:: EC_PF_1 semantic presentation
REAL
is non
empty
non
trivial
non
finite
V117
()
V118
()
V119
()
V123
()
set
NAT
is non
empty
non
trivial
V4
()
V5
()
V6
() non
finite
cardinal
limit_cardinal
V117
()
V118
()
V119
()
V120
()
V121
()
V122
()
V123
()
Element
of
bool
REAL
bool
REAL
is non
empty
non
trivial
non
finite
set
K649
() is
strict
doubleLoopStr
the
carrier
of
K649
() is
set
COMPLEX
is non
empty
non
trivial
non
finite
V117
()
V123
()
set
NAT
is non
empty
non
trivial
V4
()
V5
()
V6
() non
finite
cardinal
limit_cardinal
V117
()
V118
()
V119
()
V120
()
V121
()
V122
()
V123
()
set
bool
NAT
is non
empty
non
trivial
non
finite
set
bool
NAT
is non
empty
non
trivial
non
finite
set
RAT
is non
empty
non
trivial
non
finite
V117
()
V118
()
V119
()
V120
()
V123
()
set
INT
is non
empty
non
trivial
non
finite
V117
()
V118
()
V119
()
V120
()
V121
()
V123
()
set
[:
REAL
,
REAL
:]
is non
empty
non
trivial
V35
()
V36
()
V37
() non
finite
set
bool
[:
REAL
,
REAL
:]
is non
empty
non
trivial
non
finite
set
K357
() is non
empty
strict
multMagma
the
carrier
of
K357
() is non
empty
set
INT.Ring
is non
empty
non
degenerated
non
trivial
non
finite
left_add-cancelable
right_add-cancelable
add-cancelable
right_complementable
strict
unital
associative
commutative
Euclidian
right-distributive
left-distributive
right_unital
well-unital
distributive
left_unital
Abelian
add-associative
right_zeroed
V181
()
doubleLoopStr
addint
is
Relation-like
[:
INT
,
INT
:]
-defined
INT
-valued
Function-like
quasi_total
V35
()
V36
()
V37
()
Element
of
bool
[:
[:
INT
,
INT
:]
,
INT
:]
[:
INT
,
INT
:]
is non
empty
non
trivial
RAT
-valued
INT
-valued
V35
()
V36
()
V37
() non
finite
set
[:
[:
INT
,
INT
:]
,
INT
:]
is non
empty
non
trivial
RAT
-valued
INT
-valued
V35
()
V36
()
V37
() non
finite
set
bool
[:
[:
INT
,
INT
:]
,
INT
:]
is non
empty
non
trivial
non
finite
set
multint
is
Relation-like
[:
INT
,
INT
:]
-defined
INT
-valued
Function-like
quasi_total
V35
()
V36
()
V37
()
Element
of
bool
[:
[:
INT
,
INT
:]
,
INT
:]
1 is non
empty
V4
()
V5
()
V6
()
V10
()
V11
()
V12
()
integer
ext-real
positive
non
negative
finite
cardinal
V113
()
V117
()
V118
()
V119
()
V120
()
V121
()
V122
()
Element
of
NAT
K633
(1,
INT
) is
V11
()
V12
()
integer
ext-real
V113
()
Element
of
INT
0
is
empty
V4
()
V5
()
V6
()
V8
()
V9
()
V10
()
V11
()
V12
()
integer
ext-real
non
positive
non
negative
finite
V49
()
cardinal
{}
-element
V113
()
V117
()
V118
()
V119
()
V120
()
V121
()
V122
()
V123
()
Element
of
NAT
{}
is
empty
V4
()
V5
()
V6
()
V8
()
V9
()
V10
()
V11
()
V12
()
integer
ext-real
non
positive
non
negative
finite
V49
()
cardinal
{}
-element
V117
()
V118
()
V119
()
V120
()
V121
()
V122
()
V123
()
set
K633
(
0
,
INT
) is
V11
()
V12
()
integer
ext-real
V113
()
Element
of
INT
doubleLoopStr
(#
INT
,
addint
,
multint
,
K633
(1,
INT
),
K633
(
0
,
INT
) #) is non
empty
non
trivial
strict
doubleLoopStr
the
carrier
of
INT.Ring
is non
empty
non
trivial
non
finite
V117
()
V118
()
V119
()
V120
()
V121
()
set
[:
the
carrier
of
INT.Ring
,
NAT
:]
is non
empty
non
trivial
RAT
-valued
INT
-valued
V35
()
V36
()
V37
()
V38
() non
finite
set
bool
[:
the
carrier
of
INT.Ring
,
NAT
:]
is non
empty
non
trivial
non
finite
set
{
{}
,1
}
is non
empty
finite
V49
()
V117
()
V118
()
V119
()
V120
()
V121
()
V122
()
set
K455
() is
set
bool
K455
() is non
empty
set
K456
() is
Element
of
bool
K455
()
2 is non
empty
V4
()
V5
()
V6
()
V10
()
V11
()
V12
()
integer
ext-real
positive
non
negative
finite
cardinal
V113
()
V117
()
V118
()
V119
()
V120
()
V121
()
V122
()
Element
of
NAT
[:
NAT
,
REAL
:]
is non
empty
non
trivial
V35
()
V36
()
V37
() non
finite
set
bool
[:
NAT
,
REAL
:]
is non
empty
non
trivial
non
finite
set
1
-tuples_on
NAT
is non
empty
functional
FinSequence-membered
FinSequenceSet
of
NAT
NAT
*
is
functional
FinSequence-membered
FinSequenceSet
of
NAT
{
b
1
where
b
1
is
Relation-like
NAT
-defined
NAT
-valued
Function-like
FinSequence-like
Element
of
NAT
*
:
len
b
1
=
1
}
is
set
[:
COMPLEX
,
COMPLEX
:]
is non
empty
non
trivial
V35
() non
finite
set
bool
[:
COMPLEX
,
COMPLEX
:]
is non
empty
non
trivial
non
finite
set
[:
[:
COMPLEX
,
COMPLEX
:]
,
COMPLEX
:]
is non
empty
non
trivial
V35
() non
finite
set
bool
[:
[:
COMPLEX
,
COMPLEX
:]
,
COMPLEX
:]
is non
empty
non
trivial
non
finite
set
[:
[:
REAL
,
REAL
:]
,
REAL
:]
is non
empty
non
trivial
V35
()
V36
()
V37
() non
finite
set
bool
[:
[:
REAL
,
REAL
:]
,
REAL
:]
is non
empty
non
trivial
non
finite
set
[:
RAT
,
RAT
:]
is non
empty
non
trivial
RAT
-valued
V35
()
V36
()
V37
() non
finite
set
bool
[:
RAT
,
RAT
:]
is non
empty
non
trivial
non
finite
set
[:
[:
RAT
,
RAT
:]
,
RAT
:]
is non
empty
non
trivial
RAT
-valued
V35
()
V36
()
V37
() non
finite
set
bool
[:
[:
RAT
,
RAT
:]
,
RAT
:]
is non
empty
non
trivial
non
finite
set
bool
[:
INT
,
INT
:]
is non
empty
non
trivial
non
finite
set
[:
NAT
,
NAT
:]
is non
empty
non
trivial
RAT
-valued
INT
-valued
V35
()
V36
()
V37
()
V38
() non
finite
set
[:
[:
NAT
,
NAT
:]
,
NAT
:]
is non
empty
non
trivial
RAT
-valued
INT
-valued
V35
()
V36
()
V37
()
V38
() non
finite
set
bool
[:
[:
NAT
,
NAT
:]
,
NAT
:]
is non
empty
non
trivial
non
finite
set
bool
the
carrier
of
K649
() is non
empty
set
[:
NAT
, the
carrier
of
K649
()
:]
is
set
bool
[:
NAT
, the
carrier
of
K649
()
:]
is non
empty
set
bool
(
bool
REAL
)
is non
empty
non
trivial
non
finite
set
K155
(
0
,1,2) is non
empty
finite
V117
()
V118
()
V119
()
V120
()
V121
()
V122
()
set
[:
K155
(
0
,1,2),
K155
(
0
,1,2)
:]
is non
empty
RAT
-valued
INT
-valued
V35
()
V36
()
V37
()
V38
()
finite
set
[:
[:
K155
(
0
,1,2),
K155
(
0
,1,2)
:]
,
K155
(
0
,1,2)
:]
is non
empty
RAT
-valued
INT
-valued
V35
()
V36
()
V37
()
V38
()
finite
set
bool
[:
[:
K155
(
0
,1,2),
K155
(
0
,1,2)
:]
,
K155
(
0
,1,2)
:]
is non
empty
finite
V49
()
set
bool
[:
K155
(
0
,1,2),
K155
(
0
,1,2)
:]
is non
empty
finite
V49
()
set
Z_3
is
strict
doubleLoopStr
add3
is
Relation-like
[:
K155
(
0
,1,2),
K155
(
0
,1,2)
:]
-defined
K155
(
0
,1,2)
-valued
Function-like
quasi_total
V35
()
V36
()
V37
()
V38
()
finite
Element
of
bool
[:
[:
K155
(
0
,1,2),
K155
(
0
,1,2)
:]
,
K155
(
0
,1,2)
:]
mult3
is
Relation-like
[:
K155
(
0
,1,2),
K155
(
0
,1,2)
:]
-defined
K155
(
0
,1,2)
-valued
Function-like
quasi_total
V35
()
V36
()
V37
()
V38
()
finite
Element
of
bool
[:
[:
K155
(
0
,1,2),
K155
(
0
,1,2)
:]
,
K155
(
0
,1,2)
:]
unit3
is
V4
()
V5
()
V6
()
V10
()
V11
()
V12
()
integer
ext-real
non
negative
finite
cardinal
V113
()
Element
of
K155
(
0
,1,2)
zero3
is
V4
()
V5
()
V6
()
V10
()
V11
()
V12
()
integer
ext-real
non
negative
finite
cardinal
V113
()
Element
of
K155
(
0
,1,2)
doubleLoopStr
(#
K155
(
0
,1,2),
add3
,
mult3
,
unit3
,
zero3
#) is non
empty
strict
doubleLoopStr
p
is non
empty
non
degenerated
non
trivial
left_add-cancelable
right_add-cancelable
add-cancelable
right_complementable
almost_left_invertible
unital
associative
commutative
Euclidian
right-distributive
left-distributive
right_unital
well-unital
distributive
left_unital
Abelian
add-associative
right_zeroed
doubleLoopStr
the
carrier
of
p
is non
empty
non
trivial
set
the
addF
of
p
is
Relation-like
[:
the
carrier
of
p
, the
carrier
of
p
:]
-defined
the
carrier
of
p
-valued
Function-like
quasi_total
Element
of
bool
[:
[:
the
carrier
of
p
, the
carrier
of
p
:]
, the
carrier
of
p
:]
[:
the
carrier
of
p
, the
carrier
of
p
:]
is non
empty
set
[:
[:
the
carrier
of
p
, the
carrier
of
p
:]
, the
carrier
of
p
:]
is non
empty
set
bool
[:
[:
the
carrier
of
p
, the
carrier
of
p
:]
, the
carrier
of
p
:]
is non
empty
set
the
multF
of
p
is
Relation-like
[:
the
carrier
of
p
, the
carrier
of
p
:]
-defined
the
carrier
of
p
-valued
Function-like
quasi_total
Element
of
bool
[:
[:
the
carrier
of
p
, the
carrier
of
p
:]
, the
carrier
of
p
:]
1.
p
is
V61
(
p
)
left_add-cancelable
right_add-cancelable
add-cancelable
right_complementable
Element
of the
carrier
of
p
the
OneF
of
p
is
left_add-cancelable
right_add-cancelable
add-cancelable
right_complementable
Element
of the
carrier
of
p
0.
p
is
V61
(
p
)
left_add-cancelable
right_add-cancelable
add-cancelable
right_complementable
Element
of the
carrier
of
p
the
ZeroF
of
p
is
left_add-cancelable
right_add-cancelable
add-cancelable
right_complementable
Element
of the
carrier
of
p
the
addF
of
p
||
the
carrier
of
p
is
set
the
addF
of
p
|
[:
the
carrier
of
p
, the
carrier
of
p
:]
is
Relation-like
set
the
multF
of
p
||
the
carrier
of
p
is
set
the
multF
of
p
|
[:
the
carrier
of
p
, the
carrier
of
p
:]
is
Relation-like
set
p
is non
empty
non
degenerated
non
trivial
left_add-cancelable
right_add-cancelable
add-cancelable
right_complementable
almost_left_invertible
unital
associative
commutative
Euclidian
right-distributive
left-distributive
right_unital
well-unital
distributive
left_unital
Abelian
add-associative
right_zeroed
doubleLoopStr
the
addF
of
p
is
Relation-like
[:
the
carrier
of
p
, the
carrier
of
p
:]
-defined
the
carrier
of
p
-valued
Function-like
quasi_total
Element
of
bool
[:
[:
the
carrier
of
p
, the
carrier
of
p
:]
, the
carrier
of
p
:]
the
carrier
of
p
is non
empty
non
trivial
set
[:
the
carrier
of
p
, the
carrier
of
p
:]
is non
empty
set
[:
[:
the
carrier
of
p
, the
carrier
of
p
:]
, the
carrier
of
p
:]
is non
empty
set
bool
[:
[:
the
carrier
of
p
, the
carrier
of
p
:]
, the
carrier
of
p
:]
is non
empty
set
the
addF
of
p
||
the
carrier
of
p
is
set
the
addF
of
p
|
[:
the
carrier
of
p
, the
carrier
of
p
:]
is
Relation-like
set
the
multF
of
p
is
Relation-like
[:
the
carrier
of
p
, the
carrier
of
p
:]
-defined
the
carrier
of
p
-valued
Function-like
quasi_total
Element
of
bool
[:
[:
the
carrier
of
p
, the
carrier
of
p
:]
, the
carrier
of
p
:]
the
multF
of
p
||
the
carrier
of
p
is
set
the
multF
of
p
|
[:
the
carrier
of
p
, the
carrier
of
p
:]
is
Relation-like
set
1.
p
is
V61
(
p
)
left_add-cancelable
right_add-cancelable
add-cancelable
right_complementable
Element
of the
carrier
of
p
the
OneF
of
p
is
left_add-cancelable
right_add-cancelable
add-cancelable
right_complementable
Element
of the
carrier
of
p
0.
p
is
V61
(
p
)
left_add-cancelable
right_add-cancelable
add-cancelable
right_complementable
Element
of the
carrier
of
p
the
ZeroF
of
p
is
left_add-cancelable
right_add-cancelable
add-cancelable
right_complementable
Element
of the
carrier
of
p
p
is non
empty
non
degenerated
non
trivial
left_add-cancelable
right_add-cancelable
add-cancelable
right_complementable
almost_left_invertible
unital
associative
commutative
Euclidian
right-distributive
left-distributive
right_unital
well-unital
distributive
left_unital
Abelian
add-associative
right_zeroed
doubleLoopStr
the
carrier
of
p
is non
empty
non
trivial
set
bool
the
carrier
of
p
is non
empty
set
the
addF
of
p
is
Relation-like
[:
the
carrier
of
p
, the
carrier
of
p
:]
-defined
the
carrier
of
p
-valued
Function-like
quasi_total
Element
of
bool
[:
[:
the
carrier
of
p
, the
carrier
of
p
:]
, the
carrier
of
p
:]
[:
the
carrier
of
p
, the
carrier
of
p
:]
is non
empty
set
[:
[:
the
carrier
of
p
, the
carrier
of
p
:]
, the
carrier
of
p
:]
is non
empty
set
bool
[:
[:
the
carrier
of
p
, the
carrier
of
p
:]
, the
carrier
of
p
:]
is non
empty
set
the
multF
of
p
is
Relation-like
[:
the
carrier
of
p
, the
carrier
of
p
:]
-defined
the
carrier
of
p
-valued
Function-like
quasi_total
Element
of
bool
[:
[:
the
carrier
of
p
, the
carrier
of
p
:]
, the
carrier
of
p
:]
1.
p
is
V61
(
p
)
left_add-cancelable
right_add-cancelable
add-cancelable
right_complementable
Element
of the
carrier
of
p
the
OneF
of
p
is
left_add-cancelable
right_add-cancelable
add-cancelable
right_complementable
Element
of the
carrier
of
p
0.
p
is
V61
(
p
)
left_add-cancelable
right_add-cancelable
add-cancelable
right_complementable
Element
of the
carrier
of
p
the
ZeroF
of
p
is
left_add-cancelable
right_add-cancelable
add-cancelable
right_complementable
Element
of the
carrier
of
p
a
is non
empty
doubleLoopStr
the
carrier
of
a
is non
empty
set
the
addF
of
a
is
Relation-like
[:
the
carrier
of
a
, the
carrier
of
a
:]
-defined
the
carrier
of
a
-valued
Function-like
quasi_total
Element
of
bool
[:
[:
the
carrier
of
a
, the
carrier
of
a
:]
, the
carrier
of
a
:]
[:
the
carrier
of
a
, the
carrier
of
a
:]
is non
empty
set
[:
[:
the
carrier
of
a
, the
carrier
of
a
:]
, the
carrier
of
a
:]
is non
empty
set
bool
[:
[:
the
carrier
of
a
, the
carrier
of
a
:]
, the
carrier
of
a
:]
is non
empty
set
the
addF
of
p
||
the
carrier
of
a
is
set
the
addF
of
p
|
[:
the
carrier
of
a
, the
carrier
of
a
:]
is
Relation-like
set
the
multF
of
a
is
Relation-like
[:
the
carrier
of
a
, the
carrier
of
a
:]
-defined
the
carrier
of
a
-valued
Function-like
quasi_total
Element
of
bool
[:
[:
the
carrier
of
a
, the
carrier
of
a
:]
, the
carrier
of
a
:]
the
multF
of
p
||
the
carrier
of
a
is
set
the
multF
of
p
|
[:
the
carrier
of
a
, the
carrier
of
a
:]
is
Relation-like
set
1.
a
is
Element
of the
carrier
of
a
the
OneF
of
a
is
Element
of the
carrier
of
a
0.
a
is
V61
(
a
)
Element
of the
carrier
of
a
the
ZeroF
of
a
is
Element
of the
carrier
of
a
F1
is
Element
of the
carrier
of
a
F2
is
Element
of the
carrier
of
a
F1
*
F2
is
Element
of the
carrier
of
a
the
multF
of
a
.
(
F1
,
F2
) is
Element
of the
carrier
of
a
[
F1
,
F2
]
is
V26
()
set
{
F1
,
F2
}
is non
empty
finite
set
{
F1
}
is non
empty
trivial
finite
1
-element
set
{
{
F1
,
F2
}
,
{
F1
}
}
is non
empty
finite
V49
()
set
the
multF
of
a
.
[
F1
,
F2
]
is
set
[
F1
,
F2
]
is
V26
()
Element
of
[:
the
carrier
of
a
, the
carrier
of
a
:]
the
multF
of
p
.
[
F1
,
F2
]
is
set
the
multF
of
p
.
(
F1
,
F2
) is
set
the
multF
of
p
.
[
F1
,
F2
]
is
set
F1
is
Element
of the
carrier
of
a
F2
is
Element
of the
carrier
of
a
F1
+
F2
is
Element
of the
carrier
of
a
the
addF
of
a
.
(
F1
,
F2
) is
Element
of the
carrier
of
a
[
F1
,
F2
]
is
V26
()
set
{
F1
,
F2
}
is non
empty
finite
set
{
F1
}
is non
empty
trivial
finite
1
-element
set
{
{
F1
,
F2
}
,
{
F1
}
}
is non
empty
finite
V49
()
set
the
addF
of
a
.
[
F1
,
F2
]
is
set
[
F1
,
F2
]
is
V26
()
Element
of
[:
the
carrier
of
a
, the
carrier
of
a
:]
the
addF
of
p
.
[
F1
,
F2
]
is
set
the
addF
of
p
.
(
F1
,
F2
) is
set
the
addF
of
p
.
[
F1
,
F2
]
is
set
X
is
Element
of the
carrier
of
a
Y
is
Element
of the
carrier
of
a
X
+
Y
is
Element
of the
carrier
of
a
the
addF
of
a
.
(
X
,
Y
) is
Element
of the
carrier
of
a
[
X
,
Y
]
is
V26
()
set
{
X
,
Y
}
is non
empty
finite
set
{
X
}
is non
empty
trivial
finite
1
-element
set
{
{
X
,
Y
}
,
{
X
}
}
is non
empty
finite
V49
()
set
the
addF
of
a
.
[
X
,
Y
]
is
set
n1
is
left_add-cancelable
right_add-cancelable
add-cancelable
right_complementable
Element
of the
carrier
of
p
n
is
left_add-cancelable
right_add-cancelable
add-cancelable
right_complementable
Element
of the
carrier
of
p
n1
+
n
is
left_add-cancelable
right_add-cancelable
add-cancelable
right_complementable
Element
of the
carrier
of
p
the
addF
of
p
.
(
n1
,
n
) is
left_add-cancelable
right_add-cancelable
add-cancelable
right_complementable
Element
of the
carrier
of
p
[
n1
,
n
]
is
V26
()
set
{
n1
,
n
}
is non
empty
finite
set
{
n1
}
is non
empty
trivial
finite
1
-element
set
{
{
n1
,
n
}
,
{
n1
}
}
is non
empty
finite
V49
()
set
the
addF
of
p
.
[
n1
,
n
]
is
set
Y
+
X
is
Element
of the
carrier
of
a
the
addF
of
a
.
(
Y
,
X
) is
Element
of the
carrier
of
a
[
Y
,
X
]
is
V26
()
set
{
Y
,
X
}
is non
empty
finite
set
{
Y
}
is non
empty
trivial
finite
1
-element
set
{
{
Y
,
X
}
,
{
Y
}
}
is non
empty
finite
V49
()
set
the
addF
of
a
.
[
Y
,
X
]
is
set
n
+
n1
is
left_add-cancelable
right_add-cancelable
add-cancelable
right_complementable
Element
of the
carrier
of
p
the
addF
of
p
.
(
n
,
n1
) is
left_add-cancelable
right_add-cancelable
add-cancelable
right_complementable
Element
of the
carrier
of
p
[
n
,
n1
]
is
V26
()
set
{
n
,
n1
}
is non
empty
finite
set
{
n
}
is non
empty
trivial
finite
1
-element
set
{
{
n
,
n1
}
,
{
n
}
}
is non
empty
finite
V49
()
set
the
addF
of
p
.
[
n
,
n1
]
is
set
X
is
Element
of the
carrier
of
a
Y
is
Element
of the
carrier
of
a
n1
is
Element
of the
carrier
of
a
Y
+
n1
is
Element
of the
carrier
of
a
the
addF
of
a
.
(
Y
,
n1
) is
Element
of the
carrier
of
a
[
Y
,
n1
]
is
V26
()
set
{
Y
,
n1
}
is non
empty
finite
set
{
Y
}
is non
empty
trivial
finite
1
-element
set
{
{
Y
,
n1
}
,
{
Y
}
}
is non
empty
finite
V49
()
set
the
addF
of
a
.
[
Y
,
n1
]
is
set
X
+
(
Y
+
n1
)
is
Element
of the
carrier
of
a
the
addF
of
a
.
(
X
,
(
Y
+
n1
)
) is
Element
of the
carrier
of
a
[
X
,
(
Y
+
n1
)
]
is
V26
()
set
{
X
,
(
Y
+
n1
)
}
is non
empty
finite
set
{
X
}
is non
empty
trivial
finite
1
-element
set
{
{
X
,
(
Y
+
n1
)
}
,
{
X
}
}
is non
empty
finite
V49
()
set
the
addF
of
a
.
[
X
,
(
Y
+
n1
)
]
is
set
n
is
left_add-cancelable
right_add-cancelable
add-cancelable
right_complementable
Element
of the
carrier
of
p
the
addF
of
p
.
(
n
,
(
Y
+
n1
)
) is
set
[
n
,
(
Y
+
n1
)
]
is
V26
()
set
{
n
,
(
Y
+
n1
)
}
is non
empty
finite
set
{
n
}
is non
empty
trivial
finite
1
-element
set
{
{
n
,
(
Y
+
n1
)
}
,
{
n
}
}
is non
empty
finite
V49
()
set
the
addF
of
p
.
[
n
,
(
Y
+
n1
)
]
is
set
y1
is
left_add-cancelable
right_add-cancelable
add-cancelable
right_complementable
Element
of the
carrier
of
p
a1
is
left_add-cancelable
right_add-cancelable
add-cancelable
right_complementable
Element
of the
carrier
of
p
y1
+
a1
is
left_add-cancelable
right_add-cancelable
add-cancelable
right_complementable
Element
of the
carrier
of
p
the
addF
of
p
.
(
y1
,
a1
) is
left_add-cancelable
right_add-cancelable
add-cancelable
right_complementable
Element
of the
carrier
of
p
[
y1
,
a1
]
is
V26
()
set
{
y1
,
a1
}
is non
empty
finite
set
{
y1
}
is non
empty
trivial
finite
1
-element
set
{
{
y1
,
a1
}
,
{
y1
}
}
is non
empty
finite
V49
()
set
the
addF
of
p
.
[
y1
,
a1
]
is
set
n
+
(
y1
+
a1
)
is
left_add-cancelable
right_add-cancelable
add-cancelable
right_complementable
Element
of the
carrier
of
p
the
addF
of
p
.
(
n
,
(
y1
+
a1
)
) is
left_add-cancelable
right_add-cancelable
add-cancelable
right_complementable
Element
of the
carrier
of
p
[
n
,
(
y1
+
a1
)
]
is
V26
()
set
{
n
,
(
y1
+
a1
)
}
is non
empty
finite
set
{
{
n
,
(
y1
+
a1
)
}
,
{
n
}
}
is non
empty
finite
V49
()
set
the
addF
of
p
.
[
n
,
(
y1
+
a1
)
]
is
set
X
+
Y
is
Element
of the
carrier
of
a
the
addF
of
a
.
(
X
,
Y
) is
Element
of the
carrier
of
a
[
X
,
Y
]
is
V26
()
set
{
X
,
Y
}
is non
empty
finite
set
{
{
X
,
Y
}
,
{
X
}
}
is non
empty
finite
V49
()
set
the
addF
of
a
.
[
X
,
Y
]
is
set
(
X
+
Y
)
+
n1
is
Element
of the
carrier
of
a
the
addF
of
a
.
(
(
X
+
Y
)
,
n1
) is
Element
of the
carrier
of
a
[
(
X
+
Y
)
,
n1
]
is
V26
()
set
{
(
X
+
Y
)
,
n1
}
is non
empty
finite
set
{
(
X
+
Y
)
}
is non
empty
trivial
finite
1
-element
set
{
{
(
X
+
Y
)
,
n1
}
,
{
(
X
+
Y
)
}
}
is non
empty
finite
V49
()
set
the
addF
of
a
.
[
(
X
+
Y
)
,
n1
]
is
set
the
addF
of
p
.
(
(
X
+
Y
)
,
a1
) is
set
[
(
X
+
Y
)
,
a1
]
is
V26
()
set
{
(
X
+
Y
)
,
a1
}
is non
empty
finite
set
{
{
(
X
+
Y
)
,
a1
}
,
{
(
X
+
Y
)
}
}
is non
empty
finite
V49
()
set
the
addF
of
p
.
[
(
X
+
Y
)
,
a1
]
is
set
n
+
y1
is
left_add-cancelable
right_add-cancelable
add-cancelable
right_complementable
Element
of the
carrier
of
p
the
addF
of
p
.
(
n
,
y1
) is
left_add-cancelable
right_add-cancelable
add-cancelable
right_complementable
Element
of the
carrier
of
p
[
n
,
y1
]
is
V26
()
set
{
n
,
y1
}
is non
empty
finite
set
{
{
n
,
y1
}
,
{
n
}
}
is non
empty
finite
V49
()
set
the
addF
of
p
.
[
n
,
y1
]
is
set
(
n
+
y1
)
+
a1
is
left_add-cancelable
right_add-cancelable
add-cancelable
right_complementable
Element
of the
carrier
of
p
the
addF
of
p
.
(
(
n
+
y1
)
,
a1
) is
left_add-cancelable
right_add-cancelable
add-cancelable
right_complementable
Element
of the
carrier
of
p
[
(
n
+
y1
)
,
a1
]
is
V26
()
set
{
(
n
+
y1
)
,
a1
}
is non
empty
finite
set
{
(
n
+
y1
)
}
is non
empty
trivial
finite
1
-element
set
{
{
(
n
+
y1
)
,
a1
}
,
{
(
n
+
y1
)
}
}
is non
empty
finite
V49
()
set
the
addF
of
p
.
[
(
n
+
y1
)
,
a1
]
is
set
X
is
Element
of the
carrier
of
a
X
+
(
0.
a
)
is
Element
of the
carrier
of
a
the
addF
of
a
.
(
X
,
(
0.
a
)
) is
Element
of the
carrier
of
a
[
X
,
(
0.
a
)
]
is
V26
()
set
{
X
,
(
0.
a
)
}
is non
empty
finite
set
{
X
}
is non
empty
trivial
finite
1
-element
set
{
{
X
,
(
0.
a
)
}
,
{
X
}
}
is non
empty
finite
V49
()
set
the
addF
of
a
.
[
X
,
(
0.
a
)
]
is
set
Y
is
left_add-cancelable
right_add-cancelable
add-cancelable
right_complementable
Element
of the
carrier
of
p
Y
+
(
0.
p
)
is
left_add-cancelable
right_add-cancelable
add-cancelable
right_complementable
Element
of the
carrier
of
p
the
addF
of
p
.
(
Y
,
(
0.
p
)
) is
left_add-cancelable
right_add-cancelable
add-cancelable
right_complementable
Element
of the
carrier
of
p
[
Y
,
(
0.
p
)
]
is
V26
()
set
{
Y
,
(
0.
p
)
}
is non
empty
finite
set
{
Y
}
is non
empty
trivial
finite
1
-element
set
{
{
Y
,
(
0.
p
)
}
,
{
Y
}
}
is non
empty
finite
V49
()
set
the
addF
of
p
.
[
Y
,
(
0.
p
)
]
is
set
n1
is
Element
of the
carrier
of
a
X
is
Element
of the
carrier
of
a
Y
is
Element
of the
carrier
of
a
Y
*
n1
is
Element
of the
carrier
of
a
the
multF
of
a
.
(
Y
,
n1
) is
Element
of the
carrier
of
a
[
Y
,
n1
]
is
V26
()
set
{
Y
,
n1
}
is non
empty
finite
set
{
Y
}
is non
empty
trivial
finite
1
-element
set
{
{
Y
,
n1
}
,
{
Y
}
}
is non
empty
finite
V49
()
set
the
multF
of
a
.
[
Y
,
n1
]
is
set
X
*
(
Y
*
n1
)
is
Element
of the
carrier
of
a
the
multF
of
a
.
(
X
,
(
Y
*
n1
)
) is
Element
of the
carrier
of
a
[
X
,
(
Y
*
n1
)
]
is
V26
()
set
{
X
,
(
Y
*
n1
)
}
is non
empty
finite
set
{
X
}
is non
empty
trivial
finite
1
-element
set
{
{
X
,
(
Y
*
n1
)
}
,
{
X
}
}
is non
empty
finite
V49
()
set
the
multF
of
a
.
[
X
,
(
Y
*
n1
)
]
is
set
the
multF
of
p
.
(
X
,
(
Y
*
n1
)
) is
set
the
multF
of
p
.
[
X
,
(
Y
*
n1
)
]
is
set
y1
is
left_add-cancelable
right_add-cancelable
add-cancelable
right_complementable
Element
of the
carrier
of
p
a1
is
left_add-cancelable
right_add-cancelable
add-cancelable
right_complementable
Element
of the
carrier
of
p
n
is
left_add-cancelable
right_add-cancelable
add-cancelable
right_complementable
Element
of the
carrier
of
p
a1
*
n
is
left_add-cancelable
right_add-cancelable
add-cancelable
right_complementable
Element
of the
carrier
of
p
the
multF
of
p
.
(
a1
,
n
) is
left_add-cancelable
right_add-cancelable
add-cancelable
right_complementable
Element
of the
carrier
of
p
[
a1
,
n
]
is
V26
()
set
{
a1
,
n
}
is non
empty
finite
set
{
a1
}
is non
empty
trivial
finite
1
-element
set
{
{
a1
,
n
}
,
{
a1
}
}
is non
empty
finite
V49
()
set
the
multF
of
p
.
[
a1
,
n
]
is
set
y1
*
(
a1
*
n
)
is
left_add-cancelable
right_add-cancelable
add-cancelable
right_complementable
Element
of the
carrier
of
p
the
multF
of
p
.
(
y1
,
(
a1
*
n
)
) is
left_add-cancelable
right_add-cancelable
add-cancelable
right_complementable
Element
of the
carrier
of
p
[
y1
,
(
a1
*
n
)
]
is
V26
()
set
{
y1
,
(
a1
*
n
)
}
is non
empty
finite
set
{
y1
}
is non
empty
trivial
finite
1
-element
set
{
{
y1
,
(
a1
*
n
)
}
,
{
y1
}
}
is non
empty
finite
V49
()
set
the
multF
of
p
.
[
y1
,
(
a1
*
n
)
]
is
set
X
*
Y
is
Element
of the
carrier
of
a
the
multF
of
a
.
(
X
,
Y
) is
Element
of the
carrier
of
a
[
X
,
Y
]
is
V26
()
set
{
X
,
Y
}
is non
empty
finite
set
{
{
X
,
Y
}
,
{
X
}
}
is non
empty
finite
V49
()
set
the
multF
of
a
.
[
X
,
Y
]
is
set
y1
*
a1
is
left_add-cancelable
right_add-cancelable
add-cancelable
right_complementable
Element
of the
carrier
of
p
the
multF
of
p
.
(
y1
,
a1
) is
left_add-cancelable
right_add-cancelable
add-cancelable
right_complementable
Element
of the
carrier
of
p
[
y1
,
a1
]
is
V26
()
set
{
y1
,
a1
}
is non
empty
finite
set
{
{
y1
,
a1
}
,
{
y1
}
}
is non
empty
finite
V49
()
set
the
multF
of
p
.
[
y1
,
a1
]
is
set
(
X
*
Y
)
*
n1
is
Element
of the
carrier
of
a
the
multF
of
a
.
(
(
X
*
Y
)
,
n1
) is
Element
of the
carrier
of
a
[
(
X
*
Y
)
,
n1
]
is
V26
()
set
{
(
X
*
Y
)
,
n1
}
is non
empty
finite
set
{
(
X
*
Y
)
}
is non
empty
trivial
finite
1
-element
set
{
{
(
X
*
Y
)
,
n1
}
,
{
(
X
*
Y
)
}
}
is non
empty
finite
V49
()
set
the
multF
of
a
.
[
(
X
*
Y
)
,
n1
]
is
set
(
y1
*
a1
)
*
n
is
left_add-cancelable
right_add-cancelable
add-cancelable
right_complementable
Element
of the
carrier
of
p
the
multF
of
p
.
(
(
y1
*
a1
)
,
n
) is
left_add-cancelable
right_add-cancelable
add-cancelable
right_complementable
Element
of the
carrier
of
p
[
(
y1
*
a1
)
,
n
]
is
V26
()
set
{
(
y1
*
a1
)
,
n
}
is non
empty
finite
set
{
(
y1
*
a1
)
}
is non
empty
trivial
finite
1
-element
set
{
{
(
y1
*
a1
)
,
n
}
,
{
(
y1
*
a1
)
}
}
is non
empty
finite
V49
()
set
the
multF
of
p
.
[
(
y1
*
a1
)
,
n
]
is
set
X
is
Element
of the
carrier
of
a
X
*
(
1.
a
)
is
Element
of the
carrier
of
a
the
multF
of
a
.
(
X
,
(
1.
a
)
) is
Element
of the
carrier
of
a
[
X
,
(
1.
a
)
]
is
V26
()
set
{
X
,
(
1.
a
)
}
is non
empty
finite
set
{
X
}
is non
empty
trivial
finite
1
-element
set
{
{
X
,
(
1.
a
)
}
,
{
X
}
}
is non
empty
finite
V49
()
set
the
multF
of
a
.
[
X
,
(
1.
a
)
]
is
set
Y
is
left_add-cancelable
right_add-cancelable
add-cancelable
right_complementable
Element
of the
carrier
of
p
Y
*
(
1.
p
)
is
left_add-cancelable
right_add-cancelable
add-cancelable
right_complementable
Element
of the
carrier
of
p
the
multF
of
p
.
(
Y
,
(
1.
p
)
) is
left_add-cancelable
right_add-cancelable
add-cancelable
right_complementable
Element
of the
carrier
of
p
[
Y
,
(
1.
p
)
]
is
V26
()
set
{
Y
,
(
1.
p
)
}
is non
empty
finite
set
{
Y
}
is non
empty
trivial
finite
1
-element
set
{
{
Y
,
(
1.
p
)
}
,
{
Y
}
}
is non
empty
finite
V49
()
set
the
multF
of
p
.
[
Y
,
(
1.
p
)
]
is
set
(
1.
a
)
*
X
is
Element
of the
carrier
of
a
the
multF
of
a
.
(
(
1.
a
)
,
X
) is
Element
of the
carrier
of
a
[
(
1.
a
)
,
X
]
is
V26
()
set
{
(
1.
a
)
,
X
}
is non
empty
finite
set
{
(
1.
a
)
}
is non
empty
trivial
finite
1
-element
set
{
{
(
1.
a
)
,
X
}
,
{
(
1.
a
)
}
}
is non
empty
finite
V49
()
set
the
multF
of
a
.
[
(
1.
a
)
,
X
]
is
set
(
1.
p
)
*
Y
is
left_add-cancelable
right_add-cancelable
add-cancelable
right_complementable
Element
of the
carrier
of
p
the
multF
of
p
.
(
(
1.
p
)
,
Y
) is
left_add-cancelable
right_add-cancelable
add-cancelable
right_complementable
Element
of the
carrier
of
p
[
(
1.
p
)
,
Y
]
is
V26
()
set
{
(
1.
p
)
,
Y
}
is non
empty
finite
set
{
(
1.
p
)
}
is non
empty
trivial
finite
1
-element
set
{
{
(
1.
p
)
,
Y
}
,
{
(
1.
p
)
}
}
is non
empty
finite
V49
()
set
the
multF
of
p
.
[
(
1.
p
)
,
Y
]
is
set
Y
is
Element
of the
carrier
of
a
n1
is
Element
of the
carrier
of
a
X
is
Element
of the
carrier
of
a
Y
+
n1
is
Element
of the
carrier
of
a
the
addF
of
a
.
(
Y
,
n1
) is
Element
of the
carrier
of
a
[
Y
,
n1
]
is
V26
()
set
{
Y
,
n1
}
is non
empty
finite
set
{
Y
}
is non
empty
trivial
finite
1
-element
set
{
{
Y
,
n1
}
,
{
Y
}
}
is non
empty
finite
V49
()
set
the
addF
of
a
.
[
Y
,
n1
]
is
set
(
Y
+
n1
)
*
X
is
Element
of the
carrier
of
a
the
multF
of
a
.
(
(
Y
+
n1
)
,
X
) is
Element
of the
carrier
of
a
[
(
Y
+
n1
)
,
X
]
is
V26
()
set
{
(
Y
+
n1
)
,
X
}
is non
empty
finite
set
{
(
Y
+
n1
)
}
is non
empty
trivial
finite
1
-element
set
{
{
(
Y
+
n1
)
,
X
}
,
{
(
Y
+
n1
)
}
}
is non
empty
finite
V49
()
set
the
multF
of
a
.
[
(
Y
+
n1
)
,
X
]
is
set
the
multF
of
p
.
(
(
Y
+
n1
)
,
X
) is
set
the
multF
of
p
.
[
(
Y
+
n1
)
,
X
]
is
set
n
is
left_add-cancelable
right_add-cancelable
add-cancelable
right_complementable
Element
of the
carrier
of
p
y1
is
left_add-cancelable
right_add-cancelable
add-cancelable
right_complementable
Element
of the
carrier
of
p
n
+
y1
is
left_add-cancelable
right_add-cancelable
add-cancelable
right_complementable
Element
of the
carrier
of
p
the
addF
of
p
.
(
n
,
y1
) is
left_add-cancelable
right_add-cancelable
add-cancelable
right_complementable
Element
of the
carrier
of
p
[
n
,
y1
]
is
V26
()
set
{
n
,
y1
}
is non
empty
finite
set
{
n
}
is non
empty
trivial
finite
1
-element
set
{
{
n
,
y1
}
,
{
n
}
}
is non
empty
finite
V49
()
set
the
addF
of
p
.
[
n
,
y1
]
is
set
a1
is
left_add-cancelable
right_add-cancelable
add-cancelable
right_complementable
Element
of the
carrier
of
p
(
n
+
y1
)
*
a1
is
left_add-cancelable
right_add-cancelable
add-cancelable
right_complementable
Element
of the
carrier
of
p
the
multF
of
p
.
(
(
n
+
y1
)
,
a1
) is
left_add-cancelable
right_add-cancelable
add-cancelable
right_complementable
Element
of the
carrier
of
p
[
(
n
+
y1
)
,
a1
]
is
V26
()
set
{
(
n
+
y1
)
,
a1
}
is non
empty
finite
set
{
(
n
+
y1
)
}
is non
empty
trivial
finite
1
-element
set
{
{
(
n
+
y1
)
,
a1
}
,
{
(
n
+
y1
)
}
}
is non
empty
finite
V49
()
set
the
multF
of
p
.
[
(
n
+
y1
)
,
a1
]
is
set
n
*
a1
is
left_add-cancelable
right_add-cancelable
add-cancelable
right_complementable
Element
of the
carrier
of
p
the
multF
of
p
.
(
n
,
a1
) is
left_add-cancelable
right_add-cancelable
add-cancelable
right_complementable
Element
of the
carrier
of
p
[
n
,
a1
]
is
V26
()
set
{
n
,
a1
}
is non
empty
finite
set
{
{
n
,
a1
}
,
{
n
}
}
is non
empty
finite
V49
()
set
the
multF
of
p
.
[
n
,
a1
]
is
set
y1
*
a1
is
left_add-cancelable
right_add-cancelable
add-cancelable
right_complementable
Element
of the
carrier
of
p
the
multF
of
p
.
(
y1
,
a1
) is
left_add-cancelable
right_add-cancelable
add-cancelable
right_complementable
Element
of the
carrier
of
p
[
y1
,
a1
]
is
V26
()
set
{
y1
,
a1
}
is non
empty
finite
set
{
y1
}
is non
empty
trivial
finite
1
-element
set
{
{
y1
,
a1
}
,
{
y1
}
}
is non
empty
finite
V49
()
set
the
multF
of
p
.
[
y1
,
a1
]
is
set
(
n
*
a1
)
+
(
y1
*
a1
)
is
left_add-cancelable
right_add-cancelable
add-cancelable
right_complementable
Element
of the
carrier
of
p
the
addF
of
p
.
(
(
n
*
a1
)
,
(
y1
*
a1
)
) is
left_add-cancelable
right_add-cancelable
add-cancelable
right_complementable
Element
of the
carrier
of
p
[
(
n
*
a1
)
,
(
y1
*
a1
)
]
is
V26
()
set
{
(
n
*
a1
)
,
(
y1
*
a1
)
}
is non
empty
finite
set
{
(
n
*
a1
)
}
is non
empty
trivial
finite
1
-element
set
{
{
(
n
*
a1
)
,
(
y1
*
a1
)
}
,
{
(
n
*
a1
)
}
}
is non
empty
finite
V49
()
set
the
addF
of
p
.
[
(
n
*
a1
)
,
(
y1
*
a1
)
]
is
set
n1
*
X
is
Element
of the
carrier
of
a
the
multF
of
a
.
(
n1
,
X
) is
Element
of the
carrier
of
a
[
n1
,
X
]
is
V26
()
set
{
n1
,
X
}
is non
empty
finite
set
{
n1
}
is non
empty
trivial
finite
1
-element
set
{
{
n1
,
X
}
,
{
n1
}
}
is non
empty
finite
V49
()
set
the
multF
of
a
.
[
n1
,
X
]
is
set
the
addF
of
p
.
(
(
the
multF
of
p
.
(
n
,
a1
)
)
,
(
n1
*
X
)
) is
set
[
(
the
multF
of
p
.
(
n
,
a1
)
)
,
(
n1
*
X
)
]
is
V26
()
set
{
(
the
multF
of
p
.
(
n
,
a1
)
)
,
(
n1
*
X
)
}
is non
empty
finite
set
{
(
the
multF
of
p
.
(
n
,
a1
)
)
}
is non
empty
trivial
finite
1
-element
set
{
{
(
the
multF
of
p
.
(
n
,
a1
)
)
,
(
n1
*
X
)
}
,
{
(
the
multF
of
p
.
(
n
,
a1
)
)
}
}
is non
empty
finite
V49
()
set
the
addF
of
p
.
[
(
the
multF
of
p
.
(
n
,
a1
)
)
,
(
n1
*
X
)
]
is
set
Y
*
X
is
Element
of the
carrier
of
a
the
multF
of
a
.
(
Y
,
X
) is
Element
of the
carrier
of
a
[
Y
,
X
]
is
V26
()
set
{
Y
,
X
}
is non
empty
finite
set
{
{
Y
,
X
}
,
{
Y
}
}
is non
empty
finite
V49
()
set
the
multF
of
a
.
[
Y
,
X
]
is
set
the
addF
of
p
.
(
(
Y
*
X
)
,
(
n1
*
X
)
) is
set
[
(
Y
*
X
)
,
(
n1
*
X
)
]
is
V26
()
set
{
(
Y
*
X
)
,
(
n1
*
X
)
}
is non
empty
finite
set
{
(
Y
*
X
)
}
is non
empty
trivial
finite
1
-element
set
{
{
(
Y
*
X
)
,
(
n1
*
X
)
}
,
{
(
Y
*
X
)
}
}
is non
empty
finite
V49
()
set
the
addF
of
p
.
[
(
Y
*
X
)
,
(
n1
*
X
)
]
is
set
X
*
(
Y
+
n1
)
is
Element
of the
carrier
of
a
the
multF
of
a
.
(
X
,
(
Y
+
n1
)
) is
Element
of the
carrier
of
a
[
X
,
(
Y
+
n1
)
]
is
V26
()
set
{
X
,
(
Y
+
n1
)
}
is non
empty
finite
set
{
X
}
is non
empty
trivial
finite
1
-element
set
{
{
X
,
(
Y
+
n1
)
}
,
{
X
}
}
is non
empty
finite
V49
()
set
the
multF
of
a
.
[
X
,
(
Y
+
n1
)
]
is
set
the
multF
of
p
.
(
X
,
(
Y
+
n1
)
) is
set
the
multF
of
p
.
[
X
,
(
Y
+
n1
)
]
is
set
a1
*
(
n
+
y1
)
is
left_add-cancelable
right_add-cancelable
add-cancelable
right_complementable
Element
of the
carrier
of
p
the
multF
of
p
.
(
a1
,
(
n
+
y1
)
) is
left_add-cancelable
right_add-cancelable
add-cancelable
right_complementable
Element
of the
carrier
of
p
[
a1
,
(
n
+
y1
)
]
is
V26
()
set
{
a1
,
(
n
+
y1
)
}
is non
empty
finite
set
{
a1
}
is non
empty
trivial
finite
1
-element
set
{
{
a1
,
(
n
+
y1
)
}
,
{
a1
}
}
is non
empty
finite
V49
()
set
the
multF
of
p
.
[
a1
,
(
n
+
y1
)
]
is
set
a1
*
n
is
left_add-cancelable
right_add-cancelable
add-cancelable
right_complementable
Element
of the
carrier
of
p
the
multF
of
p
.
(
a1
,
n
) is
left_add-cancelable
right_add-cancelable
add-cancelable
right_complementable
Element
of the
carrier
of
p
[
a1
,
n
]
is
V26
()
set
{
a1
,
n
}
is non
empty
finite
set
{
{
a1
,
n
}
,
{
a1
}
}
is non
empty
finite
V49
()
set
the
multF
of
p
.
[
a1
,
n
]
is
set
a1
*
y1
is
left_add-cancelable
right_add-cancelable
add-cancelable
right_complementable
Element
of the
carrier
of
p
the
multF
of
p
.
(
a1
,
y1
) is
left_add-cancelable
right_add-cancelable
add-cancelable
right_complementable
Element
of the
carrier
of
p
[
a1
,
y1
]
is
V26
()
set
{
a1
,
y1
}
is non
empty
finite
set
{
{
a1
,
y1
}
,
{
a1
}
}
is non
empty
finite
V49
()
set
the
multF
of
p
.
[
a1
,
y1
]
is
set
(
a1
*
n
)
+
(
a1
*
y1
)
is
left_add-cancelable
right_add-cancelable
add-cancelable
right_complementable
Element
of the
carrier
of
p
the
addF
of
p
.
(
(
a1
*
n
)
,
(
a1
*
y1
)
) is
left_add-cancelable
right_add-cancelable
add-cancelable
right_complementable
Element
of the
carrier
of
p
[
(
a1
*
n
)
,
(
a1
*
y1
)
]
is
V26
()
set
{
(
a1
*
n
)
,
(
a1
*
y1
)
}
is non
empty
finite
set
{
(
a1
*
n
)
}
is non
empty
trivial
finite
1
-element
set
{
{
(
a1
*
n
)
,
(
a1
*
y1
)
}
,
{
(
a1
*
n
)
}
}
is non
empty
finite
V49
()
set
the
addF
of
p
.
[
(
a1
*
n
)
,
(
a1
*
y1
)
]
is
set
the
multF
of
p
.
(
X
,
n
) is
set
[
X
,
n
]
is
V26
()
set
{
X
,
n
}
is non
empty
finite
set
{
{
X
,
n
}
,
{
X
}
}
is non
empty
finite
V49
()
set
the
multF
of
p
.
[
X
,
n
]
is
set
X
*
n1
is
Element
of the
carrier
of
a
the
multF
of
a
.
(
X
,
n1
) is
Element
of the
carrier
of
a
[
X
,
n1
]
is
V26
()
set
{
X
,
n1
}
is non
empty
finite
set
{
{
X
,
n1
}
,
{
X
}
}
is non
empty
finite
V49
()
set
the
multF
of
a
.
[
X
,
n1
]
is
set
the
addF
of
p
.
(
(
the
multF
of
p
.
(
X
,
n
)
)
,
(
X
*
n1
)
) is
set
[
(
the
multF
of
p
.
(
X
,
n
)
)
,
(
X
*
n1
)
]
is
V26
()
set
{
(
the
multF
of
p
.
(
X
,
n
)
)
,
(
X
*
n1
)
}
is non
empty
finite
set
{
(
the
multF
of
p
.
(
X
,
n
)
)
}
is non
empty
trivial
finite
1
-element
set
{
{
(
the
multF
of
p
.
(
X
,
n
)
)
,
(
X
*
n1
)
}
,
{
(
the
multF
of
p
.
(
X
,
n
)
)
}
}
is non
empty
finite
V49
()
set
the
addF
of
p
.
[
(
the
multF
of
p
.
(
X
,
n
)
)
,
(
X
*
n1
)
]
is
set
X
*
Y
is
Element
of the
carrier
of
a
the
multF
of
a
.
(
X
,
Y
) is
Element
of the
carrier
of
a
[
X
,
Y
]
is
V26
()
set
{
X
,
Y
}
is non
empty
finite
set
{
{
X
,
Y
}
,
{
X
}
}
is non
empty
finite
V49
()
set
the
multF
of
a
.
[
X
,
Y
]
is
set
the
addF
of
p
.
(
(
X
*
Y
)
,
(
X
*
n1
)
) is
set
[
(
X
*
Y
)
,
(
X
*
n1
)
]
is
V26
()
set
{
(
X
*
Y
)
,
(
X
*
n1
)
}
is non
empty
finite
set
{
(
X
*
Y
)
}
is non
empty
trivial
finite
1
-element
set
{
{
(
X
*
Y
)
,
(
X
*
n1
)
}
,
{
(
X
*
Y
)
}
}
is non
empty
finite
V49
()
set
the
addF
of
p
.
[
(
X
*
Y
)
,
(
X
*
n1
)
]
is
set
(
X
*
Y
)
+
(
X
*
n1
)
is
Element
of the
carrier
of
a
the
addF
of
a
.
(
(
X
*
Y
)
,
(
X
*
n1
)
) is
Element
of the
carrier
of
a
the
addF
of
a
.
[
(
X
*
Y
)
,
(
X
*
n1
)
]
is
set
(
Y
*
X
)
+
(
n1
*
X
)
is
Element
of the
carrier
of
a
the
addF
of
a
.
(
(
Y
*
X
)
,
(
n1
*
X
)
) is
Element
of the
carrier
of
a
the
addF
of
a
.
[
(
Y
*
X
)
,
(
n1
*
X
)
]
is
set
p
is non
empty
non
degenerated
non
trivial
left_add-cancelable
right_add-cancelable
add-cancelable
right_complementable
almost_left_invertible
unital
associative
commutative
Euclidian
right-distributive
left-distributive
right_unital
well-unital
distributive
left_unital
Abelian
add-associative
right_zeroed
doubleLoopStr
[#]
p
is non
empty
non
proper
Element
of
bool
the
carrier
of
p
the
carrier
of
p
is non
empty
non
trivial
set
bool
the
carrier
of
p
is non
empty
set
the
addF
of
p
is
Relation-like
[:
the
carrier
of
p
, the
carrier
of
p
:]
-defined
the
carrier
of
p
-valued
Function-like
quasi_total
Element
of
bool
[:
[:
the
carrier
of
p
, the
carrier
of
p
:]
, the
carrier
of
p
:]
[:
the
carrier
of
p
, the
carrier
of
p
:]
is non
empty
set
[:
[:
the
carrier
of
p
, the
carrier
of
p
:]
, the
carrier
of
p
:]
is non
empty
set
bool
[:
[:
the
carrier
of
p
, the
carrier
of
p
:]
, the
carrier
of
p
:]
is non
empty
set
the
addF
of
p
||
(
[#]
p
)
is
set
[:
(
[#]
p
)
,
(
[#]
p
)
:]
is non
empty
set
the
addF
of
p
|
[:
(
[#]
p
)
,
(
[#]
p
)
:]
is
Relation-like
set
the
multF
of
p
is
Relation-like
[:
the
carrier
of
p
, the
carrier
of
p
:]
-defined
the
carrier
of
p
-valued
Function-like
quasi_total
Element
of
bool
[:
[:
the
carrier
of
p
, the
carrier
of
p
:]
, the
carrier
of
p
:]
the
multF
of
p
||
(
[#]
p
)
is
set
the
multF
of
p
|
[:
(
[#]
p
)
,
(
[#]
p
)
:]
is
Relation-like
set
1.
p
is
V61
(
p
)
left_add-cancelable
right_add-cancelable
add-cancelable
right_complementable
Element
of the
carrier
of
p
the
OneF
of
p
is
left_add-cancelable
right_add-cancelable
add-cancelable
right_complementable
Element
of the
carrier
of
p
0.
p
is
V61
(
p
)
left_add-cancelable
right_add-cancelable
add-cancelable
right_complementable
Element
of the
carrier
of
p
the
ZeroF
of
p
is
left_add-cancelable
right_add-cancelable
add-cancelable
right_complementable
Element
of the
carrier
of
p
doubleLoopStr
(# the
carrier
of
p
, the
addF
of
p
, the
multF
of
p
,
(
1.
p
)
,
(
0.
p
)
#) is non
empty
non
trivial
strict
doubleLoopStr
0.
doubleLoopStr
(# the
carrier
of
p
, the
addF
of
p
, the
multF
of
p
,
(
1.
p
)
,
(
0.
p
)
#) is
V61
(
doubleLoopStr
(# the
carrier
of
p
, the
addF
of
p
, the
multF
of
p
,
(
1.
p
)
,
(
0.
p
)
#))
Element
of the
carrier
of
doubleLoopStr
(# the
carrier
of
p
, the
addF
of
p
, the
multF
of
p
,
(
1.
p
)
,
(
0.
p
)
#)
the
carrier
of
doubleLoopStr
(# the
carrier
of
p
, the
addF
of
p
, the
multF
of
p
,
(
1.
p
)
,
(
0.
p
)
#) is non
empty
non
trivial
set
the
ZeroF
of
doubleLoopStr
(# the
carrier
of
p
, the
addF
of
p
, the
multF
of
p
,
(
1.
p
)
,
(
0.
p
)
#) is
Element
of the
carrier
of
doubleLoopStr
(# the
carrier
of
p
, the
addF
of
p
, the
multF
of
p
,
(
1.
p
)
,
(
0.
p
)
#)
1.
doubleLoopStr
(# the
carrier
of
p
, the
addF
of
p
, the
multF
of
p
,
(
1.
p
)
,
(
0.
p
)
#) is
Element
of the
carrier
of
doubleLoopStr
(# the
carrier
of
p
, the
addF
of
p
, the
multF
of
p
,
(
1.
p
)
,
(
0.
p
)
#)
the
OneF
of
doubleLoopStr
(# the
carrier
of
p
, the
addF
of
p
, the
multF
of
p
,
(
1.
p
)
,
(
0.
p
)
#) is
Element
of the
carrier
of
doubleLoopStr
(# the
carrier
of
p
, the
addF
of
p
, the
multF
of
p
,
(
1.
p
)
,
(
0.
p
)
#)
L
is
Element
of the
carrier
of
doubleLoopStr
(# the
carrier
of
p
, the
addF
of
p
, the
multF
of
p
,
(
1.
p
)
,
(
0.
p
)
#)
F
is
left_add-cancelable
right_add-cancelable
add-cancelable
right_complementable
Element
of the
carrier
of
p
pp
is
left_add-cancelable
right_add-cancelable
add-cancelable
right_complementable
Element
of the
carrier
of
p
F
+
pp
is
left_add-cancelable
right_add-cancelable
add-cancelable
right_complementable
Element
of the
carrier
of
p
the
addF
of
p
.
(
F
,
pp
) is
left_add-cancelable
right_add-cancelable
add-cancelable
right_complementable
Element
of the
carrier
of
p
[
F
,
pp
]
is
V26
()
set
{
F
,
pp
}
is non
empty
finite
set
{
F
}
is non
empty
trivial
finite
1
-element
set
{
{
F
,
pp
}
,
{
F
}
}
is non
empty
finite
V49
()
set
the
addF
of
p
.
[
F
,
pp
]
is
set
FF
is
Element
of the
carrier
of
doubleLoopStr
(# the
carrier
of
p
, the
addF
of
p
, the
multF
of
p
,
(
1.
p
)
,
(
0.
p
)
#)
L
+
FF
is
Element
of the
carrier
of
doubleLoopStr
(# the
carrier
of
p
, the
addF
of
p
, the
multF
of
p
,
(
1.
p
)
,
(
0.
p
)
#)
the
addF
of
doubleLoopStr
(# the
carrier
of
p
, the
addF
of
p
, the
multF
of
p
,
(
1.
p
)
,
(
0.
p
)
#) is
Relation-like
[:
the
carrier
of
doubleLoopStr
(# the
carrier
of
p
, the
addF
of
p
, the
multF
of
p
,
(
1.
p
)
,
(
0.
p
)
#), the
carrier
of
doubleLoopStr
(# the
carrier
of
p
, the
addF
of
p
, the
multF
of
p
,
(
1.
p
)
,
(
0.
p
)
#)
:]
-defined
the
carrier
of
doubleLoopStr
(# the
carrier
of
p
, the
addF
of
p
, the
multF
of
p
,
(
1.
p
)
,
(
0.
p
)
#)
-valued
Function-like
quasi_total
Element
of
bool
[:
[:
the
carrier
of
doubleLoopStr
(# the
carrier
of
p
, the
addF
of
p
, the
multF
of
p
,
(
1.
p
)
,
(
0.
p
)
#), the
carrier
of
doubleLoopStr
(# the
carrier
of
p
, the
addF
of
p
, the
multF
of
p
,
(
1.
p
)
,
(
0.
p
)
#)
:]
, the
carrier
of
doubleLoopStr
(# the
carrier
of
p
, the
addF
of
p
, the
multF
of
p
,
(
1.
p
)
,
(
0.
p
)
#)
:]
[:
the
carrier
of
doubleLoopStr
(# the
carrier
of
p
, the
addF
of
p
, the
multF
of
p
,
(
1.
p
)
,
(
0.
p
)
#), the
carrier
of
doubleLoopStr
(# the
carrier
of
p
, the
addF
of
p
, the
multF
of
p
,
(
1.
p
)
,
(
0.
p
)
#)
:]
is non
empty
set
[:
[:
the
carrier
of
doubleLoopStr
(# the
carrier
of
p
, the
addF
of
p
, the
multF
of
p
,
(
1.
p
)
,
(
0.
p
)
#), the
carrier
of
doubleLoopStr
(# the
carrier
of
p
, the
addF
of
p
, the
multF
of
p
,
(
1.
p
)
,
(
0.
p
)
#)
:]
, the
carrier
of
doubleLoopStr
(# the
carrier
of
p
, the
addF
of
p
, the
multF
of
p
,
(
1.
p
)
,
(
0.
p
)
#)
:]
is non
empty
set
bool
[:
[:
the
carrier
of
doubleLoopStr
(# the
carrier
of
p
, the
addF
of
p
, the
multF
of
p
,
(
1.
p
)
,
(
0.
p
)
#), the
carrier
of
doubleLoopStr
(# the
carrier
of
p
, the
addF
of
p
, the
multF
of
p
,
(
1.
p
)
,
(
0.
p
)
#)
:]
, the
carrier
of
doubleLoopStr
(# the
carrier
of
p
, the
addF
of
p
, the
multF
of
p
,
(
1.
p
)
,
(
0.
p
)
#)
:]
is non
empty
set
the
addF
of
doubleLoopStr
(# the
carrier
of
p
, the
addF
of
p
, the
multF
of
p
,
(
1.
p
)
,
(
0.
p
)
#)
.
(
L
,
FF
) is
Element
of the
carrier
of
doubleLoopStr
(# the
carrier
of
p
, the
addF
of
p
, the
multF
of
p
,
(
1.
p
)
,
(
0.
p
)
#)
[
L
,
FF
]
is
V26
()
set
{
L
,
FF
}
is non
empty
finite
set
{
L
}
is non
empty
trivial
finite
1
-element
set
{
{
L
,
FF
}
,
{
L
}
}
is non
empty
finite
V49
()
set
the
addF
of
doubleLoopStr
(# the
carrier
of
p
, the
addF
of
p
, the
multF
of
p
,
(
1.
p
)
,
(
0.
p
)
#)
.
[
L
,
FF
]
is
set
L
is
Element
of the
carrier
of
doubleLoopStr
(# the
carrier
of
p
, the
addF
of
p
, the
multF
of
p
,
(
1.
p
)
,
(
0.
p
)
#)
F
is
Element
of the
carrier
of
doubleLoopStr
(# the
carrier
of
p
, the
addF
of
p
, the
multF
of
p
,
(
1.
p
)
,
(
0.
p
)
#)
L
*
F
is
Element
of the
carrier
of
doubleLoopStr
(# the
carrier
of
p
, the
addF
of
p
, the
multF
of
p
,
(
1.
p
)
,
(
0.
p
)
#)
the
multF
of
doubleLoopStr
(# the
carrier
of
p
, the
addF
of
p
, the
multF
of
p
,
(
1.
p
)
,
(
0.
p
)
#) is
Relation-like
[:
the
carrier
of
doubleLoopStr
(# the
carrier
of
p
, the
addF
of
p
, the
multF
of
p
,
(
1.
p
)
,
(
0.
p
)
#), the
carrier
of
doubleLoopStr
(# the
carrier
of
p
, the
addF
of
p
, the
multF
of
p
,
(
1.
p
)
,
(
0.
p
)
#)
:]
-defined
the
carrier
of
doubleLoopStr
(# the
carrier
of
p
, the
addF
of
p
, the
multF
of
p
,
(
1.
p
)
,
(
0.
p
)
#)
-valued
Function-like
quasi_total
Element
of
bool
[:
[:
the
carrier
of
doubleLoopStr
(# the
carrier
of
p
, the
addF
of
p
, the
multF
of
p
,
(
1.
p
)
,
(
0.
p
)
#), the
carrier
of
doubleLoopStr
(# the
carrier
of
p
, the
addF
of
p
, the
multF
of
p
,
(
1.
p
)
,
(
0.
p
)
#)
:]
, the
carrier
of
doubleLoopStr
(# the
carrier
of
p
, the
addF
of
p
, the
multF
of
p
,
(
1.
p
)
,
(
0.
p
)
#)
:]
[:
the
carrier
of
doubleLoopStr
(# the
carrier
of
p
, the
addF
of
p
, the
multF
of
p
,
(
1.
p
)
,
(
0.
p
)
#), the
carrier
of
doubleLoopStr
(# the
carrier
of
p
, the
addF
of
p
, the
multF
of
p
,
(
1.
p
)
,
(
0.
p
)
#)
:]
is non
empty
set
[:
[:
the
carrier
of
doubleLoopStr
(# the
carrier
of
p
, the
addF
of
p
, the
multF
of
p
,
(
1.
p
)
,
(
0.
p
)
#), the
carrier
of
doubleLoopStr
(# the
carrier
of
p
, the
addF
of
p
, the
multF
of
p
,
(
1.
p
)
,
(
0.
p
)
#)
:]
, the
carrier
of
doubleLoopStr
(# the
carrier
of
p
, the
addF
of
p
, the
multF
of
p
,
(
1.
p
)
,
(
0.
p
)
#)
:]
is non
empty
set
bool
[:
[:
the
carrier
of
doubleLoopStr
(# the
carrier
of
p
, the
addF
of
p
, the
multF
of
p
,
(
1.
p
)
,
(
0.
p
)
#), the
carrier
of
doubleLoopStr
(# the
carrier
of
p
, the
addF
of
p
, the
multF
of
p
,
(
1.
p
)
,
(
0.
p
)
#)
:]
, the
carrier
of
doubleLoopStr
(# the
carrier
of
p
, the
addF
of
p
, the
multF
of
p
,
(
1.
p
)
,
(
0.
p
)
#)
:]
is non
empty
set
the
multF
of
doubleLoopStr
(# the
carrier
of
p
, the
addF
of
p
, the
multF
of
p
,
(
1.
p
)
,
(
0.
p
)
#)
.
(
L
,
F
) is
Element
of the
carrier
of
doubleLoopStr
(# the
carrier
of
p
, the
addF
of
p
, the
multF
of
p
,
(
1.
p
)
,
(
0.
p
)
#)
[
L
,
F
]
is
V26
()
set
{
L
,
F
}
is non
empty
finite
set
{
L
}
is non
empty
trivial
finite
1
-element
set
{
{
L
,
F
}
,
{
L
}
}
is non
empty
finite
V49
()
set
the
multF
of
doubleLoopStr
(# the
carrier
of
p
, the
addF
of
p
, the
multF
of
p
,
(
1.
p
)
,
(
0.
p
)
#)
.
[
L
,
F
]
is
set
F
*
L
is
Element
of the
carrier
of
doubleLoopStr
(# the
carrier
of
p
, the
addF
of
p
, the
multF
of
p
,
(
1.
p
)
,
(
0.
p
)
#)
the
multF
of
doubleLoopStr
(# the
carrier
of
p
, the
addF
of
p
, the
multF
of
p
,
(
1.
p
)
,
(
0.
p
)
#)
.
(
F
,
L
) is
Element
of the
carrier
of
doubleLoopStr
(# the
carrier
of
p
, the
addF
of
p
, the
multF
of
p
,
(
1.
p
)
,
(
0.
p
)
#)
[
F
,
L
]
is
V26
()
set
{
F
,
L
}
is non
empty
finite
set
{
F
}
is non
empty
trivial
finite
1
-element
set
{
{
F
,
L
}
,
{
F
}
}
is non
empty
finite
V49
()
set
the
multF
of
doubleLoopStr
(# the
carrier
of
p
, the
addF
of
p
, the
multF
of
p
,
(
1.
p
)
,
(
0.
p
)
#)
.
[
F
,
L
]
is
set
pp
is
left_add-cancelable
right_add-cancelable
add-cancelable
right_complementable
Element
of the
carrier
of
p
FF
is
left_add-cancelable
right_add-cancelable
add-cancelable
right_complementable
Element
of the
carrier
of
p
pp
*
FF
is
left_add-cancelable
right_add-cancelable
add-cancelable
right_complementable
Element
of the
carrier
of
p
the
multF
of
p
.
(
pp
,
FF
) is
left_add-cancelable
right_add-cancelable
add-cancelable
right_complementable
Element
of the
carrier
of
p
[
pp
,
FF
]
is
V26
()
set
{
pp
,
FF
}
is non
empty
finite
set
{
pp
}
is non
empty
trivial
finite
1
-element
set
{
{
pp
,
FF
}
,
{
pp
}
}
is non
empty
finite
V49
()
set
the
multF
of
p
.
[
pp
,
FF
]
is
set
FF
*
pp
is
left_add-cancelable
right_add-cancelable
add-cancelable
right_complementable
Element
of the
carrier
of
p
the
multF
of
p
.
(
FF
,
pp
) is
left_add-cancelable
right_add-cancelable
add-cancelable
right_complementable
Element
of the
carrier
of
p
[
FF
,
pp
]
is
V26
()
set
{
FF
,
pp
}
is non
empty
finite
set
{
FF
}
is non
empty
trivial
finite
1
-element
set
{
{
FF
,
pp
}
,
{
FF
}
}
is non
empty
finite
V49
()
set
the
multF
of
p
.
[
FF
,
pp
]
is
set
L
is
Element
of the
carrier
of
doubleLoopStr
(# the
carrier
of
p
, the
addF
of
p
, the
multF
of
p
,
(
1.
p
)
,
(
0.
p
)
#)
F
is
left_add-cancelable
right_add-cancelable
add-cancelable
right_complementable
Element
of the
carrier
of
p
pp
is
left_add-cancelable
right_add-cancelable
add-cancelable
right_complementable
Element
of the
carrier
of
p
pp
*
F
is
left_add-cancelable
right_add-cancelable
add-cancelable
right_complementable
Element
of the
carrier
of
p
the
multF
of
p
.
(
pp
,
F
) is
left_add-cancelable
right_add-cancelable
add-cancelable
right_complementable
Element
of the
carrier
of
p
[
pp
,
F
]
is
V26
()
set
{
pp
,
F
}
is non
empty
finite
set
{
pp
}
is non
empty
trivial
finite
1
-element
set
{
{
pp
,
F
}
,
{
pp
}
}
is non
empty
finite
V49
()
set
the
multF
of
p
.
[
pp
,
F
]
is
set
FF
is
Element
of the
carrier
of
doubleLoopStr
(# the
carrier
of
p
, the
addF
of
p
, the
multF
of
p
,
(
1.
p
)
,
(
0.
p
)
#)
FF
*
L
is
Element
of the
carrier
of
doubleLoopStr
(# the
carrier
of
p
, the
addF
of
p
, the
multF
of
p
,
(
1.
p
)
,
(
0.
p
)
#)
the
multF
of
doubleLoopStr
(# the
carrier
of
p
, the
addF
of
p
, the
multF
of
p
,
(
1.
p
)
,
(
0.
p
)
#) is
Relation-like
[:
the
carrier
of
doubleLoopStr
(# the
carrier
of
p
, the
addF
of
p
, the
multF
of
p
,
(
1.
p
)
,
(
0.
p
)
#), the
carrier
of
doubleLoopStr
(# the
carrier
of
p
, the
addF
of
p
, the
multF
of
p
,
(
1.
p
)
,
(
0.
p
)
#)
:]
-defined
the
carrier
of
doubleLoopStr
(# the
carrier
of
p
, the
addF
of
p
, the
multF
of
p
,
(
1.
p
)
,
(
0.
p
)
#)
-valued
Function-like
quasi_total
Element
of
bool
[:
[:
the
carrier
of
doubleLoopStr
(# the
carrier
of
p
, the
addF
of
p
, the
multF
of
p
,
(
1.
p
)
,
(
0.
p
)
#), the
carrier
of
doubleLoopStr
(# the
carrier
of
p
, the
addF
of
p
, the
multF
of
p
,
(
1.
p
)
,
(
0.
p
)
#)
:]
, the
carrier
of
doubleLoopStr
(# the
carrier
of
p
, the
addF
of
p
, the
multF
of
p
,
(
1.
p
)
,
(
0.
p
)
#)
:]
[:
the
carrier
of
doubleLoopStr
(# the
carrier
of
p
, the
addF
of
p
, the
multF
of
p
,
(
1.
p
)
,
(
0.
p
)
#), the
carrier
of
doubleLoopStr
(# the
carrier
of
p
, the
addF
of
p
, the
multF
of
p
,
(
1.
p
)
,
(
0.
p
)
#)
:]
is non
empty
set
[:
[:
the
carrier
of
doubleLoopStr
(# the
carrier
of
p
, the
addF
of
p
, the
multF
of
p
,
(
1.
p
)
,
(
0.
p
)
#), the
carrier
of
doubleLoopStr
(# the
carrier
of
p
, the
addF
of
p
, the
multF
of
p
,
(
1.
p
)
,
(
0.
p
)
#)
:]
, the
carrier
of
doubleLoopStr
(# the
carrier
of
p
, the
addF
of
p
, the
multF
of
p
,
(
1.
p
)
,
(
0.
p
)
#)
:]
is non
empty
set
bool
[:
[:
the
carrier
of
doubleLoopStr
(# the
carrier
of
p
, the
addF
of
p
, the
multF
of
p
,
(
1.
p
)
,
(
0.
p
)
#), the
carrier
of
doubleLoopStr
(# the
carrier
of
p
, the
addF
of
p
, the
multF
of
p
,
(
1.
p
)
,
(
0.
p
)
#)
:]
, the
carrier
of
doubleLoopStr
(# the
carrier
of
p
, the
addF
of
p
, the
multF
of
p
,
(
1.
p
)
,
(
0.
p
)
#)
:]
is non
empty
set
the
multF
of
doubleLoopStr
(# the
carrier
of
p
, the
addF
of
p
, the
multF
of
p
,
(
1.
p
)
,
(
0.
p
)
#)
.
(
FF
,
L
) is
Element
of the
carrier
of
doubleLoopStr
(# the
carrier
of
p
, the
addF
of
p
, the
multF
of
p
,
(
1.
p
)
,
(
0.
p
)
#)
[
FF
,
L
]
is
V26
()
set
{
FF
,
L
}
is non
empty
finite
set
{
FF
}
is non
empty
trivial
finite
1
-element
set
{
{
FF
,
L
}
,
{
FF
}
}
is non
empty
finite
V49
()
set
the
multF
of
doubleLoopStr
(# the
carrier
of
p
, the
addF
of
p
, the
multF
of
p
,
(
1.
p
)
,
(
0.
p
)
#)
.
[
FF
,
L
]
is
set
p
is non
empty
non
degenerated
non
trivial
left_add-cancelable
right_add-cancelable
add-cancelable
right_complementable
almost_left_invertible
unital
associative
commutative
Euclidian
right-distributive
left-distributive
right_unital
well-unital
distributive
left_unital
Abelian
add-associative
right_zeroed
doubleLoopStr
a
is non
empty
non
degenerated
non
trivial
left_add-cancelable
right_add-cancelable
add-cancelable
right_complementable
almost_left_invertible
unital
associative
commutative
Euclidian
right-distributive
left-distributive
right_unital
well-unital
distributive
left_unital
Abelian
add-associative
right_zeroed
doubleLoopStr
the
carrier
of
p
is non
empty
non
trivial
set
the
carrier
of
a
is non
empty
non
trivial
set
b
is
set
b
is
set
p
is non
empty
non
degenerated
non
trivial
left_add-cancelable
right_add-cancelable
add-cancelable
right_complementable
almost_left_invertible
strict
unital
associative
commutative
Euclidian
right-distributive
left-distributive
right_unital
well-unital
distributive
left_unital
Abelian
add-associative
right_zeroed
doubleLoopStr
a
is non
empty
non
degenerated
non
trivial
left_add-cancelable
right_add-cancelable
add-cancelable
right_complementable
almost_left_invertible
strict
unital
associative
commutative
Euclidian
right-distributive
left-distributive
right_unital
well-unital
distributive
left_unital
Abelian
add-associative
right_zeroed
doubleLoopStr
the
carrier
of
p
is non
empty
non
trivial
set
the
carrier
of
a
is non
empty
non
trivial
set
the
addF
of
a
is
Relation-like
[:
the
carrier
of
a
, the
carrier
of
a
:]
-defined
the
carrier
of
a
-valued
Function-like
quasi_total
Element
of
bool
[:
[:
the
carrier
of
a
, the
carrier
of
a
:]
, the
carrier
of
a
:]
[:
the
carrier
of
a
, the
carrier
of
a
:]
is non
empty
set
[:
[:
the
carrier
of
a
, the
carrier
of
a
:]
, the
carrier
of
a
:]
is non
empty
set
bool
[:
[:
the
carrier
of
a
, the
carrier
of
a
:]
, the
carrier
of
a
:]
is non
empty
set
the
addF
of
a
||
the
carrier
of
p
is
set
[:
the
carrier
of
p
, the
carrier
of
p
:]
is non
empty
set
the
addF
of
a
|
[:
the
carrier
of
p
, the
carrier
of
p
:]
is
Relation-like
set
the
addF
of
p
is
Relation-like
[:
the
carrier
of
p
, the
carrier
of
p
:]
-defined
the
carrier
of
p
-valued
Function-like
quasi_total
Element
of
bool
[:
[:
the
carrier
of
p
, the
carrier
of
p
:]
, the
carrier
of
p
:]
[:
[:
the
carrier
of
p
, the
carrier
of
p
:]
, the
carrier
of
p
:]
is non
empty
set
bool
[:
[:
the
carrier
of
p
, the
carrier
of
p
:]
, the
carrier
of
p
:]
is non
empty
set
the
multF
of
a
is
Relation-like
[:
the
carrier
of
a
, the
carrier
of
a
:]
-defined
the
carrier
of
a
-valued
Function-like
quasi_total
Element
of
bool
[:
[:
the
carrier
of
a
, the
carrier
of
a
:]
, the
carrier
of
a
:]
the
multF
of
a
||
the
carrier
of
p
is
set
the
multF
of
a
|
[:
the
carrier
of
p
, the
carrier
of
p
:]
is
Relation-like
set
the
multF
of
p
is
Relation-like
[:
the
carrier
of
p
, the
carrier
of
p
:]
-defined
the
carrier
of
p
-valued
Function-like
quasi_total
Element
of
bool
[:
[:
the
carrier
of
p
, the
carrier
of
p
:]
, the
carrier
of
p
:]
1.
p
is
V61
(
p
)
left_add-cancelable
right_add-cancelable
add-cancelable
right_complementable
Element
of the
carrier
of
p
the
OneF
of
p
is
left_add-cancelable
right_add-cancelable
add-cancelable
right_complementable
Element
of the
carrier
of
p
1.
a
is
V61
(
a
)
left_add-cancelable
right_add-cancelable
add-cancelable
right_complementable
Element
of the
carrier
of
a
the
OneF
of
a
is
left_add-cancelable
right_add-cancelable
add-cancelable
right_complementable
Element
of the
carrier
of
a
0.
p
is
V61
(
p
)
left_add-cancelable
right_add-cancelable
add-cancelable
right_complementable
Element
of the
carrier
of
p
the
ZeroF
of
p
is
left_add-cancelable
right_add-cancelable
add-cancelable
right_complementable
Element
of the
carrier
of
p
0.
a
is
V61
(
a
)
left_add-cancelable
right_add-cancelable
add-cancelable
right_complementable
Element
of the
carrier
of
a
the
ZeroF
of
a
is
left_add-cancelable
right_add-cancelable
add-cancelable
right_complementable
Element
of the
carrier
of
a
p
is non
empty
non
degenerated
non
trivial
left_add-cancelable
right_add-cancelable
add-cancelable
right_complementable
almost_left_invertible
strict
unital
associative
commutative
Euclidian
right-distributive
left-distributive
right_unital
well-unital
distributive
left_unital
Abelian
add-associative
right_zeroed
doubleLoopStr
a
is non
empty
non
degenerated
non
trivial
left_add-cancelable
right_add-cancelable
add-cancelable
right_complementable
almost_left_invertible
strict
unital
associative
commutative
Euclidian
right-distributive
left-distributive
right_unital
well-unital
distributive
left_unital
Abelian
add-associative
right_zeroed
doubleLoopStr
b
is non
empty
non
degenerated
non
trivial
left_add-cancelable
right_add-cancelable
add-cancelable
right_complementable
almost_left_invertible
strict
unital
associative
commutative
Euclidian
right-distributive
left-distributive
right_unital
well-unital
distributive
left_unital
Abelian
add-associative
right_zeroed
doubleLoopStr
the
carrier
of
p
is non
empty
non
trivial
set
the
carrier
of
a
is non
empty
non
trivial
set
the
carrier
of
b
is non
empty
non
trivial
set
the
addF
of
b
is
Relation-like
[:
the
carrier
of
b
, the
carrier
of
b
:]
-defined
the
carrier
of
b
-valued
Function-like
quasi_total
Element
of
bool
[:
[:
the
carrier
of
b
, the
carrier
of
b
:]
, the
carrier
of
b
:]
[:
the
carrier
of
b
, the
carrier
of
b
:]
is non
empty
set
[:
[:
the
carrier
of
b
, the
carrier
of
b
:]
, the
carrier
of
b
:]
is non
empty
set
bool
[:
[:
the
carrier
of
b
, the
carrier
of
b
:]
, the
carrier
of
b
:]
is non
empty
set
the
multF
of
b
is
Relation-like
[:
the
carrier
of
b
, the
carrier
of
b
:]
-defined
the
carrier
of
b
-valued
Function-like
quasi_total
Element
of
bool
[:
[:
the
carrier
of
b
, the
carrier
of
b
:]
, the
carrier
of
b
:]
[:
the
carrier
of
p
, the
carrier
of
p
:]
is non
empty
set
[:
the
carrier
of
a
, the
carrier
of
a
:]
is non
empty
set
the
addF
of
a
is
Relation-like
[:
the
carrier
of
a
, the
carrier
of
a
:]
-defined
the
carrier
of
a
-valued
Function-like
quasi_total
Element
of
bool
[:
[:
the
carrier
of
a
, the
carrier
of
a
:]
, the
carrier
of
a
:]
[:
[:
the
carrier
of
a
, the
carrier
of
a
:]
, the
carrier
of
a
:]
is non
empty
set
bool
[:
[:
the
carrier
of
a
, the
carrier
of
a
:]
, the
carrier
of
a
:]
is non
empty
set
the
addF
of
b
||
the
carrier
of
a
is
set
the
addF
of
b
|
[:
the
carrier
of
a
, the
carrier
of
a
:]
is
Relation-like
set
the
addF
of
p
is
Relation-like
[:
the
carrier
of
p
, the
carrier
of
p
:]
-defined
the
carrier
of
p
-valued
Function-like
quasi_total
Element
of
bool
[:
[:
the
carrier
of
p
, the
carrier
of
p
:]
, the
carrier
of
p
:]
[:
[:
the
carrier
of
p
, the
carrier
of
p
:]
, the
carrier
of
p
:]
is non
empty
set
bool
[:
[:
the
carrier
of
p
, the
carrier
of
p
:]
, the
carrier
of
p
:]
is non
empty
set
the
addF
of
a
||
the
carrier
of
p
is
set
the
addF
of
a
|
[:
the
carrier
of
p
, the
carrier
of
p
:]
is
Relation-like
set
the
addF
of
b
||
the
carrier
of
p
is
set
the
addF
of
b
|
[:
the
carrier
of
p
, the
carrier
of
p
:]
is
Relation-like
set
the
multF
of
a
is
Relation-like
[:
the
carrier
of
a
, the
carrier
of
a
:]
-defined
the
carrier
of
a
-valued
Function-like
quasi_total
Element
of
bool
[:
[:
the
carrier
of
a
, the
carrier
of
a
:]
, the
carrier
of
a
:]
the
multF
of
b
||
the
carrier
of
a
is
set
the
multF
of
b
|
[:
the
carrier
of
a
, the
carrier
of
a
:]
is
Relation-like
set
the
multF
of
p
is
Relation-like
[:
the
carrier
of
p
, the
carrier
of
p
:]
-defined
the
carrier
of
p
-valued
Function-like
quasi_total
Element
of
bool
[:
[:
the
carrier
of
p
, the
carrier
of
p
:]
, the
carrier
of
p
:]
the
multF
of
a
||
the
carrier
of
p
is
set
the
multF
of
a
|
[:
the
carrier
of
p
, the
carrier
of
p
:]
is
Relation-like
set
the
multF
of
b
||
the
carrier
of
p
is
set
the
multF
of
b
|
[:
the
carrier
of
p
, the
carrier
of
p
:]
is
Relation-like
set
1.
p
is
V61
(
p
)
left_add-cancelable
right_add-cancelable
add-cancelable
right_complementable
Element
of the
carrier
of
p
the
OneF
of
p
is
left_add-cancelable
right_add-cancelable
add-cancelable
right_complementable
Element
of the
carrier
of
p
1.
a
is
V61
(
a
)
left_add-cancelable
right_add-cancelable
add-cancelable
right_complementable
Element
of the
carrier
of
a
the
OneF
of
a
is
left_add-cancelable
right_add-cancelable
add-cancelable
right_complementable
Element
of the
carrier
of
a
0.
p
is
V61
(
p
)
left_add-cancelable
right_add-cancelable
add-cancelable
right_complementable
Element
of the
carrier
of
p
the
ZeroF
of
p
is
left_add-cancelable
right_add-cancelable
add-cancelable
right_complementable
Element
of the
carrier
of
p
0.
a
is
V61
(
a
)
left_add-cancelable
right_add-cancelable
add-cancelable
right_complementable
Element
of the
carrier
of
a
the
ZeroF
of
a
is
left_add-cancelable
right_add-cancelable
add-cancelable
right_complementable
Element
of the
carrier
of
a
1.
b
is
V61
(
b
)
left_add-cancelable
right_add-cancelable
add-cancelable
right_complementable
Element
of the
carrier
of
b
the
OneF
of
b
is
left_add-cancelable
right_add-cancelable
add-cancelable
right_complementable
Element
of the
carrier
of
b
0.
b
is
V61
(
b
)
left_add-cancelable
right_add-cancelable
add-cancelable
right_complementable
Element
of the
carrier
of
b
the
ZeroF
of
b
is
left_add-cancelable
right_add-cancelable
add-cancelable
right_complementable
Element
of the
carrier
of
b
p
is non
empty
non
degenerated
non
trivial
left_add-cancelable
right_add-cancelable
add-cancelable
right_complementable
almost_left_invertible
unital
associative
commutative
Euclidian
right-distributive
left-distributive
right_unital
well-unital
distributive
left_unital
Abelian
add-associative
right_zeroed
doubleLoopStr
a
is non
empty
non
degenerated
non
trivial
left_add-cancelable
right_add-cancelable
add-cancelable
right_complementable
almost_left_invertible
unital
associative
commutative
Euclidian
right-distributive
left-distributive
right_unital
well-unital
distributive
left_unital
Abelian
add-associative
right_zeroed
(
p
)
the
carrier
of
a
is non
empty
non
trivial
set
b
is non
empty
non
degenerated
non
trivial
left_add-cancelable
right_add-cancelable
add-cancelable
right_complementable
almost_left_invertible
unital
associative
commutative
Euclidian
right-distributive
left-distributive
right_unital
well-unital
distributive
left_unital
Abelian
add-associative
right_zeroed
(
p
)
the
carrier
of
b
is non
empty
non
trivial
set
the
addF
of
p
is
Relation-like
[:
the
carrier
of
p
, the
carrier
of
p
:]
-defined
the
carrier
of
p
-valued
Function-like
quasi_total
Element
of
bool
[:
[:
the
carrier
of
p
, the
carrier
of
p
:]
, the
carrier
of
p
:]
the
carrier
of
p
is non
empty
non
trivial
set
[:
the
carrier
of
p
, the
carrier
of
p
:]
is non
empty
set
[:
[:
the
carrier
of
p
, the
carrier
of
p
:]
, the
carrier
of
p
:]
is non
empty
set
bool
[:
[:
the
carrier
of
p
, the
carrier
of
p
:]
, the
carrier
of
p
:]
is non
empty
set
the
multF
of
p
is
Relation-like
[:
the
carrier
of
p
, the
carrier
of
p
:]
-defined
the
carrier
of
p
-valued
Function-like
quasi_total
Element
of
bool
[:
[:
the
carrier
of
p
, the
carrier
of
p
:]
, the
carrier
of
p
:]
[:
the
carrier
of
a
, the
carrier
of
a
:]
is non
empty
set
[:
the
carrier
of
b
, the
carrier
of
b
:]
is non
empty
set
the
addF
of
b
is
Relation-like
[:
the
carrier
of
b
, the
carrier
of
b
:]
-defined
the
carrier
of
b
-valued
Function-like
quasi_total
Element
of
bool
[:
[:
the
carrier
of
b
, the
carrier
of
b
:]
, the
carrier
of
b
:]
[:
[:
the
carrier
of
b
, the
carrier
of
b
:]
, the
carrier
of
b
:]
is non
empty
set
bool
[:
[:
the
carrier
of
b
, the
carrier
of
b
:]
, the
carrier
of
b
:]
is non
empty
set
the
addF
of
p
||
the
carrier
of
b
is
set
the
addF
of
p
|
[:
the
carrier
of
b
, the
carrier
of
b
:]
is
Relation-like
set
the
addF
of
b
||
the
carrier
of
a
is
set
the
addF
of
b
|
[:
the
carrier
of
a
, the
carrier
of
a
:]
is
Relation-like
set
the
addF
of
p
||
the
carrier
of
a
is
set
the
addF
of
p
|
[:
the
carrier
of
a
, the
carrier
of
a
:]
is
Relation-like
set
the
addF
of
a
is
Relation-like
[:
the
carrier
of
a
, the
carrier
of
a
:]
-defined
the
carrier
of
a
-valued
Function-like
quasi_total
Element
of
bool
[:
[:
the
carrier
of
a
, the
carrier
of
a
:]
, the
carrier
of
a
:]
[:
[:
the
carrier
of
a
, the
carrier
of
a
:]
, the
carrier
of
a
:]
is non
empty
set
bool
[:
[:
the
carrier
of
a
, the
carrier
of
a
:]
, the
carrier
of
a
:]
is non
empty
set
the
multF
of
b
is
Relation-like
[:
the
carrier
of
b
, the
carrier
of
b
:]
-defined
the
carrier
of
b
-valued
Function-like
quasi_total
Element
of
bool
[:
[:
the
carrier
of
b
, the
carrier
of
b
:]
, the
carrier
of
b
:]
the
multF
of
p
||
the
carrier
of
b
is
set
the
multF
of
p
|
[:
the
carrier
of
b
, the
carrier
of
b
:]
is
Relation-like
set
the
multF
of
b
||
the
carrier
of
a
is
set
the
multF
of
b
|
[:
the
carrier
of
a
, the
carrier
of
a
:]
is
Relation-like
set
the
multF
of
p
||
the
carrier
of
a
is
set
the
multF
of
p
|
[:
the
carrier
of
a
, the
carrier
of
a
:]
is
Relation-like
set
the
multF
of
a
is
Relation-like
[:
the
carrier
of
a
, the
carrier
of
a
:]
-defined
the
carrier
of
a
-valued
Function-like
quasi_total
Element
of
bool
[:
[:
the
carrier
of
a
, the
carrier
of
a
:]
, the
carrier
of
a
:]
1.
a
is
V61
(
a
)
left_add-cancelable
right_add-cancelable
add-cancelable
right_complementable
Element
of the
carrier
of
a
the
OneF
of
a
is
left_add-cancelable
right_add-cancelable
add-cancelable
right_complementable
Element
of the
carrier
of
a
1.
p
is
V61
(
p
)
left_add-cancelable
right_add-cancelable
add-cancelable
right_complementable
Element
of the
carrier
of
p
the
OneF
of
p
is
left_add-cancelable
right_add-cancelable
add-cancelable
right_complementable
Element
of the
carrier
of
p
0.
a
is
V61
(
a
)
left_add-cancelable
right_add-cancelable
add-cancelable
right_complementable
Element
of the
carrier
of
a
the
ZeroF
of
a
is
left_add-cancelable
right_add-cancelable
add-cancelable
right_complementable
Element
of the
carrier
of
a
0.
p
is
V61
(
p
)
left_add-cancelable
right_add-cancelable
add-cancelable
right_complementable
Element
of the
carrier
of
p
the
ZeroF
of
p
is
left_add-cancelable
right_add-cancelable
add-cancelable
right_complementable
Element
of the
carrier
of
p
1.
b
is
V61
(
b
)
left_add-cancelable
right_add-cancelable
add-cancelable
right_complementable
Element
of the
carrier
of
b
the
OneF
of
b
is
left_add-cancelable
right_add-cancelable
add-cancelable
right_complementable
Element
of the
carrier
of
b
0.
b
is
V61
(
b
)
left_add-cancelable
right_add-cancelable
add-cancelable
right_complementable
Element
of the
carrier
of
b
the
ZeroF
of
b
is
left_add-cancelable
right_add-cancelable
add-cancelable
right_complementable
Element
of the
carrier
of
b
p
is non
empty
non
degenerated
non
trivial
left_add-cancelable
right_add-cancelable
add-cancelable
right_complementable
almost_left_invertible
unital
associative
commutative
Euclidian
right-distributive
left-distributive
right_unital
well-unital
distributive
left_unital
Abelian
add-associative
right_zeroed
doubleLoopStr
a
is non
empty
non
degenerated
non
trivial
left_add-cancelable
right_add-cancelable
add-cancelable
right_complementable
almost_left_invertible
unital
associative
commutative
Euclidian
right-distributive
left-distributive
right_unital
well-unital
distributive
left_unital
Abelian
add-associative
right_zeroed
(
p
)
b
is non
empty
non
degenerated
non
trivial
left_add-cancelable
right_add-cancelable
add-cancelable
right_complementable
almost_left_invertible
unital
associative
commutative
Euclidian
right-distributive
left-distributive
right_unital
well-unital
distributive
left_unital
Abelian
add-associative
right_zeroed
(
p
)
L
is
set
the
carrier
of
a
is non
empty
non
trivial
set
the
carrier
of
b
is non
empty
non
trivial
set
L
is
set
F
is
left_add-cancelable
right_add-cancelable
add-cancelable
right_complementable
Element
of the
carrier
of
a
p
is non
empty
non
degenerated
non
trivial
left_add-cancelable
right_add-cancelable
add-cancelable
right_complementable
almost_left_invertible
unital
associative
commutative
Euclidian
right-distributive
left-distributive
right_unital
well-unital
distributive
left_unital
Abelian
add-associative
right_zeroed
doubleLoopStr
a
is non
empty
non
degenerated
non
trivial
left_add-cancelable
right_add-cancelable
add-cancelable
right_complementable
almost_left_invertible
strict
unital
associative
commutative
Euclidian
right-distributive
left-distributive
right_unital
well-unital
distributive
left_unital
Abelian
add-associative
right_zeroed
(
p
)
b
is non
empty
non
degenerated
non
trivial
left_add-cancelable
right_add-cancelable
add-cancelable
right_complementable
almost_left_invertible
strict
unital
associative
commutative
Euclidian
right-distributive
left-distributive
right_unital
well-unital
distributive
left_unital
Abelian
add-associative
right_zeroed
(
p
)
the
carrier
of
a
is non
empty
non
trivial
set
the
carrier
of
b
is non
empty
non
trivial
set
p
is non
empty
non
degenerated
non
trivial
left_add-cancelable
right_add-cancelable
add-cancelable
right_complementable
almost_left_invertible
unital
associative
commutative
Euclidian
right-distributive
left-distributive
right_unital
well-unital
distributive
left_unital
Abelian
add-associative
right_zeroed
doubleLoopStr
a
is non
empty
non
degenerated
non
trivial
left_add-cancelable
right_add-cancelable
add-cancelable
right_complementable
almost_left_invertible
strict
unital
associative
commutative
Euclidian
right-distributive
left-distributive
right_unital
well-unital
distributive
left_unital
Abelian
add-associative
right_zeroed
(
p
)
b
is non
empty
non
degenerated
non
trivial
left_add-cancelable
right_add-cancelable
add-cancelable
right_complementable
almost_left_invertible
strict
unital
associative
commutative
Euclidian
right-distributive
left-distributive
right_unital
well-unital
distributive
left_unital
Abelian
add-associative
right_zeroed
(
p
)
L
is
set
F
is
set
p
is non
empty
non
degenerated
non
trivial
finite
left_add-cancelable
right_add-cancelable
add-cancelable
right_complementable
almost_left_invertible
unital
associative
commutative
Euclidian
right-distributive
left-distributive
right_unital
well-unital
distributive
left_unital
Abelian
add-associative
right_zeroed
doubleLoopStr
a
is non
empty
non
degenerated
non
trivial
left_add-cancelable
right_add-cancelable
add-cancelable
right_complementable
almost_left_invertible
unital
associative
commutative
Euclidian
right-distributive
left-distributive
right_unital
well-unital
distributive
left_unital
Abelian
add-associative
right_zeroed
(
p
)
p
is non
empty
non
degenerated
non
trivial
finite
left_add-cancelable
right_add-cancelable
add-cancelable
right_complementable
almost_left_invertible
unital
associative
commutative
Euclidian
right-distributive
left-distributive
right_unital
well-unital
distributive
left_unital
Abelian
add-associative
right_zeroed
doubleLoopStr
card
p
is non
empty
V4
()
V5
()
V6
()
V10
()
V11
()
V12
()
integer
ext-real
positive
non
negative
finite
cardinal
set
the
carrier
of
p
is non
empty
non
trivial
finite
set
card
the
carrier
of
p
is non
empty
V4
()
V5
()
V6
()
V10
()
V11
()
V12
()
integer
ext-real
positive
non
negative
finite
cardinal
set
card
the
carrier
of
p
is non
empty
V4
()
V5
()
V6
()
V10
()
V11
()
V12
()
integer
ext-real
positive
non
negative
finite
cardinal
V113
()
V117
()
V118
()
V119
()
V120
()
V121
()
V122
()
Element
of
NAT
p
is non
empty
non
degenerated
non
trivial
finite
left_add-cancelable
right_add-cancelable
add-cancelable
right_complementable
almost_left_invertible
strict
unital
associative
commutative
Euclidian
right-distributive
left-distributive
right_unital
well-unital
distributive
left_unital
Abelian
add-associative
right_zeroed
doubleLoopStr
(
p
) is non
empty
V4
()
V5
()
V6
()
V10
()
V11
()
V12
()
integer
ext-real
positive
non
negative
finite
cardinal
V113
()
V117
()
V118
()
V119
()
V120
()
V121
()
V122
()
Element
of
NAT
the
carrier
of
p
is non
empty
non
trivial
finite
set
card
the
carrier
of
p
is non
empty
V4
()
V5
()
V6
()
V10
()
V11
()
V12
()
integer
ext-real
positive
non
negative
finite
cardinal
set
a
is non
empty
non
degenerated
non
trivial
left_add-cancelable
right_add-cancelable
add-cancelable
right_complementable
almost_left_invertible
strict
unital
associative
commutative
Euclidian
right-distributive
left-distributive
right_unital
well-unital
distributive
left_unital
Abelian
add-associative
right_zeroed
(
p
)
card
a
is
V4
()
V5
()
V6
()
cardinal
set
the
carrier
of
a
is non
empty
non
trivial
set
card
the
carrier
of
a
is non
empty
V4
()
V5
()
V6
()
cardinal
set
p
is non
empty
V4
()
V5
()
V6
()
V10
()
V11
()
V12
()
integer
V14
()
ext-real
positive
non
negative
finite
cardinal
set
INT.Ring
p
is non
empty
non
degenerated
non
trivial
left_add-cancelable
right_add-cancelable
add-cancelable
right_complementable
almost_left_invertible
strict
unital
associative
commutative
Euclidian
right-distributive
left-distributive
right_unital
well-unital
distributive
left_unital
Abelian
add-associative
right_zeroed
doubleLoopStr
Segm
p
is
V117
()
V118
()
V119
()
V120
()
V121
()
V122
()
Element
of
bool
NAT
addint
p
is
Relation-like
[:
(
Segm
p
)
,
(
Segm
p
)
:]
-defined
Segm
p
-valued
Function-like
quasi_total
V35
()
V36
()
V37
()
V38
()
Element
of
bool
[:
[:
(
Segm
p
)
,
(
Segm
p
)
:]
,
(
Segm
p
)
:]
[:
(
Segm
p
)
,
(
Segm
p
)
:]
is
RAT
-valued
INT
-valued
V35
()
V36
()
V37
()
V38
()
set
[:
[:
(
Segm
p
)
,
(
Segm
p
)
:]
,
(
Segm
p
)
:]
is
RAT
-valued
INT
-valued
V35
()
V36
()
V37
()
V38
()
set
bool
[:
[:
(
Segm
p
)
,
(
Segm
p
)
:]
,
(
Segm
p
)
:]
is non
empty
set
multint
p
is
Relation-like
[:
(
Segm
p
)
,
(
Segm
p
)
:]
-defined
Segm
p
-valued
Function-like
quasi_total
V35
()
V36
()
V37
()
V38
()
Element
of
bool
[:
[:
(
Segm
p
)
,
(
Segm
p
)
:]
,
(
Segm
p
)
:]
K633
(1,
(
Segm
p
)
) is
V4
()
V5
()
V6
()
V10
()
V11
()
V12
()
integer
ext-real
non
negative
finite
cardinal
V113
()
Element
of
Segm
p
K633
(
0
,
(
Segm
p
)
) is
V4
()
V5
()
V6
()
V10
()
V11
()
V12
()
integer
ext-real
non
negative
finite
cardinal
V113
()
Element
of
Segm
p
doubleLoopStr
(#
(
Segm
p
)
,
(
addint
p
)
,
(
multint
p
)
,
K633
(1,
(
Segm
p
)
),
K633
(
0
,
(
Segm
p
)
) #) is
strict
doubleLoopStr
p
is non
empty
V4
()
V5
()
V6
()
V10
()
V11
()
V12
()
integer
V14
()
ext-real
positive
non
negative
finite
cardinal
set
INT.Ring
p
is non
empty
non
degenerated
non
trivial
finite
left_add-cancelable
right_add-cancelable
add-cancelable
right_complementable
almost_left_invertible
strict
unital
associative
commutative
Euclidian
right-distributive
left-distributive
right_unital
well-unital
distributive
left_unital
Abelian
add-associative
right_zeroed
doubleLoopStr
Segm
p
is
V117
()
V118
()
V119
()
V120
()
V121
()
V122
()
Element
of
bool
NAT
addint
p
is
Relation-like
[:
(
Segm
p
)
,
(
Segm
p
)
:]
-defined
Segm
p
-valued
Function-like
quasi_total
V35
()
V36
()
V37
()
V38
()
Element
of
bool
[:
[:
(
Segm
p
)
,
(
Segm
p
)
:]
,
(
Segm
p
)
:]
[:
(
Segm
p
)
,
(
Segm
p
)
:]
is
RAT
-valued
INT
-valued
V35
()
V36
()
V37
()
V38
()
set
[:
[:
(
Segm
p
)
,
(
Segm
p
)
:]
,
(
Segm
p
)
:]
is
RAT
-valued
INT
-valued
V35
()
V36
()
V37
()
V38
()
set
bool
[:
[:
(
Segm
p
)
,
(
Segm
p
)
:]
,
(
Segm
p
)
:]
is non
empty
set
multint
p
is
Relation-like
[:
(
Segm
p
)
,
(
Segm
p
)
:]
-defined
Segm
p
-valued
Function-like
quasi_total
V35
()
V36
()
V37
()
V38
()
Element
of
bool
[:
[:
(
Segm
p
)
,
(
Segm
p
)
:]
,
(
Segm
p
)
:]
K633
(1,
(
Segm
p
)
) is
V4
()
V5
()
V6
()
V10
()
V11
()
V12
()
integer
ext-real
non
negative
finite
cardinal
V113
()
Element
of
Segm
p
K633
(
0
,
(
Segm
p
)
) is
V4
()
V5
()
V6
()
V10
()
V11
()
V12
()
integer
ext-real
non
negative
finite
cardinal
V113
()
Element
of
Segm
p
doubleLoopStr
(#
(
Segm
p
)
,
(
addint
p
)
,
(
multint
p
)
,
K633
(1,
(
Segm
p
)
),
K633
(
0
,
(
Segm
p
)
) #) is
strict
doubleLoopStr
the
carrier
of
(
INT.Ring
p
)
is non
empty
non
trivial
finite
set
b
is non
empty
non
degenerated
non
trivial
left_add-cancelable
right_add-cancelable
add-cancelable
right_complementable
almost_left_invertible
strict
unital
associative
commutative
Euclidian
right-distributive
left-distributive
right_unital
well-unital
distributive
left_unital
Abelian
add-associative
right_zeroed
(
INT.Ring
p
)
the
carrier
of
b
is non
empty
non
trivial
set
p
-
1 is
V11
()
V12
()
integer
ext-real
set
0.
(
INT.Ring
p
)
is
V61
(
INT.Ring
p
)
left_add-cancelable
right_add-cancelable
add-cancelable
right_complementable
Element
of the
carrier
of
(
INT.Ring
p
)
the
ZeroF
of
(
INT.Ring
p
)
is
left_add-cancelable
right_add-cancelable
add-cancelable
right_complementable
Element
of the
carrier
of
(
INT.Ring
p
)
0.
b
is
V61
(
b
)
left_add-cancelable
right_add-cancelable
add-cancelable
right_complementable
Element
of the
carrier
of
b
the
ZeroF
of
b
is
left_add-cancelable
right_add-cancelable
add-cancelable
right_complementable
Element
of the
carrier
of
b
F1
is
V4
()
V5
()
V6
()
V10
()
V11
()
V12
()
integer
ext-real
non
negative
finite
cardinal
V113
()
V117
()
V118
()
V119
()
V120
()
V121
()
V122
()
Element
of
NAT
FF
is
V4
()
V5
()
V6
()
V10
()
V11
()
V12
()
integer
ext-real
non
negative
finite
cardinal
V113
()
V117
()
V118
()
V119
()
V120
()
V121
()
V122
()
Element
of
NAT
1.
b
is
V61
(
b
)
left_add-cancelable
right_add-cancelable
add-cancelable
right_complementable
Element
of the
carrier
of
b
the
OneF
of
b
is
left_add-cancelable
right_add-cancelable
add-cancelable
right_complementable
Element
of the
carrier
of
b
1.
(
INT.Ring
p
)
is
V61
(
INT.Ring
p
)
left_add-cancelable
right_add-cancelable
add-cancelable
right_complementable
Element
of the
carrier
of
(
INT.Ring
p
)
the
OneF
of
(
INT.Ring
p
)
is
left_add-cancelable
right_add-cancelable
add-cancelable
right_complementable
Element
of the
carrier
of
(
INT.Ring
p
)
[
1,
F1
]
is
V26
()
Element
of
[:
NAT
,
NAT
:]
{
1,
F1
}
is non
empty
finite
V49
()
V117
()
V118
()
V119
()
V120
()
V121
()
V122
()
set
{
1
}
is non
empty
trivial
finite
V49
() 1
-element
V117
()
V118
()
V119
()
V120
()
V121
()
V122
()
set
{
{
1,
F1
}
,
{
1
}
}
is non
empty
finite
V49
()
set
[:
the
carrier
of
b
, the
carrier
of
b
:]
is non
empty
set
the
addF
of
b
is
Relation-like
[:
the
carrier
of
b
, the
carrier
of
b
:]
-defined
the
carrier
of
b
-valued
Function-like
quasi_total
Element
of
bool
[:
[:
the
carrier
of
b
, the
carrier
of
b
:]
, the
carrier
of
b
:]
[:
[:
the
carrier
of
b
, the
carrier
of
b
:]
, the
carrier
of
b
:]
is non
empty
set
bool
[:
[:
the
carrier
of
b
, the
carrier
of
b
:]
, the
carrier
of
b
:]
is non
empty
set
the
addF
of
(
INT.Ring
p
)
is
Relation-like
[:
the
carrier
of
(
INT.Ring
p
)
, the
carrier
of
(
INT.Ring
p
)
:]
-defined
the
carrier
of
(
INT.Ring
p
)
-valued
Function-like
quasi_total
finite
Element
of
bool
[:
[:
the
carrier
of
(
INT.Ring
p
)
, the
carrier
of
(
INT.Ring
p
)
:]
, the
carrier
of
(
INT.Ring
p
)
:]
[:
the
carrier
of
(
INT.Ring
p
)
, the
carrier
of
(
INT.Ring
p
)
:]
is non
empty
finite
set
[:
[:
the
carrier
of
(
INT.Ring
p
)
, the
carrier
of
(
INT.Ring
p
)
:]
, the
carrier
of
(
INT.Ring
p
)
:]
is non
empty
finite
set
bool
[:
[:
the
carrier
of
(
INT.Ring
p
)
, the
carrier
of
(
INT.Ring
p
)
:]
, the
carrier
of
(
INT.Ring
p
)
:]
is non
empty
finite
V49
()
set
the
addF
of
(
INT.Ring
p
)
||
the
carrier
of
b
is
set
the
addF
of
(
INT.Ring
p
)
|
[:
the
carrier
of
b
, the
carrier
of
b
:]
is
Relation-like
finite
set
FF
+
1 is non
empty
V4
()
V5
()
V6
()
V10
()
V11
()
V12
()
integer
ext-real
positive
non
negative
finite
cardinal
V113
()
V117
()
V118
()
V119
()
V120
()
V121
()
V122
()
Element
of
NAT
1
+
F1
is non
empty
V4
()
V5
()
V6
()
V10
()
V11
()
V12
()
integer
ext-real
positive
non
negative
finite
cardinal
V113
()
V117
()
V118
()
V119
()
V120
()
V121
()
V122
()
Element
of
NAT
the
addF
of
b
.
(1,
F1
) is
set
[
1,
F1
]
is
V26
()
set
the
addF
of
b
.
[
1,
F1
]
is
set
(
addint
p
)
.
(1,
F1
) is
set
(
addint
p
)
.
[
1,
F1
]
is
V4
()
V5
()
V6
()
V10
()
V11
()
V12
()
integer
ext-real
non
negative
finite
cardinal
set
(
1
+
F1
)
mod
p
is
V4
()
V5
()
V6
()
V10
()
V11
()
V12
()
integer
ext-real
non
negative
finite
cardinal
V113
()
V117
()
V118
()
V119
()
V120
()
V121
()
V122
()
Element
of
NAT
F1
+
1 is non
empty
V4
()
V5
()
V6
()
V10
()
V11
()
V12
()
integer
ext-real
positive
non
negative
finite
cardinal
V113
()
V117
()
V118
()
V119
()
V120
()
V121
()
V122
()
Element
of
NAT
F1
is
V4
()
V5
()
V6
()
V10
()
V11
()
V12
()
integer
ext-real
non
negative
finite
cardinal
V113
()
V117
()
V118
()
V119
()
V120
()
V121
()
V122
()
Element
of
NAT
F1
is
set
b
is non
empty
non
degenerated
non
trivial
left_add-cancelable
right_add-cancelable
add-cancelable
right_complementable
almost_left_invertible
unital
associative
commutative
Euclidian
right-distributive
left-distributive
right_unital
well-unital
distributive
left_unital
Abelian
add-associative
right_zeroed
doubleLoopStr
the non
empty
V4
()
V5
()
V6
()
V10
()
V11
()
V12
()
integer
V14
()
ext-real
positive
non
negative
finite
cardinal
set
is non
empty
V4
()
V5
()
V6
()
V10
()
V11
()
V12
()
integer
V14
()
ext-real
positive
non
negative
finite
cardinal
set
INT.Ring
the non
empty
V4
()
V5
()
V6
()
V10
()
V11
()
V12
()
integer
V14
()
ext-real
positive
non
negative
finite
cardinal
set
is non
empty
non
degenerated
non
trivial
finite
left_add-cancelable
right_add-cancelable
add-cancelable
right_complementable
almost_left_invertible
strict
unital
associative
commutative
Euclidian
right-distributive
left-distributive
right_unital
well-unital
distributive
left_unital
Abelian
add-associative
right_zeroed
()
doubleLoopStr
Segm
the non
empty
V4
()
V5
()
V6
()
V10
()
V11
()
V12
()
integer
V14
()
ext-real
positive
non
negative
finite
cardinal
set
is
V117
()
V118
()
V119
()
V120
()
V121
()
V122
()
Element
of
bool
NAT
addint
the non
empty
V4
()
V5
()
V6
()
V10
()
V11
()
V12
()
integer
V14
()
ext-real
positive
non
negative
finite
cardinal
set
is
Relation-like
[:
(
Segm
the non
empty
V4
()
V5
()
V6
()
V10
()
V11
()
V12
()
integer
V14
()
ext-real
positive
non
negative
finite
cardinal
set
)
,
(
Segm
the non
empty
V4
()
V5
()
V6
()
V10
()
V11
()
V12
()
integer
V14
()
ext-real
positive
non
negative
finite
cardinal
set
)
:]
-defined
Segm
the non
empty
V4
()
V5
()
V6
()
V10
()
V11
()
V12
()
integer
V14
()
ext-real
positive
non
negative
finite
cardinal
set
-valued
Function-like
quasi_total
V35
()
V36
()
V37
()
V38
()
Element
of
bool
[:
[:
(
Segm
the non
empty
V4
()
V5
()
V6
()
V10
()
V11
()
V12
()
integer
V14
()
ext-real
positive
non
negative
finite
cardinal
set
)
,
(
Segm
the non
empty
V4
()
V5
()
V6
()
V10
()
V11
()
V12
()
integer
V14
()
ext-real
positive
non
negative
finite
cardinal
set
)
:]
,
(
Segm
the non
empty
V4
()
V5
()
V6
()
V10
()
V11
()
V12
()
integer
V14
()
ext-real
positive
non
negative
finite
cardinal
set
)
:]
[:
(
Segm
the non
empty
V4
()
V5
()
V6
()
V10
()
V11
()
V12
()
integer
V14
()
ext-real
positive
non
negative
finite
cardinal
set
)
,
(
Segm
the non
empty
V4
()
V5
()
V6
()
V10
()
V11
()
V12
()
integer
V14
()
ext-real
positive
non
negative
finite
cardinal
set
)
:]
is
RAT
-valued
INT
-valued
V35
()
V36
()
V37
()
V38
()
set
[:
[:
(
Segm
the non
empty
V4
()
V5
()
V6
()
V10
()
V11
()
V12
()
integer
V14
()
ext-real
positive
non
negative
finite
cardinal
set
)
,
(
Segm
the non
empty
V4
()
V5
()
V6
()
V10
()
V11
()
V12
()
integer
V14
()
ext-real
positive
non
negative
finite
cardinal
set
)
:]
,
(
Segm
the non
empty
V4
()
V5
()
V6
()
V10
()
V11
()
V12
()
integer
V14
()
ext-real
positive
non
negative
finite
cardinal
set
)
:]
is
RAT
-valued
INT
-valued
V35
()
V36
()
V37
()
V38
()
set
bool
[:
[:
(
Segm
the non
empty
V4
()
V5
()
V6
()
V10
()
V11
()
V12
()
integer
V14
()
ext-real
positive
non
negative
finite
cardinal
set
)
,
(
Segm
the non
empty
V4
()
V5
()
V6
()
V10
()
V11
()
V12
()
integer
V14
()
ext-real
positive
non
negative
finite
cardinal
set
)
:]
,
(
Segm
the non
empty
V4
()
V5
()
V6
()
V10
()
V11
()
V12
()
integer
V14
()
ext-real
positive
non
negative
finite
cardinal
set
)
:]
is non
empty
set
multint
the non
empty
V4
()
V5
()
V6
()
V10
()
V11
()
V12
()
integer
V14
()
ext-real
positive
non
negative
finite
cardinal
set
is
Relation-like
[:
(
Segm
the non
empty
V4
()
V5
()
V6
()
V10
()
V11
()
V12
()
integer
V14
()
ext-real
positive
non
negative
finite
cardinal
set
)
,
(
Segm
the non
empty
V4
()
V5
()
V6
()
V10
()
V11
()
V12
()
integer
V14
()
ext-real
positive
non
negative
finite
cardinal
set
)
:]
-defined
Segm
the non
empty
V4
()
V5
()
V6
()
V10
()
V11
()
V12
()
integer
V14
()
ext-real
positive
non
negative
finite
cardinal
set
-valued
Function-like
quasi_total
V35
()
V36
()
V37
()
V38
()
Element
of
bool
[:
[:
(
Segm
the non
empty
V4
()
V5
()
V6
()
V10
()
V11
()
V12
()
integer
V14
()
ext-real
positive
non
negative
finite
cardinal
set
)
,
(
Segm
the non
empty
V4
()
V5
()
V6
()
V10
()
V11
()
V12
()
integer
V14
()
ext-real
positive
non
negative
finite
cardinal
set
)
:]
,
(
Segm
the non
empty
V4
()
V5
()
V6
()
V10
()
V11
()
V12
()
integer
V14
()
ext-real
positive
non
negative
finite
cardinal
set
)
:]
K633
(1,
(
Segm
the non
empty
V4
()
V5
()
V6
()
V10
()
V11
()
V12
()
integer
V14
()
ext-real
positive
non
negative
finite
cardinal
set
)
) is
V4
()
V5
()
V6
()
V10
()
V11
()
V12
()
integer
ext-real
non
negative
finite
cardinal
V113
()
Element
of
Segm
the non
empty
V4
()
V5
()
V6
()
V10
()
V11
()
V12
()
integer
V14
()
ext-real
positive
non
negative
finite
cardinal
set
K633
(
0
,
(
Segm
the non
empty
V4
()
V5
()
V6
()
V10
()
V11
()
V12
()
integer
V14
()
ext-real
positive
non
negative
finite
cardinal
set
)
) is
V4
()
V5
()
V6
()
V10
()
V11
()
V12
()
integer
ext-real
non
negative
finite
cardinal
V113
()
Element
of
Segm
the non
empty
V4
()
V5
()
V6
()
V10
()
V11
()
V12
()
integer
V14
()
ext-real
positive
non
negative
finite
cardinal
set
doubleLoopStr
(#
(
Segm
the non
empty
V4
()
V5
()
V6
()
V10
()
V11
()
V12
()
integer
V14
()
ext-real
positive
non
negative
finite
cardinal
set
)
,
(
addint
the non
empty
V4
()
V5
()
V6
()
V10
()
V11
()
V12
()
integer
V14
()
ext-real
positive
non
negative
finite
cardinal
set
)
,
(
multint
the non
empty
V4
()
V5
()
V6
()
V10
()
V11
()
V12
()
integer
V14
()
ext-real
positive
non
negative
finite
cardinal
set
)
,
K633
(1,
(
Segm
the non
empty
V4
()
V5
()
V6
()
V10
()
V11
()
V12
()
integer
V14
()
ext-real
positive
non
negative
finite
cardinal
set
)
),
K633
(
0
,
(
Segm
the non
empty
V4
()
V5
()
V6
()
V10
()
V11
()
V12
()
integer
V14
()
ext-real
positive
non
negative
finite
cardinal
set
)
) #) is
strict
doubleLoopStr
p
is non
empty
multMagma
the
carrier
of
p
is non
empty
set
power
p
is
Relation-like
[:
the
carrier
of
p
,
NAT
:]
-defined
the
carrier
of
p
-valued
Function-like
quasi_total
Element
of
bool
[:
[:
the
carrier
of
p
,
NAT
:]
, the
carrier
of
p
:]
[:
the
carrier
of
p
,
NAT
:]
is non
empty
non
trivial
RAT
-valued
INT
-valued
V35
()
V36
()
V37
()
V38
() non
finite
set
[:
[:
the
carrier
of
p
,
NAT
:]
, the
carrier
of
p
:]
is non
empty
non
trivial
non
finite
set
bool
[:
[:
the
carrier
of
p
,
NAT
:]
, the
carrier
of
p
:]
is non
empty
non
trivial
non
finite
set
a
is
Element
of the
carrier
of
p
(
power
p
)
.
(
a
,
0
) is
Element
of the
carrier
of
p
[
a
,
0
]
is
V26
()
set
{
a
,
0
}
is non
empty
finite
set
{
a
}
is non
empty
trivial
finite
1
-element
set
{
{
a
,
0
}
,
{
a
}
}
is non
empty
finite
V49
()
set
(
power
p
)
.
[
a
,
0
]
is
set
1_
p
is
Element
of the
carrier
of
p
(
power
p
)
.
(
a
,
0
) is
set
b
is
V4
()
V5
()
V6
()
V10
()
V11
()
V12
()
integer
ext-real
non
negative
finite
cardinal
set
(
power
p
)
.
(
a
,
b
) is
set
[
a
,
b
]
is
V26
()
set
{
a
,
b
}
is non
empty
finite
set
{
{
a
,
b
}
,
{
a
}
}
is non
empty
finite
V49
()
set
(
power
p
)
.
[
a
,
b
]
is
set
b
-
0
is
V11
()
V12
()
integer
ext-real
non
negative
set
b
+
1 is non
empty
V4
()
V5
()
V6
()
V10
()
V11
()
V12
()
integer
ext-real
positive
non
negative
finite
cardinal
V113
()
V117
()
V118
()
V119
()
V120
()
V121
()
V122
()
Element
of
NAT
(
power
p
)
.
(
a
,
(
b
+
1
)
) is
Element
of the
carrier
of
p
[
a
,
(
b
+
1
)
]
is
V26
()
set
{
a
,
(
b
+
1
)
}
is non
empty
finite
set
{
{
a
,
(
b
+
1
)
}
,
{
a
}
}
is non
empty
finite
V49
()
set
(
power
p
)
.
[
a
,
(
b
+
1
)
]
is
set
L
is
Element
of the
carrier
of
p
L
*
a
is
Element
of the
carrier
of
p
the
multF
of
p
is
Relation-like
[:
the
carrier
of
p
, the
carrier
of
p
:]
-defined
the
carrier
of
p
-valued
Function-like
quasi_total
Element
of
bool
[:
[:
the
carrier
of
p
, the
carrier
of
p
:]
, the
carrier
of
p
:]
[:
the
carrier
of
p
, the
carrier
of
p
:]
is non
empty
set
[:
[:
the
carrier
of
p
, the
carrier
of
p
:]
, the
carrier
of
p
:]
is non
empty
set
bool
[:
[:
the
carrier
of
p
, the
carrier
of
p
:]
, the
carrier
of
p
:]
is non
empty
set
the
multF
of
p
.
(
L
,
a
) is
Element
of the
carrier
of
p
[
L
,
a
]
is
V26
()
set
{
L
,
a
}
is non
empty
finite
set
{
L
}
is non
empty
trivial
finite
1
-element
set
{
{
L
,
a
}
,
{
L
}
}
is non
empty
finite
V49
()
set
the
multF
of
p
.
[
L
,
a
]
is
set
(
power
p
)
.
(
a
,
(
b
+
1
)
) is
set
b
is
V4
()
V5
()
V6
()
V10
()
V11
()
V12
()
integer
ext-real
non
negative
finite
cardinal
set
(
power
p
)
.
(
a
,
b
) is
set
[
a
,
b
]
is
V26
()
set
{
a
,
b
}
is non
empty
finite
set
{
{
a
,
b
}
,
{
a
}
}
is non
empty
finite
V49
()
set
(
power
p
)
.
[
a
,
b
]
is
set
p
is non
empty
V4
()
V5
()
V6
()
V10
()
V11
()
V12
()
integer
V14
()
ext-real
positive
non
negative
finite
cardinal
set
INT.Ring
p
is non
empty
non
degenerated
non
trivial
finite
left_add-cancelable
right_add-cancelable
add-cancelable
right_complementable
almost_left_invertible
strict
unital
associative
commutative
Euclidian
right-distributive
left-distributive
right_unital
well-unital
distributive
left_unital
Abelian
add-associative
right_zeroed
()
doubleLoopStr
Segm
p
is
V117
()
V118
()
V119
()
V120
()
V121
()
V122
()
Element
of
bool
NAT
addint
p
is
Relation-like
[:
(
Segm
p
)
,
(
Segm
p
)
:]
-defined
Segm
p
-valued
Function-like
quasi_total
V35
()
V36
()
V37
()
V38
()
Element
of
bool
[:
[:
(
Segm
p
)
,
(
Segm
p
)
:]
,
(
Segm
p
)
:]
[:
(
Segm
p
)
,
(
Segm
p
)
:]
is
RAT
-valued
INT
-valued
V35
()
V36
()
V37
()
V38
()
set
[:
[:
(
Segm
p
)
,
(
Segm
p
)
:]
,
(
Segm
p
)
:]
is
RAT
-valued
INT
-valued
V35
()
V36
()
V37
()
V38
()
set
bool
[:
[:
(
Segm
p
)
,
(
Segm
p
)
:]
,
(
Segm
p
)
:]
is non
empty
set
multint
p
is
Relation-like
[:
(
Segm
p
)
,
(
Segm
p
)
:]
-defined
Segm
p
-valued
Function-like
quasi_total
V35
()
V36
()
V37
()
V38
()
Element
of
bool
[:
[:
(
Segm
p
)
,
(
Segm
p
)
:]
,
(
Segm
p
)
:]
K633
(1,
(
Segm
p
)
) is
V4
()
V5
()
V6
()
V10
()
V11
()
V12
()
integer
ext-real
non
negative
finite
cardinal
V113
()
Element
of
Segm
p
K633
(
0
,
(
Segm
p
)
) is
V4
()
V5
()
V6
()
V10
()
V11
()
V12
()
integer
ext-real
non
negative
finite
cardinal
V113
()
Element
of
Segm
p
doubleLoopStr
(#
(
Segm
p
)
,
(
addint
p
)
,
(
multint
p
)
,
K633
(1,
(
Segm
p
)
),
K633
(
0
,
(
Segm
p
)
) #) is
strict
doubleLoopStr
0.
(
INT.Ring
p
)
is
V61
(
INT.Ring
p
)
left_add-cancelable
right_add-cancelable
add-cancelable
right_complementable
Element
of the
carrier
of
(
INT.Ring
p
)
the
carrier
of
(
INT.Ring
p
)
is non
empty
non
trivial
finite
set
the
ZeroF
of
(
INT.Ring
p
)
is
left_add-cancelable
right_add-cancelable
add-cancelable
right_complementable
Element
of the
carrier
of
(
INT.Ring
p
)
p
is non
empty
V4
()
V5
()
V6
()
V10
()
V11
()
V12
()
integer
V14
()
ext-real
positive
non
negative
finite
cardinal
set
INT.Ring
p
is non
empty
non
degenerated
non
trivial
finite
left_add-cancelable
right_add-cancelable
add-cancelable
right_complementable
almost_left_invertible
strict
unital
associative
commutative
Euclidian
right-distributive
left-distributive
right_unital
well-unital
distributive
left_unital
Abelian
add-associative
right_zeroed
()
doubleLoopStr
Segm
p
is
V117
()
V118
()
V119
()
V120
()
V121
()
V122
()
Element
of
bool
NAT
addint
p
is
Relation-like
[:
(
Segm
p
)
,
(
Segm
p
)
:]
-defined
Segm
p
-valued
Function-like
quasi_total
V35
()
V36
()
V37
()
V38
()
Element
of
bool
[:
[:
(
Segm
p
)
,
(
Segm
p
)
:]
,
(
Segm
p
)
:]
[:
(
Segm
p
)
,
(
Segm
p
)
:]
is
RAT
-valued
INT
-valued
V35
()
V36
()
V37
()
V38
()
set
[:
[:
(
Segm
p
)
,
(
Segm
p
)
:]
,
(
Segm
p
)
:]
is
RAT
-valued
INT
-valued
V35
()
V36
()
V37
()
V38
()
set
bool
[:
[:
(
Segm
p
)
,
(
Segm
p
)
:]
,
(
Segm
p
)
:]
is non
empty
set
multint
p
is
Relation-like
[:
(
Segm
p
)
,
(
Segm
p
)
:]
-defined
Segm
p
-valued
Function-like
quasi_total
V35
()
V36
()
V37
()
V38
()
Element
of
bool
[:
[:
(
Segm
p
)
,
(
Segm
p
)
:]
,
(
Segm
p
)
:]
K633
(1,
(
Segm
p
)
) is
V4
()
V5
()
V6
()
V10
()
V11
()
V12
()
integer
ext-real
non
negative
finite
cardinal
V113
()
Element
of
Segm
p
K633
(
0
,
(
Segm
p
)
) is
V4
()
V5
()
V6
()
V10
()
V11
()
V12
()
integer
ext-real
non
negative
finite
cardinal
V113
()
Element
of
Segm
p
doubleLoopStr
(#
(
Segm
p
)
,
(
addint
p
)
,
(
multint
p
)
,
K633
(1,
(
Segm
p
)
),
K633
(
0
,
(
Segm
p
)
) #) is
strict
doubleLoopStr
1.
