begin
Lm1:
{} in omega
by ORDINAL1:def 11;
Lm2:
1 in omega
;
begin
defpred S1[ set ] means ex B being Ordinal st
( B c= $1 & $1 in omega & $1 <> {} & ( for c, d1, d2 being natural Ordinal holds
( not d1,d2 are_relative_prime or not $1 = c *^ d1 or not B = c *^ d2 ) ) );
Lm3:
1 = succ {}
;
set RATplus = { [a,b] where a, b is Element of omega : ( a,b are_relative_prime & b <> {} ) } ;
1,1 are_relative_prime
by Th2;
then
[1,1] in { [a,b] where a, b is Element of omega : ( a,b are_relative_prime & b <> {} ) }
;
then reconsider RATplus = { [a,b] where a, b is Element of omega : ( a,b are_relative_prime & b <> {} ) } as non empty set ;
Lm4:
for a, b being natural Ordinal st [a,b] in RATplus holds
( a,b are_relative_prime & b <> {} )
begin
Lm5:
omega c= RAT+
by XBOOLE_1:7;