
bool
the
carrier
of
(
TOP-REAL
2
)
{
(
(
(
1
-
b
1
)
*
(
LMP
l
)
)
+
(
b
1
*
(
(
1
/
2
)
*
(
(
UMP
(
(
LSeg
(
(
LMP
l
)
,
|[
0
,
(
-
3
)
]|
)
)
/\
LJ
)
)
+
(
LMP
l
)
)
)
)
)
where
b
1
is
complex
ext-real
real
Element
of
REAL
: (
0
<=
b
1
&
b
1
<=
1 )
}
is
set
(
TOP-REAL
2
)
|
(
LSeg
(
(
LMP
l
)
,
(
(
1
/
2
)
*
(
(
UMP
(
(
LSeg
(
(
LMP
l
)
,
|[
0
,
(
-
3
)
]|
)
)
/\
LJ
)
)
+
(
LMP
l
)
)
)
)
)
is
strict
TopSpace-like
T_0
T_1
T_2
SubSpace
of
TOP-REAL
2
the
carrier
of
(
(
TOP-REAL
2
)
|
(
LSeg
(
(
LMP
l
)
,
(
(
1
/
2
)
*
(
(
UMP
(
(
LSeg
(
(
LMP
l
)
,
|[
0
,
(
-
3
)
]|
)
)
/\
LJ
)
)
+
(
LMP
l
)
)
)
)
)
)
is
set
[:
the
carrier
of
I[01]
, the
carrier
of
(
(
TOP-REAL
2
)
|
(
LSeg
(
(
LMP
l
)
,
(
(
1
/
2
)
*
(
(
UMP
(
(
LSeg
(
(
LMP
l
)
,
|[
0
,
(
-
3
)
]|
)
)
/\
LJ
)
)
+
(
LMP
l
)
)
)
)
)
)
:]
is
Relation-like
set
bool
[:
the
carrier
of
I[01]
, the
carrier
of
(
(
TOP-REAL
2
)
|
(
LSeg
(
(
LMP
l
)
,
(
(
1
/
2
)
*
(
(
UMP
(
(
LSeg
(
(
LMP
l
)
,
|[
0
,
(
-
3
)
]|
)
)
/\
LJ
)
)
+
(
LMP
l
)
)
)
)
)
)
:]
is non
empty
set
v
is
Relation-like
the
carrier
of
I[01]
-defined
the
carrier
of
(
(
TOP-REAL
2
)
|
(
LSeg
(
(
LMP
l
)
,
(
(
1
/
2
)
*
(
(
UMP
(
(
LSeg
(
(
LMP
l
)
,
|[
0
,
(
-
3
)
]|
)
)
/\
LJ
)
)
+
(
LMP
l
)
)
)
)
)
)
-valued
Function-like
quasi_total
Element
of
bool
[:
the
carrier
of
I[01]
, the
carrier
of
(
(
TOP-REAL
2
)
|
(
LSeg
(
(
LMP
l
)
,
(
(
1
/
2
)
*
(
(
UMP
(
(
LSeg
(
(
LMP
l
)
,
|[
0
,
(
-
3
)
]|
)
)
/\
LJ
)
)
+
(
LMP
l
)
)
)
)
)
)
:]
rng
v
is
Element
of
bool
the
carrier
of
(
(
TOP-REAL
2
)
|
(
LSeg
(
(
LMP
l
)
,
(
(
1
/
2
)
*
(
(
UMP
(
(
LSeg
(
(
LMP
l
)
,
|[
0
,
(
-
3
)
]|
)
)
/\
LJ
)
)
+
(
LMP
l
)
)
)
)
)
)
bool
the
carrier
of
(
(
TOP-REAL
2
)
|
(
LSeg
(
(
LMP
l
)
,
(
(
1
/
2
)
*
(
(
UMP
(
(
LSeg
(
(
LMP
l
)
,
|[
0
,
(
-
3
)
]|
)
)
/\
LJ
)
)
+
(
LMP
l
)
)
)
)
)
)
is non
empty
set
u
is
Relation-like
the
carrier
of
I[01]
-defined
the
carrier
of
(
TOP-REAL
2
)
-valued
Function-like
non
empty
total
quasi_total
continuous
Path
of
LMP
l
,
(
1
/
2
)
*
(
(
UMP
(
(
LSeg
(
(
LMP
l
)
,
|[
0
,
(
-
3
)
]|
)
)
/\
LJ
)
)
+
(
LMP
l
)
)
Pcm
+
Pml
is
Relation-like
the
carrier
of
I[01]
-defined
the
carrier
of
(
TOP-REAL
2
)
-valued
Function-like
non
empty
total
quasi_total
continuous
Path
of
|[
0
,3
]|
,
LMP
l
(
Pcm
+
Pml
)
+
u
is
Relation-like
the
carrier
of
I[01]
-defined
the
carrier
of
(
TOP-REAL
2
)
-valued
Function-like
non
empty
total
quasi_total
continuous
Path
of
|[
0
,3
]|
,
(
1
/
2
)
*
(
(
UMP
(
(
LSeg
(
(
LMP
l
)
,
|[
0
,
(
-
3
)
]|
)
)
/\
LJ
)
)
+
(
LMP
l
)
)
rng
(
(
Pcm
+
Pml
)
+
u
)
is
functional
non
empty
Element
of
bool
the
carrier
of
(
TOP-REAL
2
)
rng
Pcm
is
functional
non
empty
Element
of
bool
the
carrier
of
(
TOP-REAL
2
)
(
rng
Pcm
)
\/
(
rng
Pml
)
is
functional
non
empty
Element
of
bool
the
carrier
of
(
TOP-REAL
2
)
rng
u
is
functional
non
empty
Element
of
bool
the
carrier
of
(
TOP-REAL
2
)
(
(
rng
Pcm
)
\/
(
rng
Pml
)
)
\/
(
rng
u
)
is
functional
non
empty
Element
of
bool
the
carrier
of
(
TOP-REAL
2
)
v1
is
set
(
LSeg
(
|[
0
,3
]|
,
(
UMP
C
)
)
)
/\
C
is
functional
proper
closed
compact
bounded
Element
of
bool
the
carrier
of
(
TOP-REAL
2
)
{
(
UMP
C
)
}
is
functional
non
empty
proper
closed
compact
bounded
Element
of
bool
the
carrier
of
(
TOP-REAL
2
)
v1
is
set
{
(
LMP
l
)
}
is
functional
non
empty
proper
closed
compact
bounded
Element
of
bool
the
carrier
of
(
TOP-REAL
2
)
(
LSeg
(
(
LMP
l
)
,
(
(
1
/
2
)
*
(
(
UMP
(
(
LSeg
(
(
LMP
l
)
,
|[
0
,
(
-
3
)
]|
)
)
/\
LJ
)
)
+
(
LMP
l
)
)
)
)
)
\
{
(
LMP
l
)
}
is
functional
Element
of
bool
the
carrier
of
(
TOP-REAL
2
)
(
(
LSeg
(
(
LMP
l
)
,
(
(
1
/
2
)
*
(
(
UMP
(
(
LSeg
(
(
LMP
l
)
,
|[
0
,
(
-
3
)
]|
)
)
/\
LJ
)
)
+
(
LMP
l
)
)
)
)
)
\
{
(
LMP
l
)
}
)
\/
{
(
LMP
l
)
}
is
functional
non
empty
Element
of
bool
the
carrier
of
(
TOP-REAL
2
)
v1
is
set
(
First_Point
(
T2C
,
(
(
1
/
2
)
*
(
(
UMP
(
(
LSeg
(
(
LMP
l
)
,
|[
0
,
(
-
3
)
]|
)
)
/\
LJ
)
)
+
(
LMP
l
)
)
)
,
VP
,
(
rectangle
(
(
-
1
)
,1,
(
-
3
)
,3)
)
)
)
`2
is
complex
ext-real
real
Element
of
REAL
LSeg
(
(
First_Point
(
T2C
,
(
(
1
/
2
)
*
(
(
UMP
(
(
LSeg
(
(
LMP
l
)
,
|[
0
,
(
-
3
)
]|
)
)
/\
LJ
)
)
+
(
LMP
l
)
)
)
,
VP
,
(
rectangle
(
(
-
1
)
,1,
(
-
3
)
,3)
)
)
)
,
|[
(
-
1
)
,
(
-
3
)
]|
) is
functional
proper
closed
closed
boundary
nowhere_dense
connected
compact
compact
bounded
bounded
Element
of
bool
the
carrier
of
(
TOP-REAL
2
)
{
(
(
(
1
-
b
1
)
*
(
First_Point
(
T2C
,
(
(
1
/
2
)
*
(
(
UMP
(
(
LSeg
(
(
LMP
l
)
,
|[
0
,
(
-
3
)
]|
)
)
/\
LJ
)
)
+
(
LMP
l
)
)
)
,
VP
,
(
rectangle
(
(
-
1
)
,1,
(
-
3
)
,3)
)
)
)
)
+
(
b
1
*
|[
(
-
1
)
,
(
-
3
)
]|
)
)
where
b
1
is
complex
ext-real
real
Element
of
REAL
: (
0
<=
b
1
&
b
1
<=
1 )
}
is
set
(
TOP-REAL
2
)
|
(
LSeg
(
(
First_Point
(
T2C
,
(
(
1
/
2
)
*
(
(
UMP
(
(
LSeg
(
(
LMP
l
)
,
|[
0
,
(
-
3
)
]|
)
)
/\
LJ
)
)
+
(
LMP
l
)
)
)
,
VP
,
(
rectangle
(
(
-
1
)
,1,
(
-
3
)
,3)
)
)
)
,
|[
(
-
1
)
,
(
-
3
)
]|
)
)
is
strict
TopSpace-like
T_0
T_1
T_2
SubSpace
of
TOP-REAL
2
the
carrier
of
(
(
TOP-REAL
2
)
|
(
LSeg
(
(
First_Point
(
T2C
,
(
(
1
/
2
)
*
(
(
UMP
(
(
LSeg
(
(
LMP
l
)
,
|[
0
,
(
-
3
)
]|
)
)
/\
LJ
)
)
+
(
LMP
l
)
)
)
,
VP
,
(
rectangle
(
(
-
1
)
,1,
(
-
3
)
,3)
)
)
)
,
|[
(
-
1
)
,
(
-
3
)
]|
)
)
)
is
set
[:
the
carrier
of
I[01]
, the
carrier
of
(
(
TOP-REAL
2
)
|
(
LSeg
(
(
First_Point
(
T2C
,
(
(
1
/
2
)
*
(
(
UMP
(
(
LSeg
(
(
LMP
l
)
,
|[
0
,
(
-
3
)
]|
)
)
/\
LJ
)
)
+
(
LMP
l
)
)
)
,
VP
,
(
rectangle
(
(
-
1
)
,1,
(
-
3
)
,3)
)
)
)
,
|[
(
-
1
)
,
(
-
3
)
]|
)
)
)
:]
is
Relation-like
set
bool
[:
the
carrier
of
I[01]
, the
carrier
of
(
(
TOP-REAL
2
)
|
(
LSeg
(
(
First_Point
(
T2C
,
(
(
1
/
2
)
*
(
(
UMP
(
(
LSeg
(
(
LMP
l
)
,
|[
0
,
(
-
3
)
]|
)
)
/\
LJ
)
)
+
(
LMP
l
)
)
)
,
VP
,
(
rectangle
(
(
-
1
)
,1,
(
-
3
)
,3)
)
)
)
,
|[
(
-
1
)
,
(
-
3
)
]|
)
)
)
:]
is non
empty
set
fuv
is
Relation-like
the
carrier
of
I[01]
-defined
the
carrier
of
(
(
TOP-REAL
2
)
|
(
LSeg
(
(
First_Point
(
T2C
,
(
(
1
/
2
)
*
(
(
UMP
(
(
LSeg
(
(
LMP
l
)
,
|[
0
,
(
-
3
)
]|
)
)
/\
LJ
)
)
+
(
LMP
l
)
)
)
,
VP
,
(
rectangle
(
(
-
1
)
,1,
(
-
3
)
,3)
)
)
)
,
|[
(
-
1
)
,
(
-
3
)
]|
)
)
)
-valued
Function-like
quasi_total
Element
of
bool
[:
the
carrier
of
I[01]
, the
carrier
of
(
(
TOP-REAL
2
)
|
(
LSeg
(
(
First_Point
(
T2C
,
(
(
1
/
2
)
*
(
(
UMP
(
(
LSeg
(
(
LMP
l
)
,
|[
0
,
(
-
3
)
]|
)
)
/\
LJ
)
)
+
(
LMP
l
)
)
)
,
VP
,
(
rectangle
(
(
-
1
)
,1,
(
-
3
)
,3)
)
)
)
,
|[
(
-
1
)
,
(
-
3
)
]|
)
)
)
:]
rng
fuv
is
Element
of
bool
the
carrier
of
(
(
TOP-REAL
2
)
|
(
LSeg
(
(
First_Point
(
T2C
,
(
(
1
/
2
)
*
(
(
UMP
(
(
LSeg
(
(
LMP
l
)
,
|[
0
,
(
-
3
)
]|
)
)
/\
LJ
)
)
+
(
LMP
l
)
)
)
,
VP
,
(
rectangle
(
(
-
1
)
,1,
(
-
3
)
,3)
)
)
)
,
|[
(
-
1
)
,
(
-
3
)
]|
)
)
)
bool
the
carrier
of
(
(
TOP-REAL
2
)
|
(
LSeg
(
(
First_Point
(
T2C
,
(
(
1
/
2
)
*
(
(
UMP
(
(
LSeg
(
(
LMP
l
)
,
|[
0
,
(
-
3
)
]|
)
)
/\
LJ
)
)
+
(
LMP
l
)
)
)
,
VP
,
(
rectangle
(
(
-
1
)
,1,
(
-
3
)
,3)
)
)
)
,
|[
(
-
1
)
,
(
-
3
)
]|
)
)
)
is non
empty
set
v1
is
Relation-like
the
carrier
of
I[01]
-defined
the
carrier
of
(
TOP-REAL
2
)
-valued
Function-like
non
empty
total
quasi_total
continuous
Path
of
First_Point
(
T2C
,
(
(
1
/
2
)
*
(
(
UMP
(
(
LSeg
(
(
LMP
l
)
,
|[
0
,
(
-
3
)
]|
)
)
/\
LJ
)
)
+
(
LMP
l
)
)
)
,
VP
,
(
rectangle
(
(
-
1
)
,1,
(
-
3
)
,3)
)
),
|[
(
-
1
)
,
(
-
3
)
]|
(
TOP-REAL
2
)
|
(
LSeg
(
|[
(
-
1
)
,
(
-
3
)
]|
,
|[
0
,
(
-
3
)
]|
)
)
is
strict
TopSpace-like
T_0
T_1
T_2
SubSpace
of
TOP-REAL
2
the
carrier
of
(
(
TOP-REAL
2
)
|
(
LSeg
(
|[
(
-
1
)
,
(
-
3
)
]|
,
|[
0
,
(
-
3
)
]|
)
)
)
is
set
[:
the
carrier
of
I[01]
, the
carrier
of
(
(
TOP-REAL
2
)
|
(
LSeg
(
|[
(
-
1
)
,
(
-
3
)
]|
,
|[
0
,
(
-
3
)
]|
)
)
)
:]
is
Relation-like
set
bool
[:
the
carrier
of
I[01]
, the
carrier
of
(
(
TOP-REAL
2
)
|
(
LSeg
(
|[
(
-
1
)
,
(
-
3
)
]|
,
|[
0
,
(
-
3
)
]|
)
)
)
:]
is non
empty
set
au
is
Relation-like
the
carrier
of
I[01]
-defined
the
carrier
of
(
(
TOP-REAL
2
)
|
(
LSeg
(
|[
(
-
1
)
,
(
-
3
)
]|
,
|[
0
,
(
-
3
)
]|
)
)
)
-valued
Function-like
quasi_total
Element
of
bool
[:
the
carrier
of
I[01]
, the
carrier
of
(
(
TOP-REAL
2
)
|
(
LSeg
(
|[
(
-
1
)
,
(
-
3
)
]|
,
|[
0
,
(
-
3
)
]|
)
)
)
:]
rng
au
is
Element
of
bool
the
carrier
of
(
(
TOP-REAL
2
)
|
(
LSeg
(
|[
(
-
1
)
,
(
-
3
)
]|
,
|[
0
,
(
-
3
)
]|
)
)
)
bool
the
carrier
of
(
(
TOP-REAL
2
)
|
(
LSeg
(
|[
(
-
1
)
,
(
-
3
)
]|
,
|[
0
,
(
-
3
)
]|
)
)
)
is non
empty
set
uv
is
Relation-like
the
carrier
of
I[01]
-defined
the
carrier
of
(
TOP-REAL
2
)
-valued
Function-like
non
empty
total
quasi_total
continuous
Path
of
|[
(
-
1
)
,
(
-
3
)
]|
,
|[
0
,
(
-
3
)
]|
(
First_Point
(
T2C
,
(
(
1
/
2
)
*
(
(
UMP
(
(
LSeg
(
(
LMP
l
)
,
|[
0
,
(
-
3
)
]|
)
)
/\
LJ
)
)
+
(
LMP
l
)
)
)
,
VP
,
(
rectangle
(
(
-
1
)
,1,
(
-
3
)
,3)
)
)
)
`1
is
complex
ext-real
real
Element
of
REAL
fau
is
Relation-like
Function-like
V49
(2)
V50
()
V156
()
V157
()
V158
()
Element
of the
carrier
of
(
TOP-REAL
2
)
fau
`1
is
complex
ext-real
real
Element
of
REAL
fau
`2
is
complex
ext-real
real
Element
of
REAL
(
(
Pcm
+
Pml
)
+
u
)
+
B
is
Relation-like
the
carrier
of
I[01]
-defined
the
carrier
of
(
TOP-REAL
2
)
-valued
Function-like
non
empty
total
quasi_total
continuous
Path
of
|[
0
,3
]|
,
First_Point
(
T2C
,
(
(
1
/
2
)
*
(
(
UMP
(
(
LSeg
(
(
LMP
l
)
,
|[
0
,
(
-
3
)
]|
)
)
/\
LJ
)
)
+
(
LMP
l
)
)
)
,
VP
,
(
rectangle
(
(
-
1
)
,1,
(
-
3
)
,3)
)
)
(
(
(
Pcm
+
Pml
)
+
u
)
+
B
)
+
v1
is
Relation-like
the
carrier
of
I[01]
-defined
the
carrier
of
(
TOP-REAL
2
)
-valued
Function-like
non
empty
total
quasi_total
continuous
Path
of
|[
0
,3
]|
,
|[
(
-
1
)
,
(
-
3
)
]|
(
(
(
(
Pcm
+
Pml
)
+
u
)
+
B
)
+
v1
)
+
uv
is
Relation-like
the
carrier
of
I[01]
-defined
the
carrier
of
(
TOP-REAL
2
)
-valued
Function-like
non
empty
total
quasi_total
continuous
Path
of
|[
0
,3
]|
,
|[
0
,
(
-
3
)
]|
rng
(
(
(
(
(
Pcm
+
Pml
)
+
u
)
+
B
)
+
v1
)
+
uv
)
is
functional
non
empty
Element
of
bool
the
carrier
of
(
TOP-REAL
2
)
rng
B
is
functional
non
empty
Element
of
bool
the
carrier
of
(
TOP-REAL
2
)
(
rng
(
(
Pcm
+
Pml
)
+
u
)
)
\/
(
rng
B
)
is
functional
non
empty
Element
of
bool
the
carrier
of
(
TOP-REAL
2
)
rng
v1
is
functional
non
empty
Element
of
bool
the
carrier
of
(
TOP-REAL
2
)
(
(
rng
(
(
Pcm
+
Pml
)
+
u
)
)
\/
(
rng
B
)
)
\/
(
rng
v1
)
is
functional
non
empty
Element
of
bool
the
carrier
of
(
TOP-REAL
2
)
rng
uv
is
functional
non
empty
Element
of
bool
the
carrier
of
(
TOP-REAL
2
)
(
(
(
rng
(
(
Pcm
+
Pml
)
+
u
)
)
\/
(
rng
B
)
)
\/
(
rng
v1
)
)
\/
(
rng
uv
)
is
functional
non
empty
Element
of
bool
the
carrier
of
(
TOP-REAL
2
)
CR
is
Element
of the
carrier
of
(
Trectangle
(
(
-
1
)
,1,
(
-
3
)
,3)
)
DR
is
Element
of the
carrier
of
(
Trectangle
(
(
-
1
)
,1,
(
-
3
)
,3)
)
v
is
Relation-like
the
carrier
of
I[01]
-defined
the
carrier
of
(
Trectangle
(
(
-
1
)
,1,
(
-
3
)
,3)
)
-valued
Function-like
non
empty
total
quasi_total
Path
of
AR
,
BR
vb
is
Relation-like
the
carrier
of
I[01]
-defined
the
carrier
of
(
Trectangle
(
(
-
1
)
,1,
(
-
3
)
,3)
)
-valued
Function-like
non
empty
total
quasi_total
Path
of
CR
,
DR
fvb
is
complex
ext-real
real
Element
of the
carrier
of
I[01]
v
.
fvb
is
Element
of the
carrier
of
(
Trectangle
(
(
-
1
)
,1,
(
-
3
)
,3)
)
AB
is
complex
ext-real
real
Element
of the
carrier
of
I[01]
vb
.