(
INT.Ring
p
)
is
V61
(
INT.Ring
p
)
left_add-cancelable
right_add-cancelable
add-cancelable
right_complementable
Element
of the
carrier
of
(
INT.Ring
p
)
the
carrier
of
(
INT.Ring
p
)
is non
empty
non
trivial
finite
set
the
OneF
of
(
INT.Ring
p
)
is
left_add-cancelable
right_add-cancelable
add-cancelable
right_complementable
Element
of the
carrier
of
(
INT.Ring
p
)
p
is non
empty
V4
()
V5
()
V6
()
V10
()
V11
()
V12
()
integer
V14
()
ext-real
positive
non
negative
finite
cardinal
set
INT.Ring
p
is non
empty
non
degenerated
non
trivial
finite
left_add-cancelable
right_add-cancelable
add-cancelable
right_complementable
almost_left_invertible
strict
unital
associative
commutative
Euclidian
right-distributive
left-distributive
right_unital
well-unital
distributive
left_unital
Abelian
add-associative
right_zeroed
()
doubleLoopStr
Segm
p
is
V117
()
V118
()
V119
()
V120
()
V121
()
V122
()
Element
of
bool
NAT
addint
p
is
Relation-like
[:
(
Segm
p
)
,
(
Segm
p
)
:]
-defined
Segm
p
-valued
Function-like
quasi_total
V35
()
V36
()
V37
()
V38
()
Element
of
bool
[:
[:
(
Segm
p
)
,
(
Segm
p
)
:]
,
(
Segm
p
)
:]
[:
(
Segm
p
)
,
(
Segm
p
)
:]
is
RAT
-valued
INT
-valued
V35
()
V36
()
V37
()
V38
()
set
[:
[:
(
Segm
p
)
,
(
Segm
p
)
:]
,
(
Segm
p
)
:]
is
RAT
-valued
INT
-valued
V35
()
V36
()
V37
()
V38
()
set
bool
[:
[:
(
Segm
p
)
,
(
Segm
p
)
:]
,
(
Segm
p
)
:]
is non
empty
set
multint
p
is
Relation-like
[:
(
Segm
p
)
,
(
Segm
p
)
:]
-defined
Segm
p
-valued
Function-like
quasi_total
V35
()
V36
()
V37
()
V38
()
Element
of
bool
[:
[:
(
Segm
p
)
,
(
Segm
p
)
:]
,
(
Segm
p
)
:]
K633
(1,
(
Segm
p
)
) is
V4
()
V5
()
V6
()
V10
()
V11
()
V12
()
integer
ext-real
non
negative
finite
cardinal
V113
()
Element
of
Segm
p
K633
(
0
,
(
Segm
p
)
) is
V4
()
V5
()
V6
()
V10
()
V11
()
V12
()
integer
ext-real
non
negative
finite
cardinal
V113
()
Element
of
Segm
p
doubleLoopStr
(#
(
Segm
p
)
,
(
addint
p
)
,
(
multint
p
)
,
K633
(1,
(
Segm
p
)
),
K633
(
0
,
(
Segm
p
)
) #) is
strict
doubleLoopStr
the
carrier
of
(
INT.Ring
p
)
is non
empty
non
trivial
finite
set
a
is
left_add-cancelable
right_add-cancelable
add-cancelable
right_complementable
Element
of the
carrier
of
(
INT.Ring
p
)
b
is
V4
()
V5
()
V6
()
V10
()
V11
()
V12
()
integer
ext-real
non
negative
finite
cardinal
V113
()
Element
of
Segm
p
b
mod
p
is
V4
()
V5
()
V6
()
V10
()
V11
()
V12
()
integer
ext-real
non
negative
finite
cardinal
V113
()
V117
()
V118
()
V119
()
V120
()
V121
()
V122
()
Element
of
NAT
p
is
V11
()
V12
()
integer
ext-real
set
a
is non
empty
V4
()
V5
()
V6
()
V10
()
V11
()
V12
()
integer
V14
()
ext-real
positive
non
negative
finite
cardinal
set
p
mod
a
is
V11
()
V12
()
integer
ext-real
set
INT.Ring
a
is non
empty
non
degenerated
non
trivial
finite
left_add-cancelable
right_add-cancelable
add-cancelable
right_complementable
almost_left_invertible
strict
unital
associative
commutative
Euclidian
right-distributive
left-distributive
right_unital
well-unital
distributive
left_unital
Abelian
add-associative
right_zeroed
()
doubleLoopStr
Segm
a
is
V117
()
V118
()
V119
()
V120
()
V121
()
V122
()
Element
of
bool
NAT
addint
a
is
Relation-like
[:
(
Segm
a
)
,
(
Segm
a
)
:]
-defined
Segm
a
-valued
Function-like
quasi_total
V35
()
V36
()
V37
()
V38
()
Element
of
bool
[:
[:
(
Segm
a
)
,
(
Segm
a
)
:]
,
(
Segm
a
)
:]
[:
(
Segm
a
)
,
(
Segm
a
)
:]
is
RAT
-valued
INT
-valued
V35
()
V36
()
V37
()
V38
()
set
[:
[:
(
Segm
a
)
,
(
Segm
a
)
:]
,
(
Segm
a
)
:]
is
RAT
-valued
INT
-valued
V35
()
V36
()
V37
()
V38
()
set
bool
[:
[:
(
Segm
a
)
,
(
Segm
a
)
:]
,
(
Segm
a
)
:]
is non
empty
set
multint
a
is
Relation-like
[:
(
Segm
a
)
,
(
Segm
a
)
:]
-defined
Segm
a
-valued
Function-like
quasi_total
V35
()
V36
()
V37
()
V38
()
Element
of
bool
[:
[:
(
Segm
a
)
,
(
Segm
a
)
:]
,
(
Segm
a
)
:]
K633
(1,
(
Segm
a
)
) is
V4
()
V5
()
V6
()
V10
()
V11
()
V12
()
integer
ext-real
non
negative
finite
cardinal
V113
()
Element
of
Segm
a
K633
(
0
,
(
Segm
a
)
) is
V4
()
V5
()
V6
()
V10
()
V11
()
V12
()
integer
ext-real
non
negative
finite
cardinal
V113
()
Element
of
Segm
a
doubleLoopStr
(#
(
Segm
a
)
,
(
addint
a
)
,
(
multint
a
)
,
K633
(1,
(
Segm
a
)
),
K633
(
0
,
(
Segm
a
)
) #) is
strict
doubleLoopStr
the
carrier
of
(
INT.Ring
a
)
is non
empty
non
trivial
finite
set
b
is
V11
()
V12
()
integer
ext-real
set
L
is
V4
()
V5
()
V6
()
V10
()
V11
()
V12
()
integer
ext-real
non
negative
finite
cardinal
set
p
is
V11
()
V12
()
integer
ext-real
set
a
is
V11
()
V12
()
integer
ext-real
set
p
+
a
is
V11
()
V12
()
integer
ext-real
set
b
is non
empty
V4
()
V5
()
V6
()
V10
()
V11
()
V12
()
integer
V14
()
ext-real
positive
non
negative
finite
cardinal
set
INT.Ring
b
is non
empty
non
degenerated
non
trivial
finite
left_add-cancelable
right_add-cancelable
add-cancelable
right_complementable
almost_left_invertible
strict
unital
associative
commutative
Euclidian
right-distributive
left-distributive
right_unital
well-unital
distributive
left_unital
Abelian
add-associative
right_zeroed
()
doubleLoopStr
Segm
b
is
V117
()
V118
()
V119
()
V120
()
V121
()
V122
()
Element
of
bool
NAT
addint
b
is
Relation-like
[:
(
Segm
b
)
,
(
Segm
b
)
:]
-defined
Segm
b
-valued
Function-like
quasi_total
V35
()
V36
()
V37
()
V38
()
Element
of
bool
[:
[:
(
Segm
b
)
,
(
Segm
b
)
:]
,
(
Segm
b
)
:]
[:
(
Segm
b
)
,
(
Segm
b
)
:]
is
RAT
-valued
INT
-valued
V35
()
V36
()
V37
()
V38
()
set
[:
[:
(
Segm
b
)
,
(
Segm
b
)
:]
,
(
Segm
b
)
:]
is
RAT
-valued
INT
-valued
V35
()
V36
()
V37
()
V38
()
set
bool
[:
[:
(
Segm
b
)
,
(
Segm
b
)
:]
,
(
Segm
b
)
:]
is non
empty
set
multint
b
is
Relation-like
[:
(
Segm
b
)
,
(
Segm
b
)
:]
-defined
Segm
b
-valued
Function-like
quasi_total
V35
()
V36
()
V37
()
V38
()
Element
of
bool
[:
[:
(
Segm
b
)
,
(
Segm
b
)
:]
,
(
Segm
b
)
:]
K633
(1,
(
Segm
b
)
) is
V4
()
V5
()
V6
()
V10
()
V11
()
V12
()
integer
ext-real
non
negative
finite
cardinal
V113
()
Element
of
Segm
b
K633
(
0
,
(
Segm
b
)
) is
V4
()
V5
()
V6
()
V10
()
V11
()
V12
()
integer
ext-real
non
negative
finite
cardinal
V113
()
Element
of
Segm
b
doubleLoopStr
(#
(
Segm
b
)
,
(
addint
b
)
,
(
multint
b
)
,
K633
(1,
(
Segm
b
)
),
K633
(
0
,
(
Segm
b
)
) #) is
strict
doubleLoopStr
the
carrier
of
(
INT.Ring
b
)
is non
empty
non
trivial
finite
set
p
mod
b
is
V11
()
V12
()
integer
ext-real
set
a
mod
b
is
V11
()
V12
()
integer
ext-real
set
(
p
+
a
)
mod
b
is
V11
()
V12
()
integer
ext-real
set
L
is
left_add-cancelable
right_add-cancelable
add-cancelable
right_complementable
Element
of the
carrier
of
(
INT.Ring
b
)
F
is
left_add-cancelable
right_add-cancelable
add-cancelable
right_complementable
Element
of the
carrier
of
(
INT.Ring
b
)
L
+
F
is
left_add-cancelable
right_add-cancelable
add-cancelable
right_complementable
Element
of the
carrier
of
(
INT.Ring
b
)
the
addF
of
(
INT.Ring
b
)
is
Relation-like
[:
the
carrier
of
(
INT.Ring
b
)
, the
carrier
of
(
INT.Ring
b
)
:]
-defined
the
carrier
of
(
INT.Ring
b
)
-valued
Function-like
quasi_total
finite
Element
of
bool
[:
[:
the
carrier
of
(
INT.Ring
b
)
, the
carrier
of
(
INT.Ring
b
)
:]
, the
carrier
of
(
INT.Ring
b
)
:]
[:
the
carrier
of
(
INT.Ring
b
)
, the
carrier
of
(
INT.Ring
b
)
:]
is non
empty
finite
set
[:
[:
the
carrier
of
(
INT.Ring
b
)
, the
carrier
of
(
INT.Ring
b
)
:]
, the
carrier
of
(
INT.Ring
b
)
:]
is non
empty
finite
set
bool
[:
[:
the
carrier
of
(
INT.Ring
b
)
, the
carrier
of
(
INT.Ring
b
)
:]
, the
carrier
of
(
INT.Ring
b
)
:]
is non
empty
finite
V49
()
set
the
addF
of
(
INT.Ring
b
)
.
(
L
,
F
) is
left_add-cancelable
right_add-cancelable
add-cancelable
right_complementable
Element
of the
carrier
of
(
INT.Ring
b
)
[
L
,
F
]
is
V26
()
set
{
L
,
F
}
is non
empty
finite
set
{
L
}
is non
empty
trivial
finite
1
-element
set
{
{
L
,
F
}
,
{
L
}
}
is non
empty
finite
V49
()
set
the
addF
of
(
INT.Ring
b
)
.
[
L
,
F
]
is
set
(
p
mod
b
)
+
(
a
mod
b
)
is
V11
()
V12
()
integer
ext-real
set
(
(
p
mod
b
)
+
(
a
mod
b
)
)
mod
b
is
V11
()
V12
()
integer
ext-real
set
p
is
V11
()
V12
()
integer
ext-real
set
a
is non
empty
V4
()
V5
()
V6
()
V10
()
V11
()
V12
()
integer
V14
()
ext-real
positive
non
negative
finite
cardinal
set
INT.Ring
a
is non
empty
non
degenerated
non
trivial
finite
left_add-cancelable
right_add-cancelable
add-cancelable
right_complementable
almost_left_invertible
strict
unital
associative
commutative
Euclidian
right-distributive
left-distributive
right_unital
well-unital
distributive
left_unital
Abelian
add-associative
right_zeroed
()
doubleLoopStr
Segm
a
is
V117
()
V118
()
V119
()
V120
()
V121
()
V122
()
Element
of
bool
NAT
addint
a
is
Relation-like
[:
(
Segm
a
)
,
(
Segm
a
)
:]
-defined
Segm
a
-valued
Function-like
quasi_total
V35
()
V36
()
V37
()
V38
()
Element
of
bool
[:
[:
(
Segm
a
)
,
(
Segm
a
)
:]
,
(
Segm
a
)
:]
[:
(
Segm
a
)
,
(
Segm
a
)
:]
is
RAT
-valued
INT
-valued
V35
()
V36
()
V37
()
V38
()
set
[:
[:
(
Segm
a
)
,
(
Segm
a
)
:]
,
(
Segm
a
)
:]
is
RAT
-valued
INT
-valued
V35
()
V36
()
V37
()
V38
()
set
bool
[:
[:
(
Segm
a
)
,
(
Segm
a
)
:]
,
(
Segm
a
)
:]
is non
empty
set
multint
a
is
Relation-like
[:
(
Segm
a
)
,
(
Segm
a
)
:]
-defined
Segm
a
-valued
Function-like
quasi_total
V35
()
V36
()
V37
()
V38
()
Element
of
bool
[:
[:
(
Segm
a
)
,
(
Segm
a
)
:]
,
(
Segm
a
)
:]
K633
(1,
(
Segm
a
)
) is
V4
()
V5
()
V6
()
V10
()
V11
()
V12
()
integer
ext-real
non
negative
finite
cardinal
V113
()
Element
of
Segm
a
K633
(
0
,
(
Segm
a
)
) is
V4
()
V5
()
V6
()
V10
()
V11
()
V12
()
integer
ext-real
non
negative
finite
cardinal
V113
()
Element
of
Segm
a
doubleLoopStr
(#
(
Segm
a
)
,
(
addint
a
)
,
(
multint
a
)
,
K633
(1,
(
Segm
a
)
),
K633
(
0
,
(
Segm
a
)
) #) is
strict
doubleLoopStr
the
carrier
of
(
INT.Ring
a
)
is non
empty
non
trivial
finite
set
p
mod
a
is
V11
()
V12
()
integer
ext-real
set
a
-
p
is
V11
()
V12
()
integer
ext-real
set
(
a
-
p
)
mod
a
is
V11
()
V12
()
integer
ext-real
set
b
is
left_add-cancelable
right_add-cancelable
add-cancelable
right_complementable
Element
of the
carrier
of
(
INT.Ring
a
)
-
b
is
left_add-cancelable
right_add-cancelable
add-cancelable
right_complementable
Element
of the
carrier
of
(
INT.Ring
a
)
L
is
left_add-cancelable
right_add-cancelable
add-cancelable
right_complementable
Element
of the
carrier
of
(
INT.Ring
a
)
b
+
L
is
left_add-cancelable
right_add-cancelable
add-cancelable
right_complementable
Element
of the
carrier
of
(
INT.Ring
a
)
the
addF
of
(
INT.Ring
a
)
is
Relation-like
[:
the
carrier
of
(
INT.Ring
a
)
, the
carrier
of
(
INT.Ring
a
)
:]
-defined
the
carrier
of
(
INT.Ring
a
)
-valued
Function-like
quasi_total
finite
Element
of
bool
[:
[:
the
carrier
of
(
INT.Ring
a
)
, the
carrier
of
(
INT.Ring
a
)
:]
, the
carrier
of
(
INT.Ring
a
)
:]
[:
the
carrier
of
(
INT.Ring
a
)
, the
carrier
of
(
INT.Ring
a
)
:]
is non
empty
finite
set
[:
[:
the
carrier
of
(
INT.Ring
a
)
, the
carrier
of
(
INT.Ring
a
)
:]
, the
carrier
of
(
INT.Ring
a
)
:]
is non
empty
finite
set
bool
[:
[:
the
carrier
of
(
INT.Ring
a
)
, the
carrier
of
(
INT.Ring
a
)
:]
, the
carrier
of
(
INT.Ring
a
)
:]
is non
empty
finite
V49
()
set
the
addF
of
(
INT.Ring
a
)
.
(
b
,
L
) is
left_add-cancelable
right_add-cancelable
add-cancelable
right_complementable
Element
of the
carrier
of
(
INT.Ring
a
)
[
b
,
L
]
is
V26
()
set
{
b
,
L
}
is non
empty
finite
set
{
b
}
is non
empty
trivial
finite
1
-element
set
{
{
b
,
L
}
,
{
b
}
}
is non
empty
finite
V49
()
set
the
addF
of
(
INT.Ring
a
)
.
[
b
,
L
]
is
set
p
+
(
a
-
p
)
is
V11
()
V12
()
integer
ext-real
set
(
p
+
(
a
-
p
)
)
mod
a
is
V11
()
V12
()
integer
ext-real
set
0.
(
INT.Ring
a
)
is
V61
(
INT.Ring
a
)
left_add-cancelable
right_add-cancelable
add-cancelable
right_complementable
Element
of the
carrier
of
(
INT.Ring
a
)
the
ZeroF
of
(
INT.Ring
a
)
is
left_add-cancelable
right_add-cancelable
add-cancelable
right_complementable
Element
of the
carrier
of
(
INT.Ring
a
)
p
is
V11
()
V12
()
integer
ext-real
set
a
is
V11
()
V12
()
integer
ext-real
set
p
-
a
is
V11
()
V12
()
integer
ext-real
set
b
is non
empty
V4
()
V5
()
V6
()
V10
()
V11
()
V12
()
integer
V14
()
ext-real
positive
non
negative
finite
cardinal
set
INT.Ring
b
is non
empty
non
degenerated
non
trivial
finite
left_add-cancelable
right_add-cancelable
add-cancelable
right_complementable
almost_left_invertible
strict
unital
associative
commutative
Euclidian
right-distributive
left-distributive
right_unital
well-unital
distributive
left_unital
Abelian
add-associative
right_zeroed
()
doubleLoopStr
Segm
b
is
V117
()
V118
()
V119
()
V120
()
V121
()
V122
()
Element
of
bool
NAT
addint
b
is
Relation-like
[:
(
Segm
b
)
,
(
Segm
b
)
:]
-defined
Segm
b
-valued
Function-like
quasi_total
V35
()
V36
()
V37
()
V38
()
Element
of
bool
[:
[:
(
Segm
b
)
,
(
Segm
b
)
:]
,
(
Segm
b
)
:]
[:
(
Segm
b
)
,
(
Segm
b
)
:]
is
RAT
-valued
INT
-valued
V35
()
V36
()
V37
()
V38
()
set
[:
[:
(
Segm
b
)
,
(
Segm
b
)
:]
,
(
Segm
b
)
:]
is
RAT
-valued
INT
-valued
V35
()
V36
()
V37
()
V38
()
set
bool
[:
[:
(
Segm
b
)
,
(
Segm
b
)
:]
,
(
Segm
b
)
:]
is non
empty
set
multint
b
is
Relation-like
[:
(
Segm
b
)
,
(
Segm
b
)
:]
-defined
Segm
b
-valued
Function-like
quasi_total
V35
()
V36
()
V37
()
V38
()
Element
of
bool
[:
[:
(
Segm
b
)
,
(
Segm
b
)
:]
,
(
Segm
b
)
:]
K633
(1,
(
Segm
b
)
) is
V4
()
V5
()
V6
()
V10
()
V11
()
V12
()
integer
ext-real
non
negative
finite
cardinal
V113
()
Element
of
Segm
b
K633
(
0
,
(
Segm
b
)
) is
V4
()
V5
()
V6
()
V10
()
V11
()
V12
()
integer
ext-real
non
negative
finite
cardinal
V113
()
Element
of
Segm
b
doubleLoopStr
(#
(
Segm
b
)
,
(
addint
b
)
,
(
multint
b
)
,
K633
(1,
(
Segm
b
)
),
K633
(
0
,
(
Segm
b
)
) #) is
strict
doubleLoopStr
the
carrier
of
(
INT.Ring
b
)
is non
empty
non
trivial
finite
set
p
mod
b
is
V11
()
V12
()
integer
ext-real
set
a
mod
b
is
V11
()
V12
()
integer
ext-real
set
(
p
-
a
)
mod
b
is
V11
()
V12
()
integer
ext-real
set
L
is
left_add-cancelable
right_add-cancelable
add-cancelable
right_complementable
Element
of the
carrier
of
(
INT.Ring
b
)
F
is
left_add-cancelable
right_add-cancelable
add-cancelable
right_complementable
Element
of the
carrier
of
(
INT.Ring
b
)
L
-
F
is
left_add-cancelable
right_add-cancelable
add-cancelable
right_complementable
Element
of the
carrier
of
(
INT.Ring
b
)
-
F
is
left_add-cancelable
right_add-cancelable
add-cancelable
right_complementable
Element
of the
carrier
of
(
INT.Ring
b
)
L
+
(
-
F
)
is
left_add-cancelable
right_add-cancelable
add-cancelable
right_complementable
Element
of the
carrier
of
(
INT.Ring
b
)
the
addF
of
(
INT.Ring
b
)
is
Relation-like
[:
the
carrier
of
(
INT.Ring
b
)
, the
carrier
of
(
INT.Ring
b
)
:]
-defined
the
carrier
of
(
INT.Ring
b
)
-valued
Function-like
quasi_total
finite
Element
of
bool
[:
[:
the
carrier
of
(
INT.Ring
b
)
, the
carrier
of
(
INT.Ring
b
)
:]
, the
carrier
of
(
INT.Ring
b
)
:]
[:
the
carrier
of
(
INT.Ring
b
)
, the
carrier
of
(
INT.Ring
b
)
:]
is non
empty
finite
set
[:
[:
the
carrier
of
(
INT.Ring
b
)
, the
carrier
of
(
INT.Ring
b
)
:]
, the
carrier
of
(
INT.Ring
b
)
:]
is non
empty
finite
set
bool
[:
[:
the
carrier
of
(
INT.Ring
b
)
, the
carrier
of
(
INT.Ring
b
)
:]
, the
carrier
of
(
INT.Ring
b
)
:]
is non
empty
finite
V49
()
set
the
addF
of
(
INT.Ring
b
)
.
(
L
,
(
-
F
)
) is
left_add-cancelable
right_add-cancelable
add-cancelable
right_complementable
Element
of the
carrier
of
(
INT.Ring
b
)
[
L
,
(
-
F
)
]
is
V26
()
set
{
L
,
(
-
F
)
}
is non
empty
finite
set
{
L
}
is non
empty
trivial
finite
1
-element
set
{
{
L
,
(
-
F
)
}
,
{
L
}
}
is non
empty
finite
V49
()
set
the
addF
of
(
INT.Ring
b
)
.
[
L
,
(
-
F
)
]
is
set
b
-
a
is
V11
()
V12
()
integer
ext-real
set
(
b
-
a
)
mod
b
is
V11
()
V12
()
integer
ext-real
set
p
+
(
b
-
a
)
is
V11
()
V12
()
integer
ext-real
set
(
p
+
(
b
-
a
)
)
mod
b
is
V11
()
V12
()
integer
ext-real
set
1
*
b
is
V4
()
V5
()
V6
()
V10
()
V11
()
V12
()
integer
ext-real
non
negative
finite
cardinal
V113
()
V117
()
V118
()
V119
()
V120
()
V121
()
V122
()
Element
of
NAT
(
p
-
a
)
+
(
1
*
b
)
is
V11
()
V12
()
integer
ext-real
set
(
(
p
-
a
)
+
(
1
*
b
)
)
mod
b
is
V11
()
V12
()
integer
ext-real
set
p
is
V11
()
V12
()
integer
ext-real
set
a
is
V11
()
V12
()
integer
ext-real
set
p
*
a
is
V11
()
V12
()
integer
ext-real
set
b
is non
empty
V4
()
V5
()
V6
()
V10
()
V11
()
V12
()
integer
V14
()
ext-real
positive
non
negative
finite
cardinal
set
INT.Ring
b
is non
empty
non
degenerated
non
trivial
finite
left_add-cancelable
right_add-cancelable
add-cancelable
right_complementable
almost_left_invertible
strict
unital
associative
commutative
Euclidian
right-distributive
left-distributive
right_unital
well-unital
distributive
left_unital
Abelian
add-associative
right_zeroed
()
doubleLoopStr
Segm
b
is
V117
()
V118
()
V119
()
V120
()
V121
()
V122
()
Element
of
bool
NAT
addint
b
is
Relation-like
[:
(
Segm
b
)
,
(
Segm
b
)
:]
-defined
Segm
b
-valued
Function-like
quasi_total
V35
()
V36
()
V37
()
V38
()
Element
of
bool
[:
[:
(
Segm
b
)
,
(
Segm
b
)
:]
,
(
Segm
b
)
:]
[:
(
Segm
b
)
,
(
Segm
b
)
:]
is
RAT
-valued
INT
-valued
V35
()
V36
()
V37
()
V38
()
set
[:
[:
(
Segm
b
)
,
(
Segm
b
)
:]
,
(
Segm
b
)
:]
is
RAT
-valued
INT
-valued
V35
()
V36
()
V37
()
V38
()
set
bool
[:
[:
(
Segm
b
)
,
(
Segm
b
)
:]
,
(
Segm
b
)
:]
is non
empty
set
multint
b
is
Relation-like
[:
(
Segm
b
)
,
(
Segm
b
)
:]
-defined
Segm
b
-valued
Function-like
quasi_total
V35
()
V36
()
V37
()
V38
()
Element
of
bool
[:
[:
(
Segm
b
)
,
(
Segm
b
)
:]
,
(
Segm
b
)
:]
K633
(1,
(
Segm
b
)
) is
V4
()
V5
()
V6
()
V10
()
V11
()
V12
()
integer
ext-real
non
negative
finite
cardinal
V113
()
Element
of
Segm
b
K633
(
0
,
(
Segm
b
)
) is
V4
()
V5
()
V6
()
V10
()
V11
()
V12
()
integer
ext-real
non
negative
finite
cardinal
V113
()
Element
of
Segm
b
doubleLoopStr
(#
(
Segm
b
)
,
(
addint
b
)
,
(
multint
b
)
,
K633
(1,
(
Segm
b
)
),
K633
(
0
,
(
Segm
b
)
) #) is
strict
doubleLoopStr
the
carrier
of
(
INT.Ring
b
)
is non
empty
non
trivial
finite
set
p
mod
b
is
V11
()
V12
()
integer
ext-real
set
a
mod
b
is
V11
()
V12
()
integer
ext-real
set
(
p
*
a
)
mod
b
is
V11
()
V12
()
integer
ext-real
set
L
is
left_add-cancelable
right_add-cancelable
add-cancelable
right_complementable
Element
of the
carrier
of
(
INT.Ring
b
)
F
is
left_add-cancelable
right_add-cancelable
add-cancelable
right_complementable
Element
of the
carrier
of
(
INT.Ring
b
)
L
*
F
is
left_add-cancelable
right_add-cancelable
add-cancelable
right_complementable
Element
of the
carrier
of
(
INT.Ring
b
)
the
multF
of
(
INT.Ring
b
)
is
Relation-like
[:
the
carrier
of
(
INT.Ring
b
)
, the
carrier
of
(
INT.Ring
b
)
:]
-defined
the
carrier
of
(
INT.Ring
b
)
-valued
Function-like
quasi_total
finite
Element
of
bool
[:
[:
the
carrier
of
(
INT.Ring
b
)
, the
carrier
of
(
INT.Ring
b
)
:]
, the
carrier
of
(
INT.Ring
b
)
:]
[:
the
carrier
of
(
INT.Ring
b
)
, the
carrier
of
(
INT.Ring
b
)
:]
is non
empty
finite
set
[:
[:
the
carrier
of
(
INT.Ring
b
)
, the
carrier
of
(
INT.Ring
b
)
:]
, the
carrier
of
(
INT.Ring
b
)
:]
is non
empty
finite
set
bool
[:
[:
the
carrier
of
(
INT.Ring
b
)
, the
carrier
of
(
INT.Ring
b
)
:]
, the
carrier
of
(
INT.Ring
b
)
:]
is non
empty
finite
V49
()
set
the
multF
of
(
INT.Ring
b
)
.
(
L
,
F
) is
left_add-cancelable
right_add-cancelable
add-cancelable
right_complementable
Element
of the
carrier
of
(
INT.Ring
b
)
[
L
,
F
]
is
V26
()
set
{
L
,
F
}
is non
empty
finite
set
{
L
}
is non
empty
trivial
finite
1
-element
set
{
{
L
,
F
}
,
{
L
}
}
is non
empty
finite
V49
()
set
the
multF
of
(
INT.Ring
b
)
.
[
L
,
F
]
is
set
(
p
mod
b
)
*
(
a
mod
b
)
is
V11
()
V12
()
integer
ext-real
set
(
(
p
mod
b
)
*
(
a
mod
b
)
)
mod
b
is
V11
()
V12
()
integer
ext-real
set
p
is
V11
()
V12
()
integer
ext-real
set
a
is
V11
()
V12
()
integer
ext-real
set
p
*
a
is
V11
()
V12
()
integer
ext-real
set
b
is non
empty
V4
()
V5
()
V6
()
V10
()
V11
()
V12
()
integer
V14
()
ext-real
positive
non
negative
finite
cardinal
set
INT.Ring
b
is non
empty
non
degenerated
non
trivial
finite
left_add-cancelable
right_add-cancelable
add-cancelable
right_complementable
almost_left_invertible
strict
unital
associative
commutative
Euclidian
right-distributive
left-distributive
right_unital
well-unital
distributive
left_unital
Abelian
add-associative
right_zeroed
()
doubleLoopStr
Segm
b
is
V117
()
V118
()
V119
()
V120
()
V121
()
V122
()
Element
of
bool
NAT
addint
b
is
Relation-like
[:
(
Segm
b
)
,
(
Segm
b
)
:]
-defined
Segm
b
-valued
Function-like
quasi_total
V35
()
V36
()
V37
()
V38
()
Element
of
bool
[:
[:
(
Segm
b
)
,
(
Segm
b
)
:]
,
(
Segm
b
)
:]
[:
(
Segm
b
)
,
(
Segm
b
)
:]
is
RAT
-valued
INT
-valued
V35
()
V36
()
V37
()
V38
()
set
[:
[:
(
Segm
b
)
,
(
Segm
b
)
:]
,
(
Segm
b
)
:]
is
RAT
-valued
INT
-valued
V35
()
V36
()
V37
()
V38
()
set
bool
[:
[:
(
Segm
b
)
,
(
Segm
b
)
:]
,
(
Segm
b
)
:]
is non
empty
set
multint
b
is
Relation-like
[:
(
Segm
b
)
,
(
Segm
b
)
:]
-defined
Segm
b
-valued
Function-like
quasi_total
V35
()
V36
()
V37
()
V38
()
Element
of
bool
[:
[:
(
Segm
b
)
,
(
Segm
b
)
:]
,
(
Segm
b
)
:]
K633
(1,
(
Segm
b
)
) is
V4
()
V5
()
V6
()
V10
()
V11
()
V12
()
integer
ext-real
non
negative
finite
cardinal
V113
()
Element
of
Segm
b
K633
(
0
,
(
Segm
b
)
) is
V4
()
V5
()
V6
()
V10
()
V11
()
V12
()
integer
ext-real
non
negative
finite
cardinal
V113
()
Element
of
Segm
b
doubleLoopStr
(#
(
Segm
b
)
,
(
addint
b
)
,
(
multint
b
)
,
K633
(1,
(
Segm
b
)
),
K633
(
0
,
(
Segm
b
)
) #) is
strict
doubleLoopStr
the
carrier
of
(
INT.Ring
b
)
is non
empty
non
trivial
finite
set
p
mod
b
is
V11
()
V12
()
integer
ext-real
set
(
p
*
a
)
mod
b
is
V11
()
V12
()
integer
ext-real
set
a
mod
b
is
V11
()
V12
()
integer
ext-real
set
L
is
left_add-cancelable
right_add-cancelable
add-cancelable
right_complementable
Element
of the
carrier
of
(
INT.Ring
b
)
L
"
is
left_add-cancelable
right_add-cancelable
add-cancelable
right_complementable
Element
of the
carrier
of
(
INT.Ring
b
)
F
is
left_add-cancelable
right_add-cancelable
add-cancelable
right_complementable
Element
of the
carrier
of
(
INT.Ring
b
)
F
*
L
is
left_add-cancelable
right_add-cancelable
add-cancelable
right_complementable
Element
of the
carrier
of
(
INT.Ring
b
)
the
multF
of
(
INT.Ring
b
)
is
Relation-like
[:
the
carrier
of
(
INT.Ring
b
)
, the
carrier
of
(
INT.Ring
b
)
:]
-defined
the
carrier
of
(
INT.Ring
b
)
-valued
Function-like
quasi_total
finite
Element
of
bool
[:
[:
the
carrier
of
(
INT.Ring
b
)
, the
carrier
of
(
INT.Ring
b
)
:]
, the
carrier
of
(
INT.Ring
b
)
:]
[:
the
carrier
of
(
INT.Ring
b
)
, the
carrier
of
(
INT.Ring
b
)
:]
is non
empty
finite
set
[:
[:
the
carrier
of
(
INT.Ring
b
)
, the
carrier
of
(
INT.Ring
b
)
:]
, the
carrier
of
(
INT.Ring
b
)
:]
is non
empty
finite
set
bool
[:
[:
the
carrier
of
(
INT.Ring
b
)
, the
carrier
of
(
INT.Ring
b
)
:]
, the
carrier
of
(
INT.Ring
b
)
:]
is non
empty
finite
V49
()
set
the
multF
of
(
INT.Ring
b
)
.
(
F
,
L
) is
left_add-cancelable
right_add-cancelable
add-cancelable
right_complementable
Element
of the
carrier
of
(
INT.Ring
b
)
[
F
,
L
]
is
V26
()
set
{
F
,
L
}
is non
empty
finite
set
{
F
}
is non
empty
trivial
finite
1
-element
set
{
{
F
,
L
}
,
{
F
}
}
is non
empty
finite
V49
()
set
the
multF
of
(
INT.Ring
b
)
.
[
F
,
L
]
is
set
1.
(
INT.Ring
b
)
is
V61
(
INT.Ring
b
)
left_add-cancelable
right_add-cancelable
add-cancelable
right_complementable
Element
of the
carrier
of
(
INT.Ring
b
)
the
OneF
of
(
INT.Ring
b
)
is
left_add-cancelable
right_add-cancelable
add-cancelable
right_complementable
Element
of the
carrier
of
(
INT.Ring
b
)
0.
(
INT.Ring
b
)
is
V61
(
INT.Ring
b
)
left_add-cancelable
right_add-cancelable
add-cancelable
right_complementable
Element
of the
carrier
of
(
INT.Ring
b
)
the
ZeroF
of
(
INT.Ring
b
)
is
left_add-cancelable
right_add-cancelable
add-cancelable
right_complementable
Element
of the
carrier
of
(
INT.Ring
b
)
p
is non
empty
V4
()
V5
()
V6
()
V10
()
V11
()
V12
()
integer
V14
()
ext-real
positive
non
negative
finite
cardinal
set
INT.Ring
p
is non
empty
non
degenerated
non
trivial
finite
left_add-cancelable
right_add-cancelable
add-cancelable
right_complementable
almost_left_invertible
strict
unital
associative
commutative
Euclidian
right-distributive
left-distributive
right_unital
well-unital
distributive
left_unital
Abelian
add-associative
right_zeroed
()
doubleLoopStr
Segm
p
is
V117
()
V118
()
V119
()
V120
()
V121
()
V122
()
Element
of
bool
NAT
addint
p
is
Relation-like
[:
(
Segm
p
)
,
(
Segm
p
)
:]
-defined
Segm
p
-valued
Function-like
quasi_total
V35
()
V36
()
V37
()
V38
()
Element
of
bool
[:
[:
(
Segm
p
)
,
(
Segm
p
)
:]
,
(
Segm
p
)
:]
[:
(
Segm
p
)
,
(
Segm
p
)
:]
is
RAT
-valued
INT
-valued
V35
()
V36
()
V37
()
V38
()
set
[:
[:
(
Segm
p
)
,
(
Segm
p
)
:]
,
(
Segm
p
)
:]
is
RAT
-valued
INT
-valued
V35
()
V36
()
V37
()
V38
()
set
bool
[:
[:
(
Segm
p
)
,
(
Segm
p
)
:]
,
(
Segm
p
)
:]
is non
empty
set
multint
p
is
Relation-like
[:
(
Segm
p
)
,
(
Segm
p
)
:]
-defined
Segm
p
-valued
Function-like
quasi_total
V35
()
V36
()
V37
()
V38
()
Element
of
bool
[:
[:
(
Segm
p
)
,
(
Segm
p
)
:]
,
(
Segm
p
)
:]
K633
(1,
(
Segm
p
)
) is
V4
()
V5
()
V6
()
V10
()
V11
()
V12
()
integer
ext-real
non
negative
finite
cardinal
V113
()
Element
of
Segm
p
K633
(
0
,
(
Segm
p
)
) is
V4
()
V5
()
V6
()
V10
()
V11
()
V12
()
integer
ext-real
non
negative
finite
cardinal
V113
()
Element
of
Segm
p
doubleLoopStr
(#
(
Segm
p
)
,
(
addint
p
)
,
(
multint
p
)
,
K633
(1,
(
Segm
p
)
),
K633
(
0
,
(
Segm
p
)
) #) is
strict
doubleLoopStr
the
carrier
of
(
INT.Ring
p
)
is non
empty
non
trivial
finite
set
a
is
left_add-cancelable
right_add-cancelable
add-cancelable
right_complementable
Element
of the
carrier
of
(
INT.Ring
p
)
b
is
left_add-cancelable
right_add-cancelable
add-cancelable
right_complementable
Element
of the
carrier
of
(
INT.Ring
p
)
a
*
b
is
left_add-cancelable
right_add-cancelable
add-cancelable
right_complementable
Element
of the
carrier
of
(
INT.Ring
p
)
the
multF
of
(
INT.Ring
p
)
is
Relation-like
[:
the
carrier
of
(
INT.Ring
p
)
, the
carrier
of
(
INT.Ring
p
)
:]
-defined
the
carrier
of
(
INT.Ring
p
)
-valued
Function-like
quasi_total
finite
Element
of
bool
[:
[:
the
carrier
of
(
INT.Ring
p
)
, the
carrier
of
(
INT.Ring
p
)
:]
, the
carrier
of
(
INT.Ring
p
)
:]
[:
the
carrier
of
(
INT.Ring
p
)
, the
carrier
of
(
INT.Ring
p
)
:]
is non
empty
finite
set
[:
[:
the
carrier
of
(
INT.Ring
p
)
, the
carrier
of
(
INT.Ring
p
)
:]
, the
carrier
of
(
INT.Ring
p
)
:]
is non
empty
finite
set
bool
[:
[:
the
carrier
of
(
INT.Ring
p
)
, the
carrier
of
(
INT.Ring
p
)
:]
, the
carrier
of
(
INT.Ring
p
)
:]
is non
empty
finite
V49
()
set
the
multF
of
(
INT.Ring
p
)
.
(
a
,
b
) is
left_add-cancelable
right_add-cancelable
add-cancelable
right_complementable
Element
of the
carrier
of
(
INT.Ring
p
)
[
a
,
b
]
is
V26
()
set
{
a
,
b
}
is non
empty
finite
set
{
a
}
is non
empty
trivial
finite
1
-element
set
{
{
a
,
b
}
,
{
a
}
}
is non
empty
finite
V49
()
set
the
multF
of
(
INT.Ring
p
)
.
[
a
,
b
]
is
set
0.
(
INT.Ring
p
)
is
V61
(
INT.Ring
p
)
left_add-cancelable
right_add-cancelable
add-cancelable
right_complementable
Element
of the
carrier
of
(
INT.Ring
p
)
the
ZeroF
of
(
INT.Ring
p
)
is
left_add-cancelable
right_add-cancelable
add-cancelable
right_complementable
Element
of the
carrier
of
(
INT.Ring
p
)
p
is non
empty
V4
()
V5
()
V6
()
V10
()
V11
()
V12
()
integer
V14
()
ext-real
positive
non
negative
finite
cardinal
set
INT.Ring
p
is non
empty
non
degenerated
non
trivial
finite
left_add-cancelable
right_add-cancelable
add-cancelable
right_complementable
almost_left_invertible
strict
unital
associative
commutative
Euclidian
right-distributive
left-distributive
right_unital
well-unital
distributive
left_unital
Abelian
add-associative
right_zeroed
()
doubleLoopStr
Segm
p
is
V117
()
V118
()
V119
()
V120
()
V121
()
V122
()
Element
of
bool
NAT
addint
p
is
Relation-like
[:
(
Segm
p
)
,
(
Segm
p
)
:]
-defined
Segm
p
-valued
Function-like
quasi_total
V35
()
V36
()
V37
()
V38
()
Element
of
bool
[:
[:
(
Segm
p
)
,
(
Segm
p
)
:]
,
(
Segm
p
)
:]
[:
(
Segm
p
)
,
(
Segm
p
)
:]
is
RAT
-valued
INT
-valued
V35
()
V36
()
V37
()
V38
()
set
[:
[:
(
Segm
p
)
,
(
Segm
p
)
:]
,
(
Segm
p
)
:]
is
RAT
-valued
INT
-valued
V35
()
V36
()
V37
()
V38
()
set
bool
[:
[:
(
Segm
p
)
,
(
Segm
p
)
:]
,
(
Segm
p
)
:]
is non
empty
set
multint
p
is
Relation-like
[:
(
Segm
p
)
,
(
Segm
p
)
:]
-defined
Segm
p
-valued
Function-like
quasi_total
V35
()
V36
()
V37
()
V38
()
Element
of
bool
[:
[:
(
Segm
p
)
,
(
Segm
p
)
:]
,
(
Segm
p
)
:]
K633
(1,
(
Segm
p
)
) is
V4
()
V5
()
V6
()
V10
()
V11
()
V12
()
integer
ext-real
non
negative
finite
cardinal
V113
()
Element
of
Segm
p
K633
(
0
,
(
Segm
p
)
) is
V4
()
V5
()
V6
()
V10
()
V11
()
V12
()
integer
ext-real
non
negative
finite
cardinal
V113
()
Element
of
Segm
p
doubleLoopStr
(#
(
Segm
p
)
,
(
addint
p
)
,
(
multint
p
)
,
K633
(1,
(
Segm
p
)
),
K633
(
0
,
(
Segm
p
)
) #) is
strict
doubleLoopStr
the
carrier
of
(
INT.Ring
p
)
is non
empty
non
trivial
finite
set
1_
(
INT.Ring
p
)
is
left_add-cancelable
right_add-cancelable
add-cancelable
right_complementable
Element
of the
carrier
of
(
INT.Ring
p
)
1.
(
INT.Ring
p
)
is
V61
(
INT.Ring
p
)
left_add-cancelable
right_add-cancelable
add-cancelable
right_complementable
Element
of the
carrier
of
(
INT.Ring
p
)
the
OneF
of
(
INT.Ring
p
)
is
left_add-cancelable
right_add-cancelable
add-cancelable
right_complementable
Element
of the
carrier
of
(
INT.Ring
p
)
a
is
left_add-cancelable
right_add-cancelable
add-cancelable
right_complementable
Element
of the
carrier
of
(
INT.Ring
p
)
a
|^
0
is
left_add-cancelable
right_add-cancelable
add-cancelable
right_complementable
Element
of the
carrier
of
(
INT.Ring
p
)
power
(
INT.Ring
p
)
is
Relation-like
[:
the
carrier
of
(
INT.Ring
p
)
,
NAT
:]
-defined
the
carrier
of
(
INT.Ring
p
)
-valued
Function-like
quasi_total
Element
of
bool
[:
[:
the
carrier
of
(
INT.Ring
p
)
,
NAT
:]
, the
carrier
of
(
INT.Ring
p
)
:]
[:
the
carrier
of
(
INT.Ring
p
)
,
NAT
:]
is non
empty
non
trivial
RAT
-valued
INT
-valued
V35
()
V36
()
V37
()
V38
() non
finite
set
[:
[:
the
carrier
of
(
INT.Ring
p
)
,
NAT
:]
, the
carrier
of
(
INT.Ring
p
)
:]
is non
empty
non
trivial
non
finite
set
bool
[:
[:
the
carrier
of
(
INT.Ring
p
)
,
NAT
:]
, the
carrier
of
(
INT.Ring
p
)
:]
is non
empty
non
trivial
non
finite
set
(
power
(
INT.Ring
p
)
)
.
(
a
,
0
) is
set
[
a
,
0
]
is
V26
()
set
{
a
,
0
}
is non
empty
finite
set
{
a
}
is non
empty
trivial
finite
1
-element
set
{
{
a
,
0
}
,
{
a
}
}
is non
empty
finite
V49
()
set
(
power
(
INT.Ring
p
)
)
.
[
a
,
0
]
is
set
p
is non
empty
V4
()
V5
()
V6
()
V10
()
V11
()
V12
()
integer
V14
()
ext-real
positive
non
negative
finite
cardinal
set
INT.Ring
p
is non
empty
non
degenerated
non
trivial
finite
left_add-cancelable
right_add-cancelable
add-cancelable
right_complementable
almost_left_invertible
strict
unital
associative
commutative
Euclidian
right-distributive
left-distributive
right_unital
well-unital
distributive
left_unital
Abelian
add-associative
right_zeroed
()
doubleLoopStr
Segm
p
is
V117
()
V118
()
V119
()
V120
()
V121
()
V122
()
Element
of
bool
NAT
addint
p
is
Relation-like
[:
(
Segm
p
)
,
(
Segm
p
)
:]
-defined
Segm
p
-valued
Function-like
quasi_total
V35
()
V36
()
V37
()
V38
()
Element
of
bool
[:
[:
(
Segm
p
)
,
(
Segm
p
)
:]
,
(
Segm
p
)
:]
[:
(
Segm
p
)
,
(
Segm
p
)
:]
is
RAT
-valued
INT
-valued
V35
()
V36
()
V37
()
V38
()
set
[:
[:
(
Segm
p
)
,
(
Segm
p
)
:]
,
(
Segm
p
)
:]
is
RAT
-valued
INT
-valued
V35
()
V36
()
V37
()
V38
()
set
bool
[:
[:
(
Segm
p
)
,
(
Segm
p
)
:]
,
(
Segm
p
)
:]
is non
empty
set
multint
p
is
Relation-like
[:
(
Segm
p
)
,
(
Segm
p
)
:]
-defined
Segm
p
-valued
Function-like
quasi_total
V35
()
V36
()
V37
()
V38
()
Element
of
bool
[:
[:
(
Segm
p
)
,
(
Segm
p
)
:]
,
(
Segm
p
)
:]
K633
(1,
(
Segm
p
)
) is
V4
()
V5
()
V6
()
V10
()
V11
()
V12
()
integer
ext-real
non
negative
finite
cardinal
V113
()
Element
of
Segm
p
K633
(
0
,
(
Segm
p
)
) is
V4
()
V5
()
V6
()
V10
()
V11
()
V12
()
integer
ext-real
non
negative
finite
cardinal
V113
()
Element
of
Segm
p
doubleLoopStr
(#
(
Segm
p
)
,
(
addint
p
)
,
(
multint
p
)
,
K633
(1,
(
Segm
p
)
),
K633
(
0
,
(
Segm
p
)
) #) is
strict
doubleLoopStr
the
carrier
of
(
INT.Ring
p
)
is non
empty
non
trivial
finite
set
power
(
INT.Ring
p
)
is
Relation-like
[:
the
carrier
of
(
INT.Ring
p
)
,
NAT
:]
-defined
the
carrier
of
(
INT.Ring
p
)
-valued
Function-like
quasi_total
Element
of
bool
[:
[:
the
carrier
of
(
INT.Ring
p
)
,
NAT
:]
, the
carrier
of
(
INT.Ring
p
)
:]
[:
the
carrier
of
(
INT.Ring
p
)
,
NAT
:]
is non
empty
non
trivial
RAT
-valued
INT
-valued
V35
()
V36
()
V37
()
V38
() non
finite
set
[:
[:
the
carrier
of
(
INT.Ring
p
)
,
NAT
:]
, the
carrier
of
(
INT.Ring
p
)
:]
is non
empty
non
trivial
non
finite
set
bool
[:
[:
the
carrier
of
(
INT.Ring
p
)
,
NAT
:]
, the
carrier
of
(
INT.Ring
p
)
:]
is non
empty
non
trivial
non
finite
set
a
is
left_add-cancelable
right_add-cancelable
add-cancelable
right_complementable
Element
of the
carrier
of
(
INT.Ring
p
)
(
power
(
INT.Ring
p
)
)
.
(
a
,1) is
left_add-cancelable
right_add-cancelable
add-cancelable
right_complementable
Element
of the
carrier
of
(
INT.Ring
p
)
[
a
,1
]
is
V26
()
set
{
a
,1
}
is non
empty
finite
set
{
a
}
is non
empty
trivial
finite
1
-element
set
{
{
a
,1
}
,
{
a
}
}
is non
empty
finite
V49
()
set
(
power
(
INT.Ring
p
)
)
.
[
a
,1
]
is
set
p
is non
empty
V4
()
V5
()
V6
()
V10
()
V11
()
V12
()
integer
V14
()
ext-real
positive
non
negative
finite
cardinal
set
INT.Ring
p
is non
empty
non
degenerated
non
trivial
finite
left_add-cancelable
right_add-cancelable
add-cancelable
right_complementable
almost_left_invertible
strict
unital
associative
commutative
Euclidian
right-distributive
left-distributive
right_unital
well-unital
distributive
left_unital
Abelian
add-associative
right_zeroed
()
doubleLoopStr
Segm
p
is
V117
()
V118
()
V119
()
V120
()
V121
()
V122
()
Element
of
bool
NAT
addint
p
is
Relation-like
[:
(
Segm
p
)
,
(
Segm
p
)
:]
-defined
Segm
p
-valued
Function-like
quasi_total
V35
()
V36
()
V37
()
V38
()
Element
of
bool
[:
[:
(
Segm
p
)
,
(
Segm
p
)
:]
,
(
Segm
p
)
:]
[:
(
Segm
p
)
,
(
Segm
p
)
:]
is
RAT
-valued
INT
-valued
V35
()
V36
()
V37
()
V38
()
set
[:
[:
(
Segm
p
)
,
(
Segm
p
)
:]
,
(
Segm
p
)
:]
is
RAT
-valued
INT
-valued
V35
()
V36
()
V37
()
V38
()
set
bool
[:
[:
(
Segm
p
)
,
(
Segm
p
)
:]
,
(
Segm
p
)
:]
is non
empty
set
multint
p
is
Relation-like
[:
(
Segm
p
)
,
(
Segm
p
)
:]
-defined
Segm
p
-valued
Function-like
quasi_total
V35
()
V36
()
V37
()
V38
()
Element
of
bool
[:
[:
(
Segm
p
)
,
(
Segm
p
)
:]
,
(
Segm
p
)
:]
K633
(1,
(
Segm
p
)
) is
V4
()
V5
()
V6
()
V10
()
V11
()
V12
()
integer
ext-real
non
negative
finite
cardinal
V113
()
Element
of
Segm
p
K633
(
0
,
(
Segm
p
)
) is
V4
()
V5
()
V6
()
V10
()
V11
()
V12
()
integer
ext-real
non
negative
finite
cardinal
V113
()
Element
of
Segm
p
doubleLoopStr
(#
(
Segm
p
)
,
(
addint
p
)
,
(
multint
p
)
,
K633
(1,
(
Segm
p
)
),
K633
(
0
,
(
Segm
p
)
) #) is
strict
doubleLoopStr
the
carrier
of
(
INT.Ring
p
)
is non
empty
non
trivial
finite
set
power
(
INT.Ring
p
)
is
Relation-like
[:
the
carrier
of
(
INT.Ring
p
)
,
NAT
:]
-defined
the
carrier
of
(
INT.Ring
p
)
-valued
Function-like
quasi_total
Element
of
bool
[:
[:
the
carrier
of
(
INT.Ring
p
)
,
NAT
:]
, the
carrier
of
(
INT.Ring
p
)
:]
[:
the
carrier
of
(
INT.Ring
p
)
,
NAT
:]
is non
empty
non
trivial
RAT
-valued
INT
-valued
V35
()
V36
()
V37
()
V38
() non
finite
set
[:
[:
the
carrier
of
(
INT.Ring
p
)
,
NAT
:]
, the
carrier
of
(
INT.Ring
p
)
:]
is non
empty
non
trivial
non
finite
set
bool
[:
[:
the
carrier
of
(
INT.Ring
p
)
,
NAT
:]
, the
carrier
of
(
INT.Ring
p
)
:]
is non
empty
non
trivial
non
finite
set
a
is
left_add-cancelable
right_add-cancelable
add-cancelable
right_complementable
Element
of the
carrier
of
(
INT.Ring
p
)
(
power
(
INT.Ring
p
)
)
.
(
a
,2) is
left_add-cancelable
right_add-cancelable
add-cancelable
right_complementable
Element
of the
carrier
of
(
INT.Ring
p
)
[
a
,2
]
is
V26
()
set
{
a
,2
}
is non
empty
finite
set
{
a
}
is non
empty
trivial
finite
1
-element
set
{
{
a
,2
}
,
{
a
}
}
is non
empty
finite
V49
()
set
(
power
(
INT.Ring
p
)
)
.
[
a
,2
]
is
set
a
*
a
is
left_add-cancelable
right_add-cancelable
add-cancelable
right_complementable
Element
of the
carrier
of
(
INT.Ring
p
)
the
multF
of
(
INT.Ring
p
)
is
Relation-like
[:
the
carrier
of
(
INT.Ring
p
)
, the
carrier
of
(
INT.Ring
p
)
:]
-defined
the
carrier
of
(
INT.Ring
p
)
-valued
Function-like
quasi_total
finite
Element
of
bool
[:
[:
the
carrier
of
(
INT.Ring
p
)
, the
carrier
of
(
INT.Ring
p
)
:]
, the
carrier
of
(
INT.Ring
p
)
:]
[:
the
carrier
of
(
INT.Ring
p
)
, the
carrier
of
(
INT.Ring
p
)
:]
is non
empty
finite
set
[:
[:
the
carrier
of
(
INT.Ring
p
)
, the
carrier
of
(
INT.Ring
p
)
:]
, the
carrier
of
(
INT.Ring
p
)
:]
is non
empty
finite
set
bool
[:
[:
the
carrier
of
(
INT.Ring
p
)
, the
carrier
of
(
INT.Ring
p
)
:]
, the
carrier
of
(
INT.Ring
p
)
:]
is non
empty
finite
V49
()
set
the
multF
of
(
INT.Ring
p
)
.
(
a
,
a
) is
left_add-cancelable
right_add-cancelable
add-cancelable
right_complementable
Element
of the
carrier
of
(
INT.Ring
p
)
[
a
,
a
]
is
V26
()
set
{
a
,
a
}
is non
empty
finite
set
{
{
a
,
a
}
,
{
a
}
}
is non
empty
finite
V49
()
set
the
multF
of
(
INT.Ring
p
)
.
[
a
,
a
]
is
set
p
is non
empty
V4
()
V5
()
V6
()
V10
()
V11
()
V12
()
integer
V14
()
ext-real
positive
non
negative
finite
cardinal
set
INT.Ring
p
is non
empty
non
degenerated
non
trivial
finite
left_add-cancelable
right_add-cancelable
add-cancelable
right_complementable
almost_left_invertible
strict
unital
associative
commutative
Euclidian
right-distributive
left-distributive
right_unital
well-unital
distributive
left_unital
Abelian
add-associative
right_zeroed
()
doubleLoopStr
Segm
p
is
V117
()
V118
()
V119
()
V120
()
V121
()
V122
()
Element
of
bool
NAT
addint
p
is
Relation-like
[:
(
Segm
p
)
,
(
Segm
p
)
:]
-defined
Segm
p
-valued
Function-like
quasi_total
V35
()
V36
()
V37
()
V38
()
Element
of
bool
[:
[:
(
Segm
p
)
,
(
Segm
p
)
:]
,
(
Segm
p
)
:]
[:
(
Segm
p
)
,
(
Segm
p
)
:]
is
RAT
-valued
INT
-valued
V35
()
V36
()
V37
()
V38
()
set
[:
[:
(
Segm
p
)
,
(
Segm
p
)
:]
,
(
Segm
p
)
:]
is
RAT
-valued
INT
-valued
V35
()
V36
()
V37
()
V38
()
set
bool
[:
[:
(
Segm
p
)
,
(
Segm
p
)
:]
,
(
Segm
p
)
:]
is non
empty
set
multint
p
is
Relation-like
[:
(
Segm
p
)
,
(
Segm
p
)
:]
-defined
Segm
p
-valued
Function-like
quasi_total
V35
()
V36
()
V37
()
V38
()
Element
of
bool
[:
[:
(
Segm
p
)
,
(
Segm
p
)
:]
,
(
Segm
p
)
:]
K633
(1,
(
Segm
p
)
) is
V4
()
V5
()
V6
()
V10
()
V11
()
V12
()
integer
ext-real
non
negative
finite
cardinal
V113
()
Element
of
Segm
p
K633
(
0
,
(
Segm
p
)
) is
V4
()
V5
()
V6
()
V10
()
V11
()
V12
()
integer
ext-real
non
negative
finite
cardinal
V113
()
Element
of
Segm
p
doubleLoopStr
(#
(
Segm
p
)
,
(
addint
p
)
,
(
multint
p
)
,
K633
(1,
(
Segm
p
)
),
K633
(
0
,
(
Segm
p
)
) #) is
strict
doubleLoopStr
the
carrier
of
(
INT.Ring
p
)
is non
empty
non
trivial
finite
set
a
is
left_add-cancelable
right_add-cancelable
add-cancelable
right_complementable
Element
of the
carrier
of
(
INT.Ring
p
)
a
|^
2 is
left_add-cancelable
right_add-cancelable
add-cancelable
right_complementable
Element
of the
carrier
of
(
INT.Ring
p
)
power
(
INT.Ring
p
)
is
Relation-like
[:
the
carrier
of
(
INT.Ring
p
)
,
NAT
:]
-defined
the
carrier
of
(
INT.Ring
p
)
-valued
Function-like
quasi_total
Element
of
bool
[:
[:
the
carrier
of
(
INT.Ring
p
)
,
NAT
:]
, the
carrier
of
(
INT.Ring
p
)
:]
[:
the
carrier
of
(
INT.Ring
p
)
,
NAT
:]
is non
empty
non
trivial
RAT
-valued
INT
-valued
V35
()
V36
()
V37
()
V38
() non
finite
set
[:
[:
the
carrier
of
(
INT.Ring
p
)
,
NAT
:]
, the
carrier
of
(
INT.Ring
p
)
:]
is non
empty
non
trivial
non
finite
set
bool
[:
[:
the
carrier
of
(
INT.Ring
p
)
,
NAT
:]
, the
carrier
of
(
INT.Ring
p
)
:]
is non
empty
non
trivial
non
finite
set
(
power
(
INT.Ring
p
)
)
.
(
a
,2) is
set
[
a
,2
]
is
V26
()
set
{
a
,2
}
is non
empty
finite
set
{
a
}
is non
empty
trivial
finite
1
-element
set
{
{
a
,2
}
,
{
a
}
}
is non
empty
finite
V49
()
set
(
power
(
INT.Ring
p
)
)
.
[
a
,2
]
is
set
a
*
a
is
left_add-cancelable
right_add-cancelable
add-cancelable
right_complementable
Element
of the
carrier
of
(
INT.Ring
p
)
the
multF
of
(
INT.Ring
p
)
is
Relation-like
[:
the
carrier
of
(
INT.Ring
p
)
, the
carrier
of
(
INT.Ring
p
)
:]
-defined
the
carrier
of
(
INT.Ring
p
)
-valued
Function-like
quasi_total
finite
Element
of
bool
[:
[:
the
carrier
of
(
INT.Ring
p
)
, the
carrier
of
(
INT.Ring
p
)
:]
, the
carrier
of
(
INT.Ring
p
)
:]
[:
the
carrier
of
(
INT.Ring
p
)
, the
carrier
of
(
INT.Ring
p
)
:]
is non
empty
finite
set
[:
[:
the
carrier
of
(
INT.Ring
p
)
, the
carrier
of
(
INT.Ring
p
)
:]
, the
carrier
of
(
INT.Ring
p
)
:]
is non
empty
finite
set
bool
[:
[:
the
carrier
of
(
INT.Ring
p
)
, the
carrier
of
(
INT.Ring
p
)
:]
, the
carrier
of
(
INT.Ring
p
)
:]
is non
empty
finite
V49
()
set
the
multF
of
(
INT.Ring
p
)
.
(
a
,
a
) is
left_add-cancelable
right_add-cancelable
add-cancelable
right_complementable
Element
of the
carrier
of
(
INT.Ring
p
)
[
a
,
a
]
is
V26
()
set
{
a
,
a
}
is non
empty
finite
set
{
{
a
,
a
}
,
{
a
}
}
is non
empty
finite
V49
()
set
the
multF
of
(
INT.Ring
p
)
.
[
a
,
a
]
is
set
p
is
V4
()
V5
()
V6
()
V10
()
V11
()
V12
()
integer
ext-real
non
negative
finite
cardinal
set
a
is
V4
()
V5
()
V6
()
V10
()
V11
()
V12
()
integer
ext-real
non
negative
finite
cardinal
set
p
|^
a
is
V4
()
V5
()
V6
()
V10
()
V11
()
V12
()
integer
ext-real
non
negative
finite
cardinal
set
b
is non
empty
V4
()
V5
()
V6
()
V10
()
V11
()
V12
()
integer
V14
()
ext-real
positive
non
negative
finite
cardinal
set
INT.Ring
b
is non
empty
non
degenerated
non
trivial
finite
left_add-cancelable
right_add-cancelable
add-cancelable
right_complementable
almost_left_invertible
strict
unital
associative
commutative
Euclidian
right-distributive
left-distributive
right_unital
well-unital
distributive
left_unital
Abelian
add-associative
right_zeroed
()
doubleLoopStr
Segm
b
is
V117
()
V118
()
V119
()
V120
()
V121
()
V122
()
Element
of
bool
NAT
addint
b
is
Relation-like
[:
(
Segm
b
)
,
(
Segm
b
)
:]
-defined
Segm
b
-valued
Function-like
quasi_total
V35
()
V36
()
V37
()
V38
()
Element
of
bool
[:
[:
(
Segm
b
)
,
(
Segm
b
)
:]
,
(
Segm
b
)
:]
[:
(
Segm
b
)
,
(
Segm
b
)
:]
is
RAT
-valued
INT
-valued
V35
()
V36
()
V37
()
V38
()
set
[:
[:
(
Segm
b
)
,
(
Segm
b
)
:]
,
(
Segm
b
)
:]
is
RAT
-valued
INT
-valued
V35
()
V36
()
V37
()
V38
()
set
bool
[:
[:
(
Segm
b
)
,
(
Segm
b
)
:]
,
(
Segm
b
)
:]
is non
empty
set
multint
b
is
Relation-like
[:
(
Segm
b
)
,
(
Segm
b
)
:]
-defined
Segm
b
-valued
Function-like
quasi_total
V35
()
V36
()
V37
()
V38
()
Element
of
bool
[:
[:
(
Segm
b
)
,
(
Segm
b
)
:]
,
(
Segm
b
)
:]
K633
(1,
(
Segm
b
)
) is
V4
()
V5
()
V6
()
V10
()
V11
()
V12
()
integer
ext-real
non
negative
finite
cardinal
V113
()
Element
of
Segm
b
K633
(
0
,
(
Segm
b
)
) is
V4
()
V5
()
V6
()
V10
()
V11
()
V12
()
integer
ext-real
non
negative
finite
cardinal
V113
()
Element
of
Segm
b
doubleLoopStr
(#
(
Segm
b
)
,
(
addint
b
)
,
(
multint
b
)
,
K633
(1,
(
Segm
b
)
),
K633
(
0
,
(
Segm
b
)
) #) is
strict
doubleLoopStr
the
carrier
of
(
INT.Ring
b
)
is non
empty
non
trivial
finite
set
p
mod
b
is
V4
()
V5
()
V6
()
V10
()
V11
()
V12
()
integer
ext-real
non
negative
finite
cardinal
V113
()
V117
()
V118
()
V119
()
V120
()
V121
()
V122
()
Element
of
NAT
(
p
|^
a
)
mod
b
is
V4
()
V5
()
V6
()
V10
()
V11
()
V12
()
integer
ext-real
non
negative
finite
cardinal
V113
()
V117
()
V118
()
V119
()
V120
()
V121
()
V122
()
Element
of
NAT
L
is
left_add-cancelable
right_add-cancelable
add-cancelable
right_complementable
Element
of the
carrier
of
(
INT.Ring
b
)
L
|^
a
is
left_add-cancelable
right_add-cancelable
add-cancelable
right_complementable
Element
of the
carrier
of
(
INT.Ring
b
)
power
(
INT.Ring
b
)
is
Relation-like
[:
the
carrier
of
(
INT.Ring
b
)
,
NAT
:]
-defined
the
carrier
of
(
INT.Ring
b
)
-valued
Function-like
quasi_total
Element
of
bool
[:
[:
the
carrier
of
(
INT.Ring
b
)
,
NAT
:]
, the
carrier
of
(
INT.Ring
b
)
:]
[:
the
carrier
of
(
INT.Ring
b
)
,
NAT
:]
is non
empty
non
trivial
RAT
-valued
INT
-valued
V35
()
V36
()
V37
()
V38
() non
finite
set
[:
[:
the
carrier
of
(
INT.Ring
b
)
,
NAT
:]
, the
carrier
of
(
INT.Ring
b
)
:]
is non
empty
non
trivial
non
finite
set
bool
[:
[:
the
carrier
of
(
INT.Ring
b
)
,
NAT
:]
, the
carrier
of
(
INT.Ring
b
)
:]
is non
empty
non
trivial
non
finite
set
(
power
(
INT.Ring
b
)
)
.
(
L
,
a
) is
set
[
L
,
a
]
is
V26
()
set
{
L
,
a
}
is non
empty
finite
set
{
L
}
is non
empty
trivial
finite
1
-element
set
{
{
L
,
a
}
,
{
L
}
}
is non
empty
finite
V49
()
set
(
power
(
INT.Ring
b
)
)
.
[
L
,
a
]
is
set
L
|^
0
is
left_add-cancelable
right_add-cancelable
add-cancelable
right_complementable
Element
of the
carrier
of
(
INT.Ring
b
)
(
power
(
INT.Ring
b
)
)
.
(
L
,
0
) is
set
[
L
,
0
]
is
V26
()
set
{
L
,
0
}
is non
empty
finite
set
{
{
L
,
0
}
,
{
L
}
}
is non
empty
finite
V49
()
set
(
power
(
INT.Ring
b
)
)
.
[
L
,
0
]
is
set
1
mod
b
is
V4
()
V5
()
V6
()
V10
()
V11
()
V12
()
integer
ext-real
non
negative
finite
cardinal
V113
()
V117
()
V118
()
V119
()
V120
()
V121
()
V122
()
Element
of
NAT
p
|^
0
is
V4
()
V5
()
V6
()
V10
()
V11
()
V12
()
integer
ext-real
non
negative
finite
cardinal
set
(
p
|^
0
)
mod
b
is
V4
()
V5
()
V6
()
V10
()
V11
()
V12
()
integer
ext-real
non
negative
finite
cardinal
V113
()
V117
()
V118
()
V119
()
V120
()
V121
()
V122
()
Element
of
NAT
F
is
V4
()
V5
()
V6
()
V10
()
V11
()
V12
()
integer
ext-real
non
negative
finite
cardinal
set
(
power
(
INT.Ring
b
)
)
.
(
L
,
F
) is
set
[
L
,
F
]
is
V26
()
set
{
L
,
F
}
is non
empty
finite
set
{
{
L
,
F
}
,
{
L
}
}
is non
empty
finite
V49
()
set
(
power
(
INT.Ring
b
)
)
.
[
L
,
F
]
is
set
p
|^
F
is
V4
()
V5
()
V6
()
V10
()
V11
()
V12
()
integer
ext-real
non
negative
finite
cardinal
set
(
p
|^
F
)
mod
b
is
V4
()
V5
()
V6
()
V10
()
V11
()
V12
()
integer
ext-real
non
negative
finite
cardinal
V113
()
V117
()
V118
()
V119
()
V120
()
V121
()
V122
()
Element
of
NAT
F
-
0
is
V11
()
V12
()
integer
ext-real
non
negative
set
F
+
1 is non
empty
V4
()
V5
()
V6
()
V10
()
V11
()
V12
()
integer
ext-real
positive
non
negative
finite
cardinal
V113
()
V117
()
V118
()
V119
()
V120
()
V121
()
V122
()
Element
of
NAT
(
power
(
INT.Ring
b
)
)
.
(
L
,
(
F
+
1
)
) is
left_add-cancelable
right_add-cancelable
add-cancelable
right_complementable
Element
of the
carrier
of
(
INT.Ring
b
)
[
L
,
(
F
+
1
)
]
is
V26
()
set
{
L
,
(
F
+
1
)
}
is non
empty
finite
set
{
{
L
,
(
F
+
1
)
}
,
{
L
}
}
is non
empty
finite
V49
()
set
(
power
(
INT.Ring
b
)
)
.
[
L
,
(
F
+
1
)
]
is
set
pp
is
left_add-cancelable
right_add-cancelable
add-cancelable
right_complementable
Element
of the
carrier
of
(
INT.Ring
b
)
pp
*
L
is
left_add-cancelable
right_add-cancelable
add-cancelable
right_complementable
Element
of the
carrier
of
(
INT.Ring
b
)
the
multF
of
(
INT.Ring
b
)
is
Relation-like
[:
the
carrier
of
(
INT.Ring
b
)
, the
carrier
of
(
INT.Ring
b
)
:]
-defined
the
carrier
of
(
INT.Ring
b
)
-valued
Function-like
quasi_total
finite
Element
of
bool
[:
[:
the
carrier
of
(
INT.Ring
b
)
, the
carrier
of
(
INT.Ring
b
)
:]
, the
carrier
of
(
INT.Ring
b
)
:]
[:
the
carrier
of
(
INT.Ring
b
)
, the
carrier
of
(
INT.Ring
b
)
:]
is non
empty
finite
set
[:
[:
the
carrier
of
(
INT.Ring
b
)
, the
carrier
of
(
INT.Ring
b
)
:]
, the
carrier
of
(
INT.Ring
b
)
:]
is non
empty
finite
set
bool
[:
[:
the
carrier
of
(
INT.Ring
b
)
, the
carrier
of
(
INT.Ring
b
)
:]
, the
carrier
of
(
INT.Ring
b
)
:]
is non
empty
finite
V49
()
set
the
multF
of
(
INT.Ring
b
)
.
(
pp
,
L
) is
left_add-cancelable
right_add-cancelable
add-cancelable
right_complementable
Element
of the
carrier
of
(
INT.Ring
b
)
[
pp
,
L
]
is
V26
()
set
{
pp
,
L
}
is non
empty
finite
set
{
pp
}
is non
empty
trivial
finite
1
-element
set
{
{
pp
,
L
}
,
{
pp
}
}
is non
empty
finite
V49
()
set
the
multF
of
(
INT.Ring
b
)
.
[
pp
,
L
]
is
set
(
p
|^
F
)
*
p
is
V4
()
V5
()
V6
()
V10
()
V11
()
V12
()
integer
ext-real
non
negative
finite
cardinal
set
(
(
p
|^
F
)
*
p
)
mod
b
is
V4
()
V5
()
V6
()
V10
()
V11
()
V12
()
integer
ext-real
non
negative
finite
cardinal
V113
()
V117
()
V118
()
V119
()
V120
()
V121
()
V122
()
Element
of
NAT
p
|^
(
F
+
1
)
is
V4
()
V5
()
V6
()
V10
()
V11
()
V12
()
integer
ext-real
non
negative
finite
cardinal
set
(
p
|^
(
F
+
1
)
)
mod
b
is
V4
()
V5
()
V6
()
V10
()
V11
()
V12
()
integer
ext-real
non
negative
finite
cardinal
V113
()
V117
()
V118
()
V119
()
V120
()
V121
()
V122
()
Element
of
NAT
(
power
(
INT.Ring
b
)
)
.
(
L
,
(
F
+
1
)
) is
set
p
is non
empty
unital
associative
multMagma
the
carrier
of
p
is non
empty
set
a
is
Element
of the
carrier
of
p
b
is
V4
()
V5
()
V6
()
V10
()
V11
()
V12
()
integer
ext-real
non
negative
finite
cardinal
set
b
+
1 is non
empty
V4
()
V5
()
V6
()
V10
()
V11
()
V12
()
integer
ext-real
positive
non
negative
finite
cardinal
V113
()
V117
()
V118
()
V119
()
V120
()
V121
()
V122
()
Element
of
NAT
a
|^
(
b
+
1
)
is
Element
of the
carrier
of
p
power
p
is
Relation-like
[:
the
carrier
of
p
,
NAT
:]
-defined
the
carrier
of
p
-valued
Function-like
quasi_total
Element
of
bool
[:
[:
the
carrier
of
p
,
NAT
:]
, the
carrier
of
p
:]
[:
the
carrier
of
p
,
NAT
:]
is non
empty
non
trivial
RAT
-valued
INT
-valued
V35
()
V36
()
V37
()
V38
() non
finite
set
[:
[:
the
carrier
of
p
,
NAT
:]
, the
carrier
of
p
:]
is non
empty
non
trivial
non
finite
set
bool
[:
[:
the
carrier
of
p
,
NAT
:]
, the
carrier
of
p
:]
is non
empty
non
trivial
non
finite
set
(
power
p
)
.
(
a
,
(
b
+
1
)
) is
set
[
a
,
(
b
+
1
)
]
is
V26
()
set
{
a
,
(
b
+
1
)
}
is non
empty
finite
set
{
a
}
is non
empty
trivial
finite
1
-element
set
{
{
a
,
(
b
+
1
)
}
,
{
a
}
}
is non
empty
finite
V49
()
set
(
power
p
)
.
[
a
,
(
b
+
1
)
]
is
set
a
|^
b
is
Element
of the
carrier
of
p
(
power
p
)
.
(
a
,
b
) is
set
[
a
,
b
]
is
V26
()
set
{
a
,
b
}
is non
empty
finite
set
{
{
a
,
b
}
,
{
a
}
}
is non
empty
finite
V49
()
set
(
power
p
)
.
[
a
,
b
]
is
set
(
a
|^
b
)
*
a
is
Element
of the
carrier
of
p
the
multF
of
p
is
Relation-like
[:
the
carrier
of
p
, the
carrier
of
p
:]
-defined
the
carrier
of
p
-valued
Function-like
quasi_total
Element
of
bool
[:
[:
the
carrier
of
p
, the
carrier
of
p
:]
, the
carrier
of
p
:]
[:
the
carrier
of
p
, the
carrier
of
p
:]
is non
empty
set
[:
[:
the
carrier
of
p
, the
carrier
of
p
:]
, the
carrier
of
p
:]
is non
empty
set
bool
[:
[:
the
carrier
of
p
, the
carrier
of
p
:]
, the
carrier
of
p
:]
is non
empty
set
the
multF
of
p
.
(
(
a
|^
b
)
,
a
) is
Element
of the
carrier
of
p
[
(
a
|^
b
)
,
a
]
is
V26
()
set
{
(
a
|^
b
)
,
a
}
is non
empty
finite
set
{
(
a
|^
b
)
}
is non
empty
trivial
finite
1
-element
set
{
{
(
a
|^
b
)
,
a
}
,
{
(
a
|^
b
)
}
}
is non
empty
finite
V49
()
set
the
multF
of
p
.
[
(
a
|^
b
)
,
a
]
is
set
a
|^
1 is
Element
of the
carrier
of
p
(
power
p
)
.
(
a
,1) is
set
[
a
,1
]
is
V26
()
set
{
a
,1
}
is non
empty
finite
set
{
{
a
,1
}
,
{
a
}
}
is non
empty
finite
V49
()
set
(
power
p
)
.
[
a
,1
]
is
set
(
a
|^
b
)
*
(
a
|^
1
)
is
Element
of the
carrier
of
p
the
multF
of
p
.
(
(
a
|^
b
)
,
(
a
|^
1
)
) is
Element
of the
carrier
of
p
[
(
a
|^
b
)
,
(
a
|^
1
)
]
is
V26
()
set
{
(
a
|^
b
)
,
(
a
|^
1
)
}
is non
empty
finite
set
{
{
(
a
|^
b
)
,
(
a
|^
1
)
}
,
{
(
a
|^
b
)
}
}
is non
empty
finite
V49
()
set
the
multF
of
p
.
[
(
a
|^
b
)
,
(
a
|^
1
)
]
is
set
p
is
V4
()
V5
()
V6
()
V10
()
V11
()
V12
()
integer
ext-real
non
negative
finite
cardinal
set
a
is non
empty
V4
()
V5
()
V6
()
V10
()
V11
()
V12
()
integer
V14
()
ext-real
positive
non
negative
finite
cardinal
set
INT.Ring
a
is non
empty
non
degenerated
non
trivial
finite
left_add-cancelable
right_add-cancelable
add-cancelable
right_complementable
almost_left_invertible
strict
unital
associative
commutative
Euclidian
right-distributive
left-distributive
right_unital
well-unital
distributive
left_unital
Abelian
add-associative
right_zeroed
()
doubleLoopStr
Segm
a
is
V117
()
V118
()
V119
()
V120
()
V121
()
V122
()
Element
of
bool
NAT
addint
a
is
Relation-like
[:
(
Segm
a
)
,
(
Segm
a
)
:]
-defined
Segm
a
-valued
Function-like
quasi_total
V35
()
V36
()
V37
()
V38
()
Element
of
bool
[:
[:
(
Segm
a
)
,
(
Segm
a
)
:]
,
(
Segm
a
)
:]
[:
(
Segm
a
)
,
(
Segm
a
)
:]
is
RAT
-valued
INT
-valued
V35
()
V36
()
V37
()
V38
()
set
[:
[:
(
Segm
a
)
,
(
Segm
a
)
:]
,
(
Segm
a
)
:]
is
RAT
-valued
INT
-valued
V35
()
V36
()
V37
()
V38
()
set
bool
[:
[:
(
Segm
a
)
,
(
Segm
a
)
:]
,
(
Segm
a
)
:]
is non
empty
set
multint
a
is
Relation-like
[:
(
Segm
a
)
,
(
Segm
a
)
:]
-defined
Segm
a
-valued
Function-like
quasi_total
V35
()
V36
()
V37
()
V38
()
Element
of
bool
[:
[:
(
Segm
a
)
,
(
Segm
a
)
:]
,
(
Segm
a
)
:]
K633
(1,
(
Segm
a
)
) is
V4
()
V5
()
V6
()
V10
()
V11
()
V12
()
integer
ext-real
non
negative
finite
cardinal
V113
()
Element
of
Segm
a
K633
(
0
,
(
Segm
a
)
) is
V4
()
V5
()
V6
()
V10
()
V11
()
V12
()
integer
ext-real
non
negative
finite
cardinal
V113
()
Element
of
Segm
a
doubleLoopStr
(#
(
Segm
a
)
,
(
addint
a
)
,
(
multint
a
)
,
K633
(1,
(
Segm
a
)
),
K633
(
0
,
(
Segm
a
)
) #) is
strict
doubleLoopStr
the
carrier
of
(
INT.Ring
a
)
is non
empty
non
trivial
finite
set
b
is
left_add-cancelable
right_add-cancelable
add-cancelable
right_complementable
Element
of the
carrier
of
(
INT.Ring
a
)
b
|^
p
is
left_add-cancelable
right_add-cancelable
add-cancelable
right_complementable
Element
of the
carrier
of
(
INT.Ring
a
)
power
(
INT.Ring
a
)
is
Relation-like
[:
the
carrier
of
(
INT.Ring
a
)
,
NAT
:]
-defined
the
carrier
of
(
INT.Ring
a
)
-valued
Function-like
quasi_total
Element
of
bool
[:
[:
the
carrier
of
(
INT.Ring
a
)
,
NAT
:]
, the
carrier
of
(
INT.Ring
a
)
:]
[:
the
carrier
of
(
INT.Ring
a
)
,
NAT
:]
is non
empty
non
trivial
RAT
-valued
INT
-valued
V35
()
V36
()
V37
()
V38
() non
finite
set
[:
[:
the
carrier
of
(
INT.Ring
a
)
,
NAT
:]
, the
carrier
of
(
INT.Ring
a
)
:]
is non
empty
non
trivial
non
finite
set
bool
[:
[:
the
carrier
of
(
INT.Ring
a
)
,
NAT
:]
, the
carrier
of
(
INT.Ring
a
)
:]
is non
empty
non
trivial
non
finite
set
(
power
(
INT.Ring
a
)
)
.
(
b
,
p
) is
set
[
b
,
p
]
is
V26
()
set
{
b
,
p
}
is non
empty
finite
set
{
b
}
is non
empty
trivial
finite
1
-element
set
{
{
b
,
p
}
,
{
b
}
}
is non
empty
finite
V49
()
set
(
power
(
INT.Ring
a
)
)
.
[
b
,
p
]
is
set
L
is
V4
()
V5
()
V6
()
V10
()
V11
()
V12
()
integer
ext-real
non
negative
finite
cardinal
set
L
mod
a
is
V4
()
V5
()
V6
()
V10
()
V11
()
V12
()
integer
ext-real
non
negative
finite
cardinal
V113
()
V117
()
V118
()
V119
()
V120
()
V121
()
V122
()
Element
of
NAT
L
|^
p
is
V4
()
V5
()
V6
()
V10
()
V11
()
V12
()
integer
ext-real
non
negative
finite
cardinal
set
(
L
|^
p
)
mod
a
is
V4
()
V5
()
V6
()
V10
()
V11
()
V12
()
integer
ext-real
non
negative
finite
cardinal
V113
()
V117
()
V118
()
V119
()
V120
()
V121
()
V122
()
Element
of
NAT
p
is non
empty
left_add-cancelable
right_add-cancelable
add-cancelable
right_complementable
almost_left_invertible
unital
associative
commutative
Euclidian
right-distributive
left-distributive
right_unital
well-unital
distributive
left_unital
Abelian
add-associative
right_zeroed
doubleLoopStr
the
carrier
of
p
is non
empty
set
a
is
left_add-cancelable
right_add-cancelable
add-cancelable
right_complementable
Element
of the
carrier
of
p
a
*
a
is
left_add-cancelable
right_add-cancelable
add-cancelable
right_complementable
Element
of the
carrier
of
p
the
multF
of
p
is
Relation-like
[:
the
carrier
of
p
, the
carrier
of
p
:]
-defined
the
carrier
of
p
-valued
Function-like
quasi_total
Element
of
bool
[:
[:
the
carrier
of
p
, the
carrier
of
p
:]
, the
carrier
of
p
:]
[:
the
carrier
of
p
, the
carrier
of
p
:]
is non
empty
set
[:
[:
the
carrier
of
p
, the
carrier
of
p
:]
, the
carrier
of
p
:]
is non
empty
set
bool
[:
[:
the
carrier
of
p
, the
carrier
of
p
:]
, the
carrier
of
p
:]
is non
empty
set
the
multF
of
p
.
(
a
,
a
) is
left_add-cancelable
right_add-cancelable
add-cancelable
right_complementable
Element
of the
carrier
of
p
[
a
,
a
]
is
V26
()
set
{
a
,
a
}
is non
empty
finite
set
{
a
}
is non
empty
trivial
finite
1
-element
set
{
{
a
,
a
}
,
{
a
}
}
is non
empty
finite
V49
()
set
the
multF
of
p
.
[
a
,
a
]
is
set
b
is
left_add-cancelable
right_add-cancelable
add-cancelable
right_complementable
Element
of the
carrier
of
p
b
*
b
is
left_add-cancelable
right_add-cancelable
add-cancelable
right_complementable
Element
of the
carrier
of
p
the
multF
of
p
.
(
b
,
b
) is
left_add-cancelable
right_add-cancelable
add-cancelable
right_complementable
Element
of the
carrier
of
p
[
b
,
b
]
is
V26
()
set
{
b
,
b
}
is non
empty
finite
set
{
b
}
is non
empty
trivial
finite
1
-element
set
{
{
b
,
b
}
,
{
b
}
}
is non
empty
finite
V49
()
set
the
multF
of
p
.
[
b
,
b
]
is
set
-
b
is
left_add-cancelable
right_add-cancelable
add-cancelable
right_complementable
Element
of the
carrier
of
p
a
-
b
is
left_add-cancelable
right_add-cancelable
add-cancelable
right_complementable
Element
of the
carrier
of
p
a
+
(
-
b
)
is
left_add-cancelable
right_add-cancelable
add-cancelable
right_complementable
Element
of the
carrier
of
p
the
addF
of
p
is
Relation-like
[:
the
carrier
of
p
, the
carrier
of
p
:]
-defined
the
carrier
of
p
-valued
Function-like
quasi_total
Element
of
bool
[:
[:
the
carrier
of
p
, the
carrier
of
p
:]
, the
carrier
of
p
:]
the
addF
of
p
.
(
a
,
(
-
b
)
) is
left_add-cancelable
right_add-cancelable
add-cancelable
right_complementable
Element
of the
carrier
of
p
[
a
,
(
-
b
)
]
is
V26
()
set
{
a
,
(
-
b
)
}
is non
empty
finite
set
{
{
a
,
(
-
b
)
}
,
{
a
}
}
is non
empty
finite
V49
()
set
the
addF
of
p
.
[
a
,
(
-
b
)
]
is
set
a
+
b
is
left_add-cancelable
right_add-cancelable
add-cancelable
right_complementable
Element
of the
carrier
of
p
the
addF
of
p
.
(
a
,
b
) is
left_add-cancelable
right_add-cancelable
add-cancelable
right_complementable
Element
of the
carrier
of
p
[
a
,
b
]
is
V26
()
set
{
a
,
b
}
is non
empty
finite
set
{
{
a
,
b
}
,
{
a
}
}
is non
empty
finite
V49
()
set
the
addF
of
p
.
[
a
,
b
]
is
set
(
a
-
b
)
*
(
a
+
b
)
is
left_add-cancelable
right_add-cancelable
add-cancelable
right_complementable
Element
of the
carrier
of
p
the
multF
of
p
.
(
(
a
-
b
)
,
(
a
+
b
)
) is
left_add-cancelable
right_add-cancelable
add-cancelable
right_complementable
Element
of the
carrier
of
p
[
(
a
-
b
)
,
(
a
+
b
)
]
is
V26
()
set
{
(
a
-
b
)
,
(
a
+
b
)
}
is non
empty
finite
set
{
(
a
-
b
)
}
is non
empty
trivial
finite
1
-element
set
{
{
(
a
-
b
)
,
(
a
+
b
)
}
,
{
(
a
-
b
)
}
}
is non
empty
finite
V49
()
set
the
multF
of
p
.
[
(
a
-
b
)
,
(
a
+
b
)
]
is
set
(
a
-
b
)
*
a
is
left_add-cancelable
right_add-cancelable
add-cancelable
right_complementable
Element
of the
carrier
of
p
the
multF
of
p
.
(
(
a
-
b
)
,
a
) is
left_add-cancelable
right_add-cancelable
add-cancelable
right_complementable
Element
of the
carrier
of
p
[
(
a
-
b
)
,
a
]
is
V26
()
set
{
(
a
-
b
)
,
a
}
is non
empty
finite
set
{
{
(
a
-
b
)
,
a
}
,
{
(
a
-
b
)
}
}
is non
empty
finite
V49
()
set
the
multF
of
p
.
[
(
a
-
b
)
,
a
]
is
set
(
a
-
b
)
*
b
is
left_add-cancelable
right_add-cancelable
add-cancelable
right_complementable
Element
of the
carrier
of
p
the
multF
of
p
.
(
(
a
-
b
)
,
b
) is
left_add-cancelable
right_add-cancelable
add-cancelable
right_complementable
Element
of the
carrier
of
p
[
(
a
-
b
)
,
b
]
is
V26
()
set
{
(
a
-
b
)
,
b
}
is non
empty
finite
set
{
{
(
a
-
b
)
,
b
}
,
{
(
a
-
b
)
}
}
is non
empty
finite
V49
()
set
the
multF
of
p
.
[
(
a
-
b
)
,
b
]
is
set
(
(
a
-
b
)
*
a
)
+
(
(
a
-
b
)
*
b
)
is
left_add-cancelable
right_add-cancelable
add-cancelable
right_complementable
Element
of the
carrier
of
p
the
addF
of
p
.
(
(
(
a
-
b
)
*
a
)
,
(
(
a
-
b
)
*
b
)
) is
left_add-cancelable
right_add-cancelable
add-cancelable
right_complementable
Element
of the
carrier
of
p
[
(
(
a
-
b
)
*
a
)
,
(
(
a
-
b
)
*
b
)
]
is
V26
()
set
{
(
(
a
-
b
)
*
a
)
,
(
(
a
-
b
)
*
b
)
}
is non
empty
finite
set
{
(
(
a
-
b
)
*
a
)
}
is non
empty
trivial
finite
1
-element
set
{
{
(
(
a
-
b
)
*
a
)
,
(
(
a
-
b
)
*
b
)
}
,
{
(
(
a
-
b
)
*
a
)
}
}
is non
empty
finite
V49
()
set
the
addF
of
p
.
[
(
(
a
-
b
)
*
a
)
,
(
(
a
-
b
)
*
b
)
]
is
set
a
*
b
is
left_add-cancelable
right_add-cancelable
add-cancelable
right_complementable
Element
of the
carrier
of
p
the
multF
of
p
.
(
a
,
b
) is
left_add-cancelable
right_add-cancelable
add-cancelable
right_complementable
Element
of the
carrier
of
p
the
multF
of
p
.
[
a
,
b
]
is
set
(
a
*
a
)
-
(
a
*
b
)
is
left_add-cancelable
right_add-cancelable
add-cancelable
right_complementable
Element
of the
carrier
of
p
-
(
a
*
b
)
is
left_add-cancelable
right_add-cancelable
add-cancelable
right_complementable
Element
of the
carrier
of
p
(
a
*
a
)
+
(
-
(
a
*
b
)
)
is
left_add-cancelable
right_add-cancelable
add-cancelable
right_complementable
Element
of the
carrier
of
p
the
addF
of
p
.
(
(
a
*
a
)
,
(
-
(
a
*
b
)
)
) is
left_add-cancelable
right_add-cancelable
add-cancelable
right_complementable
Element
of the
carrier
of
p
[
(
a
*
a
)
,
(
-
(
a
*
b
)
)
]
is
V26
()
set
{
(
a
*
a
)
,
(
-
(
a
*
b
)
)
}
is non
empty
finite
set
{
(
a
*
a
)
}
is non
empty
trivial
finite
1
-element
set
{
{
(
a
*
a
)
,
(
-
(
a
*
b
)
)
}
,
{
(
a
*
a
)
}
}
is non
empty
finite
V49
()
set
the
addF
of
p
.
[
(
a
*
a
)
,
(
-
(
a
*
b
)
)
]
is
set
(
(
a
*
a
)
-
(
a
*
b
)
)
+
(
(
a
-
b
)
*
b
)
is
left_add-cancelable
right_add-cancelable
add-cancelable
right_complementable
Element
of the
carrier
of
p
the
addF
of
p
.
(
(
(
a
*
a
)
-
(
a
*
b
)
)
,
(
(
a
-
b
)
*
b
)
) is
left_add-cancelable
right_add-cancelable
add-cancelable
right_complementable
Element
of the
carrier
of
p
[
(
(
a
*
a
)
-
(
a
*
b
)
)
,
(
(
a
-
b
)
*
b
)
]
is
V26
()
set
{
(
(
a
*
a
)
-
(
a
*
b
)
)
,
(
(
a
-
b
)
*
b
)
}
is non
empty
finite
set
{
(
(
a
*
a
)
-
(
a
*
b
)
)
}
is non
empty
trivial
finite
1
-element
set
{
{
(
(
a
*
a
)
-
(
a
*
b
)
)
,
(
(
a
-
b
)
*
b
)
}
,
{
(
(
a
*
a
)
-
(
a
*
b
)
)
}
}
is non
empty
finite
V49
()
set
the
addF
of
p
.
[
(
(
a
*
a
)
-
(
a
*
b
)
)
,
(
(
a
-
b
)
*
b
)
]
is
set
b
*
a
is
left_add-cancelable
right_add-cancelable
add-cancelable
right_complementable
Element
of the
carrier
of
p
the
multF
of
p
.
(
b
,
a
) is
left_add-cancelable
right_add-cancelable
add-cancelable
right_complementable
Element
of the
carrier
of
p
[
b
,
a
]
is
V26
()
set
{
b
,
a
}
is non
empty
finite
set
{
{
b
,
a
}
,
{
b
}
}
is non
empty
finite
V49
()
set
the
multF
of
p
.
[
b
,
a
]
is
set
(
b
*
a
)
-
(
b
*
b
)
is
left_add-cancelable
right_add-cancelable
add-cancelable
right_complementable
Element
of the
carrier
of
p
-
(
b
*
b
)
is
left_add-cancelable
right_add-cancelable
add-cancelable
right_complementable
Element
of the
carrier
of
p
(
b
*
a
)
+
(
-
(
b
*
b
)
)
is
left_add-cancelable
right_add-cancelable
add-cancelable
right_complementable
Element
of the
carrier
of
p
the
addF
of
p
.
(
(
b
*
a
)
,
(
-
(
b
*
b
)
)
) is
left_add-cancelable
right_add-cancelable
add-cancelable
right_complementable
Element
of the
carrier
of
p
[
(
b
*
a
)
,
(
-
(
b
*
b
)
)
]
is
V26
()
set
{
(
b
*
a
)
,
(
-
(
b
*
b
)
)
}
is non
empty
finite
set
{
(
b
*
a
)
}
is non
empty
trivial
finite
1
-element
set
{
{
(
b
*
a
)
,
(
-
(
b
*
b
)
)
}
,
{
(
b
*
a
)
}
}
is non
empty
finite
V49
()
set
the
addF
of
p
.
[
(
b
*
a
)
,
(
-
(
b
*
b
)
)
]
is
set
(
(
a
*
a
)
-
(
a
*
b
)
)
+
(
(
b
*
a
)
-
(
b
*
b
)
)
is
left_add-cancelable
right_add-cancelable
add-cancelable
right_complementable
Element
of the
carrier
of
p
the
addF
of
p
.
(
(
(
a
*
a
)
-
(
a
*
b
)
)
,
(
(
b
*
a
)
-
(
b
*
b
)
)
) is
left_add-cancelable
right_add-cancelable
add-cancelable
right_complementable
Element
of the
carrier
of
p
[
(
(
a
*
a
)
-
(
a
*
b
)
)
,
(
(
b
*
a
)
-
(
b
*
b
)
)
]
is
V26
()
set
{
(
(
a
*
a
)
-
(
a
*
b
)
)
,
(
(
b
*
a
)
-
(
b
*
b
)
)
}
is non
empty
finite
set
{
{
(
(
a
*
a
)
-
(
a
*
b
)
)
,
(
(
b
*
a
)
-
(
b
*
b
)
)
}
,
{
(
(
a
*
a
)
-
(
a
*
b
)
)
}
}
is non
empty
finite
V49
()
set
the
addF
of
p
.
[
(
(
a
*
a
)
-
(
a
*
b
)
)
,
(
(
b
*
a
)
-
(
b
*
b
)
)
]
is
set
(
(
a
*
a
)
-
(
a
*
b
)
)
+
(
b
*
a
)
is
left_add-cancelable
right_add-cancelable
add-cancelable
right_complementable
Element
of the
carrier
of
p
the
addF
of
p
.
(
(
(
a
*
a
)
-
(
a
*
b
)
)
,
(
b
*
a
)
) is
left_add-cancelable
right_add-cancelable
add-cancelable
right_complementable
Element
of the
carrier
of
p
[
(
(
a
*
a
)
-
(
a
*
b
)
)
,
(
b
*
a
)
]
is
V26
()
set
{
(
(
a
*
a
)
-
(
a
*
b
)
)
,
(
b
*
a
)
}
is non
empty
finite
set
{
{
(
(
a
*
a
)
-
(
a
*
b
)
)
,
(
b
*
a
)
}
,
{
(
(
a
*
a
)
-
(
a
*
b
)
)
}
}
is non
empty
finite
V49
()
set
the
addF
of
p
.
[
(
(
a
*
a
)
-
(
a
*
b
)
)
,
(
b
*
a
)
]
is
set
(
(
(
a
*
a
)
-
(
a
*
b
)
)
+
(
b
*
a
)
)
+
(
-
(
b
*
b
)
)
is
left_add-cancelable
right_add-cancelable
add-cancelable
right_complementable
Element
of the
carrier
of
p
the
addF
of
p
.
(
(
(
(
a
*
a
)
-
(
a
*
b
)
)
+
(
b
*
a
)
)
,
(
-
(
b
*
b
)
)
) is
left_add-cancelable
right_add-cancelable
add-cancelable
right_complementable
Element
of the
carrier
of
p
[
(
(
(
a
*
a
)
-
(
a
*
b
)
)
+
(
b
*
a
)
)
,
(
-
(
b
*
b
)
)
]
is
V26
()
set
{
(
(
(
a
*
a
)
-
(
a
*
b
)
)
+
(
b
*
a
)
)
,
(
-
(
b
*
b
)
)
}
is non
empty
finite
set
{
(
(
(
a
*
a
)
-
(
a
*
b
)
)
+
(
b
*
a
)
)
}
is non
empty
trivial
finite
1
-element
set
{
{
(
(
(
a
*
a
)
-
(
a
*
b
)
)
+
(
b
*
a
)
)
,
(
-
(
b
*
b
)
)
}
,
{
(
(
(
a
*
a
)
-
(
a
*
b
)
)
+
(
b
*
a
)
)
}
}
is non
empty
finite
V49
()
set
the
addF
of
p
.
[
(
(
(
a
*
a
)
-
(
a
*
b
)
)
+
(
b
*
a
)
)
,
(
-
(
b
*
b
)
)
]
is
set
(
-
(
a
*
b
)
)
+
(
b
*
a
)
is
left_add-cancelable
right_add-cancelable
add-cancelable
right_complementable
Element
of the
carrier
of
p
the
addF
of
p
.
(
(
-
(
a
*
b
)
)
,
(
b
*
a
)
) is
left_add-cancelable
right_add-cancelable
add-cancelable
right_complementable
Element
of the
carrier
of
p
[
(
-
(
a
*
b
)
)
,
(
b
*
a
)
]
is
V26
()
set
{
(
-
(
a
*
b
)
)
,
(
b
*
a
)
}
is non
empty
finite
set
{
(
-
(
a
*
b
)
)
}
is non
empty
trivial
finite
1
-element
set
{
{
(
-
(
a
*
b
)
)
,
(
b
*
a
)
}
,
{
(
-
(
a
*
b
)
)
}
}
is non
empty
finite
V49
()
set
the
addF
of
p
.
[
(
-
(
a
*
b
)
)
,
(
b
*
a
)
]
is
set
(
a
*
a
)
+
(
(
-
(
a
*
b
)
)
+
(
b
*
a
)
)
is
left_add-cancelable
right_add-cancelable
add-cancelable
right_complementable
Element
of the
carrier
of
p
the
addF
of
p
.
(
(
a
*
a
)
,
(
(
-
(
a
*
b
)
)
+
(
b
*
a
)
)
) is
left_add-cancelable
right_add-cancelable
add-cancelable
right_complementable
Element
of the
carrier
of
p
[
(
a
*
a
)
,
(
(
-
(
a
*
b
)
)
+
(
b
*
a
)
)
]
is
V26
()
set
{
(
a
*
a
)
,
(
(
-
(
a
*
b
)
)
+
(
b
*
a
)
)
}
is non
empty
finite
set
{
{
(
a
*
a
)
,
(
(
-
(
a
*
b
)
)
+
(
b
*
a
)
)
}
,
{
(
a
*
a
)
}
}
is non
empty
finite
V49
()
set
the
addF
of
p
.
[
(
a
*
a
)
,
(
(
-
(
a
*
b
)
)
+
(
b
*
a
)
)
]
is
set
(
(
a
*
a
)
+
(
(
-
(
a
*
b
)
)
+
(
b
*
a
)
)
)
+
(
-
(
b
*
b
)
)
is
left_add-cancelable
right_add-cancelable
add-cancelable
right_complementable
Element
of the
carrier
of
p
the
addF
of
p
.
(
(
(
a
*
a
)
+
(
(
-
(
a
*
b
)
)
+
(
b
*
a
)
)
)
,
(
-
(
b
*
b
)
)
) is
left_add-cancelable
right_add-cancelable
add-cancelable
right_complementable
Element
of the
carrier
of
p
[
(
(
a
*
a
)
+
(
(
-
(
a
*
b
)
)
+
(
b
*
a
)
)
)
,
(
-
(
b
*
b
)
)
]
is
V26
()
set
{
(
(
a
*
a
)
+
(
(
-
(
a
*
b
)
)
+
(
b
*
a
)
)
)
,
(
-
(
b
*
b
)
)
}
is non
empty
finite
set
{
(
(
a
*
a
)
+
(
(
-
(
a
*
b
)
)
+
(
b
*
a
)
)
)
}
is non
empty
trivial
finite
1
-element
set
{
{
(
(
a
*
a
)
+
(
(
-
(
a
*
b
)
)
+
(
b
*
a
)
)
)
,
(
-
(
b
*
b
)
)
}
,
{
(
(
a
*
a
)
+
(
(
-
(
a
*
b
)
)
+
(
b
*
a
)
)
)
}
}
is non
empty
finite
V49
()
set
the
addF
of
p
.
[
(
(
a
*
a
)
+
(
(
-
(
a
*
b
)
)
+
(
b
*
a
)
)
)
,
(
-
(
b
*
b
)
)
]
is
set
(
b
*
a
)
-
(
a
*
b
)
is
left_add-cancelable
right_add-cancelable
add-cancelable
right_complementable
Element
of the
carrier
of
p
(
b
*
a
)
+
(
-
(
a
*
b
)
)
is
left_add-cancelable
right_add-cancelable
add-cancelable
right_complementable
Element
of the
carrier
of
p
the
addF
of
p
.
(
(
b
*
a
)
,
(
-
(
a
*
b
)
)
) is
left_add-cancelable
right_add-cancelable
add-cancelable
right_complementable
Element
of the
carrier
of
p
[
(
b
*
a
)
,
(
-
(
a
*
b
)
)
]
is
V26
()
set
{
(
b
*
a
)
,
(
-
(
a
*
b
)
)
}
is non
empty
finite
set
{
{
(
b
*
a
)
,
(
-
(
a
*
b
)
)
}
,
{
(
b
*
a
)
}
}
is non
empty
finite
V49
()
set
the
addF
of
p
.
[
(
b
*
a
)
,
(
-
(
a
*
b
)
)
]
is
set
(
a
*
a
)
+
(
(
b
*
a
)
-
(
a
*
b
)
)
is
left_add-cancelable
right_add-cancelable
add-cancelable
right_complementable
Element
of the
carrier
of
p
the
addF
of
p
.
(
(
a
*
a
)
,
(
(
b
*
a
)
-
(
a
*
b
)
)
) is
left_add-cancelable
right_add-cancelable
add-cancelable
right_complementable
Element
of the
carrier
of
p
[
(
a
*
a
)
,
(
(
b
*
a
)
-
(
a
*
b
)
)
]
is
V26
()
set
{
(
a
*
a
)
,
(
(
b
*
a
)
-
(
a
*
b
)
)
}
is non
empty
finite
set
{
{
(
a
*
a
)
,
(
(
b
*
a
)
-
(
a
*
b
)
)
}
,
{
(
a
*
a
)
}
}
is non
empty
finite
V49
()
set
the
addF
of
p
.
[
(
a
*
a
)
,
(
(
b
*
a
)
-
(
a
*
b
)
)
]
is
set
(
(
a
*
a
)
+
(
(
b
*
a
)
-
(
a
*
b
)
)
)
+
(
-
(
b
*
b
)
)
is
left_add-cancelable
right_add-cancelable
add-cancelable
right_complementable
Element
of the
carrier
of
p
the
addF
of
p
.
(
(
(
a
*
a
)
+
(
(
b
*
a
)
-
(
a
*
b
)
)
)
,
(
-
(
b
*
b
)
)
) is
left_add-cancelable
right_add-cancelable
add-cancelable
right_complementable
Element
of the
carrier
of
p
[
(
(
a
*
a
)
+
(
(
b
*
a
)
-
(
a
*
b
)
)
)
,
(
-
(
b
*
b
)
)
]
is
V26
()
set
{
(
(
a
*
a
)
+
(
(
b
*
a
)
-
(
a
*
b
)
)
)
,
(
-
(
b
*
b
)
)
}
is non
empty
finite
set
{
(
(
a
*
a
)
+
(
(
b
*
a
)
-
(
a
*
b
)
)
)
}
is non
empty
trivial
finite
1
-element
set
{
{
(
(
a
*
a
)
+
(
(
b
*
a
)
-
(
a
*
b
)
)
)
,
(
-
(
b
*
b
)
)
}
,
{
(
(
a
*
a
)
+
(
(
b
*
a
)
-
(
a
*
b
)
)
)
}
}
is non
empty
finite
V49
()
set
the
addF
of
p
.
[
(
(
a
*
a
)
+
(
(
b
*
a
)
-
(
a
*
b
)
)
)
,
(
-
(
b
*
b
)
)
]
is
set
a
-
a
is
left_add-cancelable
right_add-cancelable
add-cancelable
right_complementable
Element
of the
carrier
of
p
-
a
is
left_add-cancelable
right_add-cancelable
add-cancelable
right_complementable
Element
of the
carrier
of
p
a
+
(
-
a
)
is
left_add-cancelable
right_add-cancelable
add-cancelable
right_complementable
Element
of the
carrier
of
p
the
addF
of
p
.
(
a
,
(
-
a
)
) is
left_add-cancelable
right_add-cancelable
add-cancelable
right_complementable
Element
of the
carrier
of
p
[
a
,
(
-
a
)
]
is
V26
()
set
{
a
,
(
-
a
)
}
is non
empty
finite
set
{
{
a
,
(
-
a
)
}
,
{
a
}
}
is non
empty
finite
V49
()
set
the
addF
of
p
.
[
a
,
(
-
a
)
]
is
set
(
a
-
a
)
*
b
is
left_add-cancelable
right_add-cancelable
add-cancelable
right_complementable
Element
of the
carrier
of
p
the
multF
of
p
.
(
(
a
-
a
)
,
b
) is
left_add-cancelable
right_add-cancelable
add-cancelable
right_complementable
Element
of the
carrier
of
p
[
(
a
-
a
)
,
b
]
is
V26
()
set
{
(
a
-
a
)
,
b
}
is non
empty
finite
set
{
(
a
-
a
)
}
is non
empty
trivial
finite
1
-element
set
{
{
(
a
-
a
)
,
b
}
,
{
(
a
-
a
)
}
}
is non
empty
finite
V49
()
set
the
multF
of
p
.
[
(
a
-
a
)
,
b
]
is
set
(
a
*
a
)
+
(
(
a
-
a
)
*
b
)
is
left_add-cancelable
right_add-cancelable
add-cancelable
right_complementable
Element
of the
carrier
of
p
the
addF
of
p
.
(
(
a
*
a
)
,
(
(
a
-
a
)
*
b
)
) is
left_add-cancelable
right_add-cancelable
add-cancelable
right_complementable
Element
of the
carrier
of
p
[
(
a
*
a
)
,
(
(
a
-
a
)
*
b
)
]
is
V26
()
set
{
(
a
*
a
)
,
(
(
a
-
a
)
*
b
)
}
is non
empty
finite
set
{
{
(
a
*
a
)
,
(
(
a
-
a
)
*
b
)
}
,
{
(
a
*
a
)
}
}
is non
empty
finite
V49
()
set
the
addF
of
p
.
[
(
a
*
a
)
,
(
(
a
-
a
)
*
b
)
]
is
set
(
(
a
*
a
)
+
(
(
a
-
a
)
*
b
)
)
+
(
-
(
b
*
b
)
)
is
left_add-cancelable
right_add-cancelable
add-cancelable
right_complementable
Element
of the
carrier
of
p
the
addF
of
p
.
(
(
(
a
*
a
)
+
(
(
a
-
a
)
*
b
)
)
,
(
-
(
b
*
b
)
)
) is
left_add-cancelable
right_add-cancelable
add-cancelable
right_complementable
Element
of the
carrier
of
p
[
(
(
a
*
a
)
+
(
(
a
-
a
)
*
b
)
)
,
(
-
(
b
*
b
)
)
]
is
V26
()
set
{
(
(
a
*
a
)
+
(
(
a
-
a
)
*
b
)
)
,
(
-
(
b
*
b
)
)
}
is non
empty
finite
set
{
(
(
a
*
a
)
+
(
(
a
-
a
)
*
b
)
)
}
is non
empty
trivial
finite
1
-element
set
{
{
(
(
a
*
a
)
+
(
(
a
-
a
)
*
b
)
)
,
(
-
(
b
*
b
)
)
}
,
{
(
(
a
*
a
)
+
(
(
a
-
a
)
*
b
)
)
}
}
is non
empty
finite
V49
()
set
the
addF
of
p
.
[
(
(
a
*
a
)
+
(
(
a
-
a
)
*
b
)
)
,
(
-
(
b
*
b
)
)
]
is
set
0.
p
is
V61
(
p
)
left_add-cancelable
right_add-cancelable
add-cancelable
right_complementable
Element
of the
carrier
of
p
the
ZeroF
of
p
is
left_add-cancelable
right_add-cancelable
add-cancelable
right_complementable
Element
of the
carrier
of
p
(
0.
p
)
*
b
is
left_add-cancelable
right_add-cancelable
add-cancelable
right_complementable
Element
of the
carrier
of
p
the
multF
of
p
.
(
(
0.
p
)
,
b
) is
left_add-cancelable
right_add-cancelable
add-cancelable
right_complementable
Element
of the
carrier
of
p
[
(
0.
p
)
,
b
]
is
V26
()
set
{
(
0.
p
)
,
b
}
is non
empty
finite
set
{
(
0.
p
)
}
is non
empty
trivial
finite
1
-element
set
{
{
(
0.
p
)
,
b
}
,
{
(
0.
p
)
}
}
is non
empty
finite
V49
()
set
the
multF
of
p
.
[
(
0.
p
)
,
b
]
is
set
(
a
*
a
)
+
(
(
0.
p
)
*
b
)
is
left_add-cancelable
right_add-cancelable
add-cancelable
right_complementable
Element
of the
carrier
of
p
the
addF
of
p
.
(
(
a
*
a
)
,
(
(
0.
p
)
*
b
)
) is
left_add-cancelable
right_add-cancelable
add-cancelable
right_complementable
Element
of the
carrier
of
p
[
(
a
*
a
)
,
(
(
0.
p
)
*
b
)
]
is
V26
()
set
{
(
a
*
a
)
,
(
(
0.
p
)
*
b
)
}
is non
empty
finite
set
{
{
(
a
*
a
)
,
(
(
0.
p
)
*
b
)
}
,
{
(
a
*
a
)
}
}
is non
empty
finite
V49
()
set
the
addF
of
p
.
[
(
a
*
a
)
,
(
(
0.
p
)
*
b
)
]
is
set
(
(
a
*
a
)
+
(
(
0.
p
)
*
b
)
)
-
(
b
*
b
)
is
left_add-cancelable
right_add-cancelable
add-cancelable
right_complementable
Element
of the
carrier
of
p
(
(
a
*
a
)
+
(
(
0.
p
)
*
b
)
)
+
(
-
(
b
*
b
)
)
is
left_add-cancelable
right_add-cancelable
add-cancelable
right_complementable
Element
of the
carrier
of
p
the
addF
of
p
.
(
(
(
a
*
a
)
+
(
(
0.
p
)
*
b
)
)
,
(
-
(
b
*
b
)
)
) is
left_add-cancelable
right_add-cancelable
add-cancelable
right_complementable
Element
of the
carrier
of
p
[
(
(
a
*
a
)
+
(
(
0.
p
)
*
b
)
)
,
(
-
(
b
*
b
)
)
]
is
V26
()
set
{
(
(
a
*
a
)
+
(
(
0.
p
)
*
b
)
)
,
(
-
(
b
*
b
)
)
}
is non
empty
finite
set
{
(
(
a
*
a
)
+
(
(
0.
p
)
*
b
)
)
}
is non
empty
trivial
finite
1
-element
set
{
{
(
(
a
*
a
)
+
(
(
0.
p
)
*
b
)
)
,
(
-
(
b
*
b
)
)
}
,
{
(
(
a
*
a
)
+
(
(
0.
p
)
*
b
)
)
}
}
is non
empty
finite
V49
()
set
the
addF
of
p
.
[
(
(
a
*
a
)
+
(
(
0.
p
)
*
b
)
)
,
(
-
(
b
*
b
)
)
]
is
set
(
a
*
a
)
+
(
0.
p
)
is
left_add-cancelable
right_add-cancelable
add-cancelable
right_complementable
Element
of the
carrier
of
p
the
addF
of
p
.
(
(
a
*
a
)
,
(
0.
p
)
) is
left_add-cancelable
right_add-cancelable
add-cancelable
right_complementable
Element
of the
carrier
of
p
[
(
a
*
a
)
,
(
0.
p
)
]
is
V26
()
set
{
(
a
*
a
)
,
(
0.
p
)
}
is non
empty
finite
set
{
{
(
a
*
a
)
,
(
0.
p
)
}
,
{
(
a
*
a
)
}
}
is non
empty
finite
V49
()
set
the
addF
of
p
.
[
(
a
*
a
)
,
(
0.
p
)
]
is
set
(
(
a
*
a
)
+
(
0.
p
)
)
-
(
b
*
b
)
is
left_add-cancelable
right_add-cancelable
add-cancelable
right_complementable
Element
of the
carrier
of
p
(
(
a
*
a
)
+
(
0.
p
)
)
+
(
-
(
b
*
b
)
)
is
left_add-cancelable
right_add-cancelable
add-cancelable
right_complementable
Element
of the
carrier
of
p
the
addF
of
p
.
(
(
(
a
*
a
)
+
(
0.
p
)
)
,
(
-
(
b
*
b
)
)
) is
left_add-cancelable
right_add-cancelable
add-cancelable
right_complementable
Element
of the
carrier
of
p
[
(
(
a
*
a
)
+
(
0.
p
)
)
,
(
-
(
b
*
b
)
)
]
is
V26
()
set
{
(
(
a
*
a
)
+
(
0.
p
)
)
,
(
-
(
b
*
b
)
)
}
is non
empty
finite
set
{
(
(
a
*
a
)
+
(
0.
p
)
)
}
is non
empty
trivial
finite
1
-element
set
{
{
(
(
a
*
a
)
+
(
0.
p
)
)
,
(
-
(
b
*
b
)
)
}
,
{
(
(
a
*
a
)
+
(
0.
p
)
)
}
}
is non
empty
finite
V49
()
set
the
addF
of
p
.
[
(
(
a
*
a
)
+
(
0.
p
)
)
,
(
-
(
b
*
b
)
)
]
is
set
(
a
*
a
)
-
(
b
*
b
)
is
left_add-cancelable
right_add-cancelable
add-cancelable
right_complementable
Element
of the
carrier
of
p
(
a
*
a
)
+
(
-
(
b
*
b
)
)
is
left_add-cancelable
right_add-cancelable
add-cancelable
right_complementable
Element
of the
carrier
of
p
the
addF
of
p
.
(
(
a
*
a
)
,
(
-
(
b
*
b
)
)
) is
left_add-cancelable
right_add-cancelable
add-cancelable
right_complementable
Element
of the
carrier
of
p
[
(
a
*
a
)
,
(
-
(
b
*
b
)
)
]
is
V26
()
set
{
(
a
*
a
)
,
(
-
(
b
*
b
)
)
}
is non
empty
finite
set
{
{
(
a
*
a
)
,
(
-
(
b
*
b
)
)
}
,
{
(
a
*
a
)
}
}
is non
empty
finite
V49
()
set
the
addF
of
p
.
[
(
a
*
a
)
,
(
-
(
b
*
b
)
)
]
is
set
p
is non
empty
V4
()
V5
()
V6
()
V10
()
V11
()
V12
()
integer
V14
()
ext-real
positive
non
negative
finite
cardinal
set
INT.Ring
p
is non
empty
non
degenerated
non
trivial
finite
left_add-cancelable
right_add-cancelable
add-cancelable
right_complementable
almost_left_invertible
strict
unital
associative
commutative
Euclidian
right-distributive
left-distributive
right_unital
well-unital
distributive
left_unital
Abelian
add-associative
right_zeroed
()
doubleLoopStr
Segm
p
is
V117
()
V118
()
V119
()
V120
()
V121
()
V122
()
Element
of
bool
NAT
addint
p
is
Relation-like
[:
(
Segm
p
)
,
(
Segm
p
)
:]
-defined
Segm
p
-valued
Function-like
quasi_total
V35
()
V36
()
V37
()
V38
()
Element
of
bool
[:
[:
(
Segm
p
)
,
(
Segm
p
)
:]
,
(
Segm
p
)
:]
[:
(
Segm
p
)
,
(
Segm
p
)
:]
is
RAT
-valued
INT
-valued
V35
()
V36
()
V37
()
V38
()
set
[:
[:
(
Segm
p
)
,
(
Segm
p
)
:]
,
(
Segm
p
)
:]
is
RAT
-valued
INT
-valued
V35
()
V36
()
V37
()
V38
()
set
bool
[:
[:
(
Segm
p
)
,
(
Segm
p
)
:]
,
(
Segm
p
)
:]
is non
empty
set
multint
p
is
Relation-like
[:
(
Segm
p
)
,
(
Segm
p
)
:]
-defined
Segm
p
-valued
Function-like
quasi_total
V35
()
V36
()
V37
()
V38
()
Element
of
bool
[:
[:
(
Segm
p
)
,
(
Segm
p
)
:]
,
(
Segm
p
)
:]
K633
(1,
(
Segm
p
)
) is
V4
()
V5
()
V6
()
V10
()
V11
()
V12
()
integer
ext-real
non
negative
finite
cardinal
V113
()
Element
of
Segm
p
K633
(
0
,
(
Segm
p
)
) is
V4
()
V5
()
V6
()
V10
()
V11
()
V12
()
integer
ext-real
non
negative
finite
cardinal
V113
()
Element
of
Segm
p
doubleLoopStr
(#
(
Segm
p
)
,
(
addint
p
)
,
(
multint
p
)
,
K633
(1,
(
Segm
p
)
),
K633
(
0
,
(
Segm
p
)
) #) is
strict
doubleLoopStr
the
carrier
of
(
INT.Ring
p
)
is non
empty
non
trivial
finite
set
0.
(
INT.Ring
p
)
is
V61
(
INT.Ring
p
)
left_add-cancelable
right_add-cancelable
add-cancelable
right_complementable
Element
of the
carrier
of
(
INT.Ring
p
)
the
ZeroF
of
(
INT.Ring
p
)
is
left_add-cancelable
right_add-cancelable
add-cancelable
right_complementable
Element
of the
carrier
of
(
INT.Ring
p
)
a
is
left_add-cancelable
right_add-cancelable
add-cancelable
right_complementable
Element
of the
carrier
of
(
INT.Ring
p
)
a
+
a
is
left_add-cancelable
right_add-cancelable
add-cancelable
right_complementable
Element
of the
carrier
of
(
INT.Ring
p
)
the
addF
of
(
INT.Ring
p
)
is
Relation-like
[:
the
carrier
of
(
INT.Ring
p
)
, the
carrier
of
(
INT.Ring
p
)
:]
-defined
the
carrier
of
(
INT.Ring
p
)
-valued
Function-like
quasi_total
finite
Element
of
bool
[:
[:
the
carrier
of
(
INT.Ring
p
)
, the
carrier
of
(
INT.Ring
p
)
:]
, the
carrier
of
(
INT.Ring
p
)
:]
[:
the
carrier
of
(
INT.Ring
p
)
, the
carrier
of
(
INT.Ring
p
)
:]
is non
empty
finite
set
[:
[:
the
carrier
of
(
INT.Ring
p
)
, the
carrier
of
(
INT.Ring
p
)
:]
, the
carrier
of
(
INT.Ring
p
)
:]
is non
empty
finite
set
bool
[:
[:
the
carrier
of
(
INT.Ring
p
)
, the
carrier
of
(
INT.Ring
p
)
:]
, the
carrier
of
(
INT.Ring
p
)
:]
is non
empty
finite
V49
()
set
the
addF
of
(
INT.Ring
p
)
.
(
a
,
a
) is
left_add-cancelable
right_add-cancelable
add-cancelable
right_complementable
Element
of the
carrier
of
(
INT.Ring
p
)
[
a
,
a
]
is
V26
()
set
{
a
,
a
}
is non
empty
finite
set
{
a
}
is non
empty
trivial
finite
1
-element
set
{
{
a
,
a
}
,
{
a
}
}
is non
empty
finite
V49
()
set
the
addF
of
(
INT.Ring
p
)
.
[
a
,
a
]
is
set
1.
(
INT.Ring
p
)
is
V61
(
INT.Ring
p
)
left_add-cancelable
right_add-cancelable
add-cancelable
right_complementable
Element
of the
carrier
of
(
INT.Ring
p
)
the
OneF
of
(
INT.Ring
p
)
is
left_add-cancelable
right_add-cancelable
add-cancelable
right_complementable
Element
of the
carrier
of
(
INT.Ring
p
)
1
+
1 is non
empty
V4
()
V5
()
V6
()
V10
()
V11
()
V12
()
integer
ext-real
positive
non
negative
finite
cardinal
V113
()
V117
()
V118
()
V119
()
V120
()
V121
()
V122
()
Element
of
NAT
(
1.
(
INT.Ring
p
)
)
+
(
1.
(
INT.Ring
p
)
)
is
left_add-cancelable
right_add-cancelable
add-cancelable
right_complementable
Element
of the
carrier
of
(
INT.Ring
p
)
the
addF
of
(
INT.Ring
p
)
.
(
(
1.
(
INT.Ring
p
)
)
,
(
1.
(
INT.Ring
p
)
)
) is
left_add-cancelable
right_add-cancelable
add-cancelable
right_complementable
Element
of the
carrier
of
(
INT.Ring
p
)
[
(
1.
(
INT.Ring
p
)
)
,
(
1.
(
INT.Ring
p
)
)
]
is
V26
()
set
{
(
1.
(
INT.Ring
p
)
)
,
(
1.
(
INT.Ring
p
)
)
}
is non
empty
finite
set
{
(
1.
(
INT.Ring
p
)
)
}
is non
empty
trivial
finite
1
-element
set
{
{
(
1.
(
INT.Ring
p
)
)
,
(
1.
(
INT.Ring
p
)
)
}
,
{
(
1.
(
INT.Ring
p
)
)
}
}
is non
empty
finite
V49
()
set
the
addF
of
(
INT.Ring
p
)
.
[
(
1.
(
INT.Ring
p
)
)
,
(
1.
(
INT.Ring
p
)
)
]
is
set
(
(
1.
(
INT.Ring
p
)
)
+
(
1.
(
INT.Ring
p
)
)
)
*
a
is
left_add-cancelable
right_add-cancelable
add-cancelable
right_complementable
Element
of the
carrier
of
(
INT.Ring
p
)
the
multF
of
(
INT.Ring
p
)
is
Relation-like
[:
the
carrier
of
(
INT.Ring
p
)
, the
carrier
of
(
INT.Ring
p
)
:]
-defined
the
carrier
of
(
INT.Ring
p
)
-valued
Function-like
quasi_total
finite
Element
of
bool
[:
[:
the
carrier
of
(
INT.Ring
p
)
, the
carrier
of
(
INT.Ring
p
)
:]
, the
carrier
of
(
INT.Ring
p
)
:]
the
multF
of
(
INT.Ring
p
)
.
(
(
(
1.
(
INT.Ring
p
)
)
+
(
1.
(
INT.Ring
p
)
)
)
,
a
) is
left_add-cancelable
right_add-cancelable
add-cancelable
right_complementable
Element
of the
carrier
of
(
INT.Ring
p
)
[
(
(
1.
(
INT.Ring
p
)
)
+
(
1.
(
INT.Ring
p
)
)
)
,
a
]
is
V26
()
set
{
(
(
1.
(
INT.Ring
p
)
)
+
(
1.
(
INT.Ring
p
)
)
)
,
a
}
is non
empty
finite
set
{
(
(
1.
(
INT.Ring
p
)
)
+
(
1.
(
INT.Ring
p
)
)
)
}
is non
empty
trivial
finite
1
-element
set
{
{
(
(
1.
(
INT.Ring
p
)
)
+
(
1.
(
INT.Ring
p
)
)
)
,
a
}
,
{
(
(
1.
(
INT.Ring
p
)
)
+
(
1.
(
INT.Ring
p
)
)
)
}
}
is non
empty
finite
V49
()
set
the
multF
of
(
INT.Ring
p
)
.
[
(
(
1.
(
INT.Ring
p
)
)
+
(
1.
(
INT.Ring
p
)
)
)
,
a
]
is
set
b
is
V4
()
V5
()
V6
()
V10
()
V11
()
V12
()
integer
ext-real
non
negative
finite
cardinal
V113
()
V117
()
V118
()
V119
()
V120
()
V121
()
V122
()
Element
of
NAT
2
*
b
is
V4
()
V5
()
V6
()
V10
()
V11
()
V12
()
integer
ext-real
non
negative
finite
cardinal
V113
()
V117
()
V118
()
V119
()
V120
()
V121
()
V122
()
Element
of
NAT
(
2
*
b
)
mod
p
is
V4
()
V5
()
V6
()
V10
()
V11
()
V12
()
integer
ext-real
non
negative
finite
cardinal
V113
()
V117
()
V118
()
V119
()
V120
()
V121
()
V122
()
Element
of
NAT
(
1.
(
INT.Ring
p
)
)
*
a
is
left_add-cancelable
right_add-cancelable
add-cancelable
right_complementable
Element
of the
carrier
of
(
INT.Ring
p
)
the
multF
of
(
INT.Ring
p
)
.
(
(
1.
(
INT.Ring
p
)
)
,
a
) is
left_add-cancelable
right_add-cancelable
add-cancelable
right_complementable
Element
of the
carrier
of
(
INT.Ring
p
)
[
(
1.
(
INT.Ring
p
)
)
,
a
]
is
V26
()
set
{
(
1.
(
INT.Ring
p
)
)
,
a
}
is non
empty
finite
set
{
{
(
1.
(
INT.Ring
p
)
)
,
a
}
,
{
(
1.
(
INT.Ring
p
)
)
}
}
is non
empty
finite
V49
()
set
the
multF
of
(
INT.Ring
p
)
.
[
(
1.
(
INT.Ring
p
)
)
,
a
]
is
set
(
(
1.
(
INT.Ring
p
)
)
*
a
)
+
a
is
left_add-cancelable
right_add-cancelable
add-cancelable
right_complementable
Element
of the
carrier
of
(
INT.Ring
p
)
the
addF
of
(
INT.Ring
p
)
.
(
(
(
1.
(
INT.Ring
p
)
)
*
a
)
,
a
) is
left_add-cancelable
right_add-cancelable
add-cancelable
right_complementable
Element
of the
carrier
of
(
INT.Ring
p
)
[
(
(
1.
(
INT.Ring
p
)
)
*
a
)
,
a
]
is
V26
()
set
{
(
(
1.
(
INT.Ring
p
)
)
*
a
)
,
a
}
is non
empty
finite
set
{
(
(
1.
(
INT.Ring
p
)
)
*
a
)
}
is non
empty
trivial
finite
1
-element
set
{
{
(
(
1.
(
INT.Ring
p
)
)
*
a
)
,
a
}
,
{
(
(
1.
(
INT.Ring
p
)
)
*
a
)
}
}
is non
empty
finite
V49
()
set
the
addF
of
(
INT.Ring
p
)
.
[
(
(
1.
(
INT.Ring
p
)
)
*
a
)
,
a
]
is
set
(
(
1.
(
INT.Ring
p
)
)
*
a
)
+
(
(
1.
(
INT.Ring
p
)
)
*
a
)
is
left_add-cancelable
right_add-cancelable
add-cancelable
right_complementable
Element
of the
carrier
of
(
INT.Ring
p
)
the
addF
of
(
INT.Ring
p
)
.
(
(
(
1.
(
INT.Ring
p
)
)
*
a
)
,
(
(
1.
(
INT.Ring
p
)
)
*
a
)
) is
left_add-cancelable
right_add-cancelable
add-cancelable
right_complementable
Element
of the
carrier
of
(
INT.Ring
p
)
[
(
(
1.
(
INT.Ring
p
)
)
*
a
)
,
(
(
1.
(
INT.Ring
p
)
)
*
a
)
]
is
V26
()
set
{
(
(
1.
(
INT.Ring
p
)
)
*
a
)
,
(
(
1.
(
INT.Ring
p
)
)
*
a
)
}
is non
empty
finite
set
{
{
(
(
1.
(
INT.Ring
p
)
)
*
a
)
,
(
(
1.
(
INT.Ring
p
)
)
*
a
)
}
,
{
(
(
1.
(
INT.Ring
p
)
)
*
a
)
}
}
is non
empty
finite
V49
()
set
the
addF
of
(
INT.Ring
p
)
.
[
(
(
1.
(
INT.Ring
p
)
)
*
a
)
,
(
(
1.
(
INT.Ring
p
)
)
*
a
)
]
is
set
(
2
*
b
)
div
p
is
V4
()
V5
()
V6
()
V10
()
V11
()
V12
()
integer
ext-real
non
negative
finite
cardinal
V113
()
V117
()
V118
()
V119
()
V120
()
V121
()
V122
()
Element
of
NAT
(
(
2
*
b
)
div
p
)
*
p
is
V4
()
V5
()
V6
()
V10
()
V11
()
V12
()
integer
ext-real
non
negative
finite
cardinal
V113
()
V117
()
V118
()
V119
()
V120
()
V121
()
V122
()
Element
of
NAT
(
2
*
b
)
-
(
(
(
2
*
b
)
div
p
)
*
p
)
is
V11
()
V12
()
integer
ext-real
set
b
div
p
is
V4
()
V5
()
V6
()
V10
()
V11
()
V12
()
integer
ext-real
non
negative
finite
cardinal
V113
()
V117
()
V118
()
V119
()
V120
()
V121
()
V122
()
Element
of
NAT
p
*
(
b
div
p
)
is
V4
()
V5
()
V6
()
V10
()
V11
()
V12
()
integer
ext-real
non
negative
finite
cardinal
V113
()
V117
()
V118
()
V119
()
V120
()
V121
()
V122
()
Element
of
NAT
(
b
div
p
)
*
p
is
V4
()
V5
()
V6
()
V10
()
V11
()
V12
()
integer
ext-real
non
negative
finite
cardinal
V113
()
V117
()
V118
()
V119
()
V120
()
V121
()
V122
()
Element
of
NAT
b
-
(
(
b
div
p
)
*
p
)
is
V11
()
V12
()
integer
ext-real
set
b
mod
p
is
V4
()
V5
()
V6
()
V10
()
V11
()
V12
()
integer
ext-real
non
negative
finite
cardinal
V113
()
V117
()
V118
()
V119
()
V120
()
V121
()
V122
()
Element
of
NAT
p
is
V4
()
V5
()
V6
()
V10
()
V11
()
V12
()
integer
ext-real
non
negative
finite
cardinal
set
a
is non
empty
V4
()
V5
()
V6
()
V10
()
V11
()
V12
()
integer
V14
()
ext-real
positive
non
negative
finite
cardinal
set
INT.Ring
a
is non
empty
non
degenerated
non
trivial
finite
left_add-cancelable
right_add-cancelable
add-cancelable
right_complementable
almost_left_invertible
strict
unital
associative
commutative
Euclidian
right-distributive
left-distributive
right_unital
well-unital
distributive
left_unital
Abelian
add-associative
right_zeroed
()
doubleLoopStr
Segm
a
is
V117
()
V118
()
V119
()
V120
()
V121
()
V122
()
Element
of
bool
NAT
addint
a
is
Relation-like
[:
(
Segm
a
)
,
(
Segm
a
)
:]
-defined
Segm
a
-valued
Function-like
quasi_total
V35
()
V36
()
V37
()
V38
()
Element
of
bool
[:
[:
(
Segm
a
)
,
(
Segm
a
)
:]
,
(
Segm
a
)
:]
[:
(
Segm
a
)
,
(
Segm
a
)
:]
is
RAT
-valued
INT
-valued
V35
()
V36
()
V37
()
V38
()
set
[:
[:
(
Segm
a
)
,
(
Segm
a
)
:]
,
(
Segm
a
)
:]
is
RAT
-valued
INT
-valued
V35
()
V36
()
V37
()
V38
()
set
bool
[:
[:
(
Segm
a
)
,
(
Segm
a
)
:]
,
(
Segm
a
)
:]
is non
empty
set
multint
a
is
Relation-like
[:
(
Segm
a
)
,
(
Segm
a
)
:]
-defined
Segm
a
-valued
Function-like
quasi_total
V35
()
V36
()
V37
()
V38
()
Element
of
bool
[:
[:
(
Segm
a
)
,
(
Segm
a
)
:]
,
(
Segm
a
)
:]
K633
(1,
(
Segm
a
)
) is
V4
()
V5
()
V6
()
V10
()
V11
()
V12
()
integer
ext-real
non
negative
finite
cardinal
V113
()
Element
of
Segm
a
K633
(
0
,
(
Segm
a
)
) is
V4
()
V5
()
V6
()
V10
()
V11
()
V12
()
integer
ext-real
non
negative
finite
cardinal
V113
()
Element
of
Segm
a
doubleLoopStr
(#
(
Segm
a
)
,
(
addint
a
)
,
(
multint
a
)
,
K633
(1,
(
Segm
a
)
),
K633
(
0
,
(
Segm
a
)
) #) is
strict
doubleLoopStr
the
carrier
of
(
INT.Ring
a
)
is non
empty
non
trivial
finite
set
b
is
left_add-cancelable
right_add-cancelable
add-cancelable
right_complementable
Element
of the
carrier
of
(
INT.Ring
a
)
b
"
is
left_add-cancelable
right_add-cancelable
add-cancelable
right_complementable
Element
of the
carrier
of
(
INT.Ring
a
)
(
b
"
)
|^
p
is
left_add-cancelable
right_add-cancelable
add-cancelable
right_complementable
Element
of the
carrier
of
(
INT.Ring
a
)
power
(
INT.Ring
a
)
is
Relation-like
[:
the
carrier
of
(
INT.Ring
a
)
,
NAT
:]
-defined
the
carrier
of
(
INT.Ring
a
)
-valued
Function-like
quasi_total
Element
of
bool
[:
[:
the
carrier
of
(
INT.Ring
a
)
,
NAT
:]
, the
carrier
of
(
INT.Ring
a
)
:]
[:
the
carrier
of
(
INT.Ring
a
)
,
NAT
:]
is non
empty
non
trivial
RAT
-valued
INT
-valued
V35
()
V36
()
V37
()
V38
() non
finite
set
[:
[:
the
carrier
of
(
INT.Ring
a
)
,
NAT
:]
, the
carrier
of
(
INT.Ring
a
)
:]
is non
empty
non
trivial
non
finite
set
bool
[:
[:
the
carrier
of
(
INT.Ring
a
)
,
NAT
:]
, the
carrier
of
(
INT.Ring
a
)
:]
is non
empty
non
trivial
non
finite
set
(
power
(
INT.Ring
a
)
)
.
(
(
b
"
)
,
p
) is
set
[
(
b
"
)
,
p
]
is
V26
()
set
{
(
b
"
)
,
p
}
is non
empty
finite
set
{
(
b
"
)
}
is non
empty
trivial
finite
1
-element
set
{
{
(
b
"
)
,
p
}
,
{
(
b
"
)
}
}
is non
empty
finite
V49
()
set
(
power
(
INT.Ring
a
)
)
.
[
(
b
"
)
,
p
]
is
set
b
|^
p
is
left_add-cancelable
right_add-cancelable
add-cancelable
right_complementable
Element
of the
carrier
of
(
INT.Ring
a
)
(
power
(
INT.Ring
a
)
)
.
(
b
,
p
) is
set
[
b
,
p
]
is
V26
()
set
{
b
,
p
}
is non
empty
finite
set
{
b
}
is non
empty
trivial
finite
1
-element
set
{
{
b
,
p
}
,
{
b
}
}
is non
empty
finite
V49
()
set
(
power
(
INT.Ring
a
)
)
.
