begin
definition
let f be
Function;
existence
ex b1 being Function st
( dom b1 = dom f & ( for x being set st x in dom f holds
( ( for y, z being set st f . x = [y,z] holds
b1 . x = [z,y] ) & ( f . x = b1 . x or ex y, z being set st f . x = [y,z] ) ) ) )
uniqueness
for b1, b2 being Function st dom b1 = dom f & ( for x being set st x in dom f holds
( ( for y, z being set st f . x = [y,z] holds
b1 . x = [z,y] ) & ( f . x = b1 . x or ex y, z being set st f . x = [y,z] ) ) ) & dom b2 = dom f & ( for x being set st x in dom f holds
( ( for y, z being set st f . x = [y,z] holds
b2 . x = [z,y] ) & ( f . x = b2 . x or ex y, z being set st f . x = [y,z] ) ) ) holds
b1 = b2
involutiveness
for b1, b2 being Function st dom b1 = dom b2 & ( for x being set st x in dom b2 holds
( ( for y, z being set st b2 . x = [y,z] holds
b1 . x = [z,y] ) & ( b2 . x = b1 . x or ex y, z being set st b2 . x = [y,z] ) ) ) holds
( dom b2 = dom b1 & ( for x being set st x in dom b1 holds
( ( for y, z being set st b1 . x = [y,z] holds
b2 . x = [z,y] ) & ( b1 . x = b2 . x or ex y, z being set st b1 . x = [y,z] ) ) ) )
end;
theorem Th7:
for
A,
x,
z being
set st
x in A holds
(A --> z) . x = z
theorem Th14:
for
A,
x,
B being
set st
x in B holds
(A --> x) " B = A
theorem
for
A,
x,
B being
set st not
x in B holds
(A --> x) " B = {}
Lm1:
for f, g, F being Function
for x being set st x in dom (F * <:f,g:>) holds
(F * <:f,g:>) . x = F . ((f . x),(g . x))
theorem
for
a,
b,
c being
set holds
((a,b) .--> c) . (
a,
b)
= c
Lm2:
for o, m, r being set holds (o,m) :-> r is Function of [:{o},{m}:],{r}