AB
is
Element
of the
carrier
of
(
Trectangle
(
(
-
1
)
,1,
(
-
3
)
,3)
)
dom
v
is non
empty
V166
()
V167
()
V168
()
Element
of
bool
the
carrier
of
I[01]
bool
the
carrier
of
I[01]
is non
empty
set
dom
vb
is non
empty
V166
()
V167
()
V168
()
Element
of
bool
the
carrier
of
I[01]
LSeg
(
(
First_Point
(
T2C
,
(
(
1
/
2
)
*
(
(
UMP
(
(
LSeg
(
(
LMP
l
)
,
|[
0
,
(
-
3
)
]|
)
)
/\
LJ
)
)
+
(
LMP
l
)
)
)
,
VP
,
(
rectangle
(
(
-
1
)
,1,
(
-
3
)
,3)
)
)
)
,
|[
0
,
(
-
3
)
]|
) is
functional
proper
closed
closed
boundary
nowhere_dense
connected
compact
compact
bounded
bounded
Element
of
bool
the
carrier
of
(
TOP-REAL
2
)
{
(
(
(
1
-
b
1
)
*
(
First_Point
(
T2C
,
(
(
1
/
2
)
*
(
(
UMP
(
(
LSeg
(
(
LMP
l
)
,
|[
0
,
(
-
3
)
]|
)
)
/\
LJ
)
)
+
(
LMP
l
)
)
)
,
VP
,
(
rectangle
(
(
-
1
)
,1,
(
-
3
)
,3)
)
)
)
)
+
(
b
1
*
|[
0
,
(
-
3
)
]|
)
)
where
b
1
is
complex
ext-real
real
Element
of
REAL
: (
0
<=
b
1
&
b
1
<=
1 )
}
is
set
(
TOP-REAL
2
)
|
(
LSeg
(
(
First_Point
(
T2C
,
(
(
1
/
2
)
*
(
(
UMP
(
(
LSeg
(
(
LMP
l
)
,
|[
0
,
(
-
3
)
]|
)
)
/\
LJ
)
)
+
(
LMP
l
)
)
)
,
VP
,
(
rectangle
(
(
-
1
)
,1,
(
-
3
)
,3)
)
)
)
,
|[
0
,
(
-
3
)
]|
)
)
is
strict
TopSpace-like
T_0
T_1
T_2
SubSpace
of
TOP-REAL
2
the
carrier
of
(
(
TOP-REAL
2
)
|
(
LSeg
(
(
First_Point
(
T2C
,
(
(
1
/
2
)
*
(
(
UMP
(
(
LSeg
(
(
LMP
l
)
,
|[
0
,
(
-
3
)
]|
)
)
/\
LJ
)
)
+
(
LMP
l
)
)
)
,
VP
,
(
rectangle
(
(
-
1
)
,1,
(
-
3
)
,3)
)
)
)
,
|[
0
,
(
-
3
)
]|
)
)
)
is
set
[:
the
carrier
of
I[01]
, the
carrier
of
(
(
TOP-REAL
2
)
|
(
LSeg
(
(
First_Point
(
T2C
,
(
(
1
/
2
)
*
(
(
UMP
(
(
LSeg
(
(
LMP
l
)
,
|[
0
,
(
-
3
)
]|
)
)
/\
LJ
)
)
+
(
LMP
l
)
)
)
,
VP
,
(
rectangle
(
(
-
1
)
,1,
(
-
3
)
,3)
)
)
)
,
|[
0
,
(
-
3
)
]|
)
)
)
:]
is
Relation-like
set
bool
[:
the
carrier
of
I[01]
, the
carrier
of
(
(
TOP-REAL
2
)
|
(
LSeg
(
(
First_Point
(
T2C
,
(
(
1
/
2
)
*
(
(
UMP
(
(
LSeg
(
(
LMP
l
)
,
|[
0
,
(
-
3
)
]|
)
)
/\
LJ
)
)
+
(
LMP
l
)
)
)
,
VP
,
(
rectangle
(
(
-
1
)
,1,
(
-
3
)
,3)
)
)
)
,
|[
0
,
(
-
3
)
]|
)
)
)
:]
is non
empty
set
fuv
is
Relation-like
the
carrier
of
I[01]
-defined
the
carrier
of
(
(
TOP-REAL
2
)
|
(
LSeg
(
(
First_Point
(
T2C
,
(
(
1
/
2
)
*
(
(
UMP
(
(
LSeg
(
(
LMP
l
)
,
|[
0
,
(
-
3
)
]|
)
)
/\
LJ
)
)
+
(
LMP
l
)
)
)
,
VP
,
(
rectangle
(
(
-
1
)
,1,
(
-
3
)
,3)
)
)
)
,
|[
0
,
(
-
3
)
]|
)
)
)
-valued
Function-like
quasi_total
Element
of
bool
[:
the
carrier
of
I[01]
, the
carrier
of
(
(
TOP-REAL
2
)
|
(
LSeg
(
(
First_Point
(
T2C
,
(
(
1
/
2
)
*
(
(
UMP
(
(
LSeg
(
(
LMP
l
)
,
|[
0
,
(
-
3
)
]|
)
)
/\
LJ
)
)
+
(
LMP
l
)
)
)
,
VP
,
(
rectangle
(
(
-
1
)
,1,
(
-
3
)
,3)
)
)
)
,
|[
0
,
(
-
3
)
]|
)
)
)
:]
rng
fuv
is
Element
of
bool
the
carrier
of
(
(
TOP-REAL
2
)
|
(
LSeg
(
(
First_Point
(
T2C
,
(
(
1
/
2
)
*
(
(
UMP
(
(
LSeg
(
(
LMP
l
)
,
|[
0
,
(
-
3
)
]|
)
)
/\
LJ
)
)
+
(
LMP
l
)
)
)
,
VP
,
(
rectangle
(
(
-
1
)
,1,
(
-
3
)
,3)
)
)
)
,
|[
0
,
(
-
3
)
]|
)
)
)
bool
the
carrier
of
(
(
TOP-REAL
2
)
|
(
LSeg
(
(
First_Point
(
T2C
,
(
(
1
/
2
)
*
(
(
UMP
(
(
LSeg
(
(
LMP
l
)
,
|[
0
,
(
-
3
)
]|
)
)
/\
LJ
)
)
+
(
LMP
l
)
)
)
,
VP
,
(
rectangle
(
(
-
1
)
,1,
(
-
3
)
,3)
)
)
)
,
|[
0
,
(
-
3
)
]|
)
)
)
is non
empty
set
v1
is
Relation-like
the
carrier
of
I[01]
-defined
the
carrier
of
(
TOP-REAL
2
)
-valued
Function-like
non
empty
total
quasi_total
continuous
Path
of
First_Point
(
T2C
,
(
(
1
/
2
)
*
(
(
UMP
(
(
LSeg
(
(
LMP
l
)
,
|[
0
,
(
-
3
)
]|
)
)
/\
LJ
)
)
+
(
LMP
l
)
)
)
,
VP
,
(
rectangle
(
(
-
1
)
,1,
(
-
3
)
,3)
)
),
|[
0
,
(
-
3
)
]|
(
(
Pcm
+
Pml
)
+
u
)
+
B
is
Relation-like
the
carrier
of
I[01]
-defined
the
carrier
of
(
TOP-REAL
2
)
-valued
Function-like
non
empty
total
quasi_total
continuous
Path
of
|[
0
,3
]|
,
First_Point
(
T2C
,
(
(
1
/
2
)
*
(
(
UMP
(
(
LSeg
(
(
LMP
l
)
,
|[
0
,
(
-
3
)
]|
)
)
/\
LJ
)
)
+
(
LMP
l
)
)
)
,
VP
,
(
rectangle
(
(
-
1
)
,1,
(
-
3
)
,3)
)
)
(
(
(
Pcm
+
Pml
)
+
u
)
+
B
)
+
v1
is
Relation-like
the
carrier
of
I[01]
-defined
the
carrier
of
(
TOP-REAL
2
)
-valued
Function-like
non
empty
total
quasi_total
continuous
Path
of
|[
0
,3
]|
,
|[
0
,
(
-
3
)
]|
(
First_Point
(
T2C
,
(
(
1
/
2
)
*
(
(
UMP
(
(
LSeg
(
(
LMP
l
)
,
|[
0
,
(
-
3
)
]|
)
)
/\
LJ
)
)
+
(
LMP
l
)
)
)
,
VP
,
(
rectangle
(
(
-
1
)
,1,
(
-
3
)
,3)
)
)
)
`1
is
complex
ext-real
real
Element
of
REAL
rng
(
(
(
(
Pcm
+
Pml
)
+
u
)
+
B
)
+
v1
)
is
functional
non
empty
Element
of
bool
the
carrier
of
(
TOP-REAL
2
)
rng
B
is
functional
non
empty
Element
of
bool
the
carrier
of
(
TOP-REAL
2
)
(
rng
(
(
Pcm
+
Pml
)
+
u
)
)
\/
(
rng
B
)
is
functional
non
empty
Element
of
bool
the
carrier
of
(
TOP-REAL
2
)
rng
v1
is
functional
non
empty
Element
of
bool
the
carrier
of
(
TOP-REAL
2
)
(
(
rng
(
(
Pcm
+
Pml
)
+
u
)
)
\/
(
rng
B
)
)
\/
(
rng
v1
)
is
functional
non
empty
Element
of
bool
the
carrier
of
(
TOP-REAL
2
)
CR
is
Element
of the
carrier
of
(
Trectangle
(
(
-
1
)
,1,
(
-
3
)
,3)
)
DR
is
Element
of the
carrier
of
(
Trectangle
(
(
-
1
)
,1,
(
-
3
)
,3)
)
v
is
Relation-like
the
carrier
of
I[01]
-defined
the
carrier
of
(
Trectangle
(
(
-
1
)
,1,
(
-
3
)
,3)
)
-valued
Function-like
non
empty
total
quasi_total
Path
of
AR
,
BR
au
is
Relation-like
the
carrier
of
I[01]
-defined
the
carrier
of
(
Trectangle
(
(
-
1
)
,1,
(
-
3
)
,3)
)
-valued
Function-like
non
empty
total
quasi_total
Path
of
CR
,
DR
fau
is
complex
ext-real
real
Element
of the
carrier
of
I[01]
v
.
fau
is
Element
of the
carrier
of
(
Trectangle
(
(
-
1
)
,1,
(
-
3
)
,3)
)
vb
is
complex
ext-real
real
Element
of the
carrier
of
I[01]
au
.
vb
is
Element
of the
carrier
of
(
Trectangle
(
(
-
1
)
,1,
(
-
3
)
,3)
)
dom
v
is non
empty
V166
()
V167
()
V168
()
Element
of
bool
the
carrier
of
I[01]
bool
the
carrier
of
I[01]
is non
empty
set
dom
au
is non
empty
V166
()
V167
()
V168
()
Element
of
bool
the
carrier
of
I[01]
LSeg
(
(
First_Point
(
T2C
,
(
(
1
/
2
)
*
(
(
UMP
(
(
LSeg
(
(
LMP
l
)
,
|[
0
,
(
-
3
)
]|
)
)
/\
LJ
)
)
+
(
LMP
l
)
)
)
,
VP
,
(
rectangle
(
(
-
1
)
,1,
(
-
3
)
,3)
)
)
)
,
|[
0
,
(
-
3
)
]|
) is
functional
proper
closed
closed
boundary
nowhere_dense
connected
compact
compact
bounded
bounded
Element
of
bool
the
carrier
of
(
TOP-REAL
2
)
{
(
(
(
1
-
b
1
)
*
(
First_Point
(
T2C
,
(
(
1
/
2
)
*
(
(
UMP
(
(
LSeg
(
(
LMP
l
)
,
|[
0
,
(
-
3
)
]|
)
)
/\
LJ
)
)
+
(
LMP
l
)
)
)
,
VP
,
(
rectangle
(
(
-
1
)
,1,
(
-
3
)
,3)
)
)
)
)
+
(
b
1
*
|[
0
,
(
-
3
)
]|
)
)
where
b
1
is
complex
ext-real
real
Element
of
REAL
: (
0
<=
b
1
&
b
1
<=
1 )
}
is
set
(
TOP-REAL
2
)
|
(
LSeg
(
(
First_Point
(
T2C
,
(
(
1
/
2
)
*
(
(
UMP
(
(
LSeg
(
(
LMP
l
)
,
|[
0
,
(
-
3
)
]|
)
)
/\
LJ
)
)
+
(
LMP
l
)
)
)
,
VP
,
(
rectangle
(
(
-
1
)
,1,
(
-
3
)
,3)
)
)
)
,
|[
0
,
(
-
3
)
]|
)
)
is
strict
TopSpace-like
T_0
T_1
T_2
SubSpace
of
TOP-REAL
2
the
carrier
of
(
(
TOP-REAL
2
)
|
(
LSeg
(
(
First_Point
(
T2C
,
(
(
1
/
2
)
*
(
(
UMP
(
(
LSeg
(
(
LMP
l
)
,
|[
0
,
(
-
3
)
]|
)
)
/\
LJ
)
)
+
(
LMP
l
)
)
)
,
VP
,
(
rectangle
(
(
-
1
)
,1,
(
-
3
)
,3)
)
)
)
,
|[
0
,
(
-
3
)
]|
)
)
)
is
set
[:
the
carrier
of
I[01]
, the
carrier
of
(
(
TOP-REAL
2
)
|
(
LSeg
(
(
First_Point
(
T2C
,
(
(
1
/
2
)
*
(
(
UMP
(
(
LSeg
(
(
LMP
l
)
,
|[
0
,
(
-
3
)
]|
)
)
/\
LJ
)
)
+
(
LMP
l
)
)
)
,
VP
,
(
rectangle
(
(
-
1
)
,1,
(
-
3
)
,3)
)
)
)
,
|[
0
,
(
-
3
)
]|
)
)
)
:]
is
Relation-like
set
bool
[:
the
carrier
of
I[01]
, the
carrier
of
(
(
TOP-REAL
2
)
|
(
LSeg
(
(
First_Point
(
T2C
,
(
(
1
/
2
)
*
(
(
UMP
(
(
LSeg
(
(
LMP
l
)
,
|[
0
,
(
-
3
)
]|
)
)
/\
LJ
)
)
+
(
LMP
l
)
)
)
,
VP
,
(
rectangle
(
(
-
1
)
,1,
(
-
3
)
,3)
)
)
)
,
|[
0
,
(
-
3
)
]|
)
)
)
:]
is non
empty
set
fuv
is
Relation-like
the
carrier
of
I[01]
-defined
the
carrier
of
(
(
TOP-REAL
2
)
|
(
LSeg
(
(
First_Point
(
T2C
,
(
(
1
/
2
)
*
(
(
UMP
(
(
LSeg
(
(
LMP
l
)
,
|[
0
,
(
-
3
)
]|
)
)
/\
LJ
)
)
+
(
LMP
l
)
)
)
,
VP
,
(
rectangle
(
(
-
1
)
,1,
(
-
3
)
,3)
)
)
)
,
|[
0
,
(
-
3
)
]|
)
)
)
-valued
Function-like
quasi_total
Element
of
bool
[:
the
carrier
of
I[01]
, the
carrier
of
(
(
TOP-REAL
2
)
|
(
LSeg
(
(
First_Point
(
T2C
,
(
(
1
/
2
)
*
(
(
UMP
(
(
LSeg
(
(
LMP
l
)
,
|[
0
,
(
-
3
)
]|
)
)
/\
LJ
)
)
+
(
LMP
l
)
)
)
,
VP
,
(
rectangle
(
(
-
1
)
,1,
(
-
3
)
,3)
)
)
)
,
|[
0
,
(
-
3
)
]|
)
)
)
:]
rng
fuv
is
Element
of
bool
the
carrier
of
(
(
TOP-REAL
2
)
|
(
LSeg
(
(
First_Point
(
T2C
,
(
(
1
/
2
)
*
(
(
UMP
(
(
LSeg
(
(
LMP
l
)
,
|[
0
,
(
-
3
)
]|
)
)
/\
LJ
)
)
+
(
LMP
l
)
)
)
,
VP
,
(
rectangle
(
(
-
1
)
,1,
(
-
3
)
,3)
)
)
)
,
|[
0
,
(
-
3
)
]|
)
)
)
bool
the
carrier
of
(
(
TOP-REAL
2
)
|
(
LSeg
(
(
First_Point
(
T2C
,
(
(
1
/
2
)
*
(
(
UMP
(
(
LSeg
(
(
LMP
l
)
,
|[
0
,
(
-
3
)
]|
)
)
/\
LJ
)
)
+
(
LMP
l
)
)
)
,
VP
,
(
rectangle
(
(
-
1
)
,1,
(
-
3
)
,3)
)
)
)
,
|[
0
,
(
-
3
)
]|
)
)
)
is non
empty
set
v1
is
Relation-like
the
carrier
of
I[01]
-defined
the
carrier
of
(
TOP-REAL
2
)
-valued
Function-like
non
empty
total
quasi_total
continuous
Path
of
First_Point
(
T2C
,
(
(
1
/
2
)
*
(
(
UMP
(
(
LSeg
(
(
LMP
l
)
,
|[
0
,
(
-
3
)
]|
)
)
/\
LJ
)
)
+
(
LMP
l
)
)
)
,
VP
,
(
rectangle
(
(
-
1
)
,1,
(
-
3
)
,3)
)
),
|[
0
,
(
-
3
)
]|
(
(
Pcm
+
Pml
)
+
u
)
+
B
is
Relation-like
the
carrier
of
I[01]
-defined
the
carrier
of
(
TOP-REAL
2
)
-valued
Function-like
non
empty
total
quasi_total
continuous
Path
of
|[
0
,3
]|
,
First_Point
(
T2C
,
(
(
1
/
2
)
*
(
(
UMP
(
(
LSeg
(
(
LMP
l
)
,
|[
0
,
(
-
3
)
]|
)
)
/\
LJ
)
)
+
(
LMP
l
)
)
)
,
VP
,
(
rectangle
(
(
-
1
)
,1,
(
-
3
)
,3)
)
)
(
(
(
Pcm
+
Pml
)
+
u
)
+
B
)
+
v1
is
Relation-like
the
carrier
of
I[01]
-defined
the
carrier
of
(
TOP-REAL
2
)
-valued
Function-like
non
empty
total
quasi_total
continuous
Path
of
|[
0
,3
]|
,
|[
0
,
(
-
3
)
]|
(
First_Point
(
T2C
,
(
(
1
/
2
)
*
(
(
UMP
(
(
LSeg
(
(
LMP
l
)
,
|[
0
,
(
-
3
)
]|
)
)
/\
LJ
)
)
+
(
LMP
l
)
)
)
,
VP
,
(
rectangle
(
(
-
1
)
,1,
(
-
3
)
,3)
)
)
)
`1
is
complex
ext-real
real
Element
of
REAL
rng
(
(
(
(
Pcm
+
Pml
)
+
u
)
+
B
)
+
v1
)
is
functional
non
empty
Element
of
bool
the
carrier
of
(
TOP-REAL
2
)
rng
B
is
functional
non
empty
Element
of
bool
the
carrier
of
(
TOP-REAL
2
)
(
rng
(
(
Pcm
+
Pml
)
+
u
)
)
\/
(
rng
B
)
is
functional
non
empty
Element
of
bool
the
carrier
of
(
TOP-REAL
2
)
rng
v1
is
functional
non
empty
Element
of
bool
the
carrier
of
(
TOP-REAL
2
)
(
(
rng
(
(
Pcm
+
Pml
)
+
u
)
)
\/
(
rng
B
)
)
\/
(
rng
v1
)
is
functional
non
empty
Element
of
bool
the
carrier
of
(
TOP-REAL
2
)
CR
is
Element
of the
carrier
of
(
Trectangle
(
(
-
1
)
,1,
(
-
3
)
,3)
)
DR
is
Element
of the
carrier
of
(
Trectangle
(
(
-
1
)
,1,
(
-
3
)
,3)
)
v
is
Relation-like
the
carrier
of
I[01]
-defined
the
carrier
of
(
Trectangle
(
(
-
1
)
,1,
(
-
3
)
,3)
)
-valued
Function-like
non
empty
total
quasi_total
Path
of
AR
,
BR
au
is
Relation-like
the
carrier
of
I[01]
-defined
the
carrier
of
(
Trectangle
(
(
-
1
)
,1,
(
-
3
)
,3)
)
-valued
Function-like
non
empty
total
quasi_total
Path
of
CR
,
DR
fau
is
complex
ext-real
real
Element
of the
carrier
of
I[01]
v
.
fau
is
Element
of the
carrier
of
(
Trectangle
(
(
-
1
)
,1,
(
-
3
)
,3)
)
vb
is
complex
ext-real
real
Element
of the
carrier
of
I[01]
au
.