[
b
,
p
]
is
set
(
b
|^
p
)
"
is
left_add-cancelable
right_add-cancelable
add-cancelable
right_complementable
Element
of the
carrier
of
(
INT.Ring
a
)
L
is
V4
()
V5
()
V6
()
V10
()
V11
()
V12
()
integer
ext-real
non
negative
finite
cardinal
set
L
mod
a
is
V4
()
V5
()
V6
()
V10
()
V11
()
V12
()
integer
ext-real
non
negative
finite
cardinal
V113
()
V117
()
V118
()
V119
()
V120
()
V121
()
V122
()
Element
of
NAT
F
is
V4
()
V5
()
V6
()
V10
()
V11
()
V12
()
integer
ext-real
non
negative
finite
cardinal
set
F
mod
a
is
V4
()
V5
()
V6
()
V10
()
V11
()
V12
()
integer
ext-real
non
negative
finite
cardinal
V113
()
V117
()
V118
()
V119
()
V120
()
V121
()
V122
()
Element
of
NAT
L
|^
p
is
V4
()
V5
()
V6
()
V10
()
V11
()
V12
()
integer
ext-real
non
negative
finite
cardinal
set
(
L
|^
p
)
mod
a
is
V4
()
V5
()
V6
()
V10
()
V11
()
V12
()
integer
ext-real
non
negative
finite
cardinal
V113
()
V117
()
V118
()
V119
()
V120
()
V121
()
V122
()
Element
of
NAT
F
|^
p
is
V4
()
V5
()
V6
()
V10
()
V11
()
V12
()
integer
ext-real
non
negative
finite
cardinal
set
(
F
|^
p
)
mod
a
is
V4
()
V5
()
V6
()
V10
()
V11
()
V12
()
integer
ext-real
non
negative
finite
cardinal
V113
()
V117
()
V118
()
V119
()
V120
()
V121
()
V122
()
Element
of
NAT
L
*
F
is
V4
()
V5
()
V6
()
V10
()
V11
()
V12
()
integer
ext-real
non
negative
finite
cardinal
set
(
L
*
F
)
|^
p
is
V4
()
V5
()
V6
()
V10
()
V11
()
V12
()
integer
ext-real
non
negative
finite
cardinal
set
(
(
L
*
F
)
|^
p
)
mod
a
is
V4
()
V5
()
V6
()
V10
()
V11
()
V12
()
integer
ext-real
non
negative
finite
cardinal
V113
()
V117
()
V118
()
V119
()
V120
()
V121
()
V122
()
Element
of
NAT
(
L
|^
p
)
*
(
F
|^
p
)
is
V4
()
V5
()
V6
()
V10
()
V11
()
V12
()
integer
ext-real
non
negative
finite
cardinal
set
(
(
L
|^
p
)
*
(
F
|^
p
)
)
mod
a
is
V4
()
V5
()
V6
()
V10
()
V11
()
V12
()
integer
ext-real
non
negative
finite
cardinal
V113
()
V117
()
V118
()
V119
()
V120
()
V121
()
V122
()
Element
of
NAT
(
b
|^
p
)
*
(
(
b
"
)
|^
p
)
is
left_add-cancelable
right_add-cancelable
add-cancelable
right_complementable
Element
of the
carrier
of
(
INT.Ring
a
)
the
multF
of
(
INT.Ring
a
)
is
Relation-like
[:
the
carrier
of
(
INT.Ring
a
)
, the
carrier
of
(
INT.Ring
a
)
:]
-defined
the
carrier
of
(
INT.Ring
a
)
-valued
Function-like
quasi_total
finite
Element
of
bool
[:
[:
the
carrier
of
(
INT.Ring
a
)
, the
carrier
of
(
INT.Ring
a
)
:]
, the
carrier
of
(
INT.Ring
a
)
:]
[:
the
carrier
of
(
INT.Ring
a
)
, the
carrier
of
(
INT.Ring
a
)
:]
is non
empty
finite
set
[:
[:
the
carrier
of
(
INT.Ring
a
)
, the
carrier
of
(
INT.Ring
a
)
:]
, the
carrier
of
(
INT.Ring
a
)
:]
is non
empty
finite
set
bool
[:
[:
the
carrier
of
(
INT.Ring
a
)
, the
carrier
of
(
INT.Ring
a
)
:]
, the
carrier
of
(
INT.Ring
a
)
:]
is non
empty
finite
V49
()
set
the
multF
of
(
INT.Ring
a
)
.
(
(
b
|^
p
)
,
(
(
b
"
)
|^
p
)
) is
left_add-cancelable
right_add-cancelable
add-cancelable
right_complementable
Element
of the
carrier
of
(
INT.Ring
a
)
[
(
b
|^
p
)
,
(
(
b
"
)
|^
p
)
]
is
V26
()
set
{
(
b
|^
p
)
,
(
(
b
"
)
|^
p
)
}
is non
empty
finite
set
{
(
b
|^
p
)
}
is non
empty
trivial
finite
1
-element
set
{
{
(
b
|^
p
)
,
(
(
b
"
)
|^
p
)
}
,
{
(
b
|^
p
)
}
}
is non
empty
finite
V49
()
set
the
multF
of
(
INT.Ring
a
)
.
[
(
b
|^
p
)
,
(
(
b
"
)
|^
p
)
]
is
set
0.
(
INT.Ring
a
)
is
V61
(
INT.Ring
a
)
left_add-cancelable
right_add-cancelable
add-cancelable
right_complementable
Element
of the
carrier
of
(
INT.Ring
a
)
the
ZeroF
of
(
INT.Ring
a
)
is
left_add-cancelable
right_add-cancelable
add-cancelable
right_complementable
Element
of the
carrier
of
(
INT.Ring
a
)
(
b
"
)
*
b
is
left_add-cancelable
right_add-cancelable
add-cancelable
right_complementable
Element
of the
carrier
of
(
INT.Ring
a
)
the
multF
of
(
INT.Ring
a
)
.
(
(
b
"
)
,
b
) is
left_add-cancelable
right_add-cancelable
add-cancelable
right_complementable
Element
of the
carrier
of
(
INT.Ring
a
)
[
(
b
"
)
,
b
]
is
V26
()
set
{
(
b
"
)
,
b
}
is non
empty
finite
set
{
{
(
b
"
)
,
b
}
,
{
(
b
"
)
}
}
is non
empty
finite
V49
()
set
the
multF
of
(
INT.Ring
a
)
.
[
(
b
"
)
,
b
]
is
set
1.
(
INT.Ring
a
)
is
V61
(
INT.Ring
a
)
left_add-cancelable
right_add-cancelable
add-cancelable
right_complementable
Element
of the
carrier
of
(
INT.Ring
a
)
the
OneF
of
(
INT.Ring
a
)
is
left_add-cancelable
right_add-cancelable
add-cancelable
right_complementable
Element
of the
carrier
of
(
INT.Ring
a
)
(
L
*
F
)
mod
a
is
V4
()
V5
()
V6
()
V10
()
V11
()
V12
()
integer
ext-real
non
negative
finite
cardinal
V113
()
V117
()
V118
()
V119
()
V120
()
V121
()
V122
()
Element
of
NAT
(
(
b
"
)
|^
p
)
*
(
b
|^
p
)
is
left_add-cancelable
right_add-cancelable
add-cancelable
right_complementable
Element
of the
carrier
of
(
INT.Ring
a
)
the
multF
of
(
INT.Ring
a
)
.
(
(
(
b
"
)
|^
p
)
,
(
b
|^
p
)
) is
left_add-cancelable
right_add-cancelable
add-cancelable
right_complementable
Element
of the
carrier
of
(
INT.Ring
a
)
[
(
(
b
"
)
|^
p
)
,
(
b
|^
p
)
]
is
V26
()
set
{
(
(
b
"
)
|^
p
)
,
(
b
|^
p
)
}
is non
empty
finite
set
{
(
(
b
"
)
|^
p
)
}
is non
empty
trivial
finite
1
-element
set
{
{
(
(
b
"
)
|^
p
)
,
(
b
|^
p
)
}
,
{
(
(
b
"
)
|^
p
)
}
}
is non
empty
finite
V49
()
set
the
multF
of
(
INT.Ring
a
)
.
[
(
(
b
"
)
|^
p
)
,
(
b
|^
p
)
]
is
set
b
is non
empty
V4
()
V5
()
V6
()
V10
()
V11
()
V12
()
integer
V14
()
ext-real
positive
non
negative
finite
cardinal
set
INT.Ring
b
is non
empty
non
degenerated
non
trivial
finite
left_add-cancelable
right_add-cancelable
add-cancelable
right_complementable
almost_left_invertible
strict
unital
associative
commutative
Euclidian
right-distributive
left-distributive
right_unital
well-unital
distributive
left_unital
Abelian
add-associative
right_zeroed
()
doubleLoopStr
Segm
b
is
V117
()
V118
()
V119
()
V120
()
V121
()
V122
()
Element
of
bool
NAT
addint
b
is
Relation-like
[:
(
Segm
b
)
,
(
Segm
b
)
:]
-defined
Segm
b
-valued
Function-like
quasi_total
V35
()
V36
()
V37
()
V38
()
Element
of
bool
[:
[:
(
Segm
b
)
,
(
Segm
b
)
:]
,
(
Segm
b
)
:]
[:
(
Segm
b
)
,
(
Segm
b
)
:]
is
RAT
-valued
INT
-valued
V35
()
V36
()
V37
()
V38
()
set
[:
[:
(
Segm
b
)
,
(
Segm
b
)
:]
,
(
Segm
b
)
:]
is
RAT
-valued
INT
-valued
V35
()
V36
()
V37
()
V38
()
set
bool
[:
[:
(
Segm
b
)
,
(
Segm
b
)
:]
,
(
Segm
b
)
:]
is non
empty
set
multint
b
is
Relation-like
[:
(
Segm
b
)
,
(
Segm
b
)
:]
-defined
Segm
b
-valued
Function-like
quasi_total
V35
()
V36
()
V37
()
V38
()
Element
of
bool
[:
[:
(
Segm
b
)
,
(
Segm
b
)
:]
,
(
Segm
b
)
:]
K633
(1,
(
Segm
b
)
) is
V4
()
V5
()
V6
()
V10
()
V11
()
V12
()
integer
ext-real
non
negative
finite
cardinal
V113
()
Element
of
Segm
b
K633
(
0
,
(
Segm
b
)
) is
V4
()
V5
()
V6
()
V10
()
V11
()
V12
()
integer
ext-real
non
negative
finite
cardinal
V113
()
Element
of
Segm
b
doubleLoopStr
(#
(
Segm
b
)
,
(
addint
b
)
,
(
multint
b
)
,
K633
(1,
(
Segm
b
)
),
K633
(
0
,
(
Segm
b
)
) #) is
strict
doubleLoopStr
the
carrier
of
(
INT.Ring
b
)
is non
empty
non
trivial
finite
set
L
is
left_add-cancelable
right_add-cancelable
add-cancelable
right_complementable
Element
of the
carrier
of
(
INT.Ring
b
)
p
is
V4
()
V5
()
V6
()
V10
()
V11
()
V12
()
integer
ext-real
non
negative
finite
cardinal
set
L
|^
p
is
left_add-cancelable
right_add-cancelable
add-cancelable
right_complementable
Element
of the
carrier
of
(
INT.Ring
b
)
power
(
INT.Ring
b
)
is
Relation-like
[:
the
carrier
of
(
INT.Ring
b
)
,
NAT
:]
-defined
the
carrier
of
(
INT.Ring
b
)
-valued
Function-like
quasi_total
Element
of
bool
[:
[:
the
carrier
of
(
INT.Ring
b
)
,
NAT
:]
, the
carrier
of
(
INT.Ring
b
)
:]
[:
the
carrier
of
(
INT.Ring
b
)
,
NAT
:]
is non
empty
non
trivial
RAT
-valued
INT
-valued
V35
()
V36
()
V37
()
V38
() non
finite
set
[:
[:
the
carrier
of
(
INT.Ring
b
)
,
NAT
:]
, the
carrier
of
(
INT.Ring
b
)
:]
is non
empty
non
trivial
non
finite
set
bool
[:
[:
the
carrier
of
(
INT.Ring
b
)
,
NAT
:]
, the
carrier
of
(
INT.Ring
b
)
:]
is non
empty
non
trivial
non
finite
set
(
power
(
INT.Ring
b
)
)
.
(
L
,
p
) is
set
[
L
,
p
]
is
V26
()
set
{
L
,
p
}
is non
empty
finite
set
{
L
}
is non
empty
trivial
finite
1
-element
set
{
{
L
,
p
}
,
{
L
}
}
is non
empty
finite
V49
()
set
(
power
(
INT.Ring
b
)
)
.
[
L
,
p
]
is
set
a
is
V4
()
V5
()
V6
()
V10
()
V11
()
V12
()
integer
ext-real
non
negative
finite
cardinal
set
L
|^
a
is
left_add-cancelable
right_add-cancelable
add-cancelable
right_complementable
Element
of the
carrier
of
(
INT.Ring
b
)
(
power
(
INT.Ring
b
)
)
.
(
L
,
a
) is
set
[
L
,
a
]
is
V26
()
set
{
L
,
a
}
is non
empty
finite
set
{
{
L
,
a
}
,
{
L
}
}
is non
empty
finite
V49
()
set
(
power
(
INT.Ring
b
)
)
.
[
L
,
a
]
is
set
(
L
|^
p
)
*
(
L
|^
a
)
is
left_add-cancelable
right_add-cancelable
add-cancelable
right_complementable
Element
of the
carrier
of
(
INT.Ring
b
)
the
multF
of
(
INT.Ring
b
)
is
Relation-like
[:
the
carrier
of
(
INT.Ring
b
)
, the
carrier
of
(
INT.Ring
b
)
:]
-defined
the
carrier
of
(
INT.Ring
b
)
-valued
Function-like
quasi_total
finite
Element
of
bool
[:
[:
the
carrier
of
(
INT.Ring
b
)
, the
carrier
of
(
INT.Ring
b
)
:]
, the
carrier
of
(
INT.Ring
b
)
:]
[:
the
carrier
of
(
INT.Ring
b
)
, the
carrier
of
(
INT.Ring
b
)
:]
is non
empty
finite
set
[:
[:
the
carrier
of
(
INT.Ring
b
)
, the
carrier
of
(
INT.Ring
b
)
:]
, the
carrier
of
(
INT.Ring
b
)
:]
is non
empty
finite
set
bool
[:
[:
the
carrier
of
(
INT.Ring
b
)
, the
carrier
of
(
INT.Ring
b
)
:]
, the
carrier
of
(
INT.Ring
b
)
:]
is non
empty
finite
V49
()
set
the
multF
of
(
INT.Ring
b
)
.
(
(
L
|^
p
)
,
(
L
|^
a
)
) is
left_add-cancelable
right_add-cancelable
add-cancelable
right_complementable
Element
of the
carrier
of
(
INT.Ring
b
)
[
(
L
|^
p
)
,
(
L
|^
a
)
]
is
V26
()
set
{
(
L
|^
p
)
,
(
L
|^
a
)
}
is non
empty
finite
set
{
(
L
|^
p
)
}
is non
empty
trivial
finite
1
-element
set
{
{
(
L
|^
p
)
,
(
L
|^
a
)
}
,
{
(
L
|^
p
)
}
}
is non
empty
finite
V49
()
set
the
multF
of
(
INT.Ring
b
)
.
[
(
L
|^
p
)
,
(
L
|^
a
)
]
is
set
p
+
a
is
V4
()
V5
()
V6
()
V10
()
V11
()
V12
()
integer
ext-real
non
negative
finite
cardinal
set
L
|^
(
p
+
a
)
is
left_add-cancelable
right_add-cancelable
add-cancelable
right_complementable
Element
of the
carrier
of
(
INT.Ring
b
)
(
power
(
INT.Ring
b
)
)
.
(
L
,
(
p
+
a
)
) is
set
[
L
,
(
p
+
a
)
]
is
V26
()
set
{
L
,
(
p
+
a
)
}
is non
empty
finite
set
{
{
L
,
(
p
+
a
)
}
,
{
L
}
}
is non
empty
finite
V49
()
set
(
power
(
INT.Ring
b
)
)
.
[
L
,
(
p
+
a
)
]
is
set
b
is non
empty
V4
()
V5
()
V6
()
V10
()
V11
()
V12
()
integer
V14
()
ext-real
positive
non
negative
finite
cardinal
set
INT.Ring
b
is non
empty
non
degenerated
non
trivial
finite
left_add-cancelable
right_add-cancelable
add-cancelable
right_complementable
almost_left_invertible
strict
unital
associative
commutative
Euclidian
right-distributive
left-distributive
right_unital
well-unital
distributive
left_unital
Abelian
add-associative
right_zeroed
()
doubleLoopStr
Segm
b
is
V117
()
V118
()
V119
()
V120
()
V121
()
V122
()
Element
of
bool
NAT
addint
b
is
Relation-like
[:
(
Segm
b
)
,
(
Segm
b
)
:]
-defined
Segm
b
-valued
Function-like
quasi_total
V35
()
V36
()
V37
()
V38
()
Element
of
bool
[:
[:
(
Segm
b
)
,
(
Segm
b
)
:]
,
(
Segm
b
)
:]
[:
(
Segm
b
)
,
(
Segm
b
)
:]
is
RAT
-valued
INT
-valued
V35
()
V36
()
V37
()
V38
()
set
[:
[:
(
Segm
b
)
,
(
Segm
b
)
:]
,
(
Segm
b
)
:]
is
RAT
-valued
INT
-valued
V35
()
V36
()
V37
()
V38
()
set
bool
[:
[:
(
Segm
b
)
,
(
Segm
b
)
:]
,
(
Segm
b
)
:]
is non
empty
set
multint
b
is
Relation-like
[:
(
Segm
b
)
,
(
Segm
b
)
:]
-defined
Segm
b
-valued
Function-like
quasi_total
V35
()
V36
()
V37
()
V38
()
Element
of
bool
[:
[:
(
Segm
b
)
,
(
Segm
b
)
:]
,
(
Segm
b
)
:]
K633
(1,
(
Segm
b
)
) is
V4
()
V5
()
V6
()
V10
()
V11
()
V12
()
integer
ext-real
non
negative
finite
cardinal
V113
()
Element
of
Segm
b
K633
(
0
,
(
Segm
b
)
) is
V4
()
V5
()
V6
()
V10
()
V11
()
V12
()
integer
ext-real
non
negative
finite
cardinal
V113
()
Element
of
Segm
b
doubleLoopStr
(#
(
Segm
b
)
,
(
addint
b
)
,
(
multint
b
)
,
K633
(1,
(
Segm
b
)
),
K633
(
0
,
(
Segm
b
)
) #) is
strict
doubleLoopStr
the
carrier
of
(
INT.Ring
b
)
is non
empty
non
trivial
finite
set
L
is
left_add-cancelable
right_add-cancelable
add-cancelable
right_complementable
Element
of the
carrier
of
(
INT.Ring
b
)
p
is
V4
()
V5
()
V6
()
V10
()
V11
()
V12
()
integer
ext-real
non
negative
finite
cardinal
set
L
|^
p
is
left_add-cancelable
right_add-cancelable
add-cancelable
right_complementable
Element
of the
carrier
of
(
INT.Ring
b
)
power
(
INT.Ring
b
)
is
Relation-like
[:
the
carrier
of
(
INT.Ring
b
)
,
NAT
:]
-defined
the
carrier
of
(
INT.Ring
b
)
-valued
Function-like
quasi_total
Element
of
bool
[:
[:
the
carrier
of
(
INT.Ring
b
)
,
NAT
:]
, the
carrier
of
(
INT.Ring
b
)
:]
[:
the
carrier
of
(
INT.Ring
b
)
,
NAT
:]
is non
empty
non
trivial
RAT
-valued
INT
-valued
V35
()
V36
()
V37
()
V38
() non
finite
set
[:
[:
the
carrier
of
(
INT.Ring
b
)
,
NAT
:]
, the
carrier
of
(
INT.Ring
b
)
:]
is non
empty
non
trivial
non
finite
set
bool
[:
[:
the
carrier
of
(
INT.Ring
b
)
,
NAT
:]
, the
carrier
of
(
INT.Ring
b
)
:]
is non
empty
non
trivial
non
finite
set
(
power
(
INT.Ring
b
)
)
.
(
L
,
p
) is
set
[
L
,
p
]
is
V26
()
set
{
L
,
p
}
is non
empty
finite
set
{
L
}
is non
empty
trivial
finite
1
-element
set
{
{
L
,
p
}
,
{
L
}
}
is non
empty
finite
V49
()
set
(
power
(
INT.Ring
b
)
)
.
[
L
,
p
]
is
set
a
is
V4
()
V5
()
V6
()
V10
()
V11
()
V12
()
integer
ext-real
non
negative
finite
cardinal
set
(
L
|^
p
)
|^
a
is
left_add-cancelable
right_add-cancelable
add-cancelable
right_complementable
Element
of the
carrier
of
(
INT.Ring
b
)
(
power
(
INT.Ring
b
)
)
.
(
(
L
|^
p
)
,
a
) is
set
[
(
L
|^
p
)
,
a
]
is
V26
()
set
{
(
L
|^
p
)
,
a
}
is non
empty
finite
set
{
(
L
|^
p
)
}
is non
empty
trivial
finite
1
-element
set
{
{
(
L
|^
p
)
,
a
}
,
{
(
L
|^
p
)
}
}
is non
empty
finite
V49
()
set
(
power
(
INT.Ring
b
)
)
.
[
(
L
|^
p
)
,
a
]
is
set
p
*
a
is
V4
()
V5
()
V6
()
V10
()
V11
()
V12
()
integer
ext-real
non
negative
finite
cardinal
set
L
|^
(
p
*
a
)
is
left_add-cancelable
right_add-cancelable
add-cancelable
right_complementable
Element
of the
carrier
of
(
INT.Ring
b
)
(
power
(
INT.Ring
b
)
)
.
(
L
,
(
p
*
a
)
) is
set
[
L
,
(
p
*
a
)
]
is
V26
()
set
{
L
,
(
p
*
a
)
}
is non
empty
finite
set
{
{
L
,
(
p
*
a
)
}
,
{
L
}
}
is non
empty
finite
V49
()
set
(
power
(
INT.Ring
b
)
)
.
[
L
,
(
p
*
a
)
]
is
set
p
is non
empty
V4
()
V5
()
V6
()
V10
()
V11
()
V12
()
integer
V14
()
ext-real
positive
non
negative
finite
cardinal
set
INT.Ring
p
is non
empty
non
degenerated
non
trivial
finite
left_add-cancelable
right_add-cancelable
add-cancelable
right_complementable
almost_left_invertible
strict
unital
associative
commutative
Euclidian
right-distributive
left-distributive
right_unital
well-unital
distributive
left_unital
Abelian
add-associative
right_zeroed
()
doubleLoopStr
Segm
p
is
V117
()
V118
()
V119
()
V120
()
V121
()
V122
()
Element
of
bool
NAT
addint
p
is
Relation-like
[:
(
Segm
p
)
,
(
Segm
p
)
:]
-defined
Segm
p
-valued
Function-like
quasi_total
V35
()
V36
()
V37
()
V38
()
Element
of
bool
[:
[:
(
Segm
p
)
,
(
Segm
p
)
:]
,
(
Segm
p
)
:]
[:
(
Segm
p
)
,
(
Segm
p
)
:]
is
RAT
-valued
INT
-valued
V35
()
V36
()
V37
()
V38
()
set
[:
[:
(
Segm
p
)
,
(
Segm
p
)
:]
,
(
Segm
p
)
:]
is
RAT
-valued
INT
-valued
V35
()
V36
()
V37
()
V38
()
set
bool
[:
[:
(
Segm
p
)
,
(
Segm
p
)
:]
,
(
Segm
p
)
:]
is non
empty
set
multint
p
is
Relation-like
[:
(
Segm
p
)
,
(
Segm
p
)
:]
-defined
Segm
p
-valued
Function-like
quasi_total
V35
()
V36
()
V37
()
V38
()
Element
of
bool
[:
[:
(
Segm
p
)
,
(
Segm
p
)
:]
,
(
Segm
p
)
:]
K633
(1,
(
Segm
p
)
) is
V4
()
V5
()
V6
()
V10
()
V11
()
V12
()
integer
ext-real
non
negative
finite
cardinal
V113
()
Element
of
Segm
p
K633
(
0
,
(
Segm
p
)
) is
V4
()
V5
()
V6
()
V10
()
V11
()
V12
()
integer
ext-real
non
negative
finite
cardinal
V113
()
Element
of
Segm
p
doubleLoopStr
(#
(
Segm
p
)
,
(
addint
p
)
,
(
multint
p
)
,
K633
(1,
(
Segm
p
)
),
K633
(
0
,
(
Segm
p
)
) #) is
strict
doubleLoopStr
MultGroup
(
INT.Ring
p
)
is non
empty
finite
strict
Group-like
associative
multMagma
p
is non
empty
V4
()
V5
()
V6
()
V10
()
V11
()
V12
()
integer
V14
()
ext-real
positive
non
negative
finite
cardinal
set
INT.Ring
p
is non
empty
non
degenerated
non
trivial
finite
left_add-cancelable
right_add-cancelable
add-cancelable
right_complementable
almost_left_invertible
strict
unital
associative
commutative
Euclidian
right-distributive
left-distributive
right_unital
well-unital
distributive
left_unital
Abelian
add-associative
right_zeroed
()
doubleLoopStr
Segm
p
is
V117
()
V118
()
V119
()
V120
()
V121
()
V122
()
Element
of
bool
NAT
addint
p
is
Relation-like
[:
(
Segm
p
)
,
(
Segm
p
)
:]
-defined
Segm
p
-valued
Function-like
quasi_total
V35
()
V36
()
V37
()
V38
()
Element
of
bool
[:
[:
(
Segm
p
)
,
(
Segm
p
)
:]
,
(
Segm
p
)
:]
[:
(
Segm
p
)
,
(
Segm
p
)
:]
is
RAT
-valued
INT
-valued
V35
()
V36
()
V37
()
V38
()
set
[:
[:
(
Segm
p
)
,
(
Segm
p
)
:]
,
(
Segm
p
)
:]
is
RAT
-valued
INT
-valued
V35
()
V36
()
V37
()
V38
()
set
bool
[:
[:
(
Segm
p
)
,
(
Segm
p
)
:]
,
(
Segm
p
)
:]
is non
empty
set
multint
p
is
Relation-like
[:
(
Segm
p
)
,
(
Segm
p
)
:]
-defined
Segm
p
-valued
Function-like
quasi_total
V35
()
V36
()
V37
()
V38
()
Element
of
bool
[:
[:
(
Segm
p
)
,
(
Segm
p
)
:]
,
(
Segm
p
)
:]
K633
(1,
(
Segm
p
)
) is
V4
()
V5
()
V6
()
V10
()
V11
()
V12
()
integer
ext-real
non
negative
finite
cardinal
V113
()
Element
of
Segm
p
K633
(
0
,
(
Segm
p
)
) is
V4
()
V5
()
V6
()
V10
()
V11
()
V12
()
integer
ext-real
non
negative
finite
cardinal
V113
()
Element
of
Segm
p
doubleLoopStr
(#
(
Segm
p
)
,
(
addint
p
)
,
(
multint
p
)
,
K633
(1,
(
Segm
p
)
),
K633
(
0
,
(
Segm
p
)
) #) is
strict
doubleLoopStr
MultGroup
(
INT.Ring
p
)
is non
empty
finite
strict
Group-like
associative
cyclic
multMagma
the
carrier
of
(
MultGroup
(
INT.Ring
p
)
)
is non
empty
finite
set
the
carrier
of
(
INT.Ring
p
)
is non
empty
non
trivial
finite
set
a
is
Element
of the
carrier
of
(
MultGroup
(
INT.Ring
p
)
)
b
is
left_add-cancelable
right_add-cancelable
add-cancelable
right_complementable
Element
of the
carrier
of
(
INT.Ring
p
)
L
is
V4
()
V5
()
V6
()
V10
()
V11
()
V12
()
integer
ext-real
non
negative
finite
cardinal
set
a
|^
L
is
Element
of the
carrier
of
(
MultGroup
(
INT.Ring
p
)
)
power
(
MultGroup
(
INT.Ring
p
)
)
is
Relation-like
[:
the
carrier
of
(
MultGroup
(
INT.Ring
p
)
)
,
NAT
:]
-defined
the
carrier
of
(
MultGroup
(
INT.Ring
p
)
)
-valued
Function-like
quasi_total
Element
of
bool
[:
[:
the
carrier
of
(
MultGroup
(
INT.Ring
p
)
)
,
NAT
:]
, the
carrier
of
(
MultGroup
(
INT.Ring
p
)
)
:]
[:
the
carrier
of
(
MultGroup
(
INT.Ring
p
)
)
,
NAT
:]
is non
empty
non
trivial
RAT
-valued
INT
-valued
V35
()
V36
()
V37
()
V38
() non
finite
set
[:
[:
the
carrier
of
(
MultGroup
(
INT.Ring
p
)
)
,
NAT
:]
, the
carrier
of
(
MultGroup
(
INT.Ring
p
)
)
:]
is non
empty
non
trivial
non
finite
set
bool
[:
[:
the
carrier
of
(
MultGroup
(
INT.Ring
p
)
)
,
NAT
:]
, the
carrier
of
(
MultGroup
(
INT.Ring
p
)
)
:]
is non
empty
non
trivial
non
finite
set
(
power
(
MultGroup
(
INT.Ring
p
)
)
)
.
(
a
,
L
) is
set
[
a
,
L
]
is
V26
()
set
{
a
,
L
}
is non
empty
finite
set
{
a
}
is non
empty
trivial
finite
1
-element
set
{
{
a
,
L
}
,
{
a
}
}
is non
empty
finite
V49
()
set
(
power
(
MultGroup
(
INT.Ring
p
)
)
)
.
[
a
,
L
]
is
set
b
|^
L
is
left_add-cancelable
right_add-cancelable
add-cancelable
right_complementable
Element
of the
carrier
of
(
INT.Ring
p
)
power
(
INT.Ring
p
)
is
Relation-like
[:
the
carrier
of
(
INT.Ring
p
)
,
NAT
:]
-defined
the
carrier
of
(
INT.Ring
p
)
-valued
Function-like
quasi_total
Element
of
bool
[:
[:
the
carrier
of
(
INT.Ring
p
)
,
NAT
:]
, the
carrier
of
(
INT.Ring
p
)
:]
[:
the
carrier
of
(
INT.Ring
p
)
,
NAT
:]
is non
empty
non
trivial
RAT
-valued
INT
-valued
V35
()
V36
()
V37
()
V38
() non
finite
set
[:
[:
the
carrier
of
(
INT.Ring
p
)
,
NAT
:]
, the
carrier
of
(
INT.Ring
p
)
:]
is non
empty
non
trivial
non
finite
set
bool
[:
[:
the
carrier
of
(
INT.Ring
p
)
,
NAT
:]
, the
carrier
of
(
INT.Ring
p
)
:]
is non
empty
non
trivial
non
finite
set
(
power
(
INT.Ring
p
)
)
.
(
b
,
L
) is
set
[
b
,
L
]
is
V26
()
set
{
b
,
L
}
is non
empty
finite
set
{
b
}
is non
empty
trivial
finite
1
-element
set
{
{
b
,
L
}
,
{
b
}
}
is non
empty
finite
V49
()
set
(
power
(
INT.Ring
p
)
)
.
[
b
,
L
]
is
set
F
is
V4
()
V5
()
V6
()
V10
()
V11
()
V12
()
integer
ext-real
non
negative
finite
cardinal
set
a
|^
F
is
Element
of the
carrier
of
(
MultGroup
(
INT.Ring
p
)
)
(
power
(
MultGroup
(
INT.Ring
p
)
)
)
.
(
a
,
F
) is
set
[
a
,
F
]
is
V26
()
set
{
a
,
F
}
is non
empty
finite
set
{
{
a
,
F
}
,
{
a
}
}
is non
empty
finite
V49
()
set
(
power
(
MultGroup
(
INT.Ring
p
)
)
)
.
[
a
,
F
]
is
set
b
|^
F
is
left_add-cancelable
right_add-cancelable
add-cancelable
right_complementable
Element
of the
carrier
of
(
INT.Ring
p
)
(
power
(
INT.Ring
p
)
)
.
(
b
,
F
) is
set
[
b
,
F
]
is
V26
()
set
{
b
,
F
}
is non
empty
finite
set
{
{
b
,
F
}
,
{
b
}
}
is non
empty
finite
V49
()
set
(
power
(
INT.Ring
p
)
)
.
[
b
,
F
]
is
set
F
+
1 is non
empty
V4
()
V5
()
V6
()
V10
()
V11
()
V12
()
integer
ext-real
positive
non
negative
finite
cardinal
V113
()
V117
()
V118
()
V119
()
V120
()
V121
()
V122
()
Element
of
NAT
a
|^
(
F
+
1
)
is
Element
of the
carrier
of
(
MultGroup
(
INT.Ring
p
)
)
(
power
(
MultGroup
(
INT.Ring
p
)
)
)
.
(
a
,
(
F
+
1
)
) is
set
[
a
,
(
F
+
1
)
]
is
V26
()
set
{
a
,
(
F
+
1
)
}
is non
empty
finite
set
{
{
a
,
(
F
+
1
)
}
,
{
a
}
}
is non
empty
finite
V49
()
set
(
power
(
MultGroup
(
INT.Ring
p
)
)
)
.
[
a
,
(
F
+
1
)
]
is
set
b
|^
(
F
+
1
)
is
left_add-cancelable
right_add-cancelable
add-cancelable
right_complementable
Element
of the
carrier
of
(
INT.Ring
p
)
(
power
(
INT.Ring
p
)
)
.
(
b
,
(
F
+
1
)
) is
set
[
b
,
(
F
+
1
)
]
is
V26
()
set
{
b
,
(
F
+
1
)
}
is non
empty
finite
set
{
{
b
,
(
F
+
1
)
}
,
{
b
}
}
is non
empty
finite
V49
()
set
(
power
(
INT.Ring
p
)
)
.
[
b
,
(
F
+
1
)
]
is
set
(
a
|^
F
)
*
a
is
Element
of the
carrier
of
(
MultGroup
(
INT.Ring
p
)
)
the
multF
of
(
MultGroup
(
INT.Ring
p
)
)
is
Relation-like
[:
the
carrier
of
(
MultGroup
(
INT.Ring
p
)
)
, the
carrier
of
(
MultGroup
(
INT.Ring
p
)
)
:]
-defined
the
carrier
of
(
MultGroup
(
INT.Ring
p
)
)
-valued
Function-like
quasi_total
finite
Element
of
bool
[:
[:
the
carrier
of
(
MultGroup
(
INT.Ring
p
)
)
, the
carrier
of
(
MultGroup
(
INT.Ring
p
)
)
:]
, the
carrier
of
(
MultGroup
(
INT.Ring
p
)
)
:]
[:
the
carrier
of
(
MultGroup
(
INT.Ring
p
)
)
, the
carrier
of
(
MultGroup
(
INT.Ring
p
)
)
:]
is non
empty
finite
set
[:
[:
the
carrier
of
(
MultGroup
(
INT.Ring
p
)
)
, the
carrier
of
(
MultGroup
(
INT.Ring
p
)
)
:]
, the
carrier
of
(
MultGroup
(
INT.Ring
p
)
)
:]
is non
empty
finite
set
bool
[:
[:
the
carrier
of
(
MultGroup
(
INT.Ring
p
)
)
, the
carrier
of
(
MultGroup
(
INT.Ring
p
)
)
:]
, the
carrier
of
(
MultGroup
(
INT.Ring
p
)
)
:]
is non
empty
finite
V49
()
set
the
multF
of
(
MultGroup
(
INT.Ring
p
)
)
.
(
(
a
|^
F
)
,
a
) is
Element
of the
carrier
of
(
MultGroup
(
INT.Ring
p
)
)
[
(
a
|^
F
)
,
a
]
is
V26
()
set
{
(
a
|^
F
)
,
a
}
is non
empty
finite
set
{
(
a
|^
F
)
}
is non
empty
trivial
finite
1
-element
set
{
{
(
a
|^
F
)
,
a
}
,
{
(
a
|^
F
)
}
}
is non
empty
finite
V49
()
set
the
multF
of
(
MultGroup
(
INT.Ring
p
)
)
.
[
(
a
|^
F
)
,
a
]
is
set
(
b
|^
F
)
*
b
is
left_add-cancelable
right_add-cancelable
add-cancelable
right_complementable
Element
of the
carrier
of
(
INT.Ring
p
)
the
multF
of
(
INT.Ring
p
)
is
Relation-like
[:
the
carrier
of
(
INT.Ring
p
)
, the
carrier
of
(
INT.Ring
p
)
:]
-defined
the
carrier
of
(
INT.Ring
p
)
-valued
Function-like
quasi_total
finite
Element
of
bool
[:
[:
the
carrier
of
(
INT.Ring
p
)
, the
carrier
of
(
INT.Ring
p
)
:]
, the
carrier
of
(
INT.Ring
p
)
:]
[:
the
carrier
of
(
INT.Ring
p
)
, the
carrier
of
(
INT.Ring
p
)
:]
is non
empty
finite
set
[:
[:
the
carrier
of
(
INT.Ring
p
)
, the
carrier
of
(
INT.Ring
p
)
:]
, the
carrier
of
(
INT.Ring
p
)
:]
is non
empty
finite
set
bool
[:
[:
the
carrier
of
(
INT.Ring
p
)
, the
carrier
of
(
INT.Ring
p
)
:]
, the
carrier
of
(
INT.Ring
p
)
:]
is non
empty
finite
V49
()
set
the
multF
of
(
INT.Ring
p
)
.
(
(
b
|^
F
)
,
b
) is
left_add-cancelable
right_add-cancelable
add-cancelable
right_complementable
Element
of the
carrier
of
(
INT.Ring
p
)
[
(
b
|^
F
)
,
b
]
is
V26
()
set
{
(
b
|^
F
)
,
b
}
is non
empty
finite
set
{
(
b
|^
F
)
}
is non
empty
trivial
finite
1
-element
set
{
{
(
b
|^
F
)
,
b
}
,
{
(
b
|^
F
)
}
}
is non
empty
finite
V49
()
set
the
multF
of
(
INT.Ring
p
)
.
[
(
b
|^
F
)
,
b
]
is
set
a
|^
0
is
Element
of the
carrier
of
(
MultGroup
(
INT.Ring
p
)
)
(
power
(
MultGroup
(
INT.Ring
p
)
)
)
.
(
a
,
0
) is
set
[
a
,
0
]
is
V26
()
set
{
a
,
0
}
is non
empty
finite
set
{
{
a
,
0
}
,
{
a
}
}
is non
empty
finite
V49
()
set
(
power
(
MultGroup
(
INT.Ring
p
)
)
)
.
[
a
,
0
]
is
set
1_
(
MultGroup
(
INT.Ring
p
)
)
is
Element
of the
carrier
of
(
MultGroup
(
INT.Ring
p
)
)
1_
(
INT.Ring
p
)
is
left_add-cancelable
right_add-cancelable
add-cancelable
right_complementable
Element
of the
carrier
of
(
INT.Ring
p
)
1.
(
INT.Ring
p
)
is
V61
(
INT.Ring
p
)
left_add-cancelable
right_add-cancelable
add-cancelable
right_complementable
Element
of the
carrier
of
(
INT.Ring
p
)
the
OneF
of
(
INT.Ring
p
)
is
left_add-cancelable
right_add-cancelable
add-cancelable
right_complementable
Element
of the
carrier
of
(
INT.Ring
p
)
b
|^
0
is
left_add-cancelable
right_add-cancelable
add-cancelable
right_complementable
Element
of the
carrier
of
(
INT.Ring
p
)
(
power
(
INT.Ring
p
)
)
.
(
b
,
0
) is
set
[
b
,
0
]
is
V26
()
set
{
b
,
0
}
is non
empty
finite
set
{
{
b
,
0
}
,
{
b
}
}
is non
empty
finite
V49
()
set
(
power
(
INT.Ring
p
)
)
.
[
b
,
0
]
is
set
p
is non
empty
V4
()
V5
()
V6
()
V10
()
V11
()
V12
()
integer
V14
()
ext-real
positive
non
negative
finite
cardinal
set
INT.Ring
p
is non
empty
non
degenerated
non
trivial
finite
left_add-cancelable
right_add-cancelable
add-cancelable
right_complementable
almost_left_invertible
strict
unital
associative
commutative
Euclidian
right-distributive
left-distributive
right_unital
well-unital
distributive
left_unital
Abelian
add-associative
right_zeroed
()
doubleLoopStr
Segm
p
is
V117
()
V118
()
V119
()
V120
()
V121
()
V122
()
Element
of
bool
NAT
addint
p
is
Relation-like
[:
(
Segm
p
)
,
(
Segm
p
)
:]
-defined
Segm
p
-valued
Function-like
quasi_total
V35
()
V36
()
V37
()
V38
()
Element
of
bool
[:
[:
(
Segm
p
)
,
(
Segm
p
)
:]
,
(
Segm
p
)
:]
[:
(
Segm
p
)
,
(
Segm
p
)
:]
is
RAT
-valued
INT
-valued
V35
()
V36
()
V37
()
V38
()
set
[:
[:
(
Segm
p
)
,
(
Segm
p
)
:]
,
(
Segm
p
)
:]
is
RAT
-valued
INT
-valued
V35
()
V36
()
V37
()
V38
()
set
bool
[:
[:
(
Segm
p
)
,
(
Segm
p
)
:]
,
(
Segm
p
)
:]
is non
empty
set
multint
p
is
Relation-like
[:
(
Segm
p
)
,
(
Segm
p
)
:]
-defined
Segm
p
-valued
Function-like
quasi_total
V35
()
V36
()
V37
()
V38
()
Element
of
bool
[:
[:
(
Segm
p
)
,
(
Segm
p
)
:]
,
(
Segm
p
)
:]
K633
(1,
(
Segm
p
)
) is
V4
()
V5
()
V6
()
V10
()
V11
()
V12
()
integer
ext-real
non
negative
finite
cardinal
V113
()
Element
of
Segm
p
K633
(
0
,
(
Segm
p
)
) is
V4
()
V5
()
V6
()
V10
()
V11
()
V12
()
integer
ext-real
non
negative
finite
cardinal
V113
()
Element
of
Segm
p
doubleLoopStr
(#
(
Segm
p
)
,
(
addint
p
)
,
(
multint
p
)
,
K633
(1,
(
Segm
p
)
),
K633
(
0
,
(
Segm
p
)
) #) is
strict
doubleLoopStr
the
carrier
of
(
INT.Ring
p
)
is non
empty
non
trivial
finite
set
0.
(
INT.Ring
p
)
is
V61
(
INT.Ring
p
)
left_add-cancelable
right_add-cancelable
add-cancelable
right_complementable
Element
of the
carrier
of
(
INT.Ring
p
)
the
ZeroF
of
(
INT.Ring
p
)
is
left_add-cancelable
right_add-cancelable
add-cancelable
right_complementable
Element
of the
carrier
of
(
INT.Ring
p
)
MultGroup
(
INT.Ring
p
)
is non
empty
finite
strict
Group-like
associative
cyclic
multMagma
the
carrier
of
(
MultGroup
(
INT.Ring
p
)
)
is non
empty
finite
set
a
is
Element
of the
carrier
of
(
MultGroup
(
INT.Ring
p
)
)
b
is
left_add-cancelable
right_add-cancelable
add-cancelable
right_complementable
Element
of the
carrier
of
(
INT.Ring
p
)
L
is
left_add-cancelable
right_add-cancelable
add-cancelable
right_complementable
Element
of the
carrier
of
(
INT.Ring
p
)
{
(
0.
(
INT.Ring
p
)
)
}
is non
empty
trivial
finite
1
-element
Element
of
bool
the
carrier
of
(
INT.Ring
p
)
bool
the
carrier
of
(
INT.Ring
p
)
is non
empty
finite
V49
()
set
the
carrier
of
(
MultGroup
(
INT.Ring
p
)
)
\/
{
(
0.
(
INT.Ring
p
)
)
}
is non
empty
finite
set
F
is
Element
of the
carrier
of
(
MultGroup
(
INT.Ring
p
)
)
pp
is
V4
()
V5
()
V6
()
V10
()
V11
()
V12
()
integer
ext-real
non
negative
finite
cardinal
set
a
|^
pp
is
Element
of the
carrier
of
(
MultGroup
(
INT.Ring
p
)
)
power
(
MultGroup
(
INT.Ring
p
)
)
is
Relation-like
[:
the
carrier
of
(
MultGroup
(
INT.Ring
p
)
)
,
NAT
:]
-defined
the
carrier
of
(
MultGroup
(
INT.Ring
p
)
)
-valued
Function-like
quasi_total
Element
of
bool
[:
[:
the
carrier
of
(
MultGroup
(
INT.Ring
p
)
)
,
NAT
:]
, the
carrier
of
(
MultGroup
(
INT.Ring
p
)
)
:]
[:
the
carrier
of
(
MultGroup
(
INT.Ring
p
)
)
,
NAT
:]
is non
empty
non
trivial
RAT
-valued
INT
-valued
V35
()
V36
()
V37
()
V38
() non
finite
set
[:
[:
the
carrier
of
(
MultGroup
(
INT.Ring
p
)
)
,
NAT
:]
, the
carrier
of
(
MultGroup
(
INT.Ring
p
)
)
:]
is non
empty
non
trivial
non
finite
set
bool
[:
[:
the
carrier
of
(
MultGroup
(
INT.Ring
p
)
)
,
NAT
:]
, the
carrier
of
(
MultGroup
(
INT.Ring
p
)
)
:]
is non
empty
non
trivial
non
finite
set
(
power
(
MultGroup
(
INT.Ring
p
)
)
)
.
(
a
,
pp
) is
set
[
a
,
pp
]
is
V26
()
set
{
a
,
pp
}
is non
empty
finite
set
{
a
}
is non
empty
trivial
finite
1
-element
set
{
{
a
,
pp
}
,
{
a
}
}
is non
empty
finite
V49
()
set
(
power
(
MultGroup
(
INT.Ring
p
)
)
)
.
[
a
,
pp
]
is
set
FF
is
V4
()
V5
()
V6
()
V10
()
V11
()
V12
()
integer
ext-real
non
negative
finite
cardinal
set
b
|^
FF
is
left_add-cancelable
right_add-cancelable
add-cancelable
right_complementable
Element
of the
carrier
of
(
INT.Ring
p
)
power
(
INT.Ring
p
)
is
Relation-like
[:
the
carrier
of
(
INT.Ring
p
)
,
NAT
:]
-defined
the
carrier
of
(
INT.Ring
p
)
-valued
Function-like
quasi_total
Element
of
bool
[:
[:
the
carrier
of
(
INT.Ring
p
)
,
NAT
:]
, the
carrier
of
(
INT.Ring
p
)
:]
[:
the
carrier
of
(
INT.Ring
p
)
,
NAT
:]
is non
empty
non
trivial
RAT
-valued
INT
-valued
V35
()
V36
()
V37
()
V38
() non
finite
set
[:
[:
the
carrier
of
(
INT.Ring
p
)
,
NAT
:]
, the
carrier
of
(
INT.Ring
p
)
:]
is non
empty
non
trivial
non
finite
set
bool
[:
[:
the
carrier
of
(
INT.Ring
p
)
,
NAT
:]
, the
carrier
of
(
INT.Ring
p
)
:]
is non
empty
non
trivial
non
finite
set
(
power
(
INT.Ring
p
)
)
.
(
b
,
FF
) is
set
[
b
,
FF
]
is
V26
()
set
{
b
,
FF
}
is non
empty
finite
set
{
b
}
is non
empty
trivial
finite
1
-element
set
{
{
b
,
FF
}
,
{
b
}
}
is non
empty
finite
V49
()
set
(
power
(
INT.Ring
p
)
)
.
[
b
,
FF
]
is
set
L
is
left_add-cancelable
right_add-cancelable
add-cancelable
right_complementable
Element
of the
carrier
of
(
INT.Ring
p
)
p
is non
empty
V4
()
V5
()
V6
()
V10
()
V11
()
V12
()
integer
V14
()
ext-real
positive
non
negative
finite
cardinal
set
INT.Ring
p
is non
empty
non
degenerated
non
trivial
finite
left_add-cancelable
right_add-cancelable
add-cancelable
right_complementable
almost_left_invertible
strict
unital
associative
commutative
Euclidian
right-distributive
left-distributive
right_unital
well-unital
distributive
left_unital
Abelian
add-associative
right_zeroed
()
doubleLoopStr
Segm
p
is
V117
()
V118
()
V119
()
V120
()
V121
()
V122
()
Element
of
bool
NAT
addint
p
is
Relation-like
[:
(
Segm
p
)
,
(
Segm
p
)
:]
-defined
Segm
p
-valued
Function-like
quasi_total
V35
()
V36
()
V37
()
V38
()
Element
of
bool
[:
[:
(
Segm
p
)
,
(
Segm
p
)
:]
,
(
Segm
p
)
:]
[:
(
Segm
p
)
,
(
Segm
p
)
:]
is
RAT
-valued
INT
-valued
V35
()
V36
()
V37
()
V38
()
set
[:
[:
(
Segm
p
)
,
(
Segm
p
)
:]
,
(
Segm
p
)
:]
is
RAT
-valued
INT
-valued
V35
()
V36
()
V37
()
V38
()
set
bool
[:
[:
(
Segm
p
)
,
(
Segm
p
)
:]
,
(
Segm
p
)
:]
is non
empty
set
multint
p
is
Relation-like
[:
(
Segm
p
)
,
(
Segm
p
)
:]
-defined
Segm
p
-valued
Function-like
quasi_total
V35
()
V36
()
V37
()
V38
()
Element
of
bool
[:
[:
(
Segm
p
)
,
(
Segm
p
)
:]
,
(
Segm
p
)
:]
K633
(1,
(
Segm
p
)
) is
V4
()
V5
()
V6
()
V10
()
V11
()
V12
()
integer
ext-real
non
negative
finite
cardinal
V113
()
Element
of
Segm
p
K633
(
0
,
(
Segm
p
)
) is
V4
()
V5
()
V6
()
V10
()
V11
()
V12
()
integer
ext-real
non
negative
finite
cardinal
V113
()
Element
of
Segm
p
doubleLoopStr
(#
(
Segm
p
)
,
(
addint
p
)
,
(
multint
p
)
,
K633
(1,
(
Segm
p
)
),
K633
(
0
,
(
Segm
p
)
) #) is
strict
doubleLoopStr
the
carrier
of
(
INT.Ring
p
)
is non
empty
non
trivial
finite
set
p
is non
empty
V4
()
V5
()
V6
()
V10
()
V11
()
V12
()
integer
V14
()
ext-real
positive
non
negative
finite
cardinal
set
INT.Ring
p
is non
empty
non
degenerated
non
trivial
finite
left_add-cancelable
right_add-cancelable
add-cancelable
right_complementable
almost_left_invertible
strict
unital
associative
commutative
Euclidian
right-distributive
left-distributive
right_unital
well-unital
distributive
left_unital
Abelian
add-associative
right_zeroed
()
doubleLoopStr
Segm
p
is
V117
()
V118
()
V119
()
V120
()
V121
()
V122
()
Element
of
bool
NAT
addint
p
is
Relation-like
[:
(
Segm
p
)
,
(
Segm
p
)
:]
-defined
Segm
p
-valued
Function-like
quasi_total
V35
()
V36
()
V37
()
V38
()
Element
of
bool
[:
[:
(
Segm
p
)
,
(
Segm
p
)
:]
,
(
Segm
p
)
:]
[:
(
Segm
p
)
,
(
Segm
p
)
:]
is
RAT
-valued
INT
-valued
V35
()
V36
()
V37
()
V38
()
set
[:
[:
(
Segm
p
)
,
(
Segm
p
)
:]
,
(
Segm
p
)
:]
is
RAT
-valued
INT
-valued
V35
()
V36
()
V37
()
V38
()
set
bool
[:
[:
(
Segm
p
)
,
(
Segm
p
)
:]
,
(
Segm
p
)
:]
is non
empty
set
multint
p
is
Relation-like
[:
(
Segm
p
)
,
(
Segm
p
)
:]
-defined
Segm
p
-valued
Function-like
quasi_total
V35
()
V36
()
V37
()
V38
()
Element
of
bool
[:
[:
(
Segm
p
)
,
(
Segm
p
)
:]
,
(
Segm
p
)
:]
K633
(1,
(
Segm
p
)
) is
V4
()
V5
()
V6
()
V10
()
V11
()
V12
()
integer
ext-real
non
negative
finite
cardinal
V113
()
Element
of
Segm
p
K633
(
0
,
(
Segm
p
)
) is
V4
()
V5
()
V6
()
V10
()
V11
()
V12
()
integer
ext-real
non
negative
finite
cardinal
V113
()
Element
of
Segm
p
doubleLoopStr
(#
(
Segm
p
)
,
(
addint
p
)
,
(
multint
p
)
,
K633
(1,
(
Segm
p
)
),
K633
(
0
,
(
Segm
p
)
) #) is
strict
doubleLoopStr
the
carrier
of
(
INT.Ring
p
)
is non
empty
non
trivial
finite
set
a
is
left_add-cancelable
right_add-cancelable
add-cancelable
right_complementable
Element
of the
carrier
of
(
INT.Ring
p
)
a
|^
2 is
left_add-cancelable
right_add-cancelable
add-cancelable
right_complementable
Element
of the
carrier
of
(
INT.Ring
p
)
power
(
INT.Ring
p
)
is
Relation-like
[:
the
carrier
of
(
INT.Ring
p
)
,
NAT
:]
-defined
the
carrier
of
(
INT.Ring
p
)
-valued
Function-like
quasi_total
Element
of
bool
[:
[:
the
carrier
of
(
INT.Ring
p
)
,
NAT
:]
, the
carrier
of
(
INT.Ring
p
)
:]
[:
the
carrier
of
(
INT.Ring
p
)
,
NAT
:]
is non
empty
non
trivial
RAT
-valued
INT
-valued
V35
()
V36
()
V37
()
V38
() non
finite
set
[:
[:
the
carrier
of
(
INT.Ring
p
)
,
NAT
:]
, the
carrier
of
(
INT.Ring
p
)
:]
is non
empty
non
trivial
non
finite
set
bool
[:
[:
the
carrier
of
(
INT.Ring
p
)
,
NAT
:]
, the
carrier
of
(
INT.Ring
p
)
:]
is non
empty
non
trivial
non
finite
set
(
power
(
INT.Ring
p
)
)
.
(
a
,2) is
set
[
a
,2
]
is
V26
()
set
{
a
,2
}
is non
empty
finite
set
{
a
}
is non
empty
trivial
finite
1
-element
set
{
{
a
,2
}
,
{
a
}
}
is non
empty
finite
V49
()
set
(
power
(
INT.Ring
p
)
)
.
[
a
,2
]
is
set
b
is
left_add-cancelable
right_add-cancelable
add-cancelable
right_complementable
Element
of the
carrier
of
(
INT.Ring
p
)
p
is non
empty
V4
()
V5
()
V6
()
V10
()
V11
()
V12
()
integer
V14
()
ext-real
positive
non
negative
finite
cardinal
set
INT.Ring
p
is non
empty
non
degenerated
non
trivial
finite
left_add-cancelable
right_add-cancelable
add-cancelable
right_complementable
almost_left_invertible
strict
unital
associative
commutative
Euclidian
right-distributive
left-distributive
right_unital
well-unital
distributive
left_unital
Abelian
add-associative
right_zeroed
()
doubleLoopStr
Segm
p
is
V117
()
V118
()
V119
()
V120
()
V121
()
V122
()
Element
of
bool
NAT
addint
p
is
Relation-like
[:
(
Segm
p
)
,
(
Segm
p
)
:]
-defined
Segm
p
-valued
Function-like
quasi_total
V35
()
V36
()
V37
()
V38
()
Element
of
bool
[:
[:
(
Segm
p
)
,
(
Segm
p
)
:]
,
(
Segm
p
)
:]
[:
(
Segm
p
)
,
(
Segm
p
)
:]
is
RAT
-valued
INT
-valued
V35
()
V36
()
V37
()
V38
()
set
[:
[:
(
Segm
p
)
,
(
Segm
p
)
:]
,
(
Segm
p
)
:]
is
RAT
-valued
INT
-valued
V35
()
V36
()
V37
()
V38
()
set
bool
[:
[:
(
Segm
p
)
,
(
Segm
p
)
:]
,
(
Segm
p
)
:]
is non
empty
set
multint
p
is
Relation-like
[:
(
Segm
p
)
,
(
Segm
p
)
:]
-defined
Segm
p
-valued
Function-like
quasi_total
V35
()
V36
()
V37
()
V38
()
Element
of
bool
[:
[:
(
Segm
p
)
,
(
Segm
p
)
:]
,
(
Segm
p
)
:]
K633
(1,
(
Segm
p
)
) is
V4
()
V5
()
V6
()
V10
()
V11
()
V12
()
integer
ext-real
non
negative
finite
cardinal
V113
()
Element
of
Segm
p
K633
(
0
,
(
Segm
p
)
) is
V4
()
V5
()
V6
()
V10
()
V11
()
V12
()
integer
ext-real
non
negative
finite
cardinal
V113
()
Element
of
Segm
p
doubleLoopStr
(#
(
Segm
p
)
,
(
addint
p
)
,
(
multint
p
)
,
K633
(1,
(
Segm
p
)
),
K633
(
0
,
(
Segm
p
)
) #) is
strict
doubleLoopStr
1.
(
INT.Ring
p
)
is
V61
(
INT.Ring
p
)
left_add-cancelable
right_add-cancelable
add-cancelable
right_complementable
Element
of the
carrier
of
(
INT.Ring
p
)
the
carrier
of
(
INT.Ring
p
)
is non
empty
non
trivial
finite
set
the
OneF
of
(
INT.Ring
p
)
is
left_add-cancelable
right_add-cancelable
add-cancelable
right_complementable
Element
of the
carrier
of
(
INT.Ring
p
)
a
is
left_add-cancelable
right_add-cancelable
add-cancelable
right_complementable
Element
of the
carrier
of
(
INT.Ring
p
)
a
|^
2 is
left_add-cancelable
right_add-cancelable
add-cancelable
right_complementable
Element
of the
carrier
of
(
INT.Ring
p
)
power
(
INT.Ring
p
)
is
Relation-like
[:
the
carrier
of
(
INT.Ring
p
)
,
NAT
:]
-defined
the
carrier
of
(
INT.Ring
p
)
-valued
Function-like
quasi_total
Element
of
bool
[:
[:
the
carrier
of
(
INT.Ring
p
)
,
NAT
:]
, the
carrier
of
(
INT.Ring
p
)
:]
[:
the
carrier
of
(
INT.Ring
p
)
,
NAT
:]
is non
empty
non
trivial
RAT
-valued
INT
-valued
V35
()
V36
()
V37
()
V38
() non
finite
set
[:
[:
the
carrier
of
(
INT.Ring
p
)
,
NAT
:]
, the
carrier
of
(
INT.Ring
p
)
:]
is non
empty
non
trivial
non
finite
set
bool
[:
[:
the
carrier
of
(
INT.Ring
p
)
,
NAT
:]
, the
carrier
of
(
INT.Ring
p
)
:]
is non
empty
non
trivial
non
finite
set
(
power
(
INT.Ring
p
)
)
.
(
a
,2) is
set
[
a
,2
]
is
V26
()
set
{
a
,2
}
is non
empty
finite
set
{
a
}
is non
empty
trivial
finite
1
-element
set
{
{
a
,2
}
,
{
a
}
}
is non
empty
finite
V49
()
set
(
power
(
INT.Ring
p
)
)
.
[
a
,2
]
is
set
(
1.
(
INT.Ring
p
)
)
*
(
1.
(
INT.Ring
p
)
)
is
left_add-cancelable
right_add-cancelable
add-cancelable
right_complementable
Element
of the
carrier
of
(
INT.Ring
p
)
the
multF
of
(
INT.Ring
p
)
is
Relation-like
[:
the
carrier
of
(
INT.Ring
p
)
, the
carrier
of
(
INT.Ring
p
)
:]
-defined
the
carrier
of
(
INT.Ring
p
)
-valued
Function-like
quasi_total
finite
Element
of
bool
[:
[:
the
carrier
of
(
INT.Ring
p
)
, the
carrier
of
(
INT.Ring
p
)
:]
, the
carrier
of
(
INT.Ring
p
)
:]
[:
the
carrier
of
(
INT.Ring
p
)
, the
carrier
of
(
INT.Ring
p
)
:]
is non
empty
finite
set
[:
[:
the
carrier
of
(
INT.Ring
p
)
, the
carrier
of
(
INT.Ring
p
)
:]
, the
carrier
of
(
INT.Ring
p
)
:]
is non
empty
finite
set
bool
[:
[:
the
carrier
of
(
INT.Ring
p
)
, the
carrier
of
(
INT.Ring
p
)
:]
, the
carrier
of
(
INT.Ring
p
)
:]
is non
empty
finite
V49
()
set
the
multF
of
(
INT.Ring
p
)
.
(
(
1.
(
INT.Ring
p
)
)
,
(
1.
(
INT.Ring
p
)
)
) is
left_add-cancelable
right_add-cancelable
add-cancelable
right_complementable
Element
of the
carrier
of
(
INT.Ring
p
)
[
(
1.
(
INT.Ring
p
)
)
,
(
1.
(
INT.Ring
p
)
)
]
is
V26
()
set
{
(
1.
(
INT.Ring
p
)
)
,
(
1.
(
INT.Ring
p
)
)
}
is non
empty
finite
set
{
(
1.
(
INT.Ring
p
)
)
}
is non
empty
trivial
finite
1
-element
set
{
{
(
1.
(
INT.Ring
p
)
)
,
(
1.
(
INT.Ring
p
)
)
}
,
{
(
1.
(
INT.Ring
p
)
)
}
}
is non
empty
finite
V49
()
set
the
multF
of
(
INT.Ring
p
)
.
[
(
1.
(
INT.Ring
p
)
)
,
(
1.
(
INT.Ring
p
)
)
]
is
set
1_
(
INT.Ring
p
)
is
left_add-cancelable
right_add-cancelable
add-cancelable
right_complementable
Element
of the
carrier
of
(
INT.Ring
p
)
p
is non
empty
V4
()
V5
()
V6
()
V10
()
V11
()
V12
()
integer
V14
()
ext-real
positive
non
negative
finite
cardinal
set
INT.Ring
p
is non
empty
non
degenerated
non
trivial
finite
left_add-cancelable
right_add-cancelable
add-cancelable
right_complementable
almost_left_invertible
strict
unital
associative
commutative
Euclidian
right-distributive
left-distributive
right_unital
well-unital
distributive
left_unital
Abelian
add-associative
right_zeroed
()
doubleLoopStr
Segm
p
is
V117
()
V118
()
V119
()
V120
()
V121
()
V122
()
Element
of
bool
NAT
addint
p
is
Relation-like
[:
(
Segm
p
)
,
(
Segm
p
)
:]
-defined
Segm
p
-valued
Function-like
quasi_total
V35
()
V36
()
V37
()
V38
()
Element
of
bool
[:
[:
(
Segm
p
)
,
(
Segm
p
)
:]
,
(
Segm
p
)
:]
[:
(
Segm
p
)
,
(
Segm
p
)
:]
is
RAT
-valued
INT
-valued
V35
()
V36
()
V37
()
V38
()
set
[:
[:
(
Segm
p
)
,
(
Segm
p
)
:]
,
(
Segm
p
)
:]
is
RAT
-valued
INT
-valued
V35
()
V36
()
V37
()
V38
()
set
bool
[:
[:
(
Segm
p
)
,
(
Segm
p
)
:]
,
(
Segm
p
)
:]
is non
empty
set
multint
p
is
Relation-like
[:
(
Segm
p
)
,
(
Segm
p
)
:]
-defined
Segm
p
-valued
Function-like
quasi_total
V35
()
V36
()
V37
()
V38
()
Element
of
bool
[:
[:
(
Segm
p
)
,
(
Segm
p
)
:]
,
(
Segm
p
)
:]
K633
(1,
(
Segm
p
)
) is
V4
()
V5
()
V6
()
V10
()
V11
()
V12
()
integer
ext-real
non
negative
finite
cardinal
V113
()
Element
of
Segm
p
K633
(
0
,
(
Segm
p
)
) is
V4
()
V5
()
V6
()
V10
()
V11
()
V12
()
integer
ext-real
non
negative
finite
cardinal
V113
()
Element
of
Segm
p
doubleLoopStr
(#
(
Segm
p
)
,
(
addint
p
)
,
(
multint
p
)
,
K633
(1,
(
Segm
p
)
),
K633
(
0
,
(
Segm
p
)
) #) is
strict
doubleLoopStr
the
carrier
of
(
INT.Ring
p
)
is non
empty
non
trivial
finite
set
a
is
left_add-cancelable
right_add-cancelable
add-cancelable
right_complementable
Element
of the
carrier
of
(
INT.Ring
p
)
-
1 is
V11
()
V12
()
integer
ext-real
non
positive
set
b
is
V11
()
V12
()
integer
ext-real
set
p
is non
empty
V4
()
V5
()
V6
()
V10
()
V11
()
V12
()
integer
V14
()
ext-real
positive
non
negative
finite
cardinal
set
INT.Ring
p
is non
empty
non
degenerated
non
trivial
finite
left_add-cancelable
right_add-cancelable
add-cancelable
right_complementable
almost_left_invertible
strict
unital
associative
commutative
Euclidian
right-distributive
left-distributive
right_unital
well-unital
distributive
left_unital
Abelian
add-associative
right_zeroed
()
doubleLoopStr
Segm
p
is
V117
()
V118
()
V119
()
V120
()
V121
()
V122
()
Element
of
bool
NAT
addint
p
is
Relation-like
[:
(
Segm
p
)
,
(
Segm
p
)
:]
-defined
Segm
p
-valued
Function-like
quasi_total
V35
()
V36
()
V37
()
V38
()
Element
of
bool
[:
[:
(
Segm
p
)
,
(
Segm
p
)
:]
,
(
Segm
p
)
:]
[:
(
Segm
p
)
,
(
Segm
p
)
:]
is
RAT
-valued
INT
-valued
V35
()
V36
()
V37
()
V38
()
set
[:
[:
(
Segm
p
)
,
(
Segm
p
)
:]
,
(
Segm
p
)
:]
is
RAT
-valued
INT
-valued
V35
()
V36
()
V37
()
V38
()
set
bool
[:
[:
(
Segm
p
)
,
(
Segm
p
)
:]
,
(
Segm
p
)
:]
is non
empty
set
multint
p
is
Relation-like
[:
(
Segm
p
)
,
(
Segm
p
)
:]
-defined
Segm
p
-valued
Function-like
quasi_total
V35
()
V36
()
V37
()
V38
()
Element
of
bool
[:
[:
(
Segm
p
)
,
(
Segm
p
)
:]
,
(
Segm
p
)
:]
K633
(1,
(
Segm
p
)
) is
V4
()
V5
()
V6
()
V10
()
V11
()
V12
()
integer
ext-real
non
negative
finite
cardinal
V113
()
Element
of
Segm
p
K633
(
0
,
(
Segm
p
)
) is
V4
()
V5
()
V6
()
V10
()
V11
()
V12
()
integer
ext-real
non
negative
finite
cardinal
V113
()
Element
of
Segm
p
doubleLoopStr
(#
(
Segm
p
)
,
(
addint
p
)
,
(
multint
p
)
,
K633
(1,
(
Segm
p
)
),
K633
(
0
,
(
Segm
p
)
) #) is
strict
doubleLoopStr
the
carrier
of
(
INT.Ring
p
)
is non
empty
non
trivial
finite
set
a
is
left_add-cancelable
right_add-cancelable
add-cancelable
right_complementable
Element
of the
carrier
of
(
INT.Ring
p
)
(
p
,
a
) is
V11
()
V12
()
integer
ext-real
set
b
is
left_add-cancelable
right_add-cancelable
add-cancelable
right_complementable
Element
of the
carrier
of
(
INT.Ring
p
)
b
|^
2 is
left_add-cancelable
right_add-cancelable
add-cancelable
right_complementable
Element
of the
carrier
of
(
INT.Ring
p
)
power
(
INT.Ring
p
)
is
Relation-like
[:
the
carrier
of
(
INT.Ring
p
)
,
NAT
:]
-defined
the
carrier
of
(
INT.Ring
p
)
-valued
Function-like
quasi_total
Element
of
bool
[:
[:
the
carrier
of
(
INT.Ring
p
)
,
NAT
:]
, the
carrier
of
(
INT.Ring
p
)
:]
[:
the
carrier
of
(
INT.Ring
p
)
,
NAT
:]
is non
empty
non
trivial
RAT
-valued
INT
-valued
V35
()
V36
()
V37
()
V38
() non
finite
set
[:
[:
the
carrier
of
(
INT.Ring
p
)
,
NAT
:]
, the
carrier
of
(
INT.Ring
p
)
:]
is non
empty
non
trivial
non
finite
set
bool
[:
[:
the
carrier
of
(
INT.Ring
p
)
,
NAT
:]
, the
carrier
of
(
INT.Ring
p
)
:]
is non
empty
non
trivial
non
finite
set
(
power
(
INT.Ring
p
)
)
.
(
b
,2) is
set
[
b
,2
]
is
V26
()
set
{
b
,2
}
is non
empty
finite
set
{
b
}
is non
empty
trivial
finite
1
-element
set
{
{
b
,2
}
,
{
b
}
}
is non
empty
finite
V49
()
set
(
power
(
INT.Ring
p
)
)
.
[
b
,2
]
is
set
b
is
left_add-cancelable
right_add-cancelable
add-cancelable
right_complementable
Element
of the
carrier
of
(
INT.Ring
p
)
b
|^
2 is
left_add-cancelable
right_add-cancelable
add-cancelable
right_complementable
Element
of the
carrier
of
(
INT.Ring
p
)
power
(
INT.Ring
p
)
is
Relation-like
[:
the
carrier
of
(
INT.Ring
p
)
,
NAT
:]
-defined
the
carrier
of
(
INT.Ring
p
)
-valued
Function-like
quasi_total
Element
of
bool
[:
[:
the
carrier
of
(
INT.Ring
p
)
,
NAT
:]
, the
carrier
of
(
INT.Ring
p
)
:]
[:
the
carrier
of
(
INT.Ring
p
)
,
NAT
:]
is non
empty
non
trivial
RAT
-valued
INT
-valued
V35
()
V36
()
V37
()
V38
() non
finite
set
[:
[:
the
carrier
of
(
INT.Ring
p
)
,
NAT
:]
, the
carrier
of
(
INT.Ring
p
)
:]
is non
empty
non
trivial
non
finite
set
bool
[:
[:
the
carrier
of
(
INT.Ring
p
)
,
NAT
:]
, the
carrier
of
(
INT.Ring
p
)
:]
is non
empty
non
trivial
non
finite
set
(
power
(
INT.Ring
p
)
)
.
(
b
,2) is
set
[
b
,2
]
is
V26
()
set
{
b
,2
}
is non
empty
finite
set
{
b
}
is non
empty
trivial
finite
1
-element
set
{
{
b
,2
}
,
{
b
}
}
is non
empty
finite
V49
()
set
(
power
(
INT.Ring
p
)
)
.
[
b
,2
]
is
set
p
is non
empty
V4
()
V5
()
V6
()
V10
()
V11
()
V12
()
integer
V14
()
ext-real
positive
non
negative
finite
cardinal
set
INT.Ring
p
is non
empty
non
degenerated
non
trivial
finite
left_add-cancelable
right_add-cancelable
add-cancelable
right_complementable
almost_left_invertible
strict
unital
associative
commutative
Euclidian
right-distributive
left-distributive
right_unital
well-unital
distributive
left_unital
Abelian
add-associative
right_zeroed
()
doubleLoopStr
Segm
p
is
V117
()
V118
()
V119
()
V120
()
V121
()
V122
()
Element
of
bool
NAT
addint
p
is
Relation-like
[:
(
Segm
p
)
,
(
Segm
p
)
:]
-defined
Segm
p
-valued
Function-like
quasi_total
V35
()
V36
()
V37
()
V38
()
Element
of
bool
[:
[:
(
Segm
p
)
,
(
Segm
p
)
:]
,
(
Segm
p
)
:]
[:
(
Segm
p
)
,
(
Segm
p
)
:]
is
RAT
-valued
INT
-valued
V35
()
V36
()
V37
()
V38
()
set
[:
[:
(
Segm
p
)
,
(
Segm
p
)
:]
,
(
Segm
p
)
:]
is
RAT
-valued
INT
-valued
V35
()
V36
()
V37
()
V38
()
set
bool
[:
[:
(
Segm
p
)
,
(
Segm
p
)
:]
,
(
Segm
p
)
:]
is non
empty
set
multint
p
is
Relation-like
[:
(
Segm
p
)
,
(
Segm
p
)
:]
-defined
Segm
p
-valued
Function-like
quasi_total
V35
()
V36
()
V37
()
V38
()
Element
of
bool
[:
[:
(
Segm
p
)
,
(
Segm
p
)
:]
,
(
Segm
p
)
:]
K633
(1,
(
Segm
p
)
) is
V4
()
V5
()
V6
()
V10
()
V11
()
V12
()
integer
ext-real
non
negative
finite
cardinal
V113
()
Element
of
Segm
p
K633
(
0
,
(
Segm
p
)
) is
V4
()
V5
()
V6
()
V10
()
V11
()
V12
()
integer
ext-real
non
negative
finite
cardinal
V113
()
Element
of
Segm
p
doubleLoopStr
(#
(
Segm
p
)
,
(
addint
p
)
,
(
multint
p
)
,
K633
(1,
(
Segm
p
)
),
K633
(
0
,
(
Segm
p
)
) #) is
strict
doubleLoopStr
the
carrier
of
(
INT.Ring
p
)
is non
empty
non
trivial
finite
set
a
is
left_add-cancelable
right_add-cancelable
add-cancelable
right_complementable
Element
of the
carrier
of
(
INT.Ring
p
)
(
p
,
a
) is
V11
()
V12
()
integer
ext-real
set
p
is non
empty
V4
()
V5
()
V6
()
V10
()
V11
()
V12
()
integer
V14
()
ext-real
positive
non
negative
finite
cardinal
set
INT.Ring
p
is non
empty
non
degenerated
non
trivial
finite
left_add-cancelable
right_add-cancelable
add-cancelable
right_complementable
almost_left_invertible
strict
unital
associative
commutative
Euclidian
right-distributive
left-distributive
right_unital
well-unital
distributive
left_unital
Abelian
add-associative
right_zeroed
()
doubleLoopStr
Segm
p
is
V117
()
V118
()
V119
()
V120
()
V121
()
V122
()
Element
of
bool
NAT
addint
p
is
Relation-like
[:
(
Segm
p
)
,
(
Segm
p
)
:]
-defined
Segm
p
-valued
Function-like
quasi_total
V35
()
V36
()
V37
()
V38
()
Element
of
bool
[:
[:
(
Segm
p
)
,
(
Segm
p
)
:]
,
(
Segm
p
)
:]
[:
(
Segm
p
)
,
(
Segm
p
)
:]
is
RAT
-valued
INT
-valued
V35
()
V36
()
V37
()
V38
()
set
[:
[:
(
Segm
p
)
,
(
Segm
p
)
:]
,
(
Segm
p
)
:]
is
RAT
-valued
INT
-valued
V35
()
V36
()
V37
()
V38
()
set
bool
[:
[:
(
Segm
p
)
,
(
Segm
p
)
:]
,
(
Segm
p
)
:]
is non
empty
set
multint
p
is
Relation-like
[:
(
Segm
p
)
,
(
Segm
p
)
:]
-defined
Segm
p
-valued
Function-like
quasi_total
V35
()
V36
()
V37
()
V38
()
Element
of
bool
[:
[:
(
Segm
p
)
,
(
Segm
p
)
:]
,
(
Segm
p
)
:]
K633
(1,
(
Segm
p
)
) is
V4
()
V5
()
V6
()
V10
()
V11
()
V12
()
integer
ext-real
non
negative
finite
cardinal
V113
()
Element
of
Segm
p
K633
(
0
,
(
Segm
p
)
) is
V4
()
V5
()
V6
()
V10
()
V11
()
V12
()
integer
ext-real
non
negative
finite
cardinal
V113
()
Element
of
Segm
p
doubleLoopStr
(#
(
Segm
p
)
,
(
addint
p
)
,
(
multint
p
)
,
K633
(1,
(
Segm
p
)
),
K633
(
0
,
(
Segm
p
)
) #) is
strict
doubleLoopStr
the
carrier
of
(
INT.Ring
p
)
is non
empty
non
trivial
finite
set
a
is
left_add-cancelable
right_add-cancelable
add-cancelable
right_complementable
Element
of the
carrier
of
(
INT.Ring
p
)
(
p
,
a
) is
V11
()
V12
()
integer
ext-real
set
p
is non
empty
V4
()
V5
()
V6
()
V10
()
V11
()
V12
()
integer
V14
()
ext-real
positive
non
negative
finite
cardinal
set
INT.Ring
p
is non
empty
non
degenerated
non
trivial
finite
left_add-cancelable
right_add-cancelable
add-cancelable
right_complementable
almost_left_invertible
strict
unital
associative
commutative
Euclidian
right-distributive
left-distributive
right_unital
well-unital
distributive
left_unital
Abelian
add-associative
right_zeroed
()
doubleLoopStr
Segm
p
is
V117
()
V118
()
V119
()
V120
()
V121
()
V122
()
Element
of
bool
NAT
addint
p
is
Relation-like
[:
(
Segm
p
)
,
(
Segm
p
)
:]
-defined
Segm
p
-valued
Function-like
quasi_total
V35
()
V36
()
V37
()
V38
()
Element
of
bool
[:
[:
(
Segm
p
)
,
(
Segm
p
)
:]
,
(
Segm
p
)
:]
[:
(
Segm
p
)
,
(
Segm
p
)
:]
is
RAT
-valued
INT
-valued
V35
()
V36
()
V37
()
V38
()
set
[:
[:
(
Segm
p
)
,
(
Segm
p
)
:]
,
(
Segm
p
)
:]
is
RAT
-valued
INT
-valued
V35
()
V36
()
V37
()
V38
()
set
bool
[:
[:
(
Segm
p
)
,
(
Segm
p
)
:]
,
(
Segm
p
)
:]
is non
empty
set
multint
p
is
Relation-like
[:
(
Segm
p
)
,
(
Segm
p
)
:]
-defined
Segm
p
-valued
Function-like
quasi_total
V35
()
V36
()
V37
()
V38
()
Element
of
bool
[:
[:
(
Segm
p
)
,
(
Segm
p
)
:]
,
(
Segm
p
)
:]
K633
(1,
(
Segm
p
)
) is
V4
()
V5
()
V6
()
V10
()
V11
()
V12
()
integer
ext-real
non
negative
finite
cardinal
V113
()
Element
of
Segm
p
K633
(
0
,
(
Segm
p
)
) is
V4
()
V5
()
V6
()
V10
()
V11
()
V12
()
integer
ext-real
non
negative
finite
cardinal
V113
()
Element
of
Segm
p
doubleLoopStr
(#
(
Segm
p
)
,
(
addint
p
)
,
(
multint
p
)
,
K633
(1,
(
Segm
p
)
),
K633
(
0
,
(
Segm
p
)
) #) is
strict
doubleLoopStr
the
carrier
of
(
INT.Ring
p
)
is non
empty
non
trivial
finite
set
a
is
left_add-cancelable
right_add-cancelable
add-cancelable
right_complementable
Element
of the
carrier
of
(
INT.Ring
p
)
a
|^
2 is
left_add-cancelable
right_add-cancelable
add-cancelable
right_complementable
Element
of the
carrier
of
(
INT.Ring
p
)
power
(
INT.Ring
p
)
is
Relation-like
[:
the
carrier
of
(
INT.Ring
p
)
,
NAT
:]
-defined
the
carrier
of
(
INT.Ring
p
)
-valued
Function-like
quasi_total
Element
of
bool
[:
[:
the
carrier
of
(
INT.Ring
p
)
,
NAT
:]
, the
carrier
of
(
INT.Ring
p
)
:]
[:
the
carrier
of
(
INT.Ring
p
)
,
NAT
:]
is non
empty
non
trivial
RAT
-valued
INT
-valued
V35
()
V36
()
V37
()
V38
() non
finite
set
[:
[:
the
carrier
of
(
INT.Ring
p
)
,
NAT
:]
, the
carrier
of
(
INT.Ring
p
)
:]
is non
empty
non
trivial
non
finite
set
bool
[:
[:
the
carrier
of
(
INT.Ring
p
)
,
NAT
:]
, the
carrier
of
(
INT.Ring
p
)
:]
is non
empty
non
trivial
non
finite
set
(
power
(
INT.Ring
p
)
)
.
(
a
,2) is
set
[
a
,2
]
is
V26
()
set
{
a
,2
}
is non
empty
finite
set
{
a
}
is non
empty
trivial
finite
1
-element
set
{
{
a
,2
}
,
{
a
}
}
is non
empty
finite
V49
()
set
(
power
(
INT.Ring
p
)
)
.
[
a
,2
]
is
set
(
p
,
(
a
|^
2
)
) is
V11
()
V12
()
integer
ext-real
set
p
is non
empty
V4
()
V5
()
V6
()
V10
()
V11
()
V12
()
integer
V14
()
ext-real
positive
non
negative
finite
cardinal
set
INT.Ring
p
is non
empty
non
degenerated
non
trivial
finite
left_add-cancelable
right_add-cancelable
add-cancelable
right_complementable
almost_left_invertible
strict
unital
associative
commutative
Euclidian
right-distributive
left-distributive
right_unital
well-unital
distributive
left_unital
Abelian
add-associative
right_zeroed
()
doubleLoopStr
Segm
p
is
V117
()
V118
()
V119
()
V120
()
V121
()
V122
()
Element
of
bool
NAT
addint
p
is
Relation-like
[:
(
Segm
p
)
,
(
Segm
p
)
:]
-defined
Segm
p
-valued
Function-like
quasi_total
V35
()
V36
()
V37
()
V38
()
Element
of
bool
[:
[:
(
Segm
p
)
,
(
Segm
p
)
:]
,
(
Segm
p
)
:]
[:
(
Segm
p
)
,
(
Segm
p
)
:]
is
RAT
-valued
INT
-valued
V35
()
V36
()
V37
()
V38
()
set
[:
[:
(
Segm
p
)
,
(
Segm
p
)
:]
,
(
Segm
p
)
:]
is
RAT
-valued
INT
-valued
V35
()
V36
()
V37
()
V38
()
set
bool
[:
[:
(
Segm
p
)
,
(
Segm
p
)
:]
,
(
Segm
p
)
:]
is non
empty
set
multint
p
is
Relation-like
[:
(
Segm
p
)
,
(
Segm
p
)
:]
-defined
Segm
p
-valued
Function-like
quasi_total
V35
()
V36
()
V37
()
V38
()
Element
of
bool
[:
[:
(
Segm
p
)
,
(
Segm
p
)
:]
,
(
Segm
p
)
:]
K633
(1,
(
Segm
p
)
) is
V4
()
V5
()
V6
()
V10
()
V11
()
V12
()
integer
ext-real
non
negative
finite
cardinal
V113
()
Element
of
Segm
p
K633
(
0
,
(
Segm
p
)
) is
V4
()
V5
()
V6
()
V10
()
V11
()
V12
()
integer
ext-real
non
negative
finite
cardinal
V113
()
Element
of
Segm
p
doubleLoopStr
(#
(
Segm
p
)
,
(
addint
p
)
,
(
multint
p
)
,
K633
(1,
(
Segm
p
)
),
K633
(
0
,
(
Segm
p
)
) #) is
strict
doubleLoopStr
the
carrier
of
(
INT.Ring
p
)
is non
empty
non
trivial
finite
set
a
is
left_add-cancelable
right_add-cancelable
add-cancelable
right_complementable
Element
of the
carrier
of
(
INT.Ring
p
)
(
p
,
a
) is
V11
()
V12
()
integer
ext-real
set
b
is
left_add-cancelable
right_add-cancelable
add-cancelable
right_complementable
Element
of the
carrier
of
(
INT.Ring
p
)
a
*
b
is
left_add-cancelable
right_add-cancelable
add-cancelable
right_complementable
Element
of the
carrier
of
(
INT.Ring
p
)
the
multF
of
(
INT.Ring
p
)
is
Relation-like
[:
the
carrier
of
(
INT.Ring
p
)
, the
carrier
of
(
INT.Ring
p
)
:]
-defined
the
carrier
of
(
INT.Ring
p
)
-valued
Function-like
quasi_total
finite
Element
of
bool
[:
[:
the
carrier
of
(
INT.Ring
p
)
, the
carrier
of
(
INT.Ring
p
)
:]
, the
carrier
of
(
INT.Ring
p
)
:]
[:
the
carrier
of
(
INT.Ring
p
)
, the
carrier
of
(
INT.Ring
p
)
:]
is non
empty
finite
set
[:
[:
the
carrier
of
(
INT.Ring
p
)
, the
carrier
of
(
INT.Ring
p
)
:]
, the
carrier
of
(
INT.Ring
p
)
:]
is non
empty
finite
set
bool
[:
[:
the
carrier
of
(
INT.Ring
p
)
, the
carrier
of
(
INT.Ring
p
)
:]
, the
carrier
of
(
INT.Ring
p
)
:]
is non
empty
finite
V49
()
set
the
multF
of
(
INT.Ring
p
)
.
(
a
,
b
) is
left_add-cancelable
right_add-cancelable
add-cancelable
right_complementable
Element
of the
carrier
of
(
INT.Ring
p
)
[
a
,
b
]
is
V26
()
set
{
a
,
b
}
is non
empty
finite
set
{
a
}
is non
empty
trivial
finite
1
-element
set
{
{
a
,
b
}
,
{
a
}
}
is non
empty
finite
V49
()
set
the
multF
of
(
INT.Ring
p
)
.
[
a
,
b
]
is
set
(
p
,
(
a
*
b
)
) is
V11
()
V12
()
integer
ext-real
set
(
p
,
b
) is
V11
()
V12
()
integer
ext-real
set
(
p
,
a
)
*
(
p
,
b
) is
V11
()
V12
()
integer
ext-real
set
L
is
left_add-cancelable
right_add-cancelable
add-cancelable
right_complementable
Element
of the
carrier
of
(
INT.Ring
p
)
L
|^
2 is
left_add-cancelable
right_add-cancelable
add-cancelable
right_complementable
Element
of the
carrier
of
(
INT.Ring
p
)
power
(
INT.Ring
p
)
is
Relation-like
[:
the
carrier
of
(
INT.Ring
p
)
,
NAT
:]
-defined
the
carrier
of
(
INT.Ring
p
)
-valued
Function-like
quasi_total
Element
of
bool
[:
[:
the
carrier
of
(
INT.Ring
p
)
,
NAT
:]
, the
carrier
of
(
INT.Ring
p
)
:]
[:
the
carrier
of
(
INT.Ring
p
)
,
NAT
:]
is non
empty
non
trivial
RAT
-valued
INT
-valued
V35
()
V36
()
V37
()
V38
() non
finite
set
[:
[:
the
carrier
of
(
INT.Ring
p
)
,
NAT
:]
, the
carrier
of
(
INT.Ring
p
)
:]
is non
empty
non
trivial
non
finite
set
bool
[:
[:
the
carrier
of
(
INT.Ring
p
)
,
NAT
:]
, the
carrier
of
(
INT.Ring
p
)
:]
is non
empty
non
trivial
non
finite
set
(
power
(
INT.Ring
p
)
)
.
(
L
,2) is
set
[
L
,2
]
is
V26
()
set
{
L
,2
}
is non
empty
finite
set
{
L
}
is non
empty
trivial
finite
1
-element
set
{
{
L
,2
}
,
{
L
}
}
is non
empty
finite
V49
()
set
(
power
(
INT.Ring
p
)
)
.
[
L
,2
]
is
set
F
is
left_add-cancelable
right_add-cancelable
add-cancelable
right_complementable
Element
of the
carrier
of
(
INT.Ring
p
)
F
|^
2 is
left_add-cancelable
right_add-cancelable
add-cancelable
right_complementable
Element
of the
carrier
of
(
INT.Ring
p
)
(
power
(
INT.Ring
p
)
)
.
(
F
,2) is
set
[
F
,2
]
is
V26
()
set
{
F
,2
}
is non
empty
finite
set
{
F
}
is non
empty
trivial
finite
1
-element
set
{
{
F
,2
}
,
{
F
}
}
is non
empty
finite
V49
()
set
(
power
(
INT.Ring
p
)
)
.
[
F
,2
]
is
set
L
is
left_add-cancelable
right_add-cancelable
add-cancelable
right_complementable
Element
of the
carrier
of
(
INT.Ring
p
)
L
|^
2 is
left_add-cancelable
right_add-cancelable
add-cancelable
right_complementable
Element
of the
carrier
of
(
INT.Ring
p
)
power
(
INT.Ring
p
)
is
Relation-like
[:
the
carrier
of
(
INT.Ring
p
)
,
NAT
:]
-defined
the
carrier
of
(
INT.Ring
p
)
-valued
Function-like
quasi_total
Element
of
bool
[:
[:
the
carrier
of
(
INT.Ring
p
)
,
NAT
:]
, the
carrier
of
(
INT.Ring
p
)
:]
[:
the
carrier
of
(
INT.Ring
p
)
,
NAT
:]
is non
empty
non
trivial
RAT
-valued
INT
-valued
V35
()
V36
()
V37
()
V38
() non
finite
set
[:
[:
the
carrier
of
(
INT.Ring
p
)
,
NAT
:]
, the
carrier
of
(
INT.Ring
p
)
:]
is non
empty
non
trivial
non
finite
set
bool
[:
[:
the
carrier
of
(
INT.Ring
p
)
,
NAT
:]
, the
carrier
of
(
INT.Ring
p
)
:]
is non
empty
non
trivial
non
finite
set
(
power
(
INT.Ring
p
)
)
.
(
L
,2) is
set
[
L
,2
]
is
V26
()
set
{
L
,2
}
is non
empty
finite
set
{
L
}
is non
empty
trivial
finite
1
-element
set
{
{
L
,2
}
,
{
L
}
}
is non
empty
finite
V49
()
set
(
power
(
INT.Ring
p
)
)
.
[
L
,2
]
is
set
F
is
left_add-cancelable
right_add-cancelable
add-cancelable
right_complementable
Element
of the
carrier
of
(
INT.Ring
p
)
F
|^
2 is
left_add-cancelable
right_add-cancelable
add-cancelable
right_complementable
Element
of the
carrier
of
(
INT.Ring
p
)
(
power
(
INT.Ring
p
)
)
.
(
F
,2) is
set
[
F
,2
]
is
V26
()
set
{
F
,2
}
is non
empty
finite
set
{
F
}
is non
empty
trivial
finite
1
-element
set
{
{
F
,2
}
,
{
F
}
}
is non
empty
finite
V49
()
set
(
power
(
INT.Ring
p
)
)
.
[
F
,2
]
is
set
(
L
|^
2
)
*
(
F
|^
2
)
is
left_add-cancelable
right_add-cancelable
add-cancelable
right_complementable
Element
of the
carrier
of
(
INT.Ring
p
)
the
multF
of
(
INT.Ring
p
)
.
(
(
L
|^
2
)
,
(
F
|^
2
)
) is
left_add-cancelable
right_add-cancelable
add-cancelable
right_complementable
Element
of the
carrier
of
(
INT.Ring
p
)
[
(
L
|^
2
)
,
(
F
|^
2
)
]
is
V26
()
set
{
(
L
|^
2
)
,
(
F
|^
2
)
}
is non
empty
finite
set
{
(
L
|^
2
)
}
is non
empty
trivial
finite
1
-element
set
{
{
(
L
|^
2
)
,
(
F
|^
2
)
}
,
{
(
L
|^
2
)
}
}
is non
empty
finite
V49
()
set
the
multF
of
(
INT.Ring
p
)
.
[
(
L
|^
2
)
,
(
F
|^
2
)
]
is
set
L
*
F
is
left_add-cancelable
right_add-cancelable
add-cancelable
right_complementable
Element
of the
carrier
of
(
INT.Ring
p
)
the
multF
of
(
INT.Ring
p
)
.
(
L
,
F
) is
left_add-cancelable
right_add-cancelable
add-cancelable
right_complementable
Element
of the
carrier
of
(
INT.Ring
p
)
[
L
,
F
]
is
V26
()
set
{
L
,
F
}
is non
empty
finite
set
{
{
L
,
F
}
,
{
L
}
}
is non
empty
finite
V49
()
set
the
multF
of
(
INT.Ring
p
)
.
[
L
,
F
]
is
set
(
L
*
F
)
|^
2 is
left_add-cancelable
right_add-cancelable
add-cancelable
right_complementable
Element
of the
carrier
of
(
INT.Ring
p
)
(
power
(
INT.Ring
p
)
)
.
(
(
L
*
F
)
,2) is
set
[
(
L
*
F
)
,2
]
is
V26
()
set
{
(
L
*
F
)
,2
}
is non
empty
finite
set
{
(
L
*
F
)
}
is non
empty
trivial
finite
1
-element
set
{
{
(
L
*
F
)
,2
}
,
{
(
L
*
F
)
}
}
is non
empty
finite
V49
()
set
(
power
(
INT.Ring
p
)
)
.
[
(
L
*
F
)
,2
]
is
set
L
is
left_add-cancelable
right_add-cancelable
add-cancelable
right_complementable
Element
of the
carrier
of
(
INT.Ring
p
)
L
|^
2 is
left_add-cancelable
right_add-cancelable
add-cancelable
right_complementable
Element
of the
carrier
of
(
INT.Ring
p
)
power
(
INT.Ring
p
)
is
Relation-like
[:
the
carrier
of
(
INT.Ring
p
)
,
NAT
:]
-defined
the
carrier
of
(
INT.Ring
p
)
-valued
Function-like
quasi_total
Element
of
bool
[:
[:
the
carrier
of
(
INT.Ring
p
)
,
NAT
:]
, the
carrier
of
(
INT.Ring
p
)
:]
[:
the
carrier
of
(
INT.Ring
p
)
,
NAT
:]
is non
empty
non
trivial
RAT
-valued
INT
-valued
V35
()
V36
()
V37
()
V38
() non
finite
set
[:
[:
the
carrier
of
(
INT.Ring
p
)
,
NAT
:]
, the
carrier
of
(
INT.Ring
p
)
:]
is non
empty
non
trivial
non
finite
set
bool
[:
[:
the
carrier
of
(
INT.Ring
p
)
,
NAT
:]
, the
carrier
of
(
INT.Ring
p
)
:]
is non
empty
non
trivial
non
finite
set
(
power
(
INT.Ring
p
)
)
.
(
L
,2) is
set
[
L
,2
]
is
V26
()
set
{
L
,2
}
is non
empty
finite
set
{
L
}
is non
empty
trivial
finite
1
-element
set
{
{
L
,2
}
,
{
L
}
}
is non
empty
finite
V49
()
set
(
power
(
INT.Ring
p
)
)
.
[
L
,2
]
is
set
L
is
left_add-cancelable
right_add-cancelable
add-cancelable
right_complementable
Element
of the
carrier
of
(
INT.Ring
p
)
L
|^
2 is
left_add-cancelable
right_add-cancelable
add-cancelable
right_complementable
Element
of the
carrier
of
(
INT.Ring
p
)
power
(
INT.Ring
p
)
is
Relation-like
[:
the
carrier
of
(
INT.Ring
p
)
,
NAT
:]
-defined
the
carrier
of
(
INT.Ring
p
)
-valued
Function-like
quasi_total
Element
of
bool
[:
[:
the
carrier
of
(
INT.Ring
p
)
,
NAT
:]
, the
carrier
of
(
INT.Ring
p
)
:]
[:
the
carrier
of
(
INT.Ring
p
)
,
NAT
:]
is non
empty
non
trivial
RAT
-valued
INT
-valued
V35
()
V36
()
V37
()
V38
() non
finite
set
[:
[:
the
carrier
of
(
INT.Ring
p
)
,
NAT
:]
, the
carrier
of
(
INT.Ring
p
)
:]
is non
empty
non
trivial
non
finite
set
bool
[:
[:
the
carrier
of
(
INT.Ring
p
)
,
NAT
:]
, the
carrier
of
(
INT.Ring
p
)
:]
is non
empty
non
trivial
non
finite
set
(
power
(
INT.Ring
p
)
)
.
(
L
,2) is
set
[
L
,2
]
is
V26
()
set
{
L
,2
}
is non
empty
finite
set
{
L
}
is non
empty
trivial
finite
1
-element
set
{
{
L
,2
}
,
{
L
}
}
is non
empty
finite
V49
()
set
(
power
(
INT.Ring
p
)
)
.
[
L
,2
]
is
set
L
is
left_add-cancelable
right_add-cancelable
add-cancelable
right_complementable
Element
of the
carrier
of
(
INT.Ring
p
)
L
|^
2 is
left_add-cancelable
right_add-cancelable
add-cancelable
right_complementable
Element
of the
carrier
of
(
INT.Ring
p
)
power
(
INT.Ring
p
)
is
Relation-like
[:
the
carrier
of
(
INT.Ring
p
)
,
NAT
:]
-defined
the
carrier
of
(
INT.Ring
p
)
-valued
Function-like
quasi_total
Element
of
bool
[:
[:
the
carrier
of
(
INT.Ring
p
)
,
NAT
:]
, the
carrier
of
(
INT.Ring
p
)
:]
[:
the
carrier
of
(
INT.Ring
p
)
,
NAT
:]
is non
empty
non
trivial
RAT
-valued
INT
-valued
V35
()
V36
()
V37
()
V38
() non
finite
set
[:
[:
the
carrier
of
(
INT.Ring
p
)
,
NAT
:]
, the
carrier
of
(
INT.Ring
p
)
:]
is non
empty
non
trivial
non
finite
set
bool
[:
[:
the
carrier
of
(
INT.Ring
p
)
,
NAT
:]
, the
carrier
of
(
INT.Ring
p
)
:]
is non
empty
non
trivial
non
finite
set
(
power
(
INT.Ring
p
)
)
.
(
L
,2) is
set
[
L
,2
]
is
V26
()
set
{
L
,2
}
is non
empty
finite
set
{
L
}
is non
empty
trivial
finite
1
-element
set
{
{
L
,2
}
,
{
L
}
}
is non
empty
finite
V49
()
set
(
power
(
INT.Ring
p
)
)
.
[
L
,2
]
is
set
F
is
left_add-cancelable
right_add-cancelable
add-cancelable
right_complementable
Element
of the
carrier
of
(
INT.Ring
p
)
F
|^
2 is
left_add-cancelable
right_add-cancelable
add-cancelable
right_complementable
Element
of the
carrier
of
(
INT.Ring
p
)
(
power
(
INT.Ring
p
)
)
.
(
F
,2) is
set
[
F
,2
]
is
V26
()
set
{
F
,2
}
is non
empty
finite
set
{
F
}
is non
empty
trivial
finite
1
-element
set
{
{
F
,2
}
,
{
F
}
}
is non
empty
finite
V49
()
set
(
power
(
INT.Ring
p
)
)
.
[
F
,2
]
is
set
0.
(
INT.Ring
p
)
is
V61
(
INT.Ring
p
)
left_add-cancelable
right_add-cancelable
add-cancelable
right_complementable
Element
of the
carrier
of
(
INT.Ring
p
)
the
ZeroF
of
(
INT.Ring
p
)
is
left_add-cancelable
right_add-cancelable
add-cancelable
right_complementable
Element
of the
carrier
of
(
INT.Ring
p
)
pp
is
left_add-cancelable
right_add-cancelable
add-cancelable
right_complementable
Element
of the
carrier
of
(
INT.Ring
p
)
pp
|^
2 is
left_add-cancelable
right_add-cancelable
add-cancelable
right_complementable
Element
of the
carrier
of
(
INT.Ring
p
)
(
power
(
INT.Ring
p
)
)
.
(
pp
,2) is
set
[
pp
,2
]
is
V26
()
set
{
pp
,2
}
is non
empty
finite
set
{
pp
}
is non
empty
trivial
finite
1
-element
set
{
{
pp
,2
}
,
{
pp
}
}
is non
empty
finite
V49
()
set
(
power
(
INT.Ring
p
)
)
.
[
pp
,2
]
is
set
F
*
F
is
left_add-cancelable
right_add-cancelable
add-cancelable
right_complementable
Element
of the
carrier
of
(
INT.Ring
p
)
the
multF
of
(
INT.Ring
p
)
.
(
F
,
F
) is
left_add-cancelable
right_add-cancelable
add-cancelable
right_complementable
Element
of the
carrier
of
(
INT.Ring
p
)
[
F
,
F
]
is
V26
()
set
{
F
,
F
}
is non
empty
finite
set
{
{
F
,
F
}
,
{
F
}
}
is non
empty
finite
V49
()
set
the
multF
of
(
INT.Ring
p
)
.
[
F
,
F
]
is
set
pp
is
left_add-cancelable
right_add-cancelable
add-cancelable
right_complementable
Element
of the
carrier
of
(
INT.Ring
p
)
pp
|^
2 is
left_add-cancelable
right_add-cancelable
add-cancelable
right_complementable
Element
of the
carrier
of
(
INT.Ring
p
)
(
power
(
INT.Ring
p
)
)
.
(
pp
,2) is
set
[
pp
,2
]
is
V26
()
set
{
pp
,2
}
is non
empty
finite
set
{
pp
}
is non
empty
trivial
finite
1
-element
set
{
{
pp
,2
}
,
{
pp
}
}
is non
empty
finite
V49
()
set
(
power
(
INT.Ring
p
)
)
.
[
pp
,2
]
is
set
F
"
is
left_add-cancelable
right_add-cancelable
add-cancelable
right_complementable
Element
of the
carrier
of
(
INT.Ring
p
)
(
F
"
)
*
L
is
left_add-cancelable
right_add-cancelable
add-cancelable
right_complementable
Element
of the
carrier
of
(
INT.Ring
p
)
the
multF
of
(
INT.Ring
p
)
.
(
(
F
"
)
,
L
) is
left_add-cancelable
right_add-cancelable
add-cancelable
right_complementable
Element
of the
carrier
of
(
INT.Ring
p
)
[
(
F
"
)
,
L
]
is
V26
()
set
{
(
F
"
)
,
L
}
is non
empty
finite
set
{
(
F
"
)
}
is non
empty
trivial
finite
1
-element
set
{
{
(
F
"
)
,
L
}
,
{
(
F
"
)
}
}
is non
empty
finite
V49
()
set
the
multF
of
(
INT.Ring
p
)
.
[
(
F
"
)
,
L
]
is
set
(
(
F
"
)
*
L
)
|^
2 is
left_add-cancelable
right_add-cancelable
add-cancelable
right_complementable
Element
of the
carrier
of
(
INT.Ring
p
)
(
power
(
INT.Ring
p
)
)
.
(
(
(
F
"
)
*
L
)
,2) is
set
[
(
(
F
"
)
*
L
)
,2
]
is
V26
()
set
{
(
(
F
"
)
*
L
)
,2
}
is non
empty
finite
set
{
(
(
F
"
)
*
L
)
}
is non
empty
trivial
finite
1
-element
set
{
{
(
(
F
"
)
*
L
)
,2
}
,
{
(
(
F
"
)
*
L
)
}
}
is non
empty
finite
V49
()
set
(
power
(
INT.Ring
p
)
)
.
[
(
(
F
"
)
*
L
)
,2
]
is
set
(
F
"
)
|^
2 is
left_add-cancelable
right_add-cancelable
add-cancelable
right_complementable
Element
of the
carrier
of
(
INT.Ring
p
)
(
power
(
INT.Ring
p
)
)
.
(
(
F
"
)
,2) is
set
[
(
F
"
)
,2
]
is
V26
()
set
{
(
F
"
)
,2
}
is non
empty
finite
set
{
{
(
F
"
)
,2
}
,
{
(
F
"
)
}
}
is non
empty
finite
V49
()
set
(
power
(
INT.Ring
p
)
)
.
[
(
F
"
)
,2
]
is
set
(
(
F
"
)
|^
2
)
*
(
a
*
b
)
is
left_add-cancelable
right_add-cancelable
add-cancelable
right_complementable
Element
of the
carrier
of
(
INT.Ring
p
)
the
multF
of
(
INT.Ring
p
)
.
(
(
(
F
"
)
|^
2
)
,
(
a
*
b
)
) is
left_add-cancelable
right_add-cancelable
add-cancelable
right_complementable
Element
of the
carrier
of
(
INT.Ring
p
)
[
(
(
F
"
)
|^
2
)
,
(
a
*
b
)
]
is
V26
()
set
{
(
(
F
"
)
|^
2
)
,
(
a
*
b
)
}
is non
empty
finite
set
{
(
(
F
"
)
|^
2
)
}
is non
empty
trivial
finite
1
-element
set
{
{
(
(
F
"
)
|^
2
)
,
(
a
*
b
)
}
,
{
(
(
F
"
)
|^
2
)
}
}
is non
empty
finite
V49
()
set
the
multF
of
(
INT.Ring
p
)
.
[
(
(
F
"
)
|^
2
)
,
(
a
*
b
)
]
is
set
(
(
F
"
)
|^
2
)
*
(
F
|^
2
)
is
left_add-cancelable
right_add-cancelable
add-cancelable
right_complementable
Element
of the
carrier
of
(
INT.Ring
p
)
the
multF
of
(
INT.Ring
p
)
.
(
(
(
F
"
)
|^
2
)
,
(
F
|^
2
)
) is
left_add-cancelable
right_add-cancelable
add-cancelable
right_complementable
Element
of the
carrier
of
(
INT.Ring
p
)
[
(
(
F
"
)
|^
2
)
,
(
F
|^
2
)
]
is
V26
()
set
{
(
(
F
"
)
|^
2
)
,
(
F
|^
2
)
}
is non
empty
finite
set
{
{
(
(
F
"
)
|^
2
)
,
(
F
|^
2
)
}
,
{
(
(
F
"
)
|^
2
)
}
}
is non
empty
finite
V49
()
set
the
multF
of
(
INT.Ring
p
)
.
[
(
(
F
"
)
|^
2
)
,
(
F
|^
2
)
]
is
set
(
(
(
F
"
)
|^
2
)
*
(
F
|^
2
)
)
*
b
is
left_add-cancelable
right_add-cancelable
add-cancelable
right_complementable
Element
of the
carrier
of
(
INT.Ring
p
)
the
multF
of
(
INT.Ring
p
)
.
(
(
(
(
F
"
)
|^
2
)
*
(
F
|^
2
)
)
,
b
) is
left_add-cancelable
right_add-cancelable
add-cancelable
right_complementable
Element
of the
carrier
of
(
INT.Ring
p
)
[
(
(
(
F
"
)
|^
2
)
*
(
F
|^
2
)
)
,
b
]
is
V26
()
set
{
(
(
(
F
"
)
|^
2
)
*
(
F
|^
2
)
)
,
b
}
is non
empty
finite
set
{
(
(
(
F
"
)
|^
2
)
*
(
F
|^
2
)
)
}
is non
empty
trivial
finite
1
-element
set
{
{
(
(
(
F
"
)
|^
2
)
*
(
F
|^
2
)
)
,
b
}
,
{
(
(
(
F
"
)
|^
2
)
*
(
F
|^
2
)
)
}
}
is non
empty
finite
V49
()
set
the
multF
of
(
INT.Ring
p
)
.
[
(
(
(
F
"
)
|^
2
)
*
(
F
|^
2
)
)
,
b
]
is
set
(
F
|^
2
)
"
is
left_add-cancelable
right_add-cancelable
add-cancelable
right_complementable
Element
of the
carrier
of
(
INT.Ring
p
)
(
(
F
|^
2
)
"
)
*
(
F
|^
2
)
is
left_add-cancelable
right_add-cancelable
add-cancelable
right_complementable
Element
of the
carrier
of
(
INT.Ring
p
)
the
multF
of
(
INT.Ring
p
)
.
(
(
(
F
|^
2
)
"
)
,
(
F
|^
2
)
) is
left_add-cancelable
right_add-cancelable
add-cancelable
right_complementable
Element
of the
carrier
of
(
INT.Ring
p
)
[
(
(
F
|^
2
)
"
)
,
(
F
|^
2
)
]
is
V26
()
set
{
(
(
F
|^
2
)
"
)
,
(
F
|^
2
)
}
is non
empty
finite
set
{
(
(
F
|^
2
)
"
)
}
is non
empty
trivial
finite
1
-element
set
{
{
(
(
F
|^
2
)
"
)
,
(
F
|^
2
)
}
,
{
(
(
F
|^
2
)
"
)
}
}
is non
empty
finite
V49
()
set
the
multF
of
(
INT.Ring
p
)
.
[
(
(
F
|^
2
)
"
)
,
(
F
|^
2
)
]
is
set
(
(
(
F
|^
2
)
"
)
*
(
F
|^
2
)
)
*
b
is
left_add-cancelable
right_add-cancelable
add-cancelable
right_complementable
Element
of the
carrier
of
(
INT.Ring
p
)
the
multF
of
(
INT.Ring
p
)
.
(
(
(
(
F
|^
2
)
"
)
*
(
F
|^
2
)
)
,
b
) is
left_add-cancelable
right_add-cancelable
add-cancelable
right_complementable
Element
of the
carrier
of
(
INT.Ring
p
)
[
(
(
(
F
|^
2
)
"
)
*
(
F
|^
2
)
)
,
b
]
is
V26
()
set
{
(
(
(
F
|^
2
)
"
)
*
(
F
|^
2
)
)
,
b
}
is non
empty
finite
set
{
(
(
(
F
|^
2
)
"
)
*
(
F
|^
2
)
)
}
is non
empty
trivial
finite
1
-element
set
{
{
(
(
(
F
|^
2
)
"
)
*
(
F
|^
2
)
)
,
b
}
,
{
(
(
(
F
|^
2
)
"
)
*
(
F
|^
2
)
)
}
}
is non
empty
finite
V49
()
set
the
multF
of
(
INT.Ring
p
)
.
[
(
(
(
F
|^
2
)
"
)
*
(
F
|^
2
)
)
,
b
]
is
set
1.
(
INT.Ring
p
)
is
V61
(
INT.Ring
p
)
V61
(
INT.Ring
p
)
left_add-cancelable
left_add-cancelable
right_add-cancelable
right_add-cancelable
add-cancelable
add-cancelable
right_complementable
right_complementable
(
p
)
Element
of the
carrier
of
(
INT.Ring
p
)
the
OneF
of
(
INT.Ring
p
)
is
left_add-cancelable
right_add-cancelable
add-cancelable
right_complementable
Element
of the
carrier
of
(
INT.Ring
p
)
(
1.
(
INT.Ring
p
)
)
*
b
is
left_add-cancelable
right_add-cancelable
add-cancelable
right_complementable
Element
of the
carrier
of
(
INT.Ring
p
)
the
multF
of
(
INT.Ring
p
)
.
(
(
1.
(
INT.Ring
p
)
)
,
b
) is
left_add-cancelable
right_add-cancelable
add-cancelable
right_complementable
Element
of the
carrier
of
(
INT.Ring
p
)
[
(
1.
(
INT.Ring
p
)
)
,
b
]
is
V26
()
set
{
(
1.
(
INT.Ring
p
)
)
,
b
}
is non
empty
finite
set
{
(
1.
(
INT.Ring
p
)
)
}
is non
empty
trivial
finite
1
-element
set
{
{
(
1.
(
INT.Ring
p
)
)
,
b
}
,
{
(
1.
(
INT.Ring
p
)
)
}
}
is non
empty
finite
V49
()
set
the
multF
of
(
INT.Ring
p
)
.
[
(
1.
(
INT.Ring
p
)
)
,
b
]
is
set
L
is
left_add-cancelable
right_add-cancelable
add-cancelable
right_complementable
Element
of the
carrier
of
(
INT.Ring
p
)
L
|^
2 is
left_add-cancelable
right_add-cancelable
add-cancelable
right_complementable
Element
of the
carrier
of
(
INT.Ring
p
)
power
(
INT.Ring
p
)
is
Relation-like
[:
the
carrier
of
(
INT.Ring
p
)
,
NAT
:]
-defined
the
carrier
of
(
INT.Ring
p
)
-valued
Function-like
quasi_total
Element
of
bool
[:
[:
the
carrier
of
(
INT.Ring
p
)
,
NAT
:]
, the
carrier
of
(
INT.Ring
p
)
:]
[:
the
carrier
of
(
INT.Ring
p
)
,
NAT
:]
is non
empty
non
trivial
RAT
-valued
INT
-valued
V35
()
V36
()
V37
()
V38
() non
finite
set
[:
[:
the
carrier
of
(
INT.Ring
p
)
,
NAT
:]
, the
carrier
of
(
INT.Ring
p
)
:]
is non
empty
non
trivial
non
finite
set
bool
[:
[:
the
carrier
of
(
INT.Ring
p
)
,
NAT
:]
, the
carrier
of
(
INT.Ring
p
)
:]
is non
empty
non
trivial
non
finite
set
(
power
(
INT.Ring
p
)
)
.
(
L
,2) is
set
[
L
,2
]
is
V26
()
set
{
L
,2
}
is non
empty
finite
set
{
L
}
is non
empty
trivial
finite
1
-element
set
{
{
L
,2
}
,
{
L
}
}
is non
empty
finite
V49
()
set
(
power
(
INT.Ring
p
)
)
.
[
L
,2
]
is
set
L
is
left_add-cancelable
right_add-cancelable
add-cancelable
right_complementable
Element
of the
carrier
of
(
INT.Ring
p
)
L
|^
2 is
left_add-cancelable
right_add-cancelable
add-cancelable
right_complementable
Element
of the
carrier
of
(
INT.Ring
p
)
power
(
INT.Ring
p
)
is
Relation-like
[:
the
carrier
of
(
INT.Ring
p
)
,
NAT
:]
-defined
the
carrier
of
(
INT.Ring
p
)
-valued
Function-like
quasi_total
Element
of
bool
[:
[:
the
carrier
of
(
INT.Ring
p
)
,
NAT
:]
, the
carrier
of
(
INT.Ring
p
)
:]
[:
the
carrier
of
(
INT.Ring
p
)
,
NAT
:]
is non
empty
non
trivial
RAT
-valued
INT
-valued
V35
()
V36
()
V37
()
V38
() non
finite
set
[:
[:
the
carrier
of
(
INT.Ring
p
)
,
NAT
:]
, the
carrier
of
(
INT.Ring
p
)
:]
is non
empty
non
trivial
non
finite
set
bool
[:
[:
the
carrier
of
(
INT.Ring
p
)
,
NAT
:]
, the
carrier
of
(
INT.Ring
p
)
:]
is non
empty
non
trivial
non
finite
set
(
power
(
INT.Ring
p
)
)
.
(
L
,2) is
set
[
L
,2
]
is
V26
()
set
{
L
,2
}
is non
empty
finite
set
{
L
}
is non
empty
trivial
finite
1
-element
set
{
{
L
,2
}
,
{
L
}
}
is non
empty
finite
V49
()
set
(
power
(
INT.Ring
p
)
)
.
[
L
,2
]
is
set
F
is
left_add-cancelable
right_add-cancelable
add-cancelable
right_complementable
Element
of the
carrier
of
(
INT.Ring
p
)
F
|^
2 is
left_add-cancelable
right_add-cancelable
add-cancelable
right_complementable
Element
of the
carrier
of
(
INT.Ring
p
)
(
power
(
INT.Ring
p
)
)
.
(
F
,2) is
set
[
F
,2
]
is
V26
()
set
{
F
,2
}
is non
empty
finite
set
{
F
}
is non
empty
trivial
finite
1
-element
set
{
{
F
,2
}
,
{
F
}
}
is non
empty
finite
V49
()
set
(
power
(
INT.Ring
p
)
)
.
[
F
,2
]
is
set
0.
(
INT.Ring
p
)
is
V61
(
INT.Ring
p
)
left_add-cancelable
right_add-cancelable
add-cancelable
right_complementable
Element
of the
carrier
of
(
INT.Ring
p
)
the
ZeroF
of
(
INT.Ring
p
)
is
left_add-cancelable
right_add-cancelable
add-cancelable
right_complementable
Element
of the
carrier
of
(
INT.Ring
p
)
pp
is
left_add-cancelable
right_add-cancelable
add-cancelable
right_complementable
Element
of the
carrier
of
(
INT.Ring
p
)
pp
|^
2 is
left_add-cancelable
right_add-cancelable
add-cancelable
right_complementable
Element
of the
carrier
of
(
INT.Ring
p
)
(
power
(
INT.Ring
p
)
)
.
(
pp
,2) is
set
[
pp
,2
]
is
V26
()
set
{
pp
,2
}
is non
empty
finite
set
{
pp
}
is non
empty
trivial
finite
1
-element
set
{
{
pp
,2
}
,
{
pp
}
}
is non
empty
finite
V49
()
set
(
power
(
INT.Ring
p
)
)
.
[
pp
,2
]
is
set
F
*
F
is
left_add-cancelable
right_add-cancelable
add-cancelable
right_complementable
Element
of the
carrier
of
(
INT.Ring
p
)
the
multF
of
(
INT.Ring
p
)
.
(
F
,
F
) is
left_add-cancelable
right_add-cancelable
add-cancelable
right_complementable
Element
of the
carrier
of
(
INT.Ring
p
)
[
F
,
F
]
is
V26
()
set
{
F
,
F
}
is non
empty
finite
set
{
{
F
,
F
}
,
{
F
}
}
is non
empty
finite
V49
()
set
the
multF
of
(
INT.Ring
p
)
.
[
F
,
F
]
is
set
pp
is
left_add-cancelable
right_add-cancelable
add-cancelable
right_complementable
Element
of the
carrier
of
(
INT.Ring
p
)
pp
|^
2 is
left_add-cancelable
right_add-cancelable
add-cancelable
right_complementable
Element
of the
carrier
of
(
INT.Ring
p
)
(
power
(
INT.Ring
p
)
)
.
(
pp
,2) is
set
[
pp
,2
]
is
V26
()
set
{
pp
,2
}
is non
empty
finite
set
{
pp
}
is non
empty
trivial
finite
1
-element
set
{
{
pp
,2
}
,
{
pp
}
}
is non
empty
finite
V49
()
set
(
power
(
INT.Ring
p
)
)
.
[
pp
,2
]
is
set
F
"
is
left_add-cancelable
right_add-cancelable
add-cancelable
right_complementable
Element
of the
carrier
of
(
INT.Ring
p
)
L
*
(
F
"
)
is
left_add-cancelable
right_add-cancelable
add-cancelable
right_complementable
Element
of the
carrier
of
(
INT.Ring
p
)
the
multF
of
(
INT.Ring
p
)
.
(
L
,
(
F
"
)
) is
left_add-cancelable
right_add-cancelable
add-cancelable
right_complementable
Element
of the
carrier
of
(
INT.Ring
p
)
[
L
,
(
F
"
)
]
is
V26
()
set
{
L
,
(
F
"
)
}
is non
empty
finite
set
{
{
L
,
(
F
"
)
}
,
{
L
}
}
is non
empty
finite
V49
()
set
the
multF
of
(
INT.Ring
p
)
.
[
L
,
(
F
"
)
]
is
set
(
L
*
(
F
"
)
)
|^
2 is
left_add-cancelable
right_add-cancelable
add-cancelable
right_complementable
Element
of the
carrier
of
(
INT.Ring
p
)
(
power
(
INT.Ring
p
)
)
.
(
(
L
*
(
F
"
)
)
,2) is
set
[
(
L
*
(
F
"
)
)
,2
]
is
V26
()
set
{
(
L
*
(
F
"
)
)
,2
}
is non
empty
finite
set
{
(
L
*
(
F
"
)
)
}
is non
empty
trivial
finite
1
-element
set
{
{
(
L
*
(
F
"
)
)
,2
}
,
{
(
L
*
(
F
"
)
)
}
}
is non
empty
finite
V49
()
set
(
power
(
INT.Ring
p
)
)
.
[
(
L
*
(
F
"
)
)
,2
]
is
set
(
F
"
)
|^
2 is
left_add-cancelable
right_add-cancelable
add-cancelable
right_complementable
Element
of the
carrier
of
(
INT.Ring
p
)
(
power
(
INT.Ring
p
)
)
.
(
(
F
"
)
,2) is
set
[
(
F
"
)
,2
]
is
V26
()
set
{
(
F
"
)
,2
}
is non
empty
finite
set
{
(
F
"
)
}
is non
empty
trivial
finite
1
-element
set
{
{
(
F
"
)
,2
}
,
{
(
F
"
)
}
}
is non
empty
finite
V49
()
set
(
power
(
INT.Ring
p
)
)
.
[
(
F
"
)
,2
]
is
set
(
a
*
b
)
*
(
(
F
"
)
|^
2
)
is
left_add-cancelable
right_add-cancelable
add-cancelable
right_complementable
Element
of the
carrier
of
(
INT.Ring
p
)
the
multF
of
(
INT.Ring
p
)
.
(
(
a
*
b
)
,
(
(
F
"
)
|^
2
)
) is
left_add-cancelable
right_add-cancelable
add-cancelable
right_complementable
Element
of the
carrier
of
(
INT.Ring
p
)
[
(
a
*
b
)
,
(
(
F
"
)
|^
2
)
]
is
V26
()
set
{
(
a
*
b
)
,
(
(
F
"
)
|^
2
)
}
is non
empty
finite
set
{
(
a
*
b
)
}
is non
empty
trivial
finite
1
-element
set
{
{
(
a
*
b
)
,
(
(
F
"
)
|^
2
)
}
,
{
(
a
*
b
)
}
}
is non
empty
finite
V49
()
set
the
multF
of
(
INT.Ring
p
)
.
[
(
a
*
b
)
,
(
(
F
"
)
|^
2
)
]
is
set
(
F
|^
2
)
*
(
(
F
"
)
|^
2
)
is
left_add-cancelable
right_add-cancelable
add-cancelable
right_complementable
Element
of the
carrier
of
(
INT.Ring
p
)
the
multF
of
(
INT.Ring
p
)
.
(
(
F
|^
2
)
,
(
(
F
"
)
|^
2
)
) is
left_add-cancelable
right_add-cancelable
add-cancelable
right_complementable
Element
of the
carrier
of
(
INT.Ring
p
)
[
(
F
|^
2
)
,
(
(
F
"
)
|^
2
)
]
is
V26
()
set
{
(
F
|^
2
)
,
(
(
F
"
)
|^
2
)
}
is non
empty
finite
set
{
(
F
|^
2
)
}
is non
empty
trivial
finite
1
-element
set
{
{
(
F
|^
2
)
,
(
(
F
"
)
|^
2
)
}
,
{
(
F
|^
2
)
}
}
is non
empty
finite
V49
()
set
the
multF
of
(
INT.Ring
p
)
.
[
(
F
|^
2
)
,
(
(
F
"
)
|^
2
)
]
is
set
a
*
(
(
F
|^
2
)
*
(
(
F
"
)
|^
2
)
)
is
left_add-cancelable
right_add-cancelable
add-cancelable
right_complementable
Element
of the
carrier
of
(
INT.Ring
p
)
the
multF
of
(
INT.Ring
p
)
.
(
a
,
(
(
F
|^
2
)
*
(
(
F
"
)
|^
2
)
)
) is
left_add-cancelable
right_add-cancelable
add-cancelable
right_complementable
Element
of the
carrier
of
(
INT.Ring
p
)
[
a
,
(
(
F
|^
2
)
*
(
(
F
"
)
|^
2
)
)
]
is
V26
()
set
{
a
,
(
(
F
|^
2
)
*
(
(
F
"
)
|^
2
)
)
}
is non
empty
finite
set
{
{
a
,
(
(
F
|^
2
)
*
(
(
F
"
)
|^
2
)
)
}
,
{
a
}
}
is non
empty
finite
V49
()
set
the
multF
of
(
INT.Ring
p
)
.
[
a
,
(
(
F
|^
2
)
*
(
(
F
"
)
|^
2
)
)
]
is
set
(
F
|^
2
)
"
is
left_add-cancelable
right_add-cancelable
add-cancelable
right_complementable
Element
of the
carrier
of
(
INT.Ring
p
)
(
F
|^
2
)
*
(
(
F
|^
2
)
"
)
is
left_add-cancelable
right_add-cancelable
add-cancelable
right_complementable
Element
of the
carrier
of
(
INT.Ring
p
)
the
multF
of
(
INT.Ring
p
)
.
(
(
F
|^
2
)
,
(
(
F
|^
2
)
"
)
) is
left_add-cancelable
right_add-cancelable
add-cancelable
right_complementable
Element
of the
carrier
of
(
INT.Ring
p
)
[
(
F
|^
2
)
,
(
(
F
|^
2
)
"
)
]
is
V26
()
set
{
(
F
|^
2
)
,
(
(
F
|^
2
)
"
)
}
is non
empty
finite
set
{
{
(
F
|^
2
)
,
(
(
F
|^
2
)
"
)
}
,
{
(
F
|^
2
)
}
}
is non
empty
finite
V49
()
set
the
multF
of
(
INT.Ring
p
)
.
[
(
F
|^
2
)
,
(
(
F
|^
2
)
"
)
]
is
set
a
*
(
(
F
|^
2
)
*
(
(
F
|^
2
)
"
)
)
is
left_add-cancelable
right_add-cancelable
add-cancelable
right_complementable
Element
of the
carrier
of
(
INT.Ring
p
)
the
multF
of
(
INT.Ring
p
)
.
(
a
,
(
(
F
|^
2
)
*
(
(
F
|^
2
)
"
)
)
) is
left_add-cancelable
right_add-cancelable
add-cancelable
right_complementable
Element
of the
carrier
of
(
INT.Ring
p
)
[
a
,
(
(
F
|^
2
)
*
(
(
F
|^
2
)
"
)
)
]
is
V26
()
set
{
a
,
(
(
F
|^
2
)
*
(
(
F
|^
2
)
"
)
)
}
is non
empty
finite
set
{
{
a
,
(
(
F
|^
2
)
*
(
(
F
|^
2
)
"
)
)
}
,
{
a
}
}
is non
empty
finite
V49
()
set
the
multF
of
(
INT.Ring
p
)
.
[
a
,
(
(
F
|^
2
)
*
(
(
F
|^
2
)
"
)
)
]
is
set
1.
(
INT.Ring
p
)
is
V61
(
INT.Ring
p
)
V61
(
INT.Ring
p
)
left_add-cancelable
left_add-cancelable
right_add-cancelable
right_add-cancelable
add-cancelable
add-cancelable
right_complementable
right_complementable
(
p
)
Element
of the
carrier
of
(
INT.Ring
p
)
the
OneF
of
(
INT.Ring
p
)
is
left_add-cancelable
right_add-cancelable
add-cancelable
right_complementable
Element
of the
carrier
of
(
INT.Ring
p
)
a
*
(
1.
(
INT.Ring
p
)
)
is
left_add-cancelable
right_add-cancelable
add-cancelable
right_complementable
Element
of the
carrier
of
(
INT.Ring
p
)
the
multF
of
(
INT.Ring
p
)
.
(
a
,
(
1.
(
INT.Ring
p
)
)
) is
left_add-cancelable
right_add-cancelable
add-cancelable
right_complementable
Element
of the
carrier
of
(
INT.Ring
p
)
[
a
,
(
1.
(
INT.Ring
p
)
)
]
is
V26
()
set
{
a
,
(
1.
(
INT.Ring
p
)
)
}
is non
empty
finite
set
{
{
a
,
(
1.
(
INT.Ring
p
)
)
}
,
{
a
}
}
is non
empty
finite
V49
()
set
the
multF
of
(
INT.Ring
p
)
.
[
a
,
(
1.
(
INT.Ring
p
)
)
]
is
set
0.
(
INT.Ring
p
)
is
V61
(
INT.Ring
p
)
left_add-cancelable
right_add-cancelable
add-cancelable
right_complementable
Element
of the
carrier
of
(
INT.Ring
p
)
the
ZeroF
of
(
INT.Ring
p
)
is
left_add-cancelable
right_add-cancelable
add-cancelable
right_complementable
Element
of the
carrier
of
(
INT.Ring
p
)
L
is
left_add-cancelable
right_add-cancelable
add-cancelable
right_complementable
Element
of the
carrier
of
(
INT.Ring
p
)
F
is
V4
()
V5
()
V6
()
V10
()
V11
()
V12
()
integer
ext-real
non
negative
finite
cardinal
set
L
|^
F
is
left_add-cancelable
right_add-cancelable
add-cancelable
right_complementable
Element
of the
carrier
of
(
INT.Ring
p
)
power
(
INT.Ring
p
)
is
Relation-like
[:
the
carrier
of
(
INT.Ring
p
)
,
NAT
:]
-defined
the
carrier
of
(
INT.Ring
p
)
-valued
Function-like
quasi_total
Element
of
bool
[:
[:
the
carrier
of
(
INT.Ring
p
)
,
NAT
:]
, the
carrier
of
(
INT.Ring
p
)
:]
[:
the
carrier
of
(
INT.Ring
p
)
,
NAT
:]
is non
empty
non
trivial
RAT
-valued
INT
-valued
V35
()
V36
()
V37
()
V38
() non
finite
set
[:
[:
the
carrier
of
(
INT.Ring
p
)
,
NAT
:]
, the
carrier
of
(
INT.Ring
p
)
:]
is non
empty
non
trivial
non
finite
set
bool
[:
[:
the
carrier
of
(
INT.Ring
p
)
,
NAT
:]
, the
carrier
of
(
INT.Ring
p
)
:]
is non
empty
non
trivial
non
finite
set
(
power
(
INT.Ring
p
)
)
.
(
L
,
F
) is
set
[
L
,
F
]
is
V26
()
set
{
L
,
F
}
is non
empty
finite
set
{
L
}
is non
empty
trivial
finite
1
-element
set
{
{
L
,
F
}
,
{
L
}
}
is non
empty
finite
V49
()
set
(
power
(
INT.Ring
p
)
)
.
[
L
,
F
]
is
set
pp
is
V4
()
V5
()
V6
()
V10
()
V11
()
V12
()
integer
ext-real
non
negative
finite
cardinal
set
L
|^
pp
is
left_add-cancelable
right_add-cancelable
add-cancelable
right_complementable
Element
of the
carrier
of
(
INT.Ring
p
)
(
power
(
INT.Ring
p
)
)
.
(
L
,
pp
) is
set
[
L
,
pp
]
is
V26
()
set
{
L
,
pp
}
is non
empty
finite
set
{
{
L
,
pp
}
,
{
L
}
}
is non
empty
finite
V49
()
set
(
power
(
INT.Ring
p
)
)
.
[
L
,
pp
]
is
set
F
div
2 is
V4
()
V5
()
V6
()
V10
()
V11
()
V12
()
integer
ext-real
non
negative
finite
cardinal
V113
()
V117
()
V118
()
V119
()
V120
()
V121
()
V122
()
Element
of
NAT
(
F
div
2
)
*
2 is
V4
()
V5
()
V6
()
V10
()
V11
()
V12
()
integer
ext-real
non
negative
finite
cardinal
V113
()
V117
()
V118
()
V119
()
V120
()
V121
()
V122
()
Element
of
NAT
F
mod
2 is
V4
()
V5
()
V6
()
V10
()
V11
()
V12
()
integer
ext-real
non
negative
finite
cardinal
V113
()
V117
()
V118
()
V119
()
V120
()
V121
()
V122
()
Element
of
NAT
(
(
F
div
2
)
*
2
)
+
(
F
mod
2
)
is
V4
()
V5
()
V6
()
V10
()
V11
()
V12
()
integer
ext-real
non
negative
finite
cardinal
V113
()
V117
()
V118
()
V119
()
V120
()
V121
()
V122
()
Element
of
NAT
pp
div
2 is
V4
()
V5
()
V6
()
V10
()
V11
()
V12
()
integer
ext-real
non
negative
finite
cardinal
V113
()
V117
()
V118
()
V119
()
V120
()
V121
()
V122
()
Element
of
NAT
(
pp
div
2
)
*
2 is
V4
()
V5
()
V6
()
V10
()
V11
()
V12
()
integer
ext-real
non
negative
finite
cardinal
V113
()
V117
()
V118
()
V119
()
V120
()
V121
()
V122
()
Element
of
NAT
pp
mod
2 is
V4
()
V5
()
V6
()
V10
()
V11
()
V12
()
integer
ext-real
non
negative
finite
cardinal
V113
()
V117
()
V118
()
V119
()
V120
()
V121
()
V122
()
Element
of
NAT
(
(
pp
div
2
)
*
2
)
+
(
pp
mod
2
)
is
V4
()
V5
()
V6
()
V10
()
V11
()
V12
()
integer
ext-real
non
negative
finite
cardinal
V113
()
V117
()
V118
()
V119
()
V120
()
V121
()
V122
()
Element
of
NAT
FF
is
V4
()
V5
()
V6
()
V10
()
V11
()
V12
()
integer
ext-real
non
negative
finite
cardinal
V113
()
V117
()
V118
()
V119
()
V120
()
V121
()
V122
()
Element
of
NAT
L
|^
FF
is
left_add-cancelable
right_add-cancelable
add-cancelable
right_complementable
Element
of the
carrier
of
(
INT.Ring
p
)
(
power
(
INT.Ring
p
)
)
.
(
L
,
FF
) is
set
[
L
,
FF
]
is
V26
()
set
{
L
,
FF
}
is non
empty
finite
set
{
{
L
,
FF
}
,
{
L
}
}
is non
empty
finite
V49
()
set
(
power
(
INT.Ring
p
)
)
.
[
L
,
FF
]
is
set
(
L
|^
FF
)
|^
2 is
left_add-cancelable
right_add-cancelable
add-cancelable
right_complementable
Element
of the
carrier
of
(
INT.Ring
p
)
(
power
(
INT.Ring
p
)
)
.
(
(
L
|^
FF
)
,2) is
set
[
(
L
|^
FF
)
,2
]
is
V26
()
set
{
(
L
|^
FF
)
,2
}
is non
empty
finite
set
{
(
L
|^
FF
)
}
is non
empty
trivial
finite
1
-element
set
{
{
(
L
|^
FF
)
,2
}
,
{
(
L
|^
FF
)
}
}
is non
empty
finite
V49
()
set
(
power
(
INT.Ring
p
)
)
.
[
(
L
|^
FF
)
,2
]
is
set
FF
is
V4
()
V5
()
V6
()
V10
()
V11
()
V12
()
integer
ext-real
non
negative
finite
cardinal
V113
()
V117
()
V118
()
V119
()
V120
()
V121
()
V122
()
Element
of
NAT
L
|^
FF
is
left_add-cancelable
right_add-cancelable
add-cancelable
right_complementable
Element
of the
carrier
of
(
INT.Ring
p
)
(
power
(
INT.Ring
p
)
)
.
(
L
,
FF
) is
set
[
L
,
FF
]
is
V26
()
set
{
L
,
FF
}
is non
empty
finite
set
{
{
L
,
FF
}
,
{
L
}
}
is non
empty
finite
V49
()
set
(
power
(
INT.Ring
p
)
)
.
[
L
,
FF
]
is
set
(
L
|^
FF
)
|^
2 is
left_add-cancelable
right_add-cancelable
add-cancelable
right_complementable
Element
of the
carrier
of
(
INT.Ring
p
)
(
power
(
INT.Ring
p
)
)
.
