begin
Lm1:
tan is_differentiable_on ].(- (PI / 2)),(PI / 2).[
Lm2:
cot is_differentiable_on ].0,PI.[
Lm3:
for x being Real st x in ].(- (PI / 2)),(PI / 2).[ holds
diff (tan,x) = 1 / ((cos . x) ^2)
Lm4:
for x being Real st x in ].0,PI.[ holds
diff (cot,x) = - (1 / ((sin . x) ^2))
Lm5:
arctan " = tan | ].(- (PI / 2)),(PI / 2).[
by FUNCT_1:43;
Lm6:
arccot " = cot | ].0,PI.[
by FUNCT_1:43;
Lm7:
- (PI / 4) in ].(- (PI / 2)),(PI / 2).[
Lm8:
PI / 4 in ].(- (PI / 2)),(PI / 2).[
Lm9:
PI / 4 in ].0,PI.[
Lm10:
(3 / 4) * PI in ].0,PI.[
Lm11:
dom (tan | [.(- (PI / 4)),(PI / 4).]) = [.(- (PI / 4)),(PI / 4).]
Lm12:
dom (cot | [.(PI / 4),((3 / 4) * PI).]) = [.(PI / 4),((3 / 4) * PI).]
Lm13:
(tan | [.(- (PI / 4)),(PI / 4).]) | [.(- (PI / 4)),(PI / 4).] is increasing
Lm14:
(cot | [.(PI / 4),((3 / 4) * PI).]) | [.(PI / 4),((3 / 4) * PI).] is decreasing
Lm15:
tan | [.(- (PI / 4)),(PI / 4).] is one-to-one
Lm16:
cot | [.(PI / 4),((3 / 4) * PI).] is one-to-one
begin