vb
is
Element
of the
carrier
of
(
Trectangle
(
(
-
1
)
,1,
(
-
3
)
,3)
)
dom
v
is non
empty
V166
()
V167
()
V168
()
Element
of
bool
the
carrier
of
I[01]
bool
the
carrier
of
I[01]
is non
empty
set
dom
au
is non
empty
V166
()
V167
()
V168
()
Element
of
bool
the
carrier
of
I[01]
LSeg
(
(
First_Point
(
T2C
,
(
(
1
/
2
)
*
(
(
UMP
(
(
LSeg
(
(
LMP
l
)
,
|[
0
,
(
-
3
)
]|
)
)
/\
LJ
)
)
+
(
LMP
l
)
)
)
,
VP
,
(
rectangle
(
(
-
1
)
,1,
(
-
3
)
,3)
)
)
)
,
|[
1,
(
-
3
)
]|
) is
functional
proper
closed
closed
boundary
nowhere_dense
connected
compact
compact
bounded
bounded
Element
of
bool
the
carrier
of
(
TOP-REAL
2
)
{
(
(
(
1
-
b
1
)
*
(
First_Point
(
T2C
,
(
(
1
/
2
)
*
(
(
UMP
(
(
LSeg
(
(
LMP
l
)
,
|[
0
,
(
-
3
)
]|
)
)
/\
LJ
)
)
+
(
LMP
l
)
)
)
,
VP
,
(
rectangle
(
(
-
1
)
,1,
(
-
3
)
,3)
)
)
)
)
+
(
b
1
*
|[
1,
(
-
3
)
]|
)
)
where
b
1
is
complex
ext-real
real
Element
of
REAL
: (
0
<=
b
1
&
b
1
<=
1 )
}
is
set
(
TOP-REAL
2
)
|
(
LSeg
(
(
First_Point
(
T2C
,
(
(
1
/
2
)
*
(
(
UMP
(
(
LSeg
(
(
LMP
l
)
,
|[
0
,
(
-
3
)
]|
)
)
/\
LJ
)
)
+
(
LMP
l
)
)
)
,
VP
,
(
rectangle
(
(
-
1
)
,1,
(
-
3
)
,3)
)
)
)
,
|[
1,
(
-
3
)
]|
)
)
is
strict
TopSpace-like
T_0
T_1
T_2
SubSpace
of
TOP-REAL
2
the
carrier
of
(
(
TOP-REAL
2
)
|
(
LSeg
(
(
First_Point
(
T2C
,
(
(
1
/
2
)
*
(
(
UMP
(
(
LSeg
(
(
LMP
l
)
,
|[
0
,
(
-
3
)
]|
)
)
/\
LJ
)
)
+
(
LMP
l
)
)
)
,
VP
,
(
rectangle
(
(
-
1
)
,1,
(
-
3
)
,3)
)
)
)
,
|[
1,
(
-
3
)
]|
)
)
)
is
set
[:
the
carrier
of
I[01]
, the
carrier
of
(
(
TOP-REAL
2
)
|
(
LSeg
(
(
First_Point
(
T2C
,
(
(
1
/
2
)
*
(
(
UMP
(
(
LSeg
(
(
LMP
l
)
,
|[
0
,
(
-
3
)
]|
)
)
/\
LJ
)
)
+
(
LMP
l
)
)
)
,
VP
,
(
rectangle
(
(
-
1
)
,1,
(
-
3
)
,3)
)
)
)
,
|[
1,
(
-
3
)
]|
)
)
)
:]
is
Relation-like
set
bool
[:
the
carrier
of
I[01]
, the
carrier
of
(
(
TOP-REAL
2
)
|
(
LSeg
(
(
First_Point
(
T2C
,
(
(
1
/
2
)
*
(
(
UMP
(
(
LSeg
(
(
LMP
l
)
,
|[
0
,
(
-
3
)
]|
)
)
/\
LJ
)
)
+
(
LMP
l
)
)
)
,
VP
,
(
rectangle
(
(
-
1
)
,1,
(
-
3
)
,3)
)
)
)
,
|[
1,
(
-
3
)
]|
)
)
)
:]
is non
empty
set
fuv
is
Relation-like
the
carrier
of
I[01]
-defined
the
carrier
of
(
(
TOP-REAL
2
)
|
(
LSeg
(
(
First_Point
(
T2C
,
(
(
1
/
2
)
*
(
(
UMP
(
(
LSeg
(
(
LMP
l
)
,
|[
0
,
(
-
3
)
]|
)
)
/\
LJ
)
)
+
(
LMP
l
)
)
)
,
VP
,
(
rectangle
(
(
-
1
)
,1,
(
-
3
)
,3)
)
)
)
,
|[
1,
(
-
3
)
]|
)
)
)
-valued
Function-like
quasi_total
Element
of
bool
[:
the
carrier
of
I[01]
, the
carrier
of
(
(
TOP-REAL
2
)
|
(
LSeg
(
(
First_Point
(
T2C
,
(
(
1
/
2
)
*
(
(
UMP
(
(
LSeg
(
(
LMP
l
)
,
|[
0
,
(
-
3
)
]|
)
)
/\
LJ
)
)
+
(
LMP
l
)
)
)
,
VP
,
(
rectangle
(
(
-
1
)
,1,
(
-
3
)
,3)
)
)
)
,
|[
1,
(
-
3
)
]|
)
)
)
:]
rng
fuv
is
Element
of
bool
the
carrier
of
(
(
TOP-REAL
2
)
|
(
LSeg
(
(
First_Point
(
T2C
,
(
(
1
/
2
)
*
(
(
UMP
(
(
LSeg
(
(
LMP
l
)
,
|[
0
,
(
-
3
)
]|
)
)
/\
LJ
)
)
+
(
LMP
l
)
)
)
,
VP
,
(
rectangle
(
(
-
1
)
,1,
(
-
3
)
,3)
)
)
)
,
|[
1,
(
-
3
)
]|
)
)
)
bool
the
carrier
of
(
(
TOP-REAL
2
)
|
(
LSeg
(
(
First_Point
(
T2C
,
(
(
1
/
2
)
*
(
(
UMP
(
(
LSeg
(
(
LMP
l
)
,
|[
0
,
(
-
3
)
]|
)
)
/\
LJ
)
)
+
(
LMP
l
)
)
)
,
VP
,
(
rectangle
(
(
-
1
)
,1,
(
-
3
)
,3)
)
)
)
,
|[
1,
(
-
3
)
]|
)
)
)
is non
empty
set
v1
is
Relation-like
the
carrier
of
I[01]
-defined
the
carrier
of
(
TOP-REAL
2
)
-valued
Function-like
non
empty
total
quasi_total
continuous
Path
of
First_Point
(
T2C
,
(
(
1
/
2
)
*
(
(
UMP
(
(
LSeg
(
(
LMP
l
)
,
|[
0
,
(
-
3
)
]|
)
)
/\
LJ
)
)
+
(
LMP
l
)
)
)
,
VP
,
(
rectangle
(
(
-
1
)
,1,
(
-
3
)
,3)
)
),
|[
1,
(
-
3
)
]|
(
TOP-REAL
2
)
|
(
LSeg
(
|[
1,
(
-
3
)
]|
,
|[
0
,
(
-
3
)
]|
)
)
is
strict
TopSpace-like
T_0
T_1
T_2
SubSpace
of
TOP-REAL
2
the
carrier
of
(
(
TOP-REAL
2
)
|
(
LSeg
(
|[
1,
(
-
3
)
]|
,
|[
0
,
(
-
3
)
]|
)
)
)
is
set
[:
the
carrier
of
I[01]
, the
carrier
of
(
(
TOP-REAL
2
)
|
(
LSeg
(
|[
1,
(
-
3
)
]|
,
|[
0
,
(
-
3
)
]|
)
)
)
:]
is
Relation-like
set
bool
[:
the
carrier
of
I[01]
, the
carrier
of
(
(
TOP-REAL
2
)
|
(
LSeg
(
|[
1,
(
-
3
)
]|
,
|[
0
,
(
-
3
)
]|
)
)
)
:]
is non
empty
set
au
is
Relation-like
the
carrier
of
I[01]
-defined
the
carrier
of
(
(
TOP-REAL
2
)
|
(
LSeg
(
|[
1,
(
-
3
)
]|
,
|[
0
,
(
-
3
)
]|
)
)
)
-valued
Function-like
quasi_total
Element
of
bool
[:
the
carrier
of
I[01]
, the
carrier
of
(
(
TOP-REAL
2
)
|
(
LSeg
(
|[
1,
(
-
3
)
]|
,
|[
0
,
(
-
3
)
]|
)
)
)
:]
rng
au
is
Element
of
bool
the
carrier
of
(
(
TOP-REAL
2
)
|
(
LSeg
(
|[
1,
(
-
3
)
]|
,
|[
0
,
(
-
3
)
]|
)
)
)
bool
the
carrier
of
(
(
TOP-REAL
2
)
|
(
LSeg
(
|[
1,
(
-
3
)
]|
,
|[
0
,
(
-
3
)
]|
)
)
)
is non
empty
set
uv
is
Relation-like
the
carrier
of
I[01]
-defined
the
carrier
of
(
TOP-REAL
2
)
-valued
Function-like
non
empty
total
quasi_total
continuous
Path
of
|[
1,
(
-
3
)
]|
,
|[
0
,
(
-
3
)
]|
(
First_Point
(
T2C
,
(
(
1
/
2
)
*
(
(
UMP
(
(
LSeg
(
(
LMP
l
)
,
|[
0
,
(
-
3
)
]|
)
)
/\
LJ
)
)
+
(
LMP
l
)
)
)
,
VP
,
(
rectangle
(
(
-
1
)
,1,
(
-
3
)
,3)
)
)
)
`1
is
complex
ext-real
real
Element
of
REAL
fau
is
Relation-like
Function-like
V49
(2)
V50
()
V156
()
V157
()
V158
()
Element
of the
carrier
of
(
TOP-REAL
2
)
fau
`1
is
complex
ext-real
real
Element
of
REAL
fau
`2
is
complex
ext-real
real
Element
of
REAL
(
(
Pcm
+
Pml
)
+
u
)
+
B
is
Relation-like
the
carrier
of
I[01]
-defined
the
carrier
of
(
TOP-REAL
2
)
-valued
Function-like
non
empty
total
quasi_total
continuous
Path
of
|[
0
,3
]|
,
First_Point
(
T2C
,
(
(
1
/
2
)
*
(
(
UMP
(
(
LSeg
(
(
LMP
l
)
,
|[
0
,
(
-
3
)
]|
)
)
/\
LJ
)
)
+
(
LMP
l
)
)
)
,
VP
,
(
rectangle
(
(
-
1
)
,1,
(
-
3
)
,3)
)
)
(
(
(
Pcm
+
Pml
)
+
u
)
+
B
)
+
v1
is
Relation-like
the
carrier
of
I[01]
-defined
the
carrier
of
(
TOP-REAL
2
)
-valued
Function-like
non
empty
total
quasi_total
continuous
Path
of
|[
0
,3
]|
,
|[
1,
(
-
3
)
]|
(
(
(
(
Pcm
+
Pml
)
+
u
)
+
B
)
+
v1
)
+
uv
is
Relation-like
the
carrier
of
I[01]
-defined
the
carrier
of
(
TOP-REAL
2
)
-valued
Function-like
non
empty
total
quasi_total
continuous
Path
of
|[
0
,3
]|
,
|[
0
,
(
-
3
)
]|
rng
(
(
(
(
(
Pcm
+
Pml
)
+
u
)
+
B
)
+
v1
)
+
uv
)
is
functional
non
empty
Element
of
bool
the
carrier
of
(
TOP-REAL
2
)
rng
B
is
functional
non
empty
Element
of
bool
the
carrier
of
(
TOP-REAL
2
)
(
rng
(
(
Pcm
+
Pml
)
+
u
)
)
\/
(
rng
B
)
is
functional
non
empty
Element
of
bool
the
carrier
of
(
TOP-REAL
2
)
rng
v1
is
functional
non
empty
Element
of
bool
the
carrier
of
(
TOP-REAL
2
)
(
(
rng
(
(
Pcm
+
Pml
)
+
u
)
)
\/
(
rng
B
)
)
\/
(
rng
v1
)
is
functional
non
empty
Element
of
bool
the
carrier
of
(
TOP-REAL
2
)
rng
uv
is
functional
non
empty
Element
of
bool
the
carrier
of
(
TOP-REAL
2
)
(
(
(
rng
(
(
Pcm
+
Pml
)
+
u
)
)
\/
(
rng
B
)
)
\/
(
rng
v1
)
)
\/
(
rng
uv
)
is
functional
non
empty
Element
of
bool
the
carrier
of
(
TOP-REAL
2
)
CR
is
Element
of the
carrier
of
(
Trectangle
(
(
-
1
)
,1,
(
-
3
)
,3)
)
DR
is
Element
of the
carrier
of
(
Trectangle
(
(
-
1
)
,1,
(
-
3
)
,3)
)
v
is
Relation-like
the
carrier
of
I[01]
-defined
the
carrier
of
(
Trectangle
(
(
-
1
)
,1,
(
-
3
)
,3)
)
-valued
Function-like
non
empty
total
quasi_total
Path
of
AR
,
BR
vb
is
Relation-like
the
carrier
of
I[01]
-defined
the
carrier
of
(
Trectangle
(
(
-
1
)
,1,
(
-
3
)
,3)
)
-valued
Function-like
non
empty
total
quasi_total
Path
of
CR
,
DR
fvb
is
complex
ext-real
real
Element
of the
carrier
of
I[01]
v
.
fvb
is
Element
of the
carrier
of
(
Trectangle
(
(
-
1
)
,1,
(
-
3
)
,3)
)
AB
is
complex
ext-real
real
Element
of the
carrier
of
I[01]
vb
.
AB
is
Element
of the
carrier
of
(
Trectangle
(
(
-
1
)
,1,
(
-
3
)
,3)
)
dom
v
is non
empty
V166
()
V167
()
V168
()
Element
of
bool
the
carrier
of
I[01]
bool
the
carrier
of
I[01]
is non
empty
set
dom
vb
is non
empty
V166
()
V167
()
V168
()
Element
of
bool
the
carrier
of
I[01]
(
First_Point
(
T2C
,
(
(
1
/
2
)
*
(
(
UMP
(
(
LSeg
(
(
LMP
l
)
,
|[
0
,
(
-
3
)
]|
)
)
/\
LJ
)
)
+
(
LMP
l
)
)
)
,
VP
,
(
rectangle
(
(
-
1
)
,1,
(
-
3
)
,3)
)
)
)
`2
is
complex
ext-real
real
Element
of
REAL
LSeg
(
(
First_Point
(
T2C
,
(
(
1
/
2
)
*
(
(
UMP
(
(
LSeg
(
(
LMP
l
)
,
|[
0
,
(
-
3
)
]|
)
)
/\
LJ
)
)
+
(
LMP
l
)
)
)
,
VP
,
(
rectangle
(
(
-
1
)
,1,
(
-
3
)
,3)
)
)
)
,
|[
(
-
1
)
,3
]|
) is
functional
proper
closed
closed
boundary
nowhere_dense
connected
compact
compact
bounded
bounded
Element
of
bool
the
carrier
of
(
TOP-REAL
2
)
{
(
(
(
1
-
b
1
)
*
(
First_Point
(
T2C
,
(
(
1
/
2
)
*
(
(
UMP
(
(
LSeg
(
(
LMP
l
)
,
|[
0
,
(
-
3
)
]|
)
)
/\
LJ
)
)
+
(
LMP
l
)
)
)
,
VP
,
(
rectangle
(
(
-
1
)
,1,
(
-
3
)
,3)
)
)
)
)
+
(
b
1
*
|[
(
-
1
)
,3
]|
)
)
where
b
1
is
complex
ext-real
real
Element
of
REAL
: (
0
<=
b
1
&
b
1
<=
1 )
}
is
set
(
TOP-REAL
2
)
|
(
LSeg
(
(
First_Point
(
T2C
,
(
(
1
/
2
)
*
(
(
UMP
(
(
LSeg
(
(
LMP
l
)
,
|[
0
,
(
-
3
)
]|
)
)
/\
LJ
)
)
+
(
LMP
l
)
)
)
,
VP
,
(
rectangle
(
(
-
1
)
,1,
(
-
3
)
,3)
)
)
)
,
|[
(
-
1
)
,3
]|
)
)
is
strict
TopSpace-like
T_0
T_1
T_2
SubSpace
of
TOP-REAL
2
the
carrier
of
(
(
TOP-REAL
2
)
|
(
LSeg
(
(
First_Point
(
T2C
,
(
(
1
/
2
)
*
(
(
UMP
(
(
LSeg
(
(
LMP
l
)
,
|[
0
,
(
-
3
)
]|
)
)
/\
LJ
)
)
+
(
LMP
l
)
)
)
,
VP
,
(
rectangle
(
(
-
1
)
,1,
(
-
3
)
,3)
)
)
)
,
|[
(
-
1
)
,3
]|
)
)
)
is
set
[:
the
carrier
of
I[01]
, the
carrier
of
(
(
TOP-REAL
2
)
|
(
LSeg
(
(
First_Point
(
T2C
,
(
(
1
/
2
)
*
(
(
UMP
(
(
LSeg
(
(
LMP
l
)
,
|[
0
,
(
-
3
)
]|
)
)
/\
LJ
)
)
+
(
LMP
l
)
)
)
,
VP
,
(
rectangle
(
(
-
1
)
,1,
(
-
3
)
,3)
)
)
)
,
|[
(
-
1
)
,3
]|
)
)
)
:]
is
Relation-like
set
bool
[:
the
carrier
of
I[01]
, the
carrier
of
(
(
TOP-REAL
2
)
|
(
LSeg
(
(
First_Point
(
T2C
,
(
(
1
/
2
)
*
(
(
UMP
(
(
LSeg
(
(
LMP
l
)
,
|[
0
,
(
-
3
)
]|
)
)
/\
LJ
)
)
+
(
LMP
l
)
)
)
,
VP
,
(
rectangle
(
(
-
1
)
,1,
(
-
3
)
,3)
)
)
)
,
|[
(
-
1
)
,3
]|
)
)
)
:]
is non
empty
set
fuv
is
Relation-like
the
carrier
of
I[01]
-defined
the
carrier
of
(
(
TOP-REAL
2
)
|
(
LSeg
(
(
First_Point
(
T2C
,
(
(
1
/
2
)
*
(
(
UMP
(
(
LSeg
(
(
LMP
l
)
,
|[
0
,
(
-
3
)
]|
)
)
/\
LJ
)
)
+
(
LMP
l
)
)
)
,
VP
,
(
rectangle
(
(
-
1
)
,1,
(
-
3
)
,3)
)
)
)
,
|[
(
-
1
)
,3
]|
)
)
)
-valued
Function-like
quasi_total
Element
of
bool
[:
the
carrier
of
I[01]
, the
carrier
of
(
(
TOP-REAL
2
)
|
(
LSeg
(
(
First_Point
(
T2C
,
(
(
1
/
2
)
*
(
(
UMP
(
(
LSeg
(
(
LMP
l
)
,
|[
0
,
(
-
3
)
]|
)
)
/\
LJ
)
)
+
(
LMP
l
)
)
)
,
VP
,
(
rectangle
(
(
-
1
)
,1,
(
-
3
)
,3)
)
)
)
,
|[
(
-
1
)
,3
]|
)
)
)
:]
rng
fuv
is
Element
of
bool
the
carrier
of
(
(
TOP-REAL
2
)
|
(
LSeg
(
(
First_Point
(
T2C
,
(
(
1
/
2
)
*
(
(
UMP
(
(
LSeg
(
(
LMP
l
)
,
|[
0
,
(
-
3
)
]|
)
)
/\
LJ
)
)
+
(
LMP
l
)
)
)
,
VP
,
(
rectangle
(
(
-
1
)
,1,
(
-
3
)
,3)
)
)
)
,
|[
(
-
1
)
,3
]|
)
)
)
bool
the
carrier
of
(
(
TOP-REAL
2
)
|
(
LSeg
(
(
First_Point
(
T2C
,
(
(
1
/
2
)
*
(
(
UMP
(
(
LSeg
(
(
LMP
l
)
,
|[
0
,
(
-
3
)
]|
)
)
/\
LJ
)
)
+
(
LMP
l
)
)
)
,
VP
,
(
rectangle
(
(
-
1
)
,1,
(
-
3
)
,3)
)
)
)
,
|[
(
-
1
)
,3
]|
)
)
)
is non
empty
set
v1
is
Relation-like
the
carrier
of
I[01]
-defined
the
carrier
of
(
TOP-REAL
2
)
-valued
Function-like
non
empty
total
quasi_total
continuous
Path
of
First_Point
(
T2C
,
(
(
1
/
2
)
*
(
(
UMP
(
(
LSeg
(
(
LMP
l
)
,
|[
0
,
(
-
3
)
]|
)
)
/\
LJ
)
)
+
(
LMP
l
)
)
)
,
VP
,
(
rectangle
(
(
-
1
)
,1,
(
-
3
)
,3)
)
),
|[
(
-
1
)
,3
]|
(
TOP-REAL
2
)
|
(
LSeg
(
|[
(
-
1
)
,3
]|
,
|[
0
,3
]|
)
)
is
strict
TopSpace-like
T_0
T_1
T_2
SubSpace
of
TOP-REAL
2
the
carrier
of
(
(
TOP-REAL
2
)
|
(
LSeg
(
|[
(
-
1
)
,3
]|
,
|[
0
,3
]|
)
)
)
is
set
[:
the
carrier
of
I[01]
, the
carrier
of
(
(
TOP-REAL
2
)
|
(
LSeg
(
|[
(
-
1
)
,3
]|
,
|[
0
,3
]|
)
)
)
:]
is
Relation-like
set
bool
[:
the
carrier
of
I[01]
, the
carrier
of
(
(
TOP-REAL
2
)
|
(
LSeg
(
|[
(
-
1
)
,3
]|
,
|[
0
,3
]|
)
)
)
:]
is non
empty
set
au
is
Relation-like
the
carrier
of
I[01]
-defined
the
carrier
of
(
(
TOP-REAL
2
)
|
(
LSeg
(
|[
(
-
1
)
,3
]|
,
|[
0
,3
]|
)
)
)
-valued
Function-like
quasi_total
Element
of
bool
[:
the
carrier
of
I[01]
, the
carrier
of
(
(
TOP-REAL
2
)
|
(
LSeg
(
|[
(
-
1
)
,3
]|
,
|[
0
,3
]|
)
)
)
:]
rng
au
is
Element
of
bool
the
carrier
of
(
(
TOP-REAL
2
)
|
(
LSeg
(
|[
(
-
1
)
,3
]|
,
|[
0
,3
]|
)
)
)
bool
the
carrier
of
(
(
TOP-REAL
2
)
|
(
LSeg
(
|[
(
-
1
)
,3
]|
,
|[
0
,3
]|
)
)
)
is non
empty
set
uv
is
Relation-like
the
carrier
of
I[01]
-defined
the
carrier
of
(
TOP-REAL
2
)
-valued
Function-like
non
empty
total
quasi_total
continuous
Path
of
|[
(
-
1
)
,3
]|
,
|[
0
,3
]|
(
First_Point
(
T2C
,
(
(
1
/
2
)
*
(
(
UMP
(
(
LSeg
(
(
LMP
l
)
,
|[
0
,
(
-
3
)
]|
)
)
/\
LJ
)
)
+
(
LMP
l
)
)
)
,
VP
,
(
rectangle
(
(
-
1
)
,1,
(
-
3
)
,3)
)
)
)
`1
is
complex
ext-real
real
Element
of
REAL
fau
is
Relation-like
Function-like
V49
(2)
V50
()
V156
()
V157
()
V158
()
Element
of the
carrier
of
(
TOP-REAL
2
)
fau
`1
is
complex
ext-real
real
Element
of
REAL
fau
`2
is
complex
ext-real
real
Element
of
REAL
Plk
+
B
is
Relation-like
the
carrier
of
I[01]
-defined
the
carrier
of
(
TOP-REAL
2
)
-valued
Function-like
non
empty
total
quasi_total
continuous
Path
of
|[
0
,
(
-
3
)
]|
,
First_Point
(
T2C
,
(
(
1
/
2
)
*
(
(
UMP
(
(
LSeg
(
(
LMP
l
)
,
|[
0
,
(
-
3
)
]|
)
)
/\
LJ
)
)
+
(
LMP
l
)
)
)
,
VP
,
(
rectangle
(
(
-
1
)
,1,
(
-
3
)
,3)
)
)
(
Plk
+
B
)
+
v1
is
Relation-like
the
carrier
of
I[01]
-defined
the
carrier
of
(
TOP-REAL
2
)
-valued
Function-like
non
empty
total
quasi_total
continuous
Path
of
|[
0
,
(
-
3
)
]|
,
|[
(
-
1
)
,3
]|
(
(
Plk
+
B
)
+
v1
)
+
uv
is
Relation-like
the
carrier
of
I[01]
-defined
the
carrier
of
(
TOP-REAL
2
)
-valued
Function-like
non
empty
total
quasi_total
continuous
Path
of
|[
0
,
(
-
3
)
]|
,
|[
0
,3
]|
rng
(
(
(
Plk
+
B
)
+
v1
)
+
uv
)
is
functional
non
empty
Element
of
bool
the
carrier
of
(
TOP-REAL
2
)
rng
Plk
is
functional
non
empty
Element
of
bool
the
carrier
of
(
TOP-REAL
2
)
rng
B
is
functional
non
empty
Element
of
bool
the
carrier
of
(
TOP-REAL
2
)
(
rng
Plk
)
\/
(
rng
B
)
is
functional
non
empty
Element
of
bool
the
carrier
of
(
TOP-REAL
2
)
rng
v1
is
functional
non
empty
Element
of
bool
the
carrier
of
(
TOP-REAL
2
)
(
(
rng
Plk
)
\/
(
rng
B
)
)
\/
(
rng
v1
)
is
functional
non
empty
Element
of
bool
the
carrier
of
(
TOP-REAL
2
)
rng
uv
is
functional
non
empty
Element
of
bool
the
carrier
of
(
TOP-REAL
2
)
(
(
(
rng
Plk
)
\/
(
rng
B
)
)
\/
(
rng
v1
)
)
\/
(
rng
uv
)
is
functional
non
empty
Element
of
bool
the
carrier
of
(
TOP-REAL
2
)
-
(
(
(
Plk
+
B
)
+
v1
)
+
uv
)
is
Relation-like
the
carrier
of
I[01]
-defined
the
carrier
of
(
TOP-REAL
2
)
-valued
Function-like
non
empty
total
quasi_total
continuous
Path
of
|[
0
,3
]|
,
|[
0
,
(
-
3
)
]|
rng
(
-
(
(
(
Plk
+
B
)
+
v1
)
+
uv
)
)
is
functional
non
empty
Element
of
bool
the
carrier
of
(
TOP-REAL
2
)
CR
is
Element
of the
carrier
of
(
Trectangle
(
(
-
1
)
,1,
(
-
3
)
,3)
)
DR
is
Element
of the
carrier
of
(
Trectangle
(
(
-
1
)
,1,
(
-
3
)
,3)
)
u
is
Relation-like
the
carrier
of
I[01]
-defined
the
carrier
of
(
Trectangle
(
(
-
1
)
,1,
(
-
3
)
,3)
)
-valued
Function-like
non
empty
total
quasi_total
Path
of
AR
,
BR
vb
is
Relation-like
the
carrier
of
I[01]
-defined
the
carrier
of
(
Trectangle
(
(
-
1
)
,1,
(
-
3
)
,3)
)
-valued
Function-like
non
empty
total
quasi_total
Path
of
CR
,
DR
fvb
is
complex
ext-real
real
Element
of the
carrier
of
I[01]
u
.
fvb
is
Element
of the
carrier
of
(
Trectangle
(
(
-
1
)
,1,
(
-
3
)
,3)
)
AB
is
complex
ext-real
real
Element
of the
carrier
of
I[01]
vb
.