(
(
L
|^
FF
)
,2) is
set
[
(
L
|^
FF
)
,2
]
is
V26
()
set
{
(
L
|^
FF
)
,2
}
is non
empty
finite
set
{
(
L
|^
FF
)
}
is non
empty
trivial
finite
1
-element
set
{
{
(
L
|^
FF
)
,2
}
,
{
(
L
|^
FF
)
}
}
is non
empty
finite
V49
()
set
(
power
(
INT.Ring
p
)
)
.
[
(
L
|^
FF
)
,2
]
is
set
(
F
div
2
)
+
(
pp
div
2
)
is
V4
()
V5
()
V6
()
V10
()
V11
()
V12
()
integer
ext-real
non
negative
finite
cardinal
V113
()
V117
()
V118
()
V119
()
V120
()
V121
()
V122
()
Element
of
NAT
(
(
F
div
2
)
+
(
pp
div
2
)
)
+
1 is non
empty
V4
()
V5
()
V6
()
V10
()
V11
()
V12
()
integer
ext-real
positive
non
negative
finite
cardinal
V113
()
V117
()
V118
()
V119
()
V120
()
V121
()
V122
()
Element
of
NAT
F
+
pp
is
V4
()
V5
()
V6
()
V10
()
V11
()
V12
()
integer
ext-real
non
negative
finite
cardinal
set
(
(
F
div
2
)
*
2
)
+
1 is non
empty
V4
()
V5
()
V6
()
V10
()
V11
()
V12
()
integer
ext-real
positive
non
negative
finite
cardinal
V113
()
V117
()
V118
()
V119
()
V120
()
V121
()
V122
()
Element
of
NAT
(
(
(
F
div
2
)
*
2
)
+
1
)
+
pp
is non
empty
V4
()
V5
()
V6
()
V10
()
V11
()
V12
()
integer
ext-real
positive
non
negative
finite
cardinal
V113
()
V117
()
V118
()
V119
()
V120
()
V121
()
V122
()
Element
of
NAT
(
(
pp
div
2
)
*
2
)
+
1 is non
empty
V4
()
V5
()
V6
()
V10
()
V11
()
V12
()
integer
ext-real
positive
non
negative
finite
cardinal
V113
()
V117
()
V118
()
V119
()
V120
()
V121
()
V122
()
Element
of
NAT
(
(
(
F
div
2
)
*
2
)
+
1
)
+
(
(
(
pp
div
2
)
*
2
)
+
1
)
is non
empty
V4
()
V5
()
V6
()
V10
()
V11
()
V12
()
integer
ext-real
positive
non
negative
finite
cardinal
V113
()
V117
()
V118
()
V119
()
V120
()
V121
()
V122
()
Element
of
NAT
FF
is
V4
()
V5
()
V6
()
V10
()
V11
()
V12
()
integer
ext-real
non
negative
finite
cardinal
set
FF
*
2 is
V4
()
V5
()
V6
()
V10
()
V11
()
V12
()
integer
ext-real
non
negative
finite
cardinal
V113
()
V117
()
V118
()
V119
()
V120
()
V121
()
V122
()
Element
of
NAT
L
|^
(
F
+
pp
)
is
left_add-cancelable
right_add-cancelable
add-cancelable
right_complementable
Element
of the
carrier
of
(
INT.Ring
p
)
(
power
(
INT.Ring
p
)
)
.
(
L
,
(
F
+
pp
)
) is
set
[
L
,
(
F
+
pp
)
]
is
V26
()
set
{
L
,
(
F
+
pp
)
}
is non
empty
finite
set
{
{
L
,
(
F
+
pp
)
}
,
{
L
}
}
is non
empty
finite
V49
()
set
(
power
(
INT.Ring
p
)
)
.
[
L
,
(
F
+
pp
)
]
is
set
L
|^
FF
is
left_add-cancelable
right_add-cancelable
add-cancelable
right_complementable
Element
of the
carrier
of
(
INT.Ring
p
)
(
power
(
INT.Ring
p
)
)
.
(
L
,
FF
) is
set
[
L
,
FF
]
is
V26
()
set
{
L
,
FF
}
is non
empty
finite
set
{
{
L
,
FF
}
,
{
L
}
}
is non
empty
finite
V49
()
set
(
power
(
INT.Ring
p
)
)
.
[
L
,
FF
]
is
set
(
L
|^
FF
)
|^
2 is
left_add-cancelable
right_add-cancelable
add-cancelable
right_complementable
Element
of the
carrier
of
(
INT.Ring
p
)
(
power
(
INT.Ring
p
)
)
.
(
(
L
|^
FF
)
,2) is
set
[
(
L
|^
FF
)
,2
]
is
V26
()
set
{
(
L
|^
FF
)
,2
}
is non
empty
finite
set
{
(
L
|^
FF
)
}
is non
empty
trivial
finite
1
-element
set
{
{
(
L
|^
FF
)
,2
}
,
{
(
L
|^
FF
)
}
}
is non
empty
finite
V49
()
set
(
power
(
INT.Ring
p
)
)
.
[
(
L
|^
FF
)
,2
]
is
set
L
is
left_add-cancelable
right_add-cancelable
add-cancelable
right_complementable
Element
of the
carrier
of
(
INT.Ring
p
)
L
|^
2 is
left_add-cancelable
right_add-cancelable
add-cancelable
right_complementable
Element
of the
carrier
of
(
INT.Ring
p
)
power
(
INT.Ring
p
)
is
Relation-like
[:
the
carrier
of
(
INT.Ring
p
)
,
NAT
:]
-defined
the
carrier
of
(
INT.Ring
p
)
-valued
Function-like
quasi_total
Element
of
bool
[:
[:
the
carrier
of
(
INT.Ring
p
)
,
NAT
:]
, the
carrier
of
(
INT.Ring
p
)
:]
[:
the
carrier
of
(
INT.Ring
p
)
,
NAT
:]
is non
empty
non
trivial
RAT
-valued
INT
-valued
V35
()
V36
()
V37
()
V38
() non
finite
set
[:
[:
the
carrier
of
(
INT.Ring
p
)
,
NAT
:]
, the
carrier
of
(
INT.Ring
p
)
:]
is non
empty
non
trivial
non
finite
set
bool
[:
[:
the
carrier
of
(
INT.Ring
p
)
,
NAT
:]
, the
carrier
of
(
INT.Ring
p
)
:]
is non
empty
non
trivial
non
finite
set
(
power
(
INT.Ring
p
)
)
.
(
L
,2) is
set
[
L
,2
]
is
V26
()
set
{
L
,2
}
is non
empty
finite
set
{
L
}
is non
empty
trivial
finite
1
-element
set
{
{
L
,2
}
,
{
L
}
}
is non
empty
finite
V49
()
set
(
power
(
INT.Ring
p
)
)
.
[
L
,2
]
is
set
p
is
V4
()
V5
()
V6
()
V10
()
V11
()
V12
()
integer
ext-real
non
negative
finite
cardinal
set
p
mod
2 is
V4
()
V5
()
V6
()
V10
()
V11
()
V12
()
integer
ext-real
non
negative
finite
cardinal
V113
()
V117
()
V118
()
V119
()
V120
()
V121
()
V122
()
Element
of
NAT
a
is non
empty
V4
()
V5
()
V6
()
V10
()
V11
()
V12
()
integer
V14
()
ext-real
positive
non
negative
finite
cardinal
set
INT.Ring
a
is non
empty
non
degenerated
non
trivial
finite
left_add-cancelable
right_add-cancelable
add-cancelable
right_complementable
almost_left_invertible
strict
unital
associative
commutative
Euclidian
right-distributive
left-distributive
right_unital
well-unital
distributive
left_unital
Abelian
add-associative
right_zeroed
()
doubleLoopStr
Segm
a
is
V117
()
V118
()
V119
()
V120
()
V121
()
V122
()
Element
of
bool
NAT
addint
a
is
Relation-like
[:
(
Segm
a
)
,
(
Segm
a
)
:]
-defined
Segm
a
-valued
Function-like
quasi_total
V35
()
V36
()
V37
()
V38
()
Element
of
bool
[:
[:
(
Segm
a
)
,
(
Segm
a
)
:]
,
(
Segm
a
)
:]
[:
(
Segm
a
)
,
(
Segm
a
)
:]
is
RAT
-valued
INT
-valued
V35
()
V36
()
V37
()
V38
()
set
[:
[:
(
Segm
a
)
,
(
Segm
a
)
:]
,
(
Segm
a
)
:]
is
RAT
-valued
INT
-valued
V35
()
V36
()
V37
()
V38
()
set
bool
[:
[:
(
Segm
a
)
,
(
Segm
a
)
:]
,
(
Segm
a
)
:]
is non
empty
set
multint
a
is
Relation-like
[:
(
Segm
a
)
,
(
Segm
a
)
:]
-defined
Segm
a
-valued
Function-like
quasi_total
V35
()
V36
()
V37
()
V38
()
Element
of
bool
[:
[:
(
Segm
a
)
,
(
Segm
a
)
:]
,
(
Segm
a
)
:]
K633
(1,
(
Segm
a
)
) is
V4
()
V5
()
V6
()
V10
()
V11
()
V12
()
integer
ext-real
non
negative
finite
cardinal
V113
()
Element
of
Segm
a
K633
(
0
,
(
Segm
a
)
) is
V4
()
V5
()
V6
()
V10
()
V11
()
V12
()
integer
ext-real
non
negative
finite
cardinal
V113
()
Element
of
Segm
a
doubleLoopStr
(#
(
Segm
a
)
,
(
addint
a
)
,
(
multint
a
)
,
K633
(1,
(
Segm
a
)
),
K633
(
0
,
(
Segm
a
)
) #) is
strict
doubleLoopStr
the
carrier
of
(
INT.Ring
a
)
is non
empty
non
trivial
finite
set
b
is
left_add-cancelable
right_add-cancelable
add-cancelable
right_complementable
Element
of the
carrier
of
(
INT.Ring
a
)
b
|^
p
is
left_add-cancelable
right_add-cancelable
add-cancelable
right_complementable
Element
of the
carrier
of
(
INT.Ring
a
)
power
(
INT.Ring
a
)
is
Relation-like
[:
the
carrier
of
(
INT.Ring
a
)
,
NAT
:]
-defined
the
carrier
of
(
INT.Ring
a
)
-valued
Function-like
quasi_total
Element
of
bool
[:
[:
the
carrier
of
(
INT.Ring
a
)
,
NAT
:]
, the
carrier
of
(
INT.Ring
a
)
:]
[:
the
carrier
of
(
INT.Ring
a
)
,
NAT
:]
is non
empty
non
trivial
RAT
-valued
INT
-valued
V35
()
V36
()
V37
()
V38
() non
finite
set
[:
[:
the
carrier
of
(
INT.Ring
a
)
,
NAT
:]
, the
carrier
of
(
INT.Ring
a
)
:]
is non
empty
non
trivial
non
finite
set
bool
[:
[:
the
carrier
of
(
INT.Ring
a
)
,
NAT
:]
, the
carrier
of
(
INT.Ring
a
)
:]
is non
empty
non
trivial
non
finite
set
(
power
(
INT.Ring
a
)
)
.
(
b
,
p
) is
set
[
b
,
p
]
is
V26
()
set
{
b
,
p
}
is non
empty
finite
set
{
b
}
is non
empty
trivial
finite
1
-element
set
{
{
b
,
p
}
,
{
b
}
}
is non
empty
finite
V49
()
set
(
power
(
INT.Ring
a
)
)
.
[
b
,
p
]
is
set
(
a
,
(
b
|^
p
)
) is
V11
()
V12
()
integer
ext-real
set
p
div
2 is
V4
()
V5
()
V6
()
V10
()
V11
()
V12
()
integer
ext-real
non
negative
finite
cardinal
V113
()
V117
()
V118
()
V119
()
V120
()
V121
()
V122
()
Element
of
NAT
(
p
div
2
)
*
2 is
V4
()
V5
()
V6
()
V10
()
V11
()
V12
()
integer
ext-real
non
negative
finite
cardinal
V113
()
V117
()
V118
()
V119
()
V120
()
V121
()
V122
()
Element
of
NAT
(
(
p
div
2
)
*
2
)
+
(
p
mod
2
)
is
V4
()
V5
()
V6
()
V10
()
V11
()
V12
()
integer
ext-real
non
negative
finite
cardinal
V113
()
V117
()
V118
()
V119
()
V120
()
V121
()
V122
()
Element
of
NAT
L
is
V4
()
V5
()
V6
()
V10
()
V11
()
V12
()
integer
ext-real
non
negative
finite
cardinal
set
b
|^
L
is
left_add-cancelable
right_add-cancelable
add-cancelable
right_complementable
Element
of the
carrier
of
(
INT.Ring
a
)
(
power
(
INT.Ring
a
)
)
.
(
b
,
L
) is
set
[
b
,
L
]
is
V26
()
set
{
b
,
L
}
is non
empty
finite
set
{
{
b
,
L
}
,
{
b
}
}
is non
empty
finite
V49
()
set
(
power
(
INT.Ring
a
)
)
.
[
b
,
L
]
is
set
(
b
|^
L
)
|^
2 is
left_add-cancelable
right_add-cancelable
add-cancelable
right_complementable
Element
of the
carrier
of
(
INT.Ring
a
)
(
power
(
INT.Ring
a
)
)
.
(
(
b
|^
L
)
,2) is
set
[
(
b
|^
L
)
,2
]
is
V26
()
set
{
(
b
|^
L
)
,2
}
is non
empty
finite
set
{
(
b
|^
L
)
}
is non
empty
trivial
finite
1
-element
set
{
{
(
b
|^
L
)
,2
}
,
{
(
b
|^
L
)
}
}
is non
empty
finite
V49
()
set
(
power
(
INT.Ring
a
)
)
.
[
(
b
|^
L
)
,2
]
is
set
p
is
V4
()
V5
()
V6
()
V10
()
V11
()
V12
()
integer
ext-real
non
negative
finite
cardinal
set
p
mod
2 is
V4
()
V5
()
V6
()
V10
()
V11
()
V12
()
integer
ext-real
non
negative
finite
cardinal
V113
()
V117
()
V118
()
V119
()
V120
()
V121
()
V122
()
Element
of
NAT
a
is non
empty
V4
()
V5
()
V6
()
V10
()
V11
()
V12
()
integer
V14
()
ext-real
positive
non
negative
finite
cardinal
set
INT.Ring
a
is non
empty
non
degenerated
non
trivial
finite
left_add-cancelable
right_add-cancelable
add-cancelable
right_complementable
almost_left_invertible
strict
unital
associative
commutative
Euclidian
right-distributive
left-distributive
right_unital
well-unital
distributive
left_unital
Abelian
add-associative
right_zeroed
()
doubleLoopStr
Segm
a
is
V117
()
V118
()
V119
()
V120
()
V121
()
V122
()
Element
of
bool
NAT
addint
a
is
Relation-like
[:
(
Segm
a
)
,
(
Segm
a
)
:]
-defined
Segm
a
-valued
Function-like
quasi_total
V35
()
V36
()
V37
()
V38
()
Element
of
bool
[:
[:
(
Segm
a
)
,
(
Segm
a
)
:]
,
(
Segm
a
)
:]
[:
(
Segm
a
)
,
(
Segm
a
)
:]
is
RAT
-valued
INT
-valued
V35
()
V36
()
V37
()
V38
()
set
[:
[:
(
Segm
a
)
,
(
Segm
a
)
:]
,
(
Segm
a
)
:]
is
RAT
-valued
INT
-valued
V35
()
V36
()
V37
()
V38
()
set
bool
[:
[:
(
Segm
a
)
,
(
Segm
a
)
:]
,
(
Segm
a
)
:]
is non
empty
set
multint
a
is
Relation-like
[:
(
Segm
a
)
,
(
Segm
a
)
:]
-defined
Segm
a
-valued
Function-like
quasi_total
V35
()
V36
()
V37
()
V38
()
Element
of
bool
[:
[:
(
Segm
a
)
,
(
Segm
a
)
:]
,
(
Segm
a
)
:]
K633
(1,
(
Segm
a
)
) is
V4
()
V5
()
V6
()
V10
()
V11
()
V12
()
integer
ext-real
non
negative
finite
cardinal
V113
()
Element
of
Segm
a
K633
(
0
,
(
Segm
a
)
) is
V4
()
V5
()
V6
()
V10
()
V11
()
V12
()
integer
ext-real
non
negative
finite
cardinal
V113
()
Element
of
Segm
a
doubleLoopStr
(#
(
Segm
a
)
,
(
addint
a
)
,
(
multint
a
)
,
K633
(1,
(
Segm
a
)
),
K633
(
0
,
(
Segm
a
)
) #) is
strict
doubleLoopStr
the
carrier
of
(
INT.Ring
a
)
is non
empty
non
trivial
finite
set
b
is
left_add-cancelable
right_add-cancelable
add-cancelable
right_complementable
Element
of the
carrier
of
(
INT.Ring
a
)
b
|^
p
is
left_add-cancelable
right_add-cancelable
add-cancelable
right_complementable
Element
of the
carrier
of
(
INT.Ring
a
)
power
(
INT.Ring
a
)
is
Relation-like
[:
the
carrier
of
(
INT.Ring
a
)
,
NAT
:]
-defined
the
carrier
of
(
INT.Ring
a
)
-valued
Function-like
quasi_total
Element
of
bool
[:
[:
the
carrier
of
(
INT.Ring
a
)
,
NAT
:]
, the
carrier
of
(
INT.Ring
a
)
:]
[:
the
carrier
of
(
INT.Ring
a
)
,
NAT
:]
is non
empty
non
trivial
RAT
-valued
INT
-valued
V35
()
V36
()
V37
()
V38
() non
finite
set
[:
[:
the
carrier
of
(
INT.Ring
a
)
,
NAT
:]
, the
carrier
of
(
INT.Ring
a
)
:]
is non
empty
non
trivial
non
finite
set
bool
[:
[:
the
carrier
of
(
INT.Ring
a
)
,
NAT
:]
, the
carrier
of
(
INT.Ring
a
)
:]
is non
empty
non
trivial
non
finite
set
(
power
(
INT.Ring
a
)
)
.
(
b
,
p
) is
set
[
b
,
p
]
is
V26
()
set
{
b
,
p
}
is non
empty
finite
set
{
b
}
is non
empty
trivial
finite
1
-element
set
{
{
b
,
p
}
,
{
b
}
}
is non
empty
finite
V49
()
set
(
power
(
INT.Ring
a
)
)
.
[
b
,
p
]
is
set
(
a
,
(
b
|^
p
)
) is
V11
()
V12
()
integer
ext-real
set
(
a
,
b
) is
V11
()
V12
()
integer
ext-real
set
p
div
2 is
V4
()
V5
()
V6
()
V10
()
V11
()
V12
()
integer
ext-real
non
negative
finite
cardinal
V113
()
V117
()
V118
()
V119
()
V120
()
V121
()
V122
()
Element
of
NAT
(
p
div
2
)
*
2 is
V4
()
V5
()
V6
()
V10
()
V11
()
V12
()
integer
ext-real
non
negative
finite
cardinal
V113
()
V117
()
V118
()
V119
()
V120
()
V121
()
V122
()
Element
of
NAT
(
(
p
div
2
)
*
2
)
+
1 is non
empty
V4
()
V5
()
V6
()
V10
()
V11
()
V12
()
integer
ext-real
positive
non
negative
finite
cardinal
V113
()
V117
()
V118
()
V119
()
V120
()
V121
()
V122
()
Element
of
NAT
p
-
1 is
V11
()
V12
()
integer
ext-real
set
L
is
V4
()
V5
()
V6
()
V10
()
V11
()
V12
()
integer
ext-real
non
negative
finite
cardinal
set
L
+
1 is non
empty
V4
()
V5
()
V6
()
V10
()
V11
()
V12
()
integer
ext-real
positive
non
negative
finite
cardinal
V113
()
V117
()
V118
()
V119
()
V120
()
V121
()
V122
()
Element
of
NAT
b
|^
(
L
+
1
)
is
left_add-cancelable
right_add-cancelable
add-cancelable
right_complementable
Element
of the
carrier
of
(
INT.Ring
a
)
(
power
(
INT.Ring
a
)
)
.
(
b
,
(
L
+
1
)
) is
set
[
b
,
(
L
+
1
)
]
is
V26
()
set
{
b
,
(
L
+
1
)
}
is non
empty
finite
set
{
{
b
,
(
L
+
1
)
}
,
{
b
}
}
is non
empty
finite
V49
()
set
(
power
(
INT.Ring
a
)
)
.
[
b
,
(
L
+
1
)
]
is
set
b
|^
L
is
left_add-cancelable
right_add-cancelable
add-cancelable
right_complementable
Element
of the
carrier
of
(
INT.Ring
a
)
(
power
(
INT.Ring
a
)
)
.
(
b
,
L
) is
set
[
b
,
L
]
is
V26
()
set
{
b
,
L
}
is non
empty
finite
set
{
{
b
,
L
}
,
{
b
}
}
is non
empty
finite
V49
()
set
(
power
(
INT.Ring
a
)
)
.
[
b
,
L
]
is
set
(
b
|^
L
)
*
b
is
left_add-cancelable
right_add-cancelable
add-cancelable
right_complementable
Element
of the
carrier
of
(
INT.Ring
a
)
the
multF
of
(
INT.Ring
a
)
is
Relation-like
[:
the
carrier
of
(
INT.Ring
a
)
, the
carrier
of
(
INT.Ring
a
)
:]
-defined
the
carrier
of
(
INT.Ring
a
)
-valued
Function-like
quasi_total
finite
Element
of
bool
[:
[:
the
carrier
of
(
INT.Ring
a
)
, the
carrier
of
(
INT.Ring
a
)
:]
, the
carrier
of
(
INT.Ring
a
)
:]
[:
the
carrier
of
(
INT.Ring
a
)
, the
carrier
of
(
INT.Ring
a
)
:]
is non
empty
finite
set
[:
[:
the
carrier
of
(
INT.Ring
a
)
, the
carrier
of
(
INT.Ring
a
)
:]
, the
carrier
of
(
INT.Ring
a
)
:]
is non
empty
finite
set
bool
[:
[:
the
carrier
of
(
INT.Ring
a
)
, the
carrier
of
(
INT.Ring
a
)
:]
, the
carrier
of
(
INT.Ring
a
)
:]
is non
empty
finite
V49
()
set
the
multF
of
(
INT.Ring
a
)
.
(
(
b
|^
L
)
,
b
) is
left_add-cancelable
right_add-cancelable
add-cancelable
right_complementable
Element
of the
carrier
of
(
INT.Ring
a
)
[
(
b
|^
L
)
,
b
]
is
V26
()
set
{
(
b
|^
L
)
,
b
}
is non
empty
finite
set
{
(
b
|^
L
)
}
is non
empty
trivial
finite
1
-element
set
{
{
(
b
|^
L
)
,
b
}
,
{
(
b
|^
L
)
}
}
is non
empty
finite
V49
()
set
the
multF
of
(
INT.Ring
a
)
.
[
(
b
|^
L
)
,
b
]
is
set
(
a
,
(
b
|^
L
)
) is
V11
()
V12
()
integer
ext-real
set
(
a
,
(
b
|^
L
)
)
*
(
a
,
b
) is
V11
()
V12
()
integer
ext-real
set
(
p
-
1
)
mod
2 is
V11
()
V12
()
integer
ext-real
set
0
+
(
(
p
div
2
)
*
2
)
is
V4
()
V5
()
V6
()
V10
()
V11
()
V12
()
integer
ext-real
non
negative
finite
cardinal
V113
()
V117
()
V118
()
V119
()
V120
()
V121
()
V122
()
Element
of
NAT
(
0
+
(
(
p
div
2
)
*
2
)
)
mod
2 is
V4
()
V5
()
V6
()
V10
()
V11
()
V12
()
integer
ext-real
non
negative
finite
cardinal
V113
()
V117
()
V118
()
V119
()
V120
()
V121
()
V122
()
Element
of
NAT
0
mod
2 is
V4
()
V5
()
V6
()
V10
()
V11
()
V12
()
integer
ext-real
non
negative
finite
cardinal
V113
()
V117
()
V118
()
V119
()
V120
()
V121
()
V122
()
Element
of
NAT
p
is non
empty
V4
()
V5
()
V6
()
V10
()
V11
()
V12
()
integer
V14
()
ext-real
positive
non
negative
finite
cardinal
set
INT.Ring
p
is non
empty
non
degenerated
non
trivial
finite
left_add-cancelable
right_add-cancelable
add-cancelable
right_complementable
almost_left_invertible
strict
unital
associative
commutative
Euclidian
right-distributive
left-distributive
right_unital
well-unital
distributive
left_unital
Abelian
add-associative
right_zeroed
()
doubleLoopStr
Segm
p
is
V117
()
V118
()
V119
()
V120
()
V121
()
V122
()
Element
of
bool
NAT
addint
p
is
Relation-like
[:
(
Segm
p
)
,
(
Segm
p
)
:]
-defined
Segm
p
-valued
Function-like
quasi_total
V35
()
V36
()
V37
()
V38
()
Element
of
bool
[:
[:
(
Segm
p
)
,
(
Segm
p
)
:]
,
(
Segm
p
)
:]
[:
(
Segm
p
)
,
(
Segm
p
)
:]
is
RAT
-valued
INT
-valued
V35
()
V36
()
V37
()
V38
()
set
[:
[:
(
Segm
p
)
,
(
Segm
p
)
:]
,
(
Segm
p
)
:]
is
RAT
-valued
INT
-valued
V35
()
V36
()
V37
()
V38
()
set
bool
[:
[:
(
Segm
p
)
,
(
Segm
p
)
:]
,
(
Segm
p
)
:]
is non
empty
set
multint
p
is
Relation-like
[:
(
Segm
p
)
,
(
Segm
p
)
:]
-defined
Segm
p
-valued
Function-like
quasi_total
V35
()
V36
()
V37
()
V38
()
Element
of
bool
[:
[:
(
Segm
p
)
,
(
Segm
p
)
:]
,
(
Segm
p
)
:]
K633
(1,
(
Segm
p
)
) is
V4
()
V5
()
V6
()
V10
()
V11
()
V12
()
integer
ext-real
non
negative
finite
cardinal
V113
()
Element
of
Segm
p
K633
(
0
,
(
Segm
p
)
) is
V4
()
V5
()
V6
()
V10
()
V11
()
V12
()
integer
ext-real
non
negative
finite
cardinal
V113
()
Element
of
Segm
p
doubleLoopStr
(#
(
Segm
p
)
,
(
addint
p
)
,
(
multint
p
)
,
K633
(1,
(
Segm
p
)
),
K633
(
0
,
(
Segm
p
)
) #) is
strict
doubleLoopStr
the
carrier
of
(
INT.Ring
p
)
is non
empty
non
trivial
finite
set
a
is
left_add-cancelable
right_add-cancelable
add-cancelable
right_complementable
Element
of the
carrier
of
(
INT.Ring
p
)
{
b
1
where
b
1
is
left_add-cancelable
right_add-cancelable
add-cancelable
right_complementable
Element
of the
carrier
of
(
INT.Ring
p
)
:
b
1
|^
2
=
a
}
is
set
card
{
b
1
where
b
1
is
left_add-cancelable
right_add-cancelable
add-cancelable
right_complementable
Element
of the
carrier
of
(
INT.Ring
p
)
:
b
1
|^
2
=
a
}
is
V4
()
V5
()
V6
()
cardinal
set
(
p
,
a
) is
V11
()
V12
()
integer
ext-real
set
1
+
(
p
,
a
) is
V11
()
V12
()
integer
ext-real
set
b
is
left_add-cancelable
right_add-cancelable
add-cancelable
right_complementable
Element
of the
carrier
of
(
INT.Ring
p
)
b
|^
2 is
left_add-cancelable
right_add-cancelable
add-cancelable
right_complementable
Element
of the
carrier
of
(
INT.Ring
p
)
power
(
INT.Ring
p
)
is
Relation-like
[:
the
carrier
of
(
INT.Ring
p
)
,
NAT
:]
-defined
the
carrier
of
(
INT.Ring
p
)
-valued
Function-like
quasi_total
Element
of
bool
[:
[:
the
carrier
of
(
INT.Ring
p
)
,
NAT
:]
, the
carrier
of
(
INT.Ring
p
)
:]
[:
the
carrier
of
(
INT.Ring
p
)
,
NAT
:]
is non
empty
non
trivial
RAT
-valued
INT
-valued
V35
()
V36
()
V37
()
V38
() non
finite
set
[:
[:
the
carrier
of
(
INT.Ring
p
)
,
NAT
:]
, the
carrier
of
(
INT.Ring
p
)
:]
is non
empty
non
trivial
non
finite
set
bool
[:
[:
the
carrier
of
(
INT.Ring
p
)
,
NAT
:]
, the
carrier
of
(
INT.Ring
p
)
:]
is non
empty
non
trivial
non
finite
set
(
power
(
INT.Ring
p
)
)
.
(
b
,2) is
set
[
b
,2
]
is
V26
()
set
{
b
,2
}
is non
empty
finite
set
{
b
}
is non
empty
trivial
finite
1
-element
set
{
{
b
,2
}
,
{
b
}
}
is non
empty
finite
V49
()
set
(
power
(
INT.Ring
p
)
)
.
[
b
,2
]
is
set
-
b
is
left_add-cancelable
right_add-cancelable
add-cancelable
right_complementable
Element
of the
carrier
of
(
INT.Ring
p
)
(
-
b
)
|^
2 is
left_add-cancelable
right_add-cancelable
add-cancelable
right_complementable
Element
of the
carrier
of
(
INT.Ring
p
)
(
power
(
INT.Ring
p
)
)
.
(
(
-
b
)
,2) is
set
[
(
-
b
)
,2
]
is
V26
()
set
{
(
-
b
)
,2
}
is non
empty
finite
set
{
(
-
b
)
}
is non
empty
trivial
finite
1
-element
set
{
{
(
-
b
)
,2
}
,
{
(
-
b
)
}
}
is non
empty
finite
V49
()
set
(
power
(
INT.Ring
p
)
)
.
[
(
-
b
)
,2
]
is
set
(
-
b
)
*
(
-
b
)
is
left_add-cancelable
right_add-cancelable
add-cancelable
right_complementable
Element
of the
carrier
of
(
INT.Ring
p
)
the
multF
of
(
INT.Ring
p
)
is
Relation-like
[:
the
carrier
of
(
INT.Ring
p
)
, the
carrier
of
(
INT.Ring
p
)
:]
-defined
the
carrier
of
(
INT.Ring
p
)
-valued
Function-like
quasi_total
finite
Element
of
bool
[:
[:
the
carrier
of
(
INT.Ring
p
)
, the
carrier
of
(
INT.Ring
p
)
:]
, the
carrier
of
(
INT.Ring
p
)
:]
[:
the
carrier
of
(
INT.Ring
p
)
, the
carrier
of
(
INT.Ring
p
)
:]
is non
empty
finite
set
[:
[:
the
carrier
of
(
INT.Ring
p
)
, the
carrier
of
(
INT.Ring
p
)
:]
, the
carrier
of
(
INT.Ring
p
)
:]
is non
empty
finite
set
bool
[:
[:
the
carrier
of
(
INT.Ring
p
)
, the
carrier
of
(
INT.Ring
p
)
:]
, the
carrier
of
(
INT.Ring
p
)
:]
is non
empty
finite
V49
()
set
the
multF
of
(
INT.Ring
p
)
.
(
(
-
b
)
,
(
-
b
)
) is
left_add-cancelable
right_add-cancelable
add-cancelable
right_complementable
Element
of the
carrier
of
(
INT.Ring
p
)
[
(
-
b
)
,
(
-
b
)
]
is
V26
()
set
{
(
-
b
)
,
(
-
b
)
}
is non
empty
finite
set
{
{
(
-
b
)
,
(
-
b
)
}
,
{
(
-
b
)
}
}
is non
empty
finite
V49
()
set
the
multF
of
(
INT.Ring
p
)
.
[
(
-
b
)
,
(
-
b
)
]
is
set
b
*
b
is
left_add-cancelable
right_add-cancelable
add-cancelable
right_complementable
Element
of the
carrier
of
(
INT.Ring
p
)
the
multF
of
(
INT.Ring
p
)
.
(
b
,
b
) is
left_add-cancelable
right_add-cancelable
add-cancelable
right_complementable
Element
of the
carrier
of
(
INT.Ring
p
)
[
b
,
b
]
is
V26
()
set
{
b
,
b
}
is non
empty
finite
set
{
{
b
,
b
}
,
{
b
}
}
is non
empty
finite
V49
()
set
the
multF
of
(
INT.Ring
p
)
.
[
b
,
b
]
is
set
{
b
,
(
-
b
)
}
is non
empty
finite
Element
of
bool
the
carrier
of
(
INT.Ring
p
)
bool
the
carrier
of
(
INT.Ring
p
)
is non
empty
finite
V49
()
set
b
+
b
is
left_add-cancelable
right_add-cancelable
add-cancelable
right_complementable
Element
of the
carrier
of
(
INT.Ring
p
)
the
addF
of
(
INT.Ring
p
)
is
Relation-like
[:
the
carrier
of
(
INT.Ring
p
)
, the
carrier
of
(
INT.Ring
p
)
:]
-defined
the
carrier
of
(
INT.Ring
p
)
-valued
Function-like
quasi_total
finite
Element
of
bool
[:
[:
the
carrier
of
(
INT.Ring
p
)
, the
carrier
of
(
INT.Ring
p
)
:]
, the
carrier
of
(
INT.Ring
p
)
:]
the
addF
of
(
INT.Ring
p
)
.
(
b
,
b
) is
left_add-cancelable
right_add-cancelable
add-cancelable
right_complementable
Element
of the
carrier
of
(
INT.Ring
p
)
the
addF
of
(
INT.Ring
p
)
.
[
b
,
b
]
is
set
0.
(
INT.Ring
p
)
is
V61
(
INT.Ring
p
)
left_add-cancelable
right_add-cancelable
add-cancelable
right_complementable
Element
of the
carrier
of
(
INT.Ring
p
)
the
ZeroF
of
(
INT.Ring
p
)
is
left_add-cancelable
right_add-cancelable
add-cancelable
right_complementable
Element
of the
carrier
of
(
INT.Ring
p
)
(
0.
(
INT.Ring
p
)
)
*
(
0.
(
INT.Ring
p
)
)
is
left_add-cancelable
right_add-cancelable
add-cancelable
right_complementable
Element
of the
carrier
of
(
INT.Ring
p
)
the
multF
of
(
INT.Ring
p
)
.
(
(
0.
(
INT.Ring
p
)
)
,
(
0.
(
INT.Ring
p
)
)
) is
left_add-cancelable
right_add-cancelable
add-cancelable
right_complementable
Element
of the
carrier
of
(
INT.Ring
p
)
[
(
0.
(
INT.Ring
p
)
)
,
(
0.
(
INT.Ring
p
)
)
]
is
V26
()
set
{
(
0.
(
INT.Ring
p
)
)
,
(
0.
(
INT.Ring
p
)
)
}
is non
empty
finite
set
{
(
0.
(
INT.Ring
p
)
)
}
is non
empty
trivial
finite
1
-element
set
{
{
(
0.
(
INT.Ring
p
)
)
,
(
0.
(
INT.Ring
p
)
)
}
,
{
(
0.
(
INT.Ring
p
)
)
}
}
is non
empty
finite
V49
()
set
the
multF
of
(
INT.Ring
p
)
.
[
(
0.
(
INT.Ring
p
)
)
,
(
0.
(
INT.Ring
p
)
)
]
is
set
L
is
set
F
is
left_add-cancelable
right_add-cancelable
add-cancelable
right_complementable
Element
of the
carrier
of
(
INT.Ring
p
)
F
|^
2 is
left_add-cancelable
right_add-cancelable
add-cancelable
right_complementable
Element
of the
carrier
of
(
INT.Ring
p
)
(
power
(
INT.Ring
p
)
)
.
(
F
,2) is
set
[
F
,2
]
is
V26
()
set
{
F
,2
}
is non
empty
finite
set
{
F
}
is non
empty
trivial
finite
1
-element
set
{
{
F
,2
}
,
{
F
}
}
is non
empty
finite
V49
()
set
(
power
(
INT.Ring
p
)
)
.
[
F
,2
]
is
set
F
*
F
is
left_add-cancelable
right_add-cancelable
add-cancelable
right_complementable
Element
of the
carrier
of
(
INT.Ring
p
)
the
multF
of
(
INT.Ring
p
)
.
(
F
,
F
) is
left_add-cancelable
right_add-cancelable
add-cancelable
right_complementable
Element
of the
carrier
of
(
INT.Ring
p
)
[
F
,
F
]
is
V26
()
set
{
F
,
F
}
is non
empty
finite
set
{
{
F
,
F
}
,
{
F
}
}
is non
empty
finite
V49
()
set
the
multF
of
(
INT.Ring
p
)
.
[
F
,
F
]
is
set
card
{
b
,
(
-
b
)
}
is non
empty
V4
()
V5
()
V6
()
V10
()
V11
()
V12
()
integer
ext-real
positive
non
negative
finite
cardinal
V113
()
V117
()
V118
()
V119
()
V120
()
V121
()
V122
()
Element
of
NAT
1
+
1 is non
empty
V4
()
V5
()
V6
()
V10
()
V11
()
V12
()
integer
ext-real
positive
non
negative
finite
cardinal
V113
()
V117
()
V118
()
V119
()
V120
()
V121
()
V122
()
Element
of
NAT
b
is
set
L
is
left_add-cancelable
right_add-cancelable
add-cancelable
right_complementable
Element
of the
carrier
of
(
INT.Ring
p
)
L
|^
2 is
left_add-cancelable
right_add-cancelable
add-cancelable
right_complementable
Element
of the
carrier
of
(
INT.Ring
p
)
power
(
INT.Ring
p
)
is
Relation-like
[:
the
carrier
of
(
INT.Ring
p
)
,
NAT
:]
-defined
the
carrier
of
(
INT.Ring
p
)
-valued
Function-like
quasi_total
Element
of
bool
[:
[:
the
carrier
of
(
INT.Ring
p
)
,
NAT
:]
, the
carrier
of
(
INT.Ring
p
)
:]
[:
the
carrier
of
(
INT.Ring
p
)
,
NAT
:]
is non
empty
non
trivial
RAT
-valued
INT
-valued
V35
()
V36
()
V37
()
V38
() non
finite
set
[:
[:
the
carrier
of
(
INT.Ring
p
)
,
NAT
:]
, the
carrier
of
(
INT.Ring
p
)
:]
is non
empty
non
trivial
non
finite
set
bool
[:
[:
the
carrier
of
(
INT.Ring
p
)
,
NAT
:]
, the
carrier
of
(
INT.Ring
p
)
:]
is non
empty
non
trivial
non
finite
set
(
power
(
INT.Ring
p
)
)
.
(
L
,2) is
set
[
L
,2
]
is
V26
()
set
{
L
,2
}
is non
empty
finite
set
{
L
}
is non
empty
trivial
finite
1
-element
set
{
{
L
,2
}
,
{
L
}
}
is non
empty
finite
V49
()
set
(
power
(
INT.Ring
p
)
)
.
[
L
,2
]
is
set
0.
(
INT.Ring
p
)
is
V61
(
INT.Ring
p
)
left_add-cancelable
right_add-cancelable
add-cancelable
right_complementable
Element
of the
carrier
of
(
INT.Ring
p
)
the
ZeroF
of
(
INT.Ring
p
)
is
left_add-cancelable
right_add-cancelable
add-cancelable
right_complementable
Element
of the
carrier
of
(
INT.Ring
p
)
{
(
0.
(
INT.Ring
p
)
)
}
is non
empty
trivial
finite
1
-element
Element
of
bool
the
carrier
of
(
INT.Ring
p
)
bool
the
carrier
of
(
INT.Ring
p
)
is non
empty
finite
V49
()
set
(
0.
(
INT.Ring
p
)
)
|^
2 is
left_add-cancelable
right_add-cancelable
add-cancelable
right_complementable
Element
of the
carrier
of
(
INT.Ring
p
)
(
power
(
INT.Ring
p
)
)
.
(
(
0.
(
INT.Ring
p
)
)
,2) is
set
[
(
0.
(
INT.Ring
p
)
)
,2
]
is
V26
()
set
{
(
0.
(
INT.Ring
p
)
)
,2
}
is non
empty
finite
set
{
(
0.
(
INT.Ring
p
)
)
}
is non
empty
trivial
finite
1
-element
set
{
{
(
0.
(
INT.Ring
p
)
)
,2
}
,
{
(
0.
(
INT.Ring
p
)
)
}
}
is non
empty
finite
V49
()
set
(
power
(
INT.Ring
p
)
)
.
[
(
0.
(
INT.Ring
p
)
)
,2
]
is
set
(
0.
(
INT.Ring
p
)
)
*
(
0.
(
INT.Ring
p
)
)
is
left_add-cancelable
right_add-cancelable
add-cancelable
right_complementable
Element
of the
carrier
of
(
INT.Ring
p
)
the
multF
of
(
INT.Ring
p
)
is
Relation-like
[:
the
carrier
of
(
INT.Ring
p
)
, the
carrier
of
(
INT.Ring
p
)
:]
-defined
the
carrier
of
(
INT.Ring
p
)
-valued
Function-like
quasi_total
finite
Element
of
bool
[:
[:
the
carrier
of
(
INT.Ring
p
)
, the
carrier
of
(
INT.Ring
p
)
:]
, the
carrier
of
(
INT.Ring
p
)
:]
[:
the
carrier
of
(
INT.Ring
p
)
, the
carrier
of
(
INT.Ring
p
)
:]
is non
empty
finite
set
[:
[:
the
carrier
of
(
INT.Ring
p
)
, the
carrier
of
(
INT.Ring
p
)
:]
, the
carrier
of
(
INT.Ring
p
)
:]
is non
empty
finite
set
bool
[:
[:
the
carrier
of
(
INT.Ring
p
)
, the
carrier
of
(
INT.Ring
p
)
:]
, the
carrier
of
(
INT.Ring
p
)
:]
is non
empty
finite
V49
()
set
the
multF
of
(
INT.Ring
p
)
.
(
(
0.
(
INT.Ring
p
)
)
,
(
0.
(
INT.Ring
p
)
)
) is
left_add-cancelable
right_add-cancelable
add-cancelable
right_complementable
Element
of the
carrier
of
(
INT.Ring
p
)
[
(
0.
(
INT.Ring
p
)
)
,
(
0.
(
INT.Ring
p
)
)
]
is
V26
()
set
{
(
0.
(
INT.Ring
p
)
)
,
(
0.
(
INT.Ring
p
)
)
}
is non
empty
finite
set
{
{
(
0.
(
INT.Ring
p
)
)
,
(
0.
(
INT.Ring
p
)
)
}
,
{
(
0.
(
INT.Ring
p
)
)
}
}
is non
empty
finite
V49
()
set
the
multF
of
(
INT.Ring
p
)
.
[
(
0.
(
INT.Ring
p
)
)
,
(
0.
(
INT.Ring
p
)
)
]
is
set
1
+
0
is non
empty
V4
()
V5
()
V6
()
V10
()
V11
()
V12
()
integer
ext-real
positive
non
negative
finite
cardinal
V113
()
V117
()
V118
()
V119
()
V120
()
V121
()
V122
()
Element
of
NAT
b
is
set
L
is
left_add-cancelable
right_add-cancelable
add-cancelable
right_complementable
Element
of the
carrier
of
(
INT.Ring
p
)
L
|^
2 is
left_add-cancelable
right_add-cancelable
add-cancelable
right_complementable
Element
of the
carrier
of
(
INT.Ring
p
)
power
(
INT.Ring
p
)
is
Relation-like
[:
the
carrier
of
(
INT.Ring
p
)
,
NAT
:]
-defined
the
carrier
of
(
INT.Ring
p
)
-valued
Function-like
quasi_total
Element
of
bool
[:
[:
the
carrier
of
(
INT.Ring
p
)
,
NAT
:]
, the
carrier
of
(
INT.Ring
p
)
:]
[:
the
carrier
of
(
INT.Ring
p
)
,
NAT
:]
is non
empty
non
trivial
RAT
-valued
INT
-valued
V35
()
V36
()
V37
()
V38
() non
finite
set
[:
[:
the
carrier
of
(
INT.Ring
p
)
,
NAT
:]
, the
carrier
of
(
INT.Ring
p
)
:]
is non
empty
non
trivial
non
finite
set
bool
[:
[:
the
carrier
of
(
INT.Ring
p
)
,
NAT
:]
, the
carrier
of
(
INT.Ring
p
)
:]
is non
empty
non
trivial
non
finite
set
(
power
(
INT.Ring
p
)
)
.
(
L
,2) is
set
[
L
,2
]
is
V26
()
set
{
L
,2
}
is non
empty
finite
set
{
L
}
is non
empty
trivial
finite
1
-element
set
{
{
L
,2
}
,
{
L
}
}
is non
empty
finite
V49
()
set
(
power
(
INT.Ring
p
)
)
.
[
L
,2
]
is
set
1
+
(
-
1
)
is
V11
()
V12
()
integer
ext-real
set
p
is non
empty
non
degenerated
non
trivial
left_add-cancelable
right_add-cancelable
add-cancelable
right_complementable
almost_left_invertible
unital
associative
commutative
Euclidian
right-distributive
left-distributive
right_unital
well-unital
distributive
left_unital
Abelian
add-associative
right_zeroed
doubleLoopStr
the
carrier
of
p
is non
empty
non
trivial
set
[:
the
carrier
of
p
, the
carrier
of
p
, the
carrier
of
p
:]
is non
empty
set
0.
p
is
V61
(
p
)
left_add-cancelable
right_add-cancelable
add-cancelable
right_complementable
Element
of the
carrier
of
p
the
ZeroF
of
p
is
left_add-cancelable
right_add-cancelable
add-cancelable
right_complementable
Element
of the
carrier
of
p
[
(
0.
p
)
,
(
0.
p
)
,
(
0.
p
)
]
is
V26
()
V27
()
Element
of
[:
the
carrier
of
p
, the
carrier
of
p
, the
carrier
of
p
:]
[
(
0.
p
)
,
(
0.
p
)
]
is
V26
()
set
{
(
0.
p
)
,
(
0.
p
)
}
is non
empty
finite
set
{
(
0.
p
)
}
is non
empty
trivial
finite
1
-element
set
{
{
(
0.
p
)
,
(
0.
p
)
}
,
{
(
0.
p
)
}
}
is non
empty
finite
V49
()
set
[
[
(
0.
p
)
,
(
0.
p
)
]
,
(
0.
p
)
]
is
V26
()
set
{
[
(
0.
p
)
,
(
0.
p
)
]
,
(
0.
p
)
}
is non
empty
finite
set
{
[
(
0.
p
)
,
(
0.
p
)
]
}
is non
empty
trivial
finite
1
-element
set
{
{
[
(
0.
p
)
,
(
0.
p
)
]
,
(
0.
p
)
}
,
{
[
(
0.
p
)
,
(
0.
p
)
]
}
}
is non
empty
finite
V49
()
set
{
[
(
0.
p
)
,
(
0.
p
)
,
(
0.
p
)
]
}
is non
empty
trivial
finite
1
-element
Element
of
bool
[:
the
carrier
of
p
, the
carrier
of
p
, the
carrier
of
p
:]
bool
[:
the
carrier
of
p
, the
carrier
of
p
, the
carrier
of
p
:]
is non
empty
set
[:
the
carrier
of
p
, the
carrier
of
p
, the
carrier
of
p
:]
\
{
[
(
0.
p
)
,
(
0.
p
)
,
(
0.
p
)
]
}
is
Element
of
bool
[:
the
carrier
of
p
, the
carrier
of
p
, the
carrier
of
p
:]
1.
p
is
V61
(
p
)
left_add-cancelable
right_add-cancelable
add-cancelable
right_complementable
Element
of the
carrier
of
p
the
OneF
of
p
is
left_add-cancelable
right_add-cancelable
add-cancelable
right_complementable
Element
of the
carrier
of
p
[
(
1.
p
)
,
(
1.
p
)
,
(
1.
p
)
]
is
V26
()
V27
()
Element
of
[:
the
carrier
of
p
, the
carrier
of
p
, the
carrier
of
p
:]
[
(
1.
p
)
,
(
1.
p
)
]
is
V26
()
set
{
(
1.
p
)
,
(
1.
p
)
}
is non
empty
finite
set
{
(
1.
p
)
}
is non
empty
trivial
finite
1
-element
set
{
{
(
1.
p
)
,
(
1.
p
)
}
,
{
(
1.
p
)
}
}
is non
empty
finite
V49
()
set
[
[
(
1.
p
)
,
(
1.
p
)
]
,
(
1.
p
)
]
is
V26
()
set
{
[
(
1.
p
)
,
(
1.
p
)
]
,
(
1.
p
)
}
is non
empty
finite
set
{
[
(
1.
p
)
,
(
1.
p
)
]
}
is non
empty
trivial
finite
1
-element
set
{
{
[
(
1.
p
)
,
(
1.
p
)
]
,
(
1.
p
)
}
,
{
[
(
1.
p
)
,
(
1.
p
)
]
}
}
is non
empty
finite
V49
()
set
[:
NAT
,
NAT
,
NAT
:]
is non
empty
set
[
0
,
0
,
0
]
is
V26
()
V27
()
Element
of
[:
NAT
,
NAT
,
NAT
:]
[
0
,
0
]
is
V26
()
set
{
0
,
0
}
is non
empty
finite
V49
()
V117
()
V118
()
V119
()
V120
()
V121
()
V122
()
set
{
0
}
is non
empty
trivial
finite
V49
() 1
-element
V117
()
V118
()
V119
()
V120
()
V121
()
V122
()
set
{
{
0
,
0
}
,
{
0
}
}
is non
empty
finite
V49
()
set
[
[
0
,
0
]
,
0
]
is
V26
()
set
{
[
0
,
0
]
,
0
}
is non
empty
finite
set
{
[
0
,
0
]
}
is non
empty
trivial
finite
1
-element
set
{
{
[
0
,
0
]
,
0
}
,
{
[
0
,
0
]
}
}
is non
empty
finite
V49
()
set
{
[
0
,
0
,
0
]
}
is non
empty
trivial
finite
1
-element
Element
of
bool
[:
NAT
,
NAT
,
NAT
:]
bool
[:
NAT
,
NAT
,
NAT
:]
is non
empty
set
p
is non
empty
V4
()
V5
()
V6
()
V10
()
V11
()
V12
()
integer
V14
()
ext-real
positive
non
negative
finite
cardinal
set
INT.Ring
p
is non
empty
non
degenerated
non
trivial
finite
left_add-cancelable
right_add-cancelable
add-cancelable
right_complementable
almost_left_invertible
strict
unital
associative
commutative
Euclidian
right-distributive
left-distributive
right_unital
well-unital
distributive
left_unital
Abelian
add-associative
right_zeroed
()
doubleLoopStr
Segm
p
is
V117
()
V118
()
V119
()
V120
()
V121
()
V122
()
Element
of
bool
NAT
addint
p
is
Relation-like
[:
(
Segm
p
)
,
(
Segm
p
)
:]
-defined
Segm
p
-valued
Function-like
quasi_total
V35
()
V36
()
V37
()
V38
()
Element
of
bool
[:
[:
(
Segm
p
)
,
(
Segm
p
)
:]
,
(
Segm
p
)
:]
[:
(
Segm
p
)
,
(
Segm
p
)
:]
is
RAT
-valued
INT
-valued
V35
()
V36
()
V37
()
V38
()
set
[:
[:
(
Segm
p
)
,
(
Segm
p
)
:]
,
(
Segm
p
)
:]
is
RAT
-valued
INT
-valued
V35
()
V36
()
V37
()
V38
()
set
bool
[:
[:
(
Segm
p
)
,
(
Segm
p
)
:]
,
(
Segm
p
)
:]
is non
empty
set
multint
p
is
Relation-like
[:
(
Segm
p
)
,
(
Segm
p
)
:]
-defined
Segm
p
-valued
Function-like
quasi_total
V35
()
V36
()
V37
()
V38
()
Element
of
bool
[:
[:
(
Segm
p
)
,
(
Segm
p
)
:]
,
(
Segm
p
)
:]
K633
(1,
(
Segm
p
)
) is
V4
()
V5
()
V6
()
V10
()
V11
()
V12
()
integer
ext-real
non
negative
finite
cardinal
V113
()
Element
of
Segm
p
K633
(
0
,
(
Segm
p
)
) is
V4
()
V5
()
V6
()
V10
()
V11
()
V12
()
integer
ext-real
non
negative
finite
cardinal
V113
()
Element
of
Segm
p
doubleLoopStr
(#
(
Segm
p
)
,
(
addint
p
)
,
(
multint
p
)
,
K633
(1,
(
Segm
p
)
),
K633
(
0
,
(
Segm
p
)
) #) is
strict
doubleLoopStr
(
(
INT.Ring
p
)
) is non
empty
finite
Element
of
bool
[:
the
carrier
of
(
INT.Ring
p
)
, the
carrier
of
(
INT.Ring
p
)
, the
carrier
of
(
INT.Ring
p
)
:]
the
carrier
of
(
INT.Ring
p
)
is non
empty
non
trivial
finite
set
[:
the
carrier
of
(
INT.Ring
p
)
, the
carrier
of
(
INT.Ring
p
)
, the
carrier
of
(
INT.Ring
p
)
:]
is non
empty
finite
set
bool
[:
the
carrier
of
(
INT.Ring
p
)
, the
carrier
of
(
INT.Ring
p
)
, the
carrier
of
(
INT.Ring
p
)
:]
is non
empty
finite
V49
()
set
0.
(
INT.Ring
p
)
is
V61
(
INT.Ring
p
)
left_add-cancelable
right_add-cancelable
add-cancelable
right_complementable
Element
of the
carrier
of
(
INT.Ring
p
)
the
ZeroF
of
(
INT.Ring
p
)
is
left_add-cancelable
right_add-cancelable
add-cancelable
right_complementable
Element
of the
carrier
of
(
INT.Ring
p
)
[
(
0.
(
INT.Ring
p
)
)
,
(
0.
(
INT.Ring
p
)
)
,
(
0.
(
INT.Ring
p
)
)
]
is
V26
()
V27
()
Element
of
[:
the
carrier
of
(
INT.Ring
p
)
, the
carrier
of
(
INT.Ring
p
)
, the
carrier
of
(
INT.Ring
p
)
:]
[
(
0.
(
INT.Ring
p
)
)
,
(
0.
(
INT.Ring
p
)
)
]
is
V26
()
set
{
(
0.
(
INT.Ring
p
)
)
,
(
0.
(
INT.Ring
p
)
)
}
is non
empty
finite
set
{
(
0.
(
INT.Ring
p
)
)
}
is non
empty
trivial
finite
1
-element
set
{
{
(
0.
(
INT.Ring
p
)
)
,
(
0.
(
INT.Ring
p
)
)
}
,
{
(
0.
(
INT.Ring
p
)
)
}
}
is non
empty
finite
V49
()
set
[
[
(
0.
(
INT.Ring
p
)
)
,
(
0.
(
INT.Ring
p
)
)
]
,
(
0.
(
INT.Ring
p
)
)
]
is
V26
()
set
{
[
(
0.
(
INT.Ring
p
)
)
,
(
0.
(
INT.Ring
p
)
)
]
,
(
0.
(
INT.Ring
p
)
)
}
is non
empty
finite
set
{
[
(
0.
(
INT.Ring
p
)
)
,
(
0.
(
INT.Ring
p
)
)
]
}
is non
empty
trivial
finite
1
-element
set
{
{
[
(
0.
(
INT.Ring
p
)
)
,
(
0.
(
INT.Ring
p
)
)
]
,
(
0.
(
INT.Ring
p
)
)
}
,
{
[
(
0.
(
INT.Ring
p
)
)
,
(
0.
(
INT.Ring
p
)
)
]
}
}
is non
empty
finite
V49
()
set
{
[
(
0.
(
INT.Ring
p
)
)
,
(
0.
(
INT.Ring
p
)
)
,
(
0.
(
INT.Ring
p
)
)
]
}
is non
empty
trivial
finite
1
-element
Element
of
bool
[:
the
carrier
of
(
INT.Ring
p
)
, the
carrier
of
(
INT.Ring
p
)
, the
carrier
of
(
INT.Ring
p
)
:]
[:
the
carrier
of
(
INT.Ring
p
)
, the
carrier
of
(
INT.Ring
p
)
, the
carrier
of
(
INT.Ring
p
)
:]
\
{
[
(
0.
(
INT.Ring
p
)
)
,
(
0.
(
INT.Ring
p
)
)
,
(
0.
(
INT.Ring
p
)
)
]
}
is
finite
Element
of
bool
[:
the
carrier
of
(
INT.Ring
p
)
, the
carrier
of
(
INT.Ring
p
)
, the
carrier
of
(
INT.Ring
p
)
:]
[:
the
carrier
of
(
INT.Ring
p
)
, the
carrier
of
(
INT.Ring
p
)
, the
carrier
of
(
INT.Ring
p
)
:]
\
{
[
0
,
0
,
0
]
}
is
finite
Element
of
bool
[:
the
carrier
of
(
INT.Ring
p
)
, the
carrier
of
(
INT.Ring
p
)
, the
carrier
of
(
INT.Ring
p
)
:]
p
is non
empty
V4
()
V5
()
V6
()
V10
()
V11
()
V12
()
integer
V14
()
ext-real
positive
non
negative
finite
cardinal
set
INT.Ring
p
is non
empty
non
degenerated
non
trivial
finite
left_add-cancelable
right_add-cancelable
add-cancelable
right_complementable
almost_left_invertible
strict
unital
associative
commutative
Euclidian
right-distributive
left-distributive
right_unital
well-unital
distributive
left_unital
Abelian
add-associative
right_zeroed
()
doubleLoopStr
Segm
p
is
V117
()
V118
()
V119
()
V120
()
V121
()
V122
()
Element
of
bool
NAT
addint
p
is
Relation-like
[:
(
Segm
p
)
,
(
Segm
p
)
:]
-defined
Segm
p
-valued
Function-like
quasi_total
V35
()
V36
()
V37
()
V38
()
Element
of
bool
[:
[:
(
Segm
p
)
,
(
Segm
p
)
:]
,
(
Segm
p
)
:]
[:
(
Segm
p
)
,
(
Segm
p
)
:]
is
RAT
-valued
INT
-valued
V35
()
V36
()
V37
()
V38
()
set
[:
[:
(
Segm
p
)
,
(
Segm
p
)
:]
,
(
Segm
p
)
:]
is
RAT
-valued
INT
-valued
V35
()
V36
()
V37
()
V38
()
set
bool
[:
[:
(
Segm
p
)
,
(
Segm
p
)
:]
,
(
Segm
p
)
:]
is non
empty
set
multint
p
is
Relation-like
[:
(
Segm
p
)
,
(
Segm
p
)
:]
-defined
Segm
p
-valued
Function-like
quasi_total
V35
()
V36
()
V37
()
V38
()
Element
of
bool
[:
[:
(
Segm
p
)
,
(
Segm
p
)
:]
,
(
Segm
p
)
:]
K633
(1,
(
Segm
p
)
) is
V4
()
V5
()
V6
()
V10
()
V11
()
V12
()
integer
ext-real
non
negative
finite
cardinal
V113
()
Element
of
Segm
p
K633
(
0
,
(
Segm
p
)
) is
V4
()
V5
()
V6
()
V10
()
V11
()
V12
()
integer
ext-real
non
negative
finite
cardinal
V113
()
Element
of
Segm
p
doubleLoopStr
(#
(
Segm
p
)
,
(
addint
p
)
,
(
multint
p
)
,
K633
(1,
(
Segm
p
)
),
K633
(
0
,
(
Segm
p
)
) #) is
strict
doubleLoopStr
the
carrier
of
(
INT.Ring
p
)
is non
empty
non
trivial
finite
set
4 is non
empty
V4
()
V5
()
V6
()
V10
()
V11
()
V12
()
integer
ext-real
positive
non
negative
finite
cardinal
V113
()
V117
()
V118
()
V119
()
V120
()
V121
()
V122
()
Element
of
NAT
4
mod
p
is
V4
()
V5
()
V6
()
V10
()
V11
()
V12
()
integer
ext-real
non
negative
finite
cardinal
V113
()
V117
()
V118
()
V119
()
V120
()
V121
()
V122
()
Element
of
NAT
27 is non
empty
V4
()
V5
()
V6
()
V10
()
V11
()
V12
()
integer
ext-real
positive
non
negative
finite
cardinal
V113
()
V117
()
V118
()
V119
()
V120
()
V121
()
V122
()
Element
of
NAT
27
mod
p
is
V4
()
V5
()
V6
()
V10
()
V11
()
V12
()
integer
ext-real
non
negative
finite
cardinal
V113
()
V117
()
V118
()
V119
()
V120
()
V121
()
V122
()
Element
of
NAT
a
is
left_add-cancelable
right_add-cancelable
add-cancelable
right_complementable
Element
of the
carrier
of
(
INT.Ring
p
)
3 is non
empty
V4
()
V5
()
V6
()
V10
()
V11
()
V12
()
integer
ext-real
positive
non
negative
finite
cardinal
V113
()
V117
()
V118
()
V119
()
V120
()
V121
()
V122
()
Element
of
NAT
a
|^
3 is
left_add-cancelable
right_add-cancelable
add-cancelable
right_complementable
Element
of the
carrier
of
(
INT.Ring
p
)
power
(
INT.Ring
p
)
is
Relation-like
[:
the
carrier
of
(
INT.Ring
p
)
,
NAT
:]
-defined
the
carrier
of
(
INT.Ring
p
)
-valued
Function-like
quasi_total
Element
of
bool
[:
[:
the
carrier
of
(
INT.Ring
p
)
,
NAT
:]
, the
carrier
of
(
INT.Ring
p
)
:]
[:
the
carrier
of
(
INT.Ring
p
)
,
NAT
:]
is non
empty
non
trivial
RAT
-valued
INT
-valued
V35
()
V36
()
V37
()
V38
() non
finite
set
[:
[:
the
carrier
of
(
INT.Ring
p
)
,
NAT
:]
, the
carrier
of
(
INT.Ring
p
)
:]
is non
empty
non
trivial
non
finite
set
bool
[:
[:
the
carrier
of
(
INT.Ring
p
)
,
NAT
:]
, the
carrier
of
(
INT.Ring
p
)
:]
is non
empty
non
trivial
non
finite
set
(
power
(
INT.Ring
p
)
)
.
(
a
,3) is
set
[
a
,3
]
is
V26
()
set
{
a
,3
}
is non
empty
finite
set
{
a
}
is non
empty
trivial
finite
1
-element
set
{
{
a
,3
}
,
{
a
}
}
is non
empty
finite
V49
()
set
(
power
(
INT.Ring
p
)
)
.
[
a
,3
]
is
set
b
is
left_add-cancelable
right_add-cancelable
add-cancelable
right_complementable
Element
of the
carrier
of
(
INT.Ring
p
)
b
|^
2 is
left_add-cancelable
right_add-cancelable
add-cancelable
right_complementable
Element
of the
carrier
of
(
INT.Ring
p
)
(
power
(
INT.Ring
p
)
)
.
(
b
,2) is
set
[
b
,2
]
is
V26
()
set
{
b
,2
}
is non
empty
finite
set
{
b
}
is non
empty
trivial
finite
1
-element
set
{
{
b
,2
}
,
{
b
}
}
is non
empty
finite
V49
()
set
(
power
(
INT.Ring
p
)
)
.
[
b
,2
]
is
set
L
is
left_add-cancelable
right_add-cancelable
add-cancelable
right_complementable
Element
of the
carrier
of
(
INT.Ring
p
)
L
*
(
a
|^
3
)
is
left_add-cancelable
right_add-cancelable
add-cancelable
right_complementable
Element
of the
carrier
of
(
INT.Ring
p
)
the
multF
of
(
INT.Ring
p
)
is
Relation-like
[:
the
carrier
of
(
INT.Ring
p
)
, the
carrier
of
(
INT.Ring
p
)
:]
-defined
the
carrier
of
(
INT.Ring
p
)
-valued
Function-like
quasi_total
finite
Element
of
bool
[:
[:
the
carrier
of
(
INT.Ring
p
)
, the
carrier
of
(
INT.Ring
p
)
:]
, the
carrier
of
(
INT.Ring
p
)
:]
[:
the
carrier
of
(
INT.Ring
p
)
, the
carrier
of
(
INT.Ring
p
)
:]
is non
empty
finite
set
[:
[:
the
carrier
of
(
INT.Ring
p
)
, the
carrier
of
(
INT.Ring
p
)
:]
, the
carrier
of
(
INT.Ring
p
)
:]
is non
empty
finite
set
bool
[:
[:
the
carrier
of
(
INT.Ring
p
)
, the
carrier
of
(
INT.Ring
p
)
:]
, the
carrier
of
(
INT.Ring
p
)
:]
is non
empty
finite
V49
()
set
the
multF
of
(
INT.Ring
p
)
.
(
L
,
(
a
|^
3
)
) is
left_add-cancelable
right_add-cancelable
add-cancelable
right_complementable
Element
of the
carrier
of
(
INT.Ring
p
)
[
L
,
(
a
|^
3
)
]
is
V26
()
set
{
L
,
(
a
|^
3
)
}
is non
empty
finite
set
{
L
}
is non
empty
trivial
finite
1
-element
set
{
{
L
,
(
a
|^
3
)
}
,
{
L
}
}
is non
empty
finite
V49
()
set
the
multF
of
(
INT.Ring
p
)
.
[
L
,
(
a
|^
3
)
]
is
set
F
is
left_add-cancelable
right_add-cancelable
add-cancelable
right_complementable
Element
of the
carrier
of
(
INT.Ring
p
)
F
*
(
b
|^
2
)
is
left_add-cancelable
right_add-cancelable
add-cancelable
right_complementable
Element
of the
carrier
of
(
INT.Ring
p
)
the
multF
of
(
INT.Ring
p
)
.
(
F
,
(
b
|^
2
)
) is
left_add-cancelable
right_add-cancelable
add-cancelable
right_complementable
Element
of the
carrier
of
(
INT.Ring
p
)
[
F
,
(
b
|^
2
)
]
is
V26
()
set
{
F
,
(
b
|^
2
)
}
is non
empty
finite
set
{
F
}
is non
empty
trivial
finite
1
-element
set
{
{
F
,
(
b
|^
2
)
}
,
{
F
}
}
is non
empty
finite
V49
()
set
the
multF
of
(
INT.Ring
p
)
.
[
F
,
(
b
|^
2
)
]
is
set
(
L
*
(
a
|^
3
)
)
+
(
F
*
(
b
|^
2
)
)
is
left_add-cancelable
right_add-cancelable
add-cancelable
right_complementable
Element
of the
carrier
of
(
INT.Ring
p
)
the
addF
of
(
INT.Ring
p
)
is
Relation-like
[:
the
carrier
of
(
INT.Ring
p
)
, the
carrier
of
(
INT.Ring
p
)
:]
-defined
the
carrier
of
(
INT.Ring
p
)
-valued
Function-like
quasi_total
finite
Element
of
bool
[:
[:
the
carrier
of
(
INT.Ring
p
)
, the
carrier
of
(
INT.Ring
p
)
:]
, the
carrier
of
(
INT.Ring
p
)
:]
the
addF
of
(
INT.Ring
p
)
.
(
(
L
*
(
a
|^
3
)
)
,
(
F
*
(
b
|^
2
)
)
) is
left_add-cancelable
right_add-cancelable
add-cancelable
right_complementable
Element
of the
carrier
of
(
INT.Ring
p
)
[
(
L
*
(
a
|^
3
)
)
,
(
F
*
(
b
|^
2
)
)
]
is
V26
()
set
{
(
L
*
(
a
|^
3
)
)
,
(
F
*
(
b
|^
2
)
)
}
is non
empty
finite
set
{
(
L
*
(
a
|^
3
)
)
}
is non
empty
trivial
finite
1
-element
set
{
{
(
L
*
(
a
|^
3
)
)
,
(
F
*
(
b
|^
2
)
)
}
,
{
(
L
*
(
a
|^
3
)
)
}
}
is non
empty
finite
V49
()
set
the
addF
of
(
INT.Ring
p
)
.
[
(
L
*
(
a
|^
3
)
)
,
(
F
*
(
b
|^
2
)
)
]
is
set
pp
is
left_add-cancelable
right_add-cancelable
add-cancelable
right_complementable
Element
of the
carrier
of
(
INT.Ring
p
)
FF
is
left_add-cancelable
right_add-cancelable
add-cancelable
right_complementable
Element
of the
carrier
of
(
INT.Ring
p
)
F1
is
left_add-cancelable
right_add-cancelable
add-cancelable
right_complementable
Element
of the
carrier
of
(
INT.Ring
p
)
FF
*
(
a
|^
3
)
is
left_add-cancelable
right_add-cancelable
add-cancelable
right_complementable
Element
of the
carrier
of
(
INT.Ring
p
)
the
multF
of
(
INT.Ring
p
)
.
(
FF
,
(
a
|^
3
)
) is
left_add-cancelable
right_add-cancelable
add-cancelable
right_complementable
Element
of the
carrier
of
(
INT.Ring
p
)
[
FF
,
(
a
|^
3
)
]
is
V26
()
set
{
FF
,
(
a
|^
3
)
}
is non
empty
finite
set
{
FF
}
is non
empty
trivial
finite
1
-element
set
{
{
FF
,
(
a
|^
3
)
}
,
{
FF
}
}
is non
empty
finite
V49
()
set
the
multF
of
(
INT.Ring
p
)
.
[
FF
,
(
a
|^
3
)
]
is
set
F1
*
(
b
|^
2
)
is
left_add-cancelable
right_add-cancelable
add-cancelable
right_complementable
Element
of the
carrier
of
(
INT.Ring
p
)
the
multF
of
(
INT.Ring
p
)
.
(
F1
,
(
b
|^
2
)
) is
left_add-cancelable
right_add-cancelable
add-cancelable
right_complementable
Element
of the
carrier
of
(
INT.Ring
p
)
[
F1
,
(
b
|^
2
)
]
is
V26
()
set
{
F1
,
(
b
|^
2
)
}
is non
empty
finite
set
{
F1
}
is non
empty
trivial
finite
1
-element
set
{
{
F1
,
(
b
|^
2
)
}
,
{
F1
}
}
is non
empty
finite
V49
()
set
the
multF
of
(
INT.Ring
p
)
.
[
F1
,
(
b
|^
2
)
]
is
set
(
FF
*
(
a
|^
3
)
)
+
(
F1
*
(
b
|^
2
)
)
is
left_add-cancelable
right_add-cancelable
add-cancelable
right_complementable
Element
of the
carrier
of
(
INT.Ring
p
)
the
addF
of
(
INT.Ring
p
)
.
(
(
FF
*
(
a
|^
3
)
)
,
(
F1
*
(
b
|^
2
)
)
) is
left_add-cancelable
right_add-cancelable
add-cancelable
right_complementable
Element
of the
carrier
of
(
INT.Ring
p
)
[
(
FF
*
(
a
|^
3
)
)
,
(
F1
*
(
b
|^
2
)
)
]
is
V26
()
set
{
(
FF
*
(
a
|^
3
)
)
,
(
F1
*
(
b
|^
2
)
)
}
is non
empty
finite
set
{
(
FF
*
(
a
|^
3
)
)
}
is non
empty
trivial
finite
1
-element
set
{
{
(
FF
*
(
a
|^
3
)
)
,
(
F1
*
(
b
|^
2
)
)
}
,
{
(
FF
*
(
a
|^
3
)
)
}
}
is non
empty
finite
V49
()
set
the
addF
of
(
INT.Ring
p
)
.
[
(
FF
*
(
a
|^
3
)
)
,
(
F1
*
(
b
|^
2
)
)
]
is
set
L
is
left_add-cancelable
right_add-cancelable
add-cancelable
right_complementable
Element
of the
carrier
of
(
INT.Ring
p
)
F
is
left_add-cancelable
right_add-cancelable
add-cancelable
right_complementable
Element
of the
carrier
of
(
INT.Ring
p
)
pp
is
left_add-cancelable
right_add-cancelable
add-cancelable
right_complementable
Element
of the
carrier
of
(
INT.Ring
p
)
pp
*
(
a
|^
3
)
is
left_add-cancelable
right_add-cancelable
add-cancelable
right_complementable
Element
of the
carrier
of
(
INT.Ring
p
)
the
multF
of
(
INT.Ring
p
)
is
Relation-like
[:
the
carrier
of
(
INT.Ring
p
)
, the
carrier
of
(
INT.Ring
p
)
:]
-defined
the
carrier
of
(
INT.Ring
p
)
-valued
Function-like
quasi_total
finite
Element
of
bool
[:
[:
the
carrier
of
(
INT.Ring
p
)
, the
carrier
of
(
INT.Ring
p
)
:]
, the
carrier
of
(
INT.Ring
p
)
:]
[:
the
carrier
of
(
INT.Ring
p
)
, the
carrier
of
(
INT.Ring
p
)
:]
is non
empty
finite
set
[:
[:
the
carrier
of
(
INT.Ring
p
)
, the
carrier
of
(
INT.Ring
p
)
:]
, the
carrier
of
(
INT.Ring
p
)
:]
is non
empty
finite
set
bool
[:
[:
the
carrier
of
(
INT.Ring
p
)
, the
carrier
of
(
INT.Ring
p
)
:]
, the
carrier
of
(
INT.Ring
p
)
:]
is non
empty
finite
V49
()
set
the
multF
of
(
INT.Ring
p
)
.
(
pp
,
(
a
|^
3
)
) is
left_add-cancelable
right_add-cancelable
add-cancelable
right_complementable
Element
of the
carrier
of
(
INT.Ring
p
)
[
pp
,
(
a
|^
3
)
]
is
V26
()
set
{
pp
,
(
a
|^
3
)
}
is non
empty
finite
set
{
pp
}
is non
empty
trivial
finite
1
-element
set
{
{
pp
,
(
a
|^
3
)
}
,
{
pp
}
}
is non
empty
finite
V49
()
set
the
multF
of
(
INT.Ring
p
)
.
[
pp
,
(
a
|^
3
)
]
is
set
FF
is
left_add-cancelable
right_add-cancelable
add-cancelable
right_complementable
Element
of the
carrier
of
(
INT.Ring
p
)
FF
*
(
b
|^
2
)
is
left_add-cancelable
right_add-cancelable
add-cancelable
right_complementable
Element
of the
carrier
of
(
INT.Ring
p
)
the
multF
of
(
INT.Ring
p
)
.
(
FF
,
(
b
|^
2
)
) is
left_add-cancelable
right_add-cancelable
add-cancelable
right_complementable
Element
of the
carrier
of
(
INT.Ring
p
)
[
FF
,
(
b
|^
2
)
]
is
V26
()
set
{
FF
,
(
b
|^
2
)
}
is non
empty
finite
set
{
FF
}
is non
empty
trivial
finite
1
-element
set
{
{
FF
,
(
b
|^
2
)
}
,
{
FF
}
}
is non
empty
finite
V49
()
set
the
multF
of
(
INT.Ring
p
)
.
[
FF
,
(
b
|^
2
)
]
is
set
(
pp
*
(
a
|^
3
)
)
+
(
FF
*
(
b
|^
2
)
)
is
left_add-cancelable
right_add-cancelable
add-cancelable
right_complementable
Element
of the
carrier
of
(
INT.Ring
p
)
the
addF
of
(
INT.Ring
p
)
is
Relation-like
[:
the
carrier
of
(
INT.Ring
p
)
, the
carrier
of
(
INT.Ring
p
)
:]
-defined
the
carrier
of
(
INT.Ring
p
)
-valued
Function-like
quasi_total
finite
Element
of
bool
[:
[:
the
carrier
of
(
INT.Ring
p
)
, the
carrier
of
(
INT.Ring
p
)
:]
, the
carrier
of
(
INT.Ring
p
)
:]
the
addF
of
(
INT.Ring
p
)
.
(
(
pp
*
(
a
|^
3
)
)
,
(
FF
*
(
b
|^
2
)
)
) is
left_add-cancelable
right_add-cancelable
add-cancelable
right_complementable
Element
of the
carrier
of
(
INT.Ring
p
)
[
(
pp
*
(
a
|^
3
)
)
,
(
FF
*
(
b
|^
2
)
)
]
is
V26
()
set
{
(
pp
*
(
a
|^
3
)
)
,
(
FF
*
(
b
|^
2
)
)
}
is non
empty
finite
set
{
(
pp
*
(
a
|^
3
)
)
}
is non
empty
trivial
finite
1
-element
set
{
{
(
pp
*
(
a
|^
3
)
)
,
(
FF
*
(
b
|^
2
)
)
}
,
{
(
pp
*
(
a
|^
3
)
)
}
}
is non
empty
finite
V49
()
set
the
addF
of
(
INT.Ring
p
)
.
[
(
pp
*
(
a
|^
3
)
)
,
(
FF
*
(
b
|^
2
)
)
]
is
set
p
is non
empty
V4
()
V5
()
V6
()
V10
()
V11
()
V12
()
integer
V14
()
ext-real
positive
non
negative
finite
cardinal
set
INT.Ring
p
is non
empty
non
degenerated
non
trivial
finite
left_add-cancelable
right_add-cancelable
add-cancelable
right_complementable
almost_left_invertible
strict
unital
associative
commutative
Euclidian
right-distributive
left-distributive
right_unital
well-unital
distributive
left_unital
Abelian
add-associative
right_zeroed
()
doubleLoopStr
Segm
p
is
V117
()
V118
()
V119
()
V120
()
V121
()
V122
()
Element
of
bool
NAT
addint
p
is
Relation-like
[:
(
Segm
p
)
,
(
Segm
p
)
:]
-defined
Segm
p
-valued
Function-like
quasi_total
V35
()
V36
()
V37
()
V38
()
Element
of
bool
[:
[:
(
Segm
p
)
,
(
Segm
p
)
:]
,
(
Segm
p
)
:]
[:
(
Segm
p
)
,
(
Segm
p
)
:]
is
RAT
-valued
INT
-valued
V35
()
V36
()
V37
()
V38
()
set
[:
[:
(
Segm
p
)
,
(
Segm
p
)
:]
,
(
Segm
p
)
:]
is
RAT
-valued
INT
-valued
V35
()
V36
()
V37
()
V38
()
set
bool
[:
[:
(
Segm
p
)
,
(
Segm
p
)
:]
,
(
Segm
p
)
:]
is non
empty
set
multint
p
is
Relation-like
[:
(
Segm
p
)
,
(
Segm
p
)
:]
-defined
Segm
p
-valued
Function-like
quasi_total
V35
()
V36
()
V37
()
V38
()
Element
of
bool
[:
[:
(
Segm
p
)
,
(
Segm
p
)
:]
,
(
Segm
p
)
:]
K633
(1,
(
Segm
p
)
) is
V4
()
V5
()
V6
()
V10
()
V11
()
V12
()
integer
ext-real
non
negative
finite
cardinal
V113
()
Element
of
Segm
p
K633
(
0
,
(
Segm
p
)
) is
V4
()
V5
()
V6
()
V10
()
V11
()
V12
()
integer
ext-real
non
negative
finite
cardinal
V113
()
Element
of
Segm
p
doubleLoopStr
(#
(
Segm
p
)
,
(
addint
p
)
,
(
multint
p
)
,
K633
(1,
(
Segm
p
)
),
K633
(
0
,
(
Segm
p
)
) #) is
strict
doubleLoopStr
the
carrier
of
(
INT.Ring
p
)
is non
empty
non
trivial
finite
set
[:
the
carrier
of
(
INT.Ring
p
)
, the
carrier
of
(
INT.Ring
p
)
, the
carrier
of
(
INT.Ring
p
)
:]
is non
empty
finite
set
[:
[:
the
carrier
of
(
INT.Ring
p
)
, the
carrier
of
(
INT.Ring
p
)
, the
carrier
of
(
INT.Ring
p
)
:]
, the
carrier
of
(
INT.Ring
p
)
:]
is non
empty
finite
set
bool
[:
[:
the
carrier
of
(
INT.Ring
p
)
, the
carrier
of
(
INT.Ring
p
)
, the
carrier
of
(
INT.Ring
p
)
:]
, the
carrier
of
(
INT.Ring
p
)
:]
is non
empty
finite
V49
()
set
a
is
left_add-cancelable
right_add-cancelable
add-cancelable
right_complementable
Element
of the
carrier
of
(
INT.Ring
p
)
b
is
left_add-cancelable
right_add-cancelable
add-cancelable
right_complementable
Element
of the
carrier
of
(
INT.Ring
p
)
F
is
Relation-like
[:
the
carrier
of
(
INT.Ring
p
)
, the
carrier
of
(
INT.Ring
p
)
, the
carrier
of
(
INT.Ring
p
)
:]
-defined
the
carrier
of
(
INT.Ring
p
)
-valued
Function-like
quasi_total
finite
Element
of
bool
[:
[:
the
carrier
of
(
INT.Ring
p
)
, the
carrier
of
(
INT.Ring
p
)
, the
carrier
of
(
INT.Ring
p
)
:]
, the
carrier
of
(
INT.Ring
p
)
:]
pp
is
Element
of
[:
the
carrier
of
(
INT.Ring
p
)
, the
carrier
of
(
INT.Ring
p
)
, the
carrier
of
(
INT.Ring
p
)
:]
F
.
pp
is
left_add-cancelable
right_add-cancelable
add-cancelable
right_complementable
Element
of the
carrier
of
(
INT.Ring
p
)
pp
`2_3
is
left_add-cancelable
right_add-cancelable
add-cancelable
right_complementable
Element
of the
carrier
of
(
INT.Ring
p
)
pp
`1
is
set
(
pp
`1
)
`2
is
set
(
pp
`2_3
)
|^
2 is
left_add-cancelable
right_add-cancelable
add-cancelable
right_complementable
Element
of the
carrier
of
(
INT.Ring
p
)
power
(
INT.Ring
p
)
is
Relation-like
[:
the
carrier
of
(
INT.Ring
p
)
,
NAT
:]
-defined
the
carrier
of
(
INT.Ring
p
)
-valued
Function-like
quasi_total
Element
of
bool
[:
[:
the
carrier
of
(
INT.Ring
p
)
,
NAT
:]
, the
carrier
of
(
INT.Ring
p
)
:]
[:
the
carrier
of
(
INT.Ring
p
)
,
NAT
:]
is non
empty
non
trivial
RAT
-valued
INT
-valued
V35
()
V36
()
V37
()
V38
() non
finite
set
[:
[:
the
carrier
of
(
INT.Ring
p
)
,
NAT
:]
, the
carrier
of
(
INT.Ring
p
)
:]
is non
empty
non
trivial
non
finite
set
bool
[:
[:
the
carrier
of
(
INT.Ring
p
)
,
NAT
:]
, the
carrier
of
(
INT.Ring
p
)
:]
is non
empty
non
trivial
non
finite
set
(
power
(
INT.Ring
p
)
)
.
(
(
pp
`2_3
)
,2) is
set
[
(
pp
`2_3
)
,2
]
is
V26
()
set
{
(
pp
`2_3
)
,2
}
is non
empty
finite
set
{
(
pp
`2_3
)
}
is non
empty
trivial
finite
1
-element
set
{
{
(
pp
`2_3
)
,2
}
,
{
(
pp
`2_3
)
}
}
is non
empty
finite
V49
()
set
(
power
(
INT.Ring
p
)
)
.
[
(
pp
`2_3
)
,2
]
is
set
pp
`3_3
is
left_add-cancelable
right_add-cancelable
add-cancelable
right_complementable
Element
of the
carrier
of
(
INT.Ring
p
)
(
(
pp
`2_3
)
|^
2
)
*
(
pp
`3_3
)
is
left_add-cancelable
right_add-cancelable
add-cancelable
right_complementable
Element
of the
carrier
of
(
INT.Ring
p
)
the
multF
of
(
INT.Ring
p
)
is
Relation-like
[:
the
carrier
of
(
INT.Ring
p
)
, the
carrier
of
(
INT.Ring
p
)
:]
-defined
the
carrier
of
(
INT.Ring
p
)
-valued
Function-like
quasi_total
finite
Element
of
bool
[:
[:
the
carrier
of
(
INT.Ring
p
)
, the
carrier
of
(
INT.Ring
p
)
:]
, the
carrier
of
(
INT.Ring
p
)
:]
[:
the
carrier
of
(
INT.Ring
p
)
, the
carrier
of
(
INT.Ring
p
)
:]
is non
empty
finite
set
[:
[:
the
carrier
of
(
INT.Ring
p
)
, the
carrier
of
(
INT.Ring
p
)
:]
, the
carrier
of
(
INT.Ring
p
)
:]
is non
empty
finite
set
bool
[:
[:
the
carrier
of
(
INT.Ring
p
)
, the
carrier
of
(
INT.Ring
p
)
:]
, the
carrier
of
(
INT.Ring
p
)
:]
is non
empty
finite
V49
()
set
the
multF
of
(
INT.Ring
p
)
.
(
(
(
pp
`2_3
)
|^
2
)
,
(
pp
`3_3
)
) is
left_add-cancelable
right_add-cancelable
add-cancelable
right_complementable
Element
of the
carrier
of
(
INT.Ring
p
)
[
(
(
pp
`2_3
)
|^
2
)
,
(
pp
`3_3
)
]
is
V26
()
set
{
(
(
pp
`2_3
)
|^
2
)
,
(
pp
`3_3
)
}
is non
empty
finite
set
{
(
(
pp
`2_3
)
|^
2
)
}
is non
empty
trivial
finite
1
-element
set
{
{
(
(
pp
`2_3
)
|^
2
)
,
(
pp
`3_3
)
}
,
{
(
(
pp
`2_3
)
|^
2
)
}
}
is non
empty
finite
V49
()
set
the
multF
of
(
INT.Ring
p
)
.
[
(
(
pp
`2_3
)
|^
2
)
,
(
pp
`3_3
)
]
is
set
pp
`1_3
is
left_add-cancelable
right_add-cancelable
add-cancelable
right_complementable
Element
of the
carrier
of
(
INT.Ring
p
)
(
pp
`1
)
`1
is
set
(
pp
`1_3
)
|^
3 is
left_add-cancelable
right_add-cancelable
add-cancelable
right_complementable
Element
of the
carrier
of
(
INT.Ring
p
)
(
power
(
INT.Ring
p
)
)
.
(
(
pp
`1_3
)
,3) is
set
[
(
pp
`1_3
)
,3
]
is
V26
()
set
{
(
pp
`1_3
)
,3
}
is non
empty
finite
set
{
(
pp
`1_3
)
}
is non
empty
trivial
finite
1
-element
set
{
{
(
pp
`1_3
)
,3
}
,
{
(
pp
`1_3
)
}
}
is non
empty
finite
V49
()
set
(
power
(
INT.Ring
p
)
)
.
[
(
pp
`1_3
)
,3
]
is
set
a
*
(
pp
`1_3
)
is
left_add-cancelable
right_add-cancelable
add-cancelable
right_complementable
Element
of the
carrier
of
(
INT.Ring
p
)
the
multF
of
(
INT.Ring
p
)
.
(
a
,
(
pp
`1_3
)
) is
left_add-cancelable
right_add-cancelable
add-cancelable
right_complementable
Element
of the
carrier
of
(
INT.Ring
p
)
[
a
,
(
pp
`1_3
)
]
is
V26
()
set
{
a
,
(
pp
`1_3
)
}
is non
empty
finite
set
{
a
}
is non
empty
trivial
finite
1
-element
set
{
{
a
,
(
pp
`1_3
)
}
,
{
a
}
}
is non
empty
finite
V49
()
set
the
multF
of
(
INT.Ring
p
)
.
[
a
,
(
pp
`1_3
)
]
is
set
(
pp
`3_3
)
|^
2 is
left_add-cancelable
right_add-cancelable
add-cancelable
right_complementable
Element
of the
carrier
of
(
INT.Ring
p
)
(
power
(
INT.Ring
p
)
)
.
(
(
pp
`3_3
)
,2) is
set
[
(
pp
`3_3
)
,2
]
is
V26
()
set
{
(
pp
`3_3
)
,2
}
is non
empty
finite
set
{
(
pp
`3_3
)
}
is non
empty
trivial
finite
1
-element
set
{
{
(
pp
`3_3
)
,2
}
,
{
(
pp
`3_3
)
}
}
is non
empty
finite
V49
()
set
(
power
(
INT.Ring
p
)
)
.
[
(
pp
`3_3
)
,2
]
is
set
(
a
*
(
pp
`1_3
)
)
*
(
(
pp
`3_3
)
|^
2
)
is
left_add-cancelable
right_add-cancelable
add-cancelable
right_complementable
Element
of the
carrier
of
(
INT.Ring
p
)
the
multF
of
(
INT.Ring
p
)
.
(
(
a
*
(
pp
`1_3
)
)
,
(
(
pp
`3_3
)
|^
2
)
) is
left_add-cancelable
right_add-cancelable
add-cancelable
right_complementable
Element
of the
carrier
of
(
INT.Ring
p
)
[
(
a
*
(
pp
`1_3
)
)
,
(
(
pp
`3_3
)
|^
2
)
]
is
V26
()
set
{
(
a
*
(
pp
`1_3
)
)
,
(
(
pp
`3_3
)
|^
2
)
}
is non
empty
finite
set
{
(
a
*
(
pp
`1_3
)
)
}
is non
empty
trivial
finite
1
-element
set
{
{
(
a
*
(
pp
`1_3
)
)
,
(
(
pp
`3_3
)
|^
2
)
}
,
{
(
a
*
(
pp
`1_3
)
)
}
}
is non
empty
finite
V49
()
set
the
multF
of
(
INT.Ring
p
)
.
[
(
a
*
(
pp
`1_3
)
)
,
(
(
pp
`3_3
)
|^
2
)
]
is
set
(
(
pp
`1_3
)
|^
3
)
+
(
(
a
*
(
pp
`1_3
)
)
*
(
(
pp
`3_3
)
|^
2
)
)
is
left_add-cancelable
right_add-cancelable
add-cancelable
right_complementable
Element
of the
carrier
of
(
INT.Ring
p
)
the
addF
of
(
INT.Ring
p
)
is
Relation-like
[:
the
carrier
of
(
INT.Ring
p
)
, the
carrier
of
(
INT.Ring
p
)
:]
-defined
the
carrier
of
(
INT.Ring
p
)
-valued
Function-like
quasi_total
finite
Element
of
bool
[:
[:
the
carrier
of
(
INT.Ring
p
)
, the
carrier
of
(
INT.Ring
p
)
:]
, the
carrier
of
(
INT.Ring
p
)
:]
the
addF
of
(
INT.Ring
p
)
.
(
(
(
pp
`1_3
)
|^
3
)
,
(
(
a
*
(
pp
`1_3
)
)
*
(
(
pp
`3_3
)
|^
2
)
)
) is
left_add-cancelable
right_add-cancelable
add-cancelable
right_complementable
Element
of the
carrier
of
(
INT.Ring
p
)
[
(
(
pp
`1_3
)
|^
3
)
,
(
(
a
*
(
pp
`1_3
)
)
*
(
(
pp
`3_3
)
|^
2
)
)
]
is
V26
()
set
{
(
(
pp
`1_3
)
|^
3
)
,
(
(
a
*
(
pp
`1_3
)
)
*
(
(
pp
`3_3
)
|^
2
)
)
}
is non
empty
finite
set
{
(
(
pp
`1_3
)
|^
3
)
}
is non
empty
trivial
finite
1
-element
set
{
{
(
(
pp
`1_3
)
|^
3
)
,
(
(
a
*
(
pp
`1_3
)
)
*
(
(
pp
`3_3
)
|^
2
)
)
}
,
{
(
(
pp
`1_3
)
|^
3
)
}
}
is non
empty
finite
V49
()
set
the
addF
of
(
INT.Ring
p
)
.
[
(
(
pp
`1_3
)
|^
3
)
,
(
(
a
*
(
pp
`1_3
)
)
*
(
(
pp
`3_3
)
|^
2
)
)
]
is
set
(
pp
`3_3
)
|^
3 is
left_add-cancelable
right_add-cancelable
add-cancelable
right_complementable
Element
of the
carrier
of
(
INT.Ring
p
)
(
power
(
INT.Ring
p
)
)
.
(
(
pp
`3_3
)
,3) is
set
[
(
pp
`3_3
)
,3
]
is
V26
()
set
{
(
pp
`3_3
)
,3
}
is non
empty
finite
set
{
{
(
pp
`3_3
)
,3
}
,
{
(
pp
`3_3
)
}
}
is non
empty
finite
V49
()
set
(
power
(
INT.Ring
p
)
)
.
[
(
pp
`3_3
)
,3
]
is
set
b
*
(
(
pp
`3_3
)
|^
3
)
is
left_add-cancelable
right_add-cancelable
add-cancelable
right_complementable
Element
of the
carrier
of
(
INT.Ring
p
)
the
multF
of
(
INT.Ring
p
)
.
(
b
,
(
(
pp
`3_3
)
|^
3
)
) is
left_add-cancelable
right_add-cancelable
add-cancelable
right_complementable
Element
of the
carrier
of
(
INT.Ring
p
)
[
b
,
(
(
pp
`3_3
)
|^
3
)
]
is
V26
()
set
{
b
,
(
(
pp
`3_3
)
|^
3
)
}
is non
empty
finite
set
{
b
}
is non
empty
trivial
finite
1
-element
set
{
{
b
,
(
(
pp
`3_3
)
|^
3
)
}
,
{
b
}
}
is non
empty
finite
V49
()
set
the
multF
of
(
INT.Ring
p
)
.
[
b
,
(
(
pp
`3_3
)
|^
3
)
]
is
set
(
(
(
pp
`1_3
)
|^
3
)
+
(
(
a
*
(
pp
`1_3
)
)
*
(
(
pp
`3_3
)
|^
2
)
)
)
+
(
b
*
(
(
pp
`3_3
)
|^
3
)
)
is
left_add-cancelable
right_add-cancelable
add-cancelable
right_complementable
Element
of the
carrier
of
(
INT.Ring
p
)
the
addF
of
(
INT.Ring
p
)
.
(
(
(
(
pp
`1_3
)
|^
3
)
+
(
(
a
*
(
pp
`1_3
)
)
*
(
(
pp
`3_3
)
|^
2
)
)
)
,
(
b
*
(
(
pp
`3_3
)
|^
3
)
)
) is
left_add-cancelable
right_add-cancelable
add-cancelable
right_complementable
Element
of the
carrier
of
(
INT.Ring
p
)
[
(
(
(
pp
`1_3
)
|^
3
)
+
(
(
a
*
(
pp
`1_3
)
)
*
(
(
pp
`3_3
)
|^
2
)
)
)
,
(
b
*
(
(
pp
`3_3
)
|^
3
)
)
]
is
V26
()
set
{
(
(
(
pp
`1_3
)
|^
3
)
+
(
(
a
*
(
pp
`1_3
)
)
*
(
(
pp
`3_3
)
|^
2
)
)
)
,
(
b
*
(
(
pp
`3_3
)
|^
3
)
)
}
is non
empty
finite
set
{
(
(
(
pp
`1_3
)
|^
3
)
+
(
(
a
*
(
pp
`1_3
)
)
*
(
(
pp
`3_3
)
|^
2
)
)
)
}
is non
empty
trivial
finite
1
-element
set
{
{
(
(
(
pp
`1_3
)
|^
3
)
+
(
(
a
*
(
pp
`1_3
)
)
*
(
(
pp
`3_3
)
|^
2
)
)
)
,
(
b
*
(
(
pp
`3_3
)
|^
3
)
)
}
,
{
(
(
(
pp
`1_3
)
|^
3
)
+
(
(
a
*
(
pp
`1_3
)
)
*
(
(
pp
`3_3
)
|^
2
)
)
)
}
}
is non
empty
finite
V49
()
set
the
addF
of
(
INT.Ring
p
)
.
[
(
(
(
pp
`1_3
)
|^
3
)
+
(
(
a
*
(
pp
`1_3
)
)
*
(
(
pp
`3_3
)
|^
2
)
)
)
,
(
b
*
(
(
pp
`3_3
)
|^
3
)
)
]
is
set
(
(
(
pp
`2_3
)
|^
2
)
*
(
pp
`3_3
)
)
-
(
(
(
(
pp
`1_3
)
|^
3
)
+
(
(
a
*
(
pp
`1_3
)
)
*
(
(
pp
`3_3
)
|^
2
)
)
)
+
(
b
*
(
(
pp
`3_3
)
|^
3
)
)
)
is
left_add-cancelable
right_add-cancelable
add-cancelable
right_complementable
Element
of the
carrier
of
(
INT.Ring
p
)
-
(
(
(
(
pp
`1_3
)
|^
3
)
+
(
(
a
*
(
pp
`1_3
)
)
*
(
(
pp
`3_3
)
|^
2
)
)
)
+
(
b
*
(
(
pp
`3_3
)
|^
3
)
)
)
is
left_add-cancelable
right_add-cancelable
add-cancelable
right_complementable
Element
of the
carrier
of
(
INT.Ring
p
)
(
(
(
pp
`2_3
)
|^
2
)
*
(
pp
`3_3
)
)
+
(
-
(
(
(
(
pp
`1_3
)
|^
3
)
+
(
(
a
*
(
pp
`1_3
)
)
*
(
(
pp
`3_3
)
|^
2
)
)
)
+
(
b
*
(
(
pp
`3_3
)
|^
3
)
)
)
)
is
left_add-cancelable
right_add-cancelable
add-cancelable
right_complementable
Element
of the
carrier
of
(
INT.Ring
p
)
the
addF
of
(
INT.Ring
p
)
.
(
(
(
(
pp
`2_3
)
|^
2
)
*
(
pp
`3_3
)
)
,
(
-
(
(
(
(
pp
`1_3
)
|^
3
)
+
(
(
a
*
(
pp
`1_3
)
)
*
(
(
pp
`3_3
)
|^
2
)
)
)
+
(
b
*
(
(
pp
`3_3
)
|^
3
)
)
)
)
) is
left_add-cancelable
right_add-cancelable
add-cancelable
right_complementable
Element
of the
carrier
of
(
INT.Ring
p
)
[
(
(
(
pp
`2_3
)
|^
2
)
*
(
pp
`3_3
)
)
,
(
-
(
(
(
(
pp
`1_3
)
|^
3
)
+
(
(
a
*
(
pp
`1_3
)
)
*
(
(
pp
`3_3
)
|^
2
)
)
)
+
(
b
*
(
(
pp
`3_3
)
|^
3
)
)
)
)
]
is
V26
()
set
{
(
(
(
pp
`2_3
)
|^
2
)
*
(
pp
`3_3
)
)
,
(
-
(
(
(
(
pp
`1_3
)
|^
3
)
+
(
(
a
*
(
pp
`1_3
)
)
*
(
(
pp
`3_3
)
|^
2
)
)
)
+
(
b
*
(
(
pp
`3_3
)
|^
3
)
)
)
)
}
is non
empty
finite
set
{
(
(
(
pp
`2_3
)
|^
2
)
*
(
pp
`3_3
)
)
}
is non
empty
trivial
finite
1
-element
set
{
{
(
(
(
pp
`2_3
)
|^
2
)
*
(
pp
`3_3
)
)
,
(
-
(
(
(
(
pp
`1_3
)
|^
3
)
+
(
(
a
*
(
pp
`1_3
)
)
*
(
(
pp
`3_3
)
|^
2
)
)
)
+
(
b
*
(
(
pp
`3_3
)
|^
3
)
)
)
)
}
,
{
(
(
(
pp
`2_3
)
|^
2
)
*
(
pp
`3_3
)
)
}
}
is non
empty
finite
V49
()
set
the
addF
of
(
INT.Ring
p
)
.
[
(
(
(
pp
`2_3
)
|^
2
)
*
(
pp
`3_3
)
)
,
(
-
(
(
(
(
pp
`1_3
)
|^
3
)
+
(
(
a
*
(
pp
`1_3
)
)
*
(
(
pp
`3_3
)
|^
2
)
)
)
+
(
b
*
(
(
pp
`3_3
)
|^
3
)
)
)
)
]
is
set
F
is
Relation-like
[:
the
carrier
of
(
INT.Ring
p
)
, the
carrier
of
(
INT.Ring
p
)
, the
carrier
of
(
INT.Ring
p
)
:]
-defined
the
carrier
of
(
INT.Ring
p
)
-valued
Function-like
quasi_total
finite
Element
of
bool
[:
[:
the
carrier
of
(
INT.Ring
p
)
, the
carrier
of
(
INT.Ring
p
)
, the
carrier
of
(
INT.Ring
p
)
:]
, the
carrier
of
(
INT.Ring
p
)
:]
pp
is
Relation-like
[:
the
carrier
of
(
INT.Ring
p
)
, the
carrier
of
(
INT.Ring
p
)
, the
carrier
of
(
INT.Ring
p
)
:]
-defined
the
carrier
of
(
INT.Ring
p
)
-valued
Function-like
quasi_total
finite
Element
of
bool
[:
[:
the
carrier
of
(
INT.Ring
p
)
, the
carrier
of
(
INT.Ring
p
)
, the
carrier
of
(
INT.Ring
p
)
:]
, the
carrier
of
(
INT.Ring
p
)
:]
FF
is
Element
of
[:
the
carrier
of
(
INT.Ring
p
)
, the
carrier
of
(
INT.Ring
p
)
, the
carrier
of
(
INT.Ring
p
)
:]
F
.
FF
is
left_add-cancelable
right_add-cancelable
add-cancelable
right_complementable
Element
of the
carrier
of
(
INT.Ring
p
)
FF
`2_3
is
left_add-cancelable
right_add-cancelable
add-cancelable
right_complementable
Element
of the
carrier
of
(
INT.Ring
p
)
FF
`1
is
set
(
FF
`1
)
`2
is
set
(
FF
`2_3
)
|^
2 is
left_add-cancelable
right_add-cancelable
add-cancelable
right_complementable
Element
of the
carrier
of
(
INT.Ring
p
)
power
(
INT.Ring
p
)
is
Relation-like
[:
the
carrier
of
(
INT.Ring
p
)
,
NAT
:]
-defined
the
carrier
of
(
INT.Ring
p
)
-valued
Function-like
quasi_total
Element
of
bool
[:
[:
the
carrier
of
(
INT.Ring
p
)
,
NAT
:]
, the
carrier
of
(
INT.Ring
p
)
:]
[:
the
carrier
of
(
INT.Ring
p
)
,
NAT
:]
is non
empty
non
trivial
RAT
-valued
INT
-valued
V35
()
V36
()
V37
()
V38
() non
finite
set
[:
[:
the
carrier
of
(
INT.Ring
p
)
,
NAT
:]
, the
carrier
of
(
INT.Ring
p
)
:]
is non
empty
non
trivial
non
finite
set
bool
[:
[:
the
carrier
of
(
INT.Ring
p
)
,
NAT
:]
, the
carrier
of
(
INT.Ring
p
)
:]
is non
empty
non
trivial
non
finite
set
(
power
(
INT.Ring
p
)
)
.
(
(
FF
`2_3
)
,2) is
set
[
(
FF
`2_3
)
,2
]
is
V26
()
set
{
(
FF
`2_3
)
,2
}
is non
empty
finite
set
{
(
FF
`2_3
)
}
is non
empty
trivial
finite
1
-element
set
{
{
(
FF
`2_3
)
,2
}
,
{
(
FF
`2_3
)
}
}
is non
empty
finite
V49
()
set
(
power
(
INT.Ring
p
)
)
.
[
(
FF
`2_3
)
,2
]
is
set
FF
`3_3
is
left_add-cancelable
right_add-cancelable
add-cancelable
right_complementable
Element
of the
carrier
of
(
INT.Ring
p
)
(
(
FF
`2_3
)
|^
2
)
*
(
FF
`3_3
)
is
left_add-cancelable
right_add-cancelable
add-cancelable
right_complementable
Element
of the
carrier
of
(
INT.Ring
p
)
the
multF
of
(
INT.Ring
p
)
is
Relation-like
[:
the
carrier
of
(
INT.Ring
p
)
, the
carrier
of
(
INT.Ring
p
)
:]
-defined
the
carrier
of
(
INT.Ring
p
)
-valued
Function-like
quasi_total
finite
Element
of
bool
[:
[:
the
carrier
of
(
INT.Ring
p
)
, the
carrier
of
(
INT.Ring
p
)
:]
, the
carrier
of
(
INT.Ring
p
)
:]
[:
the
carrier
of
(
INT.Ring
p
)
, the
carrier
of
(
INT.Ring
p
)
:]
is non
empty
finite
set
[:
[:
the
carrier
of
(
INT.Ring
p
)
, the
carrier
of
(
INT.Ring
p
)
:]
, the
carrier
of
(
INT.Ring
p
)
:]
is non
empty
finite
set
bool
[:
[:
the
carrier
of
(
INT.Ring
p
)
, the
carrier
of
(
INT.Ring
p
)
:]
, the
carrier
of
(
INT.Ring
p
)
:]
is non
empty
finite
V49
()
set
the
multF
of
(
INT.Ring
p
)
.
(
(
(
FF
`2_3
)
|^
2
)
,
(
FF
`3_3
)
) is
left_add-cancelable
right_add-cancelable
add-cancelable
right_complementable
Element
of the
carrier
of
(
INT.Ring
p
)
[
(
(
FF
`2_3
)
|^
2
)
,
(
FF
`3_3
)
]
is
V26
()
set
{
(
(
FF
`2_3
)
|^
2
)
,
(
FF
`3_3
)
}
is non
empty
finite
set
{
(
(
FF
`2_3
)
|^
2
)
}
is non
empty
trivial
finite
1
-element
set
{
{
(
(
FF
`2_3
)
|^
2
)
,
(
FF
`3_3
)
}
,
{
(
(
FF
`2_3
)
|^
2
)
}
}
is non
empty
finite
V49
()
set
the
multF
of
(
INT.Ring
p
)
.
[
(
(
FF
`2_3
)
|^
2
)
,
(
FF
`3_3
)
]
is
set
FF
`1_3
is
left_add-cancelable
right_add-cancelable
add-cancelable
right_complementable
Element
of the
carrier
of
(
INT.Ring
p
)
(
FF
`1
)
`1
is
set
(
FF
`1_3
)
|^
3 is
left_add-cancelable
right_add-cancelable
add-cancelable
right_complementable
Element
of the
carrier
of
(
INT.Ring
p
)
(
power
(
INT.Ring
p
)
)
.
(
(
FF
`1_3
)
,3) is
set
[
(
FF
`1_3
)
,3
]
is
V26
()
set
{
(
FF
`1_3
)
,3
}
is non
empty
finite
set
{
(
FF
`1_3
)
}
is non
empty
trivial
finite
1
-element
set
{
{
(
FF
`1_3
)
,3
}
,
{
(
FF
`1_3
)
}
}
is non
empty
finite
V49
()
set
(
power
(
INT.Ring
p
)
)
.
[
(
FF
`1_3
)
,3
]
is
set
a
*
(
FF
`1_3
)
is
left_add-cancelable
right_add-cancelable
add-cancelable
right_complementable
Element
of the
carrier
of
(
INT.Ring
p
)
the
multF
of
(
INT.Ring
p
)
.
(
a
,
(
FF
`1_3
)
) is
left_add-cancelable
right_add-cancelable
add-cancelable
right_complementable
Element
of the
carrier
of
(
INT.Ring
p
)
[
a
,
(
FF
`1_3
)
]
is
V26
()
set
{
a
,
(
FF
`1_3
)
}
is non
empty
finite
set
{
a
}
is non
empty
trivial
finite
1
-element
set
{
{
a
,
(
FF
`1_3
)
}
,
{
a
}
}
is non
empty
finite
V49
()
set
the
multF
of
(
INT.Ring
p
)
.
[
a
,
(
FF
`1_3
)
]
is
set
(
FF
`3_3
)
|^
2 is
left_add-cancelable
right_add-cancelable
add-cancelable
right_complementable
Element
of the
carrier
of
(
INT.Ring
p
)
(
power
(
INT.Ring
p
)
)
.
(
(
FF
`3_3
)
,2) is
set
[
(
FF
`3_3
)
,2
]
is
V26
()
set
{
(
FF
`3_3
)
,2
}
is non
empty
finite
set
{
(
FF
`3_3
)
}
is non
empty
trivial
finite
1
-element
set
{
{
(
FF
`3_3
)
,2
}
,
{
(
FF
`3_3
)
}
}
is non
empty
finite
V49
()
set
(
power
(
INT.Ring
p
)
)
.
[
(
FF
`3_3
)
,2
]
is
set
(
a
*
(
FF
`1_3
)
)
*
(
(
FF
`3_3
)
|^
2
)
is
left_add-cancelable
right_add-cancelable
add-cancelable
right_complementable
Element
of the
carrier
of
(
INT.Ring
p
)
the
multF
of
(
INT.Ring
p
)
.
(
(
a
*
(
FF
`1_3
)
)
,
(
(
FF
`3_3
)
|^
2
)
) is
left_add-cancelable
right_add-cancelable
add-cancelable
right_complementable
Element
of the
carrier
of
(
INT.Ring
p
)
[
(
a
*
(
FF
`1_3
)
)
,
(
(
FF
`3_3
)
|^
2
)
]
is
V26
()
set
{
(
a
*
(
FF
`1_3
)
)
,
(
(
FF
`3_3
)
|^
2
)
}
is non
empty
finite
set
{
(
a
*
(
FF
`1_3
)
)
}
is non
empty
trivial
finite
1
-element
set
{
{
(
a
*
(
FF
`1_3
)
)
,
(
(
FF
`3_3
)
|^
2
)
}
,
{
(
a
*
(
FF
`1_3
)
)
}
}
is non
empty
finite
V49
()
set
the
multF
of
(
INT.Ring
p
)
.
[
(
a
*
(
FF
`1_3
)
)
,
(
(
FF
`3_3
)
|^
2
)
]
is
set
(
(
FF
`1_3
)
|^
3
)
+
(
(
a
*
(
FF
`1_3
)
)
*
(
(
FF
`3_3
)
|^
2
)
)
is
left_add-cancelable
right_add-cancelable
add-cancelable
right_complementable
Element
of the
carrier
of
(
INT.Ring
p
)
the
addF
of
(
INT.Ring
p
)
is
Relation-like
[:
the
carrier
of
(
INT.Ring
p
)
, the
carrier
of
(
INT.Ring
p
)
:]
-defined
the
carrier
of
(
INT.Ring
p
)
-valued
Function-like
quasi_total
finite
Element
of
bool
[:
[:
the
carrier
of
(
INT.Ring
p
)
, the
carrier
of
(
INT.Ring
p
)
:]
, the
carrier
of
(
INT.Ring
p
)
:]
the
addF
of
(
INT.Ring
p
)
.
(
(
(
FF
`1_3
)
|^
3
)
,
(
(
a
*
(
FF
`1_3
)
)
*
(
(
FF
`3_3
)
|^
2
)
)
) is
left_add-cancelable
right_add-cancelable
add-cancelable
right_complementable
Element
of the
carrier
of
(
INT.Ring
p
)
[
(
(
FF
`1_3
)
|^
3
)
,
(
(
a
*
(
FF
`1_3
)
)
*
(
(
FF
`3_3
)
|^
2
)
)
]
is
V26
()
set
{
(
(
FF
`1_3
)
|^
3
)
,
(
(
a
*
(
FF
`1_3
)
)
*
(
(
FF
`3_3
)
|^
2
)
)
}
is non
empty
finite
set
{
(
(
FF
`1_3
)
|^
3
)
}
is non
empty
trivial
finite
1
-element
set
{
{
(
(
FF
`1_3
)
|^
3
)
,
(
(
a
*
(
FF
`1_3
)
)
*
(
(
FF
`3_3
)
|^
2
)
)
}
,
{
(
(
FF
`1_3
)
|^
3
)
}
}
is non
empty
finite
V49
()
set
the
addF
of
(
INT.Ring
p
)
.
[
(
(
FF
`1_3
)
|^
3
)
,
(
(
a
*
(
FF
`1_3
)
)
*
(
(
FF
`3_3
)
|^
2
)
)
]
is
set
(
FF
`3_3
)
|^
3 is
left_add-cancelable
right_add-cancelable
add-cancelable
right_complementable
Element
of the
carrier
of
(
INT.Ring
p
)
(
power
(
INT.Ring
p
)
)
.
(
(
FF
`3_3
)
,3) is
set
[
(
FF
`3_3
)
,3
]
is
V26
()
set
{
(
FF
`3_3
)
,3
}
is non
empty
finite
set
{
{
(
FF
`3_3
)
,3
}
,
{
(
FF
`3_3
)
}
}
is non
empty
finite
V49
()
set
(
power
(
INT.Ring
p
)
)
.
[
(
FF
`3_3
)
,3
]
is
set
b
*
(
(
FF
`3_3
)
|^
3
)
is
left_add-cancelable
right_add-cancelable
add-cancelable
right_complementable
Element
of the
carrier
of
(
INT.Ring
p
)
the
multF
of
(
INT.Ring
p
)
.
(
b
,
(
(
FF
`3_3
)
|^
3
)
) is
left_add-cancelable
right_add-cancelable
add-cancelable
right_complementable
Element
of the
carrier
of
(
INT.Ring
p
)
[
b
,
(
(
FF
`3_3
)
|^
3
)
]
is
V26
()
set
{
b
,
(
(
FF
`3_3
)
|^
3
)
}
is non
empty
finite
set
{
b
}
is non
empty
trivial
finite
1
-element
set
{
{
b
,
(
(
FF
`3_3
)
|^
3
)
}
,
{
b
}
}
is non
empty
finite
V49
()
set
the
multF
of
(
INT.Ring
p
)
.
[
b
,
(
(
FF
`3_3
)
|^
3
)
]
is
set
(
(
(
FF
`1_3
)
|^
3
)
+
(
(
a
*
(
FF
`1_3
)
)
*
(
(
FF
`3_3
)
|^
2
)
)
)
+
(
b
*
(
(
FF
`3_3
)
|^
3
)
)
is
left_add-cancelable
right_add-cancelable
add-cancelable
right_complementable
Element
of the
carrier
of
(
INT.Ring
p
)
the
addF
of
(
INT.Ring
p
)
.
(
(
(
(
FF
`1_3
)
|^
3
)
+
(
(
a
*
(
FF
`1_3
)
)
*
(
(
FF
`3_3
)
|^
2
)
)
)
,
(
b
*
(
(
FF
`3_3
)
|^
3
)
)
) is
left_add-cancelable
right_add-cancelable
add-cancelable
right_complementable
Element
of the
carrier
of
(
INT.Ring
p
)
[
(
(
(
FF
`1_3
)
|^
3
)
+
(
(
a
*
(
FF
`1_3
)
)
*
(
(
FF
`3_3
)
|^
2
)
)
)
,
(
b
*
(
(
FF
`3_3
)
|^
3
)
)
]
is
V26
()
set
{
(
(
(
FF
`1_3
)
|^
3
)
+
(
(
a
*
(
FF
`1_3
)
)
*
(
(
FF
`3_3
)
|^
2
)
)
)
,
(
b
*
(
(
FF
`3_3
)
|^
3
)
)
}
is non
empty
finite
set
{
(
(
(
FF
`1_3
)
|^
3
)
+
(
(
a
*
(
FF
`1_3
)
)
*
(
(
FF
`3_3
)
|^
2
)
)
)
}
is non
empty
trivial
finite
1
-element
set
{
{
(
(
(
FF
`1_3
)
|^
3
)
+
(
(
a
*
(
FF
`1_3
)
)
*
(
(
FF
`3_3
)
|^
2
)
)
)
,
(
b
*
(
(
FF
`3_3
)
|^
3
)
)
}
,
{
(
(
(
FF
`1_3
)
|^
3
)
+
(
(
a
*
(
FF
`1_3
)
)
*
(
(
FF
`3_3
)
|^
2
)
)
)
}
}
is non
empty
finite
V49
()
set
the
addF
of
(
INT.Ring
p
)
.
[
(
(
(
FF
`1_3
)
|^
3
)
+
(
(
a
*
(
FF
`1_3
)
)
*
(
(
FF
`3_3
)
|^
2
)
)
)
,
(
b
*
(
(
FF
`3_3
)
|^
3
)
)
]
is
set
(
(
(
FF
`2_3
)
|^
2
)
*
(
FF
`3_3
)
)
-
(
(
(
(
FF
`1_3
)
|^
3
)
+
(
(
a
*
(
FF
`1_3
)
)
*
(
(
FF
`3_3
)
|^
2
)
)
)
+
(
b
*
(
(
FF
`3_3
)
|^
3
)
)
)
is
left_add-cancelable
right_add-cancelable
add-cancelable
right_complementable
Element
of the
carrier
of
(
INT.Ring
p
)
-
(
(
(
(
FF
`1_3
)
|^
3
)
+
(
(
a
*
(
FF
`1_3
)
)
*
(
(
FF
`3_3
)
|^
2
)
)
)
+
(
b
*
(
(
FF
`3_3
)
|^
3
)
)
)
is
left_add-cancelable
right_add-cancelable
add-cancelable
right_complementable
Element
of the
carrier
of
(
INT.Ring
p
)
(
(
(
FF
`2_3
)
|^
2
)
*
(
FF
`3_3
)
)
+
(
-
(
(
(
(
FF
`1_3
)
|^
3
)
+
(
(
a
*
(
FF
`1_3
)
)
*
(
(
FF
`3_3
)
|^
2
)
)
)
+
(
b
*
(
(
FF
`3_3
)
|^
3
)
)
)
)
is
left_add-cancelable
right_add-cancelable
add-cancelable
right_complementable
Element
of the
carrier
of
(
INT.Ring
p
)
the
addF
of
(
INT.Ring
p
)
.
(
(
(
(
FF
`2_3
)
|^
2
)
*
(
FF
`3_3
)
)
,
(
-
(
(
(
(
FF
`1_3
)
|^
3
)
+
(
(
a
*
(
FF
`1_3
)
)
*
(
(
FF
`3_3
)
|^
2
)
)
)
+
(
b
*
(
(
FF
`3_3
)
|^
3
)
)
)
)
) is
left_add-cancelable
right_add-cancelable
add-cancelable
right_complementable
Element
of the
carrier
of
(
INT.Ring
p
)
[
(
(
(
FF
`2_3
)
|^
2
)
*
(
FF
`3_3
)
)
,
(
-
(
(
(
(
FF
`1_3
)
|^
3
)
+
(
(
a
*
(
FF
`1_3
)
)
*
(
(
FF
`3_3
)
|^
2
)
)
)
+
(
b
*
(
(
FF
`3_3
)
|^
3
)
)
)
)
]
is
V26
()
set
{
(
(
(
FF
`2_3
)
|^
2
)
*
(
FF
`3_3
)
)
,
(
-
(
(
(
(
FF
`1_3
)
|^
3
)
+
(
(
a
*
(
FF
`1_3
)
)
*
(
(
FF
`3_3
)
|^
2
)
)
)
+
(
b
*
(
(
FF
`3_3
)
|^
3
)
)
)
)
}
is non
empty
finite
set
{
(
(
(
FF
`2_3
)
|^
2
)
*
(
FF
`3_3
)
)
}
is non
empty
trivial
finite
1
-element
set
{
{
(
(
(
FF
`2_3
)
|^
2
)
*
(
FF
`3_3
)
)
,
(
-
(
(
(
(
FF
`1_3
)
|^
3
)
+
(
(
a
*
(
FF
`1_3
)
)
*
(
(
FF
`3_3
)
|^
2
)
)
)
+
(
b
*
(
(
FF
`3_3
)
|^
3
)
)
)
)
}
,
{
(
(
(
FF
`2_3
)
|^
2
)
*
(
FF
`3_3
)
)
}
}
is non
empty
finite
V49
()
set
the
addF
of
(
INT.Ring
p
)
.
[
(
(
(
FF
`2_3
)
|^
2
)
*
(
FF
`3_3
)
)
,
(
-
(
(
(
(
FF
`1_3
)
|^
3
)
+
(
(
a
*
(
FF
`1_3
)
)
*
(
(
FF
`3_3
)
|^
2
)
)
)
+
(
b
*
(
(
FF
`3_3
)
|^
3
)
)
)
)
]
is
set
pp
.
FF
is
left_add-cancelable
right_add-cancelable
add-cancelable
right_complementable
Element
of the
carrier
of
(
INT.Ring
p
)
p
is non
empty
V4
()
V5
()
V6
()
V10
()
V11
()
V12
()
integer
V14
()
ext-real
positive
non
negative
finite
cardinal
set
INT.Ring
p
is non
empty
non
degenerated
non
trivial
finite
left_add-cancelable
right_add-cancelable
add-cancelable
right_complementable
almost_left_invertible
strict
unital
associative
commutative
Euclidian
right-distributive
left-distributive
right_unital
well-unital
distributive
left_unital
Abelian
add-associative
right_zeroed
()
doubleLoopStr
Segm
p
is
V117
()
V118
()
V119
()
V120
()
V121
()
V122
()
Element
of
bool
NAT
addint
p
is
Relation-like
[:
(
Segm
p
)
,
(
Segm
p
)
:]
-defined
Segm
p
-valued
Function-like
quasi_total
V35
()
V36
()
V37
()
V38
()
Element
of
bool
[:
[:
(
Segm
p
)
,
(
Segm
p
)
:]
,
(
Segm
p
)
:]
[:
(
Segm
p
)
,
(
Segm
p
)
:]
is
RAT
-valued
INT
-valued
V35
()
V36
()
V37
()
V38
()
set
[:
[:
(
Segm
p
)
,
(
Segm
p
)
:]
,
(
Segm
p
)
:]
is
RAT
-valued
INT
-valued
V35
()
V36
()
V37
()
V38
()
set
bool
[:
[:
(
Segm
p
)
,
(
Segm
p
)
:]
,
(
Segm
p
)
:]
is non
empty
set
multint
p
is
Relation-like
[:
(
Segm
p
)
,
(
Segm
p
)
:]
-defined
Segm
p
-valued
Function-like
quasi_total
V35
()
V36
()
V37
()
V38
()
Element
of
bool
[:
[:
(
Segm
p
)
,
(
Segm
p
)
:]
,
(
Segm
p
)
:]
K633
(1,
(
Segm
p
)
) is
V4
()
V5
()
V6
()
V10
()
V11
()
V12
()
integer
ext-real
non
negative
finite
cardinal
V113
()
Element
of
Segm
p
K633
(
0
,
(
Segm
p
)
) is
V4
()
V5
()
V6
()
V10
()
V11
()
V12
()
integer
ext-real
non
negative
finite
cardinal
V113
()
Element
of
Segm
p
doubleLoopStr
(#
(
Segm
p
)
,
(
addint
p
)
,
(
multint
p
)
,
K633
(1,
(
Segm
p
)
),
K633
(
0
,
(
Segm
p
)
) #) is
strict
doubleLoopStr
the
carrier
of
(
INT.Ring
p
)
is non
empty
non
trivial
finite
set
[:
the
carrier
of
(
INT.Ring
p
)
, the
carrier
of
(
INT.Ring
p
)
, the
carrier
of
(
INT.Ring
p
)
:]
is non
empty
finite
set
a
is
left_add-cancelable
right_add-cancelable
add-cancelable
right_complementable
Element
of the
carrier
of
(
INT.Ring
p
)
b
is
left_add-cancelable
right_add-cancelable
add-cancelable
right_complementable
Element
of the
carrier
of
(
INT.Ring
p
)
(
p
,
a
,
b
) is
Relation-like
[:
the
carrier
of
(
INT.Ring
p
)
, the
carrier
of
(
INT.Ring
p
)
, the
carrier
of
(
INT.Ring
p
)
:]
-defined
the
carrier
of
(
INT.Ring
p
)
-valued
Function-like
quasi_total
finite
Element
of
bool
[:
[:
the
carrier
of
(
INT.Ring
p
)
, the
carrier
of
(
INT.Ring
p
)
, the
carrier
of
(
INT.Ring
p
)
:]
, the
carrier
of
(
INT.Ring
p
)
:]
[:
[:
the
carrier
of
(
INT.Ring
p
)
, the
carrier
of
(
INT.Ring
p
)
, the
carrier
of
(
INT.Ring
p
)
:]
, the
carrier
of
(
INT.Ring
p
)
:]
is non
empty
finite
set
bool
[:
[:
the
carrier
of
(
INT.Ring
p
)
, the
carrier
of
(
INT.Ring
p
)
, the
carrier
of
(
INT.Ring
p
)
:]
, the
carrier
of
(
INT.Ring
p
)
:]
is non
empty
finite
V49
()
set
L
is
left_add-cancelable
right_add-cancelable
add-cancelable
right_complementable
Element
of the
carrier
of
(
INT.Ring
p
)
F
is
left_add-cancelable
right_add-cancelable
add-cancelable
right_complementable
Element
of the
carrier
of
(
INT.Ring
p
)
pp
is
left_add-cancelable
right_add-cancelable
add-cancelable
right_complementable
Element
of the
carrier
of
(
INT.Ring
p
)
[
L
,
F
,
pp
]
is
V26
()
V27
()
Element
of
[:
the
carrier
of
(
INT.Ring
p
)
, the
carrier
of
(
INT.Ring
p
)
, the
carrier
of
(
INT.Ring
p
)
:]
[
L
,
F
]
is
V26
()
set
{
L
,
F
}
is non
empty
finite
set
{
L
}
is non
empty
trivial
finite
1
-element
set
{
{
L
,
F
}
,
{
L
}
}
is non
empty
finite
V49
()
set
[
[
L
,
F
]
,
pp
]
is
V26
()
set
{
[
L
,
F
]
,
pp
}
is non
empty
finite
set
{
[
L
,
F
]
}
is non
empty
trivial
finite
1
-element
set
{
{
[
L
,
F
]
,
pp
}
,
{
[
L
,
F
]
}
}
is non
empty
finite
V49
()
set
(
p
,
a
,
b
)
.
[
L
,
F
,
pp
]
is
left_add-cancelable
right_add-cancelable
add-cancelable
right_complementable
Element
of the
carrier
of
(
INT.Ring
p
)
F
|^
2 is
left_add-cancelable
right_add-cancelable
add-cancelable
right_complementable
Element
of the
carrier
of
(
INT.Ring
p
)
power
(
INT.Ring
p
)
is
Relation-like
[:
the
carrier
of
(
INT.Ring
p
)
,
NAT
:]
-defined
the
carrier
of
(
INT.Ring
p
)
-valued
Function-like
quasi_total
Element
of
bool
[:
[:
the
carrier
of
(
INT.Ring
p
)
,
NAT
:]
, the
carrier
of
(
INT.Ring
p
)
:]
[:
the
carrier
of
(
INT.Ring
p
)
,
NAT
:]
is non
empty
non
trivial
RAT
-valued
INT
-valued
V35
()
V36
()
V37
()
V38
() non
finite
set
[:
[:
the
carrier
of
(
INT.Ring
p
)
,
NAT
:]
, the
carrier
of
(
INT.Ring
p
)
:]
is non
empty
non
trivial
non
finite
set
bool
[:
[:
the
carrier
of
(
INT.Ring
p
)
,
NAT
:]
, the
carrier
of
(
INT.Ring
p
)
:]
is non
empty
non
trivial
non
finite
set
(
power
(
INT.Ring
p
)
)
.
(
F
,2) is
set
[
F
,2
]
is
V26
()
set
{
F
,2
}
is non
empty
finite
set
{
F
}
is non
empty
trivial
finite
1
-element
set
{
{
F
,2
}
,
{
F
}
}
is non
empty
finite
V49
()
set
(
power
(
INT.Ring
p
)
)
.
[
F
,2
]
is
set
(
F
|^
2
)
*
pp
is
left_add-cancelable
right_add-cancelable
add-cancelable
right_complementable
Element
of the
carrier
of
(
INT.Ring
p
)
the
multF
of
(
INT.Ring
p
)
is
Relation-like
[:
the
carrier
of
(
INT.Ring
p
)
, the
carrier
of
(
INT.Ring
p
)
:]
-defined
the
carrier
of
(
INT.Ring
p
)
-valued
Function-like
quasi_total
finite
Element
of
bool
[:
[:
the
carrier
of
(
INT.Ring
p
)
, the
carrier
of
(
INT.Ring
p
)
:]
, the
carrier
of
(
INT.Ring
p
)
:]
[:
the
carrier
of
(
INT.Ring
p
)
, the
carrier
of
(
INT.Ring
p
)
:]
is non
empty
finite
set
[:
[:
the
carrier
of
(
INT.Ring
p
)
, the
carrier
of
(
INT.Ring
p
)
:]
, the
carrier
of
(
INT.Ring
p
)
:]
is non
empty
finite
set
bool
[:
[:
the
carrier
of
(
INT.Ring
p
)
, the
carrier
of
(
INT.Ring
p
)
:]
, the
carrier
of
(
INT.Ring
p
)
:]
is non
empty
finite
V49
()
set
the
multF
of
(
INT.Ring
p
)
.
(
(
F
|^
2
)
,
pp
) is
left_add-cancelable
right_add-cancelable
add-cancelable
right_complementable
Element
of the
carrier
of
(
INT.Ring
p
)
[
(
F
|^
2
)
,
pp
]
is
V26
()
set
{
(
F
|^
2
)
,
pp
}
is non
empty
finite
set
{
(
F
|^
2
)
}
is non
empty
trivial
finite
1
-element
set
{
{
(
F
|^
2
)
,
pp
}
,
{
(
F
|^
2
)
}
}
is non
empty
finite
V49
()
set
the
multF
of
(
INT.Ring
p
)
.
[
(
F
|^
2
)
,
pp
]
is
set
L
|^
3 is
left_add-cancelable
right_add-cancelable
add-cancelable
right_complementable
Element
of the
carrier
of
(
INT.Ring
p
)
(
power
(
INT.Ring
p
)
)
.
(
L
,3) is
set
[
L
,3
]
is
V26
()
set
{
L
,3
}
is non
empty
finite
set
{
{
L
,3
}
,
{
L
}
}
is non
empty
finite
V49
()
set
(
power
(
INT.Ring
p
)
)
.
[
L
,3
]
is
set
a
*
L
is
left_add-cancelable
right_add-cancelable
add-cancelable
right_complementable
Element
of the
carrier
of
(
INT.Ring
p
)
the
multF
of
(
INT.Ring
p
)
.
(
a
,
L
) is
left_add-cancelable
right_add-cancelable
add-cancelable
right_complementable
Element
of the
carrier
of
(
INT.Ring
p
)
[
a
,
L
]
is
V26
()
set
{
a
,
L
}
is non
empty
finite
set
{
a
}
is non
empty
trivial
finite
1
-element
set
{
{
a
,
L
}
,
{
a
}
}
is non
empty
finite
V49
()
set
the
multF
of
(
INT.Ring
p
)
.
[
a
,
L
]
is
set
pp
|^
2 is
left_add-cancelable
right_add-cancelable
add-cancelable
right_complementable
Element
of the
carrier
of
(
INT.Ring
p
)
(
power
(
INT.Ring
p
)
)
.
(
pp
,2) is
set
[
pp
,2
]
is
V26
()
set
{
pp
,2
}
is non
empty
finite
set
{
pp
}
is non
empty
trivial
finite
1
-element
set
{
{
pp
,2
}
,
{
pp
}
}
is non
empty
finite
V49
()
set
(
power
(
INT.Ring
p
)
)
.
[
pp
,2
]
is
set
(
a
*
L
)
*
(
pp
|^
2
)
is
left_add-cancelable
right_add-cancelable
add-cancelable
right_complementable
Element
of the
carrier
of
(
INT.Ring
p
)
the
multF
of
(
INT.Ring
p
)
.
(
(
a
*
L
)
,
(
pp
|^
2
)
) is
left_add-cancelable
right_add-cancelable
add-cancelable
right_complementable
Element
of the
carrier
of
(
INT.Ring
p
)
[
(
a
*
L
)
,
(
pp
|^
2
)
]
is
V26
()
set
{
(
a
*
L
)
,
(
pp
|^
2
)
}
is non
empty
finite
set
{
(
a
*
L
)
}
is non
empty
trivial
finite
1
-element
set
{
{
(
a
*
L
)
,
(
pp
|^
2
)
}
,
{
(
a
*
L
)
}
}
is non
empty
finite
V49
()
set
the
multF
of
(
INT.Ring
p
)
.
[
(
a
*
L
)
,
(
pp
|^
2
)
]
is
set
(
L
|^
3
)
+
(
(
a
*
L
)
*
(
pp
|^
2
)
)
is
left_add-cancelable
right_add-cancelable
add-cancelable
right_complementable
Element
of the
carrier
of
(
INT.Ring
p
)
the
addF
of
(
INT.Ring
p
)
is
Relation-like
[:
the
carrier
of
(
INT.Ring
p
)
, the
carrier
of
(
INT.Ring
p
)
:]
-defined
the
carrier
of
(
INT.Ring
p
)
-valued
Function-like
quasi_total
finite
Element
of
bool
[:
[:
the
carrier
of
(
INT.Ring
p
)
, the
carrier
of
(
INT.Ring
p
)
:]
, the
carrier
of
(
INT.Ring
p
)
:]
the
addF
of
(
INT.Ring
p
)
.
(
(
L
|^
3
)
,
(
(
a
*
L
)
*
(
pp
|^
2
)
)
) is
left_add-cancelable
right_add-cancelable
add-cancelable
right_complementable
Element
of the
carrier
of
(
INT.Ring
p
)
[
(
L
|^
3
)
,
(
(
a
*
L
)
*
(
pp
|^
2
)
)
]
is
V26
()
set
{
(
L
|^
3
)
,
(
(
a
*
L
)
*
(
pp
|^
2
)
)
}
is non
empty
finite
set
{
(
L
|^
3
)
}
is non
empty
trivial
finite
1
-element
set
{
{
(
L
|^
3
)
,
(
(
a
*
L
)
*
(
pp
|^
2
)
)
}
,
{
(
L
|^
3
)
}
}
is non
empty
finite
V49
()
set
the
addF
of
(
INT.Ring
p
)
.
[
(
L
|^
3
)
,
(
(
a
*
L
)
*
(
pp
|^
2
)
)
]
is
set
pp
|^
3 is
left_add-cancelable
right_add-cancelable
add-cancelable
right_complementable
Element
of the
carrier
of
(
INT.Ring
p
)
(
power
(
INT.Ring
p
)
)
.
(
pp
,3) is
set
[
pp
,3
]
is
V26
()
set
{
pp
,3
}
is non
empty
finite
set
{
{
pp
,3
}
,
{
pp
}
}
is non
empty
finite
V49
()
set
(
power
(
INT.Ring
p
)
)
.
[
pp
,3
]
is
set
b
*
(
pp
|^
3
)
is
left_add-cancelable
right_add-cancelable
add-cancelable
right_complementable
Element
of the
carrier
of
(
INT.Ring
p
)
the
multF
of
(
INT.Ring
p
)
.
(
b
,
(
pp
|^
3
)
) is
left_add-cancelable
right_add-cancelable
add-cancelable
right_complementable
Element
of the
carrier
of
(
INT.Ring
p
)
[
b
,
(
pp
|^
3
)
]
is
V26
()
set
{
b
,
(
pp
|^
3
)
}
is non
empty
finite
set
{
b
}
is non
empty
trivial
finite
1
-element
set
{
{
b
,
(
pp
|^
3
)
}
,
{
b
}
}
is non
empty
finite
V49
()
set
the
multF
of
(
INT.Ring
p
)
.
[
b
,
(
pp
|^
3
)
]
is
set
(
(
L
|^
3
)
+
(
(
a
*
L
)
*
(
pp
|^
2
)
)
)
+
(
b
*
(
pp
|^
3
)
)
is
left_add-cancelable
right_add-cancelable
add-cancelable
right_complementable
Element
of the
carrier
of
(
INT.Ring
p
)
the
addF
of
(
INT.Ring
p
)
.
(
(
(
L
|^
3
)
+
(
(
a
*
L
)
*
(
pp
|^
2
)
)
)
,
(
b
*
(
pp
|^
3
)
)
) is
left_add-cancelable
right_add-cancelable
add-cancelable
right_complementable
Element
of the
carrier
of
(
INT.Ring
p
)
[
(
(
L
|^
3
)
+
(
(
a
*
L
)
*
(
pp
|^
2
)
)
)
,
(
b
*
(
pp
|^
3
)
)
]
is
V26
()
set
{
(
(
L
|^
3
)
+
(
(
a
*
L
)
*
(
pp
|^
2
)
)
)
,
(
b
*
(
pp
|^
3
)
)
}
is non
empty
finite
set
{
(
(
L
|^
3
)
+
(
(
a
*
L
)
*
(
pp
|^
2
)
)
)
}
is non
empty
trivial
finite
1
-element
set
{
{
(
(
L
|^
3
)
+
(
(
a
*
L
)
*
(
pp
|^
2
)
)
)
,
(
b
*
(
pp
|^
3
)
)
}
,
{
(
(
L
|^
3
)
+
(
(
a
*
L
)
*
(
pp
|^
2
)
)
)
}
}
is non
empty
finite
V49
()
set
the
addF
of
(
INT.Ring
p
)
.
[
(
(
L
|^
3
)
+
(
(
a
*
L
)
*
(
pp
|^
2
)
)
)
,
(
b
*
(
pp
|^
3
)
)
]
is
set
(
(
F
|^
2
)
*
pp
)
-
(
(
(
L
|^
3
)
+
(
(
a
*
L
)
*
(
pp
|^
2
)
)
)
+
(
b
*
(
pp
|^
3
)
)
)
is
left_add-cancelable
right_add-cancelable
add-cancelable
right_complementable
Element
of the
carrier
of
(
INT.Ring
p
)
-
(
(
(
L
|^
3
)
+
(
(
a
*
L
)
*
(
pp
|^
2
)
)
)
+
(
b
*
(
pp
|^
3
)
)
)
is
left_add-cancelable
right_add-cancelable
add-cancelable
right_complementable
Element
of the
carrier
of
(
INT.Ring
p
)
(
(
F
|^
2
)
*
pp
)
+
(
-
(
(
(
L
|^
3
)
+
(
(
a
*
L
)
*
(
pp
|^
2
)
)
)
+
(
b
*
(
pp
|^
3
)
)
)
)
is
left_add-cancelable
right_add-cancelable
add-cancelable
right_complementable
Element
of the
carrier
of
(
INT.Ring
p
)
the
addF
of
(
INT.Ring
p
)
.
(
(
(
F
|^
2
)
*
pp
)
,
(
-
(
(
(
L
|^
3
)
+
(
(
a
*
L
)
*
(
pp
|^
2
)
)
)
+
(
b
*
(
pp
|^
3
)
)
)
)
) is
left_add-cancelable
right_add-cancelable
add-cancelable
right_complementable
Element
of the
carrier
of
(
INT.Ring
p
)
[
(
(
F
|^
2
)
*
pp
)
,
(
-
(
(
(
L
|^
3
)
+
(
(
a
*
L
)
*
(
pp
|^
2
)
)
)
+
(
b
*
(
pp
|^
3
)
)
)
)
]
is
V26
()
set
{
(
(
F
|^
2
)
*
pp
)
,
(
-
(
(
(
L
|^
3
)
+
(
(
a
*
L
)
*
(
pp
|^
2
)
)
)
+
(
b
*
(
pp
|^
3
)
)
)
)
}
is non
empty
finite
set
{
(
(
F
|^
2
)
*
pp
)
}
is non
empty
trivial
finite
1
-element
set
{
{
(
(
F
|^
2
)
*
pp
)
,
(
-
(
(
(
L
|^
3
)
+
(
(
a
*
L
)
*
(
pp
|^
2
)
)
)
+
(
b
*
(
pp
|^
3
)
)
)
)
}
,
{
(
(
F
|^
2
)
*
pp
)
}
}
is non
empty
finite
V49
()
set
the
addF
of
(
INT.Ring
p
)
.
[
(
(
F
|^
2
)
*
pp
)
,
(
-
(
(
(
L
|^
3
)
+
(
(
a
*
L
)
*
(
pp
|^
2
)
)
)
+
(
b
*
(
pp
|^
3
)
)
)
)
]
is
set
F1
is
Element
of
[:
the
carrier
of
(
INT.Ring
p
)
, the
carrier
of
(
INT.Ring
p
)
, the
carrier
of
(
INT.Ring
p
)
:]
F1
`1_3
is
left_add-cancelable
right_add-cancelable
add-cancelable
right_complementable
Element
of the
carrier
of
(
INT.Ring
p
)
F1
`1
is
set
(
F1
`1
)
`1
is
set
F1
`2_3
is
left_add-cancelable
right_add-cancelable
add-cancelable
right_complementable
Element
of the
carrier
of
(
INT.Ring
p
)
(
F1
`1
)
`2
is
set
F1
`3_3
is
left_add-cancelable
right_add-cancelable
add-cancelable
right_complementable
Element
of the
carrier
of
(
INT.Ring
p
)
[
0
,1,
0
]
is
V26
()
V27
()
Element
of
[:
NAT
,
NAT
,
NAT
:]
[
0
,1
]
is
V26
()
set
{
0
,1
}
is non
empty
finite
V49
()
V117
()
V118
()
V119
()
V120
()
V121
()
V122
()
set
{
{
0
,1
}
,
{
0
}
}
is non
empty
finite
V49
()
set
[
[
0
,1
]
,
0
]
is
V26
()
set
{
[
0
,1
]
,
0
}
is non
empty
finite
set
{
[
0
,1
]
}
is non
empty
trivial
finite
1
-element
set
{
{
[
0
,1
]
,
0
}
,
{
[
0
,1
]
}
}
is non
empty
finite
V49
()
set
p
is non
empty
V4
()
V5
()
V6
()
V10
()
V11
()
V12
()
integer
V14
()
ext-real
positive
non
negative
finite
cardinal
set
INT.Ring
p
is non
empty
non
degenerated
non
trivial
finite
left_add-cancelable
right_add-cancelable
add-cancelable
right_complementable
almost_left_invertible
strict
unital
associative
commutative
Euclidian
right-distributive
left-distributive
right_unital
well-unital
distributive
left_unital
Abelian
add-associative
right_zeroed
()
doubleLoopStr
Segm
p
is
V117
()
V118
()
V119
()
V120
()
V121
()
V122
()
Element
of
bool
NAT
addint
p
is
Relation-like
[:
(
Segm
p
)
,
(
Segm
p
)
:]
-defined
Segm
p
-valued
Function-like
quasi_total
V35
()
V36
()
V37
()
V38
()
Element
of
bool
[:
[:
(
Segm
p
)
,
(
Segm
p
)
:]
,
(
Segm
p
)
:]
[:
(
Segm
p
)
,
(
Segm
p
)
:]
is
RAT
-valued
INT
-valued
V35
()
V36
()
V37
()
V38
()
set
[:
[:
(
Segm
p
)
,
(
Segm
p
)
:]
,
(
Segm
p
)
:]
is
RAT
-valued
INT
-valued
V35
()
V36
()
V37
()
V38
()
set
bool
[:
[:
(
Segm
p
)
,
(
Segm
p
)
:]
,
(
Segm
p
)
:]
is non
empty
set
multint
p
is
Relation-like
[:
(
Segm
p
)
,
(
Segm
p
)
:]
-defined
Segm
p
-valued
Function-like
quasi_total
V35
()
V36
()
V37
()
V38
()
Element
of
bool
[:
[:
(
Segm
p
)
,
(
Segm
p
)
:]
,
(
Segm
p
)
:]
K633
(1,
(
Segm
p
)
) is
V4
()
V5
()
V6
()
V10
()
V11
()
V12
()
integer
ext-real
non
negative
finite
cardinal
V113
()
Element
of
Segm
p
K633
(
0
,
(
Segm
p
)
) is
V4
()
V5
()
V6
()
V10
()
V11
()
V12
()
integer
ext-real
non
negative
finite
cardinal
V113
()
Element
of
Segm
p
doubleLoopStr
(#
(
Segm
p
)
,
(
addint
p
)
,
(
multint
p
)
,
K633
(1,
(
Segm
p
)
),
K633
(
0
,
(
Segm
p
)
) #) is
strict
doubleLoopStr
the
carrier
of
(
INT.Ring
p
)
is non
empty
non
trivial
finite
set
[:
the
carrier
of
(
INT.Ring
p
)
, the
carrier
of
(
INT.Ring
p
)
, the
carrier
of
(
INT.Ring
p
)
:]
is non
empty
finite
set
(
(
INT.Ring
p
)
) is non
empty
finite
Element
of
bool
[:
the
carrier
of
(
INT.Ring
p
)
, the
carrier
of
(
INT.Ring
p
)
, the
carrier
of
(
INT.Ring
p
)
:]
bool
[:
the
carrier
of
(
INT.Ring
p
)
, the
carrier
of
(
INT.Ring
p
)
, the
carrier
of
(
INT.Ring
p
)
:]
is non
empty
finite
V49
()
set
0.
(
INT.Ring
p
)
is
V61
(
INT.Ring
p
)
left_add-cancelable
right_add-cancelable
add-cancelable
right_complementable
Element
of the
carrier
of
(
INT.Ring
p
)
the
ZeroF
of
(
INT.Ring
p
)
is
left_add-cancelable
right_add-cancelable
add-cancelable
right_complementable
Element
of the
carrier
of
(
INT.Ring
p
)
[
(
0.
(
INT.Ring
p
)
)
,
(
0.
(
INT.Ring
p
)
)
,
(
0.
(
INT.Ring
p
)
)
]
is
V26
()
V27
()
Element
of
[:
the
carrier
of
(
INT.Ring
p
)
, the
carrier
of
(
INT.Ring
p
)
, the
carrier
of
(
INT.Ring
p
)
:]
[
(
0.
(
INT.Ring
p
)
)
,
(
0.
(
INT.Ring
p
)
)
]
is
V26
()
set
{
(
0.
(
INT.Ring
p
)
)
,
(
0.
(
INT.Ring
p
)
)
}
is non
empty
finite
set
{
(
0.
(
INT.Ring
p
)
)
}
is non
empty
trivial
finite
1
-element
set
{
{
(
0.
(
INT.Ring
p
)
)
,
(
0.
(
INT.Ring
p
)
)
}
,
{
(
0.
(
INT.Ring
p
)
)
}
}
is non
empty
finite
V49
()
set
[
[
(
0.
(
INT.Ring
p
)
)
,
(
0.
(
INT.Ring
p
)
)
]
,
(
0.
(
INT.Ring
p
)
)
]
is
V26
()
set
{
[
(
0.
(
INT.Ring
p
)
)
,
(
0.
(
INT.Ring
p
)
)
]
,
(
0.
(
INT.Ring
p
)
)
}
is non
empty
finite
set
{
[
(
0.
(
INT.Ring
p
)
)
,
(
0.
(
INT.Ring
p
)
)
]
}
is non
empty
trivial
finite
1
-element
set
{
{
[
(
0.
(
INT.Ring
p
)
)
,
(
0.
(
INT.Ring
p
)
)
]
,
(
0.
(
INT.Ring
p
)
)
}
,
{
[
(
0.
(
INT.Ring
p
)
)
,
(
0.
(
INT.Ring
p
)
)
]
}
}
is non
empty
finite
V49
()
set
{
[
(
0.
(
INT.Ring
p
)
)
,
(
0.
(
INT.Ring
p
)
)
,
(
0.
(
INT.Ring
p
)
)
]
}
is non
empty
trivial
finite
1
-element
Element
of
bool
[:
the
carrier
of
(
INT.Ring
p
)
, the
carrier
of
(
INT.Ring
p
)
, the
carrier
of
(
INT.Ring
p
)
:]
[:
the
carrier
of
(
INT.Ring
p
)
, the
carrier
of
(
INT.Ring
p
)
, the
carrier
of
(
INT.Ring
p
)
:]
\
{
[
(
0.
(
INT.Ring
p
)
)
,
(
0.
(
INT.Ring
p
)
)
,
(
0.
(
INT.Ring
p
)
)
]
}
is
finite
Element
of
bool
[:
the
carrier
of
(
INT.Ring
p
)
, the
carrier
of
(
INT.Ring
p
)
, the
carrier
of
(
INT.Ring
p
)
:]
a
is
left_add-cancelable
right_add-cancelable
add-cancelable
right_complementable
Element
of the
carrier
of
(
INT.Ring
p
)
b
is
left_add-cancelable
right_add-cancelable
add-cancelable
right_complementable
Element
of the
carrier
of
(
INT.Ring
p
)
(
p
,
a
,
b
) is
Relation-like
[:
the
carrier
of
(
INT.Ring
p
)
, the
carrier
of
(
INT.Ring
p
)
, the
carrier
of
(
INT.Ring
p
)
:]
-defined
the
carrier
of
(
INT.Ring
p
)
-valued
Function-like
quasi_total
finite
Element
of
bool
[:
[:
the
carrier
of
(
INT.Ring
p
)
, the
carrier
of
(
INT.Ring
p
)
, the
carrier
of
(
INT.Ring
p
)
:]
, the
carrier
of
(
INT.Ring
p
)
:]
[:
[:
the
carrier
of
(
INT.Ring
p
)
, the
carrier
of
(
INT.Ring
p
)
, the
carrier
of
(
INT.Ring
p
)
:]
, the
carrier
of
(
INT.Ring
p
)
:]
is non
empty
finite
set
bool
[:
[:
the
carrier
of
(
INT.Ring
p
)
, the
carrier
of
(
INT.Ring
p
)
, the
carrier
of
(
INT.Ring
p
)
:]
, the
carrier
of
(
INT.Ring
p
)
:]
is non
empty
finite
V49
()
set
(
p
,
a
,
b
)
.
[
0
,1,
0
]
is
set
1.
(
INT.Ring
p
)
is
V61
(
INT.Ring
p
)
V61
(
INT.Ring
p
)
left_add-cancelable
left_add-cancelable
right_add-cancelable
right_add-cancelable
add-cancelable
add-cancelable
right_complementable
right_complementable
(
p
)
Element
of the
carrier
of
(
INT.Ring
p
)
the
OneF
of
(
INT.Ring
p
)
is
left_add-cancelable
right_add-cancelable
add-cancelable
right_complementable
Element
of the
carrier
of
(
INT.Ring
p
)
[:
the
carrier
of
(
INT.Ring
p
)
, the
carrier
of
(
INT.Ring
p
)
, the
carrier
of
(
INT.Ring
p
)
:]
\
{
[
0
,
0
,
0
]
}
is
finite
Element
of
bool
[:
the
carrier
of
(
INT.Ring
p
)
, the
carrier
of
(
INT.Ring
p
)
, the
carrier
of
(
INT.Ring
p
)
:]
F
is
Element
of (
(
INT.Ring
p
)
)
F
`1_3
is
left_add-cancelable
right_add-cancelable
add-cancelable
right_complementable
Element
of the
carrier
of
(
INT.Ring
p
)
F
`1
is
set
(
F
`1
)
`1
is
set
F
`2_3
is
left_add-cancelable
right_add-cancelable
add-cancelable
right_complementable
Element
of the
carrier
of
(
INT.Ring
p
)
(
F
`1
)
`2
is
set
F
`3_3
is
left_add-cancelable
right_add-cancelable
add-cancelable
right_complementable
Element
of the
carrier
of
(
INT.Ring
p
)
[
(
0.
(
INT.Ring
p
)
)
,1,
0
]
is
V26
()
V27
()
Element
of
[:
the
carrier
of
(
INT.Ring
p
)
,
NAT
,
NAT
:]
[:
the
carrier
of
(
INT.Ring
p
)
,
NAT
,
NAT
:]
is non
empty
set
[
(
0.
(
INT.Ring
p
)
)
,1
]
is
V26
()
set
{
(
0.
(
INT.Ring
p
)
)
,1
}
is non
empty
finite
set
{
{
(
0.
(
INT.Ring
p
)
)
,1
}
,
{
(
0.
(
INT.Ring
p
)
)
}
}
is non
empty
finite
V49
()
set
[
[
(
0.
(
INT.Ring
p
)
)
,1
]
,
0
]
is
V26
()
set
{
[
(
0.
(
INT.Ring
p
)
)
,1
]
,
0
}
is non
empty
finite
set
{
[
(
0.
(
INT.Ring
p
)
)
,1
]
}
is non
empty
trivial
finite
1
-element
set
{
{
[
(
0.
(
INT.Ring
p
)
)
,1
]
,
0
}
,
{
[
(
0.
(
INT.Ring
p
)
)
,1
]
}
}
is non
empty
finite
V49
()
set
[
(
0.
(
INT.Ring
p
)
)
,
(
1.
(
INT.Ring
p
)
)
,
0
]
is
V26
()
V27
()
Element
of
[:
the
carrier
of
(
INT.Ring
p
)
, the
carrier
of
(
INT.Ring
p
)
,
NAT
:]
[:
the
carrier
of
(
INT.Ring
p
)
, the
carrier
of
(
INT.Ring
p
)
,
NAT
:]
is non
empty
set
[
(
0.
(
INT.Ring
p
)
)
,
(
1.
(
INT.Ring
p
)
)
]
is
V26
()
set
{
(
0.
(
INT.Ring
p
)
)
,
(
1.
(
INT.Ring
p
)
)
}
is non
empty
finite
set
{
{
(
0.
(
INT.Ring
p
)
)
,
(
1.
(
INT.Ring
p
)
)
}
,
{
(
0.
(
INT.Ring
p
)
)
}
}
is non
empty
finite
V49
()
set
[
[
(
0.
(
INT.Ring
p
)
)
,
(
1.
(
INT.Ring
p
)
)
]
,
0
]
is
V26
()
set
{
[
(
0.
(
INT.Ring
p
)
)
,
(
1.
(
INT.Ring
p
)
)
]
,
0
}
is non
empty
finite
set
{
[
(
0.
(
INT.Ring
p
)
)
,
(
1.
(
INT.Ring
p
)
)
]
}
is non
empty
trivial
finite
1
-element
set
{
{
[
(
0.
(
INT.Ring
p
)
)
,
(
1.
(
INT.Ring
p
)
)
]
,
0
}
,
{
[
(
0.
(
INT.Ring
p
)
)
,
(
1.
(
INT.Ring
p
)
)
]
}
}
is non
empty
finite
V49
()
set
[
(
0.
(
INT.Ring
p
)
)
,
(
1.
(
INT.Ring
p
)
)
,
(
0.
(
INT.Ring
p
)
)
]
is
V26
()
V27
()
Element
of
[:
the
carrier
of
(
INT.Ring
p
)
, the
carrier
of
(
INT.Ring
p
)
, the
carrier
of
(
INT.Ring
p
)
:]
[
[
(
0.
(
INT.Ring
p
)
)
,
(
1.
(
INT.Ring
p
)
)
]
,
(
0.
(
INT.Ring
p
)
)
]
is
V26
()
set
{
[
(
0.
(
INT.Ring
p
)
)
,
(
1.
(
INT.Ring
p
)
)
]
,
(
0.
(
INT.Ring
p
)
)
}
is non
empty
finite
set
{
{
[
(
0.
(
INT.Ring
p
)
)
,
(
1.
(
INT.Ring
p
)
)
]
,
(
0.
(
INT.Ring
p
)
)
}
,
{
[
(
0.
(
INT.Ring
p
)
)
,
(
1.
(
INT.Ring
p
)
)
]
}
}
is non
empty
finite
V49
()
set
(
F
`1_3
)
|^
3 is
left_add-cancelable
right_add-cancelable
add-cancelable
right_complementable
Element
of the
carrier
of
(
INT.Ring
p
)
power
(
INT.Ring
p
)
is
Relation-like
[:
the
carrier
of
(
INT.Ring
p
)
,
NAT
:]
-defined
the
carrier
of
(
INT.Ring
p
)
-valued
Function-like
quasi_total
Element
of
bool
[:
[:
the
carrier
of
(
INT.Ring
p
)
,
NAT
:]
, the
carrier
of
(
INT.Ring
p
)
:]
[:
the
carrier
of
(
INT.Ring
p
)
,
NAT
:]
is non
empty
non
trivial
RAT
-valued
INT
-valued
V35
()
V36
()
V37
()
V38
() non
finite
set
[:
[:
the
carrier
of
(
INT.Ring
p
)
,
NAT
:]
, the
carrier
of
(
INT.Ring
p
)
:]
is non
empty
non
trivial
non
finite
set
bool
[:
[:
the
carrier
of
(
INT.Ring
p
)
,
NAT
:]
, the
carrier
of
(
INT.Ring
p
)
:]
is non
empty
non
trivial
non
finite
set
(
power
(
INT.Ring
p
)
)
.
(
(
F
`1_3
)
,3) is
set
[
(
F
`1_3
)
,3
]
is
V26
()
set
{
(
F
`1_3
)
,3
}
is non
empty
finite
set
{
(
F
`1_3
)
}
is non
empty
trivial
finite
1
-element
set
{
{
(
F
`1_3
)
,3
}
,
{
(
F
`1_3
)
}
}
is non
empty
finite
V49
()
set
(
power
(
INT.Ring
p
)
)
.
[
(
F
`1_3
)
,3
]
is
set
2
+
1 is non
empty
V4
()
V5
()
V6
()
V10
()
V11
()
V12
()
integer
ext-real
positive
non
negative
finite
cardinal
V113
()
V117
()
V118
()
V119
()
V120
()
V121
()
V122
()
Element
of
NAT
(
F
`1_3
)
|^
(
2
+
1
)
is
left_add-cancelable
right_add-cancelable
add-cancelable
right_complementable
Element
of the
carrier
of
(
INT.Ring
p
)
(
power
(
INT.Ring
p
)
)
.
(
(
F
`1_3
)
,
(
2
+
1
)
) is
set
[
(
F
`1_3
)
,
(
2
+
1
)
]
is
V26
()
set
{
(
F
`1_3
)
,
(
2
+
1
)
}
is non
empty
finite
set
{
{
(
F
`1_3
)
,
(
2
+
1
)
}
,
{
(
F
`1_3
)
}
}
is non
empty
finite
V49
()
set
(
power
(
INT.Ring
p
)
)
.
[
(
F
`1_3
)
,
(
2
+
1
)
]
is
set
(
F
`1_3
)
|^
2 is
left_add-cancelable
right_add-cancelable
add-cancelable
right_complementable
Element
of the
carrier
of
(
INT.Ring
p
)
(
power
(
INT.Ring
p
)
)
.
(
(
F
`1_3
)
,2) is
set
[
(
F
`1_3
)
,2
]
is
V26
()
set
{
(
F
`1_3
)
,2
}
is non
empty
finite
set
{
{
(
F
`1_3
)
,2
}
,
{
(
F
`1_3
)
}
}
is non
empty
finite
V49
()
set
(
power
(
INT.Ring
p
)
)
.
[
(
F
`1_3
)
,2
]
is
set
(
(
F
`1_3
)
|^
2
)
*
(
F
`1_3
)
is
left_add-cancelable
right_add-cancelable
add-cancelable
right_complementable
Element
of the
carrier
of
(
INT.Ring
p
)
the
multF
of
(
INT.Ring
p
)
is
Relation-like
[:
the
carrier
of
(
INT.Ring
p
)
, the
carrier
of
(
INT.Ring
p
)
:]
-defined
the
carrier
of
(
INT.Ring
p
)
-valued
Function-like
quasi_total
finite
Element
of
bool
[:
[:
the
carrier
of
(
INT.Ring
p
)
, the
carrier
of
(
INT.Ring
p
)
:]
, the
carrier
of
(
INT.Ring
p
)
:]
[:
the
carrier
of
(
INT.Ring
p
)
, the
carrier
of
(
INT.Ring
p
)
:]
is non
empty
finite
set
[:
[:
the
carrier
of
(
INT.Ring
p
)
, the
carrier
of
(
INT.Ring
p
)
:]
, the
carrier
of
(
INT.Ring
p
)
:]
is non
empty
finite
set
bool
[:
[:
the
carrier
of
(
INT.Ring
p
)
, the
carrier
of
(
INT.Ring
p
)
:]
, the
carrier
of
(
INT.Ring
p
)
:]
is non
empty
finite
V49
()
set
the
multF
of
(
INT.Ring
p
)
.
(
(
(
F
`1_3
)
|^
2
)
,
(
F
`1_3
)
) is
left_add-cancelable
right_add-cancelable
add-cancelable
right_complementable
Element
of the
carrier
of
(
INT.Ring
p
)
[
(
(
F
`1_3
)
|^
2
)
,
(
F
`1_3
)
]
is
V26
()
set
{
(
(
F
`1_3
)
|^
2
)
,
(
F
`1_3
)
}
is non
empty
finite
set
{
(
(
F
`1_3
)
|^
2
)
}
is non
empty
trivial
finite
1
-element
set
{
{
(
(
F
`1_3
)
|^
2
)
,
(
F
`1_3
)
}
,
{
(
(
F
`1_3
)
|^
2
)
}
}
is non
empty
finite
V49
()
set
the
multF
of
(
INT.Ring
p
)
.
[
(
(
F
`1_3
)
|^
2
)
,
(
F
`1_3
)
]
is
set
(
F
`3_3
)
|^
3 is
left_add-cancelable
right_add-cancelable
add-cancelable
right_complementable
Element
of the
carrier
of
(
INT.Ring
p
)
(
power
(
INT.Ring
p
)
)
.
(
(
F
`3_3
)
,3) is
set
[
(
F
`3_3
)
,3
]
is
V26
()
set
{
(
F
`3_3
)
,3
}
is non
empty
finite
set
{
(
F
`3_3
)
}
is non
empty
trivial
finite
1
-element
set
{
{
(
F
`3_3
)
,3
}
,
{
(
F
`3_3
)
}
}
is non
empty
finite
V49
()
set
(
power
(
INT.Ring
p
)
)
.
[
(
F
`3_3
)
,3
]
is
set
(
F
`3_3
)
|^
(
2
+
1
)
is
left_add-cancelable
right_add-cancelable
add-cancelable
right_complementable
Element
of the
carrier
of
(
INT.Ring
p
)
(
power
(
INT.Ring
p
)
)
.
(
(
F
`3_3
)
,
(
2
+
1
)
) is
set
[
(
F
`3_3
)
,
(
2
+
1
)
]
is
V26
()
set
{
(
F
`3_3
)
,
(
2
+
1
)
}
is non
empty
finite
set
{
{
(
F
`3_3
)
,
(
2
+
1
)
}
,
{
(
F
`3_3
)
}
}
is non
empty
finite
V49
()
set
(
power
(
INT.Ring
p
)
)
.
[
(
F
`3_3
)
,
(
2
+
1
)
]
is
set
(
F
`3_3
)
|^
2 is
left_add-cancelable
right_add-cancelable
add-cancelable
right_complementable
Element
of the
carrier
of
(
INT.Ring
p
)
(
power
(
INT.Ring
p
)
)
.
(
(
F
`3_3
)
,2) is
set
[
(
F
`3_3
)
,2
]
is
V26
()
set
{
(
F
`3_3
)
,2
}
is non
empty
finite
set
{
{
(
F
`3_3
)
,2
}
,
{
(
F
`3_3
)
}
}
is non
empty
finite
V49
()
set
(
power
(
INT.Ring
p
)
)
.
[
(
F
`3_3
)
,2
]
is
set
(
(
F
`3_3
)
|^
2
)
*
(
F
`3_3
)
is
left_add-cancelable
right_add-cancelable
add-cancelable
right_complementable
Element
of the
carrier
of
(
INT.Ring
p
)
the
multF
of
(
INT.Ring
p
)
.
(
(
(
F
`3_3
)
|^
2
)
,
(
F
`3_3
)
) is
left_add-cancelable
right_add-cancelable
add-cancelable
right_complementable
Element
of the
carrier
of
(
INT.Ring
p
)
[
(
(
F
`3_3
)
|^
2
)
,
(
F
`3_3
)
]
is
V26
()
set
{
(
(
F
`3_3
)
|^
2
)
,
(
F
`3_3
)
}
is non
empty
finite
set
{
(
(
F
`3_3
)
|^
2
)
}
is non
empty
trivial
finite
1
-element
set
{
{
(
(
F
`3_3
)
|^
2
)
,
(
F
`3_3
)
}
,
{
(
(
F
`3_3
)
|^
2
)
}
}
is non
empty
finite
V49
()
set
the
multF
of
(
INT.Ring
p
)
.
[
(
(
F
`3_3
)
|^
2
)
,
(
F
`3_3
)
]
is
set
1
+
1 is non
empty
V4
()
V5
()
V6
()
V10
()
V11
()
V12
()
integer
ext-real
positive
non
negative
finite
cardinal
V113
()
V117
()
V118
()
V119
()
V120
()
V121
()
V122
()
Element
of
NAT
(
F
`3_3
)
|^
(
1
+
1
)
is
left_add-cancelable
right_add-cancelable
add-cancelable
right_complementable
Element
of the
carrier
of
(
INT.Ring
p
)
(
power
(
INT.Ring
p
)
)
.
(
(
F
`3_3
)
,
(
1
+
1
)
) is
set
[
(
F
`3_3
)
,
(
1
+
1
)
]
is
V26
()
set
{
(
F
`3_3
)
,
(
1
+
1
)
}
is non
empty
finite
set
{
{
(
F
`3_3
)
,
(
1
+
1
)
}
,
{
(
F
`3_3
)
}
}
is non
empty
finite
V49
()
set
(
power
(
INT.Ring
p
)
)
.
[
(
F
`3_3
)
,
(
1
+
1
)
]
is
set
(
F
`3_3
)
|^
1 is
left_add-cancelable
right_add-cancelable
add-cancelable
right_complementable
Element
of the
carrier
of
(
INT.Ring
p
)
(
power
(
INT.Ring
p
)
)
.
(
(
F
`3_3
)
,1) is
set
[
(
F
`3_3
)
,1
]
is
V26
()
set
{
(
F
`3_3
)
,1
}
is non
empty
finite
set
{
{
(
F
`3_3
)
,1
}
,
{
(
F
`3_3
)
}
}
is non
empty
finite
V49
()
set
(
power
(
INT.Ring
p
)
)
.
[
(
F
`3_3
)
,1
]
is
set
(
(
F
`3_3
)
|^
1
)
*
(
F
`3_3
)
is
left_add-cancelable
right_add-cancelable
add-cancelable
right_complementable
Element
of the
carrier
of
(
INT.Ring
p
)
the
multF
of
(
INT.Ring
p
)
.
(
(
(
F
`3_3
)
|^
1
)
,
(
F
`3_3
)
) is
left_add-cancelable
right_add-cancelable
add-cancelable
right_complementable
Element
of the
carrier
of
(
INT.Ring
p
)
[
(
(
F
`3_3
)
|^
1
)
,
(
F
`3_3
)
]
is
V26
()
set
{
(
(
F
`3_3
)
|^
1
)
,
(
F
`3_3
)
}
is non
empty
finite
set
{
(
(
F
`3_3
)
|^
1
)
}
is non
empty
trivial
finite
1
-element
set
{
{
(
(
F
`3_3
)
|^
1
)
,
(
F
`3_3
)
}
,
{
(
(
F
`3_3
)
|^
1
)
}
}
is non
empty
finite
V49
()
set
the
multF
of
(
INT.Ring
p
)
.
[
(
(
F
`3_3
)
|^
1
)
,
(
F
`3_3
)
]
is
set
(
p
,
a
,
b
)
.
F
is
left_add-cancelable
right_add-cancelable
add-cancelable
right_complementable
Element
of the
carrier
of
(
INT.Ring
p
)
(
F
`2_3
)
|^
2 is
left_add-cancelable
right_add-cancelable
add-cancelable
right_complementable
Element
of the
carrier
of
(
INT.Ring
p
)
(
power
(
INT.Ring
p
)
)
.
(
(
F
`2_3
)
,2) is
set
[
(
F
`2_3
)
,2
]
is
V26
()
set
{
(
F
`2_3
)
,2
}
is non
empty
finite
set
{
(
F
`2_3
)
}
is non
empty
trivial
finite
1
-element
set
{
{
(
F
`2_3
)
,2
}
,
{
(
F
`2_3
)
}
}
is non
empty
finite
V49
()
set
(
power
(
INT.Ring
p
)
)
.
[
(
F
`2_3
)
,2
]
is
set
(
(
F
`2_3
)
|^
2
)
*
(
F
`3_3
)
is
left_add-cancelable
right_add-cancelable
add-cancelable
right_complementable
Element
of the
carrier
of
(
INT.Ring
p
)
the
multF
of
(
INT.Ring
p
)
.
(
(
(
F
`2_3
)
|^
2
)
,
(
F
`3_3
)
) is
left_add-cancelable
right_add-cancelable
add-cancelable
right_complementable
Element
of the
carrier
of
(
INT.Ring
p
)
[
(
(
F
`2_3
)
|^
2
)
,
(
F
`3_3
)
]
is
V26
()
set
{
(
(
F
`2_3
)
|^
2
)
,
(
F
`3_3
)
}
is non
empty
finite
set
{
(
(
F
`2_3
)
|^
2
)
}
is non
empty
trivial
finite
1
-element
set
{
{
(
(
F
`2_3
)
|^
2
)
,
(
F
`3_3
)
}
,
{
(
(
F
`2_3
)
|^
2
)
}
}
is non
empty
finite
V49
()
set
the
multF
of
(
INT.Ring
p
)
.
[
(
(
F
`2_3
)
|^
2
)
,
(
F
`3_3
)
]
is
set
a
*
(
F
`1_3
)
is
left_add-cancelable
right_add-cancelable
add-cancelable
right_complementable
Element
of the
carrier
of
(
INT.Ring
p
)
the
multF
of
(
INT.Ring
p
)
.
(
a
,
(
F
`1_3
)
) is
left_add-cancelable
right_add-cancelable
add-cancelable
right_complementable
Element
of the
carrier
of
(
INT.Ring
p
)
[
a
,
(
F
`1_3
)
]
is
V26
()
set
{
a
,
(
F
`1_3
)
}
is non
empty
finite
set
{
a
}
is non
empty
trivial
finite
1
-element
set
{
{
a
,
(
F
`1_3
)
}
,
{
a
}
}
is non
empty
finite
V49
()
set
the
multF
of
(
INT.Ring
p
)
.
[
a
,
(
F
`1_3
)
]
is
set
(
a
*
(
F
`1_3
)
)
*
(
(
F
`3_3
)
|^
2
)
is
left_add-cancelable
right_add-cancelable
add-cancelable
right_complementable
Element
of the
carrier
of
(
INT.Ring
p
)
the
multF
of
(
INT.Ring
p
)
.
(
(
a
*
(
F
`1_3
)
)
,
(
(
F
`3_3
)
|^
2
)
) is
left_add-cancelable
right_add-cancelable
add-cancelable
right_complementable
Element
of the
carrier
of
(
INT.Ring
p
)
[
(
a
*
(
F
`1_3
)
)
,
(
(
F
`3_3
)
|^
2
)
]
is
V26
()
set
{
(
a
*
(
F
`1_3
)
)
,
(
(
F
`3_3
)
|^
2
)
}
is non
empty
finite
set
{
(
a
*
(
F
`1_3
)
)
}
is non
empty
trivial
finite
1
-element
set
{
{
(
a
*
(
F
`1_3
)
)
,
(
(
F
`3_3
)
|^
2
)
}
,
{
(
a
*
(
F
`1_3
)
)
}
}
is non
empty
finite
V49
()
set
the
multF
of
(
INT.Ring
p
)
.
[
(
a
*
(
F
`1_3
)
)
,
(
(
F
`3_3
)
|^
2
)
]
is
set
(
(
F
`1_3
)
|^
3
)
+
(
(
a
*
(
F
`1_3
)
)
*
(
(
F
`3_3
)
|^
2
)
)
is
left_add-cancelable
right_add-cancelable
add-cancelable
right_complementable
Element
of the
carrier
of
(
INT.Ring
p
)
the
addF
of
(
INT.Ring
p
)
is
Relation-like
[:
the
carrier
of
(
INT.Ring
p
)
, the
carrier
of
(
INT.Ring
p
)
:]
-defined
the
carrier
of
(
INT.Ring
p
)
-valued
Function-like
quasi_total
finite
Element
of
bool
[:
[:
the
carrier
of
(
INT.Ring
p
)
, the
carrier
of
(
INT.Ring
p
)
:]
, the
carrier
of
(
INT.Ring
p
)
:]
the
addF
of
(
INT.Ring
p
)
.
(
(
(
F
`1_3
)
|^
3
)
,
(
(
a
*
(
F
`1_3
)
)
*
(
(
F
`3_3
)
|^
2
)
)
) is
left_add-cancelable
right_add-cancelable
add-cancelable
right_complementable
Element
of the
carrier
of
(
INT.Ring
p
)
[
(
(
F
`1_3
)
|^
3
)
,
(
(
a
*
(
F
`1_3
)
)
*
(
(
F
`3_3
)
|^
2
)
)
]
is
V26
()
set
{
(
(
F
`1_3
)
|^
3
)
,
(
(
a
*
(
F
`1_3
)
)
*
(
(
F
`3_3
)
|^
2
)
)
}
is non
empty
finite
set
{
(
(
F
`1_3
)
|^
3
)
}
is non
empty
trivial
finite
1
-element
set
{
{
(
(
F
`1_3
)
|^
3
)
,
(
(
a
*
(
F
`1_3
)
)
*
(
(
F
`3_3
)
|^
2
)
)
}
,
{
(
(
F
`1_3
)
|^
3
)
}
}
is non
empty
finite
V49
()
set
the
addF
of
(
INT.Ring
p
)
.
[
(
(
F
`1_3
)
|^
3
)
,
(
(
a
*
(
F
`1_3
)
)
*
(
(
F
`3_3
)
|^
2
)
)
]
is
set
b
*
(
(
F
`3_3
)
|^
3
)
is
left_add-cancelable
right_add-cancelable
add-cancelable
right_complementable
Element
of the
carrier
of
(
INT.Ring
p
)
the
multF
of
(
INT.Ring
p
)
.
(
b
,
(
(
F
`3_3
)
|^
3
)
) is
left_add-cancelable
right_add-cancelable
add-cancelable
right_complementable
Element
of the
carrier
of
(
INT.Ring
p
)
[
b
,
(
(
F
`3_3
)
|^
3
)
]
is
V26
()
set
{
b
,
(
(
F
`3_3
)
|^
3
)
}
is non
empty
finite
set
{
b
}
is non
empty
trivial
finite
1
-element
set
{
{
b
,
(
(
F
`3_3
)
|^
3
)
}
,
{
b
}
}
is non
empty
finite
V49
()
set
the
multF
of
(
INT.Ring
p
)
.
[
b
,
(
(
F
`3_3
)
|^
3
)
]
is
set
(
(
(
F
`1_3
)
|^
3
)
+
(
(
a
*
(
F
`1_3
)
)
*
(
(
F
`3_3
)
|^
2
)
)
)
+
(
b
*
(
(
F
`3_3
)
|^
3
)
)
is
left_add-cancelable
right_add-cancelable
add-cancelable
right_complementable
Element
of the
carrier
of
(
INT.Ring
p
)
the
addF
of
(
INT.Ring
p
)
.
(
(
(
(
F
`1_3
)
|^
3
)
+
(
(
a
*
(
F
`1_3
)
)
*
(
(
F
`3_3
)
|^
2
)
)
)
,
(
b
*
(
(
F
`3_3
)
|^
3
)
)
) is
left_add-cancelable
right_add-cancelable
add-cancelable
right_complementable
Element
of the
carrier
of
(
INT.Ring
p
)
[
(
(
(
F
`1_3
)
|^
3
)
+
(
(
a
*
(
F
`1_3
)
)
*
(
(
F
`3_3
)
|^
2
)
)
)
,
(
b
*
(
(
F
`3_3
)
|^
3
)
)
]
is
V26
()
set
{
(
(
(
F
`1_3
)
|^
3
)
+
(
(
a
*
(
F
`1_3
)
)
*
(
(
F
`3_3
)
|^
2
)
)
)
,
(
b
*
(
(
F
`3_3
)
|^
3
)
)
}
is non
empty
finite
set
{
(
(
(
F
`1_3
)
|^
3
)
+
(
(
a
*
(
F
`1_3
)
)
*
(
(
F
`3_3
)
|^
2
)
)
)
}
is non
empty
trivial
finite
1
-element
set
{
{
(
(
(
F
`1_3
)
|^
3
)
+
(
(
a
*
(
F
`1_3
)
)
*
(
(
F
`3_3
)
|^
2
)
)
)
,
(
b
*
(
(
F
`3_3
)
|^
3
)
)
}
,
{
(
(
(
F
`1_3
)
|^
3
)
+
(
(
a
*
(
F
`1_3
)
)
*
(
(
F
`3_3
)
|^
2
)
)
)
}
}
is non
empty
finite
V49
()
set
the
addF
of
(
INT.Ring
p
)
.
[
(
(
(
F
`1_3
)
|^
3
)
+
(
(
a
*
(
F
`1_3
)
)
*
(
(
F
`3_3
)
|^
2
)
)
)
,
(
b
*
(
(
F
`3_3
)
|^
3
)
)
]
is
set
(
(
(
F
`2_3
)
|^
2
)
*
(
F
`3_3
)
)
-
(
(
(
(
F
`1_3
)
|^
3
)
+
(
(
a
*
(
F
`1_3
)
)
*
(
(
F
`3_3
)
|^
2
)
)
)
+
(
b
*
(
(
F
`3_3
)
|^
3
)
)
)
is
left_add-cancelable
right_add-cancelable
add-cancelable
right_complementable
Element
of the
carrier
of
(
INT.Ring
p
)
-
(
(
(
(
F
`1_3
)
|^
3
)
+
(
(
a
*
(
F
`1_3
)
)
*
(
(
F
`3_3
)
|^
2
)
)
)
+
(
b
*
(
(
F
`3_3
)
|^
3
)
)
)
is
left_add-cancelable
right_add-cancelable
add-cancelable
right_complementable
Element
of the
carrier
of
(
INT.Ring
p
)
(
(
(
F
`2_3
)
|^
2
)
*
(
F
`3_3
)
)
+
(
-
(
(
(
(
F
`1_3
)
|^
3
)
+
(
(
a
*
(
F
`1_3
)
)
*
(
(
F
`3_3
)
|^
2
)
)
)
+
(
b
*
(
(
F
`3_3
)
|^
3
)
)
)
)
is
left_add-cancelable
right_add-cancelable
add-cancelable
right_complementable
Element
of the
carrier
of
(
INT.Ring
p
)
the
addF
of
(
INT.Ring
p
)
.
(
(
(
(
F
`2_3
)
|^
2
)
*
(
F
`3_3
)
)
,
(
-
(
(
(
(
F
`1_3
)
|^
3
)
+
(
(
a
*
(
F
`1_3
)
)
*
(
(
F
`3_3
)
|^
2
)
)
)
+
(
b
*
(
(
F
`3_3
)
|^
3
)
)
)
)
) is
left_add-cancelable
right_add-cancelable
add-cancelable
right_complementable
Element
of the
carrier
of
(
INT.Ring
p
)
[
(
(
(
F
`2_3
)
|^
2
)
*
(
F
`3_3
)
)
,
(
-
(
(
(
(
F
`1_3
)
|^
3
)
+
(
(
a
*
(
F
`1_3
)
)
*
(
(
F
`3_3
)
|^
2
)
)
)
+
(
b
*
(
(
F
`3_3
)
|^
3
)
)
)
)
]
is
V26
()
set
{
(
(
(
F
`2_3
)
|^
2
)
*
(
F
`3_3
)
)
,
(
-
(
(
(
(
F
`1_3
)
|^
3
)
+
(
(
a
*
(
F
`1_3
)
)
*
(
(
F
`3_3
)
|^
2
)
)
)
+
(
b
*
(
(
F
`3_3
)
|^
3
)
)
)
)
}
is non
empty
finite
set
{
(
(
(
F
`2_3
)
|^
2
)
*
(
F
`3_3
)
)
}
is non
empty
trivial
finite
1
-element
set
{
{
(
(
(
F
`2_3
)
|^
2
)
*
(
F
`3_3
)
)
,
(
-
(
(
(
(
F
`1_3
)
|^
3
)
+
(
(
a
*
(
F
`1_3
)
)
*
(
(
F
`3_3
)
|^
2
)
)
)
+
(
b
*
(
(
F
`3_3
)
|^
3
)
)
)
)
}
,
{
(
(
(
F
`2_3
)
|^
2
)
*
(
F
`3_3
)
)
}
}
is non
empty
finite
V49
()
set
the
addF
of
(
INT.Ring
p
)
.
[
(
(
(
F
`2_3
)
|^
2
)
*
(
F
`3_3
)
)
,
(
-
(
(
(
(
F
`1_3
)
|^
3
)
+
(
(
a
*
(
F
`1_3
)
)
*
(
(
F
`3_3
)
|^
2
)
)
)
+
(
b
*
(
(
F
`3_3
)
|^
3
)
)
)
)
]
is
set
(
0.
(
INT.Ring
p
)
)
-
(
(
(
(
F
`1_3
)
|^
3
)
+
(
(
a
*
(
F
`1_3
)
)
*
(
(
F
`3_3
)
|^
2
)
)
)
+
(
b
*
(
(
F
`3_3
)
|^
3
)
)
)
is
left_add-cancelable
right_add-cancelable
add-cancelable
right_complementable
Element
of the
carrier
of
(
INT.Ring
p
)
(
0.
(
INT.Ring
p
)
)
+
(
-
(
(
(
(
F
`1_3
)
|^
3
)
+
(
(
a
*
(
F
`1_3
)
)
*
(
(
F
`3_3
)
|^
2
)
)
)
+
(
b
*
(
(
F
`3_3
)
|^
3
)
)
)
)
is
left_add-cancelable
right_add-cancelable
add-cancelable
right_complementable
Element
of the
carrier
of
(
INT.Ring
p
)
the
addF
of
(
INT.Ring
p
)
.
(
(
0.
(
INT.Ring
p
)
)
,
(
-
(
(
(
(
F
`1_3
)
|^
3
)
+
(
(
a
*
(
F
`1_3
)
)
*
(
(
F
`3_3
)
|^
2
)
)
)
+
(
b
*
(
(
F
`3_3
)
|^
3
)
)
)
)
) is
left_add-cancelable
right_add-cancelable
add-cancelable
right_complementable
Element
of the
carrier
of
(
INT.Ring
p
)
[
(
0.
(
INT.Ring
p
)
)
,
(
-
(
(
(
(
F
`1_3
)
|^
3
)
+
(
(
a
*
(
F
`1_3
)
)
*
(
(
F
`3_3
)
|^
2
)
)
)
+
(
b
*
(
(
F
`3_3
)
|^
3
)
)
)
)
]
is
V26
()
set
{
(
0.
(
INT.Ring
p
)
)
,
(
-
(
(
(
(
F
`1_3
)
|^
3
)
+
(
(
a
*
(
F
`1_3
)
)
*
(
(
F
`3_3
)
|^
2
)
)
)
+
(
b
*
(
(
F
`3_3
)
|^
3
)
)
)
)
}
is non
empty
finite
set
{
{
(
0.
(
INT.Ring
p
)
)
,
(
-
(
(
(
(
F
`1_3
)
|^
3
)
+
(
(
a
*
(
F
`1_3
)
)
*
(
(
F
`3_3
)
|^
2
)
)
)
+
(
b
*
(
(
F
`3_3
)
|^
3
)
)
)
)
}
,
{
(
0.
(
INT.Ring
p
)
)
}
}
is non
empty
finite
V49
()
set
the
addF
of
(
INT.Ring
p
)
.
[
(
0.
(
INT.Ring
p
)
)
,
(
-
(
(
(
(
F
`1_3
)
|^
3
)
+
(
(
a
*
(
F
`1_3
)
)
*
(
(
F
`3_3
)
|^
2
)
)
)
+
(
b
*
(
(
F
`3_3
)
|^
3
)
)
)
)
]
is
set
(
0.
(
INT.Ring
p
)
)
+
(
(
a
*
(
F
`1_3
)
)
*
(
(
F
`3_3
)
|^
2
)
)
is
left_add-cancelable
right_add-cancelable
add-cancelable
right_complementable
Element
of the
carrier
of
(
INT.Ring
p
)
the
addF
of
(
INT.Ring
p
)
.
(
(
0.
(
INT.Ring
p
)
)
,
(
(
a
*
(
F
`1_3
)
)
*
(
(
F
`3_3
)
|^
2
)
)
) is
left_add-cancelable
right_add-cancelable
add-cancelable
right_complementable
Element
of the
carrier
of
(
INT.Ring
p
)
[
(
0.
(
INT.Ring
p
)
)
,
(
(
a
*
(
F
`1_3
)
)
*
(
(
F
`3_3
)
|^
2
)
)
]
is
V26
()
set
{
(
0.
(
INT.Ring
p
)
)
,
(
(
a
*
(
F
`1_3
)
)
*
(
(
F
`3_3
)
|^
2
)
)
}
is non
empty
finite
set
{
{
(
0.
(
INT.Ring
p
)
)
,
(
(
a
*
(
F
`1_3
)
)
*
(
(
F
`3_3
)
|^
2
)
)
}
,
{
(
0.
(
INT.Ring
p
)
)
}
}
is non
empty
finite
V49
()
set
the
addF
of
(
INT.Ring
p
)
.
[
(
0.
(
INT.Ring
p
)
)
,
(
(
a
*
(
F
`1_3
)
)
*
(
(
F
`3_3
)
|^
2
)
)
]
is
set
(
(
0.
(
INT.Ring
p
)
)
+
(
(
a
*
(
F
`1_3
)
)
*
(
(
F
`3_3
)
|^
2
)
)
)
+
(
b
*
(
(
F
`3_3
)
|^
3
)
)
is
left_add-cancelable
right_add-cancelable
add-cancelable
right_complementable
Element
of the
carrier
of
(
INT.Ring
p
)
the
addF
of
(
INT.Ring
p
)
.
(
(
(
0.
(
INT.Ring
p
)
)
+
(
(
a
*
(
F
`1_3
)
)
*
(
(
F
`3_3
)
|^
2
)
)
)
,
(
b
*
(
(
F
`3_3
)
|^
3
)
)
) is
left_add-cancelable
right_add-cancelable
add-cancelable
right_complementable
Element
of the
carrier
of
(
INT.Ring
p
)
[
(
(
0.
(
INT.Ring
p
)
)
+
(
(
a
*
(
F
`1_3
)
)
*
(
(
F
`3_3
)
|^
2
)
)
)
,
(
b
*
(
(
F
`3_3
)
|^
3
)
)
]
is
V26
()
set
{
(
(
0.
(
INT.Ring
p
)
)
+
(
(
a
*
(
F
`1_3
)
)
*
(
(
F
`3_3
)
|^
2
)
)
)
,
(
b
*
(
(
F
`3_3
)
|^
3
)
)
}
is non
empty
finite
set
{
(
(
0.
(
INT.Ring
p
)
)
+
(
(
a
*
(
F
`1_3
)
)
*
(
(
F
`3_3
)
|^
2
)
)
)
}
is non
empty
trivial
finite
1
-element
set
{
{
(
(
0.
(
INT.Ring
p
)
)
+
(
(
a
*
(
F
`1_3
)
)
*
(
(
F
`3_3
)
|^
2
)
)
)
,
(
b
*
(
(
F
`3_3
)
|^
3
)
)
}
,
{
(
(
0.
(
INT.Ring
p
)
)
+
(
(
a
*
(
F
`1_3
)
)
*
(
(
F
`3_3
)
|^
2
)
)
)
}
}
is non
empty
finite
V49
()
set
the
addF
of
(
INT.Ring
p
)
.
[
(
(
0.
(
INT.Ring
p
)
)
+
(
(
a
*
(
F
`1_3
)
)
*
(
(
F
`3_3
)
|^
2
)
)
)
,
(
b
*
(
(
F
`3_3
)
|^
3
)
)
]
is
set
-
(
(
(
0.
(
INT.Ring
p
)
)
+
(
(
a
*
(
F
`1_3
)
)
*
(
(
F
`3_3
)
|^
2
)
)
)
+
(
b
*
(
(
F
`3_3
)
|^
3
)
)
)
is
left_add-cancelable
right_add-cancelable
add-cancelable
right_complementable
Element
of the
carrier
of
(
INT.Ring
p
)
(
(
a
*
(
F
`1_3
)
)
*
(
(
F
`3_3
)
|^
2
)
)
+
(
b
*
(
(
F
`3_3
)
|^
3
)
)
is
left_add-cancelable
right_add-cancelable
add-cancelable
right_complementable
Element
of the
carrier
of
(
INT.Ring
p
)
the
addF
of
(
INT.Ring
p
)
.
(
(
(
a
*
(
F
`1_3
)
)
*
(
(
F
`3_3
)
|^
2
)
)
,
(
b
*
(
(
F
`3_3
)
|^
3
)
)
) is
left_add-cancelable
right_add-cancelable
add-cancelable
right_complementable
Element
of the
carrier
of
(
INT.Ring
p
)
[
(
(
a
*
(
F
`1_3
)
)
*
(
(
F
`3_3
)
|^
2
)
)
,
(
b
*
(
(
F
`3_3
)
|^
3
)
)
]
is
V26
()
set
{
(
(
a
*
(
F
`1_3
)
)
*
(
(
F
`3_3
)
|^
2
)
)
,
(
b
*
(
(
F
`3_3
)
|^
3
)
)
}
is non
empty
finite
set
{
(
(
a
*
(
F
`1_3
)
)
*
(
(
F
`3_3
)
|^
2
)
)
}
is non
empty
trivial
finite
1
-element
set
{
{
(
(
a
*
(
F
`1_3
)
)
*
(
(
F
`3_3
)
|^
2
)
)
,
(
b
*
(
(
F
`3_3
)
|^
3
)
)
}
,
{
(
(
a
*
(
F
`1_3
)
)
*
(
(
F
`3_3
)
|^
2
)
)
}
}
is non
empty
finite
V49
()
set
the
addF
of
(
INT.Ring
p
)
.
[
(
(
a
*
(
F
`1_3
)
)
*
(
(
F
`3_3
)
|^
2
)
)
,
(
b
*
(
(
F
`3_3
)
|^
3
)
)
]
is
set
-
(
(
(
a
*
(
F
`1_3
)
)
*
(
(
F
`3_3
)
|^
2
)
)
+
(
b
*
(
(
F
`3_3
)
|^
3
)
)
)
is
left_add-cancelable
right_add-cancelable
add-cancelable
right_complementable
Element
of the
carrier
of
(
INT.Ring
p
)
(
0.
(
INT.Ring
p
)
)
+
(
b
*
(
(
F
`3_3
)
|^
3
)
)
is
left_add-cancelable
right_add-cancelable
add-cancelable
right_complementable
Element
of the
carrier
of
(
INT.Ring
p
)
the
addF
of
(
INT.Ring
p
)
.
(
(
0.
(
INT.Ring
p
)
)
,
(
b
*
(
(
F
`3_3
)
|^
3
)
)
) is
left_add-cancelable
right_add-cancelable
add-cancelable
right_complementable
Element
of the
carrier
of
(
INT.Ring
p
)
[
(
0.
(
INT.Ring
p
)
)
,
(
b
*
(
(
F
`3_3
)
|^
3
)
)
]
is
V26
()
set
{
(
0.
(
INT.Ring
p
)
)
,
(
b
*
(
(
F
`3_3
)
|^
3
)
)
}
is non
empty
finite
set
{
{
(
0.
(
INT.Ring
p
)
)
,
(
b
*
(
(
F
`3_3
)
|^
3
)
)
}
,
{
(
0.
(
INT.Ring
p
)
)
}
}
is non
empty
finite
V49
()
set
the
addF
of
(
INT.Ring
p
)
.
[
(
0.
(
INT.Ring
p
)
)
,
(
b
*
(
(
F
`3_3
)
|^
3
)
)
]
is
set
-
(
(
0.
(
INT.Ring
p
)
)
+
(
b
*
(
(
F
`3_3
)
|^
3
)
)
)
is
left_add-cancelable
right_add-cancelable
add-cancelable
right_complementable
Element
of the
carrier
of
(
INT.Ring
p
)
-
(
b
*
(
(
F
`3_3
)
|^
3
)
)
is
left_add-cancelable
right_add-cancelable
add-cancelable
right_complementable
Element
of the
carrier
of
(
INT.Ring
p
)
-
(
0.
(
INT.Ring
p
)
)
is
left_add-cancelable
right_add-cancelable
add-cancelable
right_complementable
Element
of the
carrier
of
(
INT.Ring
p
)
(
0.
(
INT.Ring
p
)
)
-
(
0.
(
INT.Ring
p
)
)
is
left_add-cancelable
right_add-cancelable
add-cancelable
right_complementable
Element
of the
carrier
of
(
INT.Ring
p
)
(
0.
(
INT.Ring
p
)
)
+
(
-
(
0.
(
INT.Ring
p
)
)
)
is
left_add-cancelable
right_add-cancelable
add-cancelable
right_complementable
Element
of the
carrier
of
(
INT.Ring
p
)
the
addF
of
(
INT.Ring
p
)
.
(
(
0.
(
INT.Ring
p
)
)
,
(
-
(
0.
(
INT.Ring
p
)
)
)
) is
left_add-cancelable
right_add-cancelable
add-cancelable
right_complementable
Element
of the
carrier
of
(
INT.Ring
p
)
[
(
0.
(
INT.Ring
p
)
)
,
(
-
(
0.
(
INT.Ring
p
)
)
)
]
is
V26
()
set
{
(
0.
(
INT.Ring
p
)
)
,
(
-
(
0.
(
INT.Ring
p
)
)
)
}
is non
empty
finite
set
{
{
(
0.
(
INT.Ring
p
)
)
,
(
-
(
0.
(
INT.Ring
p
)
)
)
}
,
{
(
0.
(
INT.Ring
p
)
)
}
}
is non
empty
finite
V49
()
set
the
addF
of
(
INT.Ring
p
)
.
[
(
0.
(
INT.Ring
p
)
)
,
(
-
(
0.
(
INT.Ring
p
)
)
)
]
is
set
p
is non
empty
V4
()
V5
()
V6
()
V10
()
V11
()
V12
()
integer
V14
()
ext-real
positive
non
negative
finite
cardinal
set
INT.Ring
p
is non
empty
non
degenerated
non
trivial
finite
left_add-cancelable
right_add-cancelable
add-cancelable
right_complementable
almost_left_invertible
strict
unital
associative
commutative
Euclidian
right-distributive
left-distributive
right_unital
well-unital
distributive
left_unital
Abelian
add-associative
right_zeroed
()
doubleLoopStr
Segm
p
is
V117
()
V118
()
V119
()
V120
()
V121
()
V122
()
Element
of
bool
NAT
addint
p
is
Relation-like
[:
(
Segm
p
)
,
(
Segm
p
)
:]
-defined
Segm
p
-valued
Function-like
quasi_total
V35
()
V36
()
V37
()
V38
()
Element
of
bool
[:
[:
(
Segm
p
)
,
(
Segm
p
)
:]
,
(
Segm
p
)
:]
[:
(
Segm
p
)
,
(
Segm
p
)
:]
is
RAT
-valued
INT
-valued
V35
()
V36
()
V37
()
V38
()
set
[:
[:
(
Segm
p
)
,
(
Segm
p
)
:]
,
(
Segm
p
)
:]
is
RAT
-valued
INT
-valued
V35
()
V36
()
V37
()
V38
()
set
bool
[:
[:
(
Segm
p
)
,
(
Segm
p
)
:]
,
(
Segm
p
)
:]
is non
empty
set
multint
p
is
Relation-like
[:
(
Segm
p
)
,
(
Segm
p
)
:]
-defined
Segm
p
-valued
Function-like
quasi_total
V35
()
V36
()
V37
()
V38
()
Element
of
bool
[:
[:
(
Segm
p
)
,
(
Segm
p
)
:]
,
(
Segm
p
)
:]
K633
(1,
(
Segm
p
)
) is
V4
()
V5
()
V6
()
V10
()
V11
()
V12
()
integer
ext-real
non
negative
finite
cardinal
V113
()
Element
of
Segm
p
K633
(
0
,
(
Segm
p
)
) is
V4
()
V5
()
V6
()
V10
()
V11
()
V12
()
integer
ext-real
non
negative
finite
cardinal
V113
()
Element
of
Segm
p
doubleLoopStr
(#
(
Segm
p
)
,
(
addint
p
)
,
(
multint
p
)
,
K633
(1,
(
Segm
p
)
),
K633
(
0
,
(
Segm
p
)
) #) is
strict
doubleLoopStr
the
carrier
of
(
INT.Ring
p
)
is non
empty
non
trivial
finite
set
[:
the
carrier
of
(
INT.Ring
p
)
, the
carrier
of
(
INT.Ring
p
)
, the
carrier
of
(
INT.Ring
p
)
:]
is non
empty
finite
set
(
(
INT.Ring
p
)
) is non
empty
finite
Element
of
bool
[:
the
carrier
of
(
INT.Ring
p
)
, the
carrier
of
(
INT.Ring
p
)
, the
carrier
of
(
INT.Ring
p
)
:]
bool
[:
the
carrier
of
(
INT.Ring
p
)
, the
carrier
of
(
INT.Ring
p
)
, the
carrier
of
(
INT.Ring
p
)
:]
is non
empty
finite
V49
()
set
0.
(
INT.Ring
p
)
is
V61
(
INT.Ring
p
)
left_add-cancelable
right_add-cancelable
add-cancelable
right_complementable
Element
of the
carrier
of
(
INT.Ring
p
)
the
ZeroF
of
(
INT.Ring
p
)
is
left_add-cancelable
right_add-cancelable
add-cancelable
right_complementable
Element
of the
carrier
of
(
INT.Ring
p
)
[
(
0.
(
INT.Ring
p
)
)
,
(
0.
(
INT.Ring
p
)
)
,
(
0.
(
INT.Ring
p
)
)
]
is
V26
()
V27
()
Element
of
[:
the
carrier
of
(
INT.Ring
p
)
, the
carrier
of
(
INT.Ring
p
)
, the
carrier
of
(
INT.Ring
p
)
:]
[
(
0.
(
INT.Ring
p
)
)
,
(
0.
(
INT.Ring
p
)
)
]
is
V26
()
set
{
(
0.
(
INT.Ring
p
)
)
,
(
0.
(
INT.Ring
p
)
)
}
is non
empty
finite
set
{
(
0.
(
INT.Ring
p
)
)
}
is non
empty
trivial
finite
1
-element
set
{
{
(
0.
(
INT.Ring
p
)
)
,
(
0.
(
INT.Ring
p
)
)
}
,
{
(
0.
(
INT.Ring
p
)
)
}
}
is non
empty
finite
V49
()
set
[
[
(
0.
(
INT.Ring
p
)
)
,
(
0.
(
INT.Ring
p
)
)
]
,
(
0.
(
INT.Ring
p
)
)
]
is
V26
()
set
{
[
(
0.
(
INT.Ring
p
)
)
,
(
0.
(
INT.Ring
p
)
)
]
,
(
0.
(
INT.Ring
p
)
)
}
is non
empty
finite
set
{
[
(
0.
(
INT.Ring
p
)
)
,
(
0.
(
INT.Ring
p
)
)
]
}
is non
empty
trivial
finite
1
-element
set
{
{
[
(
0.
(
INT.Ring
p
)
)
,
(
0.
(
INT.Ring
p
)
)
]
,
(
0.
(
INT.Ring
p
)
)
}
,
{
[
(
0.
(
INT.Ring
p
)
)
,
(
0.
(
INT.Ring
p
)
)
]
}
}
is non
empty
finite
V49
()
set
{
[
(
0.
(
INT.Ring
p
)
)
,
(
0.
(
INT.Ring
p
)
)
,
(
0.
(
INT.Ring
p
)
)
]
}
is non
empty
trivial
finite
1
-element
Element
of
bool
[:
the
carrier
of
(
INT.Ring
p
)
, the
carrier
of
(
INT.Ring
p
)
, the
carrier
of
(
INT.Ring
p
)
:]
[:
the
carrier
of
(
INT.Ring
p
)
, the
carrier
of
(
INT.Ring
p
)
, the
carrier
of
(
INT.Ring
p
)
:]
\
{
[
(
0.
(
INT.Ring
p
)
)
,
(
0.
(
INT.Ring
p
)
)
,
(
0.
(
INT.Ring
p
)
)
]
}
is
finite
Element
of
bool
[:
the
carrier
of
(
INT.Ring
p
)
, the
carrier
of
(
INT.Ring
p
)
, the
carrier
of
(
INT.Ring
p
)
:]
a
is
left_add-cancelable
right_add-cancelable
add-cancelable
right_complementable
Element
of the
carrier
of
(
INT.Ring
p
)
b
is
left_add-cancelable
right_add-cancelable
add-cancelable
right_complementable
Element
of the
carrier
of
(
INT.Ring
p
)
(
p
,
a
,
b
) is
Relation-like
[:
the
carrier
of
(
INT.Ring
p
)
, the
carrier
of
(
INT.Ring
p
)
, the
carrier
of
(
INT.Ring
p
)
:]
-defined
the
carrier
of
(
INT.Ring
p
)
-valued
Function-like
quasi_total
finite
Element
of
bool
[:
[:
the
carrier
of
(
INT.Ring
p
)
, the
carrier
of
(
INT.Ring
p
)
, the
carrier
of
(
INT.Ring
p
)
:]
, the
carrier
of
(
INT.Ring
p
)
:]
[:
[:
the
carrier
of
(
INT.Ring
p
)
, the
carrier
of
(
INT.Ring
p
)
, the
carrier
of
(
INT.Ring
p
)
:]
, the
carrier
of
(
INT.Ring
p
)
:]
is non
empty
finite
set
bool
[:
[:
the
carrier
of
(
INT.Ring
p
)
, the
carrier
of
(
INT.Ring
p
)
, the
carrier
of
(
INT.Ring
p
)
:]
, the
carrier
of
(
INT.Ring
p
)
:]
is non
empty
finite
V49
()
set
{
b
1
where
b
1
is
Element
of (
(
INT.Ring
p
)
) : (
p
,
a
,
b
)
.
b
1
=
0.
(
INT.Ring
p
)
}
is
set
bool
(
(
INT.Ring
p
)
) is non
empty
finite
V49
()
set
L
is
set
F
is
Element
of (
(
INT.Ring
p
)
)
(
p
,
a
,
b
)
.
F
is
left_add-cancelable
right_add-cancelable
add-cancelable
right_complementable
Element
of the
carrier
of
(
INT.Ring
p
)
L
is
Element
of (
(
INT.Ring
p
)
)
(
p
,
a
,
b
)
.
L
is
left_add-cancelable
right_add-cancelable
add-cancelable
right_complementable
Element
of the
carrier
of
(
INT.Ring
p
)
p
is non
empty
V4
()
V5
()
V6
()
V10
()
V11
()
V12
()
integer
V14
()
ext-real
positive
non
negative
finite
cardinal
set
INT.Ring
p
is non
empty
non
degenerated
non
trivial
finite
left_add-cancelable
right_add-cancelable
add-cancelable
right_complementable
almost_left_invertible
strict
unital
associative
commutative
Euclidian
right-distributive
left-distributive
right_unital
well-unital
distributive
left_unital
Abelian
add-associative
right_zeroed
()
doubleLoopStr
Segm
p
is
V117
()
V118
()
V119
()
V120
()
V121
()
V122
()
Element
of
bool
NAT
addint
p
is
Relation-like
[:
(
Segm
p
)
,
(
Segm
p
)
:]
-defined
Segm
p
-valued
Function-like
quasi_total
V35
()
V36
()
V37
()
V38
()
Element
of
bool
[:
[:
(
Segm
p
)
,
(
Segm
p
)
:]
,
(
Segm
p
)
:]
[:
(
Segm
p
)
,
(
Segm
p
)
:]
is
RAT
-valued
INT
-valued
V35
()
V36
()
V37
()
V38
()
set
[:
[:
(
Segm
p
)
,
(
Segm
p
)
:]
,
(
Segm
p
)
:]
is
RAT
-valued
INT
-valued
V35
()
V36
()
V37
()
V38
()
set
bool
[:
[:
(
Segm
p
)
,
(
Segm
p
)
:]
,
(
Segm
p
)
:]
is non
empty
set
multint
p
is
Relation-like
[:
(
Segm
p
)
,
(
Segm
p
)
:]
-defined
Segm
p
-valued
Function-like
quasi_total
V35
()
V36
()
V37
()
V38
()
Element
of
bool
[:
[:
(
Segm
p
)
,
(
Segm
p
)
:]
,
(
Segm
p
)
:]
K633
(1,
(
Segm
p
)
) is
V4
()
V5
()
V6
()
V10
()
V11
()
V12
()
integer
ext-real
non
negative
finite
cardinal
V113
()
Element
of
Segm
p
K633
(
0
,
(
Segm
p
)
) is
V4
()
V5
()
V6
()
V10
()
V11
()
V12
()
integer
ext-real
non
negative
finite
cardinal
V113
()
Element
of
Segm
p
doubleLoopStr
(#
(
Segm
p
)
,
(
addint
p
)
,
(
multint
p
)
,
K633
(1,
(
Segm
p
)
),
K633
(
0
,
(
Segm
p
)
) #) is
strict
doubleLoopStr
the
carrier
of
(
INT.Ring
p
)
is non
empty
non
trivial
finite
set
[:
the
carrier
of
(
INT.Ring
p
)
, the
carrier
of
(
INT.Ring
p
)
, the
carrier
of
(
INT.Ring
p
)
:]
is non
empty
finite
set
(
(
INT.Ring
p
)
) is non
empty
finite
Element
of
bool
[:
the
carrier
of
(
INT.Ring
p
)
, the
carrier
of
(
INT.Ring
p
)
, the
carrier
of
(
INT.Ring
p
)
:]
bool
[:
the
carrier
of
(
INT.Ring
p
)
, the
carrier
of
(
INT.Ring
p
)
, the
carrier
of
(
INT.Ring
p
)
:]
is non
empty
finite
V49
()
set
0.
(
INT.Ring
p
)
is
V61
(
INT.Ring
p
)
left_add-cancelable
right_add-cancelable
add-cancelable
right_complementable
Element
of the
carrier
of
(
INT.Ring
p
)
the
ZeroF
of
(
INT.Ring
p
)
is
left_add-cancelable
right_add-cancelable
add-cancelable
right_complementable
Element
of the
carrier
of
(
INT.Ring
p
)
[
(
0.
(
INT.Ring
p
)
)
,
(
0.
(
INT.Ring
p
)
)
,
(
0.
(
INT.Ring
p
)
)
]
is
V26
()
V27
()
Element
of
[:
the
carrier
of
(
INT.Ring
p
)
, the
carrier
of
(
INT.Ring
p
)
, the
carrier
of
(
INT.Ring
p
)
:]
[
(
0.
(
INT.Ring
p
)
)
,
(
0.
(
INT.Ring
p
)
)
]
is
V26
()
set
{
(
0.
(
INT.Ring
p
)
)
,
(
0.
(
INT.Ring
p
)
)
}
is non
empty
finite
set
{
(
0.
(
INT.Ring
p
)
)
}
is non
empty
trivial
finite
1
-element
set
{
{
(
0.
(
INT.Ring
p
)
)
,
(
0.
(
INT.Ring
p
)
)
}
,
{
(
0.
(
INT.Ring
p
)
)
}
}
is non
empty
finite
V49
()
set
[
[
(
0.
(
INT.Ring
p
)
)
,
(
0.
(
INT.Ring
p
)
)
]
,
(
0.
(
INT.Ring
p
)
)
]
is
V26
()
set
{
[
(
0.
(
INT.Ring
p
)
)
,
(
0.
(
INT.Ring
p
)
)
]
,
(
0.
(
INT.Ring
p
)
)
}
is non
empty
finite
set
{
[
(
0.
(
INT.Ring
p
)
)
,
(
0.
(
INT.Ring
p
)
)
]
}
is non
empty
trivial
finite
1
-element
set
{
{
[
(
0.
(
INT.Ring
p
)
)
,
(
0.
(
INT.Ring
p
)
)
]
,
(
0.
(
INT.Ring
p
)
)
}
,
{
[
(
0.
(
INT.Ring
p
)
)
,
(
0.
(
INT.Ring
p
)
)
]
}
}
is non
empty
finite
V49
()
set
{
[
(
0.
(
INT.Ring
p
)
)
,
(
0.
(
INT.Ring
p
)
)
,
(
0.
(
INT.Ring
p
)
)
]
}
is non
empty
trivial
finite
1
-element
Element
of
bool
[:
the
carrier
of
(
INT.Ring
p
)
, the
carrier
of
(
INT.Ring
p
)
, the
carrier
of
(
INT.Ring
p
)
:]
[:
the
carrier
of
(
INT.Ring
p
)
, the
carrier
of
(
INT.Ring
p
)
, the
carrier
of
(
INT.Ring
p
)
:]
\
{
[
(
0.
(
INT.Ring
p
)
)
,
(
0.
(
INT.Ring
p
)
)
,
(
0.
(
INT.Ring
p
)
)
]
}
is
finite
Element
of
bool
[:
the
carrier
of
(
INT.Ring
p
)
, the
carrier
of
(
INT.Ring
p
)
, the
carrier
of
(
INT.Ring
p
)
:]
a
is
left_add-cancelable
right_add-cancelable
add-cancelable
right_complementable
Element
of the
carrier
of
(
INT.Ring
p
)
b
is
left_add-cancelable
right_add-cancelable
add-cancelable
right_complementable
Element
of the
carrier
of
(
INT.Ring
p
)
[
a
,
b
,1
]
is
V26
()
V27
()
Element
of
[:
the
carrier
of
(
INT.Ring
p
)
, the
carrier
of
(
INT.Ring
p
)
,
NAT
:]
[:
the
carrier
of
(
INT.Ring
p
)
, the
carrier
of
(
INT.Ring
p
)
,
NAT
:]
is non
empty
set
[
a
,
b
]
is
V26
()
set
{
a
,
b
}
is non
empty
finite
set
{
a
}
is non
empty
trivial
finite
1
-element
set
{
{
a
,
b
}
,
{
a
}
}
is non
empty
finite
V49
()
set
[
[
a
,
b
]
,1
]
is
V26
()
set
{
[
a
,
b
]
,1
}
is non
empty
finite
set
{
[
a
,
b
]
}
is non
empty
trivial
finite
1
-element
set
{
{
[
a
,
b
]
,1
}
,
{
[
a
,
b
]
}
}
is non
empty
finite
V49
()
set
1.
(
INT.Ring
p
)
is
V61
(
INT.Ring
p
)
V61
(
INT.Ring
p
)
left_add-cancelable
left_add-cancelable
right_add-cancelable
right_add-cancelable
add-cancelable
add-cancelable
right_complementable
right_complementable
(
p
)
Element
of the
carrier
of
(
INT.Ring
p
)
the
OneF
of
(
INT.Ring
p
)
is
left_add-cancelable
right_add-cancelable
add-cancelable
right_complementable
Element
of the
carrier
of
(
INT.Ring
p
)
[:
the
carrier
of
(
INT.Ring
p
)
, the
carrier
of
(
INT.Ring
p
)
, the
carrier
of
(
INT.Ring
p
)
:]
\
{
[
0
,
0
,
0
]
}
is
finite
Element
of
bool
[:
the
carrier
of
(
INT.Ring
p
)
, the
carrier
of
(
INT.Ring
p
)
, the
carrier
of
(
INT.Ring
p
)
:]
p
is non
empty
V4
()
V5
()
V6
()
V10
()
V11
()
V12
()
integer
V14
()
ext-real
positive
non
negative
finite
cardinal
set
INT.Ring
p
is non
empty
non
degenerated
non
trivial
finite
left_add-cancelable
right_add-cancelable
add-cancelable
right_complementable
almost_left_invertible
strict
unital
associative
commutative
Euclidian
right-distributive
left-distributive
right_unital
well-unital
distributive
left_unital
Abelian
add-associative
right_zeroed
()
doubleLoopStr
Segm
p
is
V117
()
V118
()
V119
()
V120
()
V121
()
V122
()
Element
of
bool
NAT
addint
p
is
Relation-like
[:
(
Segm
p
)
,
(
Segm
p
)
:]
-defined
Segm
p
-valued
Function-like
quasi_total
V35
()
V36
()
V37
()
V38
()
Element
of
bool
[:
[:
(
Segm
p
)
,
(
Segm
p
)
:]
,
(
Segm
p
)
:]
[:
(
Segm
p
)
,
(
Segm
p
)
:]
is
RAT
-valued
INT
-valued
V35
()
V36
()
V37
()
V38
()
set
[:
[:
(
Segm
p
)
,
(
Segm
p
)
:]
,
(
Segm
p
)
:]
is
RAT
-valued
INT
-valued
V35
()
V36
()
V37
()
V38
()
set
bool
[:
[:
(
Segm
p
)
,
(
Segm
p
)
:]
,
(
Segm
p
)
:]
is non
empty
set
multint
p
is
Relation-like
[:
(
Segm
p
)
,
(
Segm
p
)
:]
-defined
Segm
p
-valued
Function-like
quasi_total
V35
()
V36
()
V37
()
V38
()
Element
of
bool
[:
[:
(
Segm
p
)
,
(
Segm
p
)
:]
,
(
Segm
p
)
:]
K633
(1,
(
Segm
p
)
) is
V4
()
V5
()
V6
()
V10
()
V11
()
V12
()
integer
ext-real
non
negative
finite
cardinal
V113
()
Element
of
Segm
p
K633
(
0
,
(
Segm
p
)
) is
V4
()
V5
()
V6
()
V10
()
V11
()
V12
()
integer
ext-real
non
negative
finite
cardinal
V113
()
Element
of
Segm
p
doubleLoopStr
(#
(
Segm
p
)
,
(
addint
p
)
,
(
multint
p
)
,
K633
(1,
(
Segm
p
)
),
K633
(
0
,
(
Segm
p
)
) #) is
strict
doubleLoopStr
the
carrier
of
(
INT.Ring
p
)
is non
empty
non
trivial
finite
set
(
(
INT.Ring
p
)
) is non
empty
finite
Element
of
bool
[:
the
carrier
of
(
INT.Ring
p
)
, the
carrier
of
(
INT.Ring
p
)
, the
carrier
of
(
INT.Ring
p
)
:]
[:
the
carrier
of
(
INT.Ring
p
)
, the
carrier
of
(
INT.Ring
p
)
, the
carrier
of
(
INT.Ring
p
)
:]
is non
empty
finite
set
bool
[:
the
carrier
of
(
INT.Ring
p
)
, the
carrier
of
(
INT.Ring
p
)
, the
carrier
of
(
INT.Ring
p
)
:]
is non
empty
finite
V49
()
set
0.
(
INT.Ring
p
)
is
V61
(
INT.Ring
p
)
left_add-cancelable
right_add-cancelable
add-cancelable
right_complementable
Element
of the
carrier
of
(
INT.Ring
p
)
the
ZeroF
of
(
INT.Ring
p
)
is
left_add-cancelable
right_add-cancelable
add-cancelable
right_complementable
Element
of the
carrier
of
(
INT.Ring
p
)
[
(
0.
(
INT.Ring
p
)
)
,
(
0.
(
INT.Ring
p
)
)
,
(
0.
(
INT.Ring
p
)
)
]
is
V26
()
V27
()
Element
of
[:
the
carrier
of
(
INT.Ring
p
)
, the
carrier
of
(
INT.Ring
p
)
, the
carrier
of
(
INT.Ring
p
)
:]
[
(
0.
(
INT.Ring
p
)
)
,
(
0.
(
INT.Ring
p
)
)
]
is
V26
()
set
{
(
0.
(
INT.Ring
p
)
)
,
(
0.
(
INT.Ring
p
)
)
}
is non
empty
finite
set
{
(
0.
(
INT.Ring
p
)
)
}
is non
empty
trivial
finite
1
-element
set
{
{
(
0.
(
INT.Ring
p
)
)
,
(
0.
(
INT.Ring
p
)
)
}
,
{
(
0.
(
INT.Ring
p
)
)
}
}
is non
empty
finite
V49
()
set
[
[
(
0.
(
INT.Ring
p
)
)
,
(
0.
(
INT.Ring
p
)
)
]
,
(
0.
(
INT.Ring
p
)
)
]
is
V26
()
set
{
[
(
0.
(
INT.Ring
p
)
)
,
(
0.
(
INT.Ring
p
)
)
]
,
(
0.
(
INT.Ring
p
)
)
}
is non
empty
finite
set
{
[
(
0.
(
INT.Ring
p
)
)
,
(
0.
(
INT.Ring
p
)
)
]
}
is non
empty
trivial
finite
1
-element
set
{
{
[
(
0.
(
INT.Ring
p
)
)
,
(
0.
(
INT.Ring
p
)
)
]
,
(
0.
(
INT.Ring
p
)
)
}
,
{
[
(
0.
(
INT.Ring
p
)
)
,
(
0.
(
INT.Ring
p
)
)
]
}
}
is non
empty
finite
V49
()
set
{
[
(
0.
(
INT.Ring
p
)
)
,
(
0.
(
INT.Ring
p
)
)
,
(
0.
(
INT.Ring
p
)
)
]
}
is non
empty
trivial
finite
1
-element
Element
of
bool
[:
the
carrier
of
(
INT.Ring
p
)
, the
carrier
of
(
INT.Ring
p
)
, the
carrier
of
(
INT.Ring
p
)
:]
[:
the
carrier
of
(
INT.Ring
p
)
, the
carrier
of
(
INT.Ring
p
)
, the
carrier
of
(
INT.Ring
p
)
:]
\
{
[
(
0.
(
INT.Ring
p
)
)
,
(
0.
(
INT.Ring
p
)
)
,
(
0.
(
INT.Ring
p
)
)
]
}
is
finite
Element
of
bool
[:
the
carrier
of
(
INT.Ring
p
)
, the
carrier
of
(
INT.Ring
p
)
, the
carrier
of
(
INT.Ring
p
)
:]
a
is
left_add-cancelable
right_add-cancelable
add-cancelable
right_complementable
Element
of the
carrier
of
(
INT.Ring
p
)
b
is
left_add-cancelable
right_add-cancelable
add-cancelable
right_complementable
Element
of the
carrier
of
(
INT.Ring
p
)
(
p
,
a
,
b
) is non
empty
finite
Element
of
bool
(
(
INT.Ring
p
)
)
bool
(
(
INT.Ring
p
)
) is non
empty
finite
V49
()
set
(
p
,
a
,
b
) is
Relation-like
[:
the
carrier
of
(
INT.Ring
p
)
, the
carrier
of
(
INT.Ring
p
)
, the
carrier
of
(
INT.Ring
p
)
:]
-defined
the
carrier
of
(
INT.Ring
p
)
-valued
Function-like
quasi_total
finite
Element
of
bool
[:
[:
the
carrier
of
(
INT.Ring
p
)
, the
carrier
of
(
INT.Ring
p
)
, the
carrier
of
(
INT.Ring
p
)
:]
, the
carrier
of
(
INT.Ring
p
)
:]
[:
[:
the
carrier
of
(
INT.Ring
p
)
, the
carrier
of
(
INT.Ring
p
)
, the
carrier
of
(
INT.Ring
p
)
:]
, the
carrier
of
(
INT.Ring
p
)
:]
is non
empty
finite
set
bool
[:
[:
the
carrier
of
(
INT.Ring
p
)
, the
carrier
of
(
INT.Ring
p
)
, the
carrier
of
(
INT.Ring
p
)
:]
, the
carrier
of
(
INT.Ring
p
)
:]
is non
empty
finite
V49
()
set
{
b
1
where
b
1
is
Element
of (
(
INT.Ring
p
)
) : (
p
,
a
,
b
)
.
b
1
=
0.
(
INT.Ring
p
)
}
is
set
(
p
,
a
,
b
)
.
[
0
,1,
0
]
is
set
p
is non
empty
V4
()
V5
()
V6
()
V10
()
V11
()
V12
()
integer
V14
()
ext-real
positive
non
negative
finite
cardinal
set
INT.Ring
p
is non
empty
non
degenerated
non
trivial
finite
left_add-cancelable
right_add-cancelable
add-cancelable
right_complementable
almost_left_invertible
strict
unital
associative
commutative
Euclidian
right-distributive
left-distributive
right_unital
well-unital
distributive
left_unital
Abelian
add-associative
right_zeroed
()
doubleLoopStr
Segm
p
is
V117
()
V118
()
V119
()
V120
()
V121
()
V122
()
Element
of
bool
NAT
addint
p
is
Relation-like
[:
(
Segm
p
)
,
(
Segm
p
)
:]
-defined
Segm
p
-valued
Function-like
quasi_total
V35
()
V36
()
V37
()
V38
()
Element
of
bool
[:
[:
(
Segm
p
)
,
(
Segm
p
)
:]
,
(
Segm
p
)
:]
[:
(
Segm
p
)
,
(
Segm
p
)
:]
is
RAT
-valued
INT
-valued
V35
()
V36
()
V37
()
V38
()
set
[:
[:
(
Segm
p
)
,
(
Segm
p
)
:]
,
(
Segm
p
)
:]
is
RAT
-valued
INT
-valued
V35
()
V36
()
V37
()
V38
()
set
bool
[:
[:
(
Segm
p
)
,
(
Segm
p
)
:]
,
(
Segm
p
)
:]
is non
empty
set
multint
p
is
Relation-like
[:
(
Segm
p
)
,
(
Segm
p
)
:]
-defined
Segm
p
-valued
Function-like
quasi_total
V35
()
V36
()
V37
()
V38
()
Element
of
bool
[:
[:
(
Segm
p
)
,
(
Segm
p
)
:]
,
(
Segm
p
)
:]
K633
(1,
(
Segm
p
)
) is
V4
()
V5
()
V6
()
V10
()
V11
()
V12
()
integer
ext-real
non
negative
finite
cardinal
V113
()
Element
of
Segm
p
K633
(
0
,
(
Segm
p
)
) is
V4
()
V5
()
V6
()
V10
()
V11
()
V12
()
integer
ext-real
non
negative
finite
cardinal
V113
()
Element
of
Segm
p
doubleLoopStr
(#
(
Segm
p
)
,
(
addint
p
)
,
(
multint
p
)
,
K633
(1,
(
Segm
p
)
),
K633
(
0
,
(
Segm
p
)
) #) is
strict
doubleLoopStr
the
carrier
of
(
INT.Ring
p
)
is non
empty
non
trivial
finite
set
(
(
INT.Ring
p
)
) is non
empty
finite
Element
of
bool
[:
the
carrier
of
(
INT.Ring
p
)
, the
carrier
of
(
INT.Ring
p
)
, the
carrier
of
(
INT.Ring
p
)
:]
[:
the
carrier
of
(
INT.Ring
p
)
, the
carrier
of
(
INT.Ring
p
)
, the
carrier
of
(
INT.Ring
p
)
:]
is non
empty
finite
set
bool
[:
the
carrier
of
(
INT.Ring
p
)
, the
carrier
of
(
INT.Ring
p
)
, the
carrier
of
(
INT.Ring
p
)
:]
is non
empty
finite
V49
()
set
0.
(
INT.Ring
p
)
is
V61
(
INT.Ring
p
)
left_add-cancelable
right_add-cancelable
add-cancelable
right_complementable
Element
of the
carrier
of
(
INT.Ring
p
)
the
ZeroF
of
(
INT.Ring
p
)
is
left_add-cancelable
right_add-cancelable
add-cancelable
right_complementable
Element
of the
carrier
of
(
INT.Ring
p
)
[
(
0.
(
INT.Ring
p
)
)
,
(
0.
(
INT.Ring
p
)
)
,
(
0.
(
INT.Ring
p
)
)
]
is
V26
()
V27
()
Element
of
[:
the
carrier
of
(
INT.Ring
p
)
, the
carrier
of
(
INT.Ring
p
)
, the
carrier
of
(
INT.Ring
p
)
:]
[
(
0.
(
INT.Ring
p
)
)
,
(
0.
(
INT.Ring
p
)
)
]
is
V26
()
set
{
(
0.
(
INT.Ring
p
)
)
,
(
0.
(
INT.Ring
p
)
)
}
is non
empty
finite
set
{
(
0.
(
INT.Ring
p
)
)
}
is non
empty
trivial
finite
1
-element
set
{
{
(
0.
(
INT.Ring
p
)
)
,
(
0.
(
INT.Ring
p
)
)
}
,
{
(
0.
(
INT.Ring
p
)
)
}
}
is non
empty
finite
V49
()
set
[
[
(
0.
(
INT.Ring
p
)
)
,
(
0.
(
INT.Ring
p
)
)
]
,
(
0.
(
INT.Ring
p
)
)
]
is
V26
()
set
{
[
(
0.
(
INT.Ring
p
)
)
,
(
0.
(
INT.Ring
p
)
)
]
,
(
0.
(
INT.Ring
p
)
)
}
is non
empty
finite
set
{
[
(
0.
(
INT.Ring
p
)
)
,
(
0.
(
INT.Ring
p
)
)
]
}
is non
empty
trivial
finite
1
-element
set
{
{
[
(
0.
(
INT.Ring
p
)
)
,
(
0.
(
INT.Ring
p
)
)
]
,
(
0.
(
INT.Ring
p
)
)
}
,
{
[
(
0.
(
INT.Ring
p
)
)
,
(
0.
(
INT.Ring
p
)
)
]
}
}
is non
empty
finite
V49
()
set
{
[
(
0.
(
INT.Ring
p
)
)
,
(
0.
(
INT.Ring
p
)
)
,
(
0.
(
INT.Ring
p
)
)
]
}
is non
empty
trivial
finite
1
-element
Element
of
bool
[:
the
carrier
of
(
INT.Ring
p
)
, the
carrier
of
(
INT.Ring
p
)
, the
carrier
of
(
INT.Ring
p
)
:]
[:
the
carrier
of
(
INT.Ring
p
)
, the
carrier
of
(
INT.Ring
p
)
, the
carrier
of
(
INT.Ring
p
)
:]
\
{
[
(
0.
(
INT.Ring
p
)
)
,
(
0.
(
INT.Ring
p
)
)
,
(
0.
(
INT.Ring
p
)
)
]
}
is
finite
Element
of
bool
[:
the
carrier
of
(
INT.Ring
p
)
, the
carrier
of
(
INT.Ring
p
)
, the
carrier
of
(
INT.Ring
p
)
:]
F
is
left_add-cancelable
right_add-cancelable
add-cancelable
right_complementable
Element
of the
carrier
of
(
INT.Ring
p
)
F
|^
2 is
left_add-cancelable
right_add-cancelable
add-cancelable
right_complementable
Element
of the
carrier
of
(
INT.Ring
p
)
power
(
INT.Ring
p
)
is
Relation-like
[:
the
carrier
of
(
INT.Ring
p
)
,
NAT
:]
-defined
the
carrier
of
(
INT.Ring
p
)
-valued
Function-like
quasi_total
Element
of
bool
[:
[:
the
carrier
of
(
INT.Ring
p
)
,
NAT
:]
, the
carrier
of
(
INT.Ring
p
)
:]
[:
the
carrier
of
(
INT.Ring
p
)
,
NAT
:]
is non
empty
non
trivial
RAT
-valued
INT
-valued
V35
()
V36
()
V37
()
V38
() non
finite
set
[:
[:
the
carrier
of
(
INT.Ring
p
)
,
NAT
:]
, the
carrier
of
(
INT.Ring
p
)
:]
is non
empty
non
trivial
non
finite
set
bool
[:
[:
the
carrier
of
(
INT.Ring
p
)
,
NAT
:]
, the
carrier
of
(
INT.Ring
p
)
:]
is non
empty
non
trivial
non
finite
set
(
power
(
INT.Ring
p
)
)
.
(
F
,2) is
set
[
F
,2
]
is
V26
()
set
{
F
,2
}
is non
empty
finite
set
{
F
}
is non
empty
trivial
finite
1
-element
set
{
{
F
,2
}
,
{
F
}
}
is non
empty
finite
V49
()
set
(
power
(
INT.Ring
p
)
)
.
[
F
,2
]
is
set
L
is
left_add-cancelable
right_add-cancelable
add-cancelable
right_complementable
Element
of the
carrier
of
(
INT.Ring
p
)
L
|^
3 is
left_add-cancelable
right_add-cancelable
add-cancelable
right_complementable
Element
of the
carrier
of
(
INT.Ring
p
)
(
power
(
INT.Ring
p
)
)
.
(
L
,3) is
set
[
L
,3
]
is
V26
()
set
{
L
,3
}
is non
empty
finite
set
{
L
}
is non
empty
trivial
finite
1
-element
set
{
{
L
,3
}
,
{
L
}
}
is non
empty
finite
V49
()
set
(
power
(
INT.Ring
p
)
)
.
[
L
,3
]
is
set
a
is
left_add-cancelable
right_add-cancelable
add-cancelable
right_complementable
Element
of the
carrier
of
(
INT.Ring
p
)
a
*
L
is
left_add-cancelable
right_add-cancelable
add-cancelable
right_complementable
Element
of the
carrier
of
(
INT.Ring
p
)
the
multF
of
(
INT.Ring
p
)
is
Relation-like
[:
the
carrier
of
(
INT.Ring
p
)
, the
carrier
of
(
INT.Ring
p
)
:]
-defined
the
carrier
of
(
INT.Ring
p
)
-valued
Function-like
quasi_total
finite
Element
of
bool
[:
[:
the
carrier
of
(
INT.Ring
p
)
, the
carrier
of
(
INT.Ring
p
)
:]
, the
carrier
of
(
INT.Ring
p
)
:]
[:
the
carrier
of
(
INT.Ring
p
)
, the
carrier
of
(
INT.Ring
p
)
:]
is non
empty
finite
set
[:
[:
the
carrier
of
(
INT.Ring
p
)
, the
carrier
of
(
INT.Ring
p
)
:]
, the
carrier
of
(
INT.Ring
p
)
:]
is non
empty
finite
set
bool
[:
[:
the
carrier
of
(
INT.Ring
p
)
, the
carrier
of
(
INT.Ring
p
)
:]
, the
carrier
of
(
INT.Ring
p
)
:]
is non
empty
finite
V49
()
set
the
multF
of
(
INT.Ring
p
)
.
(
a
,
L
) is
left_add-cancelable
right_add-cancelable
add-cancelable
right_complementable
Element
of the
carrier
of
(
INT.Ring
p
)
[
a
,
L
]
is
V26
()
set
{
a
,
L
}
is non
empty
finite
set
{
a
}
is non
empty
trivial
finite
1
-element
set
{
{
a
,
L
}
,
{
a
}
}
is non
empty
finite
V49
()
set
the
multF
of
(
INT.Ring
p
)
.
[
a
,
L
]
is
set
(
L
|^
3
)
+
(
a
*
L
)
is
left_add-cancelable
right_add-cancelable
add-cancelable
right_complementable
Element
of the
carrier
of
(
INT.Ring
p
)
the
addF
of
(
INT.Ring
p
)
is
Relation-like
[:
the
carrier
of
(
INT.Ring
p
)
, the
carrier
of
(
INT.Ring
p
)
:]
-defined
the
carrier
of
(
INT.Ring
p
)
-valued
Function-like
quasi_total
finite
Element
of
bool
[:
[:
the
carrier
of
(
INT.Ring
p
)
, the
carrier
of
(
INT.Ring
p
)
:]
, the
carrier
of
(
INT.Ring
p
)
:]
the
addF
of
(
INT.Ring
p
)
.
(
(
L
|^
3
)
,
(
a
*
L
)
) is
left_add-cancelable
right_add-cancelable
add-cancelable
right_complementable
Element
of the
carrier
of
(
INT.Ring
p
)
[
(
L
|^
3
)
,
(
a
*
L
)
]
is
V26
()
set
{
(
L
|^
3
)
,
(
a
*
L
)
}
is non
empty
finite
set
{
(
L
|^
3
)
}
is non
empty
trivial
finite
1
-element
set
{
{
(
L
|^
3
)
,
(
a
*
L
)
}
,
{
(
L
|^
3
)
}
}
is non
empty
finite
V49
()
set
the
addF
of
(
INT.Ring
p
)
.
[
(
L
|^
3
)
,
(
a
*
L
)
]
is
set
b
is
left_add-cancelable
right_add-cancelable
add-cancelable
right_complementable
Element
of the
carrier
of
(
INT.Ring
p
)
(
(
L
|^
3
)
+
(
a
*
L
)
)
+
b
is
left_add-cancelable
right_add-cancelable
add-cancelable
right_complementable
Element
of the
carrier
of
(
INT.Ring
p
)
the
addF
of
(
INT.Ring
p
)
.
(
(
(
L
|^
3
)
+
(
a
*
L
)
)
,
b
) is
left_add-cancelable
right_add-cancelable
add-cancelable
right_complementable
Element
of the
carrier
of
(
INT.Ring
p
)
[
(
(
L
|^
3
)
+
(
a
*
L
)
)
,
b
]
is
V26
()
set
{
(
(
L
|^
3
)
+
(
a
*
L
)
)
,
b
}
is non
empty
finite
set
{
(
(
L
|^
3
)
+
(
a
*
L
)
)
}
is non
empty
trivial
finite
1
-element
set
{
{
(
(
L
|^
3
)
+
(
a
*
L
)
)
,
b
}
,
{
(
(
L
|^
3
)
+
(
a
*
L
)
)
}
}
is non
empty
finite
V49
()
set
the
addF
of
(
INT.Ring
p
)
.
[
(
(
L
|^
3
)
+
(
a
*
L
)
)
,
b
]
is
set
[
L
,
F
,1
]
is
V26
()
V27
()
Element
of
[:
the
carrier
of
(
INT.Ring
p
)
, the
carrier
of
(
INT.Ring
p
)
,
NAT
:]
[:
the
carrier
of
(
INT.Ring
p
)
, the
carrier
of
(
INT.Ring
p
)
,
NAT
:]
is non
empty
set
[
L
,
F
]
is
V26
()
set
{
L
,
F
}
is non
empty
finite
set
{
{
L
,
F
}
,
{
L
}
}
is non
empty
finite
V49
()
set
[
[
L
,
F
]
,1
]
is
V26
()
set
{
[
L
,
F
]
,1
}
is non
empty
finite
set
{
[
L
,
F
]
}
is non
empty
trivial
finite
1
-element
set
{
{
[
L
,
F
]
,1
}
,
{
[
L
,
F
]
}
}
is non
empty
finite
V49
()
set
(
p
,
a
,
b
) is non
empty
finite
Element
of
bool
(
(
INT.Ring
p
)
)
bool
(
(
INT.Ring
p
)
) is non
empty
finite
V49
()
set
(
p
,
a
,
b
) is
Relation-like
[:
the
carrier
of
(
INT.Ring
p
)
, the
carrier
of
(
INT.Ring
p
)
, the
carrier
of
(
INT.Ring
p
)
:]
-defined
the
carrier
of
(
INT.Ring
p
)
-valued
Function-like
quasi_total
finite
Element
of
bool
[:
[:
the
carrier
of
(
INT.Ring
p
)
, the
carrier
of
(
INT.Ring
p
)
, the
carrier
of
(
INT.Ring
p
)
:]
, the
carrier
of
(
INT.Ring
p
)
:]
[:
[:
the
carrier
of
(
INT.Ring
p
)
, the
carrier
of
(
INT.Ring
p
)
, the
carrier
of
(
INT.Ring
p
)
:]
, the
carrier
of
(
INT.Ring
p
)
:]
is non
empty
finite
set
bool
[:
[:
the
carrier
of
(
INT.Ring
p
)
, the
carrier
of
(
INT.Ring
p
)
, the
carrier
of
(
INT.Ring
p
)
:]
, the
carrier
of
(
INT.Ring
p
)
:]
is non
empty
finite
V49
()
set
{
b
1
where
b
1
is
Element
of (
(
INT.Ring
p
)
) : (
p
,
a
,
b
)
.
b
1
=
0.
(
INT.Ring
p
)
}
is
set
1.
(
INT.Ring
p
)
is
V61
(
INT.Ring
p
)
V61
(
INT.Ring
p
)
left_add-cancelable
left_add-cancelable
right_add-cancelable
right_add-cancelable
add-cancelable
add-cancelable
right_complementable
right_complementable
(
p
)
Element
of the
carrier
of
(
INT.Ring
p
)
the
OneF
of
(
INT.Ring
p
)
is
left_add-cancelable
right_add-cancelable
add-cancelable
right_complementable
Element
of the
carrier
of
(
INT.Ring
p
)
(
F
|^
2
)
*
(
1.
(
INT.Ring
p
)
)
is
left_add-cancelable
right_add-cancelable
add-cancelable
right_complementable
Element
of the
carrier
of
(
INT.Ring
p
)
the
multF
of
(
INT.Ring
p
)
.
(
(
F
|^
2
)
,
(
1.
(
INT.Ring
p
)
)
) is
left_add-cancelable
right_add-cancelable
add-cancelable
right_complementable
Element
of the
carrier
of
(
INT.Ring
p
)
[
(
F
|^
2
)
,
(
1.
(
INT.Ring
p
)
)
]
is
V26
()
set
{
(
F
|^
2
)
,
(
1.
(
INT.Ring
p
)
)
}
is non
empty
finite
set
{
(
F
|^
2
)
}
is non
empty
trivial
finite
1
-element
set
{
{
(
F
|^
2
)
,
(
1.
(
INT.Ring
p
)
)
}
,
{
(
F
|^
2
)
}
}
is non
empty
finite
V49
()
set
the
multF
of
(
INT.Ring
p
)
.
[
(
F
|^
2
)
,
(
1.
(
INT.Ring
p
)
)
]
is
set
(
a
*
L
)
*
(
1.
(
INT.Ring
p
)
)
is
left_add-cancelable
right_add-cancelable
add-cancelable
right_complementable
Element
of the
carrier
of
(
INT.Ring
p
)
the
multF
of
(
INT.Ring
p
)
.
(
(
a
*
L
)
,
(
1.
(
INT.Ring
p
)
)
) is
left_add-cancelable
right_add-cancelable
add-cancelable
right_complementable
Element
of the
carrier
of
(
INT.Ring
p
)
[
(
a
*
L
)
,
(
1.
(
INT.Ring
p
)
)
]
is
V26
()
set
{
(
a
*
L
)
,
(
1.
(
INT.Ring
p
)
)
}
is non
empty
finite
set
{
(
a
*
L
)
}
is non
empty
trivial
finite
1
-element
set
{
{
(
a
*
L
)
,
(
1.
(
INT.Ring
p
)
)
}
,
{
(
a
*
L
)
}
}
is non
empty
finite
V49
()
set
the
multF
of
(
INT.Ring
p
)
.
[
(
a
*
L
)
,
(
1.
(
INT.Ring
p
)
)
]
is
set
(
1.
(
INT.Ring
p
)
)
*
(
1.
(
INT.Ring
p
)
)
is
left_add-cancelable
right_add-cancelable
add-cancelable
right_complementable
Element
of the
carrier
of
(
INT.Ring
p
)
the
multF
of
(
INT.Ring
p
)
.
(
(
1.
(
INT.Ring
p
)
)
,
(
1.
(
INT.Ring
p
)
)
) is
left_add-cancelable
right_add-cancelable
add-cancelable
right_complementable
Element
of the
carrier
of
(
INT.Ring
p
)
[
(
1.
(
INT.Ring
p
)
)
,
(
1.
(
INT.Ring
p
)
)
]
is
V26
()
set
{
(
1.
(
INT.Ring
p
)
)
,
(
1.
(
INT.Ring
p
)
)
}
is non
empty
finite
set
{
(
1.
(
INT.Ring
p
)
)
}
is non
empty
trivial
finite
1
-element
set
{
{
(
1.
(
INT.Ring
p
)
)
,
(
1.
(
INT.Ring
p
)
)
}
,
{
(
1.
(
INT.Ring
p
)
)
}
}
is non
empty
finite
V49
()
set
the
multF
of
(
INT.Ring
p
)
.
[
(
1.
(
INT.Ring
p
)
)
,
(
1.
(
INT.Ring
p
)
)
]
is
set
(
a
*
L
)
*
(
(
1.
(
INT.Ring
p
)
)
*
(
1.
(
INT.Ring
p
)
)
)
is
left_add-cancelable
right_add-cancelable
add-cancelable
right_complementable
Element
of the
carrier
of
(
INT.Ring
p
)
the
multF
of
(
INT.Ring
p
)
.
(
(
a
*
L
)
,
(
(
1.
(
INT.Ring
p
)
)
*
(
1.
(
INT.Ring
p
)
)
)
) is
left_add-cancelable
right_add-cancelable
add-cancelable
right_complementable
Element
of the
carrier
of
(
INT.Ring
p
)
[
(
a
*
L
)
,
(
(
1.
(
INT.Ring
p
)
)
*
(
1.
(
INT.Ring
p
)
)
)
]
is
V26
()
set
{
(
a
*
L
)
,
(
(
1.
(
INT.Ring
p
)
)
*
(
1.
(
INT.Ring
p
)
)
)
}
is non
empty
finite
set
{
{
(
a
*
L
)
,
(
(
1.
(
INT.Ring
p
)
)
*
(
1.
(
INT.Ring
p
)
)
)
}
,
{
(
a
*
L
)
}
}
is non
empty
finite
V49
()
set
the
multF
of
(
INT.Ring
p
)
.
[
(
a
*
L
)
,
(
(
1.
(
INT.Ring
p
)
)
*
(
1.
(
INT.Ring
p
)
)
)
]
is
set
(
1.
(
INT.Ring
p
)
)
|^
2 is
left_add-cancelable
right_add-cancelable
add-cancelable
right_complementable
Element
of the
carrier
of
(
INT.Ring
p
)
(
power
(
INT.Ring
p
)
)
.
(
(
1.
(
INT.Ring
p
)
)
,2) is
set
[
(
1.
(
INT.Ring
p
)
)
,2
]
is
V26
()
set
{
(
1.
(
INT.Ring
p
)
)
,2
}
is non
empty
finite
set
{
{
(
1.
(
INT.Ring
p
)
)
,2
}
,
{
(
1.
(
INT.Ring
p
)
)
}
}
is non
empty
finite
V49
()
set
(
power
(
INT.Ring
p
)
)
.
[
(
1.
(
INT.Ring
p
)
)
,2
]
is
set
(
a
*
L
)
*
(
(
1.
(
INT.Ring
p
)
)
|^
2
)
is
left_add-cancelable
right_add-cancelable
add-cancelable
right_complementable
Element
of the
carrier
of
(
INT.Ring
p
)
the
multF
of
(
INT.Ring
p
)
.
(
(
a
*
L
)
,
(
(
1.
(
INT.Ring
p
)
)
|^
2
)
) is
left_add-cancelable
right_add-cancelable
add-cancelable
right_complementable
Element
of the
carrier
of
(
INT.Ring
p
)
[
(
a
*
L
)
,
(
(
1.
(
INT.Ring
p
)
)
|^
2
)
]
is
V26
()
set
{
(
a
*
L
)
,
(
(
1.
(
INT.Ring
p
)
)
|^
2
)
}
is non
empty
finite
set
{
{
(
a
*
L
)
,
(
(
1.
(
INT.Ring
p
)
)
|^
2
)
}
,
{
(
a
*
L
)
}
}
is non
empty
finite
V49
()
set
the
multF
of
(
INT.Ring
p
)
.
[
(
a
*
L
)
,
(
(
1.
(
INT.Ring
p
)
)
|^
2
)
]
is
set
b
*
(
1.
(
INT.Ring
p
)
)
is
left_add-cancelable
right_add-cancelable
add-cancelable
right_complementable
Element
of the
carrier
of
(
INT.Ring
p
)
the
multF
of
(
INT.Ring
p
)
.
(
b
,
(
1.
(
INT.Ring
p
)
)
) is
left_add-cancelable
right_add-cancelable
add-cancelable
right_complementable
Element
of the
carrier
of
(
INT.Ring
p
)
[
b
,
(
1.
(
INT.Ring
p
)
)
]
is
V26
()
set
{
b
,
(
1.
(
INT.Ring
p
)
)
}
is non
empty
finite
set
{
b
}
is non
empty
trivial
finite
1
-element
set
{
{
b
,
(
1.
(
INT.Ring
p
)
)
}
,
{
b
}
}
is non
empty
finite
V49
()
set
the
multF
of
(
INT.Ring
p
)
.
[
b
,
(
1.
(
INT.Ring
p
)
)
]
is
set
b
*
(
(
1.
(
INT.Ring
p
)
)
*
(
1.
(
INT.Ring
p
)
)
)
is
left_add-cancelable
right_add-cancelable
add-cancelable
right_complementable
Element
of the
carrier
of
(
INT.Ring
p
)
the
multF
of
(
INT.Ring
p
)
.
(
b
,
(
(
1.
(
INT.Ring
p
)
)
*
(
1.
(
INT.Ring
p
)
)
)
) is
left_add-cancelable
right_add-cancelable
add-cancelable
right_complementable
Element
of the
carrier
of
(
INT.Ring
p
)
[
b
,
(
(
1.
(
INT.Ring
p
)
)
*
(
1.
(
INT.Ring
p
)
)
)
]
is
V26
()
set
{
b
,
(
(
1.
(
INT.Ring
p
)
)
*
(
1.
(
INT.Ring
p
)
)
)
}
is non
empty
finite
set
{
{
b
,
(
(
1.
(
INT.Ring
p
)
)
*
(
1.
(
INT.Ring
p
)
)
)
}
,
{
b
}
}
is non
empty
finite
V49
()
set
the
multF
of
(
INT.Ring
p
)
.
[
b
,
(
(
1.
(
INT.Ring
p
)
)
*
(
1.
(
INT.Ring
p
)
)
)
]
is
set
b
*
(
(
1.
(
INT.Ring
p
)
)
|^
2
)
is
left_add-cancelable
right_add-cancelable
add-cancelable
right_complementable
Element
of the
carrier
of
(
INT.Ring
p
)
the
multF
of
(
INT.Ring
p
)
.
(
b
,
(
(
1.
(
INT.Ring
p
)
)
|^
2
)
) is
left_add-cancelable
right_add-cancelable
add-cancelable
right_complementable
Element
of the
carrier
of
(
INT.Ring
p
)
[
b
,
(
(
1.
(
INT.Ring
p
)
)
|^
2
)
]
is
V26
()
set
{
b
,
(
(
1.
(
INT.Ring
p
)
)
|^
2
)
}
is non
empty
finite
set
{
{
b
,
(
(
1.
(
INT.Ring
p
)
)
|^
2
)
}
,
{
b
}
}
is non
empty
finite
V49
()
set
the
multF
of
(
INT.Ring
p
)
.
[
b
,
(
(
1.
(
INT.Ring
p
)
)
|^
2
)
]
is
set
(
(
1.
(
INT.Ring
p
)
)
|^
2
)
*
(
1.
(
INT.Ring
p
)
)
is
left_add-cancelable
right_add-cancelable
add-cancelable
right_complementable
Element
of the
carrier
of
(
INT.Ring
p
)
the
multF
of
(
INT.Ring
p
)
.
(
(
(
1.
(
INT.Ring
p
)
)
|^
2
)
,
(
1.
(
INT.Ring
p
)
)
) is
left_add-cancelable
right_add-cancelable
add-cancelable
right_complementable
Element
of the
carrier
of
(
INT.Ring
p
)
[
(
(
1.
(
INT.Ring
p
)
)
|^
2
)
,
(
1.
(
INT.Ring
p
)
)
]
is
V26
()
set
{
(
(
1.
(
INT.Ring
p
)
)
|^
2
)
,
(
1.
(
INT.Ring
p
)
)
}
is non
empty
finite
set
{
(
(
1.
(
INT.Ring
p
)
)
|^
2
)
}
is non
empty
trivial
finite
1
-element
set
{
{
(
(
1.
(
INT.Ring
p
)
)
|^
2
)
,
(
1.
(
INT.Ring
p
)
)
}
,
{
(
(
1.
(
INT.Ring
p
)
)
|^
2
)
}
}
is non
empty
finite
V49
()
set
the
multF
of
(
INT.Ring
p
)
.
[
(
(
1.
(
INT.Ring
p
)
)
|^
2
)
,
(
1.
(
INT.Ring
p
)
)
]
is
set
b
*
(
(
(
1.
(
INT.Ring
p
)
)
|^
2
)
*
(
1.
(
INT.Ring
p
)
)
)
is
left_add-cancelable
right_add-cancelable
add-cancelable
right_complementable
Element
of the
carrier
of
(
INT.Ring
p
)
the
multF
of
(
INT.Ring
p
)
.
(
b
,
(
(
(
1.
(
INT.Ring
p
)
)
|^
2
)
*
(
1.
(
INT.Ring
p
)
)
)
) is
left_add-cancelable
right_add-cancelable
add-cancelable
right_complementable
Element
of the
carrier
of
(
INT.Ring
p
)
[
b
,
(
(
(
1.
(
INT.Ring
p
)
)
|^
2
)
*
(
1.
(
INT.Ring
p
)
)
)
]
is
V26
()
set
{
b
,
(
(
(
1.
(
INT.Ring
p
)
)
|^
2
)
*
(
1.
(
INT.Ring
p
)
)
)
}
is non
empty
finite
set
{
{
b
,
(
(
(
1.
(
INT.Ring
p
)
)
|^
2
)
*
(
1.
(
INT.Ring
p
)
)
)
}
,
{
b
}
}
is non
empty
finite
V49
()
set
the
multF
of
(
INT.Ring
p
)
.
[
b
,
(
(
(
1.
(
INT.Ring
p
)
)
|^
2
)
*
(
1.
(
INT.Ring
p
)
)
)
]
is
set
2
+
1 is non
empty
V4
()
V5
()
V6
()
V10
()
V11
()
V12
()
integer
ext-real
positive
non
negative
finite
cardinal
V113
()
V117
()
V118
()
V119
()
V120
()
V121
()
V122
()
Element
of
NAT
(
1.
(
INT.Ring
p
)
)
|^
(
2
+
1
)
is
left_add-cancelable
right_add-cancelable
add-cancelable
right_complementable
Element
of the
carrier
of
(
INT.Ring
p
)
(
power
(
INT.Ring
p
)
)
.
(
(
1.
(
INT.Ring
p
)
)
,
(
2
+
1
)
) is
set
[
(
1.
(
INT.Ring
p
)
)
,
(
2
+
1
)
]
is
V26
()
set
{
(
1.
(
INT.Ring
p
)
)
,
(
2
+
1
)
}
is non
empty
finite
set
{
{
(
1.
(
INT.Ring
p
)
)
,
(
2
+
1
)
}
,
{
(
1.
(
INT.Ring
p
)
)
}
}
is non
empty
finite
V49
()
set
(
power
(
INT.Ring
p
)
)
.
[
(
1.
(
INT.Ring
p
)
)
,
(
2
+
1
)
]
is
set
b
*
(
(
1.
(
INT.Ring
p
)
)
|^
(
2
+
1
)
)
is
left_add-cancelable
right_add-cancelable
add-cancelable
right_complementable
Element
of the
carrier
of
(
INT.Ring
p
)
the
multF
of
(
INT.Ring
p
)
.
(
b
,
(
(
1.
(
INT.Ring
p
)
)
|^
(
2
+
1
)
)
) is
left_add-cancelable
right_add-cancelable
add-cancelable
right_complementable
Element
of the
carrier
of
(
INT.Ring
p
)
[
b
,
(
(
1.
(
INT.Ring
p
)
)
|^
(
2
+
1
)
)
]
is
V26
()
set
{
b
,
(
(
1.
(
INT.Ring
p
)
)
|^
(
2
+
1
)
)
}
is non
empty
finite
set
{
{
b
,
(
(
1.
(
INT.Ring
p
)
)
|^
(
2
+
1
)
)
}
,
{
b
}
}
is non
empty
finite
V49
()
set
the
multF
of
(
INT.Ring
p
)
.
[
b
,
(
(
1.
(
INT.Ring
p
)
)
|^
(
2
+
1
)
)
]
is
set
(
1.
(
INT.Ring
p
)
)
|^
3 is
left_add-cancelable
right_add-cancelable
add-cancelable
right_complementable
Element
of the
carrier
of
(
INT.Ring
p
)
(
power
(
INT.Ring
p
)
)
.
(
(
1.
(
INT.Ring
p
)
)
,3) is
set
[
(
1.
(
INT.Ring
p
)
)
,3
]
is
V26
()
set
{
(
1.
(
INT.Ring
p
)
)
,3
}
is non
empty
finite
set
{
{
(
1.
(
INT.Ring
p
)
)
,3
}
,
{
(
1.
(
INT.Ring
p
)
)
}
}
is non
empty
finite
V49
()
set
(
power
(
INT.Ring
p
)
)
.
[
(
1.
(
INT.Ring
p
)
)
,3
]
is
set
b
*
(
(
1.
(
INT.Ring
p
)
)
|^
3
)
is
left_add-cancelable
right_add-cancelable
add-cancelable
right_complementable
Element
of the
carrier
of
(
INT.Ring
p
)
the
multF
of
(
INT.Ring
p
)
.
(
b
,
(
(
1.
(
INT.Ring
p
)
)
|^
3
)
) is
left_add-cancelable
right_add-cancelable
add-cancelable
right_complementable
Element
of the
carrier
of
(
INT.Ring
p
)
[
b
,
(
(
1.
(
INT.Ring
p
)
)
|^
3
)
]
is
V26
()
set
{
b
,
(
(
1.
(
INT.Ring
p
)
)
|^
3
)
}
is non
empty
finite
set
{
{
b
,
(
(
1.
(
INT.Ring
p
)
)
|^
3
)
}
,
{
b
}
}
is non
empty
finite
V49
()
set
the
multF
of
(
INT.Ring
p
)
.
[
b
,
(
(
1.
(
INT.Ring
p
)
)
|^
3
)
]
is
set
(
F
|^
2
)
-
(
(
(
L
|^
3
)
+
(
a
*
L
)
)
+
b
)
is
left_add-cancelable
right_add-cancelable
add-cancelable
right_complementable
Element
of the
carrier
of
(
INT.Ring
p
)
-
(
(
(
L
|^
3
)
+
(
a
*
L
)
)
+
b
)
is
left_add-cancelable
right_add-cancelable
add-cancelable
right_complementable
Element
of the
carrier
of
(
INT.Ring
p
)
(
F
|^
2
)
+
(
-
(
(
(
L
|^
3
)
+
(
a
*
L
)
)
+
b
)
)
is
left_add-cancelable
right_add-cancelable
add-cancelable
right_complementable
Element
of the
carrier
of
(
INT.Ring
p
)
the
addF
of
(
INT.Ring
p
)
.
(
(
F
|^
2
)
,
(
-
(
(
(
L
|^
3
)
+
(
a
*
L
)
)
+
b
)
)
) is
left_add-cancelable
right_add-cancelable
add-cancelable
right_complementable
Element
of the
carrier
of
(
INT.Ring
p
)
[
(
F
|^
2
)
,
(
-
(
(
(
L
|^
3
)
+
(
a
*
L
)
)
+
b
)
)
]
is
V26
()
set
{
(
F
|^
2
)
,
(
-
(
(
(
L
|^
3
)
+
(
a
*
L
)
)
+
b
)
)
}
is non
empty
finite
set
{
{
(
F
|^
2
)
,
(
-
(
(
(
L
|^
3
)
+
(
a
*
L
)
)
+
b
)
)
}
,
{
(
F
|^
2
)
}
}
is non
empty
finite
V49
()
set
the
addF
of
(
INT.Ring
p
)
.
[
(
F
|^
2
)
,
(
-
(
(
(
L
|^
3
)
+
(
a
*
L
)
)
+
b
)
)
]
is
set
pp
is
Element
of (
(
INT.Ring
p
)
)
(
p
,
a
,
b
)
.
pp
is
left_add-cancelable
right_add-cancelable
add-cancelable
right_complementable
Element
of the
carrier
of
(
INT.Ring
p
)
FF
is
Element
of (
(
INT.Ring
p
)
)
(
p
,
a
,
b
)
.
FF
is
left_add-cancelable
right_add-cancelable
add-cancelable
right_complementable
Element
of the
carrier
of
(
INT.Ring
p
)
p
is non
empty
V4
()
V5
()
V6
()
V10
()
V11
()
V12
()
integer
V14
()
ext-real
positive
non
negative
finite
cardinal
set
INT.Ring
p
is non
empty
non
degenerated
non
trivial
finite
left_add-cancelable
right_add-cancelable
add-cancelable
right_complementable
almost_left_invertible
strict
unital
associative
commutative
Euclidian
right-distributive
left-distributive
right_unital
well-unital
distributive
left_unital
Abelian
add-associative
right_zeroed
()
doubleLoopStr
Segm
p
is
V117
()
V118
()
V119
()
V120
()
V121
()
V122
()
Element
of
bool
NAT
addint
p
is
Relation-like
[:
(
Segm
p
)
,
(
Segm
p
)
:]
-defined
Segm
p
-valued
Function-like
quasi_total
V35
()
V36
()
V37
()
V38
()
Element
of
bool
[:
[:
(
Segm
p
)
,
(
Segm
p
)
:]
,
(
Segm
p
)
:]
[:
(
Segm
p
)
,
(
Segm
p
)
:]
is
RAT
-valued
INT
-valued
V35
()
V36
()
V37
()
V38
()
set
[:
[:
(
Segm
p
)
,
(
Segm
p
)
:]
,
(
Segm
p
)
:]
is
RAT
-valued
INT
-valued
V35
()
V36
()
V37
()
V38
()
set
bool
[:
[:
(
Segm
p
)
,
(
Segm
p
)
:]
,
(
Segm
p
)
:]
is non
empty
set
multint
p
is
Relation-like
[:
(
Segm
p
)
,
(
Segm
p
)
:]
-defined
Segm
p
-valued
Function-like
quasi_total
V35
()
V36
()
V37
()
V38
()
Element
of
bool
[:
[:
(
Segm
p
)
,
(
Segm
p
)
:]
,
(
Segm
p
)
:]
K633
(1,
(
Segm
p
)
) is
V4
()
V5
()
V6
()
V10
()
V11
()
V12
()
integer
ext-real
non
negative
finite
cardinal
V113
()
Element
of
Segm
p
K633
(
0
,
(
Segm
p
)
) is
V4
()
V5
()
V6
()
V10
()
V11
()
V12
()
integer
ext-real
non
negative
finite
cardinal
V113
()
Element
of
Segm
p
doubleLoopStr
(#
(
Segm
p
)
,
(
addint
p
)
,
(
multint
p
)
,
K633
(1,
(
Segm
p
)
),
K633
(
0
,
(
Segm
p
)
) #) is
strict
doubleLoopStr
the
carrier
of
(
INT.Ring
p
)
is non
empty
non
trivial
finite
set
[:
the
carrier
of
(
INT.Ring
p
)
, the
carrier
of
(
INT.Ring
p
)
, the
carrier
of
(
INT.Ring
p
)
:]
is non
empty
finite
set
(
(
INT.Ring
p
)
) is non
empty
finite
Element
of
bool
[:
the
carrier
of
(
INT.Ring
p
)
, the
carrier
of
(
INT.Ring
p
)
, the
carrier
of
(
INT.Ring
p
)
:]
bool
[:
the
carrier
of
(
INT.Ring
p
)
, the
carrier
of
(
INT.Ring
p
)
, the
carrier
of
(
INT.Ring
p
)
:]
is non
empty
finite
V49
()
set
0.
(
INT.Ring
p
)
is
V61
(
INT.Ring
p
)
left_add-cancelable
right_add-cancelable
add-cancelable
right_complementable
Element
of the
carrier
of
(
INT.Ring
p
)
the
ZeroF
of
(
INT.Ring
p
)
is
left_add-cancelable
right_add-cancelable
add-cancelable
right_complementable
Element
of the
carrier
of
(
INT.Ring
p
)
[
(
0.
(
INT.Ring
p
)
)
,
(
0.
(
INT.Ring
p
)
)
,
(
0.
(
INT.Ring
p
)
)
]
is
V26
()
V27
()
Element
of
[:
the
carrier
of
(
INT.Ring
p
)
, the
carrier
of
(
INT.Ring
p
)
, the
carrier
of
(
INT.Ring
p
)
:]
[
(
0.
(
INT.Ring
p
)
)
,
(
0.
(
INT.Ring
p
)
)
]
is
V26
()
set
{
(
0.
(
INT.Ring
p
)
)
,
(
0.
(
INT.Ring
p
)
)
}
is non
empty
finite
set
{
(
0.
(
INT.Ring
p
)
)
}
is non
empty
trivial
finite
1
-element
set
{
{
(
0.
(
INT.Ring
p
)
)
,
(
0.
(
INT.Ring
p
)
)
}
,
{
(
0.
(
INT.Ring
p
)
)
}
}
is non
empty
finite
V49
()
set
[
[
(
0.
(
INT.Ring
p
)
)
,
(
0.
(
INT.Ring
p
)
)
]
,
(
0.
(
INT.Ring
p
)
)
]
is
V26
()
set
{
[
(
0.
(
INT.Ring
p
)
)
,
(
0.
(
INT.Ring
p
)
)
]
,
(
0.
(
INT.Ring
p
)
)
}
is non
empty
finite
set
{
[
(
0.
(
INT.Ring
p
)
)
,
(
0.
(
INT.Ring
p
)
)
]
}
is non
empty
trivial
finite
1
-element
set
{
{
[
(
0.
(
INT.Ring
p
)
)
,
(
0.
(
INT.Ring
p
)
)
]
,
(
0.
(
INT.Ring
p
)
)
}
,
{
[
(
0.
(
INT.Ring
p
)
)
,
(
0.
(
INT.Ring
p
)
)
]
}
}
is non
empty
finite
V49
()
set
{
[
(
0.
(
INT.Ring
p
)
)
,
(
0.
(
INT.Ring
p
)
)
,
(
0.
(
INT.Ring
p
)
)
]
}
is non
empty
trivial
finite
1
-element
Element
of
bool
[:
the
carrier
of
(
INT.Ring
p
)
, the
carrier
of
(
INT.Ring
p
)
, the
carrier
of
(
INT.Ring
p
)
:]
[:
the
carrier
of
(
INT.Ring
p
)
, the
carrier
of
(
INT.Ring
p
)
, the
carrier
of
(
INT.Ring
p
)
:]
\
{
[
(
0.
(
INT.Ring
p
)
)
,
(
0.
(
INT.Ring
p
)
)
,
(
0.
(
INT.Ring
p
)
)
]
}
is
finite
Element
of
bool
[:
the
carrier
of
(
INT.Ring
p
)
, the
carrier
of
(
INT.Ring
p
)
, the
carrier
of
(
INT.Ring
p
)
:]
L
is
Element
of (
(
INT.Ring
p
)
)
L
`1_3
is
left_add-cancelable
right_add-cancelable
add-cancelable
right_complementable
Element
of the
carrier
of
(
INT.Ring
p
)
L
`1
is
set
(
L
`1
)
`1
is
set
L
`2_3
is
left_add-cancelable
right_add-cancelable
add-cancelable
right_complementable
Element
of the
carrier
of
(
INT.Ring
p
)
(
L
`1
)
`2
is
set
L
`3_3
is
left_add-cancelable
right_add-cancelable
add-cancelable
right_complementable
Element
of the
carrier
of
(
INT.Ring
p
)
1.
(
INT.Ring
p
)
is
V61
(
INT.Ring
p
)
V61
(
INT.Ring
p
)
left_add-cancelable
left_add-cancelable
right_add-cancelable
right_add-cancelable
add-cancelable
add-cancelable
right_complementable
right_complementable
(
p
)
Element
of the
carrier
of
(
INT.Ring
p
)
the
OneF
of
(
INT.Ring
p
)
is
left_add-cancelable
right_add-cancelable
add-cancelable
right_complementable
Element
of the
carrier
of
(
INT.Ring
p
)
F
is
left_add-cancelable
right_add-cancelable
add-cancelable
right_complementable
Element
of the
carrier
of
(
INT.Ring
p
)
F
*
(
L
`1_3
)
is
left_add-cancelable
right_add-cancelable
add-cancelable
right_complementable
Element
of the
carrier
of
(
INT.Ring
p
)
the
multF
of
(
INT.Ring
p
)
is
Relation-like
[:
the
carrier
of
(
INT.Ring
p
)
, the
carrier
of
(
INT.Ring
p
)
:]
-defined
the
carrier
of
(
INT.Ring
p
)
-valued
Function-like
quasi_total
finite
Element
of
bool
[:
[:
the
carrier
of
(
INT.Ring
p
)
, the
carrier
of
(
INT.Ring
p
)
:]
, the
carrier
of
(
INT.Ring
p
)
:]
[:
the
carrier
of
(
INT.Ring
p
)
, the
carrier
of
(
INT.Ring
p
)
:]
is non
empty
finite
set
[:
[:
the
carrier
of
(
INT.Ring
p
)
, the
carrier
of
(
INT.Ring
p
)
:]
, the
carrier
of
(
INT.Ring
p
)
:]
is non
empty
finite
set
bool
[:
[:
the
carrier
of
(
INT.Ring
p
)
, the
carrier
of
(
INT.Ring
p
)
:]
, the
carrier
of
(
INT.Ring
p
)
:]
is non
empty
finite
V49
()
set
the
multF
of
(
INT.Ring
p
)
.
(
F
,
(
L
`1_3
)
) is
left_add-cancelable
right_add-cancelable
add-cancelable
right_complementable
Element
of the
carrier
of
(
INT.Ring
p
)
[
F
,
(
L
`1_3
)
]
is
V26
()
set
{
F
,
(
L
`1_3
)
}
is non
empty
finite
set
{
F
}
is non
empty
trivial
finite
1
-element
set
{
{
F
,
(
L
`1_3
)
}
,
{
F
}
}
is non
empty
finite
V49
()
set
the
multF
of
(
INT.Ring
p
)
.
[
F
,
(
L
`1_3
)
]
is
set
F
*
(
L
`2_3
)
is
left_add-cancelable
right_add-cancelable
add-cancelable
right_complementable
Element
of the
carrier
of
(
INT.Ring
p
)
the
multF
of
(
INT.Ring
p
)
.
(
F
,
(
L
`2_3
)
) is
left_add-cancelable
right_add-cancelable
add-cancelable
right_complementable
Element
of the
carrier
of
(
INT.Ring
p
)
[
F
,
(
L
`2_3
)
]
is
V26
()
set
{
F
,
(
L
`2_3
)
}
is non
empty
finite
set
{
{
F
,
(
L
`2_3
)
}
,
{
F
}
}
is non
empty
finite
V49
()
set
the
multF
of
(
INT.Ring
p
)
.
[
F
,
(
L
`2_3
)
]
is
set
F
*
(
L
`3_3
)
is
left_add-cancelable
right_add-cancelable
add-cancelable
right_complementable
Element
of the
carrier
of
(
INT.Ring
p
)
the
multF
of
(
INT.Ring
p
)
.
(
F
,
(
L
`3_3
)
) is
left_add-cancelable
right_add-cancelable
add-cancelable
right_complementable
Element
of the
carrier
of
(
INT.Ring
p
)
[
F
,
(
L
`3_3
)
]
is
V26
()
set
{
F
,
(
L
`3_3
)
}
is non
empty
finite
set
{
{
F
,
(
L
`3_3
)
}
,
{
F
}
}
is non
empty
finite
V49
()
set
the
multF
of
(
INT.Ring
p
)
.