AB
is
Element
of the
carrier
of
(
Trectangle
(
(
-
1
)
,1,
(
-
3
)
,3)
)
dom
u
is non
empty
V166
()
V167
()
V168
()
Element
of
bool
the
carrier
of
I[01]
bool
the
carrier
of
I[01]
is non
empty
set
dom
vb
is non
empty
V166
()
V167
()
V168
()
Element
of
bool
the
carrier
of
I[01]
LSeg
(
(
First_Point
(
T2C
,
(
(
1
/
2
)
*
(
(
UMP
(
(
LSeg
(
(
LMP
l
)
,
|[
0
,
(
-
3
)
]|
)
)
/\
LJ
)
)
+
(
LMP
l
)
)
)
,
VP
,
(
rectangle
(
(
-
1
)
,1,
(
-
3
)
,3)
)
)
)
,
|[
0
,3
]|
) is
functional
proper
closed
closed
boundary
nowhere_dense
connected
compact
compact
bounded
bounded
Element
of
bool
the
carrier
of
(
TOP-REAL
2
)
{
(
(
(
1
-
b
1
)
*
(
First_Point
(
T2C
,
(
(
1
/
2
)
*
(
(
UMP
(
(
LSeg
(
(
LMP
l
)
,
|[
0
,
(
-
3
)
]|
)
)
/\
LJ
)
)
+
(
LMP
l
)
)
)
,
VP
,
(
rectangle
(
(
-
1
)
,1,
(
-
3
)
,3)
)
)
)
)
+
(
b
1
*
|[
0
,3
]|
)
)
where
b
1
is
complex
ext-real
real
Element
of
REAL
: (
0
<=
b
1
&
b
1
<=
1 )
}
is
set
(
TOP-REAL
2
)
|
(
LSeg
(
(
First_Point
(
T2C
,
(
(
1
/
2
)
*
(
(
UMP
(
(
LSeg
(
(
LMP
l
)
,
|[
0
,
(
-
3
)
]|
)
)
/\
LJ
)
)
+
(
LMP
l
)
)
)
,
VP
,
(
rectangle
(
(
-
1
)
,1,
(
-
3
)
,3)
)
)
)
,
|[
0
,3
]|
)
)
is
strict
TopSpace-like
T_0
T_1
T_2
SubSpace
of
TOP-REAL
2
the
carrier
of
(
(
TOP-REAL
2
)
|
(
LSeg
(
(
First_Point
(
T2C
,
(
(
1
/
2
)
*
(
(
UMP
(
(
LSeg
(
(
LMP
l
)
,
|[
0
,
(
-
3
)
]|
)
)
/\
LJ
)
)
+
(
LMP
l
)
)
)
,
VP
,
(
rectangle
(
(
-
1
)
,1,
(
-
3
)
,3)
)
)
)
,
|[
0
,3
]|
)
)
)
is
set
[:
the
carrier
of
I[01]
, the
carrier
of
(
(
TOP-REAL
2
)
|
(
LSeg
(
(
First_Point
(
T2C
,
(
(
1
/
2
)
*
(
(
UMP
(
(
LSeg
(
(
LMP
l
)
,
|[
0
,
(
-
3
)
]|
)
)
/\
LJ
)
)
+
(
LMP
l
)
)
)
,
VP
,
(
rectangle
(
(
-
1
)
,1,
(
-
3
)
,3)
)
)
)
,
|[
0
,3
]|
)
)
)
:]
is
Relation-like
set
bool
[:
the
carrier
of
I[01]
, the
carrier
of
(
(
TOP-REAL
2
)
|
(
LSeg
(
(
First_Point
(
T2C
,
(
(
1
/
2
)
*
(
(
UMP
(
(
LSeg
(
(
LMP
l
)
,
|[
0
,
(
-
3
)
]|
)
)
/\
LJ
)
)
+
(
LMP
l
)
)
)
,
VP
,
(
rectangle
(
(
-
1
)
,1,
(
-
3
)
,3)
)
)
)
,
|[
0
,3
]|
)
)
)
:]
is non
empty
set
fuv
is
Relation-like
the
carrier
of
I[01]
-defined
the
carrier
of
(
(
TOP-REAL
2
)
|
(
LSeg
(
(
First_Point
(
T2C
,
(
(
1
/
2
)
*
(
(
UMP
(
(
LSeg
(
(
LMP
l
)
,
|[
0
,
(
-
3
)
]|
)
)
/\
LJ
)
)
+
(
LMP
l
)
)
)
,
VP
,
(
rectangle
(
(
-
1
)
,1,
(
-
3
)
,3)
)
)
)
,
|[
0
,3
]|
)
)
)
-valued
Function-like
quasi_total
Element
of
bool
[:
the
carrier
of
I[01]
, the
carrier
of
(
(
TOP-REAL
2
)
|
(
LSeg
(
(
First_Point
(
T2C
,
(
(
1
/
2
)
*
(
(
UMP
(
(
LSeg
(
(
LMP
l
)
,
|[
0
,
(
-
3
)
]|
)
)
/\
LJ
)
)
+
(
LMP
l
)
)
)
,
VP
,
(
rectangle
(
(
-
1
)
,1,
(
-
3
)
,3)
)
)
)
,
|[
0
,3
]|
)
)
)
:]
rng
fuv
is
Element
of
bool
the
carrier
of
(
(
TOP-REAL
2
)
|
(
LSeg
(
(
First_Point
(
T2C
,
(
(
1
/
2
)
*
(
(
UMP
(
(
LSeg
(
(
LMP
l
)
,
|[
0
,
(
-
3
)
]|
)
)
/\
LJ
)
)
+
(
LMP
l
)
)
)
,
VP
,
(
rectangle
(
(
-
1
)
,1,
(
-
3
)
,3)
)
)
)
,
|[
0
,3
]|
)
)
)
bool
the
carrier
of
(
(
TOP-REAL
2
)
|
(
LSeg
(
(
First_Point
(
T2C
,
(
(
1
/
2
)
*
(
(
UMP
(
(
LSeg
(
(
LMP
l
)
,
|[
0
,
(
-
3
)
]|
)
)
/\
LJ
)
)
+
(
LMP
l
)
)
)
,
VP
,
(
rectangle
(
(
-
1
)
,1,
(
-
3
)
,3)
)
)
)
,
|[
0
,3
]|
)
)
)
is non
empty
set
v1
is
Relation-like
the
carrier
of
I[01]
-defined
the
carrier
of
(
TOP-REAL
2
)
-valued
Function-like
non
empty
total
quasi_total
continuous
Path
of
First_Point
(
T2C
,
(
(
1
/
2
)
*
(
(
UMP
(
(
LSeg
(
(
LMP
l
)
,
|[
0
,
(
-
3
)
]|
)
)
/\
LJ
)
)
+
(
LMP
l
)
)
)
,
VP
,
(
rectangle
(
(
-
1
)
,1,
(
-
3
)
,3)
)
),
|[
0
,3
]|
Plk
+
B
is
Relation-like
the
carrier
of
I[01]
-defined
the
carrier
of
(
TOP-REAL
2
)
-valued
Function-like
non
empty
total
quasi_total
continuous
Path
of
|[
0
,
(
-
3
)
]|
,
First_Point
(
T2C
,
(
(
1
/
2
)
*
(
(
UMP
(
(
LSeg
(
(
LMP
l
)
,
|[
0
,
(
-
3
)
]|
)
)
/\
LJ
)
)
+
(
LMP
l
)
)
)
,
VP
,
(
rectangle
(
(
-
1
)
,1,
(
-
3
)
,3)
)
)
(
Plk
+
B
)
+
v1
is
Relation-like
the
carrier
of
I[01]
-defined
the
carrier
of
(
TOP-REAL
2
)
-valued
Function-like
non
empty
total
quasi_total
continuous
Path
of
|[
0
,
(
-
3
)
]|
,
|[
0
,3
]|
(
First_Point
(
T2C
,
(
(
1
/
2
)
*
(
(
UMP
(
(
LSeg
(
(
LMP
l
)
,
|[
0
,
(
-
3
)
]|
)
)
/\
LJ
)
)
+
(
LMP
l
)
)
)
,
VP
,
(
rectangle
(
(
-
1
)
,1,
(
-
3
)
,3)
)
)
)
`1
is
complex
ext-real
real
Element
of
REAL
rng
(
(
Plk
+
B
)
+
v1
)
is
functional
non
empty
Element
of
bool
the
carrier
of
(
TOP-REAL
2
)
rng
Plk
is
functional
non
empty
Element
of
bool
the
carrier
of
(
TOP-REAL
2
)
rng
B
is
functional
non
empty
Element
of
bool
the
carrier
of
(
TOP-REAL
2
)
(
rng
Plk
)
\/
(
rng
B
)
is
functional
non
empty
Element
of
bool
the
carrier
of
(
TOP-REAL
2
)
rng
v1
is
functional
non
empty
Element
of
bool
the
carrier
of
(
TOP-REAL
2
)
(
(
rng
Plk
)
\/
(
rng
B
)
)
\/
(
rng
v1
)
is
functional
non
empty
Element
of
bool
the
carrier
of
(
TOP-REAL
2
)
-
(
(
Plk
+
B
)
+
v1
)
is
Relation-like
the
carrier
of
I[01]
-defined
the
carrier
of
(
TOP-REAL
2
)
-valued
Function-like
non
empty
total
quasi_total
continuous
Path
of
|[
0
,3
]|
,
|[
0
,
(
-
3
)
]|
rng
(
-
(
(
Plk
+
B
)
+
v1
)
)
is
functional
non
empty
Element
of
bool
the
carrier
of
(
TOP-REAL
2
)
CR
is
Element
of the
carrier
of
(
Trectangle
(
(
-
1
)
,1,
(
-
3
)
,3)
)
DR
is
Element
of the
carrier
of
(
Trectangle
(
(
-
1
)
,1,
(
-
3
)
,3)
)
u
is
Relation-like
the
carrier
of
I[01]
-defined
the
carrier
of
(
Trectangle
(
(
-
1
)
,1,
(
-
3
)
,3)
)
-valued
Function-like
non
empty
total
quasi_total
Path
of
AR
,
BR
au
is
Relation-like
the
carrier
of
I[01]
-defined
the
carrier
of
(
Trectangle
(
(
-
1
)
,1,
(
-
3
)
,3)
)
-valued
Function-like
non
empty
total
quasi_total
Path
of
CR
,
DR
fau
is
complex
ext-real
real
Element
of the
carrier
of
I[01]
u
.
fau
is
Element
of the
carrier
of
(
Trectangle
(
(
-
1
)
,1,
(
-
3
)
,3)
)
vb
is
complex
ext-real
real
Element
of the
carrier
of
I[01]
au
.
vb
is
Element
of the
carrier
of
(
Trectangle
(
(
-
1
)
,1,
(
-
3
)
,3)
)
dom
u
is non
empty
V166
()
V167
()
V168
()
Element
of
bool
the
carrier
of
I[01]
bool
the
carrier
of
I[01]
is non
empty
set
dom
au
is non
empty
V166
()
V167
()
V168
()
Element
of
bool
the
carrier
of
I[01]
LSeg
(
(
First_Point
(
T2C
,
(
(
1
/
2
)
*
(
(
UMP
(
(
LSeg
(
(
LMP
l
)
,
|[
0
,
(
-
3
)
]|
)
)
/\
LJ
)
)
+
(
LMP
l
)
)
)
,
VP
,
(
rectangle
(
(
-
1
)
,1,
(
-
3
)
,3)
)
)
)
,
|[
0
,3
]|
) is
functional
proper
closed
closed
boundary
nowhere_dense
connected
compact
compact
bounded
bounded
Element
of
bool
the
carrier
of
(
TOP-REAL
2
)
{
(
(
(
1
-
b
1
)
*
(
First_Point
(
T2C
,
(
(
1
/
2
)
*
(
(
UMP
(
(
LSeg
(
(
LMP
l
)
,
|[
0
,
(
-
3
)
]|
)
)
/\
LJ
)
)
+
(
LMP
l
)
)
)
,
VP
,
(
rectangle
(
(
-
1
)
,1,
(
-
3
)
,3)
)
)
)
)
+
(
b
1
*
|[
0
,3
]|
)
)
where
b
1
is
complex
ext-real
real
Element
of
REAL
: (
0
<=
b
1
&
b
1
<=
1 )
}
is
set
(
TOP-REAL
2
)
|
(
LSeg
(
(
First_Point
(
T2C
,
(
(
1
/
2
)
*
(
(
UMP
(
(
LSeg
(
(
LMP
l
)
,
|[
0
,
(
-
3
)
]|
)
)
/\
LJ
)
)
+
(
LMP
l
)
)
)
,
VP
,
(
rectangle
(
(
-
1
)
,1,
(
-
3
)
,3)
)
)
)
,
|[
0
,3
]|
)
)
is
strict
TopSpace-like
T_0
T_1
T_2
SubSpace
of
TOP-REAL
2
the
carrier
of
(
(
TOP-REAL
2
)
|
(
LSeg
(
(
First_Point
(
T2C
,
(
(
1
/
2
)
*
(
(
UMP
(
(
LSeg
(
(
LMP
l
)
,
|[
0
,
(
-
3
)
]|
)
)
/\
LJ
)
)
+
(
LMP
l
)
)
)
,
VP
,
(
rectangle
(
(
-
1
)
,1,
(
-
3
)
,3)
)
)
)
,
|[
0
,3
]|
)
)
)
is
set
[:
the
carrier
of
I[01]
, the
carrier
of
(
(
TOP-REAL
2
)
|
(
LSeg
(
(
First_Point
(
T2C
,
(
(
1
/
2
)
*
(
(
UMP
(
(
LSeg
(
(
LMP
l
)
,
|[
0
,
(
-
3
)
]|
)
)
/\
LJ
)
)
+
(
LMP
l
)
)
)
,
VP
,
(
rectangle
(
(
-
1
)
,1,
(
-
3
)
,3)
)
)
)
,
|[
0
,3
]|
)
)
)
:]
is
Relation-like
set
bool
[:
the
carrier
of
I[01]
, the
carrier
of
(
(
TOP-REAL
2
)
|
(
LSeg
(
(
First_Point
(
T2C
,
(
(
1
/
2
)
*
(
(
UMP
(
(
LSeg
(
(
LMP
l
)
,
|[
0
,
(
-
3
)
]|
)
)
/\
LJ
)
)
+
(
LMP
l
)
)
)
,
VP
,
(
rectangle
(
(
-
1
)
,1,
(
-
3
)
,3)
)
)
)
,
|[
0
,3
]|
)
)
)
:]
is non
empty
set
fuv
is
Relation-like
the
carrier
of
I[01]
-defined
the
carrier
of
(
(
TOP-REAL
2
)
|
(
LSeg
(
(
First_Point
(
T2C
,
(
(
1
/
2
)
*
(
(
UMP
(
(
LSeg
(
(
LMP
l
)
,
|[
0
,
(
-
3
)
]|
)
)
/\
LJ
)
)
+
(
LMP
l
)
)
)
,
VP
,
(
rectangle
(
(
-
1
)
,1,
(
-
3
)
,3)
)
)
)
,
|[
0
,3
]|
)
)
)
-valued
Function-like
quasi_total
Element
of
bool
[:
the
carrier
of
I[01]
, the
carrier
of
(
(
TOP-REAL
2
)
|
(
LSeg
(
(
First_Point
(
T2C
,
(
(
1
/
2
)
*
(
(
UMP
(
(
LSeg
(
(
LMP
l
)
,
|[
0
,
(
-
3
)
]|
)
)
/\
LJ
)
)
+
(
LMP
l
)
)
)
,
VP
,
(
rectangle
(
(
-
1
)
,1,
(
-
3
)
,3)
)
)
)
,
|[
0
,3
]|
)
)
)
:]
rng
fuv
is
Element
of
bool
the
carrier
of
(
(
TOP-REAL
2
)
|
(
LSeg
(
(
First_Point
(
T2C
,
(
(
1
/
2
)
*
(
(
UMP
(
(
LSeg
(
(
LMP
l
)
,
|[
0
,
(
-
3
)
]|
)
)
/\
LJ
)
)
+
(
LMP
l
)
)
)
,
VP
,
(
rectangle
(
(
-
1
)
,1,
(
-
3
)
,3)
)
)
)
,
|[
0
,3
]|
)
)
)
bool
the
carrier
of
(
(
TOP-REAL
2
)
|
(
LSeg
(
(
First_Point
(
T2C
,
(
(
1
/
2
)
*
(
(
UMP
(
(
LSeg
(
(
LMP
l
)
,
|[
0
,
(
-
3
)
]|
)
)
/\
LJ
)
)
+
(
LMP
l
)
)
)
,
VP
,
(
rectangle
(
(
-
1
)
,1,
(
-
3
)
,3)
)
)
)
,
|[
0
,3
]|
)
)
)
is non
empty
set
v1
is
Relation-like
the
carrier
of
I[01]
-defined
the
carrier
of
(
TOP-REAL
2
)
-valued
Function-like
non
empty
total
quasi_total
continuous
Path
of
First_Point
(
T2C
,
(
(
1
/
2
)
*
(
(
UMP
(
(
LSeg
(
(
LMP
l
)
,
|[
0
,
(
-
3
)
]|
)
)
/\
LJ
)
)
+
(
LMP
l
)
)
)
,
VP
,
(
rectangle
(
(
-
1
)
,1,
(
-
3
)
,3)
)
),
|[
0
,3
]|
Plk
+
B
is
Relation-like
the
carrier
of
I[01]
-defined
the
carrier
of
(
TOP-REAL
2
)
-valued
Function-like
non
empty
total
quasi_total
continuous
Path
of
|[
0
,
(
-
3
)
]|
,
First_Point
(
T2C
,
(
(
1
/
2
)
*
(
(
UMP
(
(
LSeg
(
(
LMP
l
)
,
|[
0
,
(
-
3
)
]|
)
)
/\
LJ
)
)
+
(
LMP
l
)
)
)
,
VP
,
(
rectangle
(
(
-
1
)
,1,
(
-
3
)
,3)
)
)
(
Plk
+
B
)
+
v1
is
Relation-like
the
carrier
of
I[01]
-defined
the
carrier
of
(
TOP-REAL
2
)
-valued
Function-like
non
empty
total
quasi_total
continuous
Path
of
|[
0
,
(
-
3
)
]|
,
|[
0
,3
]|
(
First_Point
(
T2C
,
(
(
1
/
2
)
*
(
(
UMP
(
(
LSeg
(
(
LMP
l
)
,
|[
0
,
(
-
3
)
]|
)
)
/\
LJ
)
)
+
(
LMP
l
)
)
)
,
VP
,
(
rectangle
(
(
-
1
)
,1,
(
-
3
)
,3)
)
)
)
`1
is
complex
ext-real
real
Element
of
REAL
LSeg
(
|[
0
,3
]|
,
(
First_Point
(
T2C
,
(
(
1
/
2
)
*
(
(
UMP
(
(
LSeg
(
(
LMP
l
)
,
|[
0
,
(
-
3
)
]|
)
)
/\
LJ
)
)
+
(
LMP
l
)
)
)
,
VP
,
(
rectangle
(
(
-
1
)
,1,
(
-
3
)
,3)
)
)
)
) is
functional
proper
closed
closed
boundary
nowhere_dense
connected
compact
compact
bounded
bounded
Element
of
bool
the
carrier
of
(
TOP-REAL
2
)
{
(
(
(
1
-
b
1
)
*
|[
0
,3
]|
)
+
(
b
1
*
(
First_Point
(
T2C
,
(
(
1
/
2
)
*
(
(
UMP
(
(
LSeg
(
(
LMP
l
)
,
|[
0
,
(
-
3
)
]|
)
)
/\
LJ
)
)
+
(
LMP
l
)
)
)
,
VP
,
(
rectangle
(
(
-
1
)
,1,
(
-
3
)
,3)
)
)
)
)
)
where
b
1
is
complex
ext-real
real
Element
of
REAL
: (
0
<=
b
1
&
b
1
<=
1 )
}
is
set
rng
(
(
Plk
+
B
)
+
v1
)
is
functional
non
empty
Element
of
bool
the
carrier
of
(
TOP-REAL
2
)
rng
Plk
is
functional
non
empty
Element
of
bool
the
carrier
of
(
TOP-REAL
2
)
rng
B
is
functional
non
empty
Element
of
bool
the
carrier
of
(
TOP-REAL
2
)
(
rng
Plk
)
\/
(
rng
B
)
is
functional
non
empty
Element
of
bool
the
carrier
of
(
TOP-REAL
2
)
rng
v1
is
functional
non
empty
Element
of
bool
the
carrier
of
(
TOP-REAL
2
)
(
(
rng
Plk
)
\/
(
rng
B
)
)
\/
(
rng
v1
)
is
functional
non
empty
Element
of
bool
the
carrier
of
(
TOP-REAL
2
)
-
(
(
Plk
+
B
)
+
v1
)
is
Relation-like
the
carrier
of
I[01]
-defined
the
carrier
of
(
TOP-REAL
2
)
-valued
Function-like
non
empty
total
quasi_total
continuous
Path
of
|[
0
,3
]|
,
|[
0
,
(
-
3
)
]|
rng
(
-
(
(
Plk
+
B
)
+
v1
)
)
is
functional
non
empty
Element
of
bool
the
carrier
of
(
TOP-REAL
2
)
CR
is
Element
of the
carrier
of
(
Trectangle
(
(
-
1
)
,1,
(
-
3
)
,3)
)
DR
is
Element
of the
carrier
of
(
Trectangle
(
(
-
1
)
,1,
(
-
3
)
,3)
)
u
is
Relation-like
the
carrier
of
I[01]
-defined
the
carrier
of
(
Trectangle
(
(
-
1
)
,1,
(
-
3
)
,3)
)
-valued
Function-like
non
empty
total
quasi_total
Path
of
AR
,
BR
au
is
Relation-like
the
carrier
of
I[01]
-defined
the
carrier
of
(
Trectangle
(
(
-
1
)
,1,
(
-
3
)
,3)
)
-valued
Function-like
non
empty
total
quasi_total
Path
of
CR
,
DR
fau
is
complex
ext-real
real
Element
of the
carrier
of
I[01]
u
.
fau
is
Element
of the
carrier
of
(
Trectangle
(
(
-
1
)
,1,
(
-
3
)
,3)
)
vb
is
complex
ext-real
real
Element
of the
carrier
of
I[01]
au
.