[
F
,
(
L
`3_3
)
]
is
set
L
is
Element
of (
(
INT.Ring
p
)
)
L
`1_3
is
left_add-cancelable
right_add-cancelable
add-cancelable
right_complementable
Element
of the
carrier
of
(
INT.Ring
p
)
L
`1
is
set
(
L
`1
)
`1
is
set
L
`2_3
is
left_add-cancelable
right_add-cancelable
add-cancelable
right_complementable
Element
of the
carrier
of
(
INT.Ring
p
)
(
L
`1
)
`2
is
set
L
`3_3
is
left_add-cancelable
right_add-cancelable
add-cancelable
right_complementable
Element
of the
carrier
of
(
INT.Ring
p
)
L
is
Element
of (
(
INT.Ring
p
)
)
L
`1_3
is
left_add-cancelable
right_add-cancelable
add-cancelable
right_complementable
Element
of the
carrier
of
(
INT.Ring
p
)
L
`1
is
set
(
L
`1
)
`1
is
set
F
is
Element
of (
(
INT.Ring
p
)
)
F
`1_3
is
left_add-cancelable
right_add-cancelable
add-cancelable
right_complementable
Element
of the
carrier
of
(
INT.Ring
p
)
F
`1
is
set
(
F
`1
)
`1
is
set
L
`2_3
is
left_add-cancelable
right_add-cancelable
add-cancelable
right_complementable
Element
of the
carrier
of
(
INT.Ring
p
)
(
L
`1
)
`2
is
set
F
`2_3
is
left_add-cancelable
right_add-cancelable
add-cancelable
right_complementable
Element
of the
carrier
of
(
INT.Ring
p
)
(
F
`1
)
`2
is
set
L
`3_3
is
left_add-cancelable
right_add-cancelable
add-cancelable
right_complementable
Element
of the
carrier
of
(
INT.Ring
p
)
F
`3_3
is
left_add-cancelable
right_add-cancelable
add-cancelable
right_complementable
Element
of the
carrier
of
(
INT.Ring
p
)
pp
is
left_add-cancelable
right_add-cancelable
add-cancelable
right_complementable
Element
of the
carrier
of
(
INT.Ring
p
)
pp
*
(
F
`1_3
)
is
left_add-cancelable
right_add-cancelable
add-cancelable
right_complementable
Element
of the
carrier
of
(
INT.Ring
p
)
the
multF
of
(
INT.Ring
p
)
is
Relation-like
[:
the
carrier
of
(
INT.Ring
p
)
, the
carrier
of
(
INT.Ring
p
)
:]
-defined
the
carrier
of
(
INT.Ring
p
)
-valued
Function-like
quasi_total
finite
Element
of
bool
[:
[:
the
carrier
of
(
INT.Ring
p
)
, the
carrier
of
(
INT.Ring
p
)
:]
, the
carrier
of
(
INT.Ring
p
)
:]
[:
the
carrier
of
(
INT.Ring
p
)
, the
carrier
of
(
INT.Ring
p
)
:]
is non
empty
finite
set
[:
[:
the
carrier
of
(
INT.Ring
p
)
, the
carrier
of
(
INT.Ring
p
)
:]
, the
carrier
of
(
INT.Ring
p
)
:]
is non
empty
finite
set
bool
[:
[:
the
carrier
of
(
INT.Ring
p
)
, the
carrier
of
(
INT.Ring
p
)
:]
, the
carrier
of
(
INT.Ring
p
)
:]
is non
empty
finite
V49
()
set
the
multF
of
(
INT.Ring
p
)
.
(
pp
,
(
F
`1_3
)
) is
left_add-cancelable
right_add-cancelable
add-cancelable
right_complementable
Element
of the
carrier
of
(
INT.Ring
p
)
[
pp
,
(
F
`1_3
)
]
is
V26
()
set
{
pp
,
(
F
`1_3
)
}
is non
empty
finite
set
{
pp
}
is non
empty
trivial
finite
1
-element
set
{
{
pp
,
(
F
`1_3
)
}
,
{
pp
}
}
is non
empty
finite
V49
()
set
the
multF
of
(
INT.Ring
p
)
.
[
pp
,
(
F
`1_3
)
]
is
set
pp
*
(
F
`2_3
)
is
left_add-cancelable
right_add-cancelable
add-cancelable
right_complementable
Element
of the
carrier
of
(
INT.Ring
p
)
the
multF
of
(
INT.Ring
p
)
.
(
pp
,
(
F
`2_3
)
) is
left_add-cancelable
right_add-cancelable
add-cancelable
right_complementable
Element
of the
carrier
of
(
INT.Ring
p
)
[
pp
,
(
F
`2_3
)
]
is
V26
()
set
{
pp
,
(
F
`2_3
)
}
is non
empty
finite
set
{
{
pp
,
(
F
`2_3
)
}
,
{
pp
}
}
is non
empty
finite
V49
()
set
the
multF
of
(
INT.Ring
p
)
.
[
pp
,
(
F
`2_3
)
]
is
set
pp
*
(
F
`3_3
)
is
left_add-cancelable
right_add-cancelable
add-cancelable
right_complementable
Element
of the
carrier
of
(
INT.Ring
p
)
the
multF
of
(
INT.Ring
p
)
.
(
pp
,
(
F
`3_3
)
) is
left_add-cancelable
right_add-cancelable
add-cancelable
right_complementable
Element
of the
carrier
of
(
INT.Ring
p
)
[
pp
,
(
F
`3_3
)
]
is
V26
()
set
{
pp
,
(
F
`3_3
)
}
is non
empty
finite
set
{
{
pp
,
(
F
`3_3
)
}
,
{
pp
}
}
is non
empty
finite
V49
()
set
the
multF
of
(
INT.Ring
p
)
.
[
pp
,
(
F
`3_3
)
]
is
set
pp
"
is
left_add-cancelable
right_add-cancelable
add-cancelable
right_complementable
Element
of the
carrier
of
(
INT.Ring
p
)
FF
is
left_add-cancelable
right_add-cancelable
add-cancelable
right_complementable
Element
of the
carrier
of
(
INT.Ring
p
)
FF
*
(
L
`1_3
)
is
left_add-cancelable
right_add-cancelable
add-cancelable
right_complementable
Element
of the
carrier
of
(
INT.Ring
p
)
the
multF
of
(
INT.Ring
p
)
.
(
FF
,
(
L
`1_3
)
) is
left_add-cancelable
right_add-cancelable
add-cancelable
right_complementable
Element
of the
carrier
of
(
INT.Ring
p
)
[
FF
,
(
L
`1_3
)
]
is
V26
()
set
{
FF
,
(
L
`1_3
)
}
is non
empty
finite
set
{
FF
}
is non
empty
trivial
finite
1
-element
set
{
{
FF
,
(
L
`1_3
)
}
,
{
FF
}
}
is non
empty
finite
V49
()
set
the
multF
of
(
INT.Ring
p
)
.
[
FF
,
(
L
`1_3
)
]
is
set
FF
*
(
L
`2_3
)
is
left_add-cancelable
right_add-cancelable
add-cancelable
right_complementable
Element
of the
carrier
of
(
INT.Ring
p
)
the
multF
of
(
INT.Ring
p
)
.
(
FF
,
(
L
`2_3
)
) is
left_add-cancelable
right_add-cancelable
add-cancelable
right_complementable
Element
of the
carrier
of
(
INT.Ring
p
)
[
FF
,
(
L
`2_3
)
]
is
V26
()
set
{
FF
,
(
L
`2_3
)
}
is non
empty
finite
set
{
{
FF
,
(
L
`2_3
)
}
,
{
FF
}
}
is non
empty
finite
V49
()
set
the
multF
of
(
INT.Ring
p
)
.
[
FF
,
(
L
`2_3
)
]
is
set
FF
*
(
L
`3_3
)
is
left_add-cancelable
right_add-cancelable
add-cancelable
right_complementable
Element
of the
carrier
of
(
INT.Ring
p
)
the
multF
of
(
INT.Ring
p
)
.
(
FF
,
(
L
`3_3
)
) is
left_add-cancelable
right_add-cancelable
add-cancelable
right_complementable
Element
of the
carrier
of
(
INT.Ring
p
)
[
FF
,
(
L
`3_3
)
]
is
V26
()
set
{
FF
,
(
L
`3_3
)
}
is non
empty
finite
set
{
{
FF
,
(
L
`3_3
)
}
,
{
FF
}
}
is non
empty
finite
V49
()
set
the
multF
of
(
INT.Ring
p
)
.
[
FF
,
(
L
`3_3
)
]
is
set
FF
*
pp
is
left_add-cancelable
right_add-cancelable
add-cancelable
right_complementable
Element
of the
carrier
of
(
INT.Ring
p
)
the
multF
of
(
INT.Ring
p
)
.
(
FF
,
pp
) is
left_add-cancelable
right_add-cancelable
add-cancelable
right_complementable
Element
of the
carrier
of
(
INT.Ring
p
)
[
FF
,
pp
]
is
V26
()
set
{
FF
,
pp
}
is non
empty
finite
set
{
{
FF
,
pp
}
,
{
FF
}
}
is non
empty
finite
V49
()
set
the
multF
of
(
INT.Ring
p
)
.
[
FF
,
pp
]
is
set
1.
(
INT.Ring
p
)
is
V61
(
INT.Ring
p
)
V61
(
INT.Ring
p
)
left_add-cancelable
left_add-cancelable
right_add-cancelable
right_add-cancelable
add-cancelable
add-cancelable
right_complementable
right_complementable
(
p
)
Element
of the
carrier
of
(
INT.Ring
p
)
the
OneF
of
(
INT.Ring
p
)
is
left_add-cancelable
right_add-cancelable
add-cancelable
right_complementable
Element
of the
carrier
of
(
INT.Ring
p
)
1.
(
INT.Ring
p
)
is
V61
(
INT.Ring
p
)
V61
(
INT.Ring
p
)
left_add-cancelable
left_add-cancelable
right_add-cancelable
right_add-cancelable
add-cancelable
add-cancelable
right_complementable
right_complementable
(
p
)
Element
of the
carrier
of
(
INT.Ring
p
)
the
OneF
of
(
INT.Ring
p
)
is
left_add-cancelable
right_add-cancelable
add-cancelable
right_complementable
Element
of the
carrier
of
(
INT.Ring
p
)
(
1.
(
INT.Ring
p
)
)
*
(
F
`1_3
)
is
left_add-cancelable
right_add-cancelable
add-cancelable
right_complementable
Element
of the
carrier
of
(
INT.Ring
p
)
the
multF
of
(
INT.Ring
p
)
.
(
(
1.
(
INT.Ring
p
)
)
,
(
F
`1_3
)
) is
left_add-cancelable
right_add-cancelable
add-cancelable
right_complementable
Element
of the
carrier
of
(
INT.Ring
p
)
[
(
1.
(
INT.Ring
p
)
)
,
(
F
`1_3
)
]
is
V26
()
set
{
(
1.
(
INT.Ring
p
)
)
,
(
F
`1_3
)
}
is non
empty
finite
set
{
(
1.
(
INT.Ring
p
)
)
}
is non
empty
trivial
finite
1
-element
set
{
{
(
1.
(
INT.Ring
p
)
)
,
(
F
`1_3
)
}
,
{
(
1.
(
INT.Ring
p
)
)
}
}
is non
empty
finite
V49
()
set
the
multF
of
(
INT.Ring
p
)
.
[
(
1.
(
INT.Ring
p
)
)
,
(
F
`1_3
)
]
is
set
FF
*
pp
is
left_add-cancelable
right_add-cancelable
add-cancelable
right_complementable
Element
of the
carrier
of
(
INT.Ring
p
)
the
multF
of
(
INT.Ring
p
)
.
(
FF
,
pp
) is
left_add-cancelable
right_add-cancelable
add-cancelable
right_complementable
Element
of the
carrier
of
(
INT.Ring
p
)
[
FF
,
pp
]
is
V26
()
set
{
FF
,
pp
}
is non
empty
finite
set
{
{
FF
,
pp
}
,
{
FF
}
}
is non
empty
finite
V49
()
set
the
multF
of
(
INT.Ring
p
)
.
[
FF
,
pp
]
is
set
(
FF
*
pp
)
*
(
F
`1_3
)
is
left_add-cancelable
right_add-cancelable
add-cancelable
right_complementable
Element
of the
carrier
of
(
INT.Ring
p
)
the
multF
of
(
INT.Ring
p
)
.
(
(
FF
*
pp
)
,
(
F
`1_3
)
) is
left_add-cancelable
right_add-cancelable
add-cancelable
right_complementable
Element
of the
carrier
of
(
INT.Ring
p
)
[
(
FF
*
pp
)
,
(
F
`1_3
)
]
is
V26
()
set
{
(
FF
*
pp
)
,
(
F
`1_3
)
}
is non
empty
finite
set
{
(
FF
*
pp
)
}
is non
empty
trivial
finite
1
-element
set
{
{
(
FF
*
pp
)
,
(
F
`1_3
)
}
,
{
(
FF
*
pp
)
}
}
is non
empty
finite
V49
()
set
the
multF
of
(
INT.Ring
p
)
.
[
(
FF
*
pp
)
,
(
F
`1_3
)
]
is
set
(
1.
(
INT.Ring
p
)
)
*
(
F
`2_3
)
is
left_add-cancelable
right_add-cancelable
add-cancelable
right_complementable
Element
of the
carrier
of
(
INT.Ring
p
)
the
multF
of
(
INT.Ring
p
)
.
(
(
1.
(
INT.Ring
p
)
)
,
(
F
`2_3
)
) is
left_add-cancelable
right_add-cancelable
add-cancelable
right_complementable
Element
of the
carrier
of
(
INT.Ring
p
)
[
(
1.
(
INT.Ring
p
)
)
,
(
F
`2_3
)
]
is
V26
()
set
{
(
1.
(
INT.Ring
p
)
)
,
(
F
`2_3
)
}
is non
empty
finite
set
{
{
(
1.
(
INT.Ring
p
)
)
,
(
F
`2_3
)
}
,
{
(
1.
(
INT.Ring
p
)
)
}
}
is non
empty
finite
V49
()
set
the
multF
of
(
INT.Ring
p
)
.
[
(
1.
(
INT.Ring
p
)
)
,
(
F
`2_3
)
]
is
set
(
FF
*
pp
)
*
(
F
`2_3
)
is
left_add-cancelable
right_add-cancelable
add-cancelable
right_complementable
Element
of the
carrier
of
(
INT.Ring
p
)
the
multF
of
(
INT.Ring
p
)
.
(
(
FF
*
pp
)
,
(
F
`2_3
)
) is
left_add-cancelable
right_add-cancelable
add-cancelable
right_complementable
Element
of the
carrier
of
(
INT.Ring
p
)
[
(
FF
*
pp
)
,
(
F
`2_3
)
]
is
V26
()
set
{
(
FF
*
pp
)
,
(
F
`2_3
)
}
is non
empty
finite
set
{
{
(
FF
*
pp
)
,
(
F
`2_3
)
}
,
{
(
FF
*
pp
)
}
}
is non
empty
finite
V49
()
set
the
multF
of
(
INT.Ring
p
)
.
[
(
FF
*
pp
)
,
(
F
`2_3
)
]
is
set
(
1.
(
INT.Ring
p
)
)
*
(
F
`3_3
)
is
left_add-cancelable
right_add-cancelable
add-cancelable
right_complementable
Element
of the
carrier
of
(
INT.Ring
p
)
the
multF
of
(
INT.Ring
p
)
.
(
(
1.
(
INT.Ring
p
)
)
,
(
F
`3_3
)
) is
left_add-cancelable
right_add-cancelable
add-cancelable
right_complementable
Element
of the
carrier
of
(
INT.Ring
p
)
[
(
1.
(
INT.Ring
p
)
)
,
(
F
`3_3
)
]
is
V26
()
set
{
(
1.
(
INT.Ring
p
)
)
,
(
F
`3_3
)
}
is non
empty
finite
set
{
{
(
1.
(
INT.Ring
p
)
)
,
(
F
`3_3
)
}
,
{
(
1.
(
INT.Ring
p
)
)
}
}
is non
empty
finite
V49
()
set
the
multF
of
(
INT.Ring
p
)
.
[
(
1.
(
INT.Ring
p
)
)
,
(
F
`3_3
)
]
is
set
(
FF
*
pp
)
*
(
F
`3_3
)
is
left_add-cancelable
right_add-cancelable
add-cancelable
right_complementable
Element
of the
carrier
of
(
INT.Ring
p
)
the
multF
of
(
INT.Ring
p
)
.
(
(
FF
*
pp
)
,
(
F
`3_3
)
) is
left_add-cancelable
right_add-cancelable
add-cancelable
right_complementable
Element
of the
carrier
of
(
INT.Ring
p
)
[
(
FF
*
pp
)
,
(
F
`3_3
)
]
is
V26
()
set
{
(
FF
*
pp
)
,
(
F
`3_3
)
}
is non
empty
finite
set
{
{
(
FF
*
pp
)
,
(
F
`3_3
)
}
,
{
(
FF
*
pp
)
}
}
is non
empty
finite
V49
()
set
the
multF
of
(
INT.Ring
p
)
.
[
(
FF
*
pp
)
,
(
F
`3_3
)
]
is
set
p
is non
empty
V4
()
V5
()
V6
()
V10
()
V11
()
V12
()
integer
V14
()
ext-real
positive
non
negative
finite
cardinal
set
INT.Ring
p
is non
empty
non
degenerated
non
trivial
finite
left_add-cancelable
right_add-cancelable
add-cancelable
right_complementable
almost_left_invertible
strict
unital
associative
commutative
Euclidian
right-distributive
left-distributive
right_unital
well-unital
distributive
left_unital
Abelian
add-associative
right_zeroed
()
doubleLoopStr
Segm
p
is
V117
()
V118
()
V119
()
V120
()
V121
()
V122
()
Element
of
bool
NAT
addint
p
is
Relation-like
[:
(
Segm
p
)
,
(
Segm
p
)
:]
-defined
Segm
p
-valued
Function-like
quasi_total
V35
()
V36
()
V37
()
V38
()
Element
of
bool
[:
[:
(
Segm
p
)
,
(
Segm
p
)
:]
,
(
Segm
p
)
:]
[:
(
Segm
p
)
,
(
Segm
p
)
:]
is
RAT
-valued
INT
-valued
V35
()
V36
()
V37
()
V38
()
set
[:
[:
(
Segm
p
)
,
(
Segm
p
)
:]
,
(
Segm
p
)
:]
is
RAT
-valued
INT
-valued
V35
()
V36
()
V37
()
V38
()
set
bool
[:
[:
(
Segm
p
)
,
(
Segm
p
)
:]
,
(
Segm
p
)
:]
is non
empty
set
multint
p
is
Relation-like
[:
(
Segm
p
)
,
(
Segm
p
)
:]
-defined
Segm
p
-valued
Function-like
quasi_total
V35
()
V36
()
V37
()
V38
()
Element
of
bool
[:
[:
(
Segm
p
)
,
(
Segm
p
)
:]
,
(
Segm
p
)
:]
K633
(1,
(
Segm
p
)
) is
V4
()
V5
()
V6
()
V10
()
V11
()
V12
()
integer
ext-real
non
negative
finite
cardinal
V113
()
Element
of
Segm
p
K633
(
0
,
(
Segm
p
)
) is
V4
()
V5
()
V6
()
V10
()
V11
()
V12
()
integer
ext-real
non
negative
finite
cardinal
V113
()
Element
of
Segm
p
doubleLoopStr
(#
(
Segm
p
)
,
(
addint
p
)
,
(
multint
p
)
,
K633
(1,
(
Segm
p
)
),
K633
(
0
,
(
Segm
p
)
) #) is
strict
doubleLoopStr
the
carrier
of
(
INT.Ring
p
)
is non
empty
non
trivial
finite
set
[:
the
carrier
of
(
INT.Ring
p
)
, the
carrier
of
(
INT.Ring
p
)
, the
carrier
of
(
INT.Ring
p
)
:]
is non
empty
finite
set
(
(
INT.Ring
p
)
) is non
empty
finite
Element
of
bool
[:
the
carrier
of
(
INT.Ring
p
)
, the
carrier
of
(
INT.Ring
p
)
, the
carrier
of
(
INT.Ring
p
)
:]
bool
[:
the
carrier
of
(
INT.Ring
p
)
, the
carrier
of
(
INT.Ring
p
)
, the
carrier
of
(
INT.Ring
p
)
:]
is non
empty
finite
V49
()
set
0.
(
INT.Ring
p
)
is
V61
(
INT.Ring
p
)
left_add-cancelable
right_add-cancelable
add-cancelable
right_complementable
Element
of the
carrier
of
(
INT.Ring
p
)
the
ZeroF
of
(
INT.Ring
p
)
is
left_add-cancelable
right_add-cancelable
add-cancelable
right_complementable
Element
of the
carrier
of
(
INT.Ring
p
)
[
(
0.
(
INT.Ring
p
)
)
,
(
0.
(
INT.Ring
p
)
)
,
(
0.
(
INT.Ring
p
)
)
]
is
V26
()
V27
()
Element
of
[:
the
carrier
of
(
INT.Ring
p
)
, the
carrier
of
(
INT.Ring
p
)
, the
carrier
of
(
INT.Ring
p
)
:]
[
(
0.
(
INT.Ring
p
)
)
,
(
0.
(
INT.Ring
p
)
)
]
is
V26
()
set
{
(
0.
(
INT.Ring
p
)
)
,
(
0.
(
INT.Ring
p
)
)
}
is non
empty
finite
set
{
(
0.
(
INT.Ring
p
)
)
}
is non
empty
trivial
finite
1
-element
set
{
{
(
0.
(
INT.Ring
p
)
)
,
(
0.
(
INT.Ring
p
)
)
}
,
{
(
0.
(
INT.Ring
p
)
)
}
}
is non
empty
finite
V49
()
set
[
[
(
0.
(
INT.Ring
p
)
)
,
(
0.
(
INT.Ring
p
)
)
]
,
(
0.
(
INT.Ring
p
)
)
]
is
V26
()
set
{
[
(
0.
(
INT.Ring
p
)
)
,
(
0.
(
INT.Ring
p
)
)
]
,
(
0.
(
INT.Ring
p
)
)
}
is non
empty
finite
set
{
[
(
0.
(
INT.Ring
p
)
)
,
(
0.
(
INT.Ring
p
)
)
]
}
is non
empty
trivial
finite
1
-element
set
{
{
[
(
0.
(
INT.Ring
p
)
)
,
(
0.
(
INT.Ring
p
)
)
]
,
(
0.
(
INT.Ring
p
)
)
}
,
{
[
(
0.
(
INT.Ring
p
)
)
,
(
0.
(
INT.Ring
p
)
)
]
}
}
is non
empty
finite
V49
()
set
{
[
(
0.
(
INT.Ring
p
)
)
,
(
0.
(
INT.Ring
p
)
)
,
(
0.
(
INT.Ring
p
)
)
]
}
is non
empty
trivial
finite
1
-element
Element
of
bool
[:
the
carrier
of
(
INT.Ring
p
)
, the
carrier
of
(
INT.Ring
p
)
, the
carrier
of
(
INT.Ring
p
)
:]
[:
the
carrier
of
(
INT.Ring
p
)
, the
carrier
of
(
INT.Ring
p
)
, the
carrier
of
(
INT.Ring
p
)
:]
\
{
[
(
0.
(
INT.Ring
p
)
)
,
(
0.
(
INT.Ring
p
)
)
,
(
0.
(
INT.Ring
p
)
)
]
}
is
finite
Element
of
bool
[:
the
carrier
of
(
INT.Ring
p
)
, the
carrier
of
(
INT.Ring
p
)
, the
carrier
of
(
INT.Ring
p
)
:]
a
is
Element
of (
(
INT.Ring
p
)
)
b
is
Element
of (
(
INT.Ring
p
)
)
L
is
Element
of (
(
INT.Ring
p
)
)
a
`1_3
is
left_add-cancelable
right_add-cancelable
add-cancelable
right_complementable
Element
of the
carrier
of
(
INT.Ring
p
)
a
`1
is
set
(
a
`1
)
`1
is
set
b
`1_3
is
left_add-cancelable
right_add-cancelable
add-cancelable
right_complementable
Element
of the
carrier
of
(
INT.Ring
p
)
b
`1
is
set
(
b
`1
)
`1
is
set
a
`2_3
is
left_add-cancelable
right_add-cancelable
add-cancelable
right_complementable
Element
of the
carrier
of
(
INT.Ring
p
)
(
a
`1
)
`2
is
set
b
`2_3
is
left_add-cancelable
right_add-cancelable
add-cancelable
right_complementable
Element
of the
carrier
of
(
INT.Ring
p
)
(
b
`1
)
`2
is
set
a
`3_3
is
left_add-cancelable
right_add-cancelable
add-cancelable
right_complementable
Element
of the
carrier
of
(
INT.Ring
p
)
b
`3_3
is
left_add-cancelable
right_add-cancelable
add-cancelable
right_complementable
Element
of the
carrier
of
(
INT.Ring
p
)
F
is
left_add-cancelable
right_add-cancelable
add-cancelable
right_complementable
Element
of the
carrier
of
(
INT.Ring
p
)
F
*
(
b
`1_3
)
is
left_add-cancelable
right_add-cancelable
add-cancelable
right_complementable
Element
of the
carrier
of
(
INT.Ring
p
)
the
multF
of
(
INT.Ring
p
)
is
Relation-like
[:
the
carrier
of
(
INT.Ring
p
)
, the
carrier
of
(
INT.Ring
p
)
:]
-defined
the
carrier
of
(
INT.Ring
p
)
-valued
Function-like
quasi_total
finite
Element
of
bool
[:
[:
the
carrier
of
(
INT.Ring
p
)
, the
carrier
of
(
INT.Ring
p
)
:]
, the
carrier
of
(
INT.Ring
p
)
:]
[:
the
carrier
of
(
INT.Ring
p
)
, the
carrier
of
(
INT.Ring
p
)
:]
is non
empty
finite
set
[:
[:
the
carrier
of
(
INT.Ring
p
)
, the
carrier
of
(
INT.Ring
p
)
:]
, the
carrier
of
(
INT.Ring
p
)
:]
is non
empty
finite
set
bool
[:
[:
the
carrier
of
(
INT.Ring
p
)
, the
carrier
of
(
INT.Ring
p
)
:]
, the
carrier
of
(
INT.Ring
p
)
:]
is non
empty
finite
V49
()
set
the
multF
of
(
INT.Ring
p
)
.
(
F
,
(
b
`1_3
)
) is
left_add-cancelable
right_add-cancelable
add-cancelable
right_complementable
Element
of the
carrier
of
(
INT.Ring
p
)
[
F
,
(
b
`1_3
)
]
is
V26
()
set
{
F
,
(
b
`1_3
)
}
is non
empty
finite
set
{
F
}
is non
empty
trivial
finite
1
-element
set
{
{
F
,
(
b
`1_3
)
}
,
{
F
}
}
is non
empty
finite
V49
()
set
the
multF
of
(
INT.Ring
p
)
.
[
F
,
(
b
`1_3
)
]
is
set
F
*
(
b
`2_3
)
is
left_add-cancelable
right_add-cancelable
add-cancelable
right_complementable
Element
of the
carrier
of
(
INT.Ring
p
)
the
multF
of
(
INT.Ring
p
)
.
(
F
,
(
b
`2_3
)
) is
left_add-cancelable
right_add-cancelable
add-cancelable
right_complementable
Element
of the
carrier
of
(
INT.Ring
p
)
[
F
,
(
b
`2_3
)
]
is
V26
()
set
{
F
,
(
b
`2_3
)
}
is non
empty
finite
set
{
{
F
,
(
b
`2_3
)
}
,
{
F
}
}
is non
empty
finite
V49
()
set
the
multF
of
(
INT.Ring
p
)
.
[
F
,
(
b
`2_3
)
]
is
set
F
*
(
b
`3_3
)
is
left_add-cancelable
right_add-cancelable
add-cancelable
right_complementable
Element
of the
carrier
of
(
INT.Ring
p
)
the
multF
of
(
INT.Ring
p
)
.
(
F
,
(
b
`3_3
)
) is
left_add-cancelable
right_add-cancelable
add-cancelable
right_complementable
Element
of the
carrier
of
(
INT.Ring
p
)
[
F
,
(
b
`3_3
)
]
is
V26
()
set
{
F
,
(
b
`3_3
)
}
is non
empty
finite
set
{
{
F
,
(
b
`3_3
)
}
,
{
F
}
}
is non
empty
finite
V49
()
set
the
multF
of
(
INT.Ring
p
)
.
[
F
,
(
b
`3_3
)
]
is
set
L
`1_3
is
left_add-cancelable
right_add-cancelable
add-cancelable
right_complementable
Element
of the
carrier
of
(
INT.Ring
p
)
L
`1
is
set
(
L
`1
)
`1
is
set
L
`2_3
is
left_add-cancelable
right_add-cancelable
add-cancelable
right_complementable
Element
of the
carrier
of
(
INT.Ring
p
)
(
L
`1
)
`2
is
set
L
`3_3
is
left_add-cancelable
right_add-cancelable
add-cancelable
right_complementable
Element
of the
carrier
of
(
INT.Ring
p
)
pp
is
left_add-cancelable
right_add-cancelable
add-cancelable
right_complementable
Element
of the
carrier
of
(
INT.Ring
p
)
pp
*
(
L
`1_3
)
is
left_add-cancelable
right_add-cancelable
add-cancelable
right_complementable
Element
of the
carrier
of
(
INT.Ring
p
)
the
multF
of
(
INT.Ring
p
)
.
(
pp
,
(
L
`1_3
)
) is
left_add-cancelable
right_add-cancelable
add-cancelable
right_complementable
Element
of the
carrier
of
(
INT.Ring
p
)
[
pp
,
(
L
`1_3
)
]
is
V26
()
set
{
pp
,
(
L
`1_3
)
}
is non
empty
finite
set
{
pp
}
is non
empty
trivial
finite
1
-element
set
{
{
pp
,
(
L
`1_3
)
}
,
{
pp
}
}
is non
empty
finite
V49
()
set
the
multF
of
(
INT.Ring
p
)
.
[
pp
,
(
L
`1_3
)
]
is
set
pp
*
(
L
`2_3
)
is
left_add-cancelable
right_add-cancelable
add-cancelable
right_complementable
Element
of the
carrier
of
(
INT.Ring
p
)
the
multF
of
(
INT.Ring
p
)
.
(
pp
,
(
L
`2_3
)
) is
left_add-cancelable
right_add-cancelable
add-cancelable
right_complementable
Element
of the
carrier
of
(
INT.Ring
p
)
[
pp
,
(
L
`2_3
)
]
is
V26
()
set
{
pp
,
(
L
`2_3
)
}
is non
empty
finite
set
{
{
pp
,
(
L
`2_3
)
}
,
{
pp
}
}
is non
empty
finite
V49
()
set
the
multF
of
(
INT.Ring
p
)
.
[
pp
,
(
L
`2_3
)
]
is
set
pp
*
(
L
`3_3
)
is
left_add-cancelable
right_add-cancelable
add-cancelable
right_complementable
Element
of the
carrier
of
(
INT.Ring
p
)
the
multF
of
(
INT.Ring
p
)
.
(
pp
,
(
L
`3_3
)
) is
left_add-cancelable
right_add-cancelable
add-cancelable
right_complementable
Element
of the
carrier
of
(
INT.Ring
p
)
[
pp
,
(
L
`3_3
)
]
is
V26
()
set
{
pp
,
(
L
`3_3
)
}
is non
empty
finite
set
{
{
pp
,
(
L
`3_3
)
}
,
{
pp
}
}
is non
empty
finite
V49
()
set
the
multF
of
(
INT.Ring
p
)
.
[
pp
,
(
L
`3_3
)
]
is
set
F
*
pp
is
left_add-cancelable
right_add-cancelable
add-cancelable
right_complementable
Element
of the
carrier
of
(
INT.Ring
p
)
the
multF
of
(
INT.Ring
p
)
.
(
F
,
pp
) is
left_add-cancelable
right_add-cancelable
add-cancelable
right_complementable
Element
of the
carrier
of
(
INT.Ring
p
)
[
F
,
pp
]
is
V26
()
set
{
F
,
pp
}
is non
empty
finite
set
{
{
F
,
pp
}
,
{
F
}
}
is non
empty
finite
V49
()
set
the
multF
of
(
INT.Ring
p
)
.
[
F
,
pp
]
is
set
FF
is
left_add-cancelable
right_add-cancelable
add-cancelable
right_complementable
Element
of the
carrier
of
(
INT.Ring
p
)
FF
*
(
L
`1_3
)
is
left_add-cancelable
right_add-cancelable
add-cancelable
right_complementable
Element
of the
carrier
of
(
INT.Ring
p
)
the
multF
of
(
INT.Ring
p
)
.
(
FF
,
(
L
`1_3
)
) is
left_add-cancelable
right_add-cancelable
add-cancelable
right_complementable
Element
of the
carrier
of
(
INT.Ring
p
)
[
FF
,
(
L
`1_3
)
]
is
V26
()
set
{
FF
,
(
L
`1_3
)
}
is non
empty
finite
set
{
FF
}
is non
empty
trivial
finite
1
-element
set
{
{
FF
,
(
L
`1_3
)
}
,
{
FF
}
}
is non
empty
finite
V49
()
set
the
multF
of
(
INT.Ring
p
)
.
[
FF
,
(
L
`1_3
)
]
is
set
FF
*
(
L
`2_3
)
is
left_add-cancelable
right_add-cancelable
add-cancelable
right_complementable
Element
of the
carrier
of
(
INT.Ring
p
)
the
multF
of
(
INT.Ring
p
)
.
(
FF
,
(
L
`2_3
)
) is
left_add-cancelable
right_add-cancelable
add-cancelable
right_complementable
Element
of the
carrier
of
(
INT.Ring
p
)
[
FF
,
(
L
`2_3
)
]
is
V26
()
set
{
FF
,
(
L
`2_3
)
}
is non
empty
finite
set
{
{
FF
,
(
L
`2_3
)
}
,
{
FF
}
}
is non
empty
finite
V49
()
set
the
multF
of
(
INT.Ring
p
)
.
[
FF
,
(
L
`2_3
)
]
is
set
FF
*
(
L
`3_3
)
is
left_add-cancelable
right_add-cancelable
add-cancelable
right_complementable
Element
of the
carrier
of
(
INT.Ring
p
)
the
multF
of
(
INT.Ring
p
)
.
(
FF
,
(
L
`3_3
)
) is
left_add-cancelable
right_add-cancelable
add-cancelable
right_complementable
Element
of the
carrier
of
(
INT.Ring
p
)
[
FF
,
(
L
`3_3
)
]
is
V26
()
set
{
FF
,
(
L
`3_3
)
}
is non
empty
finite
set
{
{
FF
,
(
L
`3_3
)
}
,
{
FF
}
}
is non
empty
finite
V49
()
set
the
multF
of
(
INT.Ring
p
)
.
[
FF
,
(
L
`3_3
)
]
is
set
p
is non
empty
V4
()
V5
()
V6
()
V10
()
V11
()
V12
()
integer
V14
()
ext-real
positive
non
negative
finite
cardinal
set
INT.Ring
p
is non
empty
non
degenerated
non
trivial
finite
left_add-cancelable
right_add-cancelable
add-cancelable
right_complementable
almost_left_invertible
strict
unital
associative
commutative
Euclidian
right-distributive
left-distributive
right_unital
well-unital
distributive
left_unital
Abelian
add-associative
right_zeroed
()
doubleLoopStr
Segm
p
is
V117
()
V118
()
V119
()
V120
()
V121
()
V122
()
Element
of
bool
NAT
addint
p
is
Relation-like
[:
(
Segm
p
)
,
(
Segm
p
)
:]
-defined
Segm
p
-valued
Function-like
quasi_total
V35
()
V36
()
V37
()
V38
()
Element
of
bool
[:
[:
(
Segm
p
)
,
(
Segm
p
)
:]
,
(
Segm
p
)
:]
[:
(
Segm
p
)
,
(
Segm
p
)
:]
is
RAT
-valued
INT
-valued
V35
()
V36
()
V37
()
V38
()
set
[:
[:
(
Segm
p
)
,
(
Segm
p
)
:]
,
(
Segm
p
)
:]
is
RAT
-valued
INT
-valued
V35
()
V36
()
V37
()
V38
()
set
bool
[:
[:
(
Segm
p
)
,
(
Segm
p
)
:]
,
(
Segm
p
)
:]
is non
empty
set
multint
p
is
Relation-like
[:
(
Segm
p
)
,
(
Segm
p
)
:]
-defined
Segm
p
-valued
Function-like
quasi_total
V35
()
V36
()
V37
()
V38
()
Element
of
bool
[:
[:
(
Segm
p
)
,
(
Segm
p
)
:]
,
(
Segm
p
)
:]
K633
(1,
(
Segm
p
)
) is
V4
()
V5
()
V6
()
V10
()
V11
()
V12
()
integer
ext-real
non
negative
finite
cardinal
V113
()
Element
of
Segm
p
K633
(
0
,
(
Segm
p
)
) is
V4
()
V5
()
V6
()
V10
()
V11
()
V12
()
integer
ext-real
non
negative
finite
cardinal
V113
()
Element
of
Segm
p
doubleLoopStr
(#
(
Segm
p
)
,
(
addint
p
)
,
(
multint
p
)
,
K633
(1,
(
Segm
p
)
),
K633
(
0
,
(
Segm
p
)
) #) is
strict
doubleLoopStr
the
carrier
of
(
INT.Ring
p
)
is non
empty
non
trivial
finite
set
[:
the
carrier
of
(
INT.Ring
p
)
, the
carrier
of
(
INT.Ring
p
)
, the
carrier
of
(
INT.Ring
p
)
:]
is non
empty
finite
set
0.
(
INT.Ring
p
)
is
V61
(
INT.Ring
p
)
left_add-cancelable
right_add-cancelable
add-cancelable
right_complementable
Element
of the
carrier
of
(
INT.Ring
p
)
the
ZeroF
of
(
INT.Ring
p
)
is
left_add-cancelable
right_add-cancelable
add-cancelable
right_complementable
Element
of the
carrier
of
(
INT.Ring
p
)
a
is
left_add-cancelable
right_add-cancelable
add-cancelable
right_complementable
Element
of the
carrier
of
(
INT.Ring
p
)
b
is
left_add-cancelable
right_add-cancelable
add-cancelable
right_complementable
Element
of the
carrier
of
(
INT.Ring
p
)
(
p
,
a
,
b
) is
left_add-cancelable
right_add-cancelable
add-cancelable
right_complementable
Element
of the
carrier
of
(
INT.Ring
p
)
(
p
,
a
,
b
) is non
empty
finite
Element
of
bool
(
(
INT.Ring
p
)
)
(
(
INT.Ring
p
)
) is non
empty
finite
Element
of
bool
[:
the
carrier
of
(
INT.Ring
p
)
, the
carrier
of
(
INT.Ring
p
)
, the
carrier
of
(
INT.Ring
p
)
:]
bool
[:
the
carrier
of
(
INT.Ring
p
)
, the
carrier
of
(
INT.Ring
p
)
, the
carrier
of
(
INT.Ring
p
)
:]
is non
empty
finite
V49
()
set
[
(
0.
(
INT.Ring
p
)
)
,
(
0.
(
INT.Ring
p
)
)
,
(
0.
(
INT.Ring
p
)
)
]
is
V26
()
V27
()
Element
of
[:
the
carrier
of
(
INT.Ring
p
)
, the
carrier
of
(
INT.Ring
p
)
, the
carrier
of
(
INT.Ring
p
)
:]
[
(
0.
(
INT.Ring
p
)
)
,
(
0.
(
INT.Ring
p
)
)
]
is
V26
()
set
{
(
0.
(
INT.Ring
p
)
)
,
(
0.
(
INT.Ring
p
)
)
}
is non
empty
finite
set
{
(
0.
(
INT.Ring
p
)
)
}
is non
empty
trivial
finite
1
-element
set
{
{
(
0.
(
INT.Ring
p
)
)
,
(
0.
(
INT.Ring
p
)
)
}
,
{
(
0.
(
INT.Ring
p
)
)
}
}
is non
empty
finite
V49
()
set
[
[
(
0.
(
INT.Ring
p
)
)
,
(
0.
(
INT.Ring
p
)
)
]
,
(
0.
(
INT.Ring
p
)
)
]
is
V26
()
set
{
[
(
0.
(
INT.Ring
p
)
)
,
(
0.
(
INT.Ring
p
)
)
]
,
(
0.
(
INT.Ring
p
)
)
}
is non
empty
finite
set
{
[
(
0.
(
INT.Ring
p
)
)
,
(
0.
(
INT.Ring
p
)
)
]
}
is non
empty
trivial
finite
1
-element
set
{
{
[
(
0.
(
INT.Ring
p
)
)
,
(
0.
(
INT.Ring
p
)
)
]
,
(
0.
(
INT.Ring
p
)
)
}
,
{
[
(
0.
(
INT.Ring
p
)
)
,
(
0.
(
INT.Ring
p
)
)
]
}
}
is non
empty
finite
V49
()
set
{
[
(
0.
(
INT.Ring
p
)
)
,
(
0.
(
INT.Ring
p
)
)
,
(
0.
(
INT.Ring
p
)
)
]
}
is non
empty
trivial
finite
1
-element
Element
of
bool
[:
the
carrier
of
(
INT.Ring
p
)
, the
carrier
of
(
INT.Ring
p
)
, the
carrier
of
(
INT.Ring
p
)
:]
[:
the
carrier
of
(
INT.Ring
p
)
, the
carrier
of
(
INT.Ring
p
)
, the
carrier
of
(
INT.Ring
p
)
:]
\
{
[
(
0.
(
INT.Ring
p
)
)
,
(
0.
(
INT.Ring
p
)
)
,
(
0.
(
INT.Ring
p
)
)
]
}
is
finite
Element
of
bool
[:
the
carrier
of
(
INT.Ring
p
)
, the
carrier
of
(
INT.Ring
p
)
, the
carrier
of
(
INT.Ring
p
)
:]
bool
(
(
INT.Ring
p
)
) is non
empty
finite
V49
()
set
(
p
,
a
,
b
) is
Relation-like
[:
the
carrier
of
(
INT.Ring
p
)
, the
carrier
of
(
INT.Ring
p
)
, the
carrier
of
(
INT.Ring
p
)
:]
-defined
the
carrier
of
(
INT.Ring
p
)
-valued
Function-like
quasi_total
finite
Element
of
bool
[:
[:
the
carrier
of
(
INT.Ring
p
)
, the
carrier
of
(
INT.Ring
p
)
, the
carrier
of
(
INT.Ring
p
)
:]
, the
carrier
of
(
INT.Ring
p
)
:]
[:
[:
the
carrier
of
(
INT.Ring
p
)
, the
carrier
of
(
INT.Ring
p
)
, the
carrier
of
(
INT.Ring
p
)
:]
, the
carrier
of
(
INT.Ring
p
)
:]
is non
empty
finite
set
bool
[:
[:
the
carrier
of
(
INT.Ring
p
)
, the
carrier
of
(
INT.Ring
p
)
, the
carrier
of
(
INT.Ring
p
)
:]
, the
carrier
of
(
INT.Ring
p
)
:]
is non
empty
finite
V49
()
set
{
b
1
where
b
1
is
Element
of (
(
INT.Ring
p
)
) : (
p
,
a
,
b
)
.
b
1
=
0.
(
INT.Ring
p
)
}
is
set
L
is
Element
of
[:
the
carrier
of
(
INT.Ring
p
)
, the
carrier
of
(
INT.Ring
p
)
, the
carrier
of
(
INT.Ring
p
)
:]
F
is
Element
of
[:
the
carrier
of
(
INT.Ring
p
)
, the
carrier
of
(
INT.Ring
p
)
, the
carrier
of
(
INT.Ring
p
)
:]
F
`1_3
is
left_add-cancelable
right_add-cancelable
add-cancelable
right_complementable
Element
of the
carrier
of
(
INT.Ring
p
)
F
`1
is
set
(
F
`1
)
`1
is
set
L
`1_3
is
left_add-cancelable
right_add-cancelable
add-cancelable
right_complementable
Element
of the
carrier
of
(
INT.Ring
p
)
L
`1
is
set
(
L
`1
)
`1
is
set
F
`2_3
is
left_add-cancelable
right_add-cancelable
add-cancelable
right_complementable
Element
of the
carrier
of
(
INT.Ring
p
)
(
F
`1
)
`2
is
set
L
`2_3
is
left_add-cancelable
right_add-cancelable
add-cancelable
right_complementable
Element
of the
carrier
of
(
INT.Ring
p
)
(
L
`1
)
`2
is
set
F
`3_3
is
left_add-cancelable
right_add-cancelable
add-cancelable
right_complementable
Element
of the
carrier
of
(
INT.Ring
p
)
L
`3_3
is
left_add-cancelable
right_add-cancelable
add-cancelable
right_complementable
Element
of the
carrier
of
(
INT.Ring
p
)
pp
is
left_add-cancelable
right_add-cancelable
add-cancelable
right_complementable
Element
of the
carrier
of
(
INT.Ring
p
)
pp
*
(
L
`1_3
)
is
left_add-cancelable
right_add-cancelable
add-cancelable
right_complementable
Element
of the
carrier
of
(
INT.Ring
p
)
the
multF
of
(
INT.Ring
p
)
is
Relation-like
[:
the
carrier
of
(
INT.Ring
p
)
, the
carrier
of
(
INT.Ring
p
)
:]
-defined
the
carrier
of
(
INT.Ring
p
)
-valued
Function-like
quasi_total
finite
Element
of
bool
[:
[:
the
carrier
of
(
INT.Ring
p
)
, the
carrier
of
(
INT.Ring
p
)
:]
, the
carrier
of
(
INT.Ring
p
)
:]
[:
the
carrier
of
(
INT.Ring
p
)
, the
carrier
of
(
INT.Ring
p
)
:]
is non
empty
finite
set
[:
[:
the
carrier
of
(
INT.Ring
p
)
, the
carrier
of
(
INT.Ring
p
)
:]
, the
carrier
of
(
INT.Ring
p
)
:]
is non
empty
finite
set
bool
[:
[:
the
carrier
of
(
INT.Ring
p
)
, the
carrier
of
(
INT.Ring
p
)
:]
, the
carrier
of
(
INT.Ring
p
)
:]
is non
empty
finite
V49
()
set
the
multF
of
(
INT.Ring
p
)
.
(
pp
,
(
L
`1_3
)
) is
left_add-cancelable
right_add-cancelable
add-cancelable
right_complementable
Element
of the
carrier
of
(
INT.Ring
p
)
[
pp
,
(
L
`1_3
)
]
is
V26
()
set
{
pp
,
(
L
`1_3
)
}
is non
empty
finite
set
{
pp
}
is non
empty
trivial
finite
1
-element
set
{
{
pp
,
(
L
`1_3
)
}
,
{
pp
}
}
is non
empty
finite
V49
()
set
the
multF
of
(
INT.Ring
p
)
.
[
pp
,
(
L
`1_3
)
]
is
set
pp
*
(
L
`2_3
)
is
left_add-cancelable
right_add-cancelable
add-cancelable
right_complementable
Element
of the
carrier
of
(
INT.Ring
p
)
the
multF
of
(
INT.Ring
p
)
.
(
pp
,
(
L
`2_3
)
) is
left_add-cancelable
right_add-cancelable
add-cancelable
right_complementable
Element
of the
carrier
of
(
INT.Ring
p
)
[
pp
,
(
L
`2_3
)
]
is
V26
()
set
{
pp
,
(
L
`2_3
)
}
is non
empty
finite
set
{
{
pp
,
(
L
`2_3
)
}
,
{
pp
}
}
is non
empty
finite
V49
()
set
the
multF
of
(
INT.Ring
p
)
.
[
pp
,
(
L
`2_3
)
]
is
set
pp
*
(
L
`3_3
)
is
left_add-cancelable
right_add-cancelable
add-cancelable
right_complementable
Element
of the
carrier
of
(
INT.Ring
p
)
the
multF
of
(
INT.Ring
p
)
.
(
pp
,
(
L
`3_3
)
) is
left_add-cancelable
right_add-cancelable
add-cancelable
right_complementable
Element
of the
carrier
of
(
INT.Ring
p
)
[
pp
,
(
L
`3_3
)
]
is
V26
()
set
{
pp
,
(
L
`3_3
)
}
is non
empty
finite
set
{
{
pp
,
(
L
`3_3
)
}
,
{
pp
}
}
is non
empty
finite
V49
()
set
the
multF
of
(
INT.Ring
p
)
.
[
pp
,
(
L
`3_3
)
]
is
set
F1
is
Element
of (
(
INT.Ring
p
)
)
(
p
,
a
,
b
)
.
F1
is
left_add-cancelable
right_add-cancelable
add-cancelable
right_complementable
Element
of the
carrier
of
(
INT.Ring
p
)
(
p
,
a
,
b
)
.
L
is
left_add-cancelable
right_add-cancelable
add-cancelable
right_complementable
Element
of the
carrier
of
(
INT.Ring
p
)
(
L
`2_3
)
|^
2 is
left_add-cancelable
right_add-cancelable
add-cancelable
right_complementable
Element
of the
carrier
of
(
INT.Ring
p
)
power
(
INT.Ring
p
)
is
Relation-like
[:
the
carrier
of
(
INT.Ring
p
)
,
NAT
:]
-defined
the
carrier
of
(
INT.Ring
p
)
-valued
Function-like
quasi_total
Element
of
bool
[:
[:
the
carrier
of
(
INT.Ring
p
)
,
NAT
:]
, the
carrier
of
(
INT.Ring
p
)
:]
[:
the
carrier
of
(
INT.Ring
p
)
,
NAT
:]
is non
empty
non
trivial
RAT
-valued
INT
-valued
V35
()
V36
()
V37
()
V38
() non
finite
set
[:
[:
the
carrier
of
(
INT.Ring
p
)
,
NAT
:]
, the
carrier
of
(
INT.Ring
p
)
:]
is non
empty
non
trivial
non
finite
set
bool
[:
[:
the
carrier
of
(
INT.Ring
p
)
,
NAT
:]
, the
carrier
of
(
INT.Ring
p
)
:]
is non
empty
non
trivial
non
finite
set
(
power
(
INT.Ring
p
)
)
.
(
(
L
`2_3
)
,2) is
set
[
(
L
`2_3
)
,2
]
is
V26
()
set
{
(
L
`2_3
)
,2
}
is non
empty
finite
set
{
(
L
`2_3
)
}
is non
empty
trivial
finite
1
-element
set
{
{
(
L
`2_3
)
,2
}
,
{
(
L
`2_3
)
}
}
is non
empty
finite
V49
()
set
(
power
(
INT.Ring
p
)
)
.
[
(
L
`2_3
)
,2
]
is
set
(
(
L
`2_3
)
|^
2
)
*
(
L
`3_3
)
is
left_add-cancelable
right_add-cancelable
add-cancelable
right_complementable
Element
of the
carrier
of
(
INT.Ring
p
)
the
multF
of
(
INT.Ring
p
)
.
(
(
(
L
`2_3
)
|^
2
)
,
(
L
`3_3
)
) is
left_add-cancelable
right_add-cancelable
add-cancelable
right_complementable
Element
of the
carrier
of
(
INT.Ring
p
)
[
(
(
L
`2_3
)
|^
2
)
,
(
L
`3_3
)
]
is
V26
()
set
{
(
(
L
`2_3
)
|^
2
)
,
(
L
`3_3
)
}
is non
empty
finite
set
{
(
(
L
`2_3
)
|^
2
)
}
is non
empty
trivial
finite
1
-element
set
{
{
(
(
L
`2_3
)
|^
2
)
,
(
L
`3_3
)
}
,
{
(
(
L
`2_3
)
|^
2
)
}
}
is non
empty
finite
V49
()
set
the
multF
of
(
INT.Ring
p
)
.
[
(
(
L
`2_3
)
|^
2
)
,
(
L
`3_3
)
]
is
set
(
L
`1_3
)
|^
3 is
left_add-cancelable
right_add-cancelable
add-cancelable
right_complementable
Element
of the
carrier
of
(
INT.Ring
p
)
(
power
(
INT.Ring
p
)
)
.
(
(
L
`1_3
)
,3) is
set
[
(
L
`1_3
)
,3
]
is
V26
()
set
{
(
L
`1_3
)
,3
}
is non
empty
finite
set
{
(
L
`1_3
)
}
is non
empty
trivial
finite
1
-element
set
{
{
(
L
`1_3
)
,3
}
,
{
(
L
`1_3
)
}
}
is non
empty
finite
V49
()
set
(
power
(
INT.Ring
p
)
)
.
[
(
L
`1_3
)
,3
]
is
set
a
*
(
L
`1_3
)
is
left_add-cancelable
right_add-cancelable
add-cancelable
right_complementable
Element
of the
carrier
of
(
INT.Ring
p
)
the
multF
of
(
INT.Ring
p
)
.
(
a
,
(
L
`1_3
)
) is
left_add-cancelable
right_add-cancelable
add-cancelable
right_complementable
Element
of the
carrier
of
(
INT.Ring
p
)
[
a
,
(
L
`1_3
)
]
is
V26
()
set
{
a
,
(
L
`1_3
)
}
is non
empty
finite
set
{
a
}
is non
empty
trivial
finite
1
-element
set
{
{
a
,
(
L
`1_3
)
}
,
{
a
}
}
is non
empty
finite
V49
()
set
the
multF
of
(
INT.Ring
p
)
.
[
a
,
(
L
`1_3
)
]
is
set
(
L
`3_3
)
|^
2 is
left_add-cancelable
right_add-cancelable
add-cancelable
right_complementable
Element
of the
carrier
of
(
INT.Ring
p
)
(
power
(
INT.Ring
p
)
)
.
(
(
L
`3_3
)
,2) is
set
[
(
L
`3_3
)
,2
]
is
V26
()
set
{
(
L
`3_3
)
,2
}
is non
empty
finite
set
{
(
L
`3_3
)
}
is non
empty
trivial
finite
1
-element
set
{
{
(
L
`3_3
)
,2
}
,
{
(
L
`3_3
)
}
}
is non
empty
finite
V49
()
set
(
power
(
INT.Ring
p
)
)
.
[
(
L
`3_3
)
,2
]
is
set
(
a
*
(
L
`1_3
)
)
*
(
(
L
`3_3
)
|^
2
)
is
left_add-cancelable
right_add-cancelable
add-cancelable
right_complementable
Element
of the
carrier
of
(
INT.Ring
p
)
the
multF
of
(
INT.Ring
p
)
.
(
(
a
*
(
L
`1_3
)
)
,
(
(
L
`3_3
)
|^
2
)
) is
left_add-cancelable
right_add-cancelable
add-cancelable
right_complementable
Element
of the
carrier
of
(
INT.Ring
p
)
[
(
a
*
(
L
`1_3
)
)
,
(
(
L
`3_3
)
|^
2
)
]
is
V26
()
set
{
(
a
*
(
L
`1_3
)
)
,
(
(
L
`3_3
)
|^
2
)
}
is non
empty
finite
set
{
(
a
*
(
L
`1_3
)
)
}
is non
empty
trivial
finite
1
-element
set
{
{
(
a
*
(
L
`1_3
)
)
,
(
(
L
`3_3
)
|^
2
)
}
,
{
(
a
*
(
L
`1_3
)
)
}
}
is non
empty
finite
V49
()
set
the
multF
of
(
INT.Ring
p
)
.
[
(
a
*
(
L
`1_3
)
)
,
(
(
L
`3_3
)
|^
2
)
]
is
set
(
(
L
`1_3
)
|^
3
)
+
(
(
a
*
(
L
`1_3
)
)
*
(
(
L
`3_3
)
|^
2
)
)
is
left_add-cancelable
right_add-cancelable
add-cancelable
right_complementable
Element
of the
carrier
of
(
INT.Ring
p
)
the
addF
of
(
INT.Ring
p
)
is
Relation-like
[:
the
carrier
of
(
INT.Ring
p
)
, the
carrier
of
(
INT.Ring
p
)
:]
-defined
the
carrier
of
(
INT.Ring
p
)
-valued
Function-like
quasi_total
finite
Element
of
bool
[:
[:
the
carrier
of
(
INT.Ring
p
)
, the
carrier
of
(
INT.Ring
p
)
:]
, the
carrier
of
(
INT.Ring
p
)
:]
the
addF
of
(
INT.Ring
p
)
.
(
(
(
L
`1_3
)
|^
3
)
,
(
(
a
*
(
L
`1_3
)
)
*
(
(
L
`3_3
)
|^
2
)
)
) is
left_add-cancelable
right_add-cancelable
add-cancelable
right_complementable
Element
of the
carrier
of
(
INT.Ring
p
)
[
(
(
L
`1_3
)
|^
3
)
,
(
(
a
*
(
L
`1_3
)
)
*
(
(
L
`3_3
)
|^
2
)
)
]
is
V26
()
set
{
(
(
L
`1_3
)
|^
3
)
,
(
(
a
*
(
L
`1_3
)
)
*
(
(
L
`3_3
)
|^
2
)
)
}
is non
empty
finite
set
{
(
(
L
`1_3
)
|^
3
)
}
is non
empty
trivial
finite
1
-element
set
{
{
(
(
L
`1_3
)
|^
3
)
,
(
(
a
*
(
L
`1_3
)
)
*
(
(
L
`3_3
)
|^
2
)
)
}
,
{
(
(
L
`1_3
)
|^
3
)
}
}
is non
empty
finite
V49
()
set
the
addF
of
(
INT.Ring
p
)
.
[
(
(
L
`1_3
)
|^
3
)
,
(
(
a
*
(
L
`1_3
)
)
*
(
(
L
`3_3
)
|^
2
)
)
]
is
set
(
L
`3_3
)
|^
3 is
left_add-cancelable
right_add-cancelable
add-cancelable
right_complementable
Element
of the
carrier
of
(
INT.Ring
p
)
(
power
(
INT.Ring
p
)
)
.
(
(
L
`3_3
)
,3) is
set
[
(
L
`3_3
)
,3
]
is
V26
()
set
{
(
L
`3_3
)
,3
}
is non
empty
finite
set
{
{
(
L
`3_3
)
,3
}
,
{
(
L
`3_3
)
}
}
is non
empty
finite
V49
()
set
(
power
(
INT.Ring
p
)
)
.
[
(
L
`3_3
)
,3
]
is
set
b
*
(
(
L
`3_3
)
|^
3
)
is
left_add-cancelable
right_add-cancelable
add-cancelable
right_complementable
Element
of the
carrier
of
(
INT.Ring
p
)
the
multF
of
(
INT.Ring
p
)
.
(
b
,
(
(
L
`3_3
)
|^
3
)
) is
left_add-cancelable
right_add-cancelable
add-cancelable
right_complementable
Element
of the
carrier
of
(
INT.Ring
p
)
[
b
,
(
(
L
`3_3
)
|^
3
)
]
is
V26
()
set
{
b
,
(
(
L
`3_3
)
|^
3
)
}
is non
empty
finite
set
{
b
}
is non
empty
trivial
finite
1
-element
set
{
{
b
,
(
(
L
`3_3
)
|^
3
)
}
,
{
b
}
}
is non
empty
finite
V49
()
set
the
multF
of
(
INT.Ring
p
)
.
[
b
,
(
(
L
`3_3
)
|^
3
)
]
is
set
(
(
(
L
`1_3
)
|^
3
)
+
(
(
a
*
(
L
`1_3
)
)
*
(
(
L
`3_3
)
|^
2
)
)
)
+
(
b
*
(
(
L
`3_3
)
|^
3
)
)
is
left_add-cancelable
right_add-cancelable
add-cancelable
right_complementable
Element
of the
carrier
of
(
INT.Ring
p
)
the
addF
of
(
INT.Ring
p
)
.
(
(
(
(
L
`1_3
)
|^
3
)
+
(
(
a
*
(
L
`1_3
)
)
*
(
(
L
`3_3
)
|^
2
)
)
)
,
(
b
*
(
(
L
`3_3
)
|^
3
)
)
) is
left_add-cancelable
right_add-cancelable
add-cancelable
right_complementable
Element
of the
carrier
of
(
INT.Ring
p
)
[
(
(
(
L
`1_3
)
|^
3
)
+
(
(
a
*
(
L
`1_3
)
)
*
(
(
L
`3_3
)
|^
2
)
)
)
,
(
b
*
(
(
L
`3_3
)
|^
3
)
)
]
is
V26
()
set
{
(
(
(
L
`1_3
)
|^
3
)
+
(
(
a
*
(
L
`1_3
)
)
*
(
(
L
`3_3
)
|^
2
)
)
)
,
(
b
*
(
(
L
`3_3
)
|^
3
)
)
}
is non
empty
finite
set
{
(
(
(
L
`1_3
)
|^
3
)
+
(
(
a
*
(
L
`1_3
)
)
*
(
(
L
`3_3
)
|^
2
)
)
)
}
is non
empty
trivial
finite
1
-element
set
{
{
(
(
(
L
`1_3
)
|^
3
)
+
(
(
a
*
(
L
`1_3
)
)
*
(
(
L
`3_3
)
|^
2
)
)
)
,
(
b
*
(
(
L
`3_3
)
|^
3
)
)
}
,
{
(
(
(
L
`1_3
)
|^
3
)
+
(
(
a
*
(
L
`1_3
)
)
*
(
(
L
`3_3
)
|^
2
)
)
)
}
}
is non
empty
finite
V49
()
set
the
addF
of
(
INT.Ring
p
)
.
[
(
(
(
L
`1_3
)
|^
3
)
+
(
(
a
*
(
L
`1_3
)
)
*
(
(
L
`3_3
)
|^
2
)
)
)
,
(
b
*
(
(
L
`3_3
)
|^
3
)
)
]
is
set
(
(
(
L
`2_3
)
|^
2
)
*
(
L
`3_3
)
)
-
(
(
(
(
L
`1_3
)
|^
3
)
+
(
(
a
*
(
L
`1_3
)
)
*
(
(
L
`3_3
)
|^
2
)
)
)
+
(
b
*
(
(
L
`3_3
)
|^
3
)
)
)
is
left_add-cancelable
right_add-cancelable
add-cancelable
right_complementable
Element
of the
carrier
of
(
INT.Ring
p
)
-
(
(
(
(
L
`1_3
)
|^
3
)
+
(
(
a
*
(
L
`1_3
)
)
*
(
(
L
`3_3
)
|^
2
)
)
)
+
(
b
*
(
(
L
`3_3
)
|^
3
)
)
)
is
left_add-cancelable
right_add-cancelable
add-cancelable
right_complementable
Element
of the
carrier
of
(
INT.Ring
p
)
(
(
(
L
`2_3
)
|^
2
)
*
(
L
`3_3
)
)
+
(
-
(
(
(
(
L
`1_3
)
|^
3
)
+
(
(
a
*
(
L
`1_3
)
)
*
(
(
L
`3_3
)
|^
2
)
)
)
+
(
b
*
(
(
L
`3_3
)
|^
3
)
)
)
)
is
left_add-cancelable
right_add-cancelable
add-cancelable
right_complementable
Element
of the
carrier
of
(
INT.Ring
p
)
the
addF
of
(
INT.Ring
p
)
.
(
(
(
(
L
`2_3
)
|^
2
)
*
(
L
`3_3
)
)
,
(
-
(
(
(
(
L
`1_3
)
|^
3
)
+
(
(
a
*
(
L
`1_3
)
)
*
(
(
L
`3_3
)
|^
2
)
)
)
+
(
b
*
(
(
L
`3_3
)
|^
3
)
)
)
)
) is
left_add-cancelable
right_add-cancelable
add-cancelable
right_complementable
Element
of the
carrier
of
(
INT.Ring
p
)
[
(
(
(
L
`2_3
)
|^
2
)
*
(
L
`3_3
)
)
,
(
-
(
(
(
(
L
`1_3
)
|^
3
)
+
(
(
a
*
(
L
`1_3
)
)
*
(
(
L
`3_3
)
|^
2
)
)
)
+
(
b
*
(
(
L
`3_3
)
|^
3
)
)
)
)
]
is
V26
()
set
{
(
(
(
L
`2_3
)
|^
2
)
*
(
L
`3_3
)
)
,
(
-
(
(
(
(
L
`1_3
)
|^
3
)
+
(
(
a
*
(
L
`1_3
)
)
*
(
(
L
`3_3
)
|^
2
)
)
)
+
(
b
*
(
(
L
`3_3
)
|^
3
)
)
)
)
}
is non
empty
finite
set
{
(
(
(
L
`2_3
)
|^
2
)
*
(
L
`3_3
)
)
}
is non
empty
trivial
finite
1
-element
set
{
{
(
(
(
L
`2_3
)
|^
2
)
*
(
L
`3_3
)
)
,
(
-
(
(
(
(
L
`1_3
)
|^
3
)
+
(
(
a
*
(
L
`1_3
)
)
*
(
(
L
`3_3
)
|^
2
)
)
)
+
(
b
*
(
(
L
`3_3
)
|^
3
)
)
)
)
}
,
{
(
(
(
L
`2_3
)
|^
2
)
*
(
L
`3_3
)
)
}
}
is non
empty
finite
V49
()
set
the
addF
of
(
INT.Ring
p
)
.
[
(
(
(
L
`2_3
)
|^
2
)
*
(
L
`3_3
)
)
,
(
-
(
(
(
(
L
`1_3
)
|^
3
)
+
(
(
a
*
(
L
`1_3
)
)
*
(
(
L
`3_3
)
|^
2
)
)
)
+
(
b
*
(
(
L
`3_3
)
|^
3
)
)
)
)
]
is
set
(
p
,
a
,
b
)
.
F
is
left_add-cancelable
right_add-cancelable
add-cancelable
right_complementable
Element
of the
carrier
of
(
INT.Ring
p
)
(
pp
*
(
L
`2_3
)
)
|^
2 is
left_add-cancelable
right_add-cancelable
add-cancelable
right_complementable
Element
of the
carrier
of
(
INT.Ring
p
)
(
power
(
INT.Ring
p
)
)
.
(
(
pp
*
(
L
`2_3
)
)
,2) is
set
[
(
pp
*
(
L
`2_3
)
)
,2
]
is
V26
()
set
{
(
pp
*
(
L
`2_3
)
)
,2
}
is non
empty
finite
set
{
(
pp
*
(
L
`2_3
)
)
}
is non
empty
trivial
finite
1
-element
set
{
{
(
pp
*
(
L
`2_3
)
)
,2
}
,
{
(
pp
*
(
L
`2_3
)
)
}
}
is non
empty
finite
V49
()
set
(
power
(
INT.Ring
p
)
)
.
[
(
pp
*
(
L
`2_3
)
)
,2
]
is
set
(
(
pp
*
(
L
`2_3
)
)
|^
2
)
*
(
pp
*
(
L
`3_3
)
)
is
left_add-cancelable
right_add-cancelable
add-cancelable
right_complementable
Element
of the
carrier
of
(
INT.Ring
p
)
the
multF
of
(
INT.Ring
p
)
.
(
(
(
pp
*
(
L
`2_3
)
)
|^
2
)
,
(
pp
*
(
L
`3_3
)
)
) is
left_add-cancelable
right_add-cancelable
add-cancelable
right_complementable
Element
of the
carrier
of
(
INT.Ring
p
)
[
(
(
pp
*
(
L
`2_3
)
)
|^
2
)
,
(
pp
*
(
L
`3_3
)
)
]
is
V26
()
set
{
(
(
pp
*
(
L
`2_3
)
)
|^
2
)
,
(
pp
*
(
L
`3_3
)
)
}
is non
empty
finite
set
{
(
(
pp
*
(
L
`2_3
)
)
|^
2
)
}
is non
empty
trivial
finite
1
-element
set
{
{
(
(
pp
*
(
L
`2_3
)
)
|^
2
)
,
(
pp
*
(
L
`3_3
)
)
}
,
{
(
(
pp
*
(
L
`2_3
)
)
|^
2
)
}
}
is non
empty
finite
V49
()
set
the
multF
of
(
INT.Ring
p
)
.
[
(
(
pp
*
(
L
`2_3
)
)
|^
2
)
,
(
pp
*
(
L
`3_3
)
)
]
is
set
(
pp
*
(
L
`1_3
)
)
|^
3 is
left_add-cancelable
right_add-cancelable
add-cancelable
right_complementable
Element
of the
carrier
of
(
INT.Ring
p
)
(
power
(
INT.Ring
p
)
)
.
(
(
pp
*
(
L
`1_3
)
)
,3) is
set
[
(
pp
*
(
L
`1_3
)
)
,3
]
is
V26
()
set
{
(
pp
*
(
L
`1_3
)
)
,3
}
is non
empty
finite
set
{
(
pp
*
(
L
`1_3
)
)
}
is non
empty
trivial
finite
1
-element
set
{
{
(
pp
*
(
L
`1_3
)
)
,3
}
,
{
(
pp
*
(
L
`1_3
)
)
}
}
is non
empty
finite
V49
()
set
(
power
(
INT.Ring
p
)
)
.
[
(
pp
*
(
L
`1_3
)
)
,3
]
is
set
a
*
(
pp
*
(
L
`1_3
)
)
is
left_add-cancelable
right_add-cancelable
add-cancelable
right_complementable
Element
of the
carrier
of
(
INT.Ring
p
)
the
multF
of
(
INT.Ring
p
)
.
(
a
,
(
pp
*
(
L
`1_3
)
)
) is
left_add-cancelable
right_add-cancelable
add-cancelable
right_complementable
Element
of the
carrier
of
(
INT.Ring
p
)
[
a
,
(
pp
*
(
L
`1_3
)
)
]
is
V26
()
set
{
a
,
(
pp
*
(
L
`1_3
)
)
}
is non
empty
finite
set
{
{
a
,
(
pp
*
(
L
`1_3
)
)
}
,
{
a
}
}
is non
empty
finite
V49
()
set
the
multF
of
(
INT.Ring
p
)
.
[
a
,
(
pp
*
(
L
`1_3
)
)
]
is
set
(
pp
*
(
L
`3_3
)
)
|^
2 is
left_add-cancelable
right_add-cancelable
add-cancelable
right_complementable
Element
of the
carrier
of
(
INT.Ring
p
)
(
power
(
INT.Ring
p
)
)
.
(
(
pp
*
(
L
`3_3
)
)
,2) is
set
[
(
pp
*
(
L
`3_3
)
)
,2
]
is
V26
()
set
{
(
pp
*
(
L
`3_3
)
)
,2
}
is non
empty
finite
set
{
(
pp
*
(
L
`3_3
)
)
}
is non
empty
trivial
finite
1
-element
set
{
{
(
pp
*
(
L
`3_3
)
)
,2
}
,
{
(
pp
*
(
L
`3_3
)
)
}
}
is non
empty
finite
V49
()
set
(
power
(
INT.Ring
p
)
)
.
[
(
pp
*
(
L
`3_3
)
)
,2
]
is
set
(
a
*
(
pp
*
(
L
`1_3
)
)
)
*
(
(
pp
*
(
L
`3_3
)
)
|^
2
)
is
left_add-cancelable
right_add-cancelable
add-cancelable
right_complementable
Element
of the
carrier
of
(
INT.Ring
p
)
the
multF
of
(
INT.Ring
p
)
.
(
(
a
*
(
pp
*
(
L
`1_3
)
)
)
,
(
(
pp
*
(
L
`3_3
)
)
|^
2
)
) is
left_add-cancelable
right_add-cancelable
add-cancelable
right_complementable
Element
of the
carrier
of
(
INT.Ring
p
)
[
(
a
*
(
pp
*
(
L
`1_3
)
)
)
,
(
(
pp
*
(
L
`3_3
)
)
|^
2
)
]
is
V26
()
set
{
(
a
*
(
pp
*
(
L
`1_3
)
)
)
,
(
(
pp
*
(
L
`3_3
)
)
|^
2
)
}
is non
empty
finite
set
{
(
a
*
(
pp
*
(
L
`1_3
)
)
)
}
is non
empty
trivial
finite
1
-element
set
{
{
(
a
*
(
pp
*
(
L
`1_3
)
)
)
,
(
(
pp
*
(
L
`3_3
)
)
|^
2
)
}
,
{
(
a
*
(
pp
*
(
L
`1_3
)
)
)
}
}
is non
empty
finite
V49
()
set
the
multF
of
(
INT.Ring
p
)
.
[
(
a
*
(
pp
*
(
L
`1_3
)
)
)
,
(
(
pp
*
(
L
`3_3
)
)
|^
2
)
]
is
set
(
(
pp
*
(
L
`1_3
)
)
|^
3
)
+
(
(
a
*
(
pp
*
(
L
`1_3
)
)
)
*
(
(
pp
*
(
L
`3_3
)
)
|^
2
)
)
is
left_add-cancelable
right_add-cancelable
add-cancelable
right_complementable
Element
of the
carrier
of
(
INT.Ring
p
)
the
addF
of
(
INT.Ring
p
)
.
(
(
(
pp
*
(
L
`1_3
)
)
|^
3
)
,
(
(
a
*
(
pp
*
(
L
`1_3
)
)
)
*
(
(
pp
*
(
L
`3_3
)
)
|^
2
)
)
) is
left_add-cancelable
right_add-cancelable
add-cancelable
right_complementable
Element
of the
carrier
of
(
INT.Ring
p
)
[
(
(
pp
*
(
L
`1_3
)
)
|^
3
)
,
(
(
a
*
(
pp
*
(
L
`1_3
)
)
)
*
(
(
pp
*
(
L
`3_3
)
)
|^
2
)
)
]
is
V26
()
set
{
(
(
pp
*
(
L
`1_3
)
)
|^
3
)
,
(
(
a
*
(
pp
*
(
L
`1_3
)
)
)
*
(
(
pp
*
(
L
`3_3
)
)
|^
2
)
)
}
is non
empty
finite
set
{
(
(
pp
*
(
L
`1_3
)
)
|^
3
)
}
is non
empty
trivial
finite
1
-element
set
{
{
(
(
pp
*
(
L
`1_3
)
)
|^
3
)
,
(
(
a
*
(
pp
*
(
L
`1_3
)
)
)
*
(
(
pp
*
(
L
`3_3
)
)
|^
2
)
)
}
,
{
(
(
pp
*
(
L
`1_3
)
)
|^
3
)
}
}
is non
empty
finite
V49
()
set
the
addF
of
(
INT.Ring
p
)
.
[
(
(
pp
*
(
L
`1_3
)
)
|^
3
)
,
(
(
a
*
(
pp
*
(
L
`1_3
)
)
)
*
(
(
pp
*
(
L
`3_3
)
)
|^
2
)
)
]
is
set
(
pp
*
(
L
`3_3
)
)
|^
3 is
left_add-cancelable
right_add-cancelable
add-cancelable
right_complementable
Element
of the
carrier
of
(
INT.Ring
p
)
(
power
(
INT.Ring
p
)
)
.
(
(
pp
*
(
L
`3_3
)
)
,3) is
set
[
(
pp
*
(
L
`3_3
)
)
,3
]
is
V26
()
set
{
(
pp
*
(
L
`3_3
)
)
,3
}
is non
empty
finite
set
{
{
(
pp
*
(
L
`3_3
)
)
,3
}
,
{
(
pp
*
(
L
`3_3
)
)
}
}
is non
empty
finite
V49
()
set
(
power
(
INT.Ring
p
)
)
.
[
(
pp
*
(
L
`3_3
)
)
,3
]
is
set
b
*
(
(
pp
*
(
L
`3_3
)
)
|^
3
)
is
left_add-cancelable
right_add-cancelable
add-cancelable
right_complementable
Element
of the
carrier
of
(
INT.Ring
p
)
the
multF
of
(
INT.Ring
p
)
.
(
b
,
(
(
pp
*
(
L
`3_3
)
)
|^
3
)
) is
left_add-cancelable
right_add-cancelable
add-cancelable
right_complementable
Element
of the
carrier
of
(
INT.Ring
p
)
[
b
,
(
(
pp
*
(
L
`3_3
)
)
|^
3
)
]
is
V26
()
set
{
b
,
(
(
pp
*
(
L
`3_3
)
)
|^
3
)
}
is non
empty
finite
set
{
{
b
,
(
(
pp
*
(
L
`3_3
)
)
|^
3
)
}
,
{
b
}
}
is non
empty
finite
V49
()
set
the
multF
of
(
INT.Ring
p
)
.
[
b
,
(
(
pp
*
(
L
`3_3
)
)
|^
3
)
]
is
set
(
(
(
pp
*
(
L
`1_3
)
)
|^
3
)
+
(
(
a
*
(
pp
*
(
L
`1_3
)
)
)
*
(
(
pp
*
(
L
`3_3
)
)
|^
2
)
)
)
+
(
b
*
(
(
pp
*
(
L
`3_3
)
)
|^
3
)
)
is
left_add-cancelable
right_add-cancelable
add-cancelable
right_complementable
Element
of the
carrier
of
(
INT.Ring
p
)
the
addF
of
(
INT.Ring
p
)
.
(
(
(
(
pp
*
(
L
`1_3
)
)
|^
3
)
+
(
(
a
*
(
pp
*
(
L
`1_3
)
)
)
*
(
(
pp
*
(
L
`3_3
)
)
|^
2
)
)
)
,
(
b
*
(
(
pp
*
(
L
`3_3
)
)
|^
3
)
)
) is
left_add-cancelable
right_add-cancelable
add-cancelable
right_complementable
Element
of the
carrier
of
(
INT.Ring
p
)
[
(
(
(
pp
*
(
L
`1_3
)
)
|^
3
)
+
(
(
a
*
(
pp
*
(
L
`1_3
)
)
)
*
(
(
pp
*
(
L
`3_3
)
)
|^
2
)
)
)
,
(
b
*
(
(
pp
*
(
L
`3_3
)
)
|^
3
)
)
]
is
V26
()
set
{
(
(
(
pp
*
(
L
`1_3
)
)
|^
3
)
+
(
(
a
*
(
pp
*
(
L
`1_3
)
)
)
*
(
(
pp
*
(
L
`3_3
)
)
|^
2
)
)
)
,
(
b
*
(
(
pp
*
(
L
`3_3
)
)
|^
3
)
)
}
is non
empty
finite
set
{
(
(
(
pp
*
(
L
`1_3
)
)
|^
3
)
+
(
(
a
*
(
pp
*
(
L
`1_3
)
)
)
*
(
(
pp
*
(
L
`3_3
)
)
|^
2
)
)
)
}
is non
empty
trivial
finite
1
-element
set
{
{
(
(
(
pp
*
(
L
`1_3
)
)
|^
3
)
+
(
(
a
*
(
pp
*
(
L
`1_3
)
)
)
*
(
(
pp
*
(
L
`3_3
)
)
|^
2
)
)
)
,
(
b
*
(
(
pp
*
(
L
`3_3
)
)
|^
3
)
)
}
,
{
(
(
(
pp
*
(
L
`1_3
)
)
|^
3
)
+
(
(
a
*
(
pp
*
(
L
`1_3
)
)
)
*
(
(
pp
*
(
L
`3_3
)
)
|^
2
)
)
)
}
}
is non
empty
finite
V49
()
set
the
addF
of
(
INT.Ring
p
)
.
[
(
(
(
pp
*
(
L
`1_3
)
)
|^
3
)
+
(
(
a
*
(
pp
*
(
L
`1_3
)
)
)
*
(
(
pp
*
(
L
`3_3
)
)
|^
2
)
)
)
,
(
b
*
(
(
pp
*
(
L
`3_3
)
)
|^
3
)
)
]
is
set
(
(
(
pp
*
(
L
`2_3
)
)
|^
2
)
*
(
pp
*
(
L
`3_3
)
)
)
-
(
(
(
(
pp
*
(
L
`1_3
)
)
|^
3
)
+
(
(
a
*
(
pp
*
(
L
`1_3
)
)
)
*
(
(
pp
*
(
L
`3_3
)
)
|^
2
)
)
)
+
(
b
*
(
(
pp
*
(
L
`3_3
)
)
|^
3
)
)
)
is
left_add-cancelable
right_add-cancelable
add-cancelable
right_complementable
Element
of the
carrier
of
(
INT.Ring
p
)
-
(
(
(
(
pp
*
(
L
`1_3
)
)
|^
3
)
+
(
(
a
*
(
pp
*
(
L
`1_3
)
)
)
*
(
(
pp
*
(
L
`3_3
)
)
|^
2
)
)
)
+
(
b
*
(
(
pp
*
(
L
`3_3
)
)
|^
3
)
)
)
is
left_add-cancelable
right_add-cancelable
add-cancelable
right_complementable
Element
of the
carrier
of
(
INT.Ring
p
)
(
(
(
pp
*
(
L
`2_3
)
)
|^
2
)
*
(
pp
*
(
L
`3_3
)
)
)
+
(
-
(
(
(
(
pp
*
(
L
`1_3
)
)
|^
3
)
+
(
(
a
*
(
pp
*
(
L
`1_3
)
)
)
*
(
(
pp
*
(
L
`3_3
)
)
|^
2
)
)
)
+
(
b
*
(
(
pp
*
(
L
`3_3
)
)
|^
3
)
)
)
)
is
left_add-cancelable
right_add-cancelable
add-cancelable
right_complementable
Element
of the
carrier
of
(
INT.Ring
p
)
the
addF
of
(
INT.Ring
p
)
.
(
(
(
(
pp
*
(
L
`2_3
)
)
|^
2
)
*
(
pp
*
(
L
`3_3
)
)
)
,
(
-
(
(
(
(
pp
*
(
L
`1_3
)
)
|^
3
)
+
(
(
a
*
(
pp
*
(
L
`1_3
)
)
)
*
(
(
pp
*
(
L
`3_3
)
)
|^
2
)
)
)
+
(
b
*
(
(
pp
*
(
L
`3_3
)
)
|^
3
)
)
)
)
) is
left_add-cancelable
right_add-cancelable
add-cancelable
right_complementable
Element
of the
carrier
of
(
INT.Ring
p
)
[
(
(
(
pp
*
(
L
`2_3
)
)
|^
2
)
*
(
pp
*
(
L
`3_3
)
)
)
,
(
-
(
(
(
(
pp
*
(
L
`1_3
)
)
|^
3
)
+
(
(
a
*
(
pp
*
(
L
`1_3
)
)
)
*
(
(
pp
*
(
L
`3_3
)
)
|^
2
)
)
)
+
(
b
*
(
(
pp
*
(
L
`3_3
)
)
|^
3
)
)
)
)
]
is
V26
()
set
{
(
(
(
pp
*
(
L
`2_3
)
)
|^
2
)
*
(
pp
*
(
L
`3_3
)
)
)
,
(
-
(
(
(
(
pp
*
(
L
`1_3
)
)
|^
3
)
+
(
(
a
*
(
pp
*
(
L
`1_3
)
)
)
*
(
(
pp
*
(
L
`3_3
)
)
|^
2
)
)
)
+
(
b
*
(
(
pp
*
(
L
`3_3
)
)
|^
3
)
)
)
)
}
is non
empty
finite
set
{
(
(
(
pp
*
(
L
`2_3
)
)
|^
2
)
*
(
pp
*
(
L
`3_3
)
)
)
}
is non
empty
trivial
finite
1
-element
set
{
{
(
(
(
pp
*
(
L
`2_3
)
)
|^
2
)
*
(
pp
*
(
L
`3_3
)
)
)
,
(
-
(
(
(
(
pp
*
(
L
`1_3
)
)
|^
3
)
+
(
(
a
*
(
pp
*
(
L
`1_3
)
)
)
*
(
(
pp
*
(
L
`3_3
)
)
|^
2
)
)
)
+
(
b
*
(
(
pp
*
(
L
`3_3
)
)
|^
3
)
)
)
)
}
,
{
(
(
(
pp
*
(
L
`2_3
)
)
|^
2
)
*
(
pp
*
(
L
`3_3
)
)
)
}
}
is non
empty
finite
V49
()
set
the
addF
of
(
INT.Ring
p
)
.
[
(
(
(
pp
*
(
L
`2_3
)
)
|^
2
)
*
(
pp
*
(
L
`3_3
)
)
)
,
(
-
(
(
(
(
pp
*
(
L
`1_3
)
)
|^
3
)
+
(
(
a
*
(
pp
*
(
L
`1_3
)
)
)
*
(
(
pp
*
(
L
`3_3
)
)
|^
2
)
)
)
+
(
b
*
(
(
pp
*
(
L
`3_3
)
)
|^
3
)
)
)
)
]
is
set
pp
|^
2 is
left_add-cancelable
right_add-cancelable
add-cancelable
right_complementable
Element
of the
carrier
of
(
INT.Ring
p
)
(
power
(
INT.Ring
p
)
)
.
(
pp
,2) is
set
[
pp
,2
]
is
V26
()
set
{
pp
,2
}
is non
empty
finite
set
{
{
pp
,2
}
,
{
pp
}
}
is non
empty
finite
V49
()
set
(
power
(
INT.Ring
p
)
)
.
[
pp
,2
]
is
set
(
pp
|^
2
)
*
(
(
L
`2_3
)
|^
2
)
is
left_add-cancelable
right_add-cancelable
add-cancelable
right_complementable
Element
of the
carrier
of
(
INT.Ring
p
)
the
multF
of
(
INT.Ring
p
)
.
(
(
pp
|^
2
)
,
(
(
L
`2_3
)
|^
2
)
) is
left_add-cancelable
right_add-cancelable
add-cancelable
right_complementable
Element
of the
carrier
of
(
INT.Ring
p
)
[
(
pp
|^
2
)
,
(
(
L
`2_3
)
|^
2
)
]
is
V26
()
set
{
(
pp
|^
2
)
,
(
(
L
`2_3
)
|^
2
)
}
is non
empty
finite
set
{
(
pp
|^
2
)
}
is non
empty
trivial
finite
1
-element
set
{
{
(
pp
|^
2
)
,
(
(
L
`2_3
)
|^
2
)
}
,
{
(
pp
|^
2
)
}
}
is non
empty
finite
V49
()
set
the
multF
of
(
INT.Ring
p
)
.
[
(
pp
|^
2
)
,
(
(
L
`2_3
)
|^
2
)
]
is
set
(
(
pp
|^
2
)
*
(
(
L
`2_3
)
|^
2
)
)
*
(
pp
*
(
L
`3_3
)
)
is
left_add-cancelable
right_add-cancelable
add-cancelable
right_complementable
Element
of the
carrier
of
(
INT.Ring
p
)
the
multF
of
(
INT.Ring
p
)
.
(
(
(
pp
|^
2
)
*
(
(
L
`2_3
)
|^
2
)
)
,
(
pp
*
(
L
`3_3
)
)
) is
left_add-cancelable
right_add-cancelable
add-cancelable
right_complementable
Element
of the
carrier
of
(
INT.Ring
p
)
[
(
(
pp
|^
2
)
*
(
(
L
`2_3
)
|^
2
)
)
,
(
pp
*
(
L
`3_3
)
)
]
is
V26
()
set
{
(
(
pp
|^
2
)
*
(
(
L
`2_3
)
|^
2
)
)
,
(
pp
*
(
L
`3_3
)
)
}
is non
empty
finite
set
{
(
(
pp
|^
2
)
*
(
(
L
`2_3
)
|^
2
)
)
}
is non
empty
trivial
finite
1
-element
set
{
{
(
(
pp
|^
2
)
*
(
(
L
`2_3
)
|^
2
)
)
,
(
pp
*
(
L
`3_3
)
)
}
,
{
(
(
pp
|^
2
)
*
(
(
L
`2_3
)
|^
2
)
)
}
}
is non
empty
finite
V49
()
set
the
multF
of
(
INT.Ring
p
)
.
[
(
(
pp
|^
2
)
*
(
(
L
`2_3
)
|^
2
)
)
,
(
pp
*
(
L
`3_3
)
)
]
is
set
(
(
(
pp
|^
2
)
*
(
(
L
`2_3
)
|^
2
)
)
*
(
pp
*
(
L
`3_3
)
)
)
-
(
(
(
(
pp
*
(
L
`1_3
)
)
|^
3
)
+
(
(
a
*
(
pp
*
(
L
`1_3
)
)
)
*
(
(
pp
*
(
L
`3_3
)
)
|^
2
)
)
)
+
(
b
*
(
(
pp
*
(
L
`3_3
)
)
|^
3
)
)
)
is
left_add-cancelable
right_add-cancelable
add-cancelable
right_complementable
Element
of the
carrier
of
(
INT.Ring
p
)
(
(
(
pp
|^
2
)
*
(
(
L
`2_3
)
|^
2
)
)
*
(
pp
*
(
L
`3_3
)
)
)
+
(
-
(
(
(
(
pp
*
(
L
`1_3
)
)
|^
3
)
+
(
(
a
*
(
pp
*
(
L
`1_3
)
)
)
*
(
(
pp
*
(
L
`3_3
)
)
|^
2
)
)
)
+
(
b
*
(
(
pp
*
(
L
`3_3
)
)
|^
3
)
)
)
)
is
left_add-cancelable
right_add-cancelable
add-cancelable
right_complementable
Element
of the
carrier
of
(
INT.Ring
p
)
the
addF
of
(
INT.Ring
p
)
.
(
(
(
(
pp
|^
2
)
*
(
(
L
`2_3
)
|^
2
)
)
*
(
pp
*
(
L
`3_3
)
)
)
,
(
-
(
(
(
(
pp
*
(
L
`1_3
)
)
|^
3
)
+
(
(
a
*
(
pp
*
(
L
`1_3
)
)
)
*
(
(
pp
*
(
L
`3_3
)
)
|^
2
)
)
)
+
(
b
*
(
(
pp
*
(
L
`3_3
)
)
|^
3
)
)
)
)
) is
left_add-cancelable
right_add-cancelable
add-cancelable
right_complementable
Element
of the
carrier
of
(
INT.Ring
p
)
[
(
(
(
pp
|^
2
)
*
(
(
L
`2_3
)
|^
2
)
)
*
(
pp
*
(
L
`3_3
)
)
)
,
(
-
(
(
(
(
pp
*
(
L
`1_3
)
)
|^
3
)
+
(
(
a
*
(
pp
*
(
L
`1_3
)
)
)
*
(
(
pp
*
(
L
`3_3
)
)
|^
2
)
)
)
+
(
b
*
(
(
pp
*
(
L
`3_3
)
)
|^
3
)
)
)
)
]
is
V26
()
set
{
(
(
(
pp
|^
2
)
*
(
(
L
`2_3
)
|^
2
)
)
*
(
pp
*
(
L
`3_3
)
)
)
,
(
-
(
(
(
(
pp
*
(
L
`1_3
)
)
|^
3
)
+
(
(
a
*
(
pp
*
(
L
`1_3
)
)
)
*
(
(
pp
*
(
L
`3_3
)
)
|^
2
)
)
)
+
(
b
*
(
(
pp
*
(
L
`3_3
)
)
|^
3
)
)
)
)
}
is non
empty
finite
set
{
(
(
(
pp
|^
2
)
*
(
(
L
`2_3
)
|^
2
)
)
*
(
pp
*
(
L
`3_3
)
)
)
}
is non
empty
trivial
finite
1
-element
set
{
{
(
(
(
pp
|^
2
)
*
(
(
L
`2_3
)
|^
2
)
)
*
(
pp
*
(
L
`3_3
)
)
)
,
(
-
(
(
(
(
pp
*
(
L
`1_3
)
)
|^
3
)
+
(
(
a
*
(
pp
*
(
L
`1_3
)
)
)
*
(
(
pp
*
(
L
`3_3
)
)
|^
2
)
)
)
+
(
b
*
(
(
pp
*
(
L
`3_3
)
)
|^
3
)
)
)
)
}
,
{
(
(
(
pp
|^
2
)
*
(
(
L
`2_3
)
|^
2
)
)
*
(
pp
*
(
L
`3_3
)
)
)
}
}
is non
empty
finite
V49
()
set
the
addF
of
(
INT.Ring
p
)
.
[
(
(
(
pp
|^
2
)
*
(
(
L
`2_3
)
|^
2
)
)
*
(
pp
*
(
L
`3_3
)
)
)
,
(
-
(
(
(
(
pp
*
(
L
`1_3
)
)
|^
3
)
+
(
(
a
*
(
pp
*
(
L
`1_3
)
)
)
*
(
(
pp
*
(
L
`3_3
)
)
|^
2
)
)
)
+
(
b
*
(
(
pp
*
(
L
`3_3
)
)
|^
3
)
)
)
)
]
is
set
(
(
pp
|^
2
)
*
(
(
L
`2_3
)
|^
2
)
)
*
pp
is
left_add-cancelable
right_add-cancelable
add-cancelable
right_complementable
Element
of the
carrier
of
(
INT.Ring
p
)
the
multF
of
(
INT.Ring
p
)
.
(
(
(
pp
|^
2
)
*
(
(
L
`2_3
)
|^
2
)
)
,
pp
) is
left_add-cancelable
right_add-cancelable
add-cancelable
right_complementable
Element
of the
carrier
of
(
INT.Ring
p
)
[
(
(
pp
|^
2
)
*
(
(
L
`2_3
)
|^
2
)
)
,
pp
]
is
V26
()
set
{
(
(
pp
|^
2
)
*
(
(
L
`2_3
)
|^
2
)
)
,
pp
}
is non
empty
finite
set
{
{
(
(
pp
|^
2
)
*
(
(
L
`2_3
)
|^
2
)
)
,
pp
}
,
{
(
(
pp
|^
2
)
*
(
(
L
`2_3
)
|^
2
)
)
}
}
is non
empty
finite
V49
()
set
the
multF
of
(
INT.Ring
p
)
.
[
(
(
pp
|^
2
)
*
(
(
L
`2_3
)
|^
2
)
)
,
pp
]
is
set
(
(
(
pp
|^
2
)
*
(
(
L
`2_3
)
|^
2
)
)
*
pp
)
*
(
L
`3_3
)
is
left_add-cancelable
right_add-cancelable
add-cancelable
right_complementable
Element
of the
carrier
of
(
INT.Ring
p
)
the
multF
of
(
INT.Ring
p
)
.
(
(
(
(
pp
|^
2
)
*
(
(
L
`2_3
)
|^
2
)
)
*
pp
)
,
(
L
`3_3
)
) is
left_add-cancelable
right_add-cancelable
add-cancelable
right_complementable
Element
of the
carrier
of
(
INT.Ring
p
)
[
(
(
(
pp
|^
2
)
*
(
(
L
`2_3
)
|^
2
)
)
*
pp
)
,
(
L
`3_3
)
]
is
V26
()
set
{
(
(
(
pp
|^
2
)
*
(
(
L
`2_3
)
|^
2
)
)
*
pp
)
,
(
L
`3_3
)
}
is non
empty
finite
set
{
(
(
(
pp
|^
2
)
*
(
(
L
`2_3
)
|^
2
)
)
*
pp
)
}
is non
empty
trivial
finite
1
-element
set
{
{
(
(
(
pp
|^
2
)
*
(
(
L
`2_3
)
|^
2
)
)
*
pp
)
,
(
L
`3_3
)
}
,
{
(
(
(
pp
|^
2
)
*
(
(
L
`2_3
)
|^
2
)
)
*
pp
)
}
}
is non
empty
finite
V49
()
set
the
multF
of
(
INT.Ring
p
)
.
[
(
(
(
pp
|^
2
)
*
(
(
L
`2_3
)
|^
2
)
)
*
pp
)
,
(
L
`3_3
)
]
is
set
(
(
(
(
pp
|^
2
)
*
(
(
L
`2_3
)
|^
2
)
)
*
pp
)
*
(
L
`3_3
)
)
-
(
(
(
(
pp
*
(
L
`1_3
)
)
|^
3
)
+
(
(
a
*
(
pp
*
(
L
`1_3
)
)
)
*
(
(
pp
*
(
L
`3_3
)
)
|^
2
)
)
)
+
(
b
*
(
(
pp
*
(
L
`3_3
)
)
|^
3
)
)
)
is
left_add-cancelable
right_add-cancelable
add-cancelable
right_complementable
Element
of the
carrier
of
(
INT.Ring
p
)
(
(
(
(
pp
|^
2
)
*
(
(
L
`2_3
)
|^
2
)
)
*
pp
)
*
(
L
`3_3
)
)
+
(
-
(
(
(
(
pp
*
(
L
`1_3
)
)
|^
3
)
+
(
(
a
*
(
pp
*
(
L
`1_3
)
)
)
*
(
(
pp
*
(
L
`3_3
)
)
|^
2
)
)
)
+
(
b
*
(
(
pp
*
(
L
`3_3
)
)
|^
3
)
)
)
)
is
left_add-cancelable
right_add-cancelable
add-cancelable
right_complementable
Element
of the
carrier
of
(
INT.Ring
p
)
the
addF
of
(
INT.Ring
p
)
.
(
(
(
(
(
pp
|^
2
)
*
(
(
L
`2_3
)
|^
2
)
)
*
pp
)
*
(
L
`3_3
)
)
,
(
-
(
(
(
(
pp
*
(
L
`1_3
)
)
|^
3
)
+
(
(
a
*
(
pp
*
(
L
`1_3
)
)
)
*
(
(
pp
*
(
L
`3_3
)
)
|^
2
)
)
)
+
(
b
*
(
(
pp
*
(
L
`3_3
)
)
|^
3
)
)
)
)
) is
left_add-cancelable
right_add-cancelable
add-cancelable
right_complementable
Element
of the
carrier
of
(
INT.Ring
p
)
[
(
(
(
(
pp
|^
2
)
*
(
(
L
`2_3
)
|^
2
)
)
*
pp
)
*
(
L
`3_3
)
)
,
(
-
(
(
(
(
pp
*
(
L
`1_3
)
)
|^
3
)
+
(
(
a
*
(
pp
*
(
L
`1_3
)
)
)
*
(
(
pp
*
(
L
`3_3
)
)
|^
2
)
)
)
+
(
b
*
(
(
pp
*
(
L
`3_3
)
)
|^
3
)
)
)
)
]
is
V26
()
set
{
(
(
(
(
pp
|^
2
)
*
(
(
L
`2_3
)
|^
2
)
)
*
pp
)
*
(
L
`3_3
)
)
,
(
-
(
(
(
(
pp
*
(
L
`1_3
)
)
|^
3
)
+
(
(
a
*
(
pp
*
(
L
`1_3
)
)
)
*
(
(
pp
*
(
L
`3_3
)
)
|^
2
)
)
)
+
(
b
*
(
(
pp
*
(
L
`3_3
)
)
|^
3
)
)
)
)
}
is non
empty
finite
set
{
(
(
(
(
pp
|^
2
)
*
(
(
L
`2_3
)
|^
2
)
)
*
pp
)
*
(
L
`3_3
)
)
}
is non
empty
trivial
finite
1
-element
set
{
{
(
(
(
(
pp
|^
2
)
*
(
(
L
`2_3
)
|^
2
)
)
*
pp
)
*
(
L
`3_3
)
)
,
(
-
(
(
(
(
pp
*
(
L
`1_3
)
)
|^
3
)
+
(
(
a
*
(
pp
*
(
L
`1_3
)
)
)
*
(
(
pp
*
(
L
`3_3
)
)
|^
2
)
)
)
+
(
b
*
(
(
pp
*
(
L
`3_3
)
)
|^
3
)
)
)
)
}
,
{
(
(
(
(
pp
|^
2
)
*
(
(
L
`2_3
)
|^
2
)
)
*
pp
)
*
(
L
`3_3
)
)
}
}
is non
empty
finite
V49
()
set
the
addF
of
(
INT.Ring
p
)
.
[
(
(
(
(
pp
|^
2
)
*
(
(
L
`2_3
)
|^
2
)
)
*
pp
)
*
(
L
`3_3
)
)
,
(
-
(
(
(
(
pp
*
(
L
`1_3
)
)
|^
3
)
+
(
(
a
*
(
pp
*
(
L
`1_3
)
)
)
*
(
(
pp
*
(
L
`3_3
)
)
|^
2
)
)
)
+
(
b
*
(
(
pp
*
(
L
`3_3
)
)
|^
3
)
)
)
)
]
is
set
(
pp
|^
2
)
*
pp
is
left_add-cancelable
right_add-cancelable
add-cancelable
right_complementable
Element
of the
carrier
of
(
INT.Ring
p
)
the
multF
of
(
INT.Ring
p
)
.
(
(
pp
|^
2
)
,
pp
) is
left_add-cancelable
right_add-cancelable
add-cancelable
right_complementable
Element
of the
carrier
of
(
INT.Ring
p
)
[
(
pp
|^
2
)
,
pp
]
is
V26
()
set
{
(
pp
|^
2
)
,
pp
}
is non
empty
finite
set
{
{
(
pp
|^
2
)
,
pp
}
,
{
(
pp
|^
2
)
}
}
is non
empty
finite
V49
()
set
the
multF
of
(
INT.Ring
p
)
.
[
(
pp
|^
2
)
,
pp
]
is
set
(
(
pp
|^
2
)
*
pp
)
*
(
(
L
`2_3
)
|^
2
)
is
left_add-cancelable
right_add-cancelable
add-cancelable
right_complementable
Element
of the
carrier
of
(
INT.Ring
p
)
the
multF
of
(
INT.Ring
p
)
.
(
(
(
pp
|^
2
)
*
pp
)
,
(
(
L
`2_3
)
|^
2
)
) is
left_add-cancelable
right_add-cancelable
add-cancelable
right_complementable
Element
of the
carrier
of
(
INT.Ring
p
)
[
(
(
pp
|^
2
)
*
pp
)
,
(
(
L
`2_3
)
|^
2
)
]
is
V26
()
set
{
(
(
pp
|^
2
)
*
pp
)
,
(
(
L
`2_3
)
|^
2
)
}
is non
empty
finite
set
{
(
(
pp
|^
2
)
*
pp
)
}
is non
empty
trivial
finite
1
-element
set
{
{
(
(
pp
|^
2
)
*
pp
)
,
(
(
L
`2_3
)
|^
2
)
}
,
{
(
(
pp
|^
2
)
*
pp
)
}
}
is non
empty
finite
V49
()
set
the
multF
of
(
INT.Ring
p
)
.
[
(
(
pp
|^
2
)
*
pp
)
,
(
(
L
`2_3
)
|^
2
)
]
is
set
(
(
(
pp
|^
2
)
*
pp
)
*
(
(
L
`2_3
)
|^
2
)
)
*
(
L
`3_3
)
is
left_add-cancelable
right_add-cancelable
add-cancelable
right_complementable
Element
of the
carrier
of
(
INT.Ring
p
)
the
multF
of
(
INT.Ring
p
)
.
(
(
(
(
pp
|^
2
)
*
pp
)
*
(
(
L
`2_3
)
|^
2
)
)
,
(
L
`3_3
)
) is
left_add-cancelable
right_add-cancelable
add-cancelable
right_complementable
Element
of the
carrier
of
(
INT.Ring
p
)
[
(
(
(
pp
|^
2
)
*
pp
)
*
(
(
L
`2_3
)
|^
2
)
)
,
(
L
`3_3
)
]
is
V26
()
set
{
(
(
(
pp
|^
2
)
*
pp
)
*
(
(
L
`2_3
)
|^
2
)
)
,
(
L
`3_3
)
}
is non
empty
finite
set
{
(
(
(
pp
|^
2
)
*
pp
)
*
(
(
L
`2_3
)
|^
2
)
)
}
is non
empty
trivial
finite
1
-element
set
{
{
(
(
(
pp
|^
2
)
*
pp
)
*
(
(
L
`2_3
)
|^
2
)
)
,
(
L
`3_3
)
}
,
{
(
(
(
pp
|^
2
)
*
pp
)
*
(
(
L
`2_3
)
|^
2
)
)
}
}
is non
empty
finite
V49
()
set
the
multF
of
(
INT.Ring
p
)
.
[
(
(
(
pp
|^
2
)
*
pp
)
*
(
(
L
`2_3
)
|^
2
)
)
,
(
L
`3_3
)
]
is
set
(
(
(
(
pp
|^
2
)
*
pp
)
*
(
(
L
`2_3
)
|^
2
)
)
*
(
L
`3_3
)
)
-
(
(
(
(
pp
*
(
L
`1_3
)
)
|^
3
)
+
(
(
a
*
(
pp
*
(
L
`1_3
)
)
)
*
(
(
pp
*
(
L
`3_3
)
)
|^
2
)
)
)
+
(
b
*
(
(
pp
*
(
L
`3_3
)
)
|^
3
)
)
)
is
left_add-cancelable
right_add-cancelable
add-cancelable
right_complementable
Element
of the
carrier
of
(
INT.Ring
p
)
(
(
(
(
pp
|^
2
)
*
pp
)
*
(
(
L
`2_3
)
|^
2
)
)
*
(
L
`3_3
)
)
+
(
-
(
(
(
(
pp
*
(
L
`1_3
)
)
|^
3
)
+
(
(
a
*
(
pp
*
(
L
`1_3
)
)
)
*
(
(
pp
*
(
L
`3_3
)
)
|^
2
)
)
)
+
(
b
*
(
(
pp
*
(
L
`3_3
)
)
|^
3
)
)
)
)
is
left_add-cancelable
right_add-cancelable
add-cancelable
right_complementable
Element
of the
carrier
of
(
INT.Ring
p
)
the
addF
of
(
INT.Ring
p
)
.
(
(
(
(
(
pp
|^
2
)
*
pp
)
*
(
(
L
`2_3
)
|^
2
)
)
*
(
L
`3_3
)
)
,
(
-
(
(
(
(
pp
*
(
L
`1_3
)
)
|^
3
)
+
(
(
a
*
(
pp
*
(
L
`1_3
)
)
)
*
(
(
pp
*
(
L
`3_3
)
)
|^
2
)
)
)
+
(
b
*
(
(
pp
*
(
L
`3_3
)
)
|^
3
)
)
)
)
) is
left_add-cancelable
right_add-cancelable
add-cancelable
right_complementable
Element
of the
carrier
of
(
INT.Ring
p
)
[
(
(
(
(
pp
|^
2
)
*
pp
)
*
(
(
L
`2_3
)
|^
2
)
)
*
(
L
`3_3
)
)
,
(
-
(
(
(
(
pp
*
(
L
`1_3
)
)
|^
3
)
+
(
(
a
*
(
pp
*
(
L
`1_3
)
)
)
*
(
(
pp
*
(
L
`3_3
)
)
|^
2
)
)
)
+
(
b
*
(
(
pp
*
(
L
`3_3
)
)
|^
3
)
)
)
)
]
is
V26
()
set
{
(
(
(
(
pp
|^
2
)
*
pp
)
*
(
(
L
`2_3
)
|^
2
)
)
*
(
L
`3_3
)
)
,
(
-
(
(
(
(
pp
*
(
L
`1_3
)
)
|^
3
)
+
(
(
a
*
(
pp
*
(
L
`1_3
)
)
)
*
(
(
pp
*
(
L
`3_3
)
)
|^
2
)
)
)
+
(
b
*
(
(
pp
*
(
L
`3_3
)
)
|^
3
)
)
)
)
}
is non
empty
finite
set
{
(
(
(
(
pp
|^
2
)
*
pp
)
*
(
(
L
`2_3
)
|^
2
)
)
*
(
L
`3_3
)
)
}
is non
empty
trivial
finite
1
-element
set
{
{
(
(
(
(
pp
|^
2
)
*
pp
)
*
(
(
L
`2_3
)
|^
2
)
)
*
(
L
`3_3
)
)
,
(
-
(
(
(
(
pp
*
(
L
`1_3
)
)
|^
3
)
+
(
(
a
*
(
pp
*
(
L
`1_3
)
)
)
*
(
(
pp
*
(
L
`3_3
)
)
|^
2
)
)
)
+
(
b
*
(
(
pp
*
(
L
`3_3
)
)
|^
3
)
)
)
)
}
,
{
(
(
(
(
pp
|^
2
)
*
pp
)
*
(
(
L
`2_3
)
|^
2
)
)
*
(
L
`3_3
)
)
}
}
is non
empty
finite
V49
()
set
the
addF
of
(
INT.Ring
p
)
.
[
(
(
(
(
pp
|^
2
)
*
pp
)
*
(
(
L
`2_3
)
|^
2
)
)
*
(
L
`3_3
)
)
,
(
-
(
(
(
(
pp
*
(
L
`1_3
)
)
|^
3
)
+
(
(
a
*
(
pp
*
(
L
`1_3
)
)
)
*
(
(
pp
*
(
L
`3_3
)
)
|^
2
)
)
)
+
(
b
*
(
(
pp
*
(
L
`3_3
)
)
|^
3
)
)
)
)
]
is
set
2
+
1 is non
empty
V4
()
V5
()
V6
()
V10
()
V11
()
V12
()
integer
ext-real
positive
non
negative
finite
cardinal
V113
()
V117
()
V118
()
V119
()
V120
()
V121
()
V122
()
Element
of
NAT
pp
|^
(
2
+
1
)
is
left_add-cancelable
right_add-cancelable
add-cancelable
right_complementable
Element
of the
carrier
of
(
INT.Ring
p
)
(
power
(
INT.Ring
p
)
)
.
(
pp
,
(
2
+
1
)
) is
set
[
pp
,
(
2
+
1
)
]
is
V26
()
set
{
pp
,
(
2
+
1
)
}
is non
empty
finite
set
{
{
pp
,
(
2
+
1
)
}
,
{
pp
}
}
is non
empty
finite
V49
()
set
(
power
(
INT.Ring
p
)
)
.
[
pp
,
(
2
+
1
)
]
is
set
(
pp
|^
(
2
+
1
)
)
*
(
(
L
`2_3
)
|^
2
)
is
left_add-cancelable
right_add-cancelable
add-cancelable
right_complementable
Element
of the
carrier
of
(
INT.Ring
p
)
the
multF
of
(
INT.Ring
p
)
.
(
(
pp
|^
(
2
+
1
)
)
,
(
(
L
`2_3
)
|^
2
)
) is
left_add-cancelable
right_add-cancelable
add-cancelable
right_complementable
Element
of the
carrier
of
(
INT.Ring
p
)
[
(
pp
|^
(
2
+
1
)
)
,
(
(
L
`2_3
)
|^
2
)
]
is
V26
()
set
{
(
pp
|^
(
2
+
1
)
)
,
(
(
L
`2_3
)
|^
2
)
}
is non
empty
finite
set
{
(
pp
|^
(
2
+
1
)
)
}
is non
empty
trivial
finite
1
-element
set
{
{
(
pp
|^
(
2
+
1
)
)
,
(
(
L
`2_3
)
|^
2
)
}
,
{
(
pp
|^
(
2
+
1
)
)
}
}
is non
empty
finite
V49
()
set
the
multF
of
(
INT.Ring
p
)
.
[
(
pp
|^
(
2
+
1
)
)
,
(
(
L
`2_3
)
|^
2
)
]
is
set
(
(
pp
|^
(
2
+
1
)
)
*
(
(
L
`2_3
)
|^
2
)
)
*
(
L
`3_3
)
is
left_add-cancelable
right_add-cancelable
add-cancelable
right_complementable
Element
of the
carrier
of
(
INT.Ring
p
)
the
multF
of
(
INT.Ring
p
)
.
(
(
(
pp
|^
(
2
+
1
)
)
*
(
(
L
`2_3
)
|^
2
)
)
,
(
L
`3_3
)
) is
left_add-cancelable
right_add-cancelable
add-cancelable
right_complementable
Element
of the
carrier
of
(
INT.Ring
p
)
[
(
(
pp
|^
(
2
+
1
)
)
*
(
(
L
`2_3
)
|^
2
)
)
,
(
L
`3_3
)
]
is
V26
()
set
{
(
(
pp
|^
(
2
+
1
)
)
*
(
(
L
`2_3
)
|^
2
)
)
,
(
L
`3_3
)
}
is non
empty
finite
set
{
(
(
pp
|^
(
2
+
1
)
)
*
(
(
L
`2_3
)
|^
2
)
)
}
is non
empty
trivial
finite
1
-element
set
{
{
(
(
pp
|^
(
2
+
1
)
)
*
(
(
L
`2_3
)
|^
2
)
)
,
(
L
`3_3
)
}
,
{
(
(
pp
|^
(
2
+
1
)
)
*
(
(
L
`2_3
)
|^
2
)
)
}
}
is non
empty
finite
V49
()
set
the
multF
of
(
INT.Ring
p
)
.
[
(
(
pp
|^
(
2
+
1
)
)
*
(
(
L
`2_3
)
|^
2
)
)
,
(
L
`3_3
)
]
is
set
(
(
(
pp
|^
(
2
+
1
)
)
*
(
(
L
`2_3
)
|^
2
)
)
*
(
L
`3_3
)
)
-
(
(
(
(
pp
*
(
L
`1_3
)
)
|^
3
)
+
(
(
a
*
(
pp
*
(
L
`1_3
)
)
)
*
(
(
pp
*
(
L
`3_3
)
)
|^
2
)
)
)
+
(
b
*
(
(
pp
*
(
L
`3_3
)
)
|^
3
)
)
)
is
left_add-cancelable
right_add-cancelable
add-cancelable
right_complementable
Element
of the
carrier
of
(
INT.Ring
p
)
(
(
(
pp
|^
(
2
+
1
)
)
*
(
(
L
`2_3
)
|^
2
)
)
*
(
L
`3_3
)
)
+
(
-
(
(
(
(
pp
*
(
L
`1_3
)
)
|^
3
)
+
(
(
a
*
(
pp
*
(
L
`1_3
)
)
)
*
(
(
pp
*
(
L
`3_3
)
)
|^
2
)
)
)
+
(
b
*
(
(
pp
*
(
L
`3_3
)
)
|^
3
)
)
)
)
is
left_add-cancelable
right_add-cancelable
add-cancelable
right_complementable
Element
of the
carrier
of
(
INT.Ring
p
)
the
addF
of
(
INT.Ring
p
)
.
(
(
(
(
pp
|^
(
2
+
1
)
)
*
(
(
L
`2_3
)
|^
2
)
)
*
(
L
`3_3
)
)
,
(
-
(
(
(
(
pp
*
(
L
`1_3
)
)
|^
3
)
+
(
(
a
*
(
pp
*
(
L
`1_3
)
)
)
*
(
(
pp
*
(
L
`3_3
)
)
|^
2
)
)
)
+
(
b
*
(
(
pp
*
(
L
`3_3
)
)
|^
3
)
)
)
)
) is
left_add-cancelable
right_add-cancelable
add-cancelable
right_complementable
Element
of the
carrier
of
(
INT.Ring
p
)
[
(
(
(
pp
|^
(
2
+
1
)
)
*
(
(
L
`2_3
)
|^
2
)
)
*
(
L
`3_3
)
)
,
(
-
(
(
(
(
pp
*
(
L
`1_3
)
)
|^
3
)
+
(
(
a
*
(
pp
*
(
L
`1_3
)
)
)
*
(
(
pp
*
(
L
`3_3
)
)
|^
2
)
)
)
+
(
b
*
(
(
pp
*
(
L
`3_3
)
)
|^
3
)
)
)
)
]
is
V26
()
set
{
(
(
(
pp
|^
(
2
+
1
)
)
*
(
(
L
`2_3
)
|^
2
)
)
*
(
L
`3_3
)
)
,
(
-
(
(
(
(
pp
*
(
L
`1_3
)
)
|^
3
)
+
(
(
a
*
(
pp
*
(
L
`1_3
)
)
)
*
(
(
pp
*
(
L
`3_3
)
)
|^
2
)
)
)
+
(
b
*
(
(
pp
*
(
L
`3_3
)
)
|^
3
)
)
)
)
}
is non
empty
finite
set
{
(
(
(
pp
|^
(
2
+
1
)
)
*
(
(
L
`2_3
)
|^
2
)
)
*
(
L
`3_3
)
)
}
is non
empty
trivial
finite
1
-element
set
{
{
(
(
(
pp
|^
(
2
+
1
)
)
*
(
(
L
`2_3
)
|^
2
)
)
*
(
L
`3_3
)
)
,
(
-
(
(
(
(
pp
*
(
L
`1_3
)
)
|^
3
)
+
(
(
a
*
(
pp
*
(
L
`1_3
)
)
)
*
(
(
pp
*
(
L
`3_3
)
)
|^
2
)
)
)
+
(
b
*
(
(
pp
*
(
L
`3_3
)
)
|^
3
)
)
)
)
}
,
{
(
(
(
pp
|^
(
2
+
1
)
)
*
(
(
L
`2_3
)
|^
2
)
)
*
(
L
`3_3
)
)
}
}
is non
empty
finite
V49
()
set
the
addF
of
(
INT.Ring
p
)
.
[
(
(
(
pp
|^
(
2
+
1
)
)
*
(
(
L
`2_3
)
|^
2
)
)
*
(
L
`3_3
)
)
,
(
-
(
(
(
(
pp
*
(
L
`1_3
)
)
|^
3
)
+
(
(
a
*
(
pp
*
(
L
`1_3
)
)
)
*
(
(
pp
*
(
L
`3_3
)
)
|^
2
)
)
)
+
(
b
*
(
(
pp
*
(
L
`3_3
)
)
|^
3
)
)
)
)
]
is
set
pp
|^
3 is
left_add-cancelable
right_add-cancelable
add-cancelable
right_complementable
Element
of the
carrier
of
(
INT.Ring
p
)
(
power
(
INT.Ring
p
)
)
.
(
pp
,3) is
set
[
pp
,3
]
is
V26
()
set
{
pp
,3
}
is non
empty
finite
set
{
{
pp
,3
}
,
{
pp
}
}
is non
empty
finite
V49
()
set
(
power
(
INT.Ring
p
)
)
.
[
pp
,3
]
is
set
(
pp
|^
3
)
*
(
(
L
`2_3
)
|^
2
)
is
left_add-cancelable
right_add-cancelable
add-cancelable
right_complementable
Element
of the
carrier
of
(
INT.Ring
p
)
the
multF
of
(
INT.Ring
p
)
.
(
(
pp
|^
3
)
,
(
(
L
`2_3
)
|^
2
)
) is
left_add-cancelable
right_add-cancelable
add-cancelable
right_complementable
Element
of the
carrier
of
(
INT.Ring
p
)
[
(
pp
|^
3
)
,
(
(
L
`2_3
)
|^
2
)
]
is
V26
()
set
{
(
pp
|^
3
)
,
(
(
L
`2_3
)
|^
2
)
}
is non
empty
finite
set
{
(
pp
|^
3
)
}
is non
empty
trivial
finite
1
-element
set
{
{
(
pp
|^
3
)
,
(
(
L
`2_3
)
|^
2
)
}
,
{
(
pp
|^
3
)
}
}
is non
empty
finite
V49
()
set
the
multF
of
(
INT.Ring
p
)
.
[
(
pp
|^
3
)
,
(
(
L
`2_3
)
|^
2
)
]
is
set
(
(
pp
|^
3
)
*
(
(
L
`2_3
)
|^
2
)
)
*
(
L
`3_3
)
is
left_add-cancelable
right_add-cancelable
add-cancelable
right_complementable
Element
of the
carrier
of
(
INT.Ring
p
)
the
multF
of
(
INT.Ring
p
)
.
(
(
(
pp
|^
3
)
*
(
(
L
`2_3
)
|^
2
)
)
,
(
L
`3_3
)
) is
left_add-cancelable
right_add-cancelable
add-cancelable
right_complementable
Element
of the
carrier
of
(
INT.Ring
p
)
[
(
(
pp
|^
3
)
*
(
(
L
`2_3
)
|^
2
)
)
,
(
L
`3_3
)
]
is
V26
()
set
{
(
(
pp
|^
3
)
*
(
(
L
`2_3
)
|^
2
)
)
,
(
L
`3_3
)
}
is non
empty
finite
set
{
(
(
pp
|^
3
)
*
(
(
L
`2_3
)
|^
2
)
)
}
is non
empty
trivial
finite
1
-element
set
{
{
(
(
pp
|^
3
)
*
(
(
L
`2_3
)
|^
2
)
)
,
(
L
`3_3
)
}
,
{
(
(
pp
|^
3
)
*
(
(
L
`2_3
)
|^
2
)
)
}
}
is non
empty
finite
V49
()
set
the
multF
of
(
INT.Ring
p
)
.
[
(
(
pp
|^
3
)
*
(
(
L
`2_3
)
|^
2
)
)
,
(
L
`3_3
)
]
is
set
(
pp
|^
3
)
*
(
(
L
`1_3
)
|^
3
)
is
left_add-cancelable
right_add-cancelable
add-cancelable
right_complementable
Element
of the
carrier
of
(
INT.Ring
p
)
the
multF
of
(
INT.Ring
p
)
.
(
(
pp
|^
3
)
,
(
(
L
`1_3
)
|^
3
)
) is
left_add-cancelable
right_add-cancelable
add-cancelable
right_complementable
Element
of the
carrier
of
(
INT.Ring
p
)
[
(
pp
|^
3
)
,
(
(
L
`1_3
)
|^
3
)
]
is
V26
()
set
{
(
pp
|^
3
)
,
(
(
L
`1_3
)
|^
3
)
}
is non
empty
finite
set
{
{
(
pp
|^
3
)
,
(
(
L
`1_3
)
|^
3
)
}
,
{
(
pp
|^
3
)
}
}
is non
empty
finite
V49
()
set
the
multF
of
(
INT.Ring
p
)
.
[
(
pp
|^
3
)
,
(
(
L
`1_3
)
|^
3
)
]
is
set
(
(
pp
|^
3
)
*
(
(
L
`1_3
)
|^
3
)
)
+
(
(
a
*
(
pp
*
(
L
`1_3
)
)
)
*
(
(
pp
*
(
L
`3_3
)
)
|^
2
)
)
is
left_add-cancelable
right_add-cancelable
add-cancelable
right_complementable
Element
of the
carrier
of
(
INT.Ring
p
)
the
addF
of
(
INT.Ring
p
)
.
(
(
(
pp
|^
3
)
*
(
(
L
`1_3
)
|^
3
)
)
,
(
(
a
*
(
pp
*
(
L
`1_3
)
)
)
*
(
(
pp
*
(
L
`3_3
)
)
|^
2
)
)
) is
left_add-cancelable
right_add-cancelable
add-cancelable
right_complementable
Element
of the
carrier
of
(
INT.Ring
p
)
[
(
(
pp
|^
3
)
*
(
(
L
`1_3
)
|^
3
)
)
,
(
(
a
*
(
pp
*
(
L
`1_3
)
)
)
*
(
(
pp
*
(
L
`3_3
)
)
|^
2
)
)
]
is
V26
()
set
{
(
(
pp
|^
3
)
*
(
(
L
`1_3
)
|^
3
)
)
,
(
(
a
*
(
pp
*
(
L
`1_3
)
)
)
*
(
(
pp
*
(
L
`3_3
)
)
|^
2
)
)
}
is non
empty
finite
set
{
(
(
pp
|^
3
)
*
(
(
L
`1_3
)
|^
3
)
)
}
is non
empty
trivial
finite
1
-element
set
{
{
(
(
pp
|^
3
)
*
(
(
L
`1_3
)
|^
3
)
)
,
(
(
a
*
(
pp
*
(
L
`1_3
)
)
)
*
(
(
pp
*
(
L
`3_3
)
)
|^
2
)
)
}
,
{
(
(
pp
|^
3
)
*
(
(
L
`1_3
)
|^
3
)
)
}
}
is non
empty
finite
V49
()
set
the
addF
of
(
INT.Ring
p
)
.
[
(
(
pp
|^
3
)
*
(
(
L
`1_3
)
|^
3
)
)
,
(
(
a
*
(
pp
*
(
L
`1_3
)
)
)
*
(
(
pp
*
(
L
`3_3
)
)
|^
2
)
)
]
is
set
(
(
(
pp
|^
3
)
*
(
(
L
`1_3
)
|^
3
)
)
+
(
(
a
*
(
pp
*
(
L
`1_3
)
)
)
*
(
(
pp
*
(
L
`3_3
)
)
|^
2
)
)
)
+
(
b
*
(
(
pp
*
(
L
`3_3
)
)
|^
3
)
)
is
left_add-cancelable
right_add-cancelable
add-cancelable
right_complementable
Element
of the
carrier
of
(
INT.Ring
p
)
the
addF
of
(
INT.Ring
p
)
.
(
(
(
(
pp
|^
3
)
*
(
(
L
`1_3
)
|^
3
)
)
+
(
(
a
*
(
pp
*
(
L
`1_3
)
)
)
*
(
(
pp
*
(
L
`3_3
)
)
|^
2
)
)
)
,
(
b
*
(
(
pp
*
(
L
`3_3
)
)
|^
3
)
)
) is
left_add-cancelable
right_add-cancelable
add-cancelable
right_complementable
Element
of the
carrier
of
(
INT.Ring
p
)
[
(
(
(
pp
|^
3
)
*
(
(
L
`1_3
)
|^
3
)
)
+
(
(
a
*
(
pp
*
(
L
`1_3
)
)
)
*
(
(
pp
*
(
L
`3_3
)
)
|^
2
)
)
)
,
(
b
*
(
(
pp
*
(
L
`3_3
)
)
|^
3
)
)
]
is
V26
()
set
{
(
(
(
pp
|^
3
)
*
(
(
L
`1_3
)
|^
3
)
)
+
(
(
a
*
(
pp
*
(
L
`1_3
)
)
)
*
(
(
pp
*
(
L
`3_3
)
)
|^
2
)
)
)
,
(
b
*
(
(
pp
*
(
L
`3_3
)
)
|^
3
)
)
}
is non
empty
finite
set
{
(
(
(
pp
|^
3
)
*
(
(
L
`1_3
)
|^
3
)
)
+
(
(
a
*
(
pp
*
(
L
`1_3
)
)
)
*
(
(
pp
*
(
L
`3_3
)
)
|^
2
)
)
)
}
is non
empty
trivial
finite
1
-element
set
{
{
(
(
(
pp
|^
3
)
*
(
(
L
`1_3
)
|^
3
)
)
+
(
(
a
*
(
pp
*
(
L
`1_3
)
)
)
*
(
(
pp
*
(
L
`3_3
)
)
|^
2
)
)
)
,
(
b
*
(
(
pp
*
(
L
`3_3
)
)
|^
3
)
)
}
,
{
(
(
(
pp
|^
3
)
*
(
(
L
`1_3
)
|^
3
)
)
+
(
(
a
*
(
pp
*
(
L
`1_3
)
)
)
*
(
(
pp
*
(
L
`3_3
)
)
|^
2
)
)
)
}
}
is non
empty
finite
V49
()
set
the
addF
of
(
INT.Ring
p
)
.
[
(
(
(
pp
|^
3
)
*
(
(
L
`1_3
)
|^
3
)
)
+
(
(
a
*
(
pp
*
(
L
`1_3
)
)
)
*
(
(
pp
*
(
L
`3_3
)
)
|^
2
)
)
)
,
(
b
*
(
(
pp
*
(
L
`3_3
)
)
|^
3
)
)
]
is
set
(
(
(
pp
|^
3
)
*
(
(
L
`2_3
)
|^
2
)
)
*
(
L
`3_3
)
)
-
(
(
(
(
pp
|^
3
)
*
(
(
L
`1_3
)
|^
3
)
)
+
(
(
a
*
(
pp
*
(
L
`1_3
)
)
)
*
(
(
pp
*
(
L
`3_3
)
)
|^
2
)
)
)
+
(
b
*
(
(
pp
*
(
L
`3_3
)
)
|^
3
)
)
)
is
left_add-cancelable
right_add-cancelable
add-cancelable
right_complementable
Element
of the
carrier
of
(
INT.Ring
p
)
-
(
(
(
(
pp
|^
3
)
*
(
(
L
`1_3
)
|^
3
)
)
+
(
(
a
*
(
pp
*
(
L
`1_3
)
)
)
*
(
(
pp
*
(
L
`3_3
)
)
|^
2
)
)
)
+
(
b
*
(
(
pp
*
(
L
`3_3
)
)
|^
3
)
)
)
is
left_add-cancelable
right_add-cancelable
add-cancelable
right_complementable
Element
of the
carrier
of
(
INT.Ring
p
)
(
(
(
pp
|^
3
)
*
(
(
L
`2_3
)
|^
2
)
)
*
(
L
`3_3
)
)
+
(
-
(
(
(
(
pp
|^
3
)
*
(
(
L
`1_3
)
|^
3
)
)
+
(
(
a
*
(
pp
*
(
L
`1_3
)
)
)
*
(
(
pp
*
(
L
`3_3
)
)
|^
2
)
)
)
+
(
b
*
(
(
pp
*
(
L
`3_3
)
)
|^
3
)
)
)
)
is
left_add-cancelable
right_add-cancelable
add-cancelable
right_complementable
Element
of the
carrier
of
(
INT.Ring
p
)
the
addF
of
(
INT.Ring
p
)
.
(
(
(
(
pp
|^
3
)
*
(
(
L
`2_3
)
|^
2
)
)
*
(
L
`3_3
)
)
,
(
-
(
(
(
(
pp
|^
3
)
*
(
(
L
`1_3
)
|^
3
)
)
+
(
(
a
*
(
pp
*
(
L
`1_3
)
)
)
*
(
(
pp
*
(
L
`3_3
)
)
|^
2
)
)
)
+
(
b
*
(
(
pp
*
(
L
`3_3
)
)
|^
3
)
)
)
)
) is
left_add-cancelable
right_add-cancelable
add-cancelable
right_complementable
Element
of the
carrier
of
(
INT.Ring
p
)
[
(
(
(
pp
|^
3
)
*
(
(
L
`2_3
)
|^
2
)
)
*
(
L
`3_3
)
)
,
(
-
(
(
(
(
pp
|^
3
)
*
(
(
L
`1_3
)
|^
3
)
)
+
(
(
a
*
(
pp
*
(
L
`1_3
)
)
)
*
(
(
pp
*
(
L
`3_3
)
)
|^
2
)
)
)
+
(
b
*
(
(
pp
*
(
L
`3_3
)
)
|^
3
)
)
)
)
]
is
V26
()
set
{
(
(
(
pp
|^
3
)
*
(
(
L
`2_3
)
|^
2
)
)
*
(
L
`3_3
)
)
,
(
-
(
(
(
(
pp
|^
3
)
*
(
(
L
`1_3
)
|^
3
)
)
+
(
(
a
*
(
pp
*
(
L
`1_3
)
)
)
*
(
(
pp
*
(
L
`3_3
)
)
|^
2
)
)
)
+
(
b
*
(
(
pp
*
(
L
`3_3
)
)
|^
3
)
)
)
)
}
is non
empty
finite
set
{
(
(
(
pp
|^
3
)
*
(
(
L
`2_3
)
|^
2
)
)
*
(
L
`3_3
)
)
}
is non
empty
trivial
finite
1
-element
set
{
{
(
(
(
pp
|^
3
)
*
(
(
L
`2_3
)
|^
2
)
)
*
(
L
`3_3
)
)
,
(
-
(
(
(
(
pp
|^
3
)
*
(
(
L
`1_3
)
|^
3
)
)
+
(
(
a
*
(
pp
*
(
L
`1_3
)
)
)
*
(
(
pp
*
(
L
`3_3
)
)
|^
2
)
)
)
+
(
b
*
(
(
pp
*
(
L
`3_3
)
)
|^
3
)
)
)
)
}
,
{
(
(
(
pp
|^
3
)
*
(
(
L
`2_3
)
|^
2
)
)
*
(
L
`3_3
)
)
}
}
is non
empty
finite
V49
()
set
the
addF
of
(
INT.Ring
p
)
.
[
(
(
(
pp
|^
3
)
*
(
(
L
`2_3
)
|^
2
)
)
*
(
L
`3_3
)
)
,
(
-
(
(
(
(
pp
|^
3
)
*
(
(
L
`1_3
)
|^
3
)
)
+
(
(
a
*
(
pp
*
(
L
`1_3
)
)
)
*
(
(
pp
*
(
L
`3_3
)
)
|^
2
)
)
)
+
(
b
*
(
(
pp
*
(
L
`3_3
)
)
|^
3
)
)
)
)
]
is
set
(
pp
|^
2
)
*
(
(
L
`3_3
)
|^
2
)
is
left_add-cancelable
right_add-cancelable
add-cancelable
right_complementable
Element
of the
carrier
of
(
INT.Ring
p
)
the
multF
of
(
INT.Ring
p
)
.
(
(
pp
|^
2
)
,
(
(
L
`3_3
)
|^
2
)
) is
left_add-cancelable
right_add-cancelable
add-cancelable
right_complementable
Element
of the
carrier
of
(
INT.Ring
p
)
[
(
pp
|^
2
)
,
(
(
L
`3_3
)
|^
2
)
]
is
V26
()
set
{
(
pp
|^
2
)
,
(
(
L
`3_3
)
|^
2
)
}
is non
empty
finite
set
{
{
(
pp
|^
2
)
,
(
(
L
`3_3
)
|^
2
)
}
,
{
(
pp
|^
2
)
}
}
is non
empty
finite
V49
()
set
the
multF
of
(
INT.Ring
p
)
.
[
(
pp
|^
2
)
,
(
(
L
`3_3
)
|^
2
)
]
is
set
(
a
*
(
pp
*
(
L
`1_3
)
)
)
*
(
(
pp
|^
2
)
*
(
(
L
`3_3
)
|^
2
)
)
is
left_add-cancelable
right_add-cancelable
add-cancelable
right_complementable
Element
of the
carrier
of
(
INT.Ring
p
)
the
multF
of
(
INT.Ring
p
)
.
(
(
a
*
(
pp
*
(
L
`1_3
)
)
)
,
(
(
pp
|^
2
)
*
(
(
L
`3_3
)
|^
2
)
)
) is
left_add-cancelable
right_add-cancelable
add-cancelable
right_complementable
Element
of the
carrier
of
(
INT.Ring
p
)
[
(
a
*
(
pp
*
(
L
`1_3
)
)
)
,
(
(
pp
|^
2
)
*
(
(
L
`3_3
)
|^
2
)
)
]
is
V26
()
set
{
(
a
*
(
pp
*
(
L
`1_3
)
)
)
,
(
(
pp
|^
2
)
*
(
(
L
`3_3
)
|^
2
)
)
}
is non
empty
finite
set
{
{
(
a
*
(
pp
*
(
L
`1_3
)
)
)
,
(
(
pp
|^
2
)
*
(
(
L
`3_3
)
|^
2
)
)
}
,
{
(
a
*
(
pp
*
(
L
`1_3
)
)
)
}
}
is non
empty
finite
V49
()
set
the
multF
of
(
INT.Ring
p
)
.
[
(
a
*
(
pp
*
(
L
`1_3
)
)
)
,
(
(
pp
|^
2
)
*
(
(
L
`3_3
)
|^
2
)
)
]
is
set
(
(
pp
|^
3
)
*
(
(
L
`1_3
)
|^
3
)
)
+
(
(
a
*
(
pp
*
(
L
`1_3
)
)
)
*
(
(
pp
|^
2
)
*
(
(
L
`3_3
)
|^
2
)
)
)
is
left_add-cancelable
right_add-cancelable
add-cancelable
right_complementable
Element
of the
carrier
of
(
INT.Ring
p
)
the
addF
of
(
INT.Ring
p
)
.