vb
is
Element
of the
carrier
of
(
Trectangle
(
(
-
1
)
,1,
(
-
3
)
,3)
)
dom
u
is non
empty
V166
()
V167
()
V168
()
Element
of
bool
the
carrier
of
I[01]
bool
the
carrier
of
I[01]
is non
empty
set
dom
au
is non
empty
V166
()
V167
()
V168
()
Element
of
bool
the
carrier
of
I[01]
LSeg
(
(
First_Point
(
T2C
,
(
(
1
/
2
)
*
(
(
UMP
(
(
LSeg
(
(
LMP
l
)
,
|[
0
,
(
-
3
)
]|
)
)
/\
LJ
)
)
+
(
LMP
l
)
)
)
,
VP
,
(
rectangle
(
(
-
1
)
,1,
(
-
3
)
,3)
)
)
)
,
|[
1,3
]|
) is
functional
proper
closed
closed
boundary
nowhere_dense
connected
compact
compact
bounded
bounded
Element
of
bool
the
carrier
of
(
TOP-REAL
2
)
{
(
(
(
1
-
b
1
)
*
(
First_Point
(
T2C
,
(
(
1
/
2
)
*
(
(
UMP
(
(
LSeg
(
(
LMP
l
)
,
|[
0
,
(
-
3
)
]|
)
)
/\
LJ
)
)
+
(
LMP
l
)
)
)
,
VP
,
(
rectangle
(
(
-
1
)
,1,
(
-
3
)
,3)
)
)
)
)
+
(
b
1
*
|[
1,3
]|
)
)
where
b
1
is
complex
ext-real
real
Element
of
REAL
: (
0
<=
b
1
&
b
1
<=
1 )
}
is
set
(
TOP-REAL
2
)
|
(
LSeg
(
(
First_Point
(
T2C
,
(
(
1
/
2
)
*
(
(
UMP
(
(
LSeg
(
(
LMP
l
)
,
|[
0
,
(
-
3
)
]|
)
)
/\
LJ
)
)
+
(
LMP
l
)
)
)
,
VP
,
(
rectangle
(
(
-
1
)
,1,
(
-
3
)
,3)
)
)
)
,
|[
1,3
]|
)
)
is
strict
TopSpace-like
T_0
T_1
T_2
SubSpace
of
TOP-REAL
2
the
carrier
of
(
(
TOP-REAL
2
)
|
(
LSeg
(
(
First_Point
(
T2C
,
(
(
1
/
2
)
*
(
(
UMP
(
(
LSeg
(
(
LMP
l
)
,
|[
0
,
(
-
3
)
]|
)
)
/\
LJ
)
)
+
(
LMP
l
)
)
)
,
VP
,
(
rectangle
(
(
-
1
)
,1,
(
-
3
)
,3)
)
)
)
,
|[
1,3
]|
)
)
)
is
set
[:
the
carrier
of
I[01]
, the
carrier
of
(
(
TOP-REAL
2
)
|
(
LSeg
(
(
First_Point
(
T2C
,
(
(
1
/
2
)
*
(
(
UMP
(
(
LSeg
(
(
LMP
l
)
,
|[
0
,
(
-
3
)
]|
)
)
/\
LJ
)
)
+
(
LMP
l
)
)
)
,
VP
,
(
rectangle
(
(
-
1
)
,1,
(
-
3
)
,3)
)
)
)
,
|[
1,3
]|
)
)
)
:]
is
Relation-like
set
bool
[:
the
carrier
of
I[01]
, the
carrier
of
(
(
TOP-REAL
2
)
|
(
LSeg
(
(
First_Point
(
T2C
,
(
(
1
/
2
)
*
(
(
UMP
(
(
LSeg
(
(
LMP
l
)
,
|[
0
,
(
-
3
)
]|
)
)
/\
LJ
)
)
+
(
LMP
l
)
)
)
,
VP
,
(
rectangle
(
(
-
1
)
,1,
(
-
3
)
,3)
)
)
)
,
|[
1,3
]|
)
)
)
:]
is non
empty
set
fuv
is
Relation-like
the
carrier
of
I[01]
-defined
the
carrier
of
(
(
TOP-REAL
2
)
|
(
LSeg
(
(
First_Point
(
T2C
,
(
(
1
/
2
)
*
(
(
UMP
(
(
LSeg
(
(
LMP
l
)
,
|[
0
,
(
-
3
)
]|
)
)
/\
LJ
)
)
+
(
LMP
l
)
)
)
,
VP
,
(
rectangle
(
(
-
1
)
,1,
(
-
3
)
,3)
)
)
)
,
|[
1,3
]|
)
)
)
-valued
Function-like
quasi_total
Element
of
bool
[:
the
carrier
of
I[01]
, the
carrier
of
(
(
TOP-REAL
2
)
|
(
LSeg
(
(
First_Point
(
T2C
,
(
(
1
/
2
)
*
(
(
UMP
(
(
LSeg
(
(
LMP
l
)
,
|[
0
,
(
-
3
)
]|
)
)
/\
LJ
)
)
+
(
LMP
l
)
)
)
,
VP
,
(
rectangle
(
(
-
1
)
,1,
(
-
3
)
,3)
)
)
)
,
|[
1,3
]|
)
)
)
:]
rng
fuv
is
Element
of
bool
the
carrier
of
(
(
TOP-REAL
2
)
|
(
LSeg
(
(
First_Point
(
T2C
,
(
(
1
/
2
)
*
(
(
UMP
(
(
LSeg
(
(
LMP
l
)
,
|[
0
,
(
-
3
)
]|
)
)
/\
LJ
)
)
+
(
LMP
l
)
)
)
,
VP
,
(
rectangle
(
(
-
1
)
,1,
(
-
3
)
,3)
)
)
)
,
|[
1,3
]|
)
)
)
bool
the
carrier
of
(
(
TOP-REAL
2
)
|
(
LSeg
(
(
First_Point
(
T2C
,
(
(
1
/
2
)
*
(
(
UMP
(
(
LSeg
(
(
LMP
l
)
,
|[
0
,
(
-
3
)
]|
)
)
/\
LJ
)
)
+
(
LMP
l
)
)
)
,
VP
,
(
rectangle
(
(
-
1
)
,1,
(
-
3
)
,3)
)
)
)
,
|[
1,3
]|
)
)
)
is non
empty
set
v1
is
Relation-like
the
carrier
of
I[01]
-defined
the
carrier
of
(
TOP-REAL
2
)
-valued
Function-like
non
empty
total
quasi_total
continuous
Path
of
First_Point
(
T2C
,
(
(
1
/
2
)
*
(
(
UMP
(
(
LSeg
(
(
LMP
l
)
,
|[
0
,
(
-
3
)
]|
)
)
/\
LJ
)
)
+
(
LMP
l
)
)
)
,
VP
,
(
rectangle
(
(
-
1
)
,1,
(
-
3
)
,3)
)
),
|[
1,3
]|
(
TOP-REAL
2
)
|
(
LSeg
(
|[
1,3
]|
,
|[
0
,3
]|
)
)
is
strict
TopSpace-like
T_0
T_1
T_2
SubSpace
of
TOP-REAL
2
the
carrier
of
(
(
TOP-REAL
2
)
|
(
LSeg
(
|[
1,3
]|
,
|[
0
,3
]|
)
)
)
is
set
[:
the
carrier
of
I[01]
, the
carrier
of
(
(
TOP-REAL
2
)
|
(
LSeg
(
|[
1,3
]|
,
|[
0
,3
]|
)
)
)
:]
is
Relation-like
set
bool
[:
the
carrier
of
I[01]
, the
carrier
of
(
(
TOP-REAL
2
)
|
(
LSeg
(
|[
1,3
]|
,
|[
0
,3
]|
)
)
)
:]
is non
empty
set
au
is
Relation-like
the
carrier
of
I[01]
-defined
the
carrier
of
(
(
TOP-REAL
2
)
|
(
LSeg
(
|[
1,3
]|
,
|[
0
,3
]|
)
)
)
-valued
Function-like
quasi_total
Element
of
bool
[:
the
carrier
of
I[01]
, the
carrier
of
(
(
TOP-REAL
2
)
|
(
LSeg
(
|[
1,3
]|
,
|[
0
,3
]|
)
)
)
:]
rng
au
is
Element
of
bool
the
carrier
of
(
(
TOP-REAL
2
)
|
(
LSeg
(
|[
1,3
]|
,
|[
0
,3
]|
)
)
)
bool
the
carrier
of
(
(
TOP-REAL
2
)
|
(
LSeg
(
|[
1,3
]|
,
|[
0
,3
]|
)
)
)
is non
empty
set
uv
is
Relation-like
the
carrier
of
I[01]
-defined
the
carrier
of
(
TOP-REAL
2
)
-valued
Function-like
non
empty
total
quasi_total
continuous
Path
of
|[
1,3
]|
,
|[
0
,3
]|
(
First_Point
(
T2C
,
(
(
1
/
2
)
*
(
(
UMP
(
(
LSeg
(
(
LMP
l
)
,
|[
0
,
(
-
3
)
]|
)
)
/\
LJ
)
)
+
(
LMP
l
)
)
)
,
VP
,
(
rectangle
(
(
-
1
)
,1,
(
-
3
)
,3)
)
)
)
`1
is
complex
ext-real
real
Element
of
REAL
fau
is
Relation-like
Function-like
V49
(2)
V50
()
V156
()
V157
()
V158
()
Element
of the
carrier
of
(
TOP-REAL
2
)
fau
`1
is
complex
ext-real
real
Element
of
REAL
fau
`2
is
complex
ext-real
real
Element
of
REAL
Plk
+
B
is
Relation-like
the
carrier
of
I[01]
-defined
the
carrier
of
(
TOP-REAL
2
)
-valued
Function-like
non
empty
total
quasi_total
continuous
Path
of
|[
0
,
(
-
3
)
]|
,
First_Point
(
T2C
,
(
(
1
/
2
)
*
(
(
UMP
(
(
LSeg
(
(
LMP
l
)
,
|[
0
,
(
-
3
)
]|
)
)
/\
LJ
)
)
+
(
LMP
l
)
)
)
,
VP
,
(
rectangle
(
(
-
1
)
,1,
(
-
3
)
,3)
)
)
(
Plk
+
B
)
+
v1
is
Relation-like
the
carrier
of
I[01]
-defined
the
carrier
of
(
TOP-REAL
2
)
-valued
Function-like
non
empty
total
quasi_total
continuous
Path
of
|[
0
,
(
-
3
)
]|
,
|[
1,3
]|
(
(
Plk
+
B
)
+
v1
)
+
uv
is
Relation-like
the
carrier
of
I[01]
-defined
the
carrier
of
(
TOP-REAL
2
)
-valued
Function-like
non
empty
total
quasi_total
continuous
Path
of
|[
0
,
(
-
3
)
]|
,
|[
0
,3
]|
rng
(
(
(
Plk
+
B
)
+
v1
)
+
uv
)
is
functional
non
empty
Element
of
bool
the
carrier
of
(
TOP-REAL
2
)
rng
Plk
is
functional
non
empty
Element
of
bool
the
carrier
of
(
TOP-REAL
2
)
rng
B
is
functional
non
empty
Element
of
bool
the
carrier
of
(
TOP-REAL
2
)
(
rng
Plk
)
\/
(
rng
B
)
is
functional
non
empty
Element
of
bool
the
carrier
of
(
TOP-REAL
2
)
rng
v1
is
functional
non
empty
Element
of
bool
the
carrier
of
(
TOP-REAL
2
)
(
(
rng
Plk
)
\/
(
rng
B
)
)
\/
(
rng
v1
)
is
functional
non
empty
Element
of
bool
the
carrier
of
(
TOP-REAL
2
)
rng
uv
is
functional
non
empty
Element
of
bool
the
carrier
of
(
TOP-REAL
2
)
(
(
(
rng
Plk
)
\/
(
rng
B
)
)
\/
(
rng
v1
)
)
\/
(
rng
uv
)
is
functional
non
empty
Element
of
bool
the
carrier
of
(
TOP-REAL
2
)
-
(
(
(
Plk
+
B
)
+
v1
)
+
uv
)
is
Relation-like
the
carrier
of
I[01]
-defined
the
carrier
of
(
TOP-REAL
2
)
-valued
Function-like
non
empty
total
quasi_total
continuous
Path
of
|[
0
,3
]|
,
|[
0
,
(
-
3
)
]|
rng
(
-
(
(
(
Plk
+
B
)
+
v1
)
+
uv
)
)
is
functional
non
empty
Element
of
bool
the
carrier
of
(
TOP-REAL
2
)
CR
is
Element
of the
carrier
of
(
Trectangle
(
(
-
1
)
,1,
(
-
3
)
,3)
)
DR
is
Element
of the
carrier
of
(
Trectangle
(
(
-
1
)
,1,
(
-
3
)
,3)
)
u
is
Relation-like
the
carrier
of
I[01]
-defined
the
carrier
of
(
Trectangle
(
(
-
1
)
,1,
(
-
3
)
,3)
)
-valued
Function-like
non
empty
total
quasi_total
Path
of
AR
,
BR
vb
is
Relation-like
the
carrier
of
I[01]
-defined
the
carrier
of
(
Trectangle
(
(
-
1
)
,1,
(
-
3
)
,3)
)
-valued
Function-like
non
empty
total
quasi_total
Path
of
CR
,
DR
fvb
is
complex
ext-real
real
Element
of the
carrier
of
I[01]
u
.
fvb
is
Element
of the
carrier
of
(
Trectangle
(
(
-
1
)
,1,
(
-
3
)
,3)
)
AB
is
complex
ext-real
real
Element
of the
carrier
of
I[01]
vb
.
AB
is
Element
of the
carrier
of
(
Trectangle
(
(
-
1
)
,1,
(
-
3
)
,3)
)
dom
u
is non
empty
V166
()
V167
()
V168
()
Element
of
bool
the
carrier
of
I[01]
bool
the
carrier
of
I[01]
is non
empty
set
dom
vb
is non
empty
V166
()
V167
()
V168
()
Element
of
bool
the
carrier
of
I[01]
(
First_Point
(
T2C
,
(
(
1
/
2
)
*
(
(
UMP
(
(
LSeg
(
(
LMP
l
)
,
|[
0
,
(
-
3
)
]|
)
)
/\
LJ
)
)
+
(
LMP
l
)
)
)
,
VP
,
(
rectangle
(
(
-
1
)
,1,
(
-
3
)
,3)
)
)
)
`2
is
complex
ext-real
real
Element
of
REAL
V
is
functional
Element
of
bool
the
carrier
of
(
TOP-REAL
2
)
Euclid
2 is non
empty
strict
Reflexive
discerning
symmetric
triangle
Discerning
MetrStruct
the
carrier
of
(
Euclid
2
)
is non
empty
set
bool
the
carrier
of
(
Euclid
2
)
is non
empty
set
VP
is
Element
of
bool
the
carrier
of
(
(
TOP-REAL
2
)
|
(
C
`
)
)
{}
(
(
TOP-REAL
2
)
|
(
C
`
)
)
is
Relation-like
non-empty
empty-yielding
RAT
-valued
Function-like
one-to-one
constant
functional
empty
proper
open
closed
boundary
nowhere_dense
connected
compact
V156
()
V157
()
V158
()
V159
()
V166
()
V167
()
V168
()
V169
()
V170
()
V171
()
V172
()
bounded_below
interval
Element
of
bool
the
carrier
of
(
(
TOP-REAL
2
)
|
(
C
`
)
)
T2C
is non
empty
TopSpace-like
T_0
T_1
T_2
SubSpace
of
TOP-REAL
2
the
carrier
of
T2C
is non
empty
set
bool
the
carrier
of
T2C
is non
empty
set
LSeg
(
(
LMP
C
)
,
|[
0
,
(
-
3
)
]|
) is
functional
proper
closed
closed
boundary
nowhere_dense
connected
compact
compact
bounded
bounded
Element
of
bool
the
carrier
of
(
TOP-REAL
2
)
{
(
(
(
1
-
b
1
)
*
(
LMP
C
)
)
+
(
b
1
*
|[
0
,
(
-
3
)
]|
)
)
where
b
1
is
complex
ext-real
real
Element
of
REAL
: (
0
<=
b
1
&
b
1
<=
1 )
}
is
set
(
TOP-REAL
2
)
|
(
LSeg
(
(
LMP
C
)
,
|[
0
,
(
-
3
)
]|
)
)
is
strict
TopSpace-like
T_0
T_1
T_2
SubSpace
of
TOP-REAL
2
the
carrier
of
(
(
TOP-REAL
2
)
|
(
LSeg
(
(
LMP
C
)
,
|[
0
,
(
-
3
)
]|
)
)
)
is
set
[:
the
carrier
of
I[01]
, the
carrier
of
(
(
TOP-REAL
2
)
|
(
LSeg
(
(
LMP
C
)
,
|[
0
,
(
-
3
)
]|
)
)
)
:]
is
Relation-like
set
bool
[:
the
carrier
of
I[01]
, the
carrier
of
(
(
TOP-REAL
2
)
|
(
LSeg
(
(
LMP
C
)
,
|[
0
,
(
-
3
)
]|
)
)
)
:]
is non
empty
set
fjd
is
Relation-like
the
carrier
of
I[01]
-defined
the
carrier
of
(
(
TOP-REAL
2
)
|
(
LSeg
(
(
LMP
C
)
,
|[
0
,
(
-
3
)
]|
)
)
)
-valued
Function-like
quasi_total
Element
of
bool
[:
the
carrier
of
I[01]
, the
carrier
of
(
(
TOP-REAL
2
)
|
(
LSeg
(
(
LMP
C
)
,
|[
0
,
(
-
3
)
]|
)
)
)
:]
rng
fjd
is
Element
of
bool
the
carrier
of
(
(
TOP-REAL
2
)
|
(
LSeg
(
(
LMP
C
)
,
|[
0
,
(
-
3
)
]|
)
)
)
bool
the
carrier
of
(
(
TOP-REAL
2
)
|
(
LSeg
(
(
LMP
C
)
,
|[
0
,
(
-
3
)
]|
)
)
)
is non
empty
set
Pjd
is
Relation-like
the
carrier
of
I[01]
-defined
the
carrier
of
(
TOP-REAL
2
)
-valued
Function-like
non
empty
total
quasi_total
continuous
Path
of
LMP
C
,
|[
0
,
(
-
3
)
]|
(
TOP-REAL
2
)
|
(
LSeg
(
(
LMP
l
)
,
(
UMP
(
(
LSeg
(
(
LMP
l
)
,
|[
0
,
(
-
3
)
]|
)
)
/\
LJ
)
)
)
)
is
strict
TopSpace-like
T_0
T_1
T_2
SubSpace
of
TOP-REAL
2
the
carrier
of
(
(
TOP-REAL
2
)
|
(
LSeg
(
(
LMP
l
)
,
(
UMP
(
(
LSeg
(
(
LMP
l
)
,
|[
0
,
(
-
3
)
]|
)
)
/\
LJ
)
)
)
)
)
is
set
[:
the
carrier
of
I[01]
, the
carrier
of
(
(
TOP-REAL
2
)
|
(
LSeg
(
(
LMP
l
)
,
(
UMP
(
(
LSeg
(
(
LMP
l
)
,
|[
0
,
(
-
3
)
]|
)
)
/\
LJ
)
)
)
)
)
:]
is
Relation-like
set
bool
[:
the
carrier
of
I[01]
, the
carrier
of
(
(
TOP-REAL
2
)
|
(
LSeg
(
(
LMP
l
)
,
(
UMP
(
(
LSeg
(
(
LMP
l
)
,
|[
0
,
(
-
3
)
]|
)
)
/\
LJ
)
)
)
)
)
:]
is non
empty
set
flk
is
Relation-like
the
carrier
of
I[01]
-defined
the
carrier
of
(
(
TOP-REAL
2
)
|
(
LSeg
(
(
LMP
l
)
,
(
UMP
(
(
LSeg
(
(
LMP
l
)
,
|[
0
,
(
-
3
)
]|
)
)
/\
LJ
)
)
)
)
)
-valued
Function-like
quasi_total
Element
of
bool
[:
the
carrier
of
I[01]
, the
carrier
of
(
(
TOP-REAL
2
)
|
(
LSeg
(
(
LMP
l
)
,
(
UMP
(
(
LSeg
(
(
LMP
l
)
,
|[
0
,
(
-
3
)
]|
)
)
/\
LJ
)
)
)
)
)
:]
rng
flk
is
Element
of
bool
the
carrier
of
(
(
TOP-REAL
2
)
|
(
LSeg
(
(
LMP
l
)
,
(
UMP
(
(
LSeg
(
(
LMP
l
)
,
|[
0
,
(
-
3
)
]|
)
)
/\
LJ
)
)
)
)
)
bool
the
carrier
of
(
(
TOP-REAL
2
)
|
(
LSeg
(
(
LMP
l
)
,
(
UMP
(
(
LSeg
(
(
LMP
l
)
,
|[
0
,
(
-
3
)
]|
)
)
/\
LJ
)
)
)
)
)
is non
empty
set
Plk
is
Relation-like
the
carrier
of
I[01]
-defined
the
carrier
of
(
TOP-REAL
2
)
-valued
Function-like
non
empty
total
quasi_total
continuous
Path
of
LMP
l
,
UMP
(
(
LSeg
(
(
LMP
l
)
,
|[
0
,
(
-
3
)
]|
)
)
/\
LJ
)
Pcm
+
Pml
is
Relation-like
the
carrier
of
I[01]
-defined
the
carrier
of
(
TOP-REAL
2
)
-valued
Function-like
non
empty
total
quasi_total
continuous
Path
of
|[
0
,3
]|
,
LMP
l
(
Pcm
+
Pml
)
+
Plk
is
Relation-like
the
carrier
of
I[01]
-defined
the
carrier
of
(
TOP-REAL
2
)
-valued
Function-like
non
empty
total
quasi_total
continuous
Path
of
|[
0
,3
]|
,
UMP
(
(
LSeg
(
(
LMP
l
)
,
|[
0
,
(
-
3
)
]|
)
)
/\
LJ
)
(
(
Pcm
+
Pml
)
+
Plk
)
+
Pkj
is
Relation-like
the
carrier
of
I[01]
-defined
the
carrier
of
(
TOP-REAL
2
)
-valued
Function-like
non
empty
total
quasi_total
continuous
Path
of
|[
0
,3
]|
,
LMP
C
(
(
(
Pcm
+
Pml
)
+
Plk
)
+
Pkj
)
+
Pjd
is
Relation-like
the
carrier
of
I[01]
-defined
the
carrier
of
(
TOP-REAL
2
)
-valued
Function-like
non
empty
total
quasi_total
continuous
Path
of
|[
0
,3
]|
,
|[
0
,
(
-
3
)
]|
rng
(
(
(
(
Pcm
+
Pml
)
+
Plk
)
+
Pkj
)
+
Pjd
)
is
functional
non
empty
Element
of
bool
the
carrier
of
(
TOP-REAL
2
)
rng
Pcm
is
functional
non
empty
Element
of
bool
the
carrier
of
(
TOP-REAL
2
)
(
rng
Pcm
)
\/
(
rng
Pml
)
is
functional
non
empty
Element
of
bool
the
carrier
of
(
TOP-REAL
2
)
rng
Plk
is
functional
non
empty
Element
of
bool
the
carrier
of
(
TOP-REAL
2
)
(
(
rng
Pcm
)
\/
(
rng
Pml
)
)
\/
(
rng
Plk
)
is
functional
non
empty
Element
of
bool
the
carrier
of
(
TOP-REAL
2
)
(
(
(
rng
Pcm
)
\/
(
rng
Pml
)
)
\/
(
rng
Plk
)
)
\/
(
rng
Pkj
)
is
functional
non
empty
Element
of
bool
the
carrier
of
(
TOP-REAL
2
)
rng
Pjd
is
functional
non
empty
Element
of
bool
the
carrier
of
(
TOP-REAL
2
)
(
(
(
(
rng
Pcm
)
\/
(
rng
Pml
)
)
\/
(
rng
Plk
)
)
\/
(
rng
Pkj
)
)
\/
(
rng
Pjd
)
is
functional
non
empty
Element
of
bool
the
carrier
of
(
TOP-REAL
2
)
dom
(
(
(
(
Pcm
+
Pml
)
+
Plk
)
+
Pkj
)
+
Pjd
)
is non
empty
V166
()
V167
()
V168
()
Element
of
bool
the
carrier
of
I[01]
bool
the
carrier
of
I[01]
is non
empty
set
[#]
I[01]
is non
empty
non
proper
open
closed
dense
non
boundary
compact
V166
()
V167
()
V168
()
Element
of
bool
the
carrier
of
I[01]
(
(
(
(
Pcm
+
Pml
)
+
Plk
)
+
Pkj
)
+
Pjd
)
.:
(
dom
(
(
(
(
Pcm
+
Pml
)
+
Plk
)
+
Pkj
)
+
Pjd
)
)
is
functional
non
empty
Element
of
bool
the
carrier
of
(
TOP-REAL
2
)
ra
is
set
(
(
LSeg
(
(
LMP
l
)
,
(
UMP
(
(
LSeg
(
(
LMP
l
)
,
|[
0
,
(
-
3
)
]|
)
)
/\
LJ
)
)
)
)
\
{
(
LMP
l
)
,
(
UMP
(
(
LSeg
(
(
LMP
l
)
,
|[
0
,
(
-
3
)
]|
)
)
/\
LJ
)
)
}
)
\/
{
(
LMP
l
)
,
(
UMP
(
(
LSeg
(
(
LMP
l
)
,
|[
0
,
(
-
3
)
]|
)
)
/\
LJ
)
)
}
is
functional
non
empty
Element
of
bool
the
carrier
of
(
TOP-REAL
2
)
ra
is
set
(
LSeg
(
|[
0
,3
]|
,
(
UMP
C
)
)
)
\/
(
rng
Pml
)
is
functional
non
empty
Element
of
bool
the
carrier
of
(
TOP-REAL
2
)
(
(
LSeg
(
|[
0
,3
]|
,
(
UMP
C
)
)
)
\/
(
rng
Pml
)
)
\/
(
LSeg
(
(
LMP
l
)
,
(
UMP
(
(
LSeg
(
(
LMP
l
)
,
|[
0
,
(
-
3
)
]|
)
)
/\
LJ
)
)
)
)
is
functional
non
empty
Element
of
bool
the
carrier
of
(
TOP-REAL
2
)
|[
(
(
UMP
C
)
`1
)
,
(
(
UMP
C
)
`2
)
]|
is
Relation-like
Function-like
V49
(2)
V50
()
V156
()
V157
()
V158
()
Element
of the
carrier
of
(
TOP-REAL
2
)
|[
(
|[
0
,3
]|
`1
)
,
(
|[
0
,3
]|
`2
)
]|
is
Relation-like
Function-like
V49
(2)
V50
()
V156
()
V157
()
V158
()
Element
of the
carrier
of
(
TOP-REAL
2
)
|[
(
(
LMP
C
)
`1
)
,
(
(
LMP
C
)
`2
)
]|
is
Relation-like
Function-like
V49
(2)
V50
()
V156
()
V157
()
V158
()
Element
of the
carrier
of
(
TOP-REAL
2
)
(
(
(
LSeg
(
|[
0
,3
]|
,
(
UMP
C
)
)
)
\/
(
rng
Pml
)
)
\/
(
LSeg
(
(
LMP
l
)
,
(
UMP
(
(
LSeg
(
(
LMP
l
)
,
|[
0
,
(
-
3
)
]|
)
)
/\
LJ
)
)
)
)
)
\/
(
rng
Pkj
)
is
functional
non
empty
Element
of
bool
the
carrier
of
(
TOP-REAL
2
)
ra
is non
empty
complex
ext-real
positive
non
negative
real
set
Ball
(
|[
(
-
1
)
,
0
]|
,
ra
) is
functional
non
empty
proper
open
connected
bounded
being_Region
convex
Element
of
bool
the
carrier
of
(
TOP-REAL
2
)
rb
is non
empty
complex
ext-real
positive
non
negative
real
set
Ball
(
|[
1,
0
]|
,
rb
) is
functional
non
empty
proper
open
connected
bounded
being_Region
convex
Element
of
bool
the
carrier
of
(
TOP-REAL
2
)
VP
is non
empty
Element
of
bool
the
carrier
of
T2C
t
is
set
{
b
1
where
b
1
is
functional
Element
of
bool
the
carrier
of
(
TOP-REAL
2
)
:
b
1
is_inside_component_of
C
}
is
set
BDD
C
is
functional
open
Element
of
bool
the
carrier
of
(
TOP-REAL
2
)
union
{
b
1
where
b
1
is
functional
Element
of
bool
the
carrier
of
(
TOP-REAL
2
)
:
b
1
is_inside_component_of
C
}
is
set
Fr
V
is
functional
closed
Element
of
bool
the
carrier
of
(
TOP-REAL
2
)
Cl
V
is
functional
closed
Element
of
bool
the
carrier
of
(
TOP-REAL
2
)
V
`
is
functional
Element
of
bool
the
carrier
of
(
TOP-REAL
2
)
the
carrier
of
(
TOP-REAL
2
)
\
V
is
set
Cl
(
V
`
)
is
functional
closed
Element
of
bool
the
carrier
of
(
TOP-REAL
2
)
(
Cl
V
)
/\
(
Cl
(
V
`
)
)
is
functional
closed
Element
of
bool
the
carrier
of
(
TOP-REAL
2
)
u
is
set
v
is
set
T2C
|
VP
is non
empty
strict
TopSpace-like
T_0
T_1
T_2
SubSpace
of
T2C
the
carrier
of
(
T2C
|
VP
)
is non
empty
set
u
is
Relation-like
Function-like
V49
(2)
V50
()
V156
()
V157
()
V158
()
Element
of the
carrier
of
(
TOP-REAL
2
)
v
is
Relation-like
Function-like
V49
(2)
V50
()
V156
()
V157
()
V158
()
Element
of the
carrier
of
(
TOP-REAL
2
)
u1
is
Element
of the
carrier
of
(
T2C
|
VP
)
v1
is
Element
of the
carrier
of
(
T2C
|
VP
)
[:
the
carrier
of
I[01]
, the
carrier
of
(
T2C
|
VP
)
:]
is
Relation-like
non
empty
set
bool
[:
the
carrier
of
I[01]
, the
carrier
of
(
T2C
|
VP
)
:]
is non
empty
set
fuv
is
Relation-like
the
carrier
of
I[01]
-defined
the
carrier
of
(
T2C
|
VP
)
-valued
Function-like
non
empty
total
quasi_total
Element
of
bool
[:
the
carrier
of
I[01]
, the
carrier
of
(
T2C
|
VP
)
:]
fuv
.
0
is
set
fuv
.
1 is
set
(
TOP-REAL
2
)
|
V
is
strict
TopSpace-like
T_0
T_1
T_2
SubSpace
of
TOP-REAL
2
rng
fuv
is non
empty
Element
of
bool
the
carrier
of
(
T2C
|
VP
)
bool
the
carrier
of
(
T2C
|
VP
)
is non
empty
set
uv
is
Relation-like
the
carrier
of
I[01]
-defined
the
carrier
of
(
TOP-REAL
2
)
-valued
Function-like
non
empty
total
quasi_total
continuous
Path
of
u
,
v
rng
uv
is
functional
non
empty
Element
of
bool
the
carrier
of
(
TOP-REAL
2
)
LSeg
(
|[
(
-
1
)
,
0
]|
,
u
) is
functional
proper
closed
closed
boundary
nowhere_dense
connected
compact
compact
bounded
bounded
Element
of
bool
the
carrier
of
(
TOP-REAL
2
)
{
(
(
(
1
-
b
1
)
*
|[
(
-
1
)
,
0
]|
)
+
(
b
1
*
u
)
)
where
b
1
is
complex
ext-real
real
Element
of
REAL
: (
0
<=
b
1
&
b
1
<=
1 )
}
is
set
(
TOP-REAL
2
)
|
(
LSeg
(
|[
(
-
1
)
,
0
]|
,
u
)
)
is
strict
TopSpace-like
T_0
T_1
T_2
SubSpace
of
TOP-REAL
2
the
carrier
of
(
(
TOP-REAL
2
)
|
(
LSeg
(
|[
(
-
1
)
,
0
]|
,
u
)
)
)
is
set
[:
the
carrier
of
I[01]
, the
carrier
of
(
(
TOP-REAL
2
)
|
(
LSeg
(
|[
(
-
1
)
,
0
]|
,
u
)
)
)
:]
is
Relation-like
set
bool
[:
the
carrier
of
I[01]
, the
carrier
of
(
(
TOP-REAL
2
)
|
(
LSeg
(
|[
(
-
1
)
,
0
]|
,
u
)
)
)
:]
is non
empty
set
fau
is
Relation-like
the
carrier
of
I[01]
-defined
the
carrier
of
(
(
TOP-REAL
2
)
|
(
LSeg
(
|[
(
-
1
)
,
0
]|
,
u
)
)
)
-valued
Function-like
quasi_total
Element
of
bool
[:
the
carrier
of
I[01]
, the
carrier
of
(
(
TOP-REAL
2
)
|
(
LSeg
(
|[
(
-
1
)
,
0
]|
,
u
)
)
)
:]
rng
fau
is
Element
of
bool
the
carrier
of
(
(
TOP-REAL
2
)
|
(
LSeg
(
|[
(
-
1
)
,
0
]|
,
u
)
)
)
bool
the
carrier
of
(
(
TOP-REAL
2
)
|
(
LSeg
(
|[
(
-
1
)
,
0
]|
,
u
)
)
)
is non
empty
set
au
is
Relation-like
the
carrier
of
I[01]
-defined
the
carrier
of
(
TOP-REAL
2
)
-valued
Function-like
non
empty
total
quasi_total
continuous
Path
of
|[
(
-
1
)
,
0
]|
,
u
LSeg
(
v
,
|[
1,
0
]|
) is
functional
proper
closed
closed
boundary
nowhere_dense
connected
compact
compact
bounded
bounded
Element
of
bool
the
carrier
of
(
TOP-REAL
2
)
{
(
(
(
1
-
b
1
)
*
v
)
+
(
b
1
*
|[
1,
0
]|
)
)
where
b
1
is
complex
ext-real
real
Element
of
REAL
: (
0
<=
b
1
&
b
1
<=
1 )
}
is
set
(
TOP-REAL
2
)
|
(
LSeg
(
v
,
|[
1,
0
]|
)
)
is
strict
TopSpace-like
T_0
T_1
T_2
SubSpace
of
TOP-REAL
2
the
carrier
of
(
(
TOP-REAL
2
)
|
(
LSeg
(
v
,
|[
1,
0
]|
)
)
)
is
set
[:
the
carrier
of
I[01]
, the
carrier
of
(
(
TOP-REAL
2
)
|
(
LSeg
(
v
,
|[
1,
0
]|
)
)
)
:]
is
Relation-like
set
bool
[:
the
carrier
of
I[01]
, the
carrier
of
(
(
TOP-REAL
2
)
|
(
LSeg
(
v
,
|[
1,
0
]|
)
)
)
:]
is non
empty
set
fvb
is
Relation-like
the
carrier
of
I[01]
-defined
the
carrier
of
(
(
TOP-REAL
2
)
|
(
LSeg
(
v
,
|[
1,
0
]|
)
)
)
-valued
Function-like
quasi_total
Element
of
bool
[:
the
carrier
of
I[01]
, the
carrier
of
(
(
TOP-REAL
2
)
|
(
LSeg
(
v
,
|[
1,
0
]|
)
)
)
:]
rng
fvb
is
Element
of
bool
the
carrier
of
(
(
TOP-REAL
2
)
|
(
LSeg
(
v
,
|[
1,
0
]|
)
)
)
bool
the
carrier
of
(
(
TOP-REAL
2
)
|
(
LSeg
(
v
,
|[
1,
0
]|
)
)
)
is non
empty
set
vb
is
Relation-like
the
carrier
of
I[01]
-defined
the
carrier
of
(
TOP-REAL
2
)
-valued
Function-like
non
empty
total
quasi_total
continuous
Path
of
v
,
|[
1,
0
]|
au
+
uv
is
Relation-like
the
carrier
of
I[01]
-defined
the
carrier
of
(
TOP-REAL
2
)
-valued
Function-like
non
empty
total
quasi_total
continuous
Path
of
|[
(
-
1
)
,
0
]|
,
v
(
au
+
uv
)
+
vb
is
Relation-like
the
carrier
of
I[01]
-defined
the
carrier
of
(
TOP-REAL
2
)
-valued
Function-like
non
empty
total
quasi_total
continuous
Path
of
|[
(
-
1
)
,
0
]|
,
|[
1,
0
]|
rng
(
(
au
+
uv
)
+
vb
)
is
functional
non
empty
Element
of
bool
the
carrier
of
(
TOP-REAL
2
)
rng
au
is
functional
non
empty
Element
of
bool
the
carrier
of
(
TOP-REAL
2
)
(
rng
au
)
\/
(
rng
uv
)
is
functional
non
empty
Element
of
bool
the
carrier
of
(
TOP-REAL
2
)
rng
vb
is
functional
non
empty
Element
of
bool
the
carrier
of
(
TOP-REAL
2
)
(
(
rng
au
)
\/
(
rng
uv
)
)
\/
(
rng
vb
)
is
functional
non
empty
Element
of
bool
the
carrier
of
(
TOP-REAL
2
)
(
LSeg
(
|[
(
-
1
)
,
0
]|
,
u
)
)
\/
(
rng
uv
)
is
functional
non
empty
Element
of
bool
the
carrier
of
(
TOP-REAL
2
)
AR
is
Element
of the
carrier
of
(
Trectangle
(
(
-
1
)
,1,
(
-
3
)
,3)
)
BR
is
Element
of the
carrier
of
(
Trectangle
(
(
-
1
)
,1,
(
-
3
)
,3)
)
CR
is
Element
of the
carrier
of
(
Trectangle
(
(
-
1
)
,1,
(
-
3
)
,3)
)
DR
is
Element
of the
carrier
of
(
Trectangle
(
(
-
1
)
,1,
(
-
3
)
,3)
)
h
is
Relation-like
the
carrier
of
I[01]
-defined
the
carrier
of
(
Trectangle
(
(
-
1
)
,1,
(
-
3
)
,3)
)
-valued
Function-like
non
empty
total
quasi_total
Path
of
AR
,
BR
v
is
Relation-like
the
carrier
of
I[01]
-defined
the
carrier
of
(
Trectangle
(
(
-
1
)
,1,
(
-
3
)
,3)
)
-valued
Function-like
non
empty
total
quasi_total
Path
of
CR
,
DR
s
is
complex
ext-real
real
Element
of the
carrier
of
I[01]
h
.
s
is
Element
of the
carrier
of
(
Trectangle
(
(
-
1
)
,1,
(
-
3
)
,3)
)
t
is
complex
ext-real
real
Element
of the
carrier
of
I[01]
v
.
t
is
Element
of the
carrier
of
(
Trectangle
(
(
-
1
)
,1,
(
-
3
)
,3)
)
dom
h
is non
empty
V166
()
V167
()
V168
()
Element
of
bool
the
carrier
of
I[01]
dom
v
is non
empty
V166
()
V167
()
V168
()
Element
of
bool
the
carrier
of
I[01]
C
is
functional
non
empty
proper
closed
connected
compact
bounded
being_simple_closed_curve
with_the_max_arc
Element
of
bool
the
carrier
of
(
TOP-REAL
2
)
UMP
C
is
Relation-like
Function-like
V49
(2)
V50
()
V156
()
V157
()
V158
()
Element
of the
carrier
of
(
TOP-REAL
2
)
E-bound
C
is
complex
ext-real
real
Element
of
REAL
(
TOP-REAL
2
)
|
C
is non
empty
strict
TopSpace-like
T_0
T_1
T_2
V82
()
normal
T_3
T_4
compact
V246
()
pseudocompact
SubSpace
of
TOP-REAL
2
proj1
|
C
is
Relation-like
C
-defined
the
carrier
of
(
TOP-REAL
2
)
-defined
the
carrier
of
(
(
TOP-REAL
2
)
|
C
)
-defined
REAL
-valued
Function-like
non
empty
total
quasi_total
V156
()
V157
()
V158
()
continuous
Element
of
bool
[:
the
carrier
of
(
(
TOP-REAL
2
)
|
C
)
,
REAL
:]
the
carrier
of
(
(
TOP-REAL
2
)
|
C
)
is non
empty
set
[:
the
carrier
of
(
(
TOP-REAL
2
)
|
C
)
,
REAL
:]
is
Relation-like
non
empty
V156
()
V157
()
V158
()
set
bool
[:
the
carrier
of
(
(
TOP-REAL
2
)
|
C
)
,
REAL
:]
is non
empty
set
upper_bound
(
proj1
|
C
)
is
complex
ext-real
real
Element
of
REAL
(
proj1
|
C
)
.:
the
carrier
of
(
(
TOP-REAL
2
)
|
C
)
is non
empty
V166
()
V167
()
V168
()
Element
of
bool
REAL
K662
(
(
(
proj1
|
C
)
.:
the
carrier
of
(
(
TOP-REAL
2
)
|
C
)
)
) is
complex
ext-real
real
Element
of
REAL
W-bound
C
is
complex
ext-real
real
Element
of
REAL
lower_bound
(
proj1
|
C
)
is
complex
ext-real
real
Element
of
REAL
K663
(
(
(
proj1
|
C
)
.:
the
carrier
of
(
(
TOP-REAL
2
)
|
C
)
)
) is
complex
ext-real
real
Element
of
REAL
(
E-bound
C
)
+
(
W-bound
C
)
is
complex
ext-real
real
Element
of
REAL
(
(
E-bound
C
)
+
(
W-bound
C
)
)
/
2 is
complex
ext-real
real
Element
of
REAL
Vertical_Line
(
(
(
E-bound
C
)
+
(
W-bound
C
)
)
/
2
)
is
functional
Element
of
bool
the
carrier
of
(
TOP-REAL
2
)
C
/\
(
Vertical_Line
(
(
(
E-bound
C
)
+
(
W-bound
C
)
)
/
2
)
)
is
functional
Element
of
bool
the
carrier
of
(
TOP-REAL
2
)
proj2
.:
(
C
/\
(
Vertical_Line
(
(
(
E-bound
C
)
+
(
W-bound
C
)
)
/
2
)
)
)
is
V166
()
V167
()
V168
()
Element
of
bool
REAL
K662
(
(
proj2
.:
(
C
/\
(
Vertical_Line
(
(
(
E-bound
C
)
+
(
W-bound
C
)
)
/
2
)
)
)
)
) is
complex
ext-real
real
Element
of
REAL
|[
(
(
(
E-bound
C
)
+
(
W-bound
C
)
)
/
2
)
,
K662
(
(
proj2
.:
(
C
/\
(
Vertical_Line
(
(
(
E-bound
C
)
+
(
W-bound
C
)
)
/
2
)
)
)
)
)
]|
is
Relation-like
Function-like
V49
(2)
V50
()
V156
()
V157
()
V158
()
Element
of the
carrier
of
(
TOP-REAL
2
)
LMP
C
is
Relation-like
Function-like
V49
(2)
V50
()
V156
()
V157
()
V158
()
Element
of the
carrier
of
(
TOP-REAL
2
)
K663
(
(
proj2
.:
(
C
/\
(
Vertical_Line
(
(
(
E-bound
C
)
+
(
W-bound
C
)
)
/
2
)
)
)
)
) is
complex
ext-real
real
Element
of
REAL
|[
(
(
(
E-bound
C
)
+
(
W-bound
C
)
)
/
2
)
,
K663
(
(
proj2
.:
(
C
/\
(
Vertical_Line
(
(
(
E-bound
C
)
+
(
W-bound
C
)
)
/
2
)
)
)
)
)
]|
is
Relation-like
Function-like
V49
(2)
V50
()
V156
()
V157
()
V158
()
Element
of the
carrier
of
(
TOP-REAL
2
)
BDD
C
is
functional
open
Element
of
bool
the
carrier
of
(
TOP-REAL
2
)
{
b
1
where
b
1
is
functional
Element
of
bool
the
carrier
of
(
TOP-REAL
2
)
:
b
1
is_inside_component_of
C
}
is
set
union
{
b
1
where
b
1
is
functional
Element
of
bool
the
carrier
of
(
TOP-REAL
2
)
:
b
1
is_inside_component_of
C
}
is
set
C
`
is
functional
non
empty
open
Element
of
bool
the
carrier
of
(
TOP-REAL
2
)
the
carrier
of
(
TOP-REAL
2
)
\
C
is
set
(
TOP-REAL
2
)
|
(
C
`
)
is non
empty
strict
TopSpace-like
T_0
T_1
T_2
V118
(
TOP-REAL
2)
SubSpace
of
TOP-REAL
2
P
is
functional
non
empty
proper
closed
compact
bounded
with_the_max_arc
Element
of
bool
the
carrier
of
(
TOP-REAL
2
)
U
is
functional
non
empty
proper
closed
compact
bounded
with_the_max_arc
Element
of
bool
the
carrier
of
(
TOP-REAL
2
)
P
\/
U
is
functional
non
empty
closed
Element
of
bool
the
carrier
of
(
TOP-REAL
2
)
P
/\
U
is
functional
proper
closed
compact
bounded
Element
of
bool
the
carrier
of
(
TOP-REAL
2
)
W-bound
P
is
complex
ext-real
real
Element
of
REAL
(
TOP-REAL
2
)
|
P
is non
empty
strict
TopSpace-like
T_0
T_1
T_2
V82
()
normal
T_3
T_4
compact
V246
()
pseudocompact
SubSpace
of
TOP-REAL
2
proj1
|
P
is
Relation-like
P
-defined
the
carrier
of
(
TOP-REAL
2
)
-defined
the
carrier
of
(
(
TOP-REAL
2
)
|
P
)
-defined
REAL
-valued
Function-like
non
empty
total
quasi_total
V156
()
V157
()
V158
()
continuous
Element
of
bool
[:
the
carrier
of
(
(
TOP-REAL
2
)
|
P
)
,
REAL
:]
the
carrier
of
(
(
TOP-REAL
2
)
|
P
)
is non
empty
set
[:
the
carrier
of
(
(
TOP-REAL
2
)
|
P
)
,
REAL
:]
is
Relation-like
non
empty
V156
()
V157
()
V158
()
set
bool
[:
the
carrier
of
(
(
TOP-REAL
2
)
|
P
)
,
REAL
:]
is non
empty
set
lower_bound
(
proj1
|
P
)
is
complex
ext-real
real
Element
of
REAL
(
proj1
|
P
)
.:
the
carrier
of
(
(
TOP-REAL
2
)
|
P
)
is non
empty
V166
()
V167
()
V168
()
Element
of
bool
REAL
K663
(
(
(
proj1
|
P
)
.:
the
carrier
of
(
(
TOP-REAL
2
)
|
P
)
)
) is
complex
ext-real
real
Element
of
REAL
E-bound
P
is
complex
ext-real
real
Element
of
REAL
upper_bound
(
proj1
|
P
)
is
complex
ext-real
real
Element
of
REAL
K662
(
(
(
proj1
|
P
)
.:
the
carrier
of
(
(
TOP-REAL
2
)
|
P
)
)
) is
complex
ext-real
real
Element
of
REAL
LMP
P
is
Relation-like
Function-like
V49
(2)
V50
()
V156
()
V157
()
V158
()
Element
of the
carrier
of
(
TOP-REAL
2
)
(
E-bound
P
)
+
(
W-bound
P
)
is
complex
ext-real
real
Element
of
REAL
(
(
E-bound
P
)
+
(
W-bound
P
)
)
/
2 is
complex
ext-real
real
Element
of
REAL
Vertical_Line
(
(
(
E-bound
P
)
+
(
W-bound
P
)
)
/
2
)
is
functional
Element
of
bool
the
carrier
of
(
TOP-REAL
2
)
P
/\
(
Vertical_Line
(
(
(
E-bound
P
)
+
(
W-bound
P
)
)
/
2
)
)
is
functional
Element
of
bool
the
carrier
of
(
TOP-REAL
2
)
proj2
.:
(
P
/\
(
Vertical_Line
(
(
(
E-bound
P
)
+
(
W-bound
P
)
)
/
2
)
)
)
is
V166
()
V167
()
V168
()
Element
of
bool
REAL
K663
(
(
proj2
.:
(
P
/\
(
Vertical_Line
(
(
(
E-bound
P
)
+
(
W-bound
P
)
)
/
2
)
)
)
)
) is
complex
ext-real
real
Element
of
REAL
|[
(
(
(
E-bound
P
)
+
(
W-bound
P
)
)
/
2
)
,
K663
(
(
proj2
.:
(
P
/\
(
Vertical_Line
(
(
(
E-bound
P
)
+
(
W-bound
P
)
)
/
2
)
)
)
)
)
]|
is
Relation-like
Function-like
V49
(2)
V50
()
V156
()
V157
()
V158
()
Element
of the
carrier
of
(
TOP-REAL
2
)
LSeg
(
(
LMP
P
)
,
|[
0
,
(
-
3
)
]|
) is
functional
proper
closed
closed
boundary
nowhere_dense
connected
compact
compact
bounded
bounded
Element
of
bool
the
carrier
of
(
TOP-REAL
2
)
{
(
(
(
1
-
b
1
)
*
(
LMP
P
)
)
+
(
b
1
*
|[
0
,
(
-
3
)
]|
)
)
where
b
1
is
complex
ext-real
real
Element
of
REAL
: (
0
<=
b
1
&
b
1
<=
1 )
}
is
set
(
LSeg
(
(
LMP
P
)
,
|[
0
,
(
-
3
)
]|
)
)
/\
U
is
functional
proper
closed
compact
bounded
Element
of
bool
the
carrier
of
(
TOP-REAL
2
)
UMP
(
(
LSeg
(
(
LMP
P
)
,
|[
0
,
(
-
3
)
]|
)
)
/\
U
)
is
Relation-like
Function-like
V49
(2)
V50
()
V156
()
V157
()
V158
()
Element
of the
carrier
of
(
TOP-REAL
2
)
E-bound
(
(
LSeg
(
(
LMP
P
)
,
|[
0
,
(
-
3
)
]|
)
)
/\
U
)
is
complex
ext-real
real
Element
of
REAL
(
TOP-REAL
2
)
|
(
(
LSeg
(
(
LMP
P
)
,
|[
0
,
(
-
3
)
]|
)
)
/\
U
)
is
strict
TopSpace-like
T_0
T_1
T_2
SubSpace
of
TOP-REAL
2
proj1
|
(
(
LSeg
(
(
LMP
P
)
,
|[
0
,
(
-
3
)
]|
)
)
/\
U
)
is
Relation-like
(
LSeg
(
(
LMP
P
)
,
|[
0
,
(
-
3
)
]|
)
)
/\
U
-defined
the
carrier
of
(
TOP-REAL
2
)
-defined
the
carrier
of
(
(
TOP-REAL
2
)
|
(
(
LSeg
(
(
LMP
P
)
,
|[
0
,
(
-
3
)
]|
)
)
/\
U
)
)
-defined
REAL
-valued
Function-like
total
quasi_total
V156
()
V157
()
V158
()
continuous
Element
of
bool
[:
the
carrier
of
(
(
TOP-REAL
2
)
|
(
(
LSeg
(
(
LMP
P
)
,
|[
0
,
(
-
3
)
]|
)
)
/\
U
)
)
,
REAL
:]
the
carrier
of
(
(
TOP-REAL
2
)
|
(
(
LSeg
(
(
LMP
P
)
,
|[
0
,
(
-
3
)
]|
)
)
/\
U
)
)
is
set
[:
the
carrier
of
(
(
TOP-REAL
2
)
|
(
(
LSeg
(
(
LMP
P
)
,
|[
0
,
(
-
3
)
]|
)
)
/\
U
)
)
,
REAL
:]
is
Relation-like
V156
()
V157
()
V158
()
set
bool
[:
the
carrier
of
(
(
TOP-REAL
2
)
|
(
(
LSeg
(
(
LMP
P
)
,
|[
0
,
(
-
3
)