(
(
(
pp
|^
3
)
*
(
(
L
`1_3
)
|^
3
)
)
,
(
(
a
*
(
pp
*
(
L
`1_3
)
)
)
*
(
(
pp
|^
2
)
*
(
(
L
`3_3
)
|^
2
)
)
)
) is
left_add-cancelable
right_add-cancelable
add-cancelable
right_complementable
Element
of the
carrier
of
(
INT.Ring
p
)
[
(
(
pp
|^
3
)
*
(
(
L
`1_3
)
|^
3
)
)
,
(
(
a
*
(
pp
*
(
L
`1_3
)
)
)
*
(
(
pp
|^
2
)
*
(
(
L
`3_3
)
|^
2
)
)
)
]
is
V26
()
set
{
(
(
pp
|^
3
)
*
(
(
L
`1_3
)
|^
3
)
)
,
(
(
a
*
(
pp
*
(
L
`1_3
)
)
)
*
(
(
pp
|^
2
)
*
(
(
L
`3_3
)
|^
2
)
)
)
}
is non
empty
finite
set
{
{
(
(
pp
|^
3
)
*
(
(
L
`1_3
)
|^
3
)
)
,
(
(
a
*
(
pp
*
(
L
`1_3
)
)
)
*
(
(
pp
|^
2
)
*
(
(
L
`3_3
)
|^
2
)
)
)
}
,
{
(
(
pp
|^
3
)
*
(
(
L
`1_3
)
|^
3
)
)
}
}
is non
empty
finite
V49
()
set
the
addF
of
(
INT.Ring
p
)
.
[
(
(
pp
|^
3
)
*
(
(
L
`1_3
)
|^
3
)
)
,
(
(
a
*
(
pp
*
(
L
`1_3
)
)
)
*
(
(
pp
|^
2
)
*
(
(
L
`3_3
)
|^
2
)
)
)
]
is
set
(
(
(
pp
|^
3
)
*
(
(
L
`1_3
)
|^
3
)
)
+
(
(
a
*
(
pp
*
(
L
`1_3
)
)
)
*
(
(
pp
|^
2
)
*
(
(
L
`3_3
)
|^
2
)
)
)
)
+
(
b
*
(
(
pp
*
(
L
`3_3
)
)
|^
3
)
)
is
left_add-cancelable
right_add-cancelable
add-cancelable
right_complementable
Element
of the
carrier
of
(
INT.Ring
p
)
the
addF
of
(
INT.Ring
p
)
.
(
(
(
(
pp
|^
3
)
*
(
(
L
`1_3
)
|^
3
)
)
+
(
(
a
*
(
pp
*
(
L
`1_3
)
)
)
*
(
(
pp
|^
2
)
*
(
(
L
`3_3
)
|^
2
)
)
)
)
,
(
b
*
(
(
pp
*
(
L
`3_3
)
)
|^
3
)
)
) is
left_add-cancelable
right_add-cancelable
add-cancelable
right_complementable
Element
of the
carrier
of
(
INT.Ring
p
)
[
(
(
(
pp
|^
3
)
*
(
(
L
`1_3
)
|^
3
)
)
+
(
(
a
*
(
pp
*
(
L
`1_3
)
)
)
*
(
(
pp
|^
2
)
*
(
(
L
`3_3
)
|^
2
)
)
)
)
,
(
b
*
(
(
pp
*
(
L
`3_3
)
)
|^
3
)
)
]
is
V26
()
set
{
(
(
(
pp
|^
3
)
*
(
(
L
`1_3
)
|^
3
)
)
+
(
(
a
*
(
pp
*
(
L
`1_3
)
)
)
*
(
(
pp
|^
2
)
*
(
(
L
`3_3
)
|^
2
)
)
)
)
,
(
b
*
(
(
pp
*
(
L
`3_3
)
)
|^
3
)
)
}
is non
empty
finite
set
{
(
(
(
pp
|^
3
)
*
(
(
L
`1_3
)
|^
3
)
)
+
(
(
a
*
(
pp
*
(
L
`1_3
)
)
)
*
(
(
pp
|^
2
)
*
(
(
L
`3_3
)
|^
2
)
)
)
)
}
is non
empty
trivial
finite
1
-element
set
{
{
(
(
(
pp
|^
3
)
*
(
(
L
`1_3
)
|^
3
)
)
+
(
(
a
*
(
pp
*
(
L
`1_3
)
)
)
*
(
(
pp
|^
2
)
*
(
(
L
`3_3
)
|^
2
)
)
)
)
,
(
b
*
(
(
pp
*
(
L
`3_3
)
)
|^
3
)
)
}
,
{
(
(
(
pp
|^
3
)
*
(
(
L
`1_3
)
|^
3
)
)
+
(
(
a
*
(
pp
*
(
L
`1_3
)
)
)
*
(
(
pp
|^
2
)
*
(
(
L
`3_3
)
|^
2
)
)
)
)
}
}
is non
empty
finite
V49
()
set
the
addF
of
(
INT.Ring
p
)
.
[
(
(
(
pp
|^
3
)
*
(
(
L
`1_3
)
|^
3
)
)
+
(
(
a
*
(
pp
*
(
L
`1_3
)
)
)
*
(
(
pp
|^
2
)
*
(
(
L
`3_3
)
|^
2
)
)
)
)
,
(
b
*
(
(
pp
*
(
L
`3_3
)
)
|^
3
)
)
]
is
set
(
(
(
pp
|^
3
)
*
(
(
L
`2_3
)
|^
2
)
)
*
(
L
`3_3
)
)
-
(
(
(
(
pp
|^
3
)
*
(
(
L
`1_3
)
|^
3
)
)
+
(
(
a
*
(
pp
*
(
L
`1_3
)
)
)
*
(
(
pp
|^
2
)
*
(
(
L
`3_3
)
|^
2
)
)
)
)
+
(
b
*
(
(
pp
*
(
L
`3_3
)
)
|^
3
)
)
)
is
left_add-cancelable
right_add-cancelable
add-cancelable
right_complementable
Element
of the
carrier
of
(
INT.Ring
p
)
-
(
(
(
(
pp
|^
3
)
*
(
(
L
`1_3
)
|^
3
)
)
+
(
(
a
*
(
pp
*
(
L
`1_3
)
)
)
*
(
(
pp
|^
2
)
*
(
(
L
`3_3
)
|^
2
)
)
)
)
+
(
b
*
(
(
pp
*
(
L
`3_3
)
)
|^
3
)
)
)
is
left_add-cancelable
right_add-cancelable
add-cancelable
right_complementable
Element
of the
carrier
of
(
INT.Ring
p
)
(
(
(
pp
|^
3
)
*
(
(
L
`2_3
)
|^
2
)
)
*
(
L
`3_3
)
)
+
(
-
(
(
(
(
pp
|^
3
)
*
(
(
L
`1_3
)
|^
3
)
)
+
(
(
a
*
(
pp
*
(
L
`1_3
)
)
)
*
(
(
pp
|^
2
)
*
(
(
L
`3_3
)
|^
2
)
)
)
)
+
(
b
*
(
(
pp
*
(
L
`3_3
)
)
|^
3
)
)
)
)
is
left_add-cancelable
right_add-cancelable
add-cancelable
right_complementable
Element
of the
carrier
of
(
INT.Ring
p
)
the
addF
of
(
INT.Ring
p
)
.
(
(
(
(
pp
|^
3
)
*
(
(
L
`2_3
)
|^
2
)
)
*
(
L
`3_3
)
)
,
(
-
(
(
(
(
pp
|^
3
)
*
(
(
L
`1_3
)
|^
3
)
)
+
(
(
a
*
(
pp
*
(
L
`1_3
)
)
)
*
(
(
pp
|^
2
)
*
(
(
L
`3_3
)
|^
2
)
)
)
)
+
(
b
*
(
(
pp
*
(
L
`3_3
)
)
|^
3
)
)
)
)
) is
left_add-cancelable
right_add-cancelable
add-cancelable
right_complementable
Element
of the
carrier
of
(
INT.Ring
p
)
[
(
(
(
pp
|^
3
)
*
(
(
L
`2_3
)
|^
2
)
)
*
(
L
`3_3
)
)
,
(
-
(
(
(
(
pp
|^
3
)
*
(
(
L
`1_3
)
|^
3
)
)
+
(
(
a
*
(
pp
*
(
L
`1_3
)
)
)
*
(
(
pp
|^
2
)
*
(
(
L
`3_3
)
|^
2
)
)
)
)
+
(
b
*
(
(
pp
*
(
L
`3_3
)
)
|^
3
)
)
)
)
]
is
V26
()
set
{
(
(
(
pp
|^
3
)
*
(
(
L
`2_3
)
|^
2
)
)
*
(
L
`3_3
)
)
,
(
-
(
(
(
(
pp
|^
3
)
*
(
(
L
`1_3
)
|^
3
)
)
+
(
(
a
*
(
pp
*
(
L
`1_3
)
)
)
*
(
(
pp
|^
2
)
*
(
(
L
`3_3
)
|^
2
)
)
)
)
+
(
b
*
(
(
pp
*
(
L
`3_3
)
)
|^
3
)
)
)
)
}
is non
empty
finite
set
{
{
(
(
(
pp
|^
3
)
*
(
(
L
`2_3
)
|^
2
)
)
*
(
L
`3_3
)
)
,
(
-
(
(
(
(
pp
|^
3
)
*
(
(
L
`1_3
)
|^
3
)
)
+
(
(
a
*
(
pp
*
(
L
`1_3
)
)
)
*
(
(
pp
|^
2
)
*
(
(
L
`3_3
)
|^
2
)
)
)
)
+
(
b
*
(
(
pp
*
(
L
`3_3
)
)
|^
3
)
)
)
)
}
,
{
(
(
(
pp
|^
3
)
*
(
(
L
`2_3
)
|^
2
)
)
*
(
L
`3_3
)
)
}
}
is non
empty
finite
V49
()
set
the
addF
of
(
INT.Ring
p
)
.
[
(
(
(
pp
|^
3
)
*
(
(
L
`2_3
)
|^
2
)
)
*
(
L
`3_3
)
)
,
(
-
(
(
(
(
pp
|^
3
)
*
(
(
L
`1_3
)
|^
3
)
)
+
(
(
a
*
(
pp
*
(
L
`1_3
)
)
)
*
(
(
pp
|^
2
)
*
(
(
L
`3_3
)
|^
2
)
)
)
)
+
(
b
*
(
(
pp
*
(
L
`3_3
)
)
|^
3
)
)
)
)
]
is
set
(
a
*
(
pp
*
(
L
`1_3
)
)
)
*
(
pp
|^
2
)
is
left_add-cancelable
right_add-cancelable
add-cancelable
right_complementable
Element
of the
carrier
of
(
INT.Ring
p
)
the
multF
of
(
INT.Ring
p
)
.
(
(
a
*
(
pp
*
(
L
`1_3
)
)
)
,
(
pp
|^
2
)
) is
left_add-cancelable
right_add-cancelable
add-cancelable
right_complementable
Element
of the
carrier
of
(
INT.Ring
p
)
[
(
a
*
(
pp
*
(
L
`1_3
)
)
)
,
(
pp
|^
2
)
]
is
V26
()
set
{
(
a
*
(
pp
*
(
L
`1_3
)
)
)
,
(
pp
|^
2
)
}
is non
empty
finite
set
{
{
(
a
*
(
pp
*
(
L
`1_3
)
)
)
,
(
pp
|^
2
)
}
,
{
(
a
*
(
pp
*
(
L
`1_3
)
)
)
}
}
is non
empty
finite
V49
()
set
the
multF
of
(
INT.Ring
p
)
.
[
(
a
*
(
pp
*
(
L
`1_3
)
)
)
,
(
pp
|^
2
)
]
is
set
(
(
a
*
(
pp
*
(
L
`1_3
)
)
)
*
(
pp
|^
2
)
)
*
(
(
L
`3_3
)
|^
2
)
is
left_add-cancelable
right_add-cancelable
add-cancelable
right_complementable
Element
of the
carrier
of
(
INT.Ring
p
)
the
multF
of
(
INT.Ring
p
)
.
(
(
(
a
*
(
pp
*
(
L
`1_3
)
)
)
*
(
pp
|^
2
)
)
,
(
(
L
`3_3
)
|^
2
)
) is
left_add-cancelable
right_add-cancelable
add-cancelable
right_complementable
Element
of the
carrier
of
(
INT.Ring
p
)
[
(
(
a
*
(
pp
*
(
L
`1_3
)
)
)
*
(
pp
|^
2
)
)
,
(
(
L
`3_3
)
|^
2
)
]
is
V26
()
set
{
(
(
a
*
(
pp
*
(
L
`1_3
)
)
)
*
(
pp
|^
2
)
)
,
(
(
L
`3_3
)
|^
2
)
}
is non
empty
finite
set
{
(
(
a
*
(
pp
*
(
L
`1_3
)
)
)
*
(
pp
|^
2
)
)
}
is non
empty
trivial
finite
1
-element
set
{
{
(
(
a
*
(
pp
*
(
L
`1_3
)
)
)
*
(
pp
|^
2
)
)
,
(
(
L
`3_3
)
|^
2
)
}
,
{
(
(
a
*
(
pp
*
(
L
`1_3
)
)
)
*
(
pp
|^
2
)
)
}
}
is non
empty
finite
V49
()
set
the
multF
of
(
INT.Ring
p
)
.
[
(
(
a
*
(
pp
*
(
L
`1_3
)
)
)
*
(
pp
|^
2
)
)
,
(
(
L
`3_3
)
|^
2
)
]
is
set
(
(
pp
|^
3
)
*
(
(
L
`1_3
)
|^
3
)
)
+
(
(
(
a
*
(
pp
*
(
L
`1_3
)
)
)
*
(
pp
|^
2
)
)
*
(
(
L
`3_3
)
|^
2
)
)
is
left_add-cancelable
right_add-cancelable
add-cancelable
right_complementable
Element
of the
carrier
of
(
INT.Ring
p
)
the
addF
of
(
INT.Ring
p
)
.
(
(
(
pp
|^
3
)
*
(
(
L
`1_3
)
|^
3
)
)
,
(
(
(
a
*
(
pp
*
(
L
`1_3
)
)
)
*
(
pp
|^
2
)
)
*
(
(
L
`3_3
)
|^
2
)
)
) is
left_add-cancelable
right_add-cancelable
add-cancelable
right_complementable
Element
of the
carrier
of
(
INT.Ring
p
)
[
(
(
pp
|^
3
)
*
(
(
L
`1_3
)
|^
3
)
)
,
(
(
(
a
*
(
pp
*
(
L
`1_3
)
)
)
*
(
pp
|^
2
)
)
*
(
(
L
`3_3
)
|^
2
)
)
]
is
V26
()
set
{
(
(
pp
|^
3
)
*
(
(
L
`1_3
)
|^
3
)
)
,
(
(
(
a
*
(
pp
*
(
L
`1_3
)
)
)
*
(
pp
|^
2
)
)
*
(
(
L
`3_3
)
|^
2
)
)
}
is non
empty
finite
set
{
{
(
(
pp
|^
3
)
*
(
(
L
`1_3
)
|^
3
)
)
,
(
(
(
a
*
(
pp
*
(
L
`1_3
)
)
)
*
(
pp
|^
2
)
)
*
(
(
L
`3_3
)
|^
2
)
)
}
,
{
(
(
pp
|^
3
)
*
(
(
L
`1_3
)
|^
3
)
)
}
}
is non
empty
finite
V49
()
set
the
addF
of
(
INT.Ring
p
)
.
[
(
(
pp
|^
3
)
*
(
(
L
`1_3
)
|^
3
)
)
,
(
(
(
a
*
(
pp
*
(
L
`1_3
)
)
)
*
(
pp
|^
2
)
)
*
(
(
L
`3_3
)
|^
2
)
)
]
is
set
(
(
(
pp
|^
3
)
*
(
(
L
`1_3
)
|^
3
)
)
+
(
(
(
a
*
(
pp
*
(
L
`1_3
)
)
)
*
(
pp
|^
2
)
)
*
(
(
L
`3_3
)
|^
2
)
)
)
+
(
b
*
(
(
pp
*
(
L
`3_3
)
)
|^
3
)
)
is
left_add-cancelable
right_add-cancelable
add-cancelable
right_complementable
Element
of the
carrier
of
(
INT.Ring
p
)
the
addF
of
(
INT.Ring
p
)
.
(
(
(
(
pp
|^
3
)
*
(
(
L
`1_3
)
|^
3
)
)
+
(
(
(
a
*
(
pp
*
(
L
`1_3
)
)
)
*
(
pp
|^
2
)
)
*
(
(
L
`3_3
)
|^
2
)
)
)
,
(
b
*
(
(
pp
*
(
L
`3_3
)
)
|^
3
)
)
) is
left_add-cancelable
right_add-cancelable
add-cancelable
right_complementable
Element
of the
carrier
of
(
INT.Ring
p
)
[
(
(
(
pp
|^
3
)
*
(
(
L
`1_3
)
|^
3
)
)
+
(
(
(
a
*
(
pp
*
(
L
`1_3
)
)
)
*
(
pp
|^
2
)
)
*
(
(
L
`3_3
)
|^
2
)
)
)
,
(
b
*
(
(
pp
*
(
L
`3_3
)
)
|^
3
)
)
]
is
V26
()
set
{
(
(
(
pp
|^
3
)
*
(
(
L
`1_3
)
|^
3
)
)
+
(
(
(
a
*
(
pp
*
(
L
`1_3
)
)
)
*
(
pp
|^
2
)
)
*
(
(
L
`3_3
)
|^
2
)
)
)
,
(
b
*
(
(
pp
*
(
L
`3_3
)
)
|^
3
)
)
}
is non
empty
finite
set
{
(
(
(
pp
|^
3
)
*
(
(
L
`1_3
)
|^
3
)
)
+
(
(
(
a
*
(
pp
*
(
L
`1_3
)
)
)
*
(
pp
|^
2
)
)
*
(
(
L
`3_3
)
|^
2
)
)
)
}
is non
empty
trivial
finite
1
-element
set
{
{
(
(
(
pp
|^
3
)
*
(
(
L
`1_3
)
|^
3
)
)
+
(
(
(
a
*
(
pp
*
(
L
`1_3
)
)
)
*
(
pp
|^
2
)
)
*
(
(
L
`3_3
)
|^
2
)
)
)
,
(
b
*
(
(
pp
*
(
L
`3_3
)
)
|^
3
)
)
}
,
{
(
(
(
pp
|^
3
)
*
(
(
L
`1_3
)
|^
3
)
)
+
(
(
(
a
*
(
pp
*
(
L
`1_3
)
)
)
*
(
pp
|^
2
)
)
*
(
(
L
`3_3
)
|^
2
)
)
)
}
}
is non
empty
finite
V49
()
set
the
addF
of
(
INT.Ring
p
)
.
[
(
(
(
pp
|^
3
)
*
(
(
L
`1_3
)
|^
3
)
)
+
(
(
(
a
*
(
pp
*
(
L
`1_3
)
)
)
*
(
pp
|^
2
)
)
*
(
(
L
`3_3
)
|^
2
)
)
)
,
(
b
*
(
(
pp
*
(
L
`3_3
)
)
|^
3
)
)
]
is
set
(
(
(
pp
|^
3
)
*
(
(
L
`2_3
)
|^
2
)
)
*
(
L
`3_3
)
)
-
(
(
(
(
pp
|^
3
)
*
(
(
L
`1_3
)
|^
3
)
)
+
(
(
(
a
*
(
pp
*
(
L
`1_3
)
)
)
*
(
pp
|^
2
)
)
*
(
(
L
`3_3
)
|^
2
)
)
)
+
(
b
*
(
(
pp
*
(
L
`3_3
)
)
|^
3
)
)
)
is
left_add-cancelable
right_add-cancelable
add-cancelable
right_complementable
Element
of the
carrier
of
(
INT.Ring
p
)
-
(
(
(
(
pp
|^
3
)
*
(
(
L
`1_3
)
|^
3
)
)
+
(
(
(
a
*
(
pp
*
(
L
`1_3
)
)
)
*
(
pp
|^
2
)
)
*
(
(
L
`3_3
)
|^
2
)
)
)
+
(
b
*
(
(
pp
*
(
L
`3_3
)
)
|^
3
)
)
)
is
left_add-cancelable
right_add-cancelable
add-cancelable
right_complementable
Element
of the
carrier
of
(
INT.Ring
p
)
(
(
(
pp
|^
3
)
*
(
(
L
`2_3
)
|^
2
)
)
*
(
L
`3_3
)
)
+
(
-
(
(
(
(
pp
|^
3
)
*
(
(
L
`1_3
)
|^
3
)
)
+
(
(
(
a
*
(
pp
*
(
L
`1_3
)
)
)
*
(
pp
|^
2
)
)
*
(
(
L
`3_3
)
|^
2
)
)
)
+
(
b
*
(
(
pp
*
(
L
`3_3
)
)
|^
3
)
)
)
)
is
left_add-cancelable
right_add-cancelable
add-cancelable
right_complementable
Element
of the
carrier
of
(
INT.Ring
p
)
the
addF
of
(
INT.Ring
p
)
.
(
(
(
(
pp
|^
3
)
*
(
(
L
`2_3
)
|^
2
)
)
*
(
L
`3_3
)
)
,
(
-
(
(
(
(
pp
|^
3
)
*
(
(
L
`1_3
)
|^
3
)
)
+
(
(
(
a
*
(
pp
*
(
L
`1_3
)
)
)
*
(
pp
|^
2
)
)
*
(
(
L
`3_3
)
|^
2
)
)
)
+
(
b
*
(
(
pp
*
(
L
`3_3
)
)
|^
3
)
)
)
)
) is
left_add-cancelable
right_add-cancelable
add-cancelable
right_complementable
Element
of the
carrier
of
(
INT.Ring
p
)
[
(
(
(
pp
|^
3
)
*
(
(
L
`2_3
)
|^
2
)
)
*
(
L
`3_3
)
)
,
(
-
(
(
(
(
pp
|^
3
)
*
(
(
L
`1_3
)
|^
3
)
)
+
(
(
(
a
*
(
pp
*
(
L
`1_3
)
)
)
*
(
pp
|^
2
)
)
*
(
(
L
`3_3
)
|^
2
)
)
)
+
(
b
*
(
(
pp
*
(
L
`3_3
)
)
|^
3
)
)
)
)
]
is
V26
()
set
{
(
(
(
pp
|^
3
)
*
(
(
L
`2_3
)
|^
2
)
)
*
(
L
`3_3
)
)
,
(
-
(
(
(
(
pp
|^
3
)
*
(
(
L
`1_3
)
|^
3
)
)
+
(
(
(
a
*
(
pp
*
(
L
`1_3
)
)
)
*
(
pp
|^
2
)
)
*
(
(
L
`3_3
)
|^
2
)
)
)
+
(
b
*
(
(
pp
*
(
L
`3_3
)
)
|^
3
)
)
)
)
}
is non
empty
finite
set
{
{
(
(
(
pp
|^
3
)
*
(
(
L
`2_3
)
|^
2
)
)
*
(
L
`3_3
)
)
,
(
-
(
(
(
(
pp
|^
3
)
*
(
(
L
`1_3
)
|^
3
)
)
+
(
(
(
a
*
(
pp
*
(
L
`1_3
)
)
)
*
(
pp
|^
2
)
)
*
(
(
L
`3_3
)
|^
2
)
)
)
+
(
b
*
(
(
pp
*
(
L
`3_3
)
)
|^
3
)
)
)
)
}
,
{
(
(
(
pp
|^
3
)
*
(
(
L
`2_3
)
|^
2
)
)
*
(
L
`3_3
)
)
}
}
is non
empty
finite
V49
()
set
the
addF
of
(
INT.Ring
p
)
.
[
(
(
(
pp
|^
3
)
*
(
(
L
`2_3
)
|^
2
)
)
*
(
L
`3_3
)
)
,
(
-
(
(
(
(
pp
|^
3
)
*
(
(
L
`1_3
)
|^
3
)
)
+
(
(
(
a
*
(
pp
*
(
L
`1_3
)
)
)
*
(
pp
|^
2
)
)
*
(
(
L
`3_3
)
|^
2
)
)
)
+
(
b
*
(
(
pp
*
(
L
`3_3
)
)
|^
3
)
)
)
)
]
is
set
(
pp
*
(
L
`1_3
)
)
*
(
pp
|^
2
)
is
left_add-cancelable
right_add-cancelable
add-cancelable
right_complementable
Element
of the
carrier
of
(
INT.Ring
p
)
the
multF
of
(
INT.Ring
p
)
.
(
(
pp
*
(
L
`1_3
)
)
,
(
pp
|^
2
)
) is
left_add-cancelable
right_add-cancelable
add-cancelable
right_complementable
Element
of the
carrier
of
(
INT.Ring
p
)
[
(
pp
*
(
L
`1_3
)
)
,
(
pp
|^
2
)
]
is
V26
()
set
{
(
pp
*
(
L
`1_3
)
)
,
(
pp
|^
2
)
}
is non
empty
finite
set
{
{
(
pp
*
(
L
`1_3
)
)
,
(
pp
|^
2
)
}
,
{
(
pp
*
(
L
`1_3
)
)
}
}
is non
empty
finite
V49
()
set
the
multF
of
(
INT.Ring
p
)
.
[
(
pp
*
(
L
`1_3
)
)
,
(
pp
|^
2
)
]
is
set
a
*
(
(
pp
*
(
L
`1_3
)
)
*
(
pp
|^
2
)
)
is
left_add-cancelable
right_add-cancelable
add-cancelable
right_complementable
Element
of the
carrier
of
(
INT.Ring
p
)
the
multF
of
(
INT.Ring
p
)
.
(
a
,
(
(
pp
*
(
L
`1_3
)
)
*
(
pp
|^
2
)
)
) is
left_add-cancelable
right_add-cancelable
add-cancelable
right_complementable
Element
of the
carrier
of
(
INT.Ring
p
)
[
a
,
(
(
pp
*
(
L
`1_3
)
)
*
(
pp
|^
2
)
)
]
is
V26
()
set
{
a
,
(
(
pp
*
(
L
`1_3
)
)
*
(
pp
|^
2
)
)
}
is non
empty
finite
set
{
{
a
,
(
(
pp
*
(
L
`1_3
)
)
*
(
pp
|^
2
)
)
}
,
{
a
}
}
is non
empty
finite
V49
()
set
the
multF
of
(
INT.Ring
p
)
.
[
a
,
(
(
pp
*
(
L
`1_3
)
)
*
(
pp
|^
2
)
)
]
is
set
(
a
*
(
(
pp
*
(
L
`1_3
)
)
*
(
pp
|^
2
)
)
)
*
(
(
L
`3_3
)
|^
2
)
is
left_add-cancelable
right_add-cancelable
add-cancelable
right_complementable
Element
of the
carrier
of
(
INT.Ring
p
)
the
multF
of
(
INT.Ring
p
)
.
(
(
a
*
(
(
pp
*
(
L
`1_3
)
)
*
(
pp
|^
2
)
)
)
,
(
(
L
`3_3
)
|^
2
)
) is
left_add-cancelable
right_add-cancelable
add-cancelable
right_complementable
Element
of the
carrier
of
(
INT.Ring
p
)
[
(
a
*
(
(
pp
*
(
L
`1_3
)
)
*
(
pp
|^
2
)
)
)
,
(
(
L
`3_3
)
|^
2
)
]
is
V26
()
set
{
(
a
*
(
(
pp
*
(
L
`1_3
)
)
*
(
pp
|^
2
)
)
)
,
(
(
L
`3_3
)
|^
2
)
}
is non
empty
finite
set
{
(
a
*
(
(
pp
*
(
L
`1_3
)
)
*
(
pp
|^
2
)
)
)
}
is non
empty
trivial
finite
1
-element
set
{
{
(
a
*
(
(
pp
*
(
L
`1_3
)
)
*
(
pp
|^
2
)
)
)
,
(
(
L
`3_3
)
|^
2
)
}
,
{
(
a
*
(
(
pp
*
(
L
`1_3
)
)
*
(
pp
|^
2
)
)
)
}
}
is non
empty
finite
V49
()
set
the
multF
of
(
INT.Ring
p
)
.
[
(
a
*
(
(
pp
*
(
L
`1_3
)
)
*
(
pp
|^
2
)
)
)
,
(
(
L
`3_3
)
|^
2
)
]
is
set
(
(
pp
|^
3
)
*
(
(
L
`1_3
)
|^
3
)
)
+
(
(
a
*
(
(
pp
*
(
L
`1_3
)
)
*
(
pp
|^
2
)
)
)
*
(
(
L
`3_3
)
|^
2
)
)
is
left_add-cancelable
right_add-cancelable
add-cancelable
right_complementable
Element
of the
carrier
of
(
INT.Ring
p
)
the
addF
of
(
INT.Ring
p
)
.
(
(
(
pp
|^
3
)
*
(
(
L
`1_3
)
|^
3
)
)
,
(
(
a
*
(
(
pp
*
(
L
`1_3
)
)
*
(
pp
|^
2
)
)
)
*
(
(
L
`3_3
)
|^
2
)
)
) is
left_add-cancelable
right_add-cancelable
add-cancelable
right_complementable
Element
of the
carrier
of
(
INT.Ring
p
)
[
(
(
pp
|^
3
)
*
(
(
L
`1_3
)
|^
3
)
)
,
(
(
a
*
(
(
pp
*
(
L
`1_3
)
)
*
(
pp
|^
2
)
)
)
*
(
(
L
`3_3
)
|^
2
)
)
]
is
V26
()
set
{
(
(
pp
|^
3
)
*
(
(
L
`1_3
)
|^
3
)
)
,
(
(
a
*
(
(
pp
*
(
L
`1_3
)
)
*
(
pp
|^
2
)
)
)
*
(
(
L
`3_3
)
|^
2
)
)
}
is non
empty
finite
set
{
{
(
(
pp
|^
3
)
*
(
(
L
`1_3
)
|^
3
)
)
,
(
(
a
*
(
(
pp
*
(
L
`1_3
)
)
*
(
pp
|^
2
)
)
)
*
(
(
L
`3_3
)
|^
2
)
)
}
,
{
(
(
pp
|^
3
)
*
(
(
L
`1_3
)
|^
3
)
)
}
}
is non
empty
finite
V49
()
set
the
addF
of
(
INT.Ring
p
)
.
[
(
(
pp
|^
3
)
*
(
(
L
`1_3
)
|^
3
)
)
,
(
(
a
*
(
(
pp
*
(
L
`1_3
)
)
*
(
pp
|^
2
)
)
)
*
(
(
L
`3_3
)
|^
2
)
)
]
is
set
(
(
(
pp
|^
3
)
*
(
(
L
`1_3
)
|^
3
)
)
+
(
(
a
*
(
(
pp
*
(
L
`1_3
)
)
*
(
pp
|^
2
)
)
)
*
(
(
L
`3_3
)
|^
2
)
)
)
+
(
b
*
(
(
pp
*
(
L
`3_3
)
)
|^
3
)
)
is
left_add-cancelable
right_add-cancelable
add-cancelable
right_complementable
Element
of the
carrier
of
(
INT.Ring
p
)
the
addF
of
(
INT.Ring
p
)
.
(
(
(
(
pp
|^
3
)
*
(
(
L
`1_3
)
|^
3
)
)
+
(
(
a
*
(
(
pp
*
(
L
`1_3
)
)
*
(
pp
|^
2
)
)
)
*
(
(
L
`3_3
)
|^
2
)
)
)
,
(
b
*
(
(
pp
*
(
L
`3_3
)
)
|^
3
)
)
) is
left_add-cancelable
right_add-cancelable
add-cancelable
right_complementable
Element
of the
carrier
of
(
INT.Ring
p
)
[
(
(
(
pp
|^
3
)
*
(
(
L
`1_3
)
|^
3
)
)
+
(
(
a
*
(
(
pp
*
(
L
`1_3
)
)
*
(
pp
|^
2
)
)
)
*
(
(
L
`3_3
)
|^
2
)
)
)
,
(
b
*
(
(
pp
*
(
L
`3_3
)
)
|^
3
)
)
]
is
V26
()
set
{
(
(
(
pp
|^
3
)
*
(
(
L
`1_3
)
|^
3
)
)
+
(
(
a
*
(
(
pp
*
(
L
`1_3
)
)
*
(
pp
|^
2
)
)
)
*
(
(
L
`3_3
)
|^
2
)
)
)
,
(
b
*
(
(
pp
*
(
L
`3_3
)
)
|^
3
)
)
}
is non
empty
finite
set
{
(
(
(
pp
|^
3
)
*
(
(
L
`1_3
)
|^
3
)
)
+
(
(
a
*
(
(
pp
*
(
L
`1_3
)
)
*
(
pp
|^
2
)
)
)
*
(
(
L
`3_3
)
|^
2
)
)
)
}
is non
empty
trivial
finite
1
-element
set
{
{
(
(
(
pp
|^
3
)
*
(
(
L
`1_3
)
|^
3
)
)
+
(
(
a
*
(
(
pp
*
(
L
`1_3
)
)
*
(
pp
|^
2
)
)
)
*
(
(
L
`3_3
)
|^
2
)
)
)
,
(
b
*
(
(
pp
*
(
L
`3_3
)
)
|^
3
)
)
}
,
{
(
(
(
pp
|^
3
)
*
(
(
L
`1_3
)
|^
3
)
)
+
(
(
a
*
(
(
pp
*
(
L
`1_3
)
)
*
(
pp
|^
2
)
)
)
*
(
(
L
`3_3
)
|^
2
)
)
)
}
}
is non
empty
finite
V49
()
set
the
addF
of
(
INT.Ring
p
)
.
[
(
(
(
pp
|^
3
)
*
(
(
L
`1_3
)
|^
3
)
)
+
(
(
a
*
(
(
pp
*
(
L
`1_3
)
)
*
(
pp
|^
2
)
)
)
*
(
(
L
`3_3
)
|^
2
)
)
)
,
(
b
*
(
(
pp
*
(
L
`3_3
)
)
|^
3
)
)
]
is
set
(
(
(
pp
|^
3
)
*
(
(
L
`2_3
)
|^
2
)
)
*
(
L
`3_3
)
)
-
(
(
(
(
pp
|^
3
)
*
(
(
L
`1_3
)
|^
3
)
)
+
(
(
a
*
(
(
pp
*
(
L
`1_3
)
)
*
(
pp
|^
2
)
)
)
*
(
(
L
`3_3
)
|^
2
)
)
)
+
(
b
*
(
(
pp
*
(
L
`3_3
)
)
|^
3
)
)
)
is
left_add-cancelable
right_add-cancelable
add-cancelable
right_complementable
Element
of the
carrier
of
(
INT.Ring
p
)
-
(
(
(
(
pp
|^
3
)
*
(
(
L
`1_3
)
|^
3
)
)
+
(
(
a
*
(
(
pp
*
(
L
`1_3
)
)
*
(
pp
|^
2
)
)
)
*
(
(
L
`3_3
)
|^
2
)
)
)
+
(
b
*
(
(
pp
*
(
L
`3_3
)
)
|^
3
)
)
)
is
left_add-cancelable
right_add-cancelable
add-cancelable
right_complementable
Element
of the
carrier
of
(
INT.Ring
p
)
(
(
(
pp
|^
3
)
*
(
(
L
`2_3
)
|^
2
)
)
*
(
L
`3_3
)
)
+
(
-
(
(
(
(
pp
|^
3
)
*
(
(
L
`1_3
)
|^
3
)
)
+
(
(
a
*
(
(
pp
*
(
L
`1_3
)
)
*
(
pp
|^
2
)
)
)
*
(
(
L
`3_3
)
|^
2
)
)
)
+
(
b
*
(
(
pp
*
(
L
`3_3
)
)
|^
3
)
)
)
)
is
left_add-cancelable
right_add-cancelable
add-cancelable
right_complementable
Element
of the
carrier
of
(
INT.Ring
p
)
the
addF
of
(
INT.Ring
p
)
.
(
(
(
(
pp
|^
3
)
*
(
(
L
`2_3
)
|^
2
)
)
*
(
L
`3_3
)
)
,
(
-
(
(
(
(
pp
|^
3
)
*
(
(
L
`1_3
)
|^
3
)
)
+
(
(
a
*
(
(
pp
*
(
L
`1_3
)
)
*
(
pp
|^
2
)
)
)
*
(
(
L
`3_3
)
|^
2
)
)
)
+
(
b
*
(
(
pp
*
(
L
`3_3
)
)
|^
3
)
)
)
)
) is
left_add-cancelable
right_add-cancelable
add-cancelable
right_complementable
Element
of the
carrier
of
(
INT.Ring
p
)
[
(
(
(
pp
|^
3
)
*
(
(
L
`2_3
)
|^
2
)
)
*
(
L
`3_3
)
)
,
(
-
(
(
(
(
pp
|^
3
)
*
(
(
L
`1_3
)
|^
3
)
)
+
(
(
a
*
(
(
pp
*
(
L
`1_3
)
)
*
(
pp
|^
2
)
)
)
*
(
(
L
`3_3
)
|^
2
)
)
)
+
(
b
*
(
(
pp
*
(
L
`3_3
)
)
|^
3
)
)
)
)
]
is
V26
()
set
{
(
(
(
pp
|^
3
)
*
(
(
L
`2_3
)
|^
2
)
)
*
(
L
`3_3
)
)
,
(
-
(
(
(
(
pp
|^
3
)
*
(
(
L
`1_3
)
|^
3
)
)
+
(
(
a
*
(
(
pp
*
(
L
`1_3
)
)
*
(
pp
|^
2
)
)
)
*
(
(
L
`3_3
)
|^
2
)
)
)
+
(
b
*
(
(
pp
*
(
L
`3_3
)
)
|^
3
)
)
)
)
}
is non
empty
finite
set
{
{
(
(
(
pp
|^
3
)
*
(
(
L
`2_3
)
|^
2
)
)
*
(
L
`3_3
)
)
,
(
-
(
(
(
(
pp
|^
3
)
*
(
(
L
`1_3
)
|^
3
)
)
+
(
(
a
*
(
(
pp
*
(
L
`1_3
)
)
*
(
pp
|^
2
)
)
)
*
(
(
L
`3_3
)
|^
2
)
)
)
+
(
b
*
(
(
pp
*
(
L
`3_3
)
)
|^
3
)
)
)
)
}
,
{
(
(
(
pp
|^
3
)
*
(
(
L
`2_3
)
|^
2
)
)
*
(
L
`3_3
)
)
}
}
is non
empty
finite
V49
()
set
the
addF
of
(
INT.Ring
p
)
.
[
(
(
(
pp
|^
3
)
*
(
(
L
`2_3
)
|^
2
)
)
*
(
L
`3_3
)
)
,
(
-
(
(
(
(
pp
|^
3
)
*
(
(
L
`1_3
)
|^
3
)
)
+
(
(
a
*
(
(
pp
*
(
L
`1_3
)
)
*
(
pp
|^
2
)
)
)
*
(
(
L
`3_3
)
|^
2
)
)
)
+
(
b
*
(
(
pp
*
(
L
`3_3
)
)
|^
3
)
)
)
)
]
is
set
(
(
pp
|^
2
)
*
pp
)
*
(
L
`1_3
)
is
left_add-cancelable
right_add-cancelable
add-cancelable
right_complementable
Element
of the
carrier
of
(
INT.Ring
p
)
the
multF
of
(
INT.Ring
p
)
.
(
(
(
pp
|^
2
)
*
pp
)
,
(
L
`1_3
)
) is
left_add-cancelable
right_add-cancelable
add-cancelable
right_complementable
Element
of the
carrier
of
(
INT.Ring
p
)
[
(
(
pp
|^
2
)
*
pp
)
,
(
L
`1_3
)
]
is
V26
()
set
{
(
(
pp
|^
2
)
*
pp
)
,
(
L
`1_3
)
}
is non
empty
finite
set
{
{
(
(
pp
|^
2
)
*
pp
)
,
(
L
`1_3
)
}
,
{
(
(
pp
|^
2
)
*
pp
)
}
}
is non
empty
finite
V49
()
set
the
multF
of
(
INT.Ring
p
)
.
[
(
(
pp
|^
2
)
*
pp
)
,
(
L
`1_3
)
]
is
set
a
*
(
(
(
pp
|^
2
)
*
pp
)
*
(
L
`1_3
)
)
is
left_add-cancelable
right_add-cancelable
add-cancelable
right_complementable
Element
of the
carrier
of
(
INT.Ring
p
)
the
multF
of
(
INT.Ring
p
)
.
(
a
,
(
(
(
pp
|^
2
)
*
pp
)
*
(
L
`1_3
)
)
) is
left_add-cancelable
right_add-cancelable
add-cancelable
right_complementable
Element
of the
carrier
of
(
INT.Ring
p
)
[
a
,
(
(
(
pp
|^
2
)
*
pp
)
*
(
L
`1_3
)
)
]
is
V26
()
set
{
a
,
(
(
(
pp
|^
2
)
*
pp
)
*
(
L
`1_3
)
)
}
is non
empty
finite
set
{
{
a
,
(
(
(
pp
|^
2
)
*
pp
)
*
(
L
`1_3
)
)
}
,
{
a
}
}
is non
empty
finite
V49
()
set
the
multF
of
(
INT.Ring
p
)
.
[
a
,
(
(
(
pp
|^
2
)
*
pp
)
*
(
L
`1_3
)
)
]
is
set
(
a
*
(
(
(
pp
|^
2
)
*
pp
)
*
(
L
`1_3
)
)
)
*
(
(
L
`3_3
)
|^
2
)
is
left_add-cancelable
right_add-cancelable
add-cancelable
right_complementable
Element
of the
carrier
of
(
INT.Ring
p
)
the
multF
of
(
INT.Ring
p
)
.
(
(
a
*
(
(
(
pp
|^
2
)
*
pp
)
*
(
L
`1_3
)
)
)
,
(
(
L
`3_3
)
|^
2
)
) is
left_add-cancelable
right_add-cancelable
add-cancelable
right_complementable
Element
of the
carrier
of
(
INT.Ring
p
)
[
(
a
*
(
(
(
pp
|^
2
)
*
pp
)
*
(
L
`1_3
)
)
)
,
(
(
L
`3_3
)
|^
2
)
]
is
V26
()
set
{
(
a
*
(
(
(
pp
|^
2
)
*
pp
)
*
(
L
`1_3
)
)
)
,
(
(
L
`3_3
)
|^
2
)
}
is non
empty
finite
set
{
(
a
*
(
(
(
pp
|^
2
)
*
pp
)
*
(
L
`1_3
)
)
)
}
is non
empty
trivial
finite
1
-element
set
{
{
(
a
*
(
(
(
pp
|^
2
)
*
pp
)
*
(
L
`1_3
)
)
)
,
(
(
L
`3_3
)
|^
2
)
}
,
{
(
a
*
(
(
(
pp
|^
2
)
*
pp
)
*
(
L
`1_3
)
)
)
}
}
is non
empty
finite
V49
()
set
the
multF
of
(
INT.Ring
p
)
.
[
(
a
*
(
(
(
pp
|^
2
)
*
pp
)
*
(
L
`1_3
)
)
)
,
(
(
L
`3_3
)
|^
2
)
]
is
set
(
(
pp
|^
3
)
*
(
(
L
`1_3
)
|^
3
)
)
+
(
(
a
*
(
(
(
pp
|^
2
)
*
pp
)
*
(
L
`1_3
)
)
)
*
(
(
L
`3_3
)
|^
2
)
)
is
left_add-cancelable
right_add-cancelable
add-cancelable
right_complementable
Element
of the
carrier
of
(
INT.Ring
p
)
the
addF
of
(
INT.Ring
p
)
.
(
(
(
pp
|^
3
)
*
(
(
L
`1_3
)
|^
3
)
)
,
(
(
a
*
(
(
(
pp
|^
2
)
*
pp
)
*
(
L
`1_3
)
)
)
*
(
(
L
`3_3
)
|^
2
)
)
) is
left_add-cancelable
right_add-cancelable
add-cancelable
right_complementable
Element
of the
carrier
of
(
INT.Ring
p
)
[
(
(
pp
|^
3
)
*
(
(
L
`1_3
)
|^
3
)
)
,
(
(
a
*
(
(
(
pp
|^
2
)
*
pp
)
*
(
L
`1_3
)
)
)
*
(
(
L
`3_3
)
|^
2
)
)
]
is
V26
()
set
{
(
(
pp
|^
3
)
*
(
(
L
`1_3
)
|^
3
)
)
,
(
(
a
*
(
(
(
pp
|^
2
)
*
pp
)
*
(
L
`1_3
)
)
)
*
(
(
L
`3_3
)
|^
2
)
)
}
is non
empty
finite
set
{
{
(
(
pp
|^
3
)
*
(
(
L
`1_3
)
|^
3
)
)
,
(
(
a
*
(
(
(
pp
|^
2
)
*
pp
)
*
(
L
`1_3
)
)
)
*
(
(
L
`3_3
)
|^
2
)
)
}
,
{
(
(
pp
|^
3
)
*
(
(
L
`1_3
)
|^
3
)
)
}
}
is non
empty
finite
V49
()
set
the
addF
of
(
INT.Ring
p
)
.
[
(
(
pp
|^
3
)
*
(
(
L
`1_3
)
|^
3
)
)
,
(
(
a
*
(
(
(
pp
|^
2
)
*
pp
)
*
(
L
`1_3
)
)
)
*
(
(
L
`3_3
)
|^
2
)
)
]
is
set
(
(
(
pp
|^
3
)
*
(
(
L
`1_3
)
|^
3
)
)
+
(
(
a
*
(
(
(
pp
|^
2
)
*
pp
)
*
(
L
`1_3
)
)
)
*
(
(
L
`3_3
)
|^
2
)
)
)
+
(
b
*
(
(
pp
*
(
L
`3_3
)
)
|^
3
)
)
is
left_add-cancelable
right_add-cancelable
add-cancelable
right_complementable
Element
of the
carrier
of
(
INT.Ring
p
)
the
addF
of
(
INT.Ring
p
)
.
(
(
(
(
pp
|^
3
)
*
(
(
L
`1_3
)
|^
3
)
)
+
(
(
a
*
(
(
(
pp
|^
2
)
*
pp
)
*
(
L
`1_3
)
)
)
*
(
(
L
`3_3
)
|^
2
)
)
)
,
(
b
*
(
(
pp
*
(
L
`3_3
)
)
|^
3
)
)
) is
left_add-cancelable
right_add-cancelable
add-cancelable
right_complementable
Element
of the
carrier
of
(
INT.Ring
p
)
[
(
(
(
pp
|^
3
)
*
(
(
L
`1_3
)
|^
3
)
)
+
(
(
a
*
(
(
(
pp
|^
2
)
*
pp
)
*
(
L
`1_3
)
)
)
*
(
(
L
`3_3
)
|^
2
)
)
)
,
(
b
*
(
(
pp
*
(
L
`3_3
)
)
|^
3
)
)
]
is
V26
()
set
{
(
(
(
pp
|^
3
)
*
(
(
L
`1_3
)
|^
3
)
)
+
(
(
a
*
(
(
(
pp
|^
2
)
*
pp
)
*
(
L
`1_3
)
)
)
*
(
(
L
`3_3
)
|^
2
)
)
)
,
(
b
*
(
(
pp
*
(
L
`3_3
)
)
|^
3
)
)
}
is non
empty
finite
set
{
(
(
(
pp
|^
3
)
*
(
(
L
`1_3
)
|^
3
)
)
+
(
(
a
*
(
(
(
pp
|^
2
)
*
pp
)
*
(
L
`1_3
)
)
)
*
(
(
L
`3_3
)
|^
2
)
)
)
}
is non
empty
trivial
finite
1
-element
set
{
{
(
(
(
pp
|^
3
)
*
(
(
L
`1_3
)
|^
3
)
)
+
(
(
a
*
(
(
(
pp
|^
2
)
*
pp
)
*
(
L
`1_3
)
)
)
*
(
(
L
`3_3
)
|^
2
)
)
)
,
(
b
*
(
(
pp
*
(
L
`3_3
)
)
|^
3
)
)
}
,
{
(
(
(
pp
|^
3
)
*
(
(
L
`1_3
)
|^
3
)
)
+
(
(
a
*
(
(
(
pp
|^
2
)
*
pp
)
*
(
L
`1_3
)
)
)
*
(
(
L
`3_3
)
|^
2
)
)
)
}
}
is non
empty
finite
V49
()
set
the
addF
of
(
INT.Ring
p
)
.
[
(
(
(
pp
|^
3
)
*
(
(
L
`1_3
)
|^
3
)
)
+
(
(
a
*
(
(
(
pp
|^
2
)
*
pp
)
*
(
L
`1_3
)
)
)
*
(
(
L
`3_3
)
|^
2
)
)
)
,
(
b
*
(
(
pp
*
(
L
`3_3
)
)
|^
3
)
)
]
is
set
(
(
(
pp
|^
3
)
*
(
(
L
`2_3
)
|^
2
)
)
*
(
L
`3_3
)
)
-
(
(
(
(
pp
|^
3
)
*
(
(
L
`1_3
)
|^
3
)
)
+
(
(
a
*
(
(
(
pp
|^
2
)
*
pp
)
*
(
L
`1_3
)
)
)
*
(
(
L
`3_3
)
|^
2
)
)
)
+
(
b
*
(
(
pp
*
(
L
`3_3
)
)
|^
3
)
)
)
is
left_add-cancelable
right_add-cancelable
add-cancelable
right_complementable
Element
of the
carrier
of
(
INT.Ring
p
)
-
(
(
(
(
pp
|^
3
)
*
(
(
L
`1_3
)
|^
3
)
)
+
(
(
a
*
(
(
(
pp
|^
2
)
*
pp
)
*
(
L
`1_3
)
)
)
*
(
(
L
`3_3
)
|^
2
)
)
)
+
(
b
*
(
(
pp
*
(
L
`3_3
)
)
|^
3
)
)
)
is
left_add-cancelable
right_add-cancelable
add-cancelable
right_complementable
Element
of the
carrier
of
(
INT.Ring
p
)
(
(
(
pp
|^
3
)
*
(
(
L
`2_3
)
|^
2
)
)
*
(
L
`3_3
)
)
+
(
-
(
(
(
(
pp
|^
3
)
*
(
(
L
`1_3
)
|^
3
)
)
+
(
(
a
*
(
(
(
pp
|^
2
)
*
pp
)
*
(
L
`1_3
)
)
)
*
(
(
L
`3_3
)
|^
2
)
)
)
+
(
b
*
(
(
pp
*
(
L
`3_3
)
)
|^
3
)
)
)
)
is
left_add-cancelable
right_add-cancelable
add-cancelable
right_complementable
Element
of the
carrier
of
(
INT.Ring
p
)
the
addF
of
(
INT.Ring
p
)
.
(
(
(
(
pp
|^
3
)
*
(
(
L
`2_3
)
|^
2
)
)
*
(
L
`3_3
)
)
,
(
-
(
(
(
(
pp
|^
3
)
*
(
(
L
`1_3
)
|^
3
)
)
+
(
(
a
*
(
(
(
pp
|^
2
)
*
pp
)
*
(
L
`1_3
)
)
)
*
(
(
L
`3_3
)
|^
2
)
)
)
+
(
b
*
(
(
pp
*
(
L
`3_3
)
)
|^
3
)
)
)
)
) is
left_add-cancelable
right_add-cancelable
add-cancelable
right_complementable
Element
of the
carrier
of
(
INT.Ring
p
)
[
(
(
(
pp
|^
3
)
*
(
(
L
`2_3
)
|^
2
)
)
*
(
L
`3_3
)
)
,
(
-
(
(
(
(
pp
|^
3
)
*
(
(
L
`1_3
)
|^
3
)
)
+
(
(
a
*
(
(
(
pp
|^
2
)
*
pp
)
*
(
L
`1_3
)
)
)
*
(
(
L
`3_3
)
|^
2
)
)
)
+
(
b
*
(
(
pp
*
(
L
`3_3
)
)
|^
3
)
)
)
)
]
is
V26
()
set
{
(
(
(
pp
|^
3
)
*
(
(
L
`2_3
)
|^
2
)
)
*
(
L
`3_3
)
)
,
(
-
(
(
(
(
pp
|^
3
)
*
(
(
L
`1_3
)
|^
3
)
)
+
(
(
a
*
(
(
(
pp
|^
2
)
*
pp
)
*
(
L
`1_3
)
)
)
*
(
(
L
`3_3
)
|^
2
)
)
)
+
(
b
*
(
(
pp
*
(
L
`3_3
)
)
|^
3
)
)
)
)
}
is non
empty
finite
set
{
{
(
(
(
pp
|^
3
)
*
(
(
L
`2_3
)
|^
2
)
)
*
(
L
`3_3
)
)
,
(
-
(
(
(
(
pp
|^
3
)
*
(
(
L
`1_3
)
|^
3
)
)
+
(
(
a
*
(
(
(
pp
|^
2
)
*
pp
)
*
(
L
`1_3
)
)
)
*
(
(
L
`3_3
)
|^
2
)
)
)
+
(
b
*
(
(
pp
*
(
L
`3_3
)
)
|^
3
)
)
)
)
}
,
{
(
(
(
pp
|^
3
)
*
(
(
L
`2_3
)
|^
2
)
)
*
(
L
`3_3
)
)
}
}
is non
empty
finite
V49
()
set
the
addF
of
(
INT.Ring
p
)
.
[
(
(
(
pp
|^
3
)
*
(
(
L
`2_3
)
|^
2
)
)
*
(
L
`3_3
)
)
,
(
-
(
(
(
(
pp
|^
3
)
*
(
(
L
`1_3
)
|^
3
)
)
+
(
(
a
*
(
(
(
pp
|^
2
)
*
pp
)
*
(
L
`1_3
)
)
)
*
(
(
L
`3_3
)
|^
2
)
)
)
+
(
b
*
(
(
pp
*
(
L
`3_3
)
)
|^
3
)
)
)
)
]
is
set
(
pp
|^
(
2
+
1
)
)
*
(
L
`1_3
)
is
left_add-cancelable
right_add-cancelable
add-cancelable
right_complementable
Element
of the
carrier
of
(
INT.Ring
p
)
the
multF
of
(
INT.Ring
p
)
.
(
(
pp
|^
(
2
+
1
)
)
,
(
L
`1_3
)
) is
left_add-cancelable
right_add-cancelable
add-cancelable
right_complementable
Element
of the
carrier
of
(
INT.Ring
p
)
[
(
pp
|^
(
2
+
1
)
)
,
(
L
`1_3
)
]
is
V26
()
set
{
(
pp
|^
(
2
+
1
)
)
,
(
L
`1_3
)
}
is non
empty
finite
set
{
{
(
pp
|^
(
2
+
1
)
)
,
(
L
`1_3
)
}
,
{
(
pp
|^
(
2
+
1
)
)
}
}
is non
empty
finite
V49
()
set
the
multF
of
(
INT.Ring
p
)
.
[
(
pp
|^
(
2
+
1
)
)
,
(
L
`1_3
)
]
is
set
a
*
(
(
pp
|^
(
2
+
1
)
)
*
(
L
`1_3
)
)
is
left_add-cancelable
right_add-cancelable
add-cancelable
right_complementable
Element
of the
carrier
of
(
INT.Ring
p
)
the
multF
of
(
INT.Ring
p
)
.
(
a
,
(
(
pp
|^
(
2
+
1
)
)
*
(
L
`1_3
)
)
) is
left_add-cancelable
right_add-cancelable
add-cancelable
right_complementable
Element
of the
carrier
of
(
INT.Ring
p
)
[
a
,
(
(
pp
|^
(
2
+
1
)
)
*
(
L
`1_3
)
)
]
is
V26
()
set
{
a
,
(
(
pp
|^
(
2
+
1
)
)
*
(
L
`1_3
)
)
}
is non
empty
finite
set
{
{
a
,
(
(
pp
|^
(
2
+
1
)
)
*
(
L
`1_3
)
)
}
,
{
a
}
}
is non
empty
finite
V49
()
set
the
multF
of
(
INT.Ring
p
)
.
[
a
,
(
(
pp
|^
(
2
+
1
)
)
*
(
L
`1_3
)
)
]
is
set
(
a
*
(
(
pp
|^
(
2
+
1
)
)
*
(
L
`1_3
)
)
)
*
(
(
L
`3_3
)
|^
2
)
is
left_add-cancelable
right_add-cancelable
add-cancelable
right_complementable
Element
of the
carrier
of
(
INT.Ring
p
)
the
multF
of
(
INT.Ring
p
)
.
(
(
a
*
(
(
pp
|^
(
2
+
1
)
)
*
(
L
`1_3
)
)
)
,
(
(
L
`3_3
)
|^
2
)
) is
left_add-cancelable
right_add-cancelable
add-cancelable
right_complementable
Element
of the
carrier
of
(
INT.Ring
p
)
[
(
a
*
(
(
pp
|^
(
2
+
1
)
)
*
(
L
`1_3
)
)
)
,
(
(
L
`3_3
)
|^
2
)
]
is
V26
()
set
{
(
a
*
(
(
pp
|^
(
2
+
1
)
)
*
(
L
`1_3
)
)
)
,
(
(
L
`3_3
)
|^
2
)
}
is non
empty
finite
set
{
(
a
*
(
(
pp
|^
(
2
+
1
)
)
*
(
L
`1_3
)
)
)
}
is non
empty
trivial
finite
1
-element
set
{
{
(
a
*
(
(
pp
|^
(
2
+
1
)
)
*
(
L
`1_3
)
)
)
,
(
(
L
`3_3
)
|^
2
)
}
,
{
(
a
*
(
(
pp
|^
(
2
+
1
)
)
*
(
L
`1_3
)
)
)
}
}
is non
empty
finite
V49
()
set
the
multF
of
(
INT.Ring
p
)
.
[
(
a
*
(
(
pp
|^
(
2
+
1
)
)
*
(
L
`1_3
)
)
)
,
(
(
L
`3_3
)
|^
2
)
]
is
set
(
(
pp
|^
3
)
*
(
(
L
`1_3
)
|^
3
)
)
+
(
(
a
*
(
(
pp
|^
(
2
+
1
)
)
*
(
L
`1_3
)
)
)
*
(
(
L
`3_3
)
|^
2
)
)
is
left_add-cancelable
right_add-cancelable
add-cancelable
right_complementable
Element
of the
carrier
of
(
INT.Ring
p
)
the
addF
of
(
INT.Ring
p
)
.
(
(
(
pp
|^
3
)
*
(
(
L
`1_3
)
|^
3
)
)
,
(
(
a
*
(
(
pp
|^
(
2
+
1
)
)
*
(
L
`1_3
)
)
)
*
(
(
L
`3_3
)
|^
2
)
)
) is
left_add-cancelable
right_add-cancelable
add-cancelable
right_complementable
Element
of the
carrier
of
(
INT.Ring
p
)
[
(
(
pp
|^
3
)
*
(
(
L
`1_3
)
|^
3
)
)
,
(
(
a
*
(
(
pp
|^
(
2
+
1
)
)
*
(
L
`1_3
)
)
)
*
(
(
L
`3_3
)
|^
2
)
)
]
is
V26
()
set
{
(
(
pp
|^
3
)
*
(
(
L
`1_3
)
|^
3
)
)
,
(
(
a
*
(
(
pp
|^
(
2
+
1
)
)
*
(
L
`1_3
)
)
)
*
(
(
L
`3_3
)
|^
2
)
)
}
is non
empty
finite
set
{
{
(
(
pp
|^
3
)
*
(
(
L
`1_3
)
|^
3
)
)
,
(
(
a
*
(
(
pp
|^
(
2
+
1
)
)
*
(
L
`1_3
)
)
)
*
(
(
L
`3_3
)
|^
2
)
)
}
,
{
(
(
pp
|^
3
)
*
(
(
L
`1_3
)
|^
3
)
)
}
}
is non
empty
finite
V49
()
set
the
addF
of
(
INT.Ring
p
)
.
[
(
(
pp
|^
3
)
*
(
(
L
`1_3
)
|^
3
)
)
,
(
(
a
*
(
(
pp
|^
(
2
+
1
)
)
*
(
L
`1_3
)
)
)
*
(
(
L
`3_3
)
|^
2
)
)
]
is
set
(
(
(
pp
|^
3
)
*
(
(
L
`1_3
)
|^
3
)
)
+
(
(
a
*
(
(
pp
|^
(
2
+
1
)
)
*
(
L
`1_3
)
)
)
*
(
(
L
`3_3
)
|^
2
)
)
)
+
(
b
*
(
(
pp
*
(
L
`3_3
)
)
|^
3
)
)
is
left_add-cancelable
right_add-cancelable
add-cancelable
right_complementable
Element
of the
carrier
of
(
INT.Ring
p
)
the
addF
of
(
INT.Ring
p
)
.
(
(
(
(
pp
|^
3
)
*
(
(
L
`1_3
)
|^
3
)
)
+
(
(
a
*
(
(
pp
|^
(
2
+
1
)
)
*
(
L
`1_3
)
)
)
*
(
(
L
`3_3
)
|^
2
)
)
)
,
(
b
*
(
(
pp
*
(
L
`3_3
)
)
|^
3
)
)
) is
left_add-cancelable
right_add-cancelable
add-cancelable
right_complementable
Element
of the
carrier
of
(
INT.Ring
p
)
[
(
(
(
pp
|^
3
)
*
(
(
L
`1_3
)
|^
3
)
)
+
(
(
a
*
(
(
pp
|^
(
2
+
1
)
)
*
(
L
`1_3
)
)
)
*
(
(
L
`3_3
)
|^
2
)
)
)
,
(
b
*
(
(
pp
*
(
L
`3_3
)
)
|^
3
)
)
]
is
V26
()
set
{
(
(
(
pp
|^
3
)
*
(
(
L
`1_3
)
|^
3
)
)
+
(
(
a
*
(
(
pp
|^
(
2
+
1
)
)
*
(
L
`1_3
)
)
)
*
(
(
L
`3_3
)
|^
2
)
)
)
,
(
b
*
(
(
pp
*
(
L
`3_3
)
)
|^
3
)
)
}
is non
empty
finite
set
{
(
(
(
pp
|^
3
)
*
(
(
L
`1_3
)
|^
3
)
)
+
(
(
a
*
(
(
pp
|^
(
2
+
1
)
)
*
(
L
`1_3
)
)
)
*
(
(
L
`3_3
)
|^
2
)
)
)
}
is non
empty
trivial
finite
1
-element
set
{
{
(
(
(
pp
|^
3
)
*
(
(
L
`1_3
)
|^
3
)
)
+
(
(
a
*
(
(
pp
|^
(
2
+
1
)
)
*
(
L
`1_3
)
)
)
*
(
(
L
`3_3
)
|^
2
)
)
)
,
(
b
*
(
(
pp
*
(
L
`3_3
)
)
|^
3
)
)
}
,
{
(
(
(
pp
|^
3
)
*
(
(
L
`1_3
)
|^
3
)
)
+
(
(
a
*
(
(
pp
|^
(
2
+
1
)
)
*
(
L
`1_3
)
)
)
*
(
(
L
`3_3
)
|^
2
)
)
)
}
}
is non
empty
finite
V49
()
set
the
addF
of
(
INT.Ring
p
)
.
[
(
(
(
pp
|^
3
)
*
(
(
L
`1_3
)
|^
3
)
)
+
(
(
a
*
(
(
pp
|^
(
2
+
1
)
)
*
(
L
`1_3
)
)
)
*
(
(
L
`3_3
)
|^
2
)
)
)
,
(
b
*
(
(
pp
*
(
L
`3_3
)
)
|^
3
)
)
]
is
set
(
(
(
pp
|^
3
)
*
(
(
L
`2_3
)
|^
2
)
)
*
(
L
`3_3
)
)
-
(
(
(
(
pp
|^
3
)
*
(
(
L
`1_3
)
|^
3
)
)
+
(
(
a
*
(
(
pp
|^
(
2
+
1
)
)
*
(
L
`1_3
)
)
)
*
(
(
L
`3_3
)
|^
2
)
)
)
+
(
b
*
(
(
pp
*
(
L
`3_3
)
)
|^
3
)
)
)
is
left_add-cancelable
right_add-cancelable
add-cancelable
right_complementable
Element
of the
carrier
of
(
INT.Ring
p
)
-
(
(
(
(
pp
|^
3
)
*
(
(
L
`1_3
)
|^
3
)
)
+
(
(
a
*
(
(
pp
|^
(
2
+
1
)
)
*
(
L
`1_3
)
)
)
*
(
(
L
`3_3
)
|^
2
)
)
)
+
(
b
*
(
(
pp
*
(
L
`3_3
)
)
|^
3
)
)
)
is
left_add-cancelable
right_add-cancelable
add-cancelable
right_complementable
Element
of the
carrier
of
(
INT.Ring
p
)
(
(
(
pp
|^
3
)
*
(
(
L
`2_3
)
|^
2
)
)
*
(
L
`3_3
)
)
+
(
-
(
(
(
(
pp
|^
3
)
*
(
(
L
`1_3
)
|^
3
)
)
+
(
(
a
*
(
(
pp
|^
(
2
+
1
)
)
*
(
L
`1_3
)
)
)
*
(
(
L
`3_3
)
|^
2
)
)
)
+
(
b
*
(
(
pp
*
(
L
`3_3
)
)
|^
3
)
)
)
)
is
left_add-cancelable
right_add-cancelable
add-cancelable
right_complementable
Element
of the
carrier
of
(
INT.Ring
p
)
the
addF
of
(
INT.Ring
p
)
.
(
(
(
(
pp
|^
3
)
*
(
(
L
`2_3
)
|^
2
)
)
*
(
L
`3_3
)
)
,
(
-
(
(
(
(
pp
|^
3
)
*
(
(
L
`1_3
)
|^
3
)
)
+
(
(
a
*
(
(
pp
|^
(
2
+
1
)
)
*
(
L
`1_3
)
)
)
*
(
(
L
`3_3
)
|^
2
)
)
)
+
(
b
*
(
(
pp
*
(
L
`3_3
)
)
|^
3
)
)
)
)
) is
left_add-cancelable
right_add-cancelable
add-cancelable
right_complementable
Element
of the
carrier
of
(
INT.Ring
p
)
[
(
(
(
pp
|^
3
)
*
(
(
L
`2_3
)
|^
2
)
)
*
(
L
`3_3
)
)
,
(
-
(
(
(
(
pp
|^
3
)
*
(
(
L
`1_3
)
|^
3
)
)
+
(
(
a
*
(
(
pp
|^
(
2
+
1
)
)
*
(
L
`1_3
)
)
)
*
(
(
L
`3_3
)
|^
2
)
)
)
+
(
b
*
(
(
pp
*
(
L
`3_3
)
)
|^
3
)
)
)
)
]
is
V26
()
set
{
(
(
(
pp
|^
3
)
*
(
(
L
`2_3
)
|^
2
)
)
*
(
L
`3_3
)
)
,
(
-
(
(
(
(
pp
|^
3
)
*
(
(
L
`1_3
)
|^
3
)
)
+
(
(
a
*
(
(
pp
|^
(
2
+
1
)
)
*
(
L
`1_3
)
)
)
*
(
(
L
`3_3
)
|^
2
)
)
)
+
(
b
*
(
(
pp
*
(
L
`3_3
)
)
|^
3
)
)
)
)
}
is non
empty
finite
set
{
{
(
(
(
pp
|^
3
)
*
(
(
L
`2_3
)
|^
2
)
)
*
(
L
`3_3
)
)
,
(
-
(
(
(
(
pp
|^
3
)
*
(
(
L
`1_3
)
|^
3
)
)
+
(
(
a
*
(
(
pp
|^
(
2
+
1
)
)
*
(
L
`1_3
)
)
)
*
(
(
L
`3_3
)
|^
2
)
)
)
+
(
b
*
(
(
pp
*
(
L
`3_3
)
)
|^
3
)
)
)
)
}
,
{
(
(
(
pp
|^
3
)
*
(
(
L
`2_3
)
|^
2
)
)
*
(
L
`3_3
)
)
}
}
is non
empty
finite
V49
()
set
the
addF
of
(
INT.Ring
p
)
.
[
(
(
(
pp
|^
3
)
*
(
(
L
`2_3
)
|^
2
)
)
*
(
L
`3_3
)
)
,
(
-
(
(
(
(
pp
|^
3
)
*
(
(
L
`1_3
)
|^
3
)
)
+
(
(
a
*
(
(
pp
|^
(
2
+
1
)
)
*
(
L
`1_3
)
)
)
*
(
(
L
`3_3
)
|^
2
)
)
)
+
(
b
*
(
(
pp
*
(
L
`3_3
)
)
|^
3
)
)
)
)
]
is
set
(
pp
|^
3
)
*
(
a
*
(
L
`1_3
)
)
is
left_add-cancelable
right_add-cancelable
add-cancelable
right_complementable
Element
of the
carrier
of
(
INT.Ring
p
)
the
multF
of
(
INT.Ring
p
)
.
(
(
pp
|^
3
)
,
(
a
*
(
L
`1_3
)
)
) is
left_add-cancelable
right_add-cancelable
add-cancelable
right_complementable
Element
of the
carrier
of
(
INT.Ring
p
)
[
(
pp
|^
3
)
,
(
a
*
(
L
`1_3
)
)
]
is
V26
()
set
{
(
pp
|^
3
)
,
(
a
*
(
L
`1_3
)
)
}
is non
empty
finite
set
{
{
(
pp
|^
3
)
,
(
a
*
(
L
`1_3
)
)
}
,
{
(
pp
|^
3
)
}
}
is non
empty
finite
V49
()
set
the
multF
of
(
INT.Ring
p
)
.
[
(
pp
|^
3
)
,
(
a
*
(
L
`1_3
)
)
]
is
set
(
(
pp
|^
3
)
*
(
a
*
(
L
`1_3
)
)
)
*
(
(
L
`3_3
)
|^
2
)
is
left_add-cancelable
right_add-cancelable
add-cancelable
right_complementable
Element
of the
carrier
of
(
INT.Ring
p
)
the
multF
of
(
INT.Ring
p
)
.
(
(
(
pp
|^
3
)
*
(
a
*
(
L
`1_3
)
)
)
,
(
(
L
`3_3
)
|^
2
)
) is
left_add-cancelable
right_add-cancelable
add-cancelable
right_complementable
Element
of the
carrier
of
(
INT.Ring
p
)
[
(
(
pp
|^
3
)
*
(
a
*
(
L
`1_3
)
)
)
,
(
(
L
`3_3
)
|^
2
)
]
is
V26
()
set
{
(
(
pp
|^
3
)
*
(
a
*
(
L
`1_3
)
)
)
,
(
(
L
`3_3
)
|^
2
)
}
is non
empty
finite
set
{
(
(
pp
|^
3
)
*
(
a
*
(
L
`1_3
)
)
)
}
is non
empty
trivial
finite
1
-element
set
{
{
(
(
pp
|^
3
)
*
(
a
*
(
L
`1_3
)
)
)
,
(
(
L
`3_3
)
|^
2
)
}
,
{
(
(
pp
|^
3
)
*
(
a
*
(
L
`1_3
)
)
)
}
}
is non
empty
finite
V49
()
set
the
multF
of
(
INT.Ring
p
)
.
[
(
(
pp
|^
3
)
*
(
a
*
(
L
`1_3
)
)
)
,
(
(
L
`3_3
)
|^
2
)
]
is
set
(
(
pp
|^
3
)
*
(
(
L
`1_3
)
|^
3
)
)
+
(
(
(
pp
|^
3
)
*
(
a
*
(
L
`1_3
)
)
)
*
(
(
L
`3_3
)
|^
2
)
)
is
left_add-cancelable
right_add-cancelable
add-cancelable
right_complementable
Element
of the
carrier
of
(
INT.Ring
p
)
the
addF
of
(
INT.Ring
p
)
.
(
(
(
pp
|^
3
)
*
(
(
L
`1_3
)
|^
3
)
)
,
(
(
(
pp
|^
3
)
*
(
a
*
(
L
`1_3
)
)
)
*
(
(
L
`3_3
)
|^
2
)
)
) is
left_add-cancelable
right_add-cancelable
add-cancelable
right_complementable
Element
of the
carrier
of
(
INT.Ring
p
)
[
(
(
pp
|^
3
)
*
(
(
L
`1_3
)
|^
3
)
)
,
(
(
(
pp
|^
3
)
*
(
a
*
(
L
`1_3
)
)
)
*
(
(
L
`3_3
)
|^
2
)
)
]
is
V26
()
set
{
(
(
pp
|^
3
)
*
(
(
L
`1_3
)
|^
3
)
)
,
(
(
(
pp
|^
3
)
*
(
a
*
(
L
`1_3
)
)
)
*
(
(
L
`3_3
)
|^
2
)
)
}
is non
empty
finite
set
{
{
(
(
pp
|^
3
)
*
(
(
L
`1_3
)
|^
3
)
)
,
(
(
(
pp
|^
3
)
*
(
a
*
(
L
`1_3
)
)
)
*
(
(
L
`3_3
)
|^
2
)
)
}
,
{
(
(
pp
|^
3
)
*
(
(
L
`1_3
)
|^
3
)
)
}
}
is non
empty
finite
V49
()
set
the
addF
of
(
INT.Ring
p
)
.
[
(
(
pp
|^
3
)
*
(
(
L
`1_3
)
|^
3
)
)
,
(
(
(
pp
|^
3
)
*
(
a
*
(
L
`1_3
)
)
)
*
(
(
L
`3_3
)
|^
2
)
)
]
is
set
(
(
(
pp
|^
3
)
*
(
(
L
`1_3
)
|^
3
)
)
+
(
(
(
pp
|^
3
)
*
(
a
*
(
L
`1_3
)
)
)
*
(
(
L
`3_3
)
|^
2
)
)
)
+
(
b
*
(
(
pp
*
(
L
`3_3
)
)
|^
3
)
)
is
left_add-cancelable
right_add-cancelable
add-cancelable
right_complementable
Element
of the
carrier
of
(
INT.Ring
p
)
the
addF
of
(
INT.Ring
p
)
.
(
(
(
(
pp
|^
3
)
*
(
(
L
`1_3
)
|^
3
)
)
+
(
(
(
pp
|^
3
)
*
(
a
*
(
L
`1_3
)
)
)
*
(
(
L
`3_3
)
|^
2
)
)
)
,
(
b
*
(
(
pp
*
(
L
`3_3
)
)
|^
3
)
)
) is
left_add-cancelable
right_add-cancelable
add-cancelable
right_complementable
Element
of the
carrier
of
(
INT.Ring
p
)
[
(
(
(
pp
|^
3
)
*
(
(
L
`1_3
)
|^
3
)
)
+
(
(
(
pp
|^
3
)
*
(
a
*
(
L
`1_3
)
)
)
*
(
(
L
`3_3
)
|^
2
)
)
)
,
(
b
*
(
(
pp
*
(
L
`3_3
)
)
|^
3
)
)
]
is
V26
()
set
{
(
(
(
pp
|^
3
)
*
(
(
L
`1_3
)
|^
3
)
)
+
(
(
(
pp
|^
3
)
*
(
a
*
(
L
`1_3
)
)
)
*
(
(
L
`3_3
)
|^
2
)
)
)
,
(
b
*
(
(
pp
*
(
L
`3_3
)
)
|^
3
)
)
}
is non
empty
finite
set
{
(
(
(
pp
|^
3
)
*
(
(
L
`1_3
)
|^
3
)
)
+
(
(
(
pp
|^
3
)
*
(
a
*
(
L
`1_3
)
)
)
*
(
(
L
`3_3
)
|^
2
)
)
)
}
is non
empty
trivial
finite
1
-element
set
{
{
(
(
(
pp
|^
3
)
*
(
(
L
`1_3
)
|^
3
)
)
+
(
(
(
pp
|^
3
)
*
(
a
*
(
L
`1_3
)
)
)
*
(
(
L
`3_3
)
|^
2
)
)
)
,
(
b
*
(
(
pp
*
(
L
`3_3
)
)
|^
3
)
)
}
,
{
(
(
(
pp
|^
3
)
*
(
(
L
`1_3
)
|^
3
)
)
+
(
(
(
pp
|^
3
)
*
(
a
*
(
L
`1_3
)
)
)
*
(
(
L
`3_3
)
|^
2
)
)
)
}
}
is non
empty
finite
V49
()
set
the
addF
of
(
INT.Ring
p
)
.
[
(
(
(
pp
|^
3
)
*
(
(
L
`1_3
)
|^
3
)
)
+
(
(
(
pp
|^
3
)
*
(
a
*
(
L
`1_3
)
)
)
*
(
(
L
`3_3
)
|^
2
)
)
)
,
(
b
*
(
(
pp
*
(
L
`3_3
)
)
|^
3
)
)
]
is
set
(
(
(
pp
|^
3
)
*
(
(
L
`2_3
)
|^
2
)
)
*
(
L
`3_3
)
)
-
(
(
(
(
pp
|^
3
)
*
(
(
L
`1_3
)
|^
3
)
)
+
(
(
(
pp
|^
3
)
*
(
a
*
(
L
`1_3
)
)
)
*
(
(
L
`3_3
)
|^
2
)
)
)
+
(
b
*
(
(
pp
*
(
L
`3_3
)
)
|^
3
)
)
)
is
left_add-cancelable
right_add-cancelable
add-cancelable
right_complementable
Element
of the
carrier
of
(
INT.Ring
p
)
-
(
(
(
(
pp
|^
3
)
*
(
(
L
`1_3
)
|^
3
)
)
+
(
(
(
pp
|^
3
)
*
(
a
*
(
L
`1_3
)
)
)
*
(
(
L
`3_3
)
|^
2
)
)
)
+
(
b
*
(
(
pp
*
(
L
`3_3
)
)
|^
3
)
)
)
is
left_add-cancelable
right_add-cancelable
add-cancelable
right_complementable
Element
of the
carrier
of
(
INT.Ring
p
)
(
(
(
pp
|^
3
)
*
(
(
L
`2_3
)
|^
2
)
)
*
(
L
`3_3
)
)
+
(
-
(
(
(
(
pp
|^
3
)
*
(
(
L
`1_3
)
|^
3
)
)
+
(
(
(
pp
|^
3
)
*
(
a
*
(
L
`1_3
)
)
)
*
(
(
L
`3_3
)
|^
2
)
)
)
+
(
b
*
(
(
pp
*
(
L
`3_3
)
)
|^
3
)
)
)
)
is
left_add-cancelable
right_add-cancelable
add-cancelable
right_complementable
Element
of the
carrier
of
(
INT.Ring
p
)
the
addF
of
(
INT.Ring
p
)
.
(
(
(
(
pp
|^
3
)
*
(
(
L
`2_3
)
|^
2
)
)
*
(
L
`3_3
)
)
,
(
-
(
(
(
(
pp
|^
3
)
*
(
(
L
`1_3
)
|^
3
)
)
+
(
(
(
pp
|^
3
)
*
(
a
*
(
L
`1_3
)
)
)
*
(
(
L
`3_3
)
|^
2
)
)
)
+
(
b
*
(
(
pp
*
(
L
`3_3
)
)
|^
3
)
)
)
)
) is
left_add-cancelable
right_add-cancelable
add-cancelable
right_complementable
Element
of the
carrier
of
(
INT.Ring
p
)
[
(
(
(
pp
|^
3
)
*
(
(
L
`2_3
)
|^
2
)
)
*
(
L
`3_3
)
)
,
(
-
(
(
(
(
pp
|^
3
)
*
(
(
L
`1_3
)
|^
3
)
)
+
(
(
(
pp
|^
3
)
*
(
a
*
(
L
`1_3
)
)
)
*
(
(
L
`3_3
)
|^
2
)
)
)
+
(
b
*
(
(
pp
*
(
L
`3_3
)
)
|^
3
)
)
)
)
]
is
V26
()
set
{
(
(
(
pp
|^
3
)
*
(
(
L
`2_3
)
|^
2
)
)
*
(
L
`3_3
)
)
,
(
-
(
(
(
(
pp
|^
3
)
*
(
(
L
`1_3
)
|^
3
)
)
+
(
(
(
pp
|^
3
)
*
(
a
*
(
L
`1_3
)
)
)
*
(
(
L
`3_3
)
|^
2
)
)
)
+
(
b
*
(
(
pp
*
(
L
`3_3
)
)
|^
3
)
)
)
)
}
is non
empty
finite
set
{
{
(
(
(
pp
|^
3
)
*
(
(
L
`2_3
)
|^
2
)
)
*
(
L
`3_3
)
)
,
(
-
(
(
(
(
pp
|^
3
)
*
(
(
L
`1_3
)
|^
3
)
)
+
(
(
(
pp
|^
3
)
*
(
a
*
(
L
`1_3
)
)
)
*
(
(
L
`3_3
)
|^
2
)
)
)
+
(
b
*
(
(
pp
*
(
L
`3_3
)
)
|^
3
)
)
)
)
}
,
{
(
(
(
pp
|^
3
)
*
(
(
L
`2_3
)
|^
2
)
)
*
(
L
`3_3
)
)
}
}
is non
empty
finite
V49
()
set
the
addF
of
(
INT.Ring
p
)
.
[
(
(
(
pp
|^
3
)
*
(
(
L
`2_3
)
|^
2
)
)
*
(
L
`3_3
)
)
,
(
-
(
(
(
(
pp
|^
3
)
*
(
(
L
`1_3
)
|^
3
)
)
+
(
(
(
pp
|^
3
)
*
(
a
*
(
L
`1_3
)
)
)
*
(
(
L
`3_3
)
|^
2
)
)
)
+
(
b
*
(
(
pp
*
(
L
`3_3
)
)
|^
3
)
)
)
)
]
is
set
(
pp
|^
3
)
*
(
(
L
`3_3
)
|^
3
)
is
left_add-cancelable
right_add-cancelable
add-cancelable
right_complementable
Element
of the
carrier
of
(
INT.Ring
p
)
the
multF
of
(
INT.Ring
p
)
.
(
(
pp
|^
3
)
,
(
(
L
`3_3
)
|^
3
)
) is
left_add-cancelable
right_add-cancelable
add-cancelable
right_complementable
Element
of the
carrier
of
(
INT.Ring
p
)
[
(
pp
|^
3
)
,
(
(
L
`3_3
)
|^
3
)
]
is
V26
()
set
{
(
pp
|^
3
)
,
(
(
L
`3_3
)
|^
3
)
}
is non
empty
finite
set
{
{
(
pp
|^
3
)
,
(
(
L
`3_3
)
|^
3
)
}
,
{
(
pp
|^
3
)
}
}
is non
empty
finite
V49
()
set
the
multF
of
(
INT.Ring
p
)
.
[
(
pp
|^
3
)
,
(
(
L
`3_3
)
|^
3
)
]
is
set
b
*
(
(
pp
|^
3
)
*
(
(
L
`3_3
)
|^
3
)
)
is
left_add-cancelable
right_add-cancelable
add-cancelable
right_complementable
Element
of the
carrier
of
(
INT.Ring
p
)
the
multF
of
(
INT.Ring
p
)
.
(
b
,
(
(
pp
|^
3
)
*
(
(
L
`3_3
)
|^
3
)
)
) is
left_add-cancelable
right_add-cancelable
add-cancelable
right_complementable
Element
of the
carrier
of
(
INT.Ring
p
)
[
b
,
(
(
pp
|^
3
)
*
(
(
L
`3_3
)
|^
3
)
)
]
is
V26
()
set
{
b
,
(
(
pp
|^
3
)
*
(
(
L
`3_3
)
|^
3
)
)
}
is non
empty
finite
set
{
{
b
,
(
(
pp
|^
3
)
*
(
(
L
`3_3
)
|^
3
)
)
}
,
{
b
}
}
is non
empty
finite
V49
()
set
the
multF
of
(
INT.Ring
p
)
.
[
b
,
(
(
pp
|^
3
)
*
(
(
L
`3_3
)
|^
3
)
)
]
is
set
(
(
(
pp
|^
3
)
*
(
(
L
`1_3
)
|^
3
)
)
+
(
(
(
pp
|^
3
)
*
(
a
*
(
L
`1_3
)
)
)
*
(
(
L
`3_3
)
|^
2
)
)
)
+
(
b
*
(
(
pp
|^
3
)
*
(
(
L
`3_3
)
|^
3
)
)
)
is
left_add-cancelable
right_add-cancelable
add-cancelable
right_complementable
Element
of the
carrier
of
(
INT.Ring
p
)
the
addF
of
(
INT.Ring
p
)
.
(
(
(
(
pp
|^
3
)
*
(
(
L
`1_3
)
|^
3
)
)
+
(
(
(
pp
|^
3
)
*
(
a
*
(
L
`1_3
)
)
)
*
(
(
L
`3_3
)
|^
2
)
)
)
,
(
b
*
(
(
pp
|^
3
)
*
(
(
L
`3_3
)
|^
3
)
)
)
) is
left_add-cancelable
right_add-cancelable
add-cancelable
right_complementable
Element
of the
carrier
of
(
INT.Ring
p
)
[
(
(
(
pp
|^
3
)
*
(
(
L
`1_3
)
|^
3
)
)
+
(
(
(
pp
|^
3
)
*
(
a
*
(
L
`1_3
)
)
)
*
(
(
L
`3_3
)
|^
2
)
)
)
,
(
b
*
(
(
pp
|^
3
)
*
(
(
L
`3_3
)
|^
3
)
)
)
]
is
V26
()
set
{
(
(
(
pp
|^
3
)
*
(
(
L
`1_3
)
|^
3
)
)
+
(
(
(
pp
|^
3
)
*
(
a
*
(
L
`1_3
)
)
)
*
(
(
L
`3_3
)
|^
2
)
)
)
,
(
b
*
(
(
pp
|^
3
)
*
(
(
L
`3_3
)
|^
3
)
)
)
}
is non
empty
finite
set
{
{
(
(
(
pp
|^
3
)
*
(
(
L
`1_3
)
|^
3
)
)
+
(
(
(
pp
|^
3
)
*
(
a
*
(
L
`1_3
)
)
)
*
(
(
L
`3_3
)
|^
2
)
)
)
,
(
b
*
(
(
pp
|^
3
)
*
(
(
L
`3_3
)
|^
3
)
)
)
}
,
{
(
(
(
pp
|^
3
)
*
(
(
L
`1_3
)
|^
3
)
)
+
(
(
(
pp
|^
3
)
*
(
a
*
(
L
`1_3
)
)
)
*
(
(
L
`3_3
)
|^
2
)
)
)
}
}
is non
empty
finite
V49
()
set
the
addF
of
(
INT.Ring
p
)
.
[
(
(
(
pp
|^
3
)
*
(
(
L
`1_3
)
|^
3
)
)
+
(
(
(
pp
|^
3
)
*
(
a
*
(
L
`1_3
)
)
)
*
(
(
L
`3_3
)
|^
2
)
)
)
,
(
b
*
(
(
pp
|^
3
)
*
(
(
L
`3_3
)
|^
3
)
)
)
]
is
set
(
(
(
pp
|^
3
)
*
(
(
L
`2_3
)
|^
2
)
)
*
(
L
`3_3
)
)
-
(
(
(
(
pp
|^
3
)
*
(
(
L
`1_3
)
|^
3
)
)
+
(
(
(
pp
|^
3
)
*
(
a
*
(
L
`1_3
)
)
)
*
(
(
L
`3_3
)
|^
2
)
)
)
+
(
b
*
(
(
pp
|^
3
)
*
(
(
L
`3_3
)
|^
3
)
)
)
)
is
left_add-cancelable
right_add-cancelable
add-cancelable
right_complementable
Element
of the
carrier
of
(
INT.Ring
p
)
-
(
(
(
(
pp
|^
3
)
*
(
(
L
`1_3
)
|^
3
)
)
+
(
(
(
pp
|^
3
)
*
(
a
*
(
L
`1_3
)
)
)
*
(
(
L
`3_3
)
|^
2
)
)
)
+
(
b
*
(
(
pp
|^
3
)
*
(
(
L
`3_3
)
|^
3
)
)
)
)
is
left_add-cancelable
right_add-cancelable
add-cancelable
right_complementable
Element
of the
carrier
of
(
INT.Ring
p
)
(
(
(
pp
|^
3
)
*
(
(
L
`2_3
)
|^
2
)
)
*
(
L
`3_3
)
)
+
(
-
(
(
(
(
pp
|^
3
)
*
(
(
L
`1_3
)
|^
3
)
)
+
(
(
(
pp
|^
3
)
*
(
a
*
(
L
`1_3
)
)
)
*
(
(
L
`3_3
)
|^
2
)
)
)
+
(
b
*
(
(
pp
|^
3
)
*
(
(
L
`3_3
)
|^
3
)
)
)
)
)
is
left_add-cancelable
right_add-cancelable
add-cancelable
right_complementable
Element
of the
carrier
of
(
INT.Ring
p
)
the
addF
of
(
INT.Ring
p
)
.
(
(
(
(
pp
|^
3
)
*
(
(
L
`2_3
)
|^
2
)
)
*
(
L
`3_3
)
)
,
(
-
(
(
(
(
pp
|^
3
)
*
(
(
L
`1_3
)
|^
3
)
)
+
(
(
(
pp
|^
3
)
*
(
a
*
(
L
`1_3
)
)
)
*
(
(
L
`3_3
)
|^
2
)
)
)
+
(
b
*
(
(
pp
|^
3
)
*
(
(
L
`3_3
)
|^
3
)
)
)
)
)
) is
left_add-cancelable
right_add-cancelable
add-cancelable
right_complementable
Element
of the
carrier
of
(
INT.Ring
p
)
[
(
(
(
pp
|^
3
)
*
(
(
L
`2_3
)
|^
2
)
)
*
(
L
`3_3
)
)
,
(
-
(
(
(
(
pp
|^
3
)
*
(
(
L
`1_3
)
|^
3
)
)
+
(
(
(
pp
|^
3
)
*
(
a
*
(
L
`1_3
)
)
)
*
(
(
L
`3_3
)
|^
2
)
)
)
+
(
b
*
(
(
pp
|^
3
)
*
(
(
L
`3_3
)
|^
3
)
)
)
)
)
]
is
V26
()
set
{
(
(
(
pp
|^
3
)
*
(
(
L
`2_3
)
|^
2
)
)
*
(
L
`3_3
)
)
,
(
-
(
(
(
(
pp
|^
3
)
*
(
(
L
`1_3
)
|^
3
)
)
+
(
(
(
pp
|^
3
)
*
(
a
*
(
L
`1_3
)
)
)
*
(
(
L
`3_3
)
|^
2
)
)
)
+
(
b
*
(
(
pp
|^
3
)
*
(
(
L
`3_3
)
|^
3
)
)
)
)
)
}
is non
empty
finite
set
{
{
(
(
(
pp
|^
3
)
*
(
(
L
`2_3
)
|^
2
)
)
*
(
L
`3_3
)
)
,
(
-
(
(
(
(
pp
|^
3
)
*
(
(
L
`1_3
)
|^
3
)
)
+
(
(
(
pp
|^
3
)
*
(
a
*
(
L
`1_3
)
)
)
*
(
(
L
`3_3
)
|^
2
)
)
)
+
(
b
*
(
(
pp
|^
3
)
*
(
(
L
`3_3
)
|^
3
)
)
)
)
)
}
,
{
(
(
(
pp
|^
3
)
*
(
(
L
`2_3
)
|^
2
)
)
*
(
L
`3_3
)
)
}
}
is non
empty
finite
V49
()
set
the
addF
of
(
INT.Ring
p
)
.
[
(
(
(
pp
|^
3
)
*
(
(
L
`2_3
)
|^
2
)
)
*
(
L
`3_3
)
)
,
(
-
(
(
(
(
pp
|^
3
)
*
(
(
L
`1_3
)
|^
3
)
)
+
(
(
(
pp
|^
3
)
*
(
a
*
(
L
`1_3
)
)
)
*
(
(
L
`3_3
)
|^
2
)
)
)
+
(
b
*
(
(
pp
|^
3
)
*
(
(
L
`3_3
)
|^
3
)
)
)
)
)
]
is
set
(
pp
|^
3
)
*
b
is
left_add-cancelable
right_add-cancelable
add-cancelable
right_complementable
Element
of the
carrier
of
(
INT.Ring
p
)
the
multF
of
(
INT.Ring
p
)
.
(
(
pp
|^
3
)
,
b
) is
left_add-cancelable
right_add-cancelable
add-cancelable
right_complementable
Element
of the
carrier
of
(
INT.Ring
p
)
[
(
pp
|^
3
)
,
b
]
is
V26
()
set
{
(
pp
|^
3
)
,
b
}
is non
empty
finite
set
{
{
(
pp
|^
3
)
,
b
}
,
{
(
pp
|^
3
)
}
}
is non
empty
finite
V49
()
set
the
multF
of
(
INT.Ring
p
)
.
[
(
pp
|^
3
)
,
b
]
is
set
(
(
pp
|^
3
)
*
b
)
*
(
(
L
`3_3
)
|^
3
)
is
left_add-cancelable
right_add-cancelable
add-cancelable
right_complementable
Element
of the
carrier
of
(
INT.Ring
p
)
the
multF
of
(
INT.Ring
p
)
.
(
(
(
pp
|^
3
)
*
b
)
,
(
(
L
`3_3
)
|^
3
)
) is
left_add-cancelable
right_add-cancelable
add-cancelable
right_complementable
Element
of the
carrier
of
(
INT.Ring
p
)
[
(
(
pp
|^
3
)
*
b
)
,
(
(
L
`3_3
)
|^
3
)
]
is
V26
()
set
{
(
(
pp
|^
3
)
*
b
)
,
(
(
L
`3_3
)
|^
3
)
}
is non
empty
finite
set
{
(
(
pp
|^
3
)
*
b
)
}
is non
empty
trivial
finite
1
-element
set
{
{
(
(
pp
|^
3
)
*
b
)
,
(
(
L
`3_3
)
|^
3
)
}
,
{
(
(
pp
|^
3
)
*
b
)
}
}
is non
empty
finite
V49
()
set
the
multF
of
(
INT.Ring
p
)
.
[
(
(
pp
|^
3
)
*
b
)
,
(
(
L
`3_3
)
|^
3
)
]
is
set
(
(
(
pp
|^
3
)
*
(
(
L
`1_3
)
|^
3
)
)
+
(
(
(
pp
|^
3
)
*
(
a
*
(
L
`1_3
)
)
)
*
(
(
L
`3_3
)
|^
2
)
)
)
+
(
(
(
pp
|^
3
)
*
b
)
*
(
(
L
`3_3
)
|^
3
)
)
is
left_add-cancelable
right_add-cancelable
add-cancelable
right_complementable
Element
of the
carrier
of
(
INT.Ring
p
)
the
addF
of
(
INT.Ring
p
)
.
(
(
(
(
pp
|^
3
)
*
(
(
L
`1_3
)
|^
3
)
)
+
(
(
(
pp
|^
3
)
*
(
a
*
(
L
`1_3
)
)
)
*
(
(
L
`3_3
)
|^
2
)
)
)
,
(
(
(
pp
|^
3
)
*
b
)
*
(
(
L
`3_3
)
|^
3
)
)
) is
left_add-cancelable
right_add-cancelable
add-cancelable
right_complementable
Element
of the
carrier
of
(
INT.Ring
p
)
[
(
(
(
pp
|^
3
)
*
(
(
L
`1_3
)
|^
3
)
)
+
(
(
(
pp
|^
3
)
*
(
a
*
(
L
`1_3
)
)
)
*
(
(
L
`3_3
)
|^
2
)
)
)
,
(
(
(
pp
|^
3
)
*
b
)
*
(
(
L
`3_3
)
|^
3
)
)
]
is
V26
()
set
{
(
(
(
pp
|^
3
)
*
(
(
L
`1_3
)
|^
3
)
)
+
(
(
(
pp
|^
3
)
*
(
a
*
(
L
`1_3
)
)
)
*
(
(
L
`3_3
)
|^
2
)
)
)
,
(
(
(
pp
|^
3
)
*
b
)
*
(
(
L
`3_3
)
|^
3
)
)
}
is non
empty
finite
set
{
{
(
(
(
pp
|^
3
)
*
(
(
L
`1_3
)
|^
3
)
)
+
(
(
(
pp
|^
3
)
*
(
a
*
(
L
`1_3
)
)
)
*
(
(
L
`3_3
)
|^
2
)
)
)
,
(
(
(
pp
|^
3
)
*
b
)
*
(
(
L
`3_3
)
|^
3
)
)
}
,
{
(
(
(
pp
|^
3
)
*
(
(
L
`1_3
)
|^
3
)
)
+
(
(
(
pp
|^
3
)
*
(
a
*
(
L
`1_3
)
)
)
*
(
(
L
`3_3
)
|^
2
)
)
)
}
}
is non
empty
finite
V49
()
set
the
addF
of
(
INT.Ring
p
)
.
[
(
(
(
pp
|^
3
)
*
(
(
L
`1_3
)
|^
3
)
)
+
(
(
(
pp
|^
3
)
*
(
a
*
(
L
`1_3
)
)
)
*
(
(
L
`3_3
)
|^
2
)
)
)
,
(
(
(
pp
|^
3
)
*
b
)
*
(
(
L
`3_3
)
|^
3
)
)
]
is
set
(
(
(
pp
|^
3
)
*
(
(
L
`2_3
)
|^
2
)
)
*
(
L
`3_3
)
)
-
(
(
(
(
pp
|^
3
)
*
(
(
L
`1_3
)
|^
3
)
)
+
(
(
(
pp
|^
3
)
*
(
a
*
(
L
`1_3
)
)
)
*
(
(
L
`3_3
)
|^
2
)
)
)
+
(
(
(
pp
|^
3
)
*
b
)
*
(
(
L
`3_3
)
|^
3
)
)
)
is
left_add-cancelable
right_add-cancelable
add-cancelable
right_complementable
Element
of the
carrier
of
(
INT.Ring
p
)
-
(
(
(
(
pp
|^
3
)
*
(
(
L
`1_3
)
|^
3
)
)
+
(
(
(
pp
|^
3
)
*
(
a
*
(
L
`1_3
)
)
)
*
(
(
L
`3_3
)
|^
2
)
)
)
+
(
(
(
pp
|^
3
)
*
b
)
*
(
(
L
`3_3
)
|^
3
)
)
)
is
left_add-cancelable
right_add-cancelable
add-cancelable
right_complementable
Element
of the
carrier
of
(
INT.Ring
p
)
(
(
(
pp
|^
3
)
*
(
(
L
`2_3
)
|^
2
)
)
*
(
L
`3_3
)
)
+
(
-
(
(
(
(
pp
|^
3
)
*
(
(
L
`1_3
)
|^
3
)
)
+
(
(
(
pp
|^
3
)
*
(
a
*
(
L
`1_3
)
)
)
*
(
(
L
`3_3
)
|^
2
)
)
)
+
(
(
(
pp
|^
3
)
*
b
)
*
(
(
L
`3_3
)
|^
3
)
)
)
)
is
left_add-cancelable
right_add-cancelable
add-cancelable
right_complementable
Element
of the
carrier
of
(
INT.Ring
p
)
the
addF
of
(
INT.Ring
p
)
.
(
(
(
(
pp
|^
3
)
*
(
(
L
`2_3
)
|^
2
)
)
*
(
L
`3_3
)
)
,
(
-
(
(
(
(
pp
|^
3
)
*
(
(
L
`1_3
)
|^
3
)
)
+
(
(
(
pp
|^
3
)
*
(
a
*
(
L
`1_3
)
)
)
*
(
(
L
`3_3
)
|^
2
)
)
)
+
(
(
(
pp
|^
3
)
*
b
)
*
(
(
L
`3_3
)
|^
3
)
)
)
)
) is
left_add-cancelable
right_add-cancelable
add-cancelable
right_complementable
Element
of the
carrier
of
(
INT.Ring
p
)
[
(
(
(
pp
|^
3
)
*
(
(
L
`2_3
)
|^
2
)
)
*
(
L
`3_3
)
)
,
(
-
(
(
(
(
pp
|^
3
)
*
(
(
L
`1_3
)
|^
3
)
)
+
(
(
(
pp
|^
3
)
*
(
a
*
(
L
`1_3
)
)
)
*
(
(
L
`3_3
)
|^
2
)
)
)
+
(
(
(
pp
|^
3
)
*
b
)
*
(
(
L
`3_3
)
|^
3
)
)
)
)
]
is
V26
()
set
{
(
(
(
pp
|^
3
)
*
(
(
L
`2_3
)
|^
2
)
)
*
(
L
`3_3
)
)
,
(
-
(
(
(
(
pp
|^
3
)
*
(
(
L
`1_3
)
|^
3
)
)
+
(
(
(
pp
|^
3
)
*
(
a
*
(
L
`1_3
)
)
)
*
(
(
L
`3_3
)
|^
2
)
)
)
+
(
(
(
pp
|^
3
)
*
b
)
*
(
(
L
`3_3
)
|^
3
)
)
)
)
}
is non
empty
finite
set
{
{
(
(
(
pp
|^
3
)
*
(
(
L
`2_3
)
|^
2
)
)
*
(
L
`3_3
)
)
,
(
-
(
(
(
(
pp
|^
3
)
*
(
(
L
`1_3
)
|^
3
)
)
+
(
(
(
pp
|^
3
)
*
(
a
*
(
L
`1_3
)
)
)
*
(
(
L
`3_3
)
|^
2
)
)
)
+
(
(
(
pp
|^
3
)
*
b
)
*
(
(
L
`3_3
)
|^
3
)
)
)
)
}
,
{
(
(
(
pp
|^
3
)
*
(
(
L
`2_3
)
|^
2
)
)
*
(
L
`3_3
)
)
}
}
is non
empty
finite
V49
()
set
the
addF
of
(
INT.Ring
p
)
.
[
(
(
(
pp
|^
3
)
*
(
(
L
`2_3
)
|^
2
)
)
*
(
L
`3_3
)
)
,
(
-
(
(
(
(
pp
|^
3
)
*
(
(
L
`1_3
)
|^
3
)
)
+
(
(
(
pp
|^
3
)
*
(
a
*
(
L
`1_3
)
)
)
*
(
(
L
`3_3
)
|^
2
)
)
)
+
(
(
(
pp
|^
3
)
*
b
)
*
(
(
L
`3_3
)
|^
3
)
)
)
)
]
is
set
(
pp
|^
3
)
*
(
(
(
L
`2_3
)
|^
2
)
*
(
L
`3_3
)
)
is
left_add-cancelable
right_add-cancelable
add-cancelable
right_complementable
Element
of the
carrier
of
(
INT.Ring
p
)
the
multF
of
(
INT.Ring
p
)
.
(
(
pp
|^
3
)
,
(
(
(
L
`2_3
)
|^
2
)
*
(
L
`3_3
)
)
) is
left_add-cancelable
right_add-cancelable
add-cancelable
right_complementable
Element
of the
carrier
of
(
INT.Ring
p
)
[
(
pp
|^
3
)
,
(
(
(
L
`2_3
)
|^
2
)
*
(
L
`3_3
)
)
]
is
V26
()
set
{
(
pp
|^
3
)
,
(
(
(
L
`2_3
)
|^
2
)
*
(
L
`3_3
)
)
}
is non
empty
finite
set
{
{
(
pp
|^
3
)
,
(
(
(
L
`2_3
)
|^
2
)
*
(
L
`3_3
)
)
}
,
{
(
pp
|^
3
)
}
}
is non
empty
finite
V49
()
set
the
multF
of
(
INT.Ring
p
)
.
[
(
pp
|^
3
)
,
(
(
(
L
`2_3
)
|^
2
)
*
(
L
`3_3
)
)
]
is
set
(
(
pp
|^
3
)
*
(
(
(
L
`2_3
)
|^
2
)
*
(
L
`3_3
)
)
)
-
(
(
(
(
pp
|^
3
)
*
(
(
L
`1_3
)
|^
3
)
)
+
(
(
(
pp
|^
3
)
*
(
a
*
(
L
`1_3
)
)
)
*
(
(
L
`3_3
)
|^
2
)
)
)
+
(
(
(
pp
|^
3
)
*
b
)
*
(
(
L
`3_3
)
|^
3
)
)
)
is
left_add-cancelable
right_add-cancelable
add-cancelable
right_complementable
Element
of the
carrier
of
(
INT.Ring
p
)
(
(
pp
|^
3
)
*
(
(
(
L
`2_3
)
|^
2
)
*
(
L
`3_3
)
)
)
+
(
-
(
(
(
(
pp
|^
3
)
*
(
(
L
`1_3
)
|^
3
)
)
+
(
(
(
pp
|^
3
)
*
(
a
*
(
L
`1_3
)
)
)
*
(
(
L
`3_3
)
|^
2
)
)
)
+
(
(
(
pp
|^
3
)
*
b
)
*
(
(
L
`3_3
)
|^
3
)
)
)
)
is
left_add-cancelable
right_add-cancelable
add-cancelable
right_complementable
Element
of the
carrier
of
(
INT.Ring
p
)
the
addF
of
(
INT.Ring
p
)
.
(
(
(
pp
|^
3
)
*
(
(
(
L
`2_3
)
|^
2
)
*
(
L
`3_3
)
)
)
,
(
-
(
(
(
(
pp
|^
3
)
*
(
(
L
`1_3
)
|^
3
)
)
+
(
(
(
pp
|^
3
)
*
(
a
*
(
L
`1_3
)
)
)
*
(
(
L
`3_3
)
|^
2
)
)
)
+
(
(
(
pp
|^
3
)
*
b
)
*
(
(
L
`3_3
)
|^
3
)
)
)
)
) is
left_add-cancelable
right_add-cancelable
add-cancelable
right_complementable
Element
of the
carrier
of
(
INT.Ring
p
)
[
(
(
pp
|^
3
)
*
(
(
(
L
`2_3
)
|^
2
)
*
(
L
`3_3
)
)
)
,
(
-
(
(
(
(
pp
|^
3
)
*
(
(
L
`1_3
)
|^
3
)
)
+
(
(
(
pp
|^
3
)
*
(
a
*
(
L
`1_3
)
)
)
*
(
(
L
`3_3
)
|^
2
)
)
)
+
(
(
(
pp
|^
3
)
*
b
)
*
(
(
L
`3_3
)
|^
3
)
)
)
)
]
is
V26
()
set
{
(
(
pp
|^
3
)
*
(
(
(
L
`2_3
)
|^
2
)
*
(
L
`3_3
)
)
)
,
(
-
(
(
(
(
pp
|^
3
)
*
(
(
L
`1_3
)
|^
3
)
)
+
(
(
(
pp
|^
3
)
*
(
a
*
(
L
`1_3
)
)
)
*
(
(
L
`3_3
)
|^
2
)
)
)
+
(
(
(
pp
|^
3
)
*
b
)
*
(
(
L
`3_3
)
|^
3
)
)
)
)
}
is non
empty
finite
set
{
(
(
pp
|^
3
)
*
(
(
(
L
`2_3
)
|^
2
)
*
(
L
`3_3
)
)
)
}
is non
empty
trivial
finite
1
-element
set
{
{
(
(
pp
|^
3
)
*
(
(
(
L
`2_3
)
|^
2
)
*
(
L
`3_3
)
)
)
,
(
-
(
(
(
(
pp
|^
3
)
*
(
(
L
`1_3
)
|^
3
)
)
+
(
(
(
pp
|^
3
)
*
(
a
*
(
L
`1_3
)
)
)
*
(
(
L
`3_3
)
|^
2
)
)
)
+
(
(
(
pp
|^
3
)
*
b
)
*
(
(
L
`3_3
)
|^
3
)
)
)
)
}
,
{
(
(
pp
|^
3
)
*
(
(
(
L
`2_3
)
|^
2
)
*
(
L
`3_3
)
)
)
}
}
is non
empty
finite
V49
()
set
the
addF
of
(
INT.Ring
p
)
.
[
(
(
pp
|^
3
)
*
(
(
(
L
`2_3
)
|^
2
)
*
(
L
`3_3
)
)
)
,
(
-
(
(
(
(
pp
|^
3
)
*
(
(
L
`1_3
)
|^
3
)
)
+
(
(
(
pp
|^
3
)
*
(
a
*
(
L
`1_3
)
)
)
*
(
(
L
`3_3
)
|^
2
)
)
)
+
(
(
(
pp
|^
3
)
*
b
)
*
(
(
L
`3_3
)
|^
3
)
)
)
)
]
is
set
(
pp
|^
3
)
*
(
(
a
*
(
L
`1_3
)
)
*
(
(
L
`3_3
)
|^
2
)
)
is
left_add-cancelable
right_add-cancelable
add-cancelable
right_complementable
Element
of the
carrier
of
(
INT.Ring
p
)
the
multF
of
(
INT.Ring
p
)
.
(
(
pp
|^
3
)
,
(
(
a
*
(
L
`1_3
)
)
*
(
(
L
`3_3
)
|^
2
)
)
) is
left_add-cancelable
right_add-cancelable
add-cancelable
right_complementable
Element
of the
carrier
of
(
INT.Ring
p
)
[
(
pp
|^
3
)
,
(
(
a
*
(
L
`1_3
)
)
*
(
(
L
`3_3
)
|^
2
)
)
]
is
V26
()
set
{
(
pp
|^
3
)
,
(
(
a
*
(
L
`1_3
)
)
*
(
(
L
`3_3
)
|^
2
)
)
}
is non
empty
finite
set
{
{
(
pp
|^
3
)
,
(
(
a
*
(
L
`1_3
)
)
*
(
(
L
`3_3
)
|^
2
)
)
}
,
{
(
pp
|^
3
)
}
}
is non
empty
finite
V49
()
set
the
multF
of
(
INT.Ring
p
)
.
[
(
pp
|^
3
)
,
(
(
a
*
(
L
`1_3
)
)
*
(
(
L
`3_3
)
|^
2
)
)
]
is
set
(
(
pp
|^
3
)
*
(
(
L
`1_3
)
|^
3
)
)
+
(
(
pp
|^
3
)
*
(
(
a
*
(
L
`1_3
)
)
*
(
(
L
`3_3
)
|^
2
)
)
)
is
left_add-cancelable
right_add-cancelable
add-cancelable
right_complementable
Element
of the
carrier
of
(
INT.Ring
p
)
the
addF
of
(
INT.Ring
p
)
.
(
(
(
pp
|^
3
)
*
(
(
L
`1_3
)
|^
3
)
)
,
(
(
pp
|^
3
)
*
(
(
a
*
(
L
`1_3
)
)
*
(
(
L
`3_3
)
|^
2
)
)
)
) is
left_add-cancelable
right_add-cancelable
add-cancelable
right_complementable
Element
of the
carrier
of
(
INT.Ring
p
)
[
(
(
pp
|^
3
)
*
(
(
L
`1_3
)
|^
3
)
)
,
(
(
pp
|^
3
)
*
(
(
a
*
(
L
`1_3
)
)
*
(
(
L
`3_3
)
|^
2
)
)
)
]
is
V26
()
set
{
(
(
pp
|^
3
)
*
(
(
L
`1_3
)
|^
3
)
)
,
(
(
pp
|^
3
)
*
(
(
a
*
(
L
`1_3
)
)
*
(
(
L
`3_3
)
|^
2
)
)
)
}
is non
empty
finite
set
{
{
(
(
pp
|^
3
)
*
(
(
L
`1_3
)
|^
3
)
)
,
(
(
pp
|^
3
)
*
(
(
a
*
(
L
`1_3
)
)
*
(
(
L
`3_3
)
|^
2
)
)
)
}
,
{
(
(
pp
|^
3
)
*
(
(
L
`1_3
)
|^
3
)
)
}
}
is non
empty
finite
V49
()
set
the
addF
of
(
INT.Ring
p
)
.
[
(
(
pp
|^
3
)
*
(
(
L
`1_3
)
|^
3
)
)
,
(
(
pp
|^
3
)
*
(
(
a
*
(
L
`1_3
)
)
*
(
(
L
`3_3
)
|^
2
)
)
)
]
is
set
(
(
(
pp
|^
3
)
*
(
(
L
`1_3
)
|^
3
)
)
+
(
(
pp
|^
3
)
*
(
(
a
*
(
L
`1_3
)
)
*
(
(
L
`3_3
)
|^
2
)
)
)
)
+
(
(
(
pp
|^
3
)
*
b
)
*
(
(
L
`3_3
)
|^
3
)
)
is
left_add-cancelable
right_add-cancelable
add-cancelable
right_complementable
Element
of the
carrier
of
(
INT.Ring
p
)
the
addF
of
(
INT.Ring
p
)
.
(
(
(
(
pp
|^
3
)
*
(
(
L
`1_3
)
|^
3
)
)
+
(
(
pp
|^
3
)
*
(
(
a
*
(
L
`1_3
)
)
*
(
(
L
`3_3
)
|^
2
)
)
)
)
,
(
(
(
pp
|^
3
)
*
b
)
*
(
(
L
`3_3
)
|^
3
)
)
) is
left_add-cancelable
right_add-cancelable
add-cancelable
right_complementable
Element
of the
carrier
of
(
INT.Ring
p
)
[
(
(
(
pp
|^
3
)
*
(
(
L
`1_3
)
|^
3
)
)
+
(
(
pp
|^
3
)
*
(
(
a
*
(
L
`1_3
)
)
*
(
(
L
`3_3
)
|^
2
)
)
)
)
,
(
(
(
pp
|^
3
)
*
b
)
*
(
(
L
`3_3
)
|^
3
)
)
]
is
V26
()
set
{
(
(
(
pp
|^
3
)
*
(
(
L
`1_3
)
|^
3
)
)
+
(
(
pp
|^
3
)
*
(
(
a
*
(
L
`1_3
)
)
*
(
(
L
`3_3
)
|^
2
)
)
)
)
,
(
(
(
pp
|^
3
)
*
b
)
*
(
(
L
`3_3
)
|^
3
)
)
}
is non
empty
finite
set
{
(
(
(
pp
|^
3
)
*
(
(
L
`1_3
)
|^
3
)
)
+
(
(
pp
|^
3
)
*
(
(
a
*
(
L
`1_3
)
)
*
(
(
L
`3_3
)
|^
2
)
)
)
)
}
is non
empty
trivial
finite
1
-element
set
{
{
(
(
(
pp
|^
3
)
*
(
(
L
`1_3
)
|^
3
)
)
+
(
(
pp
|^
3
)
*
(
(
a
*
(
L
`1_3
)
)
*
(
(
L
`3_3
)
|^
2
)
)
)
)
,
(
(
(
pp
|^
3
)
*
b
)
*
(
(
L
`3_3
)
|^
3
)
)
}
,
{
(
(
(
pp
|^
3
)
*
(
(
L
`1_3
)
|^
3
)
)
+
(
(
pp
|^
3
)
*
(
(
a
*
(
L
`1_3
)
)
*
(
(
L
`3_3
)
|^
2
)
)
)
)
}
}
is non
empty
finite
V49
()
set
the
addF
of
(
INT.Ring
p
)
.
[
(
(
(
pp
|^
3
)
*
(
(
L
`1_3
)
|^
3
)
)
+
(
(
pp
|^
3
)
*
(
(
a
*
(
L
`1_3
)
)
*
(
(
L
`3_3
)
|^
2
)
)
)
)
,
(
(
(
pp
|^
3
)
*
b
)
*
(
(
L
`3_3
)
|^
3
)
)
]
is
set
(
(
pp
|^
3
)
*
(
(
(
L
`2_3
)
|^
2
)
*
(
L
`3_3
)
)
)
-
(
(
(
(
pp
|^
3
)
*
(
(
L
`1_3
)
|^
3
)
)
+
(
(
pp
|^
3
)
*
(
(
a
*
(
L
`1_3
)
)
*
(
(
L
`3_3
)
|^
2
)
)
)
)
+
(
(
(
pp
|^
3
)
*
b
)
*
(
(
L
`3_3
)
|^
3
)
)
)
is
left_add-cancelable
right_add-cancelable
add-cancelable
right_complementable
Element
of the
carrier
of
(
INT.Ring
p
)
-
(
(
(
(
pp
|^
3
)
*
(
(
L
`1_3
)
|^
3
)
)
+
(
(
pp
|^
3
)
*
(
(
a
*
(
L
`1_3
)
)
*
(
(
L
`3_3
)
|^
2
)
)
)
)
+
(
(
(
pp
|^
3
)
*
b
)
*
(
(
L
`3_3
)
|^
3
)
)
)
is
left_add-cancelable
right_add-cancelable
add-cancelable
right_complementable
Element
of the
carrier
of
(
INT.Ring
p
)
(
(
pp
|^
3
)
*
(
(
(
L
`2_3
)
|^
2
)
*
(
L
`3_3
)
)
)
+
(
-
(
(
(
(
pp
|^
3
)
*
(
(
L
`1_3
)
|^
3
)
)
+
(
(
pp
|^
3
)
*
(
(
a
*
(
L
`1_3
)
)
*
(
(
L
`3_3
)
|^
2
)
)
)
)
+
(
(
(
pp
|^
3
)
*
b
)
*
(
(
L
`3_3
)
|^
3
)
)
)
)
is
left_add-cancelable
right_add-cancelable
add-cancelable
right_complementable
Element
of the
carrier
of
(
INT.Ring
p
)
the
addF
of
(
INT.Ring
p
)
.
(
(
(
pp
|^
3
)
*
(
(
(
L
`2_3
)
|^
2
)
*
(
L
`3_3
)
)
)
,
(
-
(
(
(
(
pp
|^
3
)
*
(
(
L
`1_3
)
|^
3
)
)
+
(
(
pp
|^
3
)
*
(
(
a
*
(
L
`1_3
)
)
*
(
(
L
`3_3
)
|^
2
)
)
)
)
+
(
(
(
pp
|^
3
)
*
b
)
*
(
(
L
`3_3
)
|^
3
)
)
)
)
) is
left_add-cancelable
right_add-cancelable
add-cancelable
right_complementable
Element
of the
carrier
of
(
INT.Ring
p
)
[
(
(
pp
|^
3
)
*
(
(
(
L
`2_3
)
|^
2
)
*
(
L
`3_3
)
)
)
,
(
-
(
(
(
(
pp
|^
3
)
*
(
(
L
`1_3
)
|^
3
)
)
+
(
(
pp
|^
3
)
*
(
(
a
*
(
L
`1_3
)
)
*
(
(
L
`3_3
)
|^
2
)
)
)
)
+
(
(
(
pp
|^
3
)
*
b
)
*
(
(
L
`3_3
)
|^
3
)
)
)
)
]
is
V26
()
set
{
(
(
pp
|^
3
)
*
(
(
(
L
`2_3
)
|^
2
)
*
(
L
`3_3
)
)
)
,
(
-
(
(
(
(
pp
|^
3
)
*
(
(
L
`1_3
)
|^
3
)
)
+
(
(
pp
|^
3
)
*
(
(
a
*
(
L
`1_3
)
)
*
(
(
L
`3_3
)
|^
2
)
)
)
)
+
(
(
(
pp
|^
3
)
*
b
)
*
(
(
L
`3_3
)
|^
3
)
)
)
)
}
is non
empty
finite
set
{
{
(
(
pp
|^
3
)
*
(
(
(
L
`2_3
)
|^
2
)
*
(
L
`3_3
)
)
)
,
(
-
(
(
(
(
pp
|^
3
)
*
(
(
L
`1_3
)
|^
3
)
)
+
(
(
pp
|^
3
)
*
(
(
a
*
(
L
`1_3
)
)
*
(
(
L
`3_3
)
|^
2
)
)
)
)
+
(
(
(
pp
|^
3
)
*
b
)
*
(
(
L
`3_3
)
|^
3
)
)
)
)
}
,
{
(
(
pp
|^
3
)
*
(
(
(
L
`2_3
)
|^
2
)
*
(
L
`3_3
)
)
)
}
}
is non
empty
finite
V49
()
set
the
addF
of
(
INT.Ring
p
)
.
[
(
(
pp
|^
3
)
*
(
(
(
L
`2_3
)
|^
2
)
*
(
L
`3_3
)
)
)
,
(
-
(
(
(
(
pp
|^
3
)
*
(
(
L
`1_3
)
|^
3
)
)
+
(
(
pp
|^
3
)
*
(
(
a
*
(
L
`1_3
)
)
*
(
(
L
`3_3
)
|^
2
)
)
)
)
+
(
(
(
pp
|^
3
)
*
b
)
*
(
(
L
`3_3
)
|^
3
)
)
)
)
]
is
set
(
pp
|^
3
)
*
(
b
*
(
(
L
`3_3
)
|^
3
)
)
is
left_add-cancelable
right_add-cancelable
add-cancelable
right_complementable
Element
of the
carrier
of
(
INT.Ring
p
)
the
multF
of
(
INT.Ring
p
)
.
(
(
pp
|^
3
)
,
(
b
*
(
(
L
`3_3
)
|^
3
)
)
) is
left_add-cancelable
right_add-cancelable
add-cancelable
right_complementable
Element
of the
carrier
of
(
INT.Ring
p
)
[
(
pp
|^
3
)
,
(
b
*
(
(
L
`3_3
)
|^
3
)
)
]
is
V26
()
set
{
(
pp
|^
3
)
,
(
b
*
(
(
L
`3_3
)
|^
3
)
)
}
is non
empty
finite
set
{
{
(
pp
|^
3
)
,
(
b
*
(
(
L
`3_3
)
|^
3
)
)
}
,
{
(
pp
|^
3
)
}
}
is non
empty
finite
V49
()
set
the
multF
of
(
INT.Ring
p
)
.
[
(
pp
|^
3
)
,
(
b
*
(
(
L
`3_3
)
|^
3
)
)
]
is
set
(
(
(
pp
|^
3
)
*
(
(
L
`1_3
)
|^
3
)
)
+
(
(
pp
|^
3
)
*
(
(
a
*
(
L
`1_3
)
)
*
(
(
L
`3_3
)
|^
2
)
)
)
)
+
(
(
pp
|^
3
)
*
(
b
*
(
(
L
`3_3
)
|^
3
)
)
)
is
left_add-cancelable
right_add-cancelable
add-cancelable
right_complementable
Element
of the
carrier
of
(
INT.Ring
p
)
the
addF
of
(
INT.Ring
p
)
.
(
(
(
(
pp
|^
3
)
*
(
(
L
`1_3
)
|^
3
)
)
+
(
(
pp
|^
3
)
*
(
(
a
*
(
L
`1_3
)
)
*
(
(
L
`3_3
)
|^
2
)
)
)
)
,
(
(
pp
|^
3
)
*
(
b
*
(
(
L
`3_3
)
|^
3
)
)
)
) is
left_add-cancelable
right_add-cancelable
add-cancelable
right_complementable
Element
of the
carrier
of
(
INT.Ring
p
)
[
(
(
(
pp
|^
3
)
*
(
(
L
`1_3
)
|^
3
)
)
+
(
(
pp
|^
3
)
*
(
(
a
*
(
L
`1_3
)
)
*
(
(
L
`3_3
)
|^
2
)
)
)
)
,
(
(
pp
|^
3
)
*
(
b
*
(
(
L
`3_3
)
|^
3
)
)
)
]
is
V26
()
set
{
(
(
(
pp
|^
3
)
*
(
(
L
`1_3
)
|^
3
)
)
+
(
(
pp
|^
3
)
*
(
(
a
*
(
L
`1_3
)
)
*
(
(
L
`3_3
)
|^
2
)
)
)
)
,
(
(
pp
|^
3
)
*
(
b
*
(
(
L
`3_3
)
|^
3
)
)
)
}
is non
empty
finite
set
{
{
(
(
(
pp
|^
3
)
*
(
(
L
`1_3
)
|^
3
)
)
+
(
(
pp
|^
3
)
*
(
(
a
*
(
L
`1_3
)
)
*
(
(
L
`3_3
)
|^
2
)
)
)
)
,
(
(
pp
|^
3
)
*
(
b
*
(
(
L
`3_3
)
|^
3
)
)
)
}
,
{
(
(
(
pp
|^
3
)
*
(
(
L
`1_3
)
|^
3
)
)
+
(
(
pp
|^
3
)
*
(
(
a
*
(
L
`1_3
)
)
*
(
(
L
`3_3
)
|^
2
)
)
)
)
}
}
is non
empty
finite
V49
()
set
the
addF
of
(
INT.Ring
p
)
.
[
(
(
(
pp
|^
3
)
*
(
(
L
`1_3
)
|^
3
)
)
+
(
(
pp
|^
3
)
*
(
(
a
*
(
L
`1_3
)
)
*
(
(
L
`3_3
)
|^
2
)
)
)
)
,
(
(
pp
|^
3
)
*
(
b
*
(
(
L
`3_3
)
|^
3
)
)
)
]
is
set
(
(
pp
|^
3
)
*
(
(
(
L
`2_3
)
|^
2
)
*
(
L
`3_3
)
)
)
-
(
(
(
(
pp
|^
3
)
*
(
(
L
`1_3
)
|^
3
)
)
+
(
(
pp
|^
3
)
*
(
(
a
*
(
L
`1_3
)
)
*
(
(
L
`3_3
)
|^
2
)
)
)
)
+
(
(
pp
|^
3
)
*
(
b
*
(
(
L
`3_3
)
|^
3
)
)
)
)
is
left_add-cancelable
right_add-cancelable
add-cancelable
right_complementable
Element
of the
carrier
of
(
INT.Ring
p
)
-
(
(
(
(
pp
|^
3
)
*
(
(
L
`1_3
)
|^
3
)
)
+
(
(
pp
|^
3
)
*
(
(
a
*
(
L
`1_3
)
)
*
(
(
L
`3_3
)
|^
2
)
)
)
)
+
(
(
pp
|^
3
)
*
(
b
*
(
(
L
`3_3
)
|^
3
)
)
)
)
is
left_add-cancelable
right_add-cancelable
add-cancelable
right_complementable
Element
of the
carrier
of
(
INT.Ring
p
)
(
(
pp
|^
3
)
*
(
(
(
L
`2_3
)
|^
2
)
*
(
L
`3_3
)
)
)
+
(
-
(
(
(
(
pp
|^
3
)
*
(
(
L
`1_3
)
|^
3
)
)
+
(
(
pp
|^
3
)
*
(
(
a
*
(
L
`1_3
)
)
*
(
(
L
`3_3
)
|^
2
)
)
)
)
+
(
(
pp
|^
3
)
*
(
b
*
(
(
L
`3_3
)
|^
3
)
)
)
)
)
is
left_add-cancelable
right_add-cancelable
add-cancelable
right_complementable
Element
of the
carrier
of
(
INT.Ring
p
)
the
addF
of
(
INT.Ring
p
)
.
(
(
(
pp
|^
3
)
*
(
(
(
L
`2_3
)
|^
2
)
*
(
L
`3_3
)
)
)
,
(
-
(
(
(
(
pp
|^
3
)
*
(
(
L
`1_3
)
|^
3
)
)
+
(
(
pp
|^
3
)
*
(
(
a
*
(
L
`1_3
)
)
*
(
(
L
`3_3
)
|^
2
)
)
)
)
+
(
(
pp
|^
3
)
*
(
b
*
(
(
L
`3_3
)
|^
3
)
)
)
)
)
) is
left_add-cancelable
right_add-cancelable
add-cancelable
right_complementable
Element
of the
carrier
of
(
INT.Ring
p
)
[
(
(
pp
|^
3
)
*
(
(
(
L
`2_3
)
|^
2
)
*
(
L
`3_3
)
)
)
,
(
-
(
(
(
(
pp
|^
3
)
*
(
(
L
`1_3
)
|^
3
)
)
+
(
(
pp
|^
3
)
*
(
(
a
*
(
L
`1_3
)
)
*
(
(
L
`3_3
)
|^
2
)
)
)
)
+
(
(
pp
|^
3
)
*
(
b
*
(
(
L
`3_3
)
|^
3
)
)
)
)
)
]
is
V26
()
set
{
(
(
pp
|^
3
)
*
(
(
(
L
`2_3
)
|^
2
)
*
(
L
`3_3
)
)
)
,
(
-
(
(
(
(
pp
|^
3
)
*
(
(
L
`1_3
)
|^
3
)
)
+
(
(
pp
|^
3
)
*
(
(
a
*
(
L
`1_3
)
)
*
(
(
L
`3_3
)
|^
2
)
)
)
)
+
(
(
pp
|^
3
)
*
(
b
*
(
(
L
`3_3
)
|^
3
)
)
)
)
)
}
is non
empty
finite
set
{
{
(
(
pp
|^
3
)
*
(
(
(
L
`2_3
)
|^
2
)
*
(
L
`3_3
)
)
)
,
(
-
(
(
(
(
pp
|^
3
)
*
(
(
L
`1_3
)
|^
3
)
)
+
(
(
pp
|^
3
)
*
(
(
a
*
(
L
`1_3
)
)
*
(
(
L
`3_3
)
|^
2
)
)
)
)
+
(
(
pp
|^
3
)
*
(
b
*
(
(
L
`3_3
)
|^
3
)
)
)
)
)
}
,
{
(
(
pp
|^
3
)
*
(
(
(
L
`2_3
)
|^
2
)
*
(
L
`3_3
)
)
)
}
}
is non
empty
finite
V49
()
set
the
addF
of
(
INT.Ring
p
)
.
[
(
(
pp
|^
3
)
*
(
(
(
L
`2_3
)
|^
2
)
*
(
L
`3_3
)
)
)
,
(
-
(
(
(
(
pp
|^
3
)
*
(
(
L
`1_3
)
|^
3
)
)
+
(
(
pp
|^
3
)
*
(
(
a
*
(
L
`1_3
)
)
*
(
(
L
`3_3
)
|^
2
)
)
)
)
+
(
(
pp
|^
3
)
*
(
b
*
(
(
L
`3_3
)
|^
3
)
)
)
)
)
]
is
set
(
pp
|^
3
)
*
(
(
(
L
`1_3
)
|^
3
)
+
(
(
a
*
(
L
`1_3
)
)
*
(
(
L
`3_3
)
|^
2
)
)
)
is
left_add-cancelable
right_add-cancelable
add-cancelable
right_complementable
Element
of the
carrier
of
(
INT.Ring
p
)
the
multF
of
(
INT.Ring
p
)
.
(
(
pp
|^
3
)
,
(
(
(
L
`1_3
)
|^
3
)
+
(
(
a
*
(
L
`1_3
)
)
*
(
(
L
`3_3
)
|^
2
)
)
)
) is
left_add-cancelable
right_add-cancelable
add-cancelable
right_complementable
Element
of the
carrier
of
(
INT.Ring
p
)
[
(
pp
|^
3
)
,
(
(
(
L
`1_3
)
|^
3
)
+
(
(
a
*
(
L
`1_3
)
)
*
(
(
L
`3_3
)
|^
2
)
)
)
]
is
V26
()
set
{
(
pp
|^
3
)
,
(
(
(
L
`1_3
)
|^
3
)
+
(
(
a
*
(
L
`1_3
)
)
*
(
(
L
`3_3
)
|^
2
)
)
)
}
is non
empty
finite
set
{
{
(
pp
|^
3
)
,
(
(
(
L
`1_3
)
|^
3
)
+
(
(
a
*
(
L
`1_3
)
)
*
(
(
L
`3_3
)
|^
2
)
)
)
}
,
{
(
pp
|^
3
)
}
}
is non
empty
finite
V49
()
set
the
multF
of
(
INT.Ring
p
)
.
[
(
pp
|^
3
)
,
(
(
(
L
`1_3
)
|^
3
)
+
(
(
a
*
(
L
`1_3
)
)
*
(
(
L
`3_3
)
|^
2
)
)
)
]
is
set
(
(
pp
|^
3
)
*
(
(
(
L
`1_3
)
|^
3
)
+
(
(
a
*
(
L
`1_3
)
)
*
(
(
L
`3_3
)
|^
2
)
)
)
)
+
(
(
pp
|^
3
)
*
(
b
*
(
(
L
`3_3
)
|^
3
)
)
)
is
left_add-cancelable
right_add-cancelable
add-cancelable
right_complementable
Element
of the
carrier
of
(
INT.Ring
p
)
the
addF
of
(
INT.Ring
p
)
.
(
(
(
pp
|^
3
)
*
(
(
(
L
`1_3
)
|^
3
)
+
(
(
a
*
(
L
`1_3
)
)
*
(
(
L
`3_3
)
|^
2
)
)
)
)
,
(
(
pp
|^
3
)
*
(
b
*
(
(
L
`3_3
)
|^
3
)
)
)
) is
left_add-cancelable
right_add-cancelable
add-cancelable
right_complementable
Element
of the
carrier
of
(
INT.Ring
p
)
[
(
(
pp
|^
3
)
*
(
(
(
L
`1_3
)
|^
3
)
+
(
(
a
*
(
L
`1_3
)
)
*
(
(
L
`3_3
)
|^
2
)
)
)
)
,
(
(
pp
|^
3
)
*
(
b
*
(
(
L
`3_3
)
|^
3
)
)
)
]
is
V26
()
set
{
(
(
pp
|^
3
)
*
(
(
(
L
`1_3
)
|^
3
)
+
(
(
a
*
(
L
`1_3
)
)
*
(
(
L
`3_3
)
|^
2
)
)
)
)
,
(
(
pp
|^
3
)
*
(
b
*
(
(
L
`3_3
)
|^
3
)
)
)
}
is non
empty
finite
set
{
(
(
pp
|^
3
)
*
(
(
(
L
`1_3
)
|^
3
)
+
(
(
a
*
(
L
`1_3
)
)
*
(
(
L
`3_3
)
|^
2
)
)
)
)
}
is non
empty
trivial
finite
1
-element
set
{
{
(
(
pp
|^
3
)
*
(
(
(
L
`1_3
)
|^
3
)
+
(
(
a
*
(
L
`1_3
)
)
*
(
(
L
`3_3
)
|^
2
)
)
)
)
,
(
(
pp
|^
3
)
*
(
b
*
(
(
L
`3_3
)
|^
3
)
)
)
}
,
{
(
(
pp
|^
3
)
*
(
(
(
L
`1_3
)
|^
3
)
+
(
(
a
*
(
L
`1_3
)
)
*
(
(
L
`3_3
)
|^
2
)
)
)
)
}
}
is non
empty
finite
V49
()
set
the
addF
of
(
INT.Ring
p
)
.