]|
)
)
/\
U
)
)
,
REAL
:]
is non
empty
set
upper_bound
(
proj1
|
(
(
LSeg
(
(
LMP
P
)
,
|[
0
,
(
-
3
)
]|
)
)
/\
U
)
)
is
complex
ext-real
real
Element
of
REAL
(
proj1
|
(
(
LSeg
(
(
LMP
P
)
,
|[
0
,
(
-
3
)
]|
)
)
/\
U
)
)
.:
the
carrier
of
(
(
TOP-REAL
2
)
|
(
(
LSeg
(
(
LMP
P
)
,
|[
0
,
(
-
3
)
]|
)
)
/\
U
)
)
is
V166
()
V167
()
V168
()
Element
of
bool
REAL
K662
(
(
(
proj1
|
(
(
LSeg
(
(
LMP
P
)
,
|[
0
,
(
-
3
)
]|
)
)
/\
U
)
)
.:
the
carrier
of
(
(
TOP-REAL
2
)
|
(
(
LSeg
(
(
LMP
P
)
,
|[
0
,
(
-
3
)
]|
)
)
/\
U
)
)
)
) is
complex
ext-real
real
Element
of
REAL
W-bound
(
(
LSeg
(
(
LMP
P
)
,
|[
0
,
(
-
3
)
]|
)
)
/\
U
)
is
complex
ext-real
real
Element
of
REAL
lower_bound
(
proj1
|
(
(
LSeg
(
(
LMP
P
)
,
|[
0
,
(
-
3
)
]|
)
)
/\
U
)
)
is
complex
ext-real
real
Element
of
REAL
K663
(
(
(
proj1
|
(
(
LSeg
(
(
LMP
P
)
,
|[
0
,
(
-
3
)
]|
)
)
/\
U
)
)
.:
the
carrier
of
(
(
TOP-REAL
2
)
|
(
(
LSeg
(
(
LMP
P
)
,
|[
0
,
(
-
3
)
]|
)
)
/\
U
)
)
)
) is
complex
ext-real
real
Element
of
REAL
(
E-bound
(
(
LSeg
(
(
LMP
P
)
,
|[
0
,
(
-
3
)
]|
)
)
/\
U
)
)
+
(
W-bound
(
(
LSeg
(
(
LMP
P
)
,
|[
0
,
(
-
3
)
]|
)
)
/\
U
)
)
is
complex
ext-real
real
Element
of
REAL
(
(
E-bound
(
(
LSeg
(
(
LMP
P
)
,
|[
0
,
(
-
3
)
]|
)
)
/\
U
)
)
+
(
W-bound
(
(
LSeg
(
(
LMP
P
)
,
|[
0
,
(
-
3
)
]|
)
)
/\
U
)
)
)
/
2 is
complex
ext-real
real
Element
of
REAL
Vertical_Line
(
(
(
E-bound
(
(
LSeg
(
(
LMP
P
)
,
|[
0
,
(
-
3
)
]|
)
)
/\
U
)
)
+
(
W-bound
(
(
LSeg
(
(
LMP
P
)
,
|[
0
,
(
-
3
)
]|
)
)
/\
U
)
)
)
/
2
)
is
functional
Element
of
bool
the
carrier
of
(
TOP-REAL
2
)
(
(
LSeg
(
(
LMP
P
)
,
|[
0
,
(
-
3
)
]|
)
)
/\
U
)
/\
(
Vertical_Line
(
(
(
E-bound
(
(
LSeg
(
(
LMP
P
)
,
|[
0
,
(
-
3
)
]|
)
)
/\
U
)
)
+
(
W-bound
(
(
LSeg
(
(
LMP
P
)
,
|[
0
,
(
-
3
)
]|
)
)
/\
U
)
)
)
/
2
)
)
is
functional
Element
of
bool
the
carrier
of
(
TOP-REAL
2
)
proj2
.:
(
(
(
LSeg
(
(
LMP
P
)
,
|[
0
,
(
-
3
)
]|
)
)
/\
U
)
/\
(
Vertical_Line
(
(
(
E-bound
(
(
LSeg
(
(
LMP
P
)
,
|[
0
,
(
-
3
)
]|
)
)
/\
U
)
)
+
(
W-bound
(
(
LSeg
(
(
LMP
P
)
,
|[
0
,
(
-
3
)
]|
)
)
/\
U
)
)
)
/
2
)
)
)
is
V166
()
V167
()
V168
()
Element
of
bool
REAL
K662
(
(
proj2
.:
(
(
(
LSeg
(
(
LMP
P
)
,
|[
0
,
(
-
3
)
]|
)
)
/\
U
)
/\
(
Vertical_Line
(
(
(
E-bound
(
(
LSeg
(
(
LMP
P
)
,
|[
0
,
(
-
3
)
]|
)
)
/\
U
)
)
+
(
W-bound
(
(
LSeg
(
(
LMP
P
)
,
|[
0
,
(
-
3
)
]|
)
)
/\
U
)
)
)
/
2
)
)
)
)
) is
complex
ext-real
real
Element
of
REAL
|[
(
(
(
E-bound
(
(
LSeg
(
(
LMP
P
)
,
|[
0
,
(
-
3
)
]|
)
)
/\
U
)
)
+
(
W-bound
(
(
LSeg
(
(
LMP
P
)
,
|[
0
,
(
-
3
)
]|
)
)
/\
U
)
)
)
/
2
)
,
K662
(
(
proj2
.:
(
(
(
LSeg
(
(
LMP
P
)
,
|[
0
,
(
-
3
)
]|
)
)
/\
U
)
/\
(
Vertical_Line
(
(
(
E-bound
(
(
LSeg
(
(
LMP
P
)
,
|[
0
,
(
-
3
)
]|
)
)
/\
U
)
)
+
(
W-bound
(
(
LSeg
(
(
LMP
P
)
,
|[
0
,
(
-
3
)
]|
)
)
/\
U
)
)
)
/
2
)
)
)
)
)
]|
is
Relation-like
Function-like
V49
(2)
V50
()
V156
()
V157
()
V158
()
Element
of the
carrier
of
(
TOP-REAL
2
)
(
UMP
(
(
LSeg
(
(
LMP
P
)
,
|[
0
,
(
-
3
)
]|
)
)
/\
U
)
)
+
(
LMP
P
)
is
Relation-like
Function-like
V49
(2)
V50
()
V156
()
V157
()
V158
()
Element
of the
carrier
of
(
TOP-REAL
2
)
the
U7
of
(
TOP-REAL
2
)
is
Relation-like
[:
the
carrier
of
(
TOP-REAL
2
)
, the
carrier
of
(
TOP-REAL
2
)
:]
-defined
the
carrier
of
(
TOP-REAL
2
)
-valued
Function-like
non
empty
total
quasi_total
Element
of
bool
[:
[:
the
carrier
of
(
TOP-REAL
2
)
, the
carrier
of
(
TOP-REAL
2
)
:]
, the
carrier
of
(
TOP-REAL
2
)
:]
[:
[:
the
carrier
of
(
TOP-REAL
2
)
, the
carrier
of
(
TOP-REAL
2
)
:]
, the
carrier
of
(
TOP-REAL
2
)
:]
is
Relation-like
non
empty
set
bool
[:
[:
the
carrier
of
(
TOP-REAL
2
)
, the
carrier
of
(
TOP-REAL
2
)
:]
, the
carrier
of
(
TOP-REAL
2
)
:]
is non
empty
set
K224
( the
carrier
of
(
TOP-REAL
2
)
, the
U7
of
(
TOP-REAL
2
)
,
(
UMP
(
(
LSeg
(
(
LMP
P
)
,
|[
0
,
(
-
3
)
]|
)
)
/\
U
)
)
,
(
LMP
P
)
) is
Relation-like
Function-like
V49
(2)
V50
()
V156
()
V157
()
V158
()
Element
of the
carrier
of
(
TOP-REAL
2
)
(
1
/
2
)
*
(
(
UMP
(
(
LSeg
(
(
LMP
P
)
,
|[
0
,
(
-
3
)
]|
)
)
/\
U
)
)
+
(
LMP
P
)
)
is
Relation-like
Function-like
V49
(2)
V50
()
V156
()
V157
()
V158
()
Element
of the
carrier
of
(
TOP-REAL
2
)
Down
(
(
(
1
/
2
)
*
(
(
UMP
(
(
LSeg
(
(
LMP
P
)
,
|[
0
,
(
-
3
)
]|
)
)
/\
U
)
)
+
(
LMP
P
)
)
)
,
(
C
`
)
) is
Element
of the
carrier
of
(
(
TOP-REAL
2
)
|
(
C
`
)
)
the
carrier
of
(
(
TOP-REAL
2
)
|
(
C
`
)
)
is non
empty
set
Component_of
(
Down
(
(
(
1
/
2
)
*
(
(
UMP
(
(
LSeg
(
(
LMP
P
)
,
|[
0
,
(
-
3
)
]|
)
)
/\
U
)
)
+
(
LMP
P
)
)
)
,
(
C
`
)
)
)
is
Element
of
bool
the
carrier
of
(
(
TOP-REAL
2
)
|
(
C
`
)
)
bool
the
carrier
of
(
(
TOP-REAL
2
)
|
(
C
`
)
)
is non
empty
set
l
is
functional
Element
of
bool
the
carrier
of
(
TOP-REAL
2
)
k
is
set
x
is
set
A1
is
functional
Element
of
bool
the
carrier
of
(
TOP-REAL
2
)
C
is
functional
non
empty
proper
closed
connected
compact
bounded
being_simple_closed_curve
with_the_max_arc
Element
of
bool
the
carrier
of
(
TOP-REAL
2
)
UMP
C
is
Relation-like
Function-like
V49
(2)
V50
()
V156
()
V157
()
V158
()
Element
of the
carrier
of
(
TOP-REAL
2
)
E-bound
C
is
complex
ext-real
real
Element
of
REAL
(
TOP-REAL
2
)
|
C
is non
empty
strict
TopSpace-like
T_0
T_1
T_2
V82
()
normal
T_3
T_4
compact
V246
()
pseudocompact
SubSpace
of
TOP-REAL
2
proj1
|
C
is
Relation-like
C
-defined
the
carrier
of
(
TOP-REAL
2
)
-defined
the
carrier
of
(
(
TOP-REAL
2
)
|
C
)
-defined
REAL
-valued
Function-like
non
empty
total
quasi_total
V156
()
V157
()
V158
()
continuous
Element
of
bool
[:
the
carrier
of
(
(
TOP-REAL
2
)
|
C
)
,
REAL
:]
the
carrier
of
(
(
TOP-REAL
2
)
|
C
)
is non
empty
set
[:
the
carrier
of
(
(
TOP-REAL
2
)
|
C
)
,
REAL
:]
is
Relation-like
non
empty
V156
()
V157
()
V158
()
set
bool
[:
the
carrier
of
(
(
TOP-REAL
2
)
|
C
)
,
REAL
:]
is non
empty
set
upper_bound
(
proj1
|
C
)
is
complex
ext-real
real
Element
of
REAL
(
proj1
|
C
)
.:
the
carrier
of
(
(
TOP-REAL
2
)
|
C
)
is non
empty
V166
()
V167
()
V168
()
Element
of
bool
REAL
K662
(
(
(
proj1
|
C
)
.:
the
carrier
of
(
(
TOP-REAL
2
)
|
C
)
)
) is
complex
ext-real
real
Element
of
REAL
W-bound
C
is
complex
ext-real
real
Element
of
REAL
lower_bound
(
proj1
|
C
)
is
complex
ext-real
real
Element
of
REAL
K663
(
(
(
proj1
|
C
)
.:
the
carrier
of
(
(
TOP-REAL
2
)
|
C
)
)
) is
complex
ext-real
real
Element
of
REAL
(
E-bound
C
)
+
(
W-bound
C
)
is
complex
ext-real
real
Element
of
REAL
(
(
E-bound
C
)
+
(
W-bound
C
)
)
/
2 is
complex
ext-real
real
Element
of
REAL
Vertical_Line
(
(
(
E-bound
C
)
+
(
W-bound
C
)
)
/
2
)
is
functional
Element
of
bool
the
carrier
of
(
TOP-REAL
2
)
C
/\
(
Vertical_Line
(
(
(
E-bound
C
)
+
(
W-bound
C
)
)
/
2
)
)
is
functional
Element
of
bool
the
carrier
of
(
TOP-REAL
2
)
proj2
.:
(
C
/\
(
Vertical_Line
(
(
(
E-bound
C
)
+
(
W-bound
C
)
)
/
2
)
)
)
is
V166
()
V167
()
V168
()
Element
of
bool
REAL
K662
(
(
proj2
.:
(
C
/\
(
Vertical_Line
(
(
(
E-bound
C
)
+
(
W-bound
C
)
)
/
2
)
)
)
)
) is
complex
ext-real
real
Element
of
REAL
|[
(
(
(
E-bound
C
)
+
(
W-bound
C
)
)
/
2
)
,
K662
(
(
proj2
.:
(
C
/\
(
Vertical_Line
(
(
(
E-bound
C
)
+
(
W-bound
C
)
)
/
2
)
)
)
)
)
]|
is
Relation-like
Function-like
V49
(2)
V50
()
V156
()
V157
()
V158
()
Element
of the
carrier
of
(
TOP-REAL
2
)
LMP
C
is
Relation-like
Function-like
V49
(2)
V50
()
V156
()
V157
()
V158
()
Element
of the
carrier
of
(
TOP-REAL
2
)
K663
(
(
proj2
.:
(
C
/\
(
Vertical_Line
(
(
(
E-bound
C
)
+
(
W-bound
C
)
)
/
2
)
)
)
)
) is
complex
ext-real
real
Element
of
REAL
|[
(
(
(
E-bound
C
)
+
(
W-bound
C
)
)
/
2
)
,
K663
(
(
proj2
.:
(
C
/\
(
Vertical_Line
(
(
(
E-bound
C
)
+
(
W-bound
C
)
)
/
2
)
)
)
)
)
]|
is
Relation-like
Function-like
V49
(2)
V50
()
V156
()
V157
()
V158
()
Element
of the
carrier
of
(
TOP-REAL
2
)
P
is
functional
non
empty
proper
closed
compact
bounded
with_the_max_arc
Element
of
bool
the
carrier
of
(
TOP-REAL
2
)
U
is
functional
non
empty
proper
closed
compact
bounded
with_the_max_arc
Element
of
bool
the
carrier
of
(
TOP-REAL
2
)
P
\/
U
is
functional
non
empty
closed
Element
of
bool
the
carrier
of
(
TOP-REAL
2
)
P
/\
U
is
functional
proper
closed
compact
bounded
Element
of
bool
the
carrier
of
(
TOP-REAL
2
)
W-bound
P
is
complex
ext-real
real
Element
of
REAL
(
TOP-REAL
2
)
|
P
is non
empty
strict
TopSpace-like
T_0
T_1
T_2
V82
()
normal
T_3
T_4
compact
V246
()
pseudocompact
SubSpace
of
TOP-REAL
2
proj1
|
P
is
Relation-like
P
-defined
the
carrier
of
(
TOP-REAL
2
)
-defined
the
carrier
of
(
(
TOP-REAL
2
)
|
P
)
-defined
REAL
-valued
Function-like
non
empty
total
quasi_total
V156
()
V157
()
V158
()
continuous
Element
of
bool
[:
the
carrier
of
(
(
TOP-REAL
2
)
|
P
)
,
REAL
:]
the
carrier
of
(
(
TOP-REAL
2
)
|
P
)
is non
empty
set
[:
the
carrier
of
(
(
TOP-REAL
2
)
|
P
)
,
REAL
:]
is
Relation-like
non
empty
V156
()
V157
()
V158
()
set
bool
[:
the
carrier
of
(
(
TOP-REAL
2
)
|
P
)
,
REAL
:]
is non
empty
set
lower_bound
(
proj1
|
P
)
is
complex
ext-real
real
Element
of
REAL
(
proj1
|
P
)
.:
the
carrier
of
(
(
TOP-REAL
2
)
|
P
)
is non
empty
V166
()
V167
()
V168
()
Element
of
bool
REAL
K663
(
(
(
proj1
|
P
)
.:
the
carrier
of
(
(
TOP-REAL
2
)
|
P
)
)
) is
complex
ext-real
real
Element
of
REAL
E-bound
P
is
complex
ext-real
real
Element
of
REAL
upper_bound
(
proj1
|
P
)
is
complex
ext-real
real
Element
of
REAL
K662
(
(
(
proj1
|
P
)
.:
the
carrier
of
(
(
TOP-REAL
2
)
|
P
)
)
) is
complex
ext-real
real
Element
of
REAL
LMP
P
is
Relation-like
Function-like
V49
(2)
V50
()
V156
()
V157
()
V158
()
Element
of the
carrier
of
(
TOP-REAL
2
)
(
E-bound
P
)
+
(
W-bound
P
)
is
complex
ext-real
real
Element
of
REAL
(
(
E-bound
P
)
+
(
W-bound
P
)
)
/
2 is
complex
ext-real
real
Element
of
REAL
Vertical_Line
(
(
(
E-bound
P
)
+
(
W-bound
P
)
)
/
2
)
is
functional
Element
of
bool
the
carrier
of
(
TOP-REAL
2
)
P
/\
(
Vertical_Line
(
(
(
E-bound
P
)
+
(
W-bound
P
)
)
/
2
)
)
is
functional
Element
of
bool
the
carrier
of
(
TOP-REAL
2
)
proj2
.:
(
P
/\
(
Vertical_Line
(
(
(
E-bound
P
)
+
(
W-bound
P
)
)
/
2
)
)
)
is
V166
()
V167
()
V168
()
Element
of
bool
REAL
K663
(
(
proj2
.:
(
P
/\
(
Vertical_Line
(
(
(
E-bound
P
)
+
(
W-bound
P
)
)
/
2
)
)
)
)
) is
complex
ext-real
real
Element
of
REAL
|[
(
(
(
E-bound
P
)
+
(
W-bound
P
)
)
/
2
)
,
K663
(
(
proj2
.:
(
P
/\
(
Vertical_Line
(
(
(
E-bound
P
)
+
(
W-bound
P
)
)
/
2
)
)
)
)
)
]|
is
Relation-like
Function-like
V49
(2)
V50
()
V156
()
V157
()
V158
()
Element
of the
carrier
of
(
TOP-REAL
2
)
LSeg
(
(
LMP
P
)
,
|[
0
,
(
-
3
)
]|
) is
functional
proper
closed
closed
boundary
nowhere_dense
connected
compact
compact
bounded
bounded
Element
of
bool
the
carrier
of
(
TOP-REAL
2
)
{
(
(
(
1
-
b
1
)
*
(
LMP
P
)
)
+
(
b
1
*
|[
0
,
(
-
3
)
]|
)
)
where
b
1
is
complex
ext-real
real
Element
of
REAL
: (
0
<=
b
1
&
b
1
<=
1 )
}
is
set
(
LSeg
(
(
LMP
P
)
,
|[
0
,
(
-
3
)
]|
)
)
/\
U
is
functional
proper
closed
compact
bounded
Element
of
bool
the
carrier
of
(
TOP-REAL
2
)
UMP
(
(
LSeg
(
(
LMP
P
)
,
|[
0
,
(
-
3
)
]|
)
)
/\
U
)
is
Relation-like
Function-like
V49
(2)
V50
()
V156
()
V157
()
V158
()
Element
of the
carrier
of
(
TOP-REAL
2
)
E-bound
(
(
LSeg
(
(
LMP
P
)
,
|[
0
,
(
-
3
)
]|
)
)
/\
U
)
is
complex
ext-real
real
Element
of
REAL
(
TOP-REAL
2
)
|
(
(
LSeg
(
(
LMP
P
)
,
|[
0
,
(
-
3
)
]|
)
)
/\
U
)
is
strict
TopSpace-like
T_0
T_1
T_2
SubSpace
of
TOP-REAL
2
proj1
|
(
(
LSeg
(
(
LMP
P
)
,
|[
0
,
(
-
3
)
]|
)
)
/\
U
)
is
Relation-like
(
LSeg
(
(
LMP
P
)
,
|[
0
,
(
-
3
)
]|
)
)
/\
U
-defined
the
carrier
of
(
TOP-REAL
2
)
-defined
the
carrier
of
(
(
TOP-REAL
2
)
|
(
(
LSeg
(
(
LMP
P
)
,
|[
0
,
(
-
3
)
]|
)
)
/\
U
)
)
-defined
REAL
-valued
Function-like
total
quasi_total
V156
()
V157
()
V158
()
continuous
Element
of
bool
[:
the
carrier
of
(
(
TOP-REAL
2
)
|
(
(
LSeg
(
(
LMP
P
)
,
|[
0
,
(
-
3
)
]|
)
)
/\
U
)
)
,
REAL
:]
the
carrier
of
(
(
TOP-REAL
2
)
|
(
(
LSeg
(
(
LMP
P
)
,
|[
0
,
(
-
3
)
]|
)
)
/\
U
)
)
is
set
[:
the
carrier
of
(
(
TOP-REAL
2
)
|
(
(
LSeg
(
(
LMP
P
)
,
|[
0
,
(
-
3
)
]|
)
)
/\
U
)
)
,
REAL
:]
is
Relation-like
V156
()
V157
()
V158
()
set
bool
[:
the
carrier
of
(
(
TOP-REAL
2
)
|
(
(
LSeg
(
(
LMP
P
)
,
|[
0
,
(
-
3
)
]|
)
)
/\
U
)
)
,
REAL
:]
is non
empty
set
upper_bound
(
proj1
|
(
(
LSeg
(
(
LMP
P
)
,
|[
0
,
(
-
3
)
]|
)
)
/\
U
)
)
is
complex
ext-real
real
Element
of
REAL
(
proj1
|
(
(
LSeg
(
(
LMP
P
)
,
|[
0
,
(
-
3
)
]|
)
)
/\
U
)
)
.:
the
carrier
of
(
(
TOP-REAL
2
)
|
(
(
LSeg
(
(
LMP
P
)
,
|[
0
,
(
-
3
)
]|
)
)
/\
U
)
)
is
V166
()
V167
()
V168
()
Element
of
bool
REAL
K662
(
(
(
proj1
|
(
(
LSeg
(
(
LMP
P
)
,
|[
0
,
(
-
3
)
]|
)
)
/\
U
)
)
.:
the
carrier
of
(
(
TOP-REAL
2
)
|
(
(
LSeg
(
(
LMP
P
)
,
|[
0
,
(
-
3
)
]|
)
)
/\
U
)
)
)
) is
complex
ext-real
real
Element
of
REAL
W-bound
(
(
LSeg
(
(
LMP
P
)
,
|[
0
,
(
-
3
)
]|
)
)
/\
U
)
is
complex
ext-real
real
Element
of
REAL
lower_bound
(
proj1
|
(
(
LSeg
(
(
LMP
P
)
,
|[
0
,
(
-
3
)
]|
)
)
/\
U
)
)
is
complex
ext-real
real
Element
of
REAL
K663
(
(
(
proj1
|
(
(
LSeg
(
(
LMP
P
)
,
|[
0
,
(
-
3
)
]|
)
)
/\
U
)
)
.:
the
carrier
of
(
(
TOP-REAL
2
)
|
(
(
LSeg
(
(
LMP
P
)
,
|[
0
,
(
-
3
)
]|
)
)
/\
U
)
)
)
) is
complex
ext-real
real
Element
of
REAL
(
E-bound
(
(
LSeg
(
(
LMP
P
)
,
|[
0
,
(
-
3
)
]|
)
)
/\
U
)
)
+
(
W-bound
(
(
LSeg
(
(
LMP
P
)
,
|[
0
,
(
-
3
)
]|
)
)
/\
U
)
)
is
complex
ext-real
real
Element
of
REAL
(
(
E-bound
(
(
LSeg
(
(
LMP
P
)
,
|[
0
,
(
-
3
)
]|
)
)
/\
U
)
)
+
(
W-bound
(
(
LSeg
(
(
LMP
P
)
,
|[
0
,
(
-
3
)
]|
)
)
/\
U
)
)
)
/
2 is
complex
ext-real
real
Element
of
REAL
Vertical_Line
(
(
(
E-bound
(
(
LSeg
(
(
LMP
P
)
,
|[
0
,
(
-
3
)
]|
)
)
/\
U
)
)
+
(
W-bound
(
(
LSeg
(
(
LMP
P
)
,
|[
0
,
(
-
3
)
]|
)
)
/\
U
)
)
)
/
2
)
is
functional
Element
of
bool
the
carrier
of
(
TOP-REAL
2
)
(
(
LSeg
(
(
LMP
P
)
,
|[
0
,
(
-
3
)
]|
)
)
/\
U
)
/\
(
Vertical_Line
(
(
(
E-bound
(
(
LSeg
(
(
LMP
P
)
,
|[
0
,
(
-
3
)
]|
)
)
/\
U
)
)
+
(
W-bound
(
(
LSeg
(
(
LMP
P
)
,
|[
0
,
(
-
3
)
]|
)
)
/\
U
)
)
)
/
2
)
)
is
functional
Element
of
bool
the
carrier
of
(
TOP-REAL
2
)
proj2
.:
(
(
(
LSeg
(
(
LMP
P
)
,
|[
0
,
(
-
3
)
]|
)
)
/\
U
)
/\
(
Vertical_Line
(
(
(
E-bound
(
(
LSeg
(
(
LMP
P
)
,
|[
0
,
(
-
3
)
]|
)
)
/\
U
)
)
+
(
W-bound
(
(
LSeg
(
(
LMP
P
)
,
|[
0
,
(
-
3
)
]|
)
)
/\
U
)
)
)
/
2
)
)
)
is
V166
()
V167
()
V168
()
Element
of
bool
REAL
K662
(
(
proj2
.:
(
(
(
LSeg
(
(
LMP
P
)
,
|[
0
,
(
-
3
)
]|
)
)
/\
U
)
/\
(
Vertical_Line
(
(
(
E-bound
(
(
LSeg
(
(
LMP
P
)
,
|[
0
,
(
-
3
)
]|
)
)
/\
U
)
)
+
(
W-bound
(
(
LSeg
(
(
LMP
P
)
,
|[
0
,
(
-
3
)
]|
)
)
/\
U
)
)
)
/
2
)
)
)
)
) is
complex
ext-real
real
Element
of
REAL
|[
(
(
(
E-bound
(
(
LSeg
(
(
LMP
P
)
,
|[
0
,
(
-
3
)
]|
)
)
/\
U
)
)
+
(
W-bound
(
(
LSeg
(
(
LMP
P
)
,
|[
0
,
(
-
3
)
]|
)
)
/\
U
)
)
)
/
2
)
,
K662
(
(
proj2
.:
(
(
(
LSeg
(
(
LMP
P
)
,
|[
0
,
(
-
3
)
]|
)
)
/\
U
)
/\
(
Vertical_Line
(
(
(
E-bound
(
(
LSeg
(
(
LMP
P
)
,
|[
0
,
(
-
3
)
]|
)
)
/\
U
)
)
+
(
W-bound
(
(
LSeg
(
(
LMP
P
)
,
|[
0
,
(
-
3
)
]|
)
)
/\
U
)
)
)
/
2
)
)
)
)
)
]|
is
Relation-like
Function-like
V49
(2)
V50
()
V156
()
V157
()
V158
()
Element
of the
carrier
of
(
TOP-REAL
2
)
(
UMP
(
(
LSeg
(
(
LMP
P
)
,
|[
0
,
(
-
3
)
]|
)
)
/\
U
)
)
+
(
LMP
P
)
is
Relation-like
Function-like
V49
(2)
V50
()
V156
()
V157
()
V158
()
Element
of the
carrier
of
(
TOP-REAL
2
)
the
U7
of
(
TOP-REAL
2
)
is
Relation-like
[:
the
carrier
of
(
TOP-REAL
2
)
, the
carrier
of
(
TOP-REAL
2
)
:]
-defined
the
carrier
of
(
TOP-REAL
2
)
-valued
Function-like
non
empty
total
quasi_total
Element
of
bool
[:
[:
the
carrier
of
(
TOP-REAL
2
)
, the
carrier
of
(
TOP-REAL
2
)
:]
, the
carrier
of
(
TOP-REAL
2
)
:]
[:
[:
the
carrier
of
(
TOP-REAL
2
)
, the
carrier
of
(
TOP-REAL
2
)
:]
, the
carrier
of
(
TOP-REAL
2
)
:]
is
Relation-like
non
empty
set
bool
[:
[:
the
carrier
of
(
TOP-REAL
2
)
, the
carrier
of
(
TOP-REAL
2
)
:]
, the
carrier
of
(
TOP-REAL
2
)
:]
is non
empty
set
K224
( the
carrier
of
(
TOP-REAL
2
)
, the
U7
of
(
TOP-REAL
2
)
,
(
UMP
(
(
LSeg
(
(
LMP
P
)
,
|[
0
,
(
-
3
)
]|
)
)
/\
U
)
)
,
(
LMP
P
)
) is
Relation-like
Function-like
V49
(2)
V50
()
V156
()
V157
()
V158
()
Element
of the
carrier
of
(
TOP-REAL
2
)
(
1
/
2
)
*
(
(
UMP
(
(
LSeg
(
(
LMP
P
)
,
|[
0
,
(
-
3
)
]|
)
)
/\
U
)
)
+
(
LMP
P
)
)
is
Relation-like
Function-like
V49
(2)
V50
()
V156
()
V157
()
V158
()
Element
of the
carrier
of
(
TOP-REAL
2
)
C
`
is
functional
non
empty
open
Element
of
bool
the
carrier
of
(
TOP-REAL
2
)
the
carrier
of
(
TOP-REAL
2
)
\
C
is
set
(
TOP-REAL
2
)
|
(
C
`
)
is non
empty
strict
TopSpace-like
T_0
T_1
T_2
V118
(
TOP-REAL
2)
SubSpace
of
TOP-REAL
2
Down
(
(
(
1
/
2
)
*
(
(
UMP
(
(
LSeg
(
(
LMP
P
)
,
|[
0
,
(
-
3
)
]|
)
)
/\
U
)
)
+
(
LMP
P
)
)
)
,
(
C
`
)
) is
Element
of the
carrier
of
(
(
TOP-REAL
2
)
|
(
C
`
)
)
the
carrier
of
(
(
TOP-REAL
2
)
|
(
C
`
)
)
is non
empty
set
Component_of
(
Down
(
(
(
1
/
2
)
*
(
(
UMP
(
(
LSeg
(
(
LMP
P
)
,
|[
0
,
(
-
3
)
]|
)
)
/\
U
)
)
+
(
LMP
P
)
)
)
,
(
C
`
)
)
)
is
Element
of
bool
the
carrier
of
(
(
TOP-REAL
2
)
|
(
C
`
)
)
bool
the
carrier
of
(
(
TOP-REAL
2
)
|
(
C
`
)
)
is non
empty
set
BDD
C
is
functional
open
Element
of
bool
the
carrier
of
(
TOP-REAL
2
)
{
b
1
where
b
1
is
functional
Element
of
bool
the
carrier
of
(
TOP-REAL
2
)
:
b
1
is_inside_component_of
C
}
is
set
union
{
b
1
where
b
1
is
functional
Element
of
bool
the
carrier
of
(
TOP-REAL
2
)
:
b
1
is_inside_component_of
C
}
is
set
UBD
C
is
functional
non
empty
open
connected
being_Region
Element
of
bool
the
carrier
of
(
TOP-REAL
2
)
{
b
1
where
b
1
is
functional
Element
of
bool
the
carrier
of
(
TOP-REAL
2
)
:
b
1
is_outside_component_of
C
}
is
set
union
{
b
1
where
b
1
is
functional
Element
of
bool
the
carrier
of
(
TOP-REAL
2
)
:
b
1
is_outside_component_of
C
}
is
set
A1
is
functional
non
empty
open
connected
being_Region
Element
of
bool
the
carrier
of
(
TOP-REAL
2
)
Cl
A1
is
functional
non
empty
closed
Element
of
bool
the
carrier
of
(
TOP-REAL
2
)
(
Cl
A1
)
\
A1
is
functional
Element
of
bool
the
carrier
of
(
TOP-REAL
2
)
A2
is
functional
open
Element
of
bool
the
carrier
of
(
TOP-REAL
2
)
A1
\/
A2
is
functional
non
empty
open
Element
of
bool
the
carrier
of
(
TOP-REAL
2
)
Cl
A2
is
functional
closed
Element
of
bool
the
carrier
of
(
TOP-REAL
2
)
(
Cl
A2
)
\
A2
is
functional
Element
of
bool
the
carrier
of
(
TOP-REAL
2
)
{}
(
(
TOP-REAL
2
)
|
(
C
`
)
)
is
Relation-like
non-empty
empty-yielding
RAT
-valued
Function-like
one-to-one
constant
functional
empty
proper
open
closed
boundary
nowhere_dense
connected
compact
V156
()
V157
()
V158
()
V159
()
V166
()
V167
()
V168
()
V169
()
V170
()
V171
()
V172
()
bounded_below
interval
Element
of
bool
the
carrier
of
(
(
TOP-REAL
2
)
|
(
C
`
)
)
Fr
A1
is
functional
closed
boundary
nowhere_dense
Element
of
bool
the
carrier
of
(
TOP-REAL
2
)
A1
`
is
functional
closed
Element
of
bool
the
carrier
of
(
TOP-REAL
2
)
the
carrier
of
(
TOP-REAL
2
)
\
A1
is
set
Cl
(
A1
`
)
is
functional
closed
Element
of
bool
the
carrier
of
(
TOP-REAL
2
)
(
Cl
A1
)
/\
(
Cl
(
A1
`
)
)
is
functional
closed
Element
of
bool
the
carrier
of
(
TOP-REAL
2
)
w
is
Element
of
bool
the
carrier
of
(
(
TOP-REAL
2
)
|
(
C
`
)
)
Fr
A2
is
functional
closed
boundary
nowhere_dense
Element
of
bool
the
carrier
of
(
TOP-REAL
2
)
A2
`
is
functional
closed
Element
of
bool
the
carrier
of
(
TOP-REAL
2
)
the
carrier
of
(
TOP-REAL
2
)
\
A2
is
set
Cl
(
A2
`
)
is
functional
closed
Element
of
bool
the
carrier
of
(
TOP-REAL
2
)
(
Cl
A2
)
/\
(
Cl
(
A2
`
)
)
is
functional
closed
Element
of
bool
the
carrier
of
(
TOP-REAL
2
)
A2
\/
C
is
functional
non
empty
Element
of
bool
the
carrier
of
(
TOP-REAL
2
)
A2
\/
A1
is
functional
non
empty
open
Element
of
bool
the
carrier
of
(
TOP-REAL
2
)
(
A2
\/
A1
)
`
is
functional
closed
Element
of
bool
the
carrier
of
(
TOP-REAL
2
)
the
carrier
of
(
TOP-REAL
2
)
\
(
A2
\/
A1
)
is
set
(
(
A2
\/
A1
)
`
)
/\
(
C
`
)
is
functional
Element
of
bool
the
carrier
of
(
TOP-REAL
2
)
(
A2
\/
A1
)
\/
C
is
functional
non
empty
Element
of
bool
the
carrier
of
(
TOP-REAL
2
)
(
(
A2
\/
A1
)
\/
C
)
`
is
functional
Element
of
bool
the
carrier
of
(
TOP-REAL
2
)
the
carrier
of
(
TOP-REAL
2
)
\
(
(
A2
\/
A1
)
\/
C
)
is
set
(
A2
\/
C
)
\/
A1
is
functional
non
empty
Element
of
bool
the
carrier
of
(
TOP-REAL
2
)
(
(
A2
\/
C
)
\/
A1
)
`
is
functional
Element
of
bool
the
carrier
of
(
TOP-REAL
2
)
the
carrier
of
(
TOP-REAL
2
)
\
(
(
A2
\/
C
)
\/
A1
)
is
set
(
A2
\/
C
)
`
is
functional
Element
of
bool
the
carrier
of
(
TOP-REAL
2
)
the
carrier
of
(
TOP-REAL
2
)
\
(
A2
\/
C
)
is
set
(
(
A2
\/
C
)
`
)
/\
(
A1
`
)
is
functional
Element
of
bool
the
carrier
of
(
TOP-REAL
2
)
A1
\/
C
is
functional
non
empty
Element
of
bool
the
carrier
of
(
TOP-REAL
2
)
(
A1
\/
A2
)
`
is
functional
closed
Element
of
bool
the
carrier
of
(
TOP-REAL
2
)
the
carrier
of
(
TOP-REAL
2
)
\
(
A1
\/
A2
)
is
set
(
(
A1
\/
A2
)
`
)
/\
(
C
`
)
is
functional
Element
of
bool
the
carrier
of
(
TOP-REAL
2
)
(
A1
\/
A2
)
\/
C
is
functional
non
empty
Element
of
bool
the
carrier
of
(
TOP-REAL
2
)
(
(
A1
\/
A2
)
\/
C
)
`
is
functional
Element
of
bool
the
carrier
of
(
TOP-REAL
2
)
the
carrier
of
(
TOP-REAL
2
)
\
(
(
A1
\/
A2
)
\/
C
)
is
set
(
A1
\/
C
)
\/
A2
is
functional
non
empty
Element
of
bool
the
carrier
of
(
TOP-REAL
2
)
(
(
A1
\/
C
)
\/
A2
)
`
is
functional
Element
of
bool
the
carrier
of
(
TOP-REAL
2
)
the
carrier
of
(
TOP-REAL
2
)
\
(
(
A1
\/
C
)
\/
A2
)
is
set
(
A1
\/
C
)
`
is
functional
Element
of
bool
the
carrier
of
(
TOP-REAL
2
)
the
carrier
of
(
TOP-REAL
2
)
\
(
A1
\/
C
)
is
set
(
(
A1
\/
C
)
`
)
/\
(
A2
`
)
is
functional
Element
of
bool
the
carrier
of
(
TOP-REAL
2
)
w
is
Element
of
bool
the
carrier
of
(
(
TOP-REAL
2
)
|
(
C
`
)
)
Ux
is
Element
of
bool
the
carrier
of
(
(
TOP-REAL
2
)
|
(
C
`
)
)
Pml
is
Element
of
bool
the
carrier
of
(
(
TOP-REAL
2
)
|
(
C
`
)
)
C
is
functional
non
empty
proper
closed
connected
compact
bounded
being_simple_closed_curve
with_the_max_arc
Element
of
bool
the
carrier
of
(
TOP-REAL
2
)
P
is
Relation-like
the
carrier
of
(
TOP-REAL
2
)
-defined
the
carrier
of
(
TOP-REAL
2
)
-valued
Function-like
one-to-one
non
empty
total
quasi_total
onto
bijective
continuous
being_homeomorphism
Homeomorphism
of
TOP-REAL
2
P
.:
C
is
functional
non
empty
Element
of
bool
the
carrier
of
(
TOP-REAL
2
)
P
/"
is
Relation-like
the
carrier
of
(
TOP-REAL
2
)
-defined
the
carrier
of
(
TOP-REAL
2
)
-defined
the
carrier
of
(
TOP-REAL
2
)
-valued
the
carrier
of
(
TOP-REAL
2
)
-valued
Function-like
one-to-one
non
empty
total
quasi_total
quasi_total
onto
bijective
continuous
being_homeomorphism
Element
of
bool
[:
the
carrier
of
(
TOP-REAL
2
)
, the
carrier
of
(
TOP-REAL
2
)
:]
(
P
/"
)
.:
(
P
.:
C
)
is
functional
non
empty
Element
of
bool
the
carrier
of
(
TOP-REAL
2
)
P
"
is
Relation-like
Function-like
one-to-one
set
dom
P
is
functional
non
empty
Element
of
bool
the
carrier
of
(
TOP-REAL
2
)
C
is
functional
non
empty
proper
closed
connected
compact
bounded
being_simple_closed_curve
with_the_max_arc
Element
of
bool
the
carrier
of
(
TOP-REAL
2
)
BDD
C
is
functional
open
Element
of
bool
the
carrier
of
(
TOP-REAL
2
)
{
b
1
where
b
1
is
functional
Element
of
bool
the
carrier
of
(
TOP-REAL
2
)
:
b
1
is_inside_component_of
C
}
is
set
union
{
b
1
where
b
1
is
functional
Element
of
bool
the
carrier
of
(
TOP-REAL
2
)
:
b
1
is_inside_component_of
C
}
is
set
C
`
is
functional
non
empty
open
Element
of
bool
the
carrier
of
(
TOP-REAL
2
)
the
carrier
of
(
TOP-REAL
2
)
\
C
is
set
(
TOP-REAL
2
)
|
(
C
`
)
is non
empty
strict
TopSpace-like
T_0
T_1
T_2
V118
(
TOP-REAL
2)
SubSpace
of
TOP-REAL
2
the
carrier
of
(
(
TOP-REAL
2
)
|
(
C
`
)
)
is non
empty
set
bool
the
carrier
of
(
(
TOP-REAL
2
)
|
(
C
`
)
)
is non
empty
set
{}
(
(
TOP-REAL
2
)
|
(
C
`
)
)
is
Relation-like
non-empty
empty-yielding
RAT
-valued
Function-like
one-to-one
constant
functional
empty
proper
open
closed
boundary
nowhere_dense
connected
compact
V156
()
V157
()
V158
()
V159
()
V166
()
V167
()
V168
()
V169
()
V170
()
V171
()
V172
()
bounded_below
interval
Element
of
bool
the
carrier
of
(
(
TOP-REAL
2
)
|
(
C
`
)
)
P
is
Element
of
bool
the
carrier
of
(
(
TOP-REAL
2
)
|
(
C
`
)
)
C
is
functional
non
empty
proper
closed
connected
compact
bounded
being_simple_closed_curve
with_the_max_arc
Element
of
bool
the
carrier
of
(
TOP-REAL
2
)
C
`
is
functional
non
empty
open
Element
of
bool
the
carrier
of
(
TOP-REAL
2
)
the
carrier
of
(
TOP-REAL
2
)
\
C
is
set
(
TOP-REAL
2
)
|
(
C
`
)
is non
empty
strict
TopSpace-like
T_0
T_1
T_2
V118
(
TOP-REAL
2)
SubSpace
of
TOP-REAL
2
the
carrier
of
(
(
TOP-REAL
2
)
|
(
C
`
)
)
is non
empty
set
bool
the
carrier
of
(
(
TOP-REAL
2
)
|
(
C
`
)
)
is non
empty
set
P
is
functional
Element
of
bool
the
carrier
of
(
TOP-REAL
2
)
Fr
P
is
functional
closed
Element
of
bool
the
carrier
of
(
TOP-REAL
2
)
Cl
P
is
functional
closed
Element
of
bool
the
carrier
of
(
TOP-REAL
2
)
P
`
is
functional
Element
of
bool
the
carrier
of
(
TOP-REAL
2
)
the
carrier
of
(
TOP-REAL
2
)
\
P
is
set
Cl
(
P
`
)
is
functional
closed
Element
of
bool
the
carrier
of
(
TOP-REAL
2
)
(
Cl
P
)
/\
(
Cl
(
P
`
)
)
is
functional
closed
Element
of
bool
the
carrier
of
(
TOP-REAL
2
)
U
is
Element
of
bool
the
carrier
of
(
(
TOP-REAL
2
)
|
(
C
`
)
)
BDD
C
is
functional
non
empty
open
Element
of
bool
the
carrier
of
(
TOP-REAL
2
)
{
b
1
where
b
1
is
functional
Element
of
bool
the
carrier
of
(
TOP-REAL
2
)
:
b
1
is_inside_component_of
C
}
is
set
union
{
b
1
where
b
1
is
functional
Element
of
bool
the
carrier
of
(
TOP-REAL
2
)
:
b
1
is_inside_component_of
C
}
is
set
C
is
functional
non
empty
proper
closed
connected
compact
bounded
being_simple_closed_curve
with_the_max_arc
Element
of
bool
the
carrier
of
(
TOP-REAL
2
)
C
`
is
functional
non
empty
open
Element
of
bool
the
carrier
of
(
TOP-REAL
2
)
the
carrier
of
(
TOP-REAL
2
)
\
C
is
set
(
TOP-REAL
2
)
|
(
C
`
)
is non
empty
strict
TopSpace-like
T_0
T_1
T_2
V118
(
TOP-REAL
2)
SubSpace
of
TOP-REAL
2
the
carrier
of
(
(
TOP-REAL
2
)
|
(
C
`
)
)
is non
empty
set
bool
the
carrier
of
(
(
TOP-REAL
2
)
|
(
C
`
)
)
is non
empty
set
C
is
functional
non
empty
proper
closed
connected
compact
bounded
being_simple_closed_curve
with_the_max_arc
Element
of
bool
the
carrier
of
(
TOP-REAL
2
)