[
(
(
pp
|^
3
)
*
(
(
(
L
`1_3
)
|^
3
)
+
(
(
a
*
(
L
`1_3
)
)
*
(
(
L
`3_3
)
|^
2
)
)
)
)
,
(
(
pp
|^
3
)
*
(
b
*
(
(
L
`3_3
)
|^
3
)
)
)
]
is
set
(
(
pp
|^
3
)
*
(
(
(
L
`2_3
)
|^
2
)
*
(
L
`3_3
)
)
)
-
(
(
(
pp
|^
3
)
*
(
(
(
L
`1_3
)
|^
3
)
+
(
(
a
*
(
L
`1_3
)
)
*
(
(
L
`3_3
)
|^
2
)
)
)
)
+
(
(
pp
|^
3
)
*
(
b
*
(
(
L
`3_3
)
|^
3
)
)
)
)
is
left_add-cancelable
right_add-cancelable
add-cancelable
right_complementable
Element
of the
carrier
of
(
INT.Ring
p
)
-
(
(
(
pp
|^
3
)
*
(
(
(
L
`1_3
)
|^
3
)
+
(
(
a
*
(
L
`1_3
)
)
*
(
(
L
`3_3
)
|^
2
)
)
)
)
+
(
(
pp
|^
3
)
*
(
b
*
(
(
L
`3_3
)
|^
3
)
)
)
)
is
left_add-cancelable
right_add-cancelable
add-cancelable
right_complementable
Element
of the
carrier
of
(
INT.Ring
p
)
(
(
pp
|^
3
)
*
(
(
(
L
`2_3
)
|^
2
)
*
(
L
`3_3
)
)
)
+
(
-
(
(
(
pp
|^
3
)
*
(
(
(
L
`1_3
)
|^
3
)
+
(
(
a
*
(
L
`1_3
)
)
*
(
(
L
`3_3
)
|^
2
)
)
)
)
+
(
(
pp
|^
3
)
*
(
b
*
(
(
L
`3_3
)
|^
3
)
)
)
)
)
is
left_add-cancelable
right_add-cancelable
add-cancelable
right_complementable
Element
of the
carrier
of
(
INT.Ring
p
)
the
addF
of
(
INT.Ring
p
)
.
(
(
(
pp
|^
3
)
*
(
(
(
L
`2_3
)
|^
2
)
*
(
L
`3_3
)
)
)
,
(
-
(
(
(
pp
|^
3
)
*
(
(
(
L
`1_3
)
|^
3
)
+
(
(
a
*
(
L
`1_3
)
)
*
(
(
L
`3_3
)
|^
2
)
)
)
)
+
(
(
pp
|^
3
)
*
(
b
*
(
(
L
`3_3
)
|^
3
)
)
)
)
)
) is
left_add-cancelable
right_add-cancelable
add-cancelable
right_complementable
Element
of the
carrier
of
(
INT.Ring
p
)
[
(
(
pp
|^
3
)
*
(
(
(
L
`2_3
)
|^
2
)
*
(
L
`3_3
)
)
)
,
(
-
(
(
(
pp
|^
3
)
*
(
(
(
L
`1_3
)
|^
3
)
+
(
(
a
*
(
L
`1_3
)
)
*
(
(
L
`3_3
)
|^
2
)
)
)
)
+
(
(
pp
|^
3
)
*
(
b
*
(
(
L
`3_3
)
|^
3
)
)
)
)
)
]
is
V26
()
set
{
(
(
pp
|^
3
)
*
(
(
(
L
`2_3
)
|^
2
)
*
(
L
`3_3
)
)
)
,
(
-
(
(
(
pp
|^
3
)
*
(
(
(
L
`1_3
)
|^
3
)
+
(
(
a
*
(
L
`1_3
)
)
*
(
(
L
`3_3
)
|^
2
)
)
)
)
+
(
(
pp
|^
3
)
*
(
b
*
(
(
L
`3_3
)
|^
3
)
)
)
)
)
}
is non
empty
finite
set
{
{
(
(
pp
|^
3
)
*
(
(
(
L
`2_3
)
|^
2
)
*
(
L
`3_3
)
)
)
,
(
-
(
(
(
pp
|^
3
)
*
(
(
(
L
`1_3
)
|^
3
)
+
(
(
a
*
(
L
`1_3
)
)
*
(
(
L
`3_3
)
|^
2
)
)
)
)
+
(
(
pp
|^
3
)
*
(
b
*
(
(
L
`3_3
)
|^
3
)
)
)
)
)
}
,
{
(
(
pp
|^
3
)
*
(
(
(
L
`2_3
)
|^
2
)
*
(
L
`3_3
)
)
)
}
}
is non
empty
finite
V49
()
set
the
addF
of
(
INT.Ring
p
)
.
[
(
(
pp
|^
3
)
*
(
(
(
L
`2_3
)
|^
2
)
*
(
L
`3_3
)
)
)
,
(
-
(
(
(
pp
|^
3
)
*
(
(
(
L
`1_3
)
|^
3
)
+
(
(
a
*
(
L
`1_3
)
)
*
(
(
L
`3_3
)
|^
2
)
)
)
)
+
(
(
pp
|^
3
)
*
(
b
*
(
(
L
`3_3
)
|^
3
)
)
)
)
)
]
is
set
(
pp
|^
3
)
*
(
(
(
(
L
`1_3
)
|^
3
)
+
(
(
a
*
(
L
`1_3
)
)
*
(
(
L
`3_3
)
|^
2
)
)
)
+
(
b
*
(
(
L
`3_3
)
|^
3
)
)
)
is
left_add-cancelable
right_add-cancelable
add-cancelable
right_complementable
Element
of the
carrier
of
(
INT.Ring
p
)
the
multF
of
(
INT.Ring
p
)
.
(
(
pp
|^
3
)
,
(
(
(
(
L
`1_3
)
|^
3
)
+
(
(
a
*
(
L
`1_3
)
)
*
(
(
L
`3_3
)
|^
2
)
)
)
+
(
b
*
(
(
L
`3_3
)
|^
3
)
)
)
) is
left_add-cancelable
right_add-cancelable
add-cancelable
right_complementable
Element
of the
carrier
of
(
INT.Ring
p
)
[
(
pp
|^
3
)
,
(
(
(
(
L
`1_3
)
|^
3
)
+
(
(
a
*
(
L
`1_3
)
)
*
(
(
L
`3_3
)
|^
2
)
)
)
+
(
b
*
(
(
L
`3_3
)
|^
3
)
)
)
]
is
V26
()
set
{
(
pp
|^
3
)
,
(
(
(
(
L
`1_3
)
|^
3
)
+
(
(
a
*
(
L
`1_3
)
)
*
(
(
L
`3_3
)
|^
2
)
)
)
+
(
b
*
(
(
L
`3_3
)
|^
3
)
)
)
}
is non
empty
finite
set
{
{
(
pp
|^
3
)
,
(
(
(
(
L
`1_3
)
|^
3
)
+
(
(
a
*
(
L
`1_3
)
)
*
(
(
L
`3_3
)
|^
2
)
)
)
+
(
b
*
(
(
L
`3_3
)
|^
3
)
)
)
}
,
{
(
pp
|^
3
)
}
}
is non
empty
finite
V49
()
set
the
multF
of
(
INT.Ring
p
)
.
[
(
pp
|^
3
)
,
(
(
(
(
L
`1_3
)
|^
3
)
+
(
(
a
*
(
L
`1_3
)
)
*
(
(
L
`3_3
)
|^
2
)
)
)
+
(
b
*
(
(
L
`3_3
)
|^
3
)
)
)
]
is
set
(
(
pp
|^
3
)
*
(
(
(
L
`2_3
)
|^
2
)
*
(
L
`3_3
)
)
)
-
(
(
pp
|^
3
)
*
(
(
(
(
L
`1_3
)
|^
3
)
+
(
(
a
*
(
L
`1_3
)
)
*
(
(
L
`3_3
)
|^
2
)
)
)
+
(
b
*
(
(
L
`3_3
)
|^
3
)
)
)
)
is
left_add-cancelable
right_add-cancelable
add-cancelable
right_complementable
Element
of the
carrier
of
(
INT.Ring
p
)
-
(
(
pp
|^
3
)
*
(
(
(
(
L
`1_3
)
|^
3
)
+
(
(
a
*
(
L
`1_3
)
)
*
(
(
L
`3_3
)
|^
2
)
)
)
+
(
b
*
(
(
L
`3_3
)
|^
3
)
)
)
)
is
left_add-cancelable
right_add-cancelable
add-cancelable
right_complementable
Element
of the
carrier
of
(
INT.Ring
p
)
(
(
pp
|^
3
)
*
(
(
(
L
`2_3
)
|^
2
)
*
(
L
`3_3
)
)
)
+
(
-
(
(
pp
|^
3
)
*
(
(
(
(
L
`1_3
)
|^
3
)
+
(
(
a
*
(
L
`1_3
)
)
*
(
(
L
`3_3
)
|^
2
)
)
)
+
(
b
*
(
(
L
`3_3
)
|^
3
)
)
)
)
)
is
left_add-cancelable
right_add-cancelable
add-cancelable
right_complementable
Element
of the
carrier
of
(
INT.Ring
p
)
the
addF
of
(
INT.Ring
p
)
.
(
(
(
pp
|^
3
)
*
(
(
(
L
`2_3
)
|^
2
)
*
(
L
`3_3
)
)
)
,
(
-
(
(
pp
|^
3
)
*
(
(
(
(
L
`1_3
)
|^
3
)
+
(
(
a
*
(
L
`1_3
)
)
*
(
(
L
`3_3
)
|^
2
)
)
)
+
(
b
*
(
(
L
`3_3
)
|^
3
)
)
)
)
)
) is
left_add-cancelable
right_add-cancelable
add-cancelable
right_complementable
Element
of the
carrier
of
(
INT.Ring
p
)
[
(
(
pp
|^
3
)
*
(
(
(
L
`2_3
)
|^
2
)
*
(
L
`3_3
)
)
)
,
(
-
(
(
pp
|^
3
)
*
(
(
(
(
L
`1_3
)
|^
3
)
+
(
(
a
*
(
L
`1_3
)
)
*
(
(
L
`3_3
)
|^
2
)
)
)
+
(
b
*
(
(
L
`3_3
)
|^
3
)
)
)
)
)
]
is
V26
()
set
{
(
(
pp
|^
3
)
*
(
(
(
L
`2_3
)
|^
2
)
*
(
L
`3_3
)
)
)
,
(
-
(
(
pp
|^
3
)
*
(
(
(
(
L
`1_3
)
|^
3
)
+
(
(
a
*
(
L
`1_3
)
)
*
(
(
L
`3_3
)
|^
2
)
)
)
+
(
b
*
(
(
L
`3_3
)
|^
3
)
)
)
)
)
}
is non
empty
finite
set
{
{
(
(
pp
|^
3
)
*
(
(
(
L
`2_3
)
|^
2
)
*
(
L
`3_3
)
)
)
,
(
-
(
(
pp
|^
3
)
*
(
(
(
(
L
`1_3
)
|^
3
)
+
(
(
a
*
(
L
`1_3
)
)
*
(
(
L
`3_3
)
|^
2
)
)
)
+
(
b
*
(
(
L
`3_3
)
|^
3
)
)
)
)
)
}
,
{
(
(
pp
|^
3
)
*
(
(
(
L
`2_3
)
|^
2
)
*
(
L
`3_3
)
)
)
}
}
is non
empty
finite
V49
()
set
the
addF
of
(
INT.Ring
p
)
.
[
(
(
pp
|^
3
)
*
(
(
(
L
`2_3
)
|^
2
)
*
(
L
`3_3
)
)
)
,
(
-
(
(
pp
|^
3
)
*
(
(
(
(
L
`1_3
)
|^
3
)
+
(
(
a
*
(
L
`1_3
)
)
*
(
(
L
`3_3
)
|^
2
)
)
)
+
(
b
*
(
(
L
`3_3
)
|^
3
)
)
)
)
)
]
is
set
(
pp
|^
3
)
*
(
(
(
(
L
`2_3
)
|^
2
)
*
(
L
`3_3
)
)
-
(
(
(
(
L
`1_3
)
|^
3
)
+
(
(
a
*
(
L
`1_3
)
)
*
(
(
L
`3_3
)
|^
2
)
)
)
+
(
b
*
(
(
L
`3_3
)
|^
3
)
)
)
)
is
left_add-cancelable
right_add-cancelable
add-cancelable
right_complementable
Element
of the
carrier
of
(
INT.Ring
p
)
the
multF
of
(
INT.Ring
p
)
.
(
(
pp
|^
3
)
,
(
(
(
(
L
`2_3
)
|^
2
)
*
(
L
`3_3
)
)
-
(
(
(
(
L
`1_3
)
|^
3
)
+
(
(
a
*
(
L
`1_3
)
)
*
(
(
L
`3_3
)
|^
2
)
)
)
+
(
b
*
(
(
L
`3_3
)
|^
3
)
)
)
)
) is
left_add-cancelable
right_add-cancelable
add-cancelable
right_complementable
Element
of the
carrier
of
(
INT.Ring
p
)
[
(
pp
|^
3
)
,
(
(
(
(
L
`2_3
)
|^
2
)
*
(
L
`3_3
)
)
-
(
(
(
(
L
`1_3
)
|^
3
)
+
(
(
a
*
(
L
`1_3
)
)
*
(
(
L
`3_3
)
|^
2
)
)
)
+
(
b
*
(
(
L
`3_3
)
|^
3
)
)
)
)
]
is
V26
()
set
{
(
pp
|^
3
)
,
(
(
(
(
L
`2_3
)
|^
2
)
*
(
L
`3_3
)
)
-
(
(
(
(
L
`1_3
)
|^
3
)
+
(
(
a
*
(
L
`1_3
)
)
*
(
(
L
`3_3
)
|^
2
)
)
)
+
(
b
*
(
(
L
`3_3
)
|^
3
)
)
)
)
}
is non
empty
finite
set
{
{
(
pp
|^
3
)
,
(
(
(
(
L
`2_3
)
|^
2
)
*
(
L
`3_3
)
)
-
(
(
(
(
L
`1_3
)
|^
3
)
+
(
(
a
*
(
L
`1_3
)
)
*
(
(
L
`3_3
)
|^
2
)
)
)
+
(
b
*
(
(
L
`3_3
)
|^
3
)
)
)
)
}
,
{
(
pp
|^
3
)
}
}
is non
empty
finite
V49
()
set
the
multF
of
(
INT.Ring
p
)
.
[
(
pp
|^
3
)
,
(
(
(
(
L
`2_3
)
|^
2
)
*
(
L
`3_3
)
)
-
(
(
(
(
L
`1_3
)
|^
3
)
+
(
(
a
*
(
L
`1_3
)
)
*
(
(
L
`3_3
)
|^
2
)
)
)
+
(
b
*
(
(
L
`3_3
)
|^
3
)
)
)
)
]
is
set
[:
the
carrier
of
(
INT.Ring
p
)
, the
carrier
of
(
INT.Ring
p
)
, the
carrier
of
(
INT.Ring
p
)
:]
\
{
[
0
,
0
,
0
]
}
is
finite
Element
of
bool
[:
the
carrier
of
(
INT.Ring
p
)
, the
carrier
of
(
INT.Ring
p
)
, the
carrier
of
(
INT.Ring
p
)
:]
[
(
F
`1_3
)
,
(
F
`2_3
)
,
(
F
`3_3
)
]
is
V26
()
V27
()
Element
of
[:
the
carrier
of
(
INT.Ring
p
)
, the
carrier
of
(
INT.Ring
p
)
, the
carrier
of
(
INT.Ring
p
)
:]
[
(
F
`1_3
)
,
(
F
`2_3
)
]
is
V26
()
set
{
(
F
`1_3
)
,
(
F
`2_3
)
}
is non
empty
finite
set
{
(
F
`1_3
)
}
is non
empty
trivial
finite
1
-element
set
{
{
(
F
`1_3
)
,
(
F
`2_3
)
}
,
{
(
F
`1_3
)
}
}
is non
empty
finite
V49
()
set
[
[
(
F
`1_3
)
,
(
F
`2_3
)
]
,
(
F
`3_3
)
]
is
V26
()
set
{
[
(
F
`1_3
)
,
(
F
`2_3
)
]
,
(
F
`3_3
)
}
is non
empty
finite
set
{
[
(
F
`1_3
)
,
(
F
`2_3
)
]
}
is non
empty
trivial
finite
1
-element
set
{
{
[
(
F
`1_3
)
,
(
F
`2_3
)
]
,
(
F
`3_3
)
}
,
{
[
(
F
`1_3
)
,
(
F
`2_3
)
]
}
}
is non
empty
finite
V49
()
set
p
is non
empty
V4
()
V5
()
V6
()
V10
()
V11
()
V12
()
integer
V14
()
ext-real
positive
non
negative
finite
cardinal
set
INT.Ring
p
is non
empty
non
degenerated
non
trivial
finite
left_add-cancelable
right_add-cancelable
add-cancelable
right_complementable
almost_left_invertible
strict
unital
associative
commutative
Euclidian
right-distributive
left-distributive
right_unital
well-unital
distributive
left_unital
Abelian
add-associative
right_zeroed
()
doubleLoopStr
Segm
p
is
V117
()
V118
()
V119
()
V120
()
V121
()
V122
()
Element
of
bool
NAT
addint
p
is
Relation-like
[:
(
Segm
p
)
,
(
Segm
p
)
:]
-defined
Segm
p
-valued
Function-like
quasi_total
V35
()
V36
()
V37
()
V38
()
Element
of
bool
[:
[:
(
Segm
p
)
,
(
Segm
p
)
:]
,
(
Segm
p
)
:]
[:
(
Segm
p
)
,
(
Segm
p
)
:]
is
RAT
-valued
INT
-valued
V35
()
V36
()
V37
()
V38
()
set
[:
[:
(
Segm
p
)
,
(
Segm
p
)
:]
,
(
Segm
p
)
:]
is
RAT
-valued
INT
-valued
V35
()
V36
()
V37
()
V38
()
set
bool
[:
[:
(
Segm
p
)
,
(
Segm
p
)
:]
,
(
Segm
p
)
:]
is non
empty
set
multint
p
is
Relation-like
[:
(
Segm
p
)
,
(
Segm
p
)
:]
-defined
Segm
p
-valued
Function-like
quasi_total
V35
()
V36
()
V37
()
V38
()
Element
of
bool
[:
[:
(
Segm
p
)
,
(
Segm
p
)
:]
,
(
Segm
p
)
:]
K633
(1,
(
Segm
p
)
) is
V4
()
V5
()
V6
()
V10
()
V11
()
V12
()
integer
ext-real
non
negative
finite
cardinal
V113
()
Element
of
Segm
p
K633
(
0
,
(
Segm
p
)
) is
V4
()
V5
()
V6
()
V10
()
V11
()
V12
()
integer
ext-real
non
negative
finite
cardinal
V113
()
Element
of
Segm
p
doubleLoopStr
(#
(
Segm
p
)
,
(
addint
p
)
,
(
multint
p
)
,
K633
(1,
(
Segm
p
)
),
K633
(
0
,
(
Segm
p
)
) #) is
strict
doubleLoopStr
the
carrier
of
(
INT.Ring
p
)
is non
empty
non
trivial
finite
set
[:
the
carrier
of
(
INT.Ring
p
)
, the
carrier
of
(
INT.Ring
p
)
, the
carrier
of
(
INT.Ring
p
)
:]
is non
empty
finite
set
(
(
INT.Ring
p
)
) is non
empty
finite
Element
of
bool
[:
the
carrier
of
(
INT.Ring
p
)
, the
carrier
of
(
INT.Ring
p
)
, the
carrier
of
(
INT.Ring
p
)
:]
bool
[:
the
carrier
of
(
INT.Ring
p
)
, the
carrier
of
(
INT.Ring
p
)
, the
carrier
of
(
INT.Ring
p
)
:]
is non
empty
finite
V49
()
set
0.
(
INT.Ring
p
)
is
V61
(
INT.Ring
p
)
left_add-cancelable
right_add-cancelable
add-cancelable
right_complementable
Element
of the
carrier
of
(
INT.Ring
p
)
the
ZeroF
of
(
INT.Ring
p
)
is
left_add-cancelable
right_add-cancelable
add-cancelable
right_complementable
Element
of the
carrier
of
(
INT.Ring
p
)
[
(
0.
(
INT.Ring
p
)
)
,
(
0.
(
INT.Ring
p
)
)
,
(
0.
(
INT.Ring
p
)
)
]
is
V26
()
V27
()
Element
of
[:
the
carrier
of
(
INT.Ring
p
)
, the
carrier
of
(
INT.Ring
p
)
, the
carrier
of
(
INT.Ring
p
)
:]
[
(
0.
(
INT.Ring
p
)
)
,
(
0.
(
INT.Ring
p
)
)
]
is
V26
()
set
{
(
0.
(
INT.Ring
p
)
)
,
(
0.
(
INT.Ring
p
)
)
}
is non
empty
finite
set
{
(
0.
(
INT.Ring
p
)
)
}
is non
empty
trivial
finite
1
-element
set
{
{
(
0.
(
INT.Ring
p
)
)
,
(
0.
(
INT.Ring
p
)
)
}
,
{
(
0.
(
INT.Ring
p
)
)
}
}
is non
empty
finite
V49
()
set
[
[
(
0.
(
INT.Ring
p
)
)
,
(
0.
(
INT.Ring
p
)
)
]
,
(
0.
(
INT.Ring
p
)
)
]
is
V26
()
set
{
[
(
0.
(
INT.Ring
p
)
)
,
(
0.
(
INT.Ring
p
)
)
]
,
(
0.
(
INT.Ring
p
)
)
}
is non
empty
finite
set
{
[
(
0.
(
INT.Ring
p
)
)
,
(
0.
(
INT.Ring
p
)
)
]
}
is non
empty
trivial
finite
1
-element
set
{
{
[
(
0.
(
INT.Ring
p
)
)
,
(
0.
(
INT.Ring
p
)
)
]
,
(
0.
(
INT.Ring
p
)
)
}
,
{
[
(
0.
(
INT.Ring
p
)
)
,
(
0.
(
INT.Ring
p
)
)
]
}
}
is non
empty
finite
V49
()
set
{
[
(
0.
(
INT.Ring
p
)
)
,
(
0.
(
INT.Ring
p
)
)
,
(
0.
(
INT.Ring
p
)
)
]
}
is non
empty
trivial
finite
1
-element
Element
of
bool
[:
the
carrier
of
(
INT.Ring
p
)
, the
carrier
of
(
INT.Ring
p
)
, the
carrier
of
(
INT.Ring
p
)
:]
[:
the
carrier
of
(
INT.Ring
p
)
, the
carrier
of
(
INT.Ring
p
)
, the
carrier
of
(
INT.Ring
p
)
:]
\
{
[
(
0.
(
INT.Ring
p
)
)
,
(
0.
(
INT.Ring
p
)
)
,
(
0.
(
INT.Ring
p
)
)
]
}
is
finite
Element
of
bool
[:
the
carrier
of
(
INT.Ring
p
)
, the
carrier
of
(
INT.Ring
p
)
, the
carrier
of
(
INT.Ring
p
)
:]
{
[
b
1
,
b
2
]
where
b
1
,
b
2
is
Element
of (
(
INT.Ring
p
)
) : (
p
,
b
1
,
b
2
)
}
is
set
[:
(
(
INT.Ring
p
)
),(
(
INT.Ring
p
)
)
:]
is non
empty
finite
set
bool
[:
(
(
INT.Ring
p
)
),(
(
INT.Ring
p
)
)
:]
is non
empty
finite
V49
()
set
b
is
set
L
is
Element
of (
(
INT.Ring
p
)
)
F
is
Element
of (
(
INT.Ring
p
)
)
[
L
,
F
]
is
V26
()
Element
of
[:
(
(
INT.Ring
p
)
),(
(
INT.Ring
p
)
)
:]
{
L
,
F
}
is non
empty
finite
set
{
L
}
is non
empty
trivial
finite
1
-element
set
{
{
L
,
F
}
,
{
L
}
}
is non
empty
finite
V49
()
set
[:
(
(
INT.Ring
p
)
),(
(
INT.Ring
p
)
)
:]
is non
empty
Relation-like
[:
the
carrier
of
(
INT.Ring
p
)
, the
carrier
of
(
INT.Ring
p
)
, the
carrier
of
(
INT.Ring
p
)
:]
-defined
[:
the
carrier
of
(
INT.Ring
p
)
, the
carrier
of
(
INT.Ring
p
)
, the
carrier
of
(
INT.Ring
p
)
:]
-valued
finite
Element
of
bool
[:
[:
the
carrier
of
(
INT.Ring
p
)
, the
carrier
of
(
INT.Ring
p
)
, the
carrier
of
(
INT.Ring
p
)
:]
,
[:
the
carrier
of
(
INT.Ring
p
)
, the
carrier
of
(
INT.Ring
p
)
, the
carrier
of
(
INT.Ring
p
)
:]
:]
[:
[:
the
carrier
of
(
INT.Ring
p
)
, the
carrier
of
(
INT.Ring
p
)
, the
carrier
of
(
INT.Ring
p
)
:]
,
[:
the
carrier
of
(
INT.Ring
p
)
, the
carrier
of
(
INT.Ring
p
)
, the
carrier
of
(
INT.Ring
p
)
:]
:]
is non
empty
finite
set
bool
[:
[:
the
carrier
of
(
INT.Ring
p
)
, the
carrier
of
(
INT.Ring
p
)
, the
carrier
of
(
INT.Ring
p
)
:]
,
[:
the
carrier
of
(
INT.Ring
p
)
, the
carrier
of
(
INT.Ring
p
)
, the
carrier
of
(
INT.Ring
p
)
:]
:]
is non
empty
finite
V49
()
set
p
is non
empty
V4
()
V5
()
V6
()
V10
()
V11
()
V12
()
integer
V14
()
ext-real
positive
non
negative
finite
cardinal
set
INT.Ring
p
is non
empty
non
degenerated
non
trivial
finite
left_add-cancelable
right_add-cancelable
add-cancelable
right_complementable
almost_left_invertible
strict
unital
associative
commutative
Euclidian
right-distributive
left-distributive
right_unital
well-unital
distributive
left_unital
Abelian
add-associative
right_zeroed
()
doubleLoopStr
Segm
p
is
V117
()
V118
()
V119
()
V120
()
V121
()
V122
()
Element
of
bool
NAT
addint
p
is
Relation-like
[:
(
Segm
p
)
,
(
Segm
p
)
:]
-defined
Segm
p
-valued
Function-like
quasi_total
V35
()
V36
()
V37
()
V38
()
Element
of
bool
[:
[:
(
Segm
p
)
,
(
Segm
p
)
:]
,
(
Segm
p
)
:]
[:
(
Segm
p
)
,
(
Segm
p
)
:]
is
RAT
-valued
INT
-valued
V35
()
V36
()
V37
()
V38
()
set
[:
[:
(
Segm
p
)
,
(
Segm
p
)
:]
,
(
Segm
p
)
:]
is
RAT
-valued
INT
-valued
V35
()
V36
()
V37
()
V38
()
set
bool
[:
[:
(
Segm
p
)
,
(
Segm
p
)
:]
,
(
Segm
p
)
:]
is non
empty
set
multint
p
is
Relation-like
[:
(
Segm
p
)
,
(
Segm
p
)
:]
-defined
Segm
p
-valued
Function-like
quasi_total
V35
()
V36
()
V37
()
V38
()
Element
of
bool
[:
[:
(
Segm
p
)
,
(
Segm
p
)
:]
,
(
Segm
p
)
:]
K633
(1,
(
Segm
p
)
) is
V4
()
V5
()
V6
()
V10
()
V11
()
V12
()
integer
ext-real
non
negative
finite
cardinal
V113
()
Element
of
Segm
p
K633
(
0
,
(
Segm
p
)
) is
V4
()
V5
()
V6
()
V10
()
V11
()
V12
()
integer
ext-real
non
negative
finite
cardinal
V113
()
Element
of
Segm
p
doubleLoopStr
(#
(
Segm
p
)
,
(
addint
p
)
,
(
multint
p
)
,
K633
(1,
(
Segm
p
)
),
K633
(
0
,
(
Segm
p
)
) #) is
strict
doubleLoopStr
the
carrier
of
(
INT.Ring
p
)
is non
empty
non
trivial
finite
set
[:
the
carrier
of
(
INT.Ring
p
)
, the
carrier
of
(
INT.Ring
p
)
, the
carrier
of
(
INT.Ring
p
)
:]
is non
empty
finite
set
(
(
INT.Ring
p
)
) is non
empty
finite
Element
of
bool
[:
the
carrier
of
(
INT.Ring
p
)
, the
carrier
of
(
INT.Ring
p
)
, the
carrier
of
(
INT.Ring
p
)
:]
bool
[:
the
carrier
of
(
INT.Ring
p
)
, the
carrier
of
(
INT.Ring
p
)
, the
carrier
of
(
INT.Ring
p
)
:]
is non
empty
finite
V49
()
set
0.
(
INT.Ring
p
)
is
V61
(
INT.Ring
p
)
left_add-cancelable
right_add-cancelable
add-cancelable
right_complementable
Element
of the
carrier
of
(
INT.Ring
p
)
the
ZeroF
of
(
INT.Ring
p
)
is
left_add-cancelable
right_add-cancelable
add-cancelable
right_complementable
Element
of the
carrier
of
(
INT.Ring
p
)
[
(
0.
(
INT.Ring
p
)
)
,
(
0.
(
INT.Ring
p
)
)
,
(
0.
(
INT.Ring
p
)
)
]
is
V26
()
V27
()
Element
of
[:
the
carrier
of
(
INT.Ring
p
)
, the
carrier
of
(
INT.Ring
p
)
, the
carrier
of
(
INT.Ring
p
)
:]
[
(
0.
(
INT.Ring
p
)
)
,
(
0.
(
INT.Ring
p
)
)
]
is
V26
()
set
{
(
0.
(
INT.Ring
p
)
)
,
(
0.
(
INT.Ring
p
)
)
}
is non
empty
finite
set
{
(
0.
(
INT.Ring
p
)
)
}
is non
empty
trivial
finite
1
-element
set
{
{
(
0.
(
INT.Ring
p
)
)
,
(
0.
(
INT.Ring
p
)
)
}
,
{
(
0.
(
INT.Ring
p
)
)
}
}
is non
empty
finite
V49
()
set
[
[
(
0.
(
INT.Ring
p
)
)
,
(
0.
(
INT.Ring
p
)
)
]
,
(
0.
(
INT.Ring
p
)
)
]
is
V26
()
set
{
[
(
0.
(
INT.Ring
p
)
)
,
(
0.
(
INT.Ring
p
)
)
]
,
(
0.
(
INT.Ring
p
)
)
}
is non
empty
finite
set
{
[
(
0.
(
INT.Ring
p
)
)
,
(
0.
(
INT.Ring
p
)
)
]
}
is non
empty
trivial
finite
1
-element
set
{
{
[
(
0.
(
INT.Ring
p
)
)
,
(
0.
(
INT.Ring
p
)
)
]
,
(
0.
(
INT.Ring
p
)
)
}
,
{
[
(
0.
(
INT.Ring
p
)
)
,
(
0.
(
INT.Ring
p
)
)
]
}
}
is non
empty
finite
V49
()
set
{
[
(
0.
(
INT.Ring
p
)
)
,
(
0.
(
INT.Ring
p
)
)
,
(
0.
(
INT.Ring
p
)
)
]
}
is non
empty
trivial
finite
1
-element
Element
of
bool
[:
the
carrier
of
(
INT.Ring
p
)
, the
carrier
of
(
INT.Ring
p
)
, the
carrier
of
(
INT.Ring
p
)
:]
[:
the
carrier
of
(
INT.Ring
p
)
, the
carrier
of
(
INT.Ring
p
)
, the
carrier
of
(
INT.Ring
p
)
:]
\
{
[
(
0.
(
INT.Ring
p
)
)
,
(
0.
(
INT.Ring
p
)
)
,
(
0.
(
INT.Ring
p
)
)
]
}
is
finite
Element
of
bool
[:
the
carrier
of
(
INT.Ring
p
)
, the
carrier
of
(
INT.Ring
p
)
, the
carrier
of
(
INT.Ring
p
)
:]
(
p
) is
Relation-like
(
(
INT.Ring
p
)
)
-defined
(
(
INT.Ring
p
)
)
-valued
finite
Element
of
bool
[:
(
(
INT.Ring
p
)
),(
(
INT.Ring
p
)
)
:]
[:
(
(
INT.Ring
p
)
),(
(
INT.Ring
p
)
)
:]
is non
empty
finite
set
bool
[:
(
(
INT.Ring
p
)
),(
(
INT.Ring
p
)
)
:]
is non
empty
finite
V49
()
set
{
[
b
1
,
b
2
]
where
b
1
,
b
2
is
Element
of (
(
INT.Ring
p
)
) : (
p
,
b
1
,
b
2
)
}
is
set
a
is
Element
of (
(
INT.Ring
p
)
)
b
is
Element
of (
(
INT.Ring
p
)
)
[
a
,
b
]
is
V26
()
Element
of
[:
(
(
INT.Ring
p
)
),(
(
INT.Ring
p
)
)
:]
{
a
,
b
}
is non
empty
finite
set
{
a
}
is non
empty
trivial
finite
1
-element
set
{
{
a
,
b
}
,
{
a
}
}
is non
empty
finite
V49
()
set
L
is
Element
of (
(
INT.Ring
p
)
)
F
is
Element
of (
(
INT.Ring
p
)
)
[
L
,
F
]
is
V26
()
Element
of
[:
(
(
INT.Ring
p
)
),(
(
INT.Ring
p
)
)
:]
{
L
,
F
}
is non
empty
finite
set
{
L
}
is non
empty
trivial
finite
1
-element
set
{
{
L
,
F
}
,
{
L
}
}
is non
empty
finite
V49
()
set
p
is non
empty
V4
()
V5
()
V6
()
V10
()
V11
()
V12
()
integer
V14
()
ext-real
positive
non
negative
finite
cardinal
set
INT.Ring
p
is non
empty
non
degenerated
non
trivial
finite
left_add-cancelable
right_add-cancelable
add-cancelable
right_complementable
almost_left_invertible
strict
unital
associative
commutative
Euclidian
right-distributive
left-distributive
right_unital
well-unital
distributive
left_unital
Abelian
add-associative
right_zeroed
()
doubleLoopStr
Segm
p
is
V117
()
V118
()
V119
()
V120
()
V121
()
V122
()
Element
of
bool
NAT
addint
p
is
Relation-like
[:
(
Segm
p
)
,
(
Segm
p
)
:]
-defined
Segm
p
-valued
Function-like
quasi_total
V35
()
V36
()
V37
()
V38
()
Element
of
bool
[:
[:
(
Segm
p
)
,
(
Segm
p
)
:]
,
(
Segm
p
)
:]
[:
(
Segm
p
)
,
(
Segm
p
)
:]
is
RAT
-valued
INT
-valued
V35
()
V36
()
V37
()
V38
()
set
[:
[:
(
Segm
p
)
,
(
Segm
p
)
:]
,
(
Segm
p
)
:]
is
RAT
-valued
INT
-valued
V35
()
V36
()
V37
()
V38
()
set
bool
[:
[:
(
Segm
p
)
,
(
Segm
p
)
:]
,
(
Segm
p
)
:]
is non
empty
set
multint
p
is
Relation-like
[:
(
Segm
p
)
,
(
Segm
p
)
:]
-defined
Segm
p
-valued
Function-like
quasi_total
V35
()
V36
()
V37
()
V38
()
Element
of
bool
[:
[:
(
Segm
p
)
,
(
Segm
p
)
:]
,
(
Segm
p
)
:]
K633
(1,
(
Segm
p
)
) is
V4
()
V5
()
V6
()
V10
()
V11
()
V12
()
integer
ext-real
non
negative
finite
cardinal
V113
()
Element
of
Segm
p
K633
(
0
,
(
Segm
p
)
) is
V4
()
V5
()
V6
()
V10
()
V11
()
V12
()
integer
ext-real
non
negative
finite
cardinal
V113
()
Element
of
Segm
p
doubleLoopStr
(#
(
Segm
p
)
,
(
addint
p
)
,
(
multint
p
)
,
K633
(1,
(
Segm
p
)
),
K633
(
0
,
(
Segm
p
)
) #) is
strict
doubleLoopStr
(
(
INT.Ring
p
)
) is non
empty
finite
Element
of
bool
[:
the
carrier
of
(
INT.Ring
p
)
, the
carrier
of
(
INT.Ring
p
)
, the
carrier
of
(
INT.Ring
p
)
:]
the
carrier
of
(
INT.Ring
p
)
is non
empty
non
trivial
finite
set
[:
the
carrier
of
(
INT.Ring
p
)
, the
carrier
of
(
INT.Ring
p
)
, the
carrier
of
(
INT.Ring
p
)
:]
is non
empty
finite
set
bool
[:
the
carrier
of
(
INT.Ring
p
)
, the
carrier
of
(
INT.Ring
p
)
, the
carrier
of
(
INT.Ring
p
)
:]
is non
empty
finite
V49
()
set
0.
(
INT.Ring
p
)
is
V61
(
INT.Ring
p
)
left_add-cancelable
right_add-cancelable
add-cancelable
right_complementable
Element
of the
carrier
of
(
INT.Ring
p
)
the
ZeroF
of
(
INT.Ring
p
)
is
left_add-cancelable
right_add-cancelable
add-cancelable
right_complementable
Element
of the
carrier
of
(
INT.Ring
p
)
[
(
0.
(
INT.Ring
p
)
)
,
(
0.
(
INT.Ring
p
)
)
,
(
0.
(
INT.Ring
p
)
)
]
is
V26
()
V27
()
Element
of
[:
the
carrier
of
(
INT.Ring
p
)
, the
carrier
of
(
INT.Ring
p
)
, the
carrier
of
(
INT.Ring
p
)
:]
[
(
0.
(
INT.Ring
p
)
)
,
(
0.
(
INT.Ring
p
)
)
]
is
V26
()
set
{
(
0.
(
INT.Ring
p
)
)
,
(
0.
(
INT.Ring
p
)
)
}
is non
empty
finite
set
{
(
0.
(
INT.Ring
p
)
)
}
is non
empty
trivial
finite
1
-element
set
{
{
(
0.
(
INT.Ring
p
)
)
,
(
0.
(
INT.Ring
p
)
)
}
,
{
(
0.
(
INT.Ring
p
)
)
}
}
is non
empty
finite
V49
()
set
[
[
(
0.
(
INT.Ring
p
)
)
,
(
0.
(
INT.Ring
p
)
)
]
,
(
0.
(
INT.Ring
p
)
)
]
is
V26
()
set
{
[
(
0.
(
INT.Ring
p
)
)
,
(
0.
(
INT.Ring
p
)
)
]
,
(
0.
(
INT.Ring
p
)
)
}
is non
empty
finite
set
{
[
(
0.
(
INT.Ring
p
)
)
,
(
0.
(
INT.Ring
p
)
)
]
}
is non
empty
trivial
finite
1
-element
set
{
{
[
(
0.
(
INT.Ring
p
)
)
,
(
0.
(
INT.Ring
p
)
)
]
,
(
0.
(
INT.Ring
p
)
)
}
,
{
[
(
0.
(
INT.Ring
p
)
)
,
(
0.
(
INT.Ring
p
)
)
]
}
}
is non
empty
finite
V49
()
set
{
[
(
0.
(
INT.Ring
p
)
)
,
(
0.
(
INT.Ring
p
)
)
,
(
0.
(
INT.Ring
p
)
)
]
}
is non
empty
trivial
finite
1
-element
Element
of
bool
[:
the
carrier
of
(
INT.Ring
p
)
, the
carrier
of
(
INT.Ring
p
)
, the
carrier
of
(
INT.Ring
p
)
:]
[:
the
carrier
of
(
INT.Ring
p
)
, the
carrier
of
(
INT.Ring
p
)
, the
carrier
of
(
INT.Ring
p
)
:]
\
{
[
(
0.
(
INT.Ring
p
)
)
,
(
0.
(
INT.Ring
p
)
)
,
(
0.
(
INT.Ring
p
)
)
]
}
is
finite
Element
of
bool
[:
the
carrier
of
(
INT.Ring
p
)
, the
carrier
of
(
INT.Ring
p
)
, the
carrier
of
(
INT.Ring
p
)
:]
(
p
) is
Relation-like
(
(
INT.Ring
p
)
)
-defined
(
(
INT.Ring
p
)
)
-valued
finite
Element
of
bool
[:
(
(
INT.Ring
p
)
),(
(
INT.Ring
p
)
)
:]
[:
(
(
INT.Ring
p
)
),(
(
INT.Ring
p
)
)
:]
is non
empty
finite
set
bool
[:
(
(
INT.Ring
p
)
),(
(
INT.Ring
p
)
)
:]
is non
empty
finite
V49
()
set
{
[
b
1
,
b
2
]
where
b
1
,
b
2
is
Element
of (
(
INT.Ring
p
)
) : (
p
,
b
1
,
b
2
)
}
is
set
b
is
set
L
is
Element
of (
(
INT.Ring
p
)
)
[
b
,
b
]
is
V26
()
set
{
b
,
b
}
is non
empty
finite
set
{
b
}
is non
empty
trivial
finite
1
-element
set
{
{
b
,
b
}
,
{
b
}
}
is non
empty
finite
V49
()
set
L
is
set
[
b
,
L
]
is
V26
()
set
{
b
,
L
}
is non
empty
finite
set
{
{
b
,
L
}
,
{
b
}
}
is non
empty
finite
V49
()
set
F
is
Element
of (
(
INT.Ring
p
)
)
pp
is
Element
of (
(
INT.Ring
p
)
)
[
F
,
pp
]
is
V26
()
Element
of
[:
(
(
INT.Ring
p
)
),(
(
INT.Ring
p
)
)
:]
{
F
,
pp
}
is non
empty
finite
set
{
F
}
is non
empty
trivial
finite
1
-element
set
{
{
F
,
pp
}
,
{
F
}
}
is non
empty
finite
V49
()
set
dom
(
p
) is
finite
Element
of
bool
(
(
INT.Ring
p
)
)
bool
(
(
INT.Ring
p
)
) is non
empty
finite
V49
()
set
field
(
p
) is
finite
set
b
is
set
L
is
set
[
b
,
L
]
is
V26
()
set
{
b
,
L
}
is non
empty
finite
set
{
b
}
is non
empty
trivial
finite
1
-element
set
{
{
b
,
L
}
,
{
b
}
}
is non
empty
finite
V49
()
set
[
L
,
b
]
is
V26
()
set
{
L
,
b
}
is non
empty
finite
set
{
L
}
is non
empty
trivial
finite
1
-element
set
{
{
L
,
b
}
,
{
L
}
}
is non
empty
finite
V49
()
set
F
is
Element
of (
(
INT.Ring
p
)
)
pp
is
Element
of (
(
INT.Ring
p
)
)
[
F
,
pp
]
is
V26
()
Element
of
[:
(
(
INT.Ring
p
)
),(
(
INT.Ring
p
)
)
:]
{
F
,
pp
}
is non
empty
finite
set
{
F
}
is non
empty
trivial
finite
1
-element
set
{
{
F
,
pp
}
,
{
F
}
}
is non
empty
finite
V49
()
set
b
is
set
L
is
set
F
is
set
[
b
,
L
]
is
V26
()
set
{
b
,
L
}
is non
empty
finite
set
{
b
}
is non
empty
trivial
finite
1
-element
set
{
{
b
,
L
}
,
{
b
}
}
is non
empty
finite
V49
()
set
[
L
,
F
]
is
V26
()
set
{
L
,
F
}
is non
empty
finite
set
{
L
}
is non
empty
trivial
finite
1
-element
set
{
{
L
,
F
}
,
{
L
}
}
is non
empty
finite
V49
()
set
[
b
,
F
]
is
V26
()
set
{
b
,
F
}
is non
empty
finite
set
{
{
b
,
F
}
,
{
b
}
}
is non
empty
finite
V49
()
set
pp
is
Element
of (
(
INT.Ring
p
)
)
FF
is
Element
of (
(
INT.Ring
p
)
)
[
pp
,
FF
]
is
V26
()
Element
of
[:
(
(
INT.Ring
p
)
),(
(
INT.Ring
p
)
)
:]
{
pp
,
FF
}
is non
empty
finite
set
{
pp
}
is non
empty
trivial
finite
1
-element
set
{
{
pp
,
FF
}
,
{
pp
}
}
is non
empty
finite
V49
()
set
F1
is
Element
of (
(
INT.Ring
p
)
)
F2
is
Element
of (
(
INT.Ring
p
)
)
[
F1
,
F2
]
is
V26
()
Element
of
[:
(
(
INT.Ring
p
)
),(
(
INT.Ring
p
)
)
:]
{
F1
,
F2
}
is non
empty
finite
set
{
F1
}
is non
empty
trivial
finite
1
-element
set
{
{
F1
,
F2
}
,
{
F1
}
}
is non
empty
finite
V49
()
set
[
pp
,
F2
]
is
V26
()
Element
of
[:
(
(
INT.Ring
p
)
),(
(
INT.Ring
p
)
)
:]
{
pp
,
F2
}
is non
empty
finite
set
{
{
pp
,
F2
}
,
{
pp
}
}
is non
empty
finite
V49
()
set
p
is non
empty
V4
()
V5
()
V6
()
V10
()
V11
()
V12
()
integer
V14
()
ext-real
positive
non
negative
finite
cardinal
set
INT.Ring
p
is non
empty
non
degenerated
non
trivial
finite
left_add-cancelable
right_add-cancelable
add-cancelable
right_complementable
almost_left_invertible
strict
unital
associative
commutative
Euclidian
right-distributive
left-distributive
right_unital
well-unital
distributive
left_unital
Abelian
add-associative
right_zeroed
()
doubleLoopStr
Segm
p
is
V117
()
V118
()
V119
()
V120
()
V121
()
V122
()
Element
of
bool
NAT
addint
p
is
Relation-like
[:
(
Segm
p
)
,
(
Segm
p
)
:]
-defined
Segm
p
-valued
Function-like
quasi_total
V35
()
V36
()
V37
()
V38
()
Element
of
bool
[:
[:
(
Segm
p
)
,
(
Segm
p
)
:]
,
(
Segm
p
)
:]
[:
(
Segm
p
)
,
(
Segm
p
)
:]
is
RAT
-valued
INT
-valued
V35
()
V36
()
V37
()
V38
()
set
[:
[:
(
Segm
p
)
,
(
Segm
p
)
:]
,
(
Segm
p
)
:]
is
RAT
-valued
INT
-valued
V35
()
V36
()
V37
()
V38
()
set
bool
[:
[:
(
Segm
p
)
,
(
Segm
p
)
:]
,
(
Segm
p
)
:]
is non
empty
set
multint
p
is
Relation-like
[:
(
Segm
p
)
,
(
Segm
p
)
:]
-defined
Segm
p
-valued
Function-like
quasi_total
V35
()
V36
()
V37
()
V38
()
Element
of
bool
[:
[:
(
Segm
p
)
,
(
Segm
p
)
:]
,
(
Segm
p
)
:]
K633
(1,
(
Segm
p
)
) is
V4
()
V5
()
V6
()
V10
()
V11
()
V12
()
integer
ext-real
non
negative
finite
cardinal
V113
()
Element
of
Segm
p
K633
(
0
,
(
Segm
p
)
) is
V4
()
V5
()
V6
()
V10
()
V11
()
V12
()
integer
ext-real
non
negative
finite
cardinal
V113
()
Element
of
Segm
p
doubleLoopStr
(#
(
Segm
p
)
,
(
addint
p
)
,
(
multint
p
)
,
K633
(1,
(
Segm
p
)
),
K633
(
0
,
(
Segm
p
)
) #) is
strict
doubleLoopStr
the
carrier
of
(
INT.Ring
p
)
is non
empty
non
trivial
finite
set
a
is
left_add-cancelable
right_add-cancelable
add-cancelable
right_complementable
Element
of the
carrier
of
(
INT.Ring
p
)
b
is
left_add-cancelable
right_add-cancelable
add-cancelable
right_complementable
Element
of the
carrier
of
(
INT.Ring
p
)
(
p
,
a
,
b
) is non
empty
finite
Element
of
bool
(
(
INT.Ring
p
)
)
(
(
INT.Ring
p
)
) is non
empty
finite
Element
of
bool
[:
the
carrier
of
(
INT.Ring
p
)
, the
carrier
of
(
INT.Ring
p
)
, the
carrier
of
(
INT.Ring
p
)
:]
[:
the
carrier
of
(
INT.Ring
p
)
, the
carrier
of
(
INT.Ring
p
)
, the
carrier
of
(
INT.Ring
p
)
:]
is non
empty
finite
set
bool
[:
the
carrier
of
(
INT.Ring
p
)
, the
carrier
of
(
INT.Ring
p
)
, the
carrier
of
(
INT.Ring
p
)
:]
is non
empty
finite
V49
()
set
0.
(
INT.Ring
p
)
is
V61
(
INT.Ring
p
)
left_add-cancelable
right_add-cancelable
add-cancelable
right_complementable
Element
of the
carrier
of
(
INT.Ring
p
)
the
ZeroF
of
(
INT.Ring
p
)
is
left_add-cancelable
right_add-cancelable
add-cancelable
right_complementable
Element
of the
carrier
of
(
INT.Ring
p
)
[
(
0.
(
INT.Ring
p
)
)
,
(
0.
(
INT.Ring
p
)
)
,
(
0.
(
INT.Ring
p
)
)
]
is
V26
()
V27
()
Element
of
[:
the
carrier
of
(
INT.Ring
p
)
, the
carrier
of
(
INT.Ring
p
)
, the
carrier
of
(
INT.Ring
p
)
:]
[
(
0.
(
INT.Ring
p
)
)
,
(
0.
(
INT.Ring
p
)
)
]
is
V26
()
set
{
(
0.
(
INT.Ring
p
)
)
,
(
0.
(
INT.Ring
p
)
)
}
is non
empty
finite
set
{
(
0.
(
INT.Ring
p
)
)
}
is non
empty
trivial
finite
1
-element
set
{
{
(
0.
(
INT.Ring
p
)
)
,
(
0.
(
INT.Ring
p
)
)
}
,
{
(
0.
(
INT.Ring
p
)
)
}
}
is non
empty
finite
V49
()
set
[
[
(
0.
(
INT.Ring
p
)
)
,
(
0.
(
INT.Ring
p
)
)
]
,
(
0.
(
INT.Ring
p
)
)
]
is
V26
()
set
{
[
(
0.
(
INT.Ring
p
)
)
,
(
0.
(
INT.Ring
p
)
)
]
,
(
0.
(
INT.Ring
p
)
)
}
is non
empty
finite
set
{
[
(
0.
(
INT.Ring
p
)
)
,
(
0.
(
INT.Ring
p
)
)
]
}
is non
empty
trivial
finite
1
-element
set
{
{
[
(
0.
(
INT.Ring
p
)
)
,
(
0.
(
INT.Ring
p
)
)
]
,
(
0.
(
INT.Ring
p
)
)
}
,
{
[
(
0.
(
INT.Ring
p
)
)
,
(
0.
(
INT.Ring
p
)
)
]
}
}
is non
empty
finite
V49
()
set
{
[
(
0.
(
INT.Ring
p
)
)
,
(
0.
(
INT.Ring
p
)
)
,
(
0.
(
INT.Ring
p
)
)
]
}
is non
empty
trivial
finite
1
-element
Element
of
bool
[:
the
carrier
of
(
INT.Ring
p
)
, the
carrier
of
(
INT.Ring
p
)
, the
carrier
of
(
INT.Ring
p
)
:]
[:
the
carrier
of
(
INT.Ring
p
)
, the
carrier
of
(
INT.Ring
p
)
, the
carrier
of
(
INT.Ring
p
)
:]
\
{
[
(
0.
(
INT.Ring
p
)
)
,
(
0.
(
INT.Ring
p
)
)
,
(
0.
(
INT.Ring
p
)
)
]
}
is
finite
Element
of
bool
[:
the
carrier
of
(
INT.Ring
p
)
, the
carrier
of
(
INT.Ring
p
)
, the
carrier
of
(
INT.Ring
p
)
:]
bool
(
(
INT.Ring
p
)
) is non
empty
finite
V49
()
set
(
p
,
a
,
b
) is
Relation-like
[:
the
carrier
of
(
INT.Ring
p
)
, the
carrier
of
(
INT.Ring
p
)
, the
carrier
of
(
INT.Ring
p
)
:]
-defined
the
carrier
of
(
INT.Ring
p
)
-valued
Function-like
quasi_total
finite
Element
of
bool
[:
[:
the
carrier
of
(
INT.Ring
p
)
, the
carrier
of
(
INT.Ring
p
)
, the
carrier
of
(
INT.Ring
p
)
:]
, the
carrier
of
(
INT.Ring
p
)
:]
[:
[:
the
carrier
of
(
INT.Ring
p
)
, the
carrier
of
(
INT.Ring
p
)
, the
carrier
of
(
INT.Ring
p
)
:]
, the
carrier
of
(
INT.Ring
p
)
:]
is non
empty
finite
set
bool
[:
[:
the
carrier
of
(
INT.Ring
p
)
, the
carrier
of
(
INT.Ring
p
)
, the
carrier
of
(
INT.Ring
p
)
:]
, the
carrier
of
(
INT.Ring
p
)
:]
is non
empty
finite
V49
()
set
{
b
1
where
b
1
is
Element
of (
(
INT.Ring
p
)
) : (
p
,
a
,
b
)
.
b
1
=
0.
(
INT.Ring
p
)
}
is
set
[:
(
p
,
a
,
b
),(
p
,
a
,
b
)
:]
is non
empty
finite
set
(
p
) is
Relation-like
(
(
INT.Ring
p
)
)
-defined
(
(
INT.Ring
p
)
)
-valued
total
finite
reflexive
symmetric
transitive
Element
of
bool
[:
(
(
INT.Ring
p
)
),(
(
INT.Ring
p
)
)
:]
[:
(
(
INT.Ring
p
)
),(
(
INT.Ring
p
)
)
:]
is non
empty
finite
set
bool
[:
(
(
INT.Ring
p
)
),(
(
INT.Ring
p
)
)
:]
is non
empty
finite
V49
()
set
{
[
b
1
,
b
2
]
where
b
1
,
b
2
is
Element
of (
(
INT.Ring
p
)
) : (
p
,
b
1
,
b
2
)
}
is
set
nabla
(
p
,
a
,
b
) is
Relation-like
(
p
,
a
,
b
)
-defined
(
p
,
a
,
b
)
-valued
total
finite
reflexive
symmetric
transitive
Element
of
bool
[:
(
p
,
a
,
b
),(
p
,
a
,
b
)
:]
bool
[:
(
p
,
a
,
b
),(
p
,
a
,
b
)
:]
is non
empty
finite
V49
()
set
(
p
)
/\
(
nabla
(
p
,
a
,
b
)
)
is
Relation-like
(
p
,
a
,
b
)
-defined
(
(
INT.Ring
p
)
)
-defined
(
p
,
a
,
b
)
-valued
(
(
INT.Ring
p
)
)
-valued
finite
reflexive
symmetric
transitive
Element
of
bool
[:
(
p
,
a
,
b
),(
p
,
a
,
b
)
:]
pp
is
Relation-like
(
p
,
a
,
b
)
-defined
(
p
,
a
,
b
)
-valued
finite
Element
of
bool
[:
(
p
,
a
,
b
),(
p
,
a
,
b
)
:]
FF
is
set
F1
is
Element
of (
(
INT.Ring
p
)
)
[
FF
,
FF
]
is
V26
()
set
{
FF
,
FF
}
is non
empty
finite
set
{
FF
}
is non
empty
trivial
finite
1
-element
set
{
{
FF
,
FF
}
,
{
FF
}
}
is non
empty
finite
V49
()
set
[:
(
p
,
a
,
b
),(
p
,
a
,
b
)
:]
is non
empty
Relation-like
(
(
INT.Ring
p
)
)
-defined
(
(
INT.Ring
p
)
)
-valued
finite
Element
of
bool
[:
(
(
INT.Ring
p
)
),(
(
INT.Ring
p
)
)
:]
F1
is
set
[
FF
,
F1
]
is
V26
()
set
{
FF
,
F1
}
is non
empty
finite
set
{
{
FF
,
F1
}
,
{
FF
}
}
is non
empty
finite
V49
()
set
dom
pp
is
finite
Element
of
bool
(
p
,
a
,
b
)
bool
(
p
,
a
,
b
) is non
empty
finite
V49
()
set
p
is non
empty
V4
()
V5
()
V6
()
V10
()
V11
()
V12
()
integer
V14
()
ext-real
positive
non
negative
finite
cardinal
set
INT.Ring
p
is non
empty
non
degenerated
non
trivial
finite
left_add-cancelable
right_add-cancelable
add-cancelable
right_complementable
almost_left_invertible
strict
unital
associative
commutative
Euclidian
right-distributive
left-distributive
right_unital
well-unital
distributive
left_unital
Abelian
add-associative
right_zeroed
()
doubleLoopStr
Segm
p
is
V117
()
V118
()
V119
()
V120
()
V121
()
V122
()
Element
of
bool
NAT
addint
p
is
Relation-like
[:
(
Segm
p
)
,
(
Segm
p
)
:]
-defined
Segm
p
-valued
Function-like
quasi_total
V35
()
V36
()
V37
()
V38
()
Element
of
bool
[:
[:
(
Segm
p
)
,
(
Segm
p
)
:]
,
(
Segm
p
)
:]
[:
(
Segm
p
)
,
(
Segm
p
)
:]
is
RAT
-valued
INT
-valued
V35
()
V36
()
V37
()
V38
()
set
[:
[:
(
Segm
p
)
,
(
Segm
p
)
:]
,
(
Segm
p
)
:]
is
RAT
-valued
INT
-valued
V35
()
V36
()
V37
()
V38
()
set
bool
[:
[:
(
Segm
p
)
,
(
Segm
p
)
:]
,
(
Segm
p
)
:]
is non
empty
set
multint
p
is
Relation-like
[:
(
Segm
p
)
,
(
Segm
p
)
:]
-defined
Segm
p
-valued
Function-like
quasi_total
V35
()
V36
()
V37
()
V38
()
Element
of
bool
[:
[:
(
Segm
p
)
,
(
Segm
p
)
:]
,
(
Segm
p
)
:]
K633
(1,
(
Segm
p
)
) is
V4
()
V5
()
V6
()
V10
()
V11
()
V12
()
integer
ext-real
non
negative
finite
cardinal
V113
()
Element
of
Segm
p
K633
(
0
,
(
Segm
p
)
) is
V4
()
V5
()
V6
()
V10
()
V11
()
V12
()
integer
ext-real
non
negative
finite
cardinal
V113
()
Element
of
Segm
p
doubleLoopStr
(#
(
Segm
p
)
,
(
addint
p
)
,
(
multint
p
)
,
K633
(1,
(
Segm
p
)
),
K633
(
0
,
(
Segm
p
)
) #) is
strict
doubleLoopStr
the
carrier
of
(
INT.Ring
p
)
is non
empty
non
trivial
finite
set
[:
the
carrier
of
(
INT.Ring
p
)
, the
carrier
of
(
INT.Ring
p
)
, the
carrier
of
(
INT.Ring
p
)
:]
is non
empty
finite
set
(
(
INT.Ring
p
)
) is non
empty
finite
Element
of
bool
[:
the
carrier
of
(
INT.Ring
p
)
, the
carrier
of
(
INT.Ring
p
)
, the
carrier
of
(
INT.Ring
p
)
:]
bool
[:
the
carrier
of
(
INT.Ring
p
)
, the
carrier
of
(
INT.Ring
p
)
, the
carrier
of
(
INT.Ring
p
)
:]
is non
empty
finite
V49
()
set
0.
(
INT.Ring
p
)
is
V61
(
INT.Ring
p
)
left_add-cancelable
right_add-cancelable
add-cancelable
right_complementable
Element
of the
carrier
of
(
INT.Ring
p
)
the
ZeroF
of
(
INT.Ring
p
)
is
left_add-cancelable
right_add-cancelable
add-cancelable
right_complementable
Element
of the
carrier
of
(
INT.Ring
p
)
[
(
0.
(
INT.Ring
p
)
)
,
(
0.
(
INT.Ring
p
)
)
,
(
0.
(
INT.Ring
p
)
)
]
is
V26
()
V27
()
Element
of
[:
the
carrier
of
(
INT.Ring
p
)
, the
carrier
of
(
INT.Ring
p
)
, the
carrier
of
(
INT.Ring
p
)
:]
[
(
0.
(
INT.Ring
p
)
)
,
(
0.
(
INT.Ring
p
)
)
]
is
V26
()
set
{
(
0.
(
INT.Ring
p
)
)
,
(
0.
(
INT.Ring
p
)
)
}
is non
empty
finite
set
{
(
0.
(
INT.Ring
p
)
)
}
is non
empty
trivial
finite
1
-element
set
{
{
(
0.
(
INT.Ring
p
)
)
,
(
0.
(
INT.Ring
p
)
)
}
,
{
(
0.
(
INT.Ring
p
)
)
}
}
is non
empty
finite
V49
()
set
[
[
(
0.
(
INT.Ring
p
)
)
,
(
0.
(
INT.Ring
p
)
)
]
,
(
0.
(
INT.Ring
p
)
)
]
is
V26
()
set
{
[
(
0.
(
INT.Ring
p
)
)
,
(
0.
(
INT.Ring
p
)
)
]
,
(
0.
(
INT.Ring
p
)
)
}
is non
empty
finite
set
{
[
(
0.
(
INT.Ring
p
)
)
,
(
0.
(
INT.Ring
p
)
)
]
}
is non
empty
trivial
finite
1
-element
set
{
{
[
(
0.
(
INT.Ring
p
)
)
,
(
0.
(
INT.Ring
p
)
)
]
,
(
0.
(
INT.Ring
p
)
)
}
,
{
[
(
0.
(
INT.Ring
p
)
)
,
(
0.
(
INT.Ring
p
)
)
]
}
}
is non
empty
finite
V49
()
set
{
[
(
0.
(
INT.Ring
p
)
)
,
(
0.
(
INT.Ring
p
)
)
,
(
0.
(
INT.Ring
p
)
)
]
}
is non
empty
trivial
finite
1
-element
Element
of
bool
[:
the
carrier
of
(
INT.Ring
p
)
, the
carrier
of
(
INT.Ring
p
)
, the
carrier
of
(
INT.Ring
p
)
:]
[:
the
carrier
of
(
INT.Ring
p
)
, the
carrier
of
(
INT.Ring
p
)
, the
carrier
of
(
INT.Ring
p
)
:]
\
{
[
(
0.
(
INT.Ring
p
)
)
,
(
0.
(
INT.Ring
p
)
)
,
(
0.
(
INT.Ring
p
)
)
]
}
is
finite
Element
of
bool
[:
the
carrier
of
(
INT.Ring
p
)
, the
carrier
of
(
INT.Ring
p
)
, the
carrier
of
(
INT.Ring
p
)
:]
a
is
left_add-cancelable
right_add-cancelable
add-cancelable
right_complementable
Element
of the
carrier
of
(
INT.Ring
p
)
b
is
left_add-cancelable
right_add-cancelable
add-cancelable
right_complementable
Element
of the
carrier
of
(
INT.Ring
p
)
(
p
,
a
,
b
) is
left_add-cancelable
right_add-cancelable
add-cancelable
right_complementable
Element
of the
carrier
of
(
INT.Ring
p
)
(
p
,
a
,
b
) is non
empty
finite
Element
of
bool
(
(
INT.Ring
p
)
)
bool
(
(
INT.Ring
p
)
) is non
empty
finite
V49
()
set
(
p
,
a
,
b
) is
Relation-like
[:
the
carrier
of
(
INT.Ring
p
)
, the
carrier
of
(
INT.Ring
p
)
, the
carrier
of
(
INT.Ring
p
)
:]
-defined
the
carrier
of
(
INT.Ring
p
)
-valued
Function-like
quasi_total
finite
Element
of
bool
[:
[:
the
carrier
of
(
INT.Ring
p
)
, the
carrier
of
(
INT.Ring
p
)
, the
carrier
of
(
INT.Ring
p
)
:]
, the
carrier
of
(
INT.Ring
p
)
:]
[:
[:
the
carrier
of
(
INT.Ring
p
)
, the
carrier
of
(
INT.Ring
p
)
, the
carrier
of
(
INT.Ring
p
)
:]
, the
carrier
of
(
INT.Ring
p
)
:]
is non
empty
finite
set
bool
[:
[:
the
carrier
of
(
INT.Ring
p
)
, the
carrier
of
(
INT.Ring
p
)
, the
carrier
of
(
INT.Ring
p
)
:]
, the
carrier
of
(
INT.Ring
p
)
:]
is non
empty
finite
V49
()
set
{
b
1
where
b
1
is
Element
of (
(
INT.Ring
p
)
) : (
p
,
a
,
b
)
.
b
1
=
0.
(
INT.Ring
p
)
}
is
set
(
p
,
a
,
b
) is
Relation-like
(
p
,
a
,
b
)
-defined
(
p
,
a
,
b
)
-valued
total
finite
reflexive
symmetric
transitive
Element
of
bool
[:
(
p
,
a
,
b
),(
p
,
a
,
b
)
:]
[:
(
p
,
a
,
b
),(
p
,
a
,
b
)
:]
is non
empty
finite
set
bool
[:
(
p
,
a
,
b
),(
p
,
a
,
b
)
:]
is non
empty
finite
V49
()
set
(
p
) is
Relation-like
(
(
INT.Ring
p
)
)
-defined
(
(
INT.Ring
p
)
)
-valued
total
finite
reflexive
symmetric
transitive
Element
of
bool
[:
(
(
INT.Ring
p
)
),(
(
INT.Ring
p
)
)
:]
[:
(
(
INT.Ring
p
)
),(
(
INT.Ring
p
)
)
:]
is non
empty
finite
set
bool
[:
(
(
INT.Ring
p
)
),(
(
INT.Ring
p
)
)
:]
is non
empty
finite
V49
()
set
{
[
b
1
,
b
2
]
where
b
1
,
b
2
is
Element
of (
(
INT.Ring
p
)
) : (
p
,
b
1
,
b
2
)
}
is
set
nabla
(
p
,
a
,
b
) is
Relation-like
(
p
,
a
,
b
)
-defined
(
p
,
a
,
b
)
-valued
total
finite
reflexive
symmetric
transitive
Element
of
bool
[:
(
p
,
a
,
b
),(
p
,
a
,
b
)
:]
(
p
)
/\
(
nabla
(
p
,
a
,
b
)
)
is
Relation-like
(
(
INT.Ring
p
)
)
-defined
(
p
,
a
,
b
)
-defined
(
(
INT.Ring
p
)
)
-valued
(
p
,
a
,
b
)
-valued
finite
reflexive
symmetric
transitive
Element
of
bool
[:
(
p
,
a
,
b
),(
p
,
a
,
b
)
:]
L
is
Element
of (
(
INT.Ring
p
)
)
F
is
Element
of (
(
INT.Ring
p
)
)
[
L
,
F
]
is
V26
()
Element
of
[:
(
(
INT.Ring
p
)
),(
(
INT.Ring
p
)
)
:]
{
L
,
F
}
is non
empty
finite
set
{
L
}
is non
empty
trivial
finite
1
-element
set
{
{
L
,
F
}
,
{
L
}
}
is non
empty
finite
V49
()
set
[:
(
p
,
a
,
b
),(
p
,
a
,
b
)
:]
is non
empty
Relation-like
(
(
INT.Ring
p
)
)
-defined
(
(
INT.Ring
p
)
)
-valued
finite
Element
of
bool
[:
(
(
INT.Ring
p
)
),(
(
INT.Ring
p
)
)
:]
p
is non
empty
V4
()
V5
()
V6
()
V10
()
V11
()
V12
()
integer
V14
()
ext-real
positive
non
negative
finite
cardinal
set
INT.Ring
p
is non
empty
non
degenerated
non
trivial
finite
left_add-cancelable
right_add-cancelable
add-cancelable
right_complementable
almost_left_invertible
strict
unital
associative
commutative
Euclidian
right-distributive
left-distributive
right_unital
well-unital
distributive
left_unital
Abelian
add-associative
right_zeroed
()
doubleLoopStr
Segm
p
is
V117
()
V118
()
V119
()
V120
()
V121
()
V122
()
Element
of
bool
NAT
addint
p
is
Relation-like
[:
(
Segm
p
)
,
(
Segm
p
)
:]
-defined
Segm
p
-valued
Function-like
quasi_total
V35
()
V36
()
V37
()
V38
()
Element
of
bool
[:
[:
(
Segm
p
)
,
(
Segm
p
)
:]
,
(
Segm
p
)
:]
[:
(
Segm
p
)
,
(
Segm
p
)
:]
is
RAT
-valued
INT
-valued
V35
()
V36
()
V37
()
V38
()
set
[:
[:
(
Segm
p
)
,
(
Segm
p
)
:]
,
(
Segm
p
)
:]
is
RAT
-valued
INT
-valued
V35
()
V36
()
V37
()
V38
()
set
bool
[:
[:
(
Segm
p
)
,
(
Segm
p
)
:]
,
(
Segm
p
)
:]
is non
empty
set
multint
p
is
Relation-like
[:
(
Segm
p
)
,
(
Segm
p
)
:]
-defined
Segm
p
-valued
Function-like
quasi_total
V35
()
V36
()
V37
()
V38
()
Element
of
bool
[:
[:
(
Segm
p
)
,
(
Segm
p
)
:]
,
(
Segm
p
)
:]
K633
(1,
(
Segm
p
)
) is
V4
()
V5
()
V6
()
V10
()
V11
()
V12
()
integer
ext-real
non
negative
finite
cardinal
V113
()
Element
of
Segm
p
K633
(
0
,
(
Segm
p
)
) is
V4
()
V5
()
V6
()
V10
()
V11
()
V12
()
integer
ext-real
non
negative
finite
cardinal
V113
()
Element
of
Segm
p
doubleLoopStr
(#
(
Segm
p
)
,
(
addint
p
)
,
(
multint
p
)
,
K633
(1,
(
Segm
p
)
),
K633
(
0
,
(
Segm
p
)
) #) is
strict
doubleLoopStr
the
carrier
of
(
INT.Ring
p
)
is non
empty
non
trivial
finite
set
[:
the
carrier
of
(
INT.Ring
p
)
, the
carrier
of
(
INT.Ring
p
)
, the
carrier
of
(
INT.Ring
p
)
:]
is non
empty
finite
set
(
(
INT.Ring
p
)
) is non
empty
finite
Element
of
bool
[:
the
carrier
of
(
INT.Ring
p
)
, the
carrier
of
(
INT.Ring
p
)
, the
carrier
of
(
INT.Ring
p
)
:]
bool
[:
the
carrier
of
(
INT.Ring
p
)
, the
carrier
of
(
INT.Ring
p
)
, the
carrier
of
(
INT.Ring
p
)
:]
is non
empty
finite
V49
()
set
0.
(
INT.Ring
p
)
is
V61
(
INT.Ring
p
)
left_add-cancelable
right_add-cancelable
add-cancelable
right_complementable
Element
of the
carrier
of
(
INT.Ring
p
)
the
ZeroF
of
(
INT.Ring
p
)
is
left_add-cancelable
right_add-cancelable
add-cancelable
right_complementable
Element
of the
carrier
of
(
INT.Ring
p
)
[
(
0.
(
INT.Ring
p
)
)
,
(
0.
(
INT.Ring
p
)
)
,
(
0.
(
INT.Ring
p
)
)
]
is
V26
()
V27
()
Element
of
[:
the
carrier
of
(
INT.Ring
p
)
, the
carrier
of
(
INT.Ring
p
)
, the
carrier
of
(
INT.Ring
p
)
:]
[
(
0.
(
INT.Ring
p
)
)
,
(
0.
(
INT.Ring
p
)
)
]
is
V26
()
set
{
(
0.
(
INT.Ring
p
)
)
,
(
0.
(
INT.Ring
p
)
)
}
is non
empty
finite
set
{
(
0.
(
INT.Ring
p
)
)
}
is non
empty
trivial
finite
1
-element
set
{
{
(
0.
(
INT.Ring
p
)
)
,
(
0.
(
INT.Ring
p
)
)
}
,
{
(
0.
(
INT.Ring
p
)
)
}
}
is non
empty
finite
V49
()
set
[
[
(
0.
(
INT.Ring
p
)
)
,
(
0.
(
INT.Ring
p
)
)
]
,
(
0.
(
INT.Ring
p
)
)
]
is
V26
()
set
{
[
(
0.
(
INT.Ring
p
)
)
,
(
0.
(
INT.Ring
p
)
)
]
,
(
0.
(
INT.Ring
p
)
)
}
is non
empty
finite
set
{
[
(
0.
(
INT.Ring
p
)
)
,
(
0.
(
INT.Ring
p
)
)
]
}
is non
empty
trivial
finite
1
-element
set
{
{
[
(
0.
(
INT.Ring
p
)
)
,
(
0.
(
INT.Ring
p
)
)
]
,
(
0.
(
INT.Ring
p
)
)
}
,
{
[
(
0.
(
INT.Ring
p
)
)
,
(
0.
(
INT.Ring
p
)
)
]
}
}
is non
empty
finite
V49
()
set
{
[
(
0.
(
INT.Ring
p
)
)
,
(
0.
(
INT.Ring
p
)
)
,
(
0.
(
INT.Ring
p
)
)
]
}
is non
empty
trivial
finite
1
-element
Element
of
bool
[:
the
carrier
of
(
INT.Ring
p
)
, the
carrier
of
(
INT.Ring
p
)
, the
carrier
of
(
INT.Ring
p
)
:]
[:
the
carrier
of
(
INT.Ring
p
)
, the
carrier
of
(
INT.Ring
p
)
, the
carrier
of
(
INT.Ring
p
)
:]
\
{
[
(
0.
(
INT.Ring
p
)
)
,
(
0.
(
INT.Ring
p
)
)
,
(
0.
(
INT.Ring
p
)
)
]
}
is
finite
Element
of
bool
[:
the
carrier
of
(
INT.Ring
p
)
, the
carrier
of
(
INT.Ring
p
)
, the
carrier
of
(
INT.Ring
p
)
:]
a
is
left_add-cancelable
right_add-cancelable
add-cancelable
right_complementable
Element
of the
carrier
of
(
INT.Ring
p
)
b
is
left_add-cancelable
right_add-cancelable
add-cancelable
right_complementable
Element
of the
carrier
of
(
INT.Ring
p
)
(
p
,
a
,
b
) is
left_add-cancelable
right_add-cancelable
add-cancelable
right_complementable
Element
of the
carrier
of
(
INT.Ring
p
)
(
p
,
a
,
b
) is non
empty
finite
Element
of
bool
(
(
INT.Ring
p
)
)
bool
(
(
INT.Ring
p
)
) is non
empty
finite
V49
()
set
(
p
,
a
,
b
) is
Relation-like
[:
the
carrier
of
(
INT.Ring
p
)
, the
carrier
of
(
INT.Ring
p
)
, the
carrier
of
(
INT.Ring
p
)
:]
-defined
the
carrier
of
(
INT.Ring
p
)
-valued
Function-like
quasi_total
finite
Element
of
bool
[:
[:
the
carrier
of
(
INT.Ring
p
)
, the
carrier
of
(
INT.Ring
p
)
, the
carrier
of
(
INT.Ring
p
)
:]
, the
carrier
of
(
INT.Ring
p
)
:]
[:
[:
the
carrier
of
(
INT.Ring
p
)
, the
carrier
of
(
INT.Ring
p
)
, the
carrier
of
(
INT.Ring
p
)
:]
, the
carrier
of
(
INT.Ring
p
)
:]
is non
empty
finite
set
bool
[:
[:
the
carrier
of
(
INT.Ring
p
)
, the
carrier
of
(
INT.Ring
p
)
, the
carrier
of
(
INT.Ring
p
)
:]
, the
carrier
of
(
INT.Ring
p
)
:]
is non
empty
finite
V49
()
set
{
b
1
where
b
1
is
Element
of (
(
INT.Ring
p
)
) : (
p
,
a
,
b
)
.
b
1
=
0.
(
INT.Ring
p
)
}
is
set
L
is
Element
of (
(
INT.Ring
p
)
)
L
`3_3
is
left_add-cancelable
right_add-cancelable
add-cancelable
right_complementable
Element
of the
carrier
of
(
INT.Ring
p
)
(
L
`3_3
)
"
is
left_add-cancelable
right_add-cancelable
add-cancelable
right_complementable
Element
of the
carrier
of
(
INT.Ring
p
)
(
(
L
`3_3
)
"
)
*
(
L
`3_3
)
is
left_add-cancelable
right_add-cancelable
add-cancelable
right_complementable
Element
of the
carrier
of
(
INT.Ring
p
)
the
multF
of
(
INT.Ring
p
)
is
Relation-like
[:
the
carrier
of
(
INT.Ring
p
)
, the
carrier
of
(
INT.Ring
p
)
:]
-defined
the
carrier
of
(
INT.Ring
p
)
-valued
Function-like
quasi_total
finite
Element
of
bool
[:
[:
the
carrier
of
(
INT.Ring
p
)
, the
carrier
of
(
INT.Ring
p
)
:]
, the
carrier
of
(
INT.Ring
p
)
:]
[:
the
carrier
of
(
INT.Ring
p
)
, the
carrier
of
(
INT.Ring
p
)
:]
is non
empty
finite
set
[:
[:
the
carrier
of
(
INT.Ring
p
)
, the
carrier
of
(
INT.Ring
p
)
:]
, the
carrier
of
(
INT.Ring
p
)
:]
is non
empty
finite
set
bool
[:
[:
the
carrier
of
(
INT.Ring
p
)
, the
carrier
of
(
INT.Ring
p
)
:]
, the
carrier
of
(
INT.Ring
p
)
:]
is non
empty
finite
V49
()
set
the
multF
of
(
INT.Ring
p
)
.
(
(
(
L
`3_3
)
"
)
,
(
L
`3_3
)
) is
left_add-cancelable
right_add-cancelable
add-cancelable
right_complementable
Element
of the
carrier
of
(
INT.Ring
p
)
[
(
(
L
`3_3
)
"
)
,
(
L
`3_3
)
]
is
V26
()
set
{
(
(
L
`3_3
)
"
)
,
(
L
`3_3
)
}
is non
empty
finite
set
{
(
(
L
`3_3
)
"
)
}
is non
empty
trivial
finite
1
-element
set
{
{
(
(
L
`3_3
)
"
)
,
(
L
`3_3
)
}
,
{
(
(
L
`3_3
)
"
)
}
}
is non
empty
finite
V49
()
set
the
multF
of
(
INT.Ring
p
)
.
[
(
(
L
`3_3
)
"
)
,
(
L
`3_3
)
]
is
set
1_
(
INT.Ring
p
)
is
left_add-cancelable
right_add-cancelable
add-cancelable
right_complementable
Element
of the
carrier
of
(
INT.Ring
p
)
1.
(
INT.Ring
p
)
is
V61
(
INT.Ring
p
)
V61
(
INT.Ring
p
)
left_add-cancelable
left_add-cancelable
right_add-cancelable
right_add-cancelable
add-cancelable
add-cancelable
right_complementable
right_complementable
(
p
)
Element
of the
carrier
of
(
INT.Ring
p
)
the
OneF
of
(
INT.Ring
p
)
is
left_add-cancelable
right_add-cancelable
add-cancelable
right_complementable
Element
of the
carrier
of
(
INT.Ring
p
)
L
`1_3
is
left_add-cancelable
right_add-cancelable
add-cancelable
right_complementable
Element
of the
carrier
of
(
INT.Ring
p
)
L
`1
is
set
(
L
`1
)
`1
is
set
(
(
L
`3_3
)
"
)
*
(
L
`1_3
)
is
left_add-cancelable
right_add-cancelable
add-cancelable
right_complementable
Element
of the
carrier
of
(
INT.Ring
p
)
the
multF
of
(
INT.Ring
p
)
is
Relation-like
[:
the
carrier
of
(
INT.Ring
p
)
, the
carrier
of
(
INT.Ring
p
)
:]
-defined
the
carrier
of
(
INT.Ring
p
)
-valued
Function-like
quasi_total
finite
Element
of
bool
[:
[:
the
carrier
of
(
INT.Ring
p
)
, the
carrier
of
(
INT.Ring
p
)
:]
, the
carrier
of
(
INT.Ring
p
)
:]
[:
the
carrier
of
(
INT.Ring
p
)
, the
carrier
of
(
INT.Ring
p
)
:]
is non
empty
finite
set
[:
[:
the
carrier
of
(
INT.Ring
p
)
, the
carrier
of
(
INT.Ring
p
)
:]
, the
carrier
of
(
INT.Ring
p
)
:]
is non
empty
finite
set
bool
[:
[:
the
carrier
of
(
INT.Ring
p
)
, the
carrier
of
(
INT.Ring
p
)
:]
, the
carrier
of
(
INT.Ring
p
)
:]
is non
empty
finite
V49
()
set
the
multF
of
(
INT.Ring
p
)
.
(
(
(
L
`3_3
)
"
)
,
(
L
`1_3
)
) is
left_add-cancelable
right_add-cancelable
add-cancelable
right_complementable
Element
of the
carrier
of
(
INT.Ring
p
)
[
(
(
L
`3_3
)
"
)
,
(
L
`1_3
)
]
is
V26
()
set
{
(
(
L
`3_3
)
"
)
,
(
L
`1_3
)
}
is non
empty
finite
set
{
(
(
L
`3_3
)
"
)
}
is non
empty
trivial
finite
1
-element
set
{
{
(
(
L
`3_3
)
"
)
,
(
L
`1_3
)
}
,
{
(
(
L
`3_3
)
"
)
}
}
is non
empty
finite
V49
()
set
the
multF
of
(
INT.Ring
p
)
.
[
(
(
L
`3_3
)
"
)
,
(
L
`1_3
)
]
is
set
L
`2_3
is
left_add-cancelable
right_add-cancelable
add-cancelable
right_complementable
Element
of the
carrier
of
(
INT.Ring
p
)
(
L
`1
)
`2
is
set
(
(
L
`3_3
)
"
)
*
(
L
`2_3
)
is
left_add-cancelable
right_add-cancelable
add-cancelable
right_complementable
Element
of the
carrier
of
(
INT.Ring
p
)
the
multF
of
(
INT.Ring
p
)
.
(
(
(
L
`3_3
)
"
)
,
(
L
`2_3
)
) is
left_add-cancelable
right_add-cancelable
add-cancelable
right_complementable
Element
of the
carrier
of
(
INT.Ring
p
)
[
(
(
L
`3_3
)
"
)
,
(
L
`2_3
)
]
is
V26
()
set
{
(
(
L
`3_3
)
"
)
,
(
L
`2_3
)
}
is non
empty
finite
set
{
{
(
(
L
`3_3
)
"
)
,
(
L
`2_3
)
}
,
{
(
(
L
`3_3
)
"
)
}
}
is non
empty
finite
V49
()
set
the
multF
of
(
INT.Ring
p
)
.
[
(
(
L
`3_3
)
"
)
,
(
L
`2_3
)
]
is
set
(
(
L
`3_3
)
"
)
*
(
L
`3_3
)
is
left_add-cancelable
right_add-cancelable
add-cancelable
right_complementable
Element
of the
carrier
of
(
INT.Ring
p
)
the
multF
of
(
INT.Ring
p
)
.
(
(
(
L
`3_3
)
"
)
,
(
L
`3_3
)
) is
left_add-cancelable
right_add-cancelable
add-cancelable
right_complementable
Element
of the
carrier
of
(
INT.Ring
p
)
[
(
(
L
`3_3
)
"
)
,
(
L
`3_3
)
]
is
V26
()
set
{
(
(
L
`3_3
)
"
)
,
(
L
`3_3
)
}
is non
empty
finite
set
{
{
(
(
L
`3_3
)
"
)
,
(
L
`3_3
)
}
,
{
(
(
L
`3_3
)
"
)
}
}
is non
empty
finite
V49
()
set
the
multF
of
(
INT.Ring
p
)
.
[
(
(
L
`3_3
)
"
)
,
(
L
`3_3
)
]
is
set
[
(
(
(
L
`3_3
)
"
)
*
(
L
`1_3
)
)
,
(
(
(
L
`3_3
)
"
)
*
(
L
`2_3
)
)
,
(
(
(
L
`3_3
)
"
)
*
(
L
`3_3
)
)
]
is
V26
()
V27
()
Element
of
[:
the
carrier
of
(
INT.Ring
p
)
, the
carrier
of
(
INT.Ring
p
)
, the
carrier
of
(
INT.Ring
p
)
:]
[
(
(
(
L
`3_3
)
"
)
*
(
L
`1_3
)
)
,
(
(
(
L
`3_3
)
"
)
*
(
L
`2_3
)
)
]
is
V26
()
set
{
(
(
(
L
`3_3
)
"
)
*
(
L
`1_3
)
)
,
(
(
(
L
`3_3
)
"
)
*
(
L
`2_3
)
)
}
is non
empty
finite
set
{
(
(
(
L
`3_3
)
"
)
*
(
L
`1_3
)
)
}
is non
empty
trivial
finite
1
-element
set
{
{
(
(
(
L
`3_3
)
"
)
*
(
L
`1_3
)
)
,
(
(
(
L
`3_3
)
"
)
*
(
L
`2_3
)
)
}
,
{
(
(
(
L
`3_3
)
"
)
*
(
L
`1_3
)
)
}
}
is non
empty
finite
V49
()
set
[
[
(
(
(
L
`3_3
)
"
)
*
(
L
`1_3
)
)
,
(
(
(
L
`3_3
)
"
)
*
(
L
`2_3
)
)
]
,
(
(
(
L
`3_3
)
"
)
*
(
L
`3_3
)
)
]
is
V26
()
set
{
[
(
(
(
L
`3_3
)
"
)
*
(
L
`1_3
)
)
,
(
(
(
L
`3_3
)
"
)
*
(
L
`2_3
)
)
]
,
(
(
(
L
`3_3
)
"
)
*
(
L
`3_3
)
)
}
is non
empty
finite
set
{
[
(
(
(
L
`3_3
)
"
)
*
(
L
`1_3
)
)
,
(
(
(
L
`3_3
)
"
)
*
(
L
`2_3
)
)
]
}
is non
empty
trivial
finite
1
-element
set
{
{
[
(
(
(
L
`3_3
)
"
)
*
(
L
`1_3
)
)
,
(
(
(
L
`3_3
)
"
)
*
(
L
`2_3
)
)
]
,
(
(
(
L
`3_3
)
"
)
*
(
L
`3_3
)
)
}
,
{
[
(
(
(
L
`3_3
)
"
)
*
(
L
`1_3
)
)
,
(
(
(
L
`3_3
)
"
)
*
(
L
`2_3
)
)
]
}
}
is non
empty
finite
V49
()
set
pp
is
Element
of
[:
the
carrier
of
(
INT.Ring
p
)
, the
carrier
of
(
INT.Ring
p
)
, the
carrier
of
(
INT.Ring
p
)
:]
pp
`1_3
is
left_add-cancelable
right_add-cancelable
add-cancelable
right_complementable
Element
of the
carrier
of
(
INT.Ring
p
)
pp
`1
is
set
(
pp
`1
)
`1
is
set
pp
`2_3
is
left_add-cancelable
right_add-cancelable
add-cancelable
right_complementable
Element
of the
carrier
of
(
INT.Ring
p
)
(
pp
`1
)
`2
is
set
pp
`3_3
is
left_add-cancelable
right_add-cancelable
add-cancelable
right_complementable
Element
of the
carrier
of
(
INT.Ring
p
)
FF
is
Element
of (
(
INT.Ring
p
)
)
(
p
,
a
,
b
)
.
FF
is
left_add-cancelable
right_add-cancelable
add-cancelable
right_complementable
Element
of the
carrier
of
(
INT.Ring
p
)
F1
is
Element
of (
(
INT.Ring
p
)
)
F1
`3_3
is
left_add-cancelable
right_add-cancelable
add-cancelable
right_complementable
Element
of the
carrier
of
(
INT.Ring
p
)
1_
(
INT.Ring
p
)
is
left_add-cancelable
right_add-cancelable
add-cancelable
right_complementable
Element
of the
carrier
of
(
INT.Ring
p
)
1.
(
INT.Ring
p
)
is
V61
(
INT.Ring
p
)
V61
(
INT.Ring
p
)
left_add-cancelable
left_add-cancelable
right_add-cancelable
right_add-cancelable
add-cancelable
add-cancelable
right_complementable
right_complementable
(
p
)
Element
of the
carrier
of
(
INT.Ring
p
)
the
OneF
of
(
INT.Ring
p
)
is
left_add-cancelable
right_add-cancelable
add-cancelable
right_complementable
Element
of the
carrier
of
(
INT.Ring
p
)
p
is non
empty
V4
()
V5
()
V6
()
V10
()
V11
()
V12
()
integer
V14
()
ext-real
positive
non
negative
finite
cardinal
set
INT.Ring
p
is non
empty
non
degenerated
non
trivial
finite
left_add-cancelable
right_add-cancelable
add-cancelable
right_complementable
almost_left_invertible
strict
unital
associative
commutative
Euclidian
right-distributive
left-distributive
right_unital
well-unital
distributive
left_unital
Abelian
add-associative
right_zeroed
()
doubleLoopStr
Segm
p
is
V117
()
V118
()
V119
()
V120
()
V121
()
V122
()
Element
of
bool
NAT
addint
p
is
Relation-like
[:
(
Segm
p
)
,
(
Segm
p
)
:]
-defined
Segm
p
-valued
Function-like
quasi_total
V35
()
V36
()
V37
()
V38
()
Element
of
bool
[:
[:
(
Segm
p
)
,
(
Segm
p
)
:]
,
(
Segm
p
)
:]
[:
(
Segm
p
)
,
(
Segm
p
)
:]
is
RAT
-valued
INT
-valued
V35
()
V36
()
V37
()
V38
()
set
[:
[:
(
Segm
p
)
,
(
Segm
p
)
:]
,
(
Segm
p
)
:]
is
RAT
-valued
INT
-valued
V35
()
V36
()
V37
()
V38
()
set
bool
[:
[:
(
Segm
p
)
,
(
Segm
p
)
:]
,
(
Segm
p
)
:]
is non
empty
set
multint
p
is
Relation-like
[:
(
Segm
p
)
,
(
Segm
p
)
:]
-defined
Segm
p
-valued
Function-like
quasi_total
V35
()
V36
()
V37
()
V38
()
Element
of
bool
[:
[:
(
Segm
p
)
,
(
Segm
p
)
:]
,
(
Segm
p
)
:]
K633
(1,
(
Segm
p
)
) is
V4
()
V5
()
V6
()
V10
()
V11
()
V12
()
integer
ext-real
non
negative
finite
cardinal
V113
()
Element
of
Segm
p
K633
(
0
,
(
Segm
p
)
) is
V4
()
V5
()
V6
()
V10
()
V11
()
V12
()
integer
ext-real
non
negative
finite
cardinal
V113
()
Element
of
Segm
p
doubleLoopStr
(#
(
Segm
p
)
,
(
addint
p
)
,
(
multint
p
)
,
K633
(1,
(
Segm
p
)
),
K633
(
0
,
(
Segm
p
)
) #) is
strict
doubleLoopStr
the
carrier
of
(
INT.Ring
p
)
is non
empty
non
trivial
finite
set
[:
the
carrier
of
(
INT.Ring
p
)
, the
carrier
of
(
INT.Ring
p
)
, the
carrier
of
(
INT.Ring
p
)
:]
is non
empty
finite
set
(
(
INT.Ring
p
)
) is non
empty
finite
Element
of
bool
[:
the
carrier
of
(
INT.Ring
p
)
, the
carrier
of
(
INT.Ring
p
)
, the
carrier
of
(
INT.Ring
p
)
:]
bool
[:
the
carrier
of
(
INT.Ring
p
)
, the
carrier
of
(
INT.Ring
p
)
, the
carrier
of
(
INT.Ring
p
)
:]
is non
empty
finite
V49
()
set
0.
(
INT.Ring
p
)
is
V61
(
INT.Ring
p
)
left_add-cancelable
right_add-cancelable
add-cancelable
right_complementable
Element
of the
carrier
of
(
INT.Ring
p
)
the
ZeroF
of
(
INT.Ring
p
)
is
left_add-cancelable
right_add-cancelable
add-cancelable
right_complementable
Element
of the
carrier
of
(
INT.Ring
p
)
[
(
0.
(
INT.Ring
p
)
)
,
(
0.
(
INT.Ring
p
)
)
,
(
0.
(
INT.Ring
p
)
)
]
is
V26
()
V27
()
Element
of
[:
the
carrier
of
(
INT.Ring
p
)
, the
carrier
of
(
INT.Ring
p
)
, the
carrier
of
(
INT.Ring
p
)
:]
[
(
0.
(
INT.Ring
p
)
)
,
(
0.
(
INT.Ring
p
)
)
]
is
V26
()
set
{
(
0.
(
INT.Ring
p
)
)
,
(
0.
(
INT.Ring
p
)
)
}
is non
empty
finite
set
{
(
0.
(
INT.Ring
p
)
)
}
is non
empty
trivial
finite
1
-element
set
{
{
(
0.
(
INT.Ring
p
)
)
,
(
0.
(
INT.Ring
p
)
)
}
,
{
(
0.
(
INT.Ring
p
)
)
}
}
is non
empty
finite
V49
()
set
[
[
(
0.
(
INT.Ring
p
)
)
,
(
0.
(
INT.Ring
p
)
)
]
,
(
0.
(
INT.Ring
p
)
)
]
is
V26
()
set
{
[
(
0.
(
INT.Ring
p
)
)
,
(
0.
(
INT.Ring
p
)
)
]
,
(
0.
(
INT.Ring
p
)
)
}
is non
empty
finite
set
{
[
(
0.
(
INT.Ring
p
)
)
,
(
0.
(
INT.Ring
p
)
)
]
}
is non
empty
trivial
finite
1
-element
set
{
{
[
(
0.
(
INT.Ring
p
)
)
,
(
0.
(
INT.Ring
p
)
)
]
,
(
0.
(
INT.Ring
p
)
)
}
,
{
[
(
0.
(
INT.Ring
p
)
)
,
(
0.
(
INT.Ring
p
)
)
]
}
}
is non
empty
finite
V49
()
set
{
[
(
0.
(
INT.Ring
p
)
)
,
(
0.
(
INT.Ring
p
)
)
,
(
0.
(
INT.Ring
p
)
)
]
}
is non
empty
trivial
finite
1
-element
Element
of
bool
[:
the
carrier
of
(
INT.Ring
p
)
, the
carrier
of
(
INT.Ring
p
)
, the
carrier
of
(
INT.Ring
p
)
:]
[:
the
carrier
of
(
INT.Ring
p
)
, the
carrier
of
(
INT.Ring
p
)
, the
carrier
of
(
INT.Ring
p
)
:]
\
{
[
(
0.
(
INT.Ring
p
)
)
,
(
0.
(
INT.Ring
p
)
)
,
(
0.
(
INT.Ring
p
)
)
]
}
is
finite
Element
of
bool
[:
the
carrier
of
(
INT.Ring
p
)
, the
carrier
of
(
INT.Ring
p
)
, the
carrier
of
(
INT.Ring
p
)
:]
a
is
left_add-cancelable
right_add-cancelable
add-cancelable
right_complementable
Element
of the
carrier
of
(
INT.Ring
p
)
b
is
left_add-cancelable
right_add-cancelable
add-cancelable
right_complementable
Element
of the
carrier
of
(
INT.Ring
p
)
(
p
,
a
,
b
) is
left_add-cancelable
right_add-cancelable
add-cancelable
right_complementable
Element
of the
carrier
of
(
INT.Ring
p
)
(
p
,
a
,
b
) is non
empty
finite
Element
of
bool
(
(
INT.Ring
p
)
)
bool
(
(
INT.Ring
p
)
) is non
empty
finite
V49
()
set
(
p
,
a
,
b
) is
Relation-like
[:
the
carrier
of
(
INT.Ring
p
)
, the
carrier
of
(
INT.Ring
p
)
, the
carrier
of
(
INT.Ring
p
)
:]
-defined
the
carrier
of
(
INT.Ring
p
)
-valued
Function-like
quasi_total
finite
Element
of
bool
[:
[:
the
carrier
of
(
INT.Ring
p
)
, the
carrier
of
(
INT.Ring
p
)
, the
carrier
of
(
INT.Ring
p
)
:]
, the
carrier
of
(
INT.Ring
p
)
:]
[:
[:
the
carrier
of
(
INT.Ring
p
)
, the
carrier
of
(
INT.Ring
p
)
, the
carrier
of
(
INT.Ring
p
)
:]
, the
carrier
of
(
INT.Ring
p
)
:]
is non
empty
finite
set
bool
[:
[:
the
carrier
of
(
INT.Ring
p
)
, the
carrier
of
(
INT.Ring
p
)
, the
carrier
of
(
INT.Ring
p
)
:]
, the
carrier
of
(
INT.Ring
p
)
:]
is non
empty
finite
V49
()
set
{
b
1
where
b
1
is
Element
of (
(
INT.Ring
p
)
) : (
p
,
a
,
b
)
.
b
1
=
0.
(
INT.Ring
p
)
}
is
set
L
is
Element
of (
(
INT.Ring
p
)
)
L
`3_3
is
left_add-cancelable
right_add-cancelable
add-cancelable
right_complementable
Element
of the
carrier
of
(
INT.Ring
p
)
L
`2_3
is
left_add-cancelable
right_add-cancelable
add-cancelable
right_complementable
Element
of the
carrier
of
(
INT.Ring
p
)
L
`1
is
set
(
L
`1
)
`2
is
set
(
L
`2_3
)
"
is
left_add-cancelable
right_add-cancelable
add-cancelable
right_complementable
Element
of the
carrier
of
(
INT.Ring
p
)
(
L
`3_3
)
|^
3 is
left_add-cancelable
right_add-cancelable
add-cancelable
right_complementable
Element
of the
carrier
of
(
INT.Ring
p
)
power
(
INT.Ring
p
)
is
Relation-like
[:
the
carrier
of
(
INT.Ring
p
)
,
NAT
:]
-defined
the
carrier
of
(
INT.Ring
p
)
-valued
Function-like
quasi_total
Element
of
bool
[:
[:
the
carrier
of
(
INT.Ring
p
)
,
NAT
:]
, the
carrier
of
(
INT.Ring
p
)
:]
[:
the
carrier
of
(
INT.Ring
p
)
,
NAT
:]
is non
empty
non
trivial
RAT
-valued
INT
-valued
V35
()
V36
()
V37
()
V38
() non
finite
set
[:
[:
the
carrier
of
(
INT.Ring
p
)
,
NAT
:]
, the
carrier
of
(
INT.Ring
p
)
:]
is non
empty
non
trivial
non
finite
set
bool
[:
[:
the
carrier
of
(
INT.Ring
p
)
,
NAT
:]
, the
carrier
of
(
INT.Ring
p
)
:]
is non
empty
non
trivial
non
finite
set
(
power
(
INT.Ring
p
)
)
.
(
(
L
`3_3
)
,3) is
set
[
(
L
`3_3
)
,3
]
is
V26
()
set
{
(
L
`3_3
)
,3
}
is non
empty
finite
set
{
(
L
`3_3
)
}
is non
empty
trivial
finite
1
-element
set
{
{
(
L
`3_3
)
,3
}
,
{
(
L
`3_3
)
}
}
is non
empty
finite
V49
()
set
(
power
(
INT.Ring
p
)
)
.
[
(
L
`3_3
)
,3
]
is
set
2
+
1 is non
empty
V4
()
V5
()
V6
()
V10
()
V11
()
V12
()
integer
ext-real
positive
non
negative
finite
cardinal
V113
()
V117
()
V118
()
V119
()
V120
()
V121
()
V122
()
Element
of
NAT
(
L
`3_3
)
|^
(
2
+
1
)
is
left_add-cancelable
right_add-cancelable
add-cancelable
right_complementable
Element
of the
carrier
of
(
INT.Ring
p
)
(
power
(
INT.Ring
p
)
)
.
(
(
L
`3_3
)
,
(
2
+
1
)
) is
set
[
(
L
`3_3
)
,
(
2
+
1
)
]
is
V26
()
set
{
(
L
`3_3
)
,
(
2
+
1
)
}
is non
empty
finite
set
{
{
(
L
`3_3
)
,
(
2
+
1
)
}
,
{
(
L
`3_3
)
}
}
is non
empty
finite
V49
()
set
(
power
(
INT.Ring
p
)
)
.
[
(
L
`3_3
)
,
(
2
+
1
)
]
is
set
(
L
`3_3
)
|^
2 is
left_add-cancelable
right_add-cancelable
add-cancelable
right_complementable
Element
of the
carrier
of
(
INT.Ring
p
)
(
power
(
INT.Ring
p
)
)
.
(
(
L
`3_3
)
,2) is
set
[
(
L
`3_3
)
,2
]
is
V26
()
set
{
(
L
`3_3
)
,2
}
is non
empty
finite
set
{
{
(
L
`3_3
)
,2
}
,
{
(
L
`3_3
)
}
}
is non
empty
finite
V49
()
set
(
power
(
INT.Ring
p
)
)
.
[
(
L
`3_3
)
,2
]
is
set
(
(
L
`3_3
)
|^
2
)
*
(
L
`3_3
)
is
left_add-cancelable
right_add-cancelable
add-cancelable
right_complementable
Element
of the
carrier
of
(
INT.Ring
p
)
the
multF
of
(
INT.Ring
p
)
is
Relation-like
[:
the
carrier
of
(
INT.Ring
p
)
, the
carrier
of
(
INT.Ring
p
)
:]
-defined
the
carrier
of
(
INT.Ring
p
)
-valued
Function-like
quasi_total
finite
Element
of
bool
[:
[:
the
carrier
of
(
INT.Ring
p
)
, the
carrier
of
(
INT.Ring
p
)
:]
, the
carrier
of
(
INT.Ring
p
)
:]
[:
the
carrier
of
(
INT.Ring
p
)
, the
carrier
of
(
INT.Ring
p
)
:]
is non
empty
finite
set
[:
[:
the
carrier
of
(
INT.Ring
p
)
, the
carrier
of
(
INT.Ring
p
)
:]
, the
carrier
of
(
INT.Ring
p
)
:]
is non
empty
finite
set
bool
[:
[:
the
carrier
of
(
INT.Ring
p
)
, the
carrier
of
(
INT.Ring
p
)
:]
, the
carrier
of
(
INT.Ring
p
)
:]
is non
empty
finite
V49
()
set
the
multF
of
(
INT.Ring
p
)
.
(
(
(
L
`3_3
)
|^
2
)
,
(
L
`3_3
)
) is
left_add-cancelable
right_add-cancelable
add-cancelable
right_complementable
Element
of the
carrier
of
(
INT.Ring
p
)
[
(
(
L
`3_3
)
|^
2
)
,
(
L
`3_3
)
]
is
V26
()
set
{
(
(
L
`3_3
)
|^
2
)
,
(
L
`3_3
)
}
is non
empty
finite
set
{
(
(
L
`3_3
)
|^
2
)
}
is non
empty
trivial
finite
1
-element
set
{
{
(
(
L
`3_3
)
|^
2
)
,
(
L
`3_3
)
}
,
{
(
(
L
`3_3
)
|^
2
)
}
}
is non
empty
finite
V49
()
set
the
multF
of
(
INT.Ring
p
)
.
[
(
(
L
`3_3
)
|^
2
)
,
(
L
`3_3
)
]
is
set
1
+
1 is non
empty
V4
()
V5
()
V6
()
V10
()
V11
()
V12
()
integer
ext-real
positive
non
negative
finite
cardinal
V113
()
V117
()
V118
()
V119
()
V120
()
V121
()
V122
()
Element
of
NAT
(
L
`3_3
)
|^
(
1
+
1
)
is
left_add-cancelable
right_add-cancelable
add-cancelable
right_complementable
Element
of the
carrier
of
(
INT.Ring
p
)
(
power
(
INT.Ring
p
)
)
.
(
(
L
`3_3
)
,
(
1
+
1
)
) is
set
[
(
L
`3_3
)
,
(
1
+
1
)
]
is
V26
()
set
{
(
L
`3_3
)
,
(
1
+
1
)
}
is non
empty
finite
set
{
{
(
L
`3_3
)
,
(
1
+
1
)
}
,
{
(
L
`3_3
)
}
}
is non
empty
finite
V49
()
set
(
power
(
INT.Ring
p
)
)
.
[
(
L
`3_3
)
,
(
1
+
1
)
]
is
set
(
L
`3_3
)
|^
1 is
left_add-cancelable
right_add-cancelable
add-cancelable
right_complementable
Element
of the
carrier
of
(
INT.Ring
p
)
(
power
(
INT.Ring
p
)
)
.
(
(
L
`3_3
)
,1) is
set
[
(
L
`3_3
)
,1
]
is
V26
()
set
{
(
L
`3_3
)
,1
}
is non
empty
finite
set
{
{
(
L
`3_3
)
,1
}
,
{
(
L
`3_3
)
}
}
is non
empty
finite
V49
()
set
(
power
(
INT.Ring
p
)
)
.
[
(
L
`3_3
)
,1
]
is
set
(
(
L
`3_3
)
|^
1
)
*
(
L
`3_3
)
is
left_add-cancelable
right_add-cancelable
add-cancelable
right_complementable
Element
of the
carrier
of
(
INT.Ring
p
)
the
multF
of
(
INT.Ring
p
)
.
(
(
(
L
`3_3
)
|^
1
)
,
(
L
`3_3
)
) is
left_add-cancelable
right_add-cancelable
add-cancelable
right_complementable
Element
of the
carrier
of
(
INT.Ring
p
)
[
(
(
L
`3_3
)
|^
1
)
,
(
L
`3_3
)
]
is
V26
()
set
{
(
(
L
`3_3
)
|^
1
)
,
(
L
`3_3
)
}
is non
empty
finite
set
{
(
(
L
`3_3
)
|^
1
)
}
is non
empty
trivial
finite
1
-element
set
{
{
(
(
L
`3_3
)
|^
1
)
,
(
L
`3_3
)
}
,
{
(
(
L
`3_3
)
|^
1
)
}
}
is non
empty
finite
V49
()
set
the
multF
of
(
INT.Ring
p
)
.
[
(
(
L
`3_3
)
|^
1
)
,
(
L
`3_3
)
]
is
set
(
L
`2_3
)
|^
2 is
left_add-cancelable
right_add-cancelable
add-cancelable
right_complementable
Element
of the
carrier
of
(
INT.Ring
p
)
(
power
(
INT.Ring
p
)
)
.
(
(
L
`2_3
)
,2) is
set
[
(
L
`2_3
)
,2
]
is
V26
()
set
{
(
L
`2_3
)
,2
}
is non
empty
finite
set
{
(
L
`2_3
)
}
is non
empty
trivial
finite
1
-element
set
{
{
(
L
`2_3
)
,2
}
,
{
(
L
`2_3
)
}
}
is non
empty
finite
V49
()
set
(
power
(
INT.Ring
p
)
)
.
[
(
L
`2_3
)
,2
]
is
set
(
(
L
`2_3
)
|^
2
)
*
(
L
`3_3
)
is
left_add-cancelable
right_add-cancelable
add-cancelable
right_complementable
Element
of the
carrier
of
(
INT.Ring
p
)
the
multF
of
(
INT.Ring
p
)
.
(
(
(
L
`2_3
)
|^
2
)
,
(
L
`3_3
)
) is
left_add-cancelable
right_add-cancelable
add-cancelable
right_complementable
Element
of the
carrier
of
(
INT.Ring
p
)
[
(
(
L
`2_3
)
|^
2
)
,
(
L
`3_3
)
]
is
V26
()
set
{
(
(
L
`2_3
)
|^
2
)
,
(
L
`3_3
)
}
is non
empty
finite
set
{
(
(
L
`2_3
)
|^
2
)
}
is non
empty
trivial
finite
1
-element
set
{
{
(
(
L
`2_3
)
|^
2
)
,
(
L
`3_3
)
}
,
{
(
(
L
`2_3
)
|^
2
)
}
}
is non
empty
finite
V49
()
set
the
multF
of
(
INT.Ring
p
)
.
[
(
(
L
`2_3
)
|^
2
)
,
(
L
`3_3
)
]
is
set
L
`1_3
is
left_add-cancelable
right_add-cancelable
add-cancelable
right_complementable
Element
of the
carrier
of
(
INT.Ring
p
)
(
L
`1
)
`1
is
set
(
L
`1_3
)
|^
3 is
left_add-cancelable
right_add-cancelable
add-cancelable
right_complementable
Element
of the
carrier
of
(
INT.Ring
p
)
(
power
(
INT.Ring
p
)
)
.
(
(
L
`1_3
)
,3) is
set
[
(
L
`1_3
)
,3
]
is
V26
()
set
{
(
L
`1_3
)
,3
}
is non
empty
finite
set
{
(
L
`1_3
)
}
is non
empty
trivial
finite
1
-element
set
{
{
(
L
`1_3
)
,3
}
,
{
(
L
`1_3
)
}
}
is non
empty
finite
V49
()
set
(
power
(
INT.Ring
p
)
)
.
[
(
L
`1_3
)
,3
]
is
set
a
*
(
L
`1_3
)
is
left_add-cancelable
right_add-cancelable
add-cancelable
right_complementable
Element
of the
carrier
of
(
INT.Ring
p
)
the
multF
of
(
INT.Ring
p
)
.
(
a
,
(
L
`1_3
)
) is
left_add-cancelable
right_add-cancelable
add-cancelable
right_complementable
Element
of the
carrier
of
(
INT.Ring
p
)
[
a
,
(
L
`1_3
)
]
is
V26
()
set
{
a
,
(
L
`1_3
)
}
is non
empty
finite
set
{
a
}
is non
empty
trivial
finite
1
-element
set
{
{
a
,
(
L
`1_3
)
}
,
{
a
}
}
is non
empty
finite
V49
()
set
the
multF
of
(
INT.Ring
p
)
.
[
a
,
(
L
`1_3
)
]
is
set
(
a
*
(
L
`1_3
)
)
*
(
(
L
`3_3
)
|^
2
)
is
left_add-cancelable
right_add-cancelable
add-cancelable
right_complementable
Element
of the
carrier
of
(
INT.Ring
p
)
the
multF
of
(
INT.Ring
p
)
.
(
(
a
*
(
L
`1_3
)
)
,
(
(
L
`3_3
)
|^
2
)
) is
left_add-cancelable
right_add-cancelable
add-cancelable
right_complementable
Element
of the
carrier
of
(
INT.Ring
p
)
[
(
a
*
(
L
`1_3
)
)
,
(
(
L
`3_3
)
|^
2
)
]
is
V26
()
set
{
(
a
*
(
L
`1_3
)
)
,
(
(
L
`3_3
)
|^
2
)
}
is non
empty
finite
set
{
(
a
*
(
L
`1_3
)
)
}
is non
empty
trivial
finite
1
-element
set
{
{
(
a
*
(
L
`1_3
)
)
,
(
(
L
`3_3
)
|^
2
)
}
,
{
(
a
*
(
L
`1_3
)
)
}
}
is non
empty
finite
V49
()
set
the
multF
of
(
INT.Ring
p
)
.
[
(
a
*
(
L
`1_3
)
)
,
(
(
L
`3_3
)
|^
2
)
]
is
set
(
(
L
`1_3
)
|^
3
)
+
(
(
a
*
(
L
`1_3
)
)
*
(
(
L
`3_3
)
|^
2
)
)
is
left_add-cancelable
right_add-cancelable
add-cancelable
right_complementable
Element
of the
carrier
of
(
INT.Ring
p
)
the
addF
of
(
INT.Ring
p
)
is
Relation-like
[:
the
carrier
of
(
INT.Ring
p
)
, the
carrier
of
(
INT.Ring
p
)
:]
-defined
the
carrier
of
(
INT.Ring
p
)
-valued
Function-like
quasi_total
finite
Element
of
bool
[:
[:
the
carrier
of
(
INT.Ring
p
)
, the
carrier
of
(
INT.Ring
p
)
:]
, the
carrier
of
(
INT.Ring
p
)
:]
the
addF
of
(
INT.Ring
p
)
.
(
(
(
L
`1_3
)
|^
3
)
,
(
(
a
*
(
L
`1_3
)
)
*
(
(
L
`3_3
)
|^
2
)
)
) is
left_add-cancelable
right_add-cancelable
add-cancelable
right_complementable
Element
of the
carrier
of
(
INT.Ring
p
)
[
(
(
L
`1_3
)
|^
3
)
,
(
(
a
*
(
L
`1_3
)
)
*
(
(
L
`3_3
)
|^
2
)
)
]
is
V26
()
set
{
(
(
L
`1_3
)
|^
3
)
,
(
(
a
*
(
L
`1_3
)
)
*
(
(
L
`3_3
)
|^
2
)
)
}
is non
empty
finite
set
{
(
(
L
`1_3
)
|^
3
)
}
is non
empty
trivial
finite
1
-element
set
{
{
(
(
L
`1_3
)
|^
3
)
,
(
(
a
*
(
L
`1_3
)
)
*
(
(
L
`3_3
)
|^
2
)
)
}
,
{
(
(
L
`1_3
)
|^
3
)
}
}
is non
empty
finite
V49
()
set
the
addF
of
(
INT.Ring
p
)
.
[
(
(
L
`1_3
)
|^
3
)
,
(
(
a
*
(
L
`1_3
)
)
*
(
(
L
`3_3
)
|^
2
)
)
]
is
set
b
*
(
(
L
`3_3
)
|^
3
)
is
left_add-cancelable
right_add-cancelable
add-cancelable
right_complementable
Element
of the
carrier
of
(
INT.Ring
p
)
the
multF
of
(
INT.Ring
p
)
.
(
b
,
(
(
L
`3_3
)
|^
3
)
) is
left_add-cancelable
right_add-cancelable
add-cancelable
right_complementable
Element
of the
carrier
of
(
INT.Ring
p
)
[
b
,
(
(
L
`3_3
)
|^
3
)
]
is
V26
()
set
{
b
,
(
(
L
`3_3
)
|^
3
)
}
is non
empty
finite
set
{
b
}
is non
empty
trivial
finite
1
-element
set
{
{
b
,
(
(
L
`3_3
)
|^
3
)
}
,
{
b
}
}
is non
empty
finite
V49
()
set
the
multF
of
(
INT.Ring
p
)
.
[
b
,
(
(
L
`3_3
)
|^
3
)
]
is
set
(
(
(
L
`1_3
)
|^
3
)
+
(
(
a
*
(
L
`1_3
)
)
*
(
(
L
`3_3
)
|^
2
)
)
)
+
(
b
*
(
(
L
`3_3
)
|^
3
)
)
is
left_add-cancelable
right_add-cancelable
add-cancelable
right_complementable
Element
of the
carrier
of
(
INT.Ring
p
)
the
addF
of
(
INT.Ring
p
)
.
(
(
(
(
L
`1_3
)
|^
3
)
+
(
(
a
*
(
L
`1_3
)
)
*
(
(
L
`3_3
)
|^
2
)
)
)
,
(
b
*
(
(
L
`3_3
)
|^
3
)
)
) is
left_add-cancelable
right_add-cancelable
add-cancelable
right_complementable
Element
of the
carrier
of
(
INT.Ring
p
)
[
(
(
(
L
`1_3
)
|^
3
)
+
(
(
a
*
(
L
`1_3
)
)
*
(
(
L
`3_3
)
|^
2
)
)
)
,
(
b
*
(
(
L
`3_3
)
|^
3
)
)
]
is
V26
()
set
{
(
(
(
L
`1_3
)
|^
3
)
+
(
(
a
*
(
L
`1_3
)
)
*
(
(
L
`3_3
)
|^
2
)
)
)
,
(
b
*
(
(
L
`3_3
)
|^
3
)
)
}
is non
empty
finite
set
{
(
(
(
L
`1_3
)
|^
3
)
+
(
(
a
*
(
L
`1_3
)
)
*
(
(
L
`3_3
)
|^
2
)
)
)
}
is non
empty
trivial
finite
1
-element
set
{
{
(
(
(
L
`1_3
)
|^
3
)
+
(
(
a
*
(
L
`1_3
)
)
*
(
(
L
`3_3
)
|^
2
)
)
)
,
(
b
*
(
(
L
`3_3
)
|^
3
)
)
}
,
{
(
(
(
L
`1_3
)
|^
3
)
+
(
(
a
*
(
L
`1_3
)
)
*
(
(
L
`3_3
)
|^
2
)
)
)
}
}
is non
empty
finite
V49
()
set
the
addF
of
(
INT.Ring
p
)
.
[
(
(
(
L
`1_3
)
|^
3
)
+
(
(
a
*
(
L
`1_3
)
)
*
(
(
L
`3_3
)
|^
2
)
)
)
,
(
b
*
(
(
L
`3_3
)
|^
3
)
)
]
is
set
(
(
(
L
`2_3
)
|^
2
)
*
(
L
`3_3
)
)
-
(
(
(
(
L
`1_3
)
|^
3
)
+
(
(
a
*
(
L
`1_3
)
)
*
(
(
L
`3_3
)
|^
2
)
)
)
+
(
b
*
(
(
L
`3_3
)
|^
3
)
)
)
is
left_add-cancelable
right_add-cancelable
add-cancelable
right_complementable
Element
of the
carrier
of
(
INT.Ring
p
)
-
(
(
(
(
L
`1_3
)
|^
3
)
+
(
(
a
*
(
L
`1_3
)
)
*
(
(
L
`3_3
)
|^
2
)
)
)
+
(
b
*
(
(
L
`3_3
)
|^
3
)
)
)
is
left_add-cancelable
right_add-cancelable
add-cancelable
right_complementable
Element
of the
carrier
of
(
INT.Ring
p
)
(
(
(
L
`2_3
)
|^
2
)
*
(
L
`3_3
)
)
+
(
-
(
(
(
(
L
`1_3
)
|^
3
)
+
(
(
a
*
(
L
`1_3
)
)
*
(
(
L
`3_3
)
|^
2
)
)
)
+
(
b
*
(
(
L
`3_3
)
|^
3
)
)
)
)
is
left_add-cancelable
right_add-cancelable
add-cancelable
right_complementable
Element
of the
carrier
of
(
INT.Ring
p
)
the
addF
of
(
INT.Ring
p
)
.
(
(
(
(
L
`2_3
)
|^
2
)
*
(
L
`3_3
)
)
,
(
-
(
(
(
(
L
`1_3
)
|^
3
)
+
(
(
a
*
(
L
`1_3
)
)
*
(
(
L
`3_3
)
|^
2
)
)
)
+
(
b
*
(
(
L
`3_3
)
|^
3
)
)
)
)
) is
left_add-cancelable
right_add-cancelable
add-cancelable
right_complementable
Element
of the
carrier
of
(
INT.Ring
p
)
[
(
(
(
L
`2_3
)
|^
2
)
*
(
L
`3_3
)
)
,
(
-
(
(
(
(
L
`1_3
)
|^
3
)
+
(
(
a
*
(
L
`1_3
)
)
*
(
(
L
`3_3
)
|^
2
)
)
)
+
(
b
*
(
(
L
`3_3
)
|^
3
)
)
)
)
]
is
V26
()
set
{
(
(
(
L
`2_3
)
|^
2
)
*
(
L
`3_3
)
)
,
(
-
(
(
(
(
L
`1_3
)
|^
3
)
+
(
(
a
*
(
L
`1_3
)
)
*
(
(
L
`3_3
)
|^
2
)
)
)
+
(
b
*
(
(
L
`3_3
)
|^
3
)
)
)
)
}
is non
empty
finite
set
{
(
(
(
L
`2_3
)
|^
2
)
*
(
L
`3_3
)
)
}
is non
empty
trivial
finite
1
-element
set
{
{
(
(
(
L
`2_3
)
|^
2
)
*
(
L
`3_3
)
)
,
(
-
(
(
(
(
L
`1_3
)
|^
3
)
+
(
(
a
*
(
L
`1_3
)
)
*
(
(
L
`3_3
)
|^
2
)
)
)
+
(
b
*
(
(
L
`3_3
)
|^
3
)
)
)
)
}
,
{
(
(
(
L
`2_3
)
|^
2
)
*
(
L
`3_3
)
)
}
}
is non
empty
finite
V49
()
set
the
addF
of
(
INT.Ring
p
)
.
[
(
(
(
L
`2_3
)
|^
2
)
*
(
L
`3_3
)
)
,
(
-
(
(
(
(
L
`1_3
)
|^
3
)
+
(
(
a
*
(
L
`1_3
)
)
*
(
(
L
`3_3
)
|^
2
)
)
)
+
(
b
*
(
(
L
`3_3
)
|^
3
)
)
)
)
]
is
set
(
0.
(
INT.Ring
p
)
)
-
(
(
(
(
L
`1_3
)
|^
3
)
+
(
(
a
*
(
L
`1_3
)
)
*
(
(
L
`3_3
)
|^
2
)
)
)
+
(
b
*
(
(
L
`3_3
)
|^
3
)
)
)
is
left_add-cancelable
right_add-cancelable
add-cancelable
right_complementable
Element
of the
carrier
of
(
INT.Ring
p
)
(
0.
(
INT.Ring
p
)
)
+
(
-
(
(
(
(
L
`1_3
)
|^
3
)
+
(
(
a
*
(
L
`1_3
)
)
*
(
(
L
`3_3
)
|^
2
)
)
)
+
(
b
*
(
(
L
`3_3
)
|^
3
)
)
)
)
is
left_add-cancelable
right_add-cancelable
add-cancelable
right_complementable
Element
of the
carrier
of
(
INT.Ring
p
)
the
addF
of
(
INT.Ring
p
)
.
(
(
0.
(
INT.Ring
p
)
)
,
(
-
(
(
(
(
L
`1_3
)
|^
3
)
+
(
(
a
*
(
L
`1_3
)
)
*
(
(
L
`3_3
)
|^
2
)
)
)
+
(
b
*
(
(
L
`3_3
)
|^
3
)
)
)
)
) is
left_add-cancelable
right_add-cancelable
add-cancelable
right_complementable
Element
of the
carrier
of
(
INT.Ring
p
)
[
(
0.
(
INT.Ring
p
)
)
,
(
-
(
(
(
(
L
`1_3
)
|^
3
)
+
(
(
a
*
(
L
`1_3
)
)
*
(
(
L
`3_3
)
|^
2
)
)
)
+
(
b
*
(
(
L
`3_3
)
|^
3
)
)
)
)
]
is
V26
()
set
{
(
0.
(
INT.Ring
p
)
)
,
(
-
(
(
(
(
L
`1_3
)
|^
3
)
+
(
(
a
*
(
L
`1_3
)
)
*
(
(
L
`3_3
)
|^
2
)
)
)
+
(
b
*
(
(
L
`3_3
)
|^
3
)
)
)
)
}
is non
empty
finite
set
{
{
(
0.
(
INT.Ring
p
)
)
,
(
-
(
(
(
(
L
`1_3
)
|^
3
)
+
(
(
a
*
(
L
`1_3
)
)
*
(
(
L
`3_3
)
|^
2
)
)
)
+
(
b
*
(
(
L
`3_3
)
|^
3
)
)
)
)
}
,
{
(
0.
(
INT.Ring
p
)
)
}
}
is non
empty
finite
V49
()
set
the
addF
of
(
INT.Ring
p
)
.
[
(
0.
(
INT.Ring
p
)
)
,
(
-
(
(
(
(
L
`1_3
)
|^
3
)
+
(
(
a
*
(
L
`1_3
)
)
*
(
(
L
`3_3
)
|^
2
)
)
)
+
(
b
*
(
(
L
`3_3
)
|^
3
)
)
)
)
]
is
set
(
(
L
`1_3
)
|^
3
)
+
(
0.
(
INT.Ring
p
)
)
is
left_add-cancelable
right_add-cancelable
add-cancelable
right_complementable
Element
of the
carrier
of
(
INT.Ring
p
)
the
addF
of
(
INT.Ring
p
)
.
(
(
(
L
`1_3
)
|^
3
)
,
(
0.
(
INT.Ring
p
)
)
) is
left_add-cancelable
right_add-cancelable
add-cancelable
right_complementable
Element
of the
carrier
of
(
INT.Ring
p
)
[
(
(
L
`1_3
)
|^
3
)
,
(
0.
(
INT.Ring
p
)
)
]
is
V26
()
set
{
(
(
L
`1_3
)
|^
3
)
,
(
0.
(
INT.Ring
p
)
)
}
is non
empty
finite
set
{
{
(
(
L
`1_3
)
|^
3
)
,
(
0.
(
INT.Ring
p
)
)
}
,
{
(
(
L
`1_3
)
|^
3
)
}
}
is non
empty
finite
V49
()
set
the
addF
of
(
INT.Ring
p
)
.
[
(
(
L
`1_3
)
|^
3
)
,
(
0.
(
INT.Ring
p
)
)
]
is
set
(
(
(
L
`1_3
)
|^
3
)
+
(
0.
(
INT.Ring
p
)
)
)
+
(
b
*
(
(
L
`3_3
)
|^
3
)
)
is
left_add-cancelable
right_add-cancelable
add-cancelable
right_complementable
Element
of the
carrier
of
(
INT.Ring
p
)
the
addF
of
(
INT.Ring
p
)
.
(
(
(
(
L
`1_3
)
|^
3
)
+
(
0.
(
INT.Ring
p
)
)
)
,
(
b
*
(
(
L
`3_3
)
|^
3
)
)
) is
left_add-cancelable
right_add-cancelable
add-cancelable
right_complementable
Element
of the
carrier
of
(
INT.Ring
p
)
[
(
(
(
L
`1_3
)
|^
3
)
+
(
0.
(
INT.Ring
p
)
)
)
,
(
b
*
(
(
L
`3_3
)
|^
3
)
)
]
is
V26
()
set
{
(
(
(
L
`1_3
)
|^
3
)
+
(
0.
(
INT.Ring
p
)
)
)
,
(
b
*
(
(
L
`3_3
)
|^
3
)
)
}
is non
empty
finite
set
{
(
(
(
L
`1_3
)
|^
3
)
+
(
0.
(
INT.Ring
p
)
)
)
}
is non
empty
trivial
finite
1
-element
set
{
{
(
(
(
L
`1_3
)
|^
3
)
+
(
0.
(
INT.Ring
p
)
)
)
,
(
b
*
(
(
L
`3_3
)
|^
3
)
)
}
,
{
(
(
(
L
`1_3
)
|^
3
)
+
(
0.
(
INT.Ring
p
)
)
)
}
}
is non
empty
finite
V49
()
set
the
addF
of
(
INT.Ring
p
)
.
[
(
(
(
L
`1_3
)
|^
3
)
+
(
0.
(
INT.Ring
p
)
)
)
,
(
b
*
(
(
L
`3_3
)
|^
3
)
)
]
is
set
(
0.
(
INT.Ring
p
)
)
-
(
(
(
(
L
`1_3
)
|^
3
)
+
(
0.
(
INT.Ring
p
)
)
)
+
(
b
*
(
(
L
`3_3
)
|^
3
)
)
)
is
left_add-cancelable
right_add-cancelable
add-cancelable
right_complementable
Element
of the
carrier
of
(
INT.Ring
p
)
-
(
(
(
(
L
`1_3
)
|^
3
)
+
(
0.
(
INT.Ring
p
)
)
)
+
(
b
*
(
(
L
`3_3
)
|^
3
)
)
)
is
left_add-cancelable
right_add-cancelable
add-cancelable
right_complementable
Element
of the
carrier
of
(
INT.Ring
p
)
(
0.
(
INT.Ring
p
)
)
+
(
-
(
(
(
(
L
`1_3
)
|^
3
)
+
(
0.
(
INT.Ring
p
)
)
)
+
(
b
*
(
(
L
`3_3
)
|^
3
)
)
)
)
is
left_add-cancelable
right_add-cancelable
add-cancelable
right_complementable
Element
of the
carrier
of
(
INT.Ring
p
)
the
addF
of
(
INT.Ring
p
)
.
(
(
0.
(
INT.Ring
p
)
)
,
(
-
(
(
(
(
L
`1_3
)
|^
3
)
+
(
0.
(
INT.Ring
p
)
)
)
+
(
b
*
(
(
L
`3_3
)
|^
3
)
)
)
)
) is
left_add-cancelable
right_add-cancelable
add-cancelable
right_complementable
Element
of the
carrier
of
(
INT.Ring
p
)
[
(
0.
(
INT.Ring
p
)
)
,
(
-
(
(
(
(
L
`1_3
)
|^
3
)
+
(
0.
(
INT.Ring
p
)
)
)
+
(
b
*
(
(
L
`3_3
)
|^
3
)
)
)
)
]
is
V26
()
set
{
(
0.
(
INT.Ring
p
)
)
,
(
-
(
(
(
(
L
`1_3
)
|^
3
)
+
(
0.
(
INT.Ring
p
)
)
)
+
(
b
*
(
(
L
`3_3
)
|^
3
)
)
)
)
}
is non
empty
finite
set
{
{
(
0.
(
INT.Ring
p
)
)
,
(
-
(
(
(
(
L
`1_3
)
|^
3
)
+
(
0.
(
INT.Ring
p
)
)
)
+
(
b
*
(
(
L
`3_3
)
|^
3
)
)
)
)
}
,
{
(
0.
(
INT.Ring
p
)
)
}
}
is non
empty
finite
V49
()
set
the
addF
of
(
INT.Ring
p
)
.
[
(
0.
(
INT.Ring
p
)
)
,
(
-
(
(
(
(
L
`1_3
)
|^
3
)
+
(
0.
(
INT.Ring
p
)
)
)
+
(
b
*
(
(
L
`3_3
)
|^
3
)
)
)
)
]
is
set
(
(
(
L
`1_3
)
|^
3
)
+
(
0.
(
INT.Ring
p
)
)
)
+
(
0.
(
INT.Ring
p
)
)
is
left_add-cancelable
right_add-cancelable
add-cancelable
right_complementable
Element
of the
carrier
of
(
INT.Ring
p
)
the
addF
of
(
INT.Ring
p
)
.
(
(
(
(
L
`1_3
)
|^
3
)
+
(
0.
(
INT.Ring
p
)
)
)
,
(
0.
(
INT.Ring
p
)
)
) is
left_add-cancelable
right_add-cancelable
add-cancelable
right_complementable
Element
of the
carrier
of
(
INT.Ring
p
)
[
(
(
(
L
`1_3
)
|^
3
)
+
(
0.
(
INT.Ring
p
)
)
)
,
(
0.
(
INT.Ring
p
)
)
]
is
V26
()
set
{
(
(
(
L
`1_3
)
|^
3
)
+
(
0.
(
INT.Ring
p
)
)
)
,
(
0.
(
INT.Ring
p
)
)
}
is non
empty
finite
set
{
{
(
(
(
L
`1_3
)
|^
3
)
+
(
0.
(
INT.Ring
p
)
)
)
,
(
0.
(
INT.Ring
p
)
)
}
,
{
(
(
(
L
`1_3
)
|^
3
)
+
(
0.
(
INT.Ring
p
)
)
)
}
}
is non
empty
finite
V49
()
set
the
addF
of
(
INT.Ring
p
)
.
[
(
(
(
L
`1_3
)
|^
3
)
+
(
0.
(
INT.Ring
p
)
)
)
,
(
0.
(
INT.Ring
p
)
)
]
is
set
(
0.
(
INT.Ring
p
)
)
-
(
(
(
(
L
`1_3
)
|^
3
)
+
(
0.
(
INT.Ring
p
)
)
)
+
(
0.
(
INT.Ring
p
)
)
)
is
left_add-cancelable
right_add-cancelable
add-cancelable
right_complementable
Element
of the
carrier
of
(
INT.Ring
p
)
-
(
(
(
(
L
`1_3
)
|^
3
)
+
(
0.
(
INT.Ring
p
)
)
)
+
(
0.
(
INT.Ring
p
)
)
)
is
left_add-cancelable
right_add-cancelable
add-cancelable
right_complementable
Element
of the
carrier
of
(
INT.Ring
p
)
(
0.
(
INT.Ring
p
)
)
+
(
-
(
(
(
(
L
`1_3
)
|^
3
)
+
(
0.
(
INT.Ring
p
)
)
)
+
(
0.
(
INT.Ring
p
)
)
)
)
is
left_add-cancelable
right_add-cancelable
add-cancelable
right_complementable
Element
of the
carrier
of
(
INT.Ring
p
)
the
addF
of
(
INT.Ring
p
)
.
(
(
0.
(
INT.Ring
p
)
)
,
(
-
(
(
(
(
L
`1_3
)
|^
3
)
+
(
0.
(
INT.Ring
p
)
)
)
+
(
0.
(
INT.Ring
p
)
)
)
)
) is
left_add-cancelable
right_add-cancelable
add-cancelable
right_complementable
Element
of the
carrier
of
(
INT.Ring
p
)
[
(
0.
(
INT.Ring
p
)
)
,
(
-
(
(
(
(
L
`1_3
)
|^
3
)
+
(
0.
(
INT.Ring
p
)
)
)
+
(
0.
(
INT.Ring
p
)
)
)
)
]
is
V26
()
set
{
(
0.
(
INT.Ring
p
)
)
,
(
-
(
(
(
(
L
`1_3
)
|^
3
)
+
(
0.
(
INT.Ring
p
)
)
)
+
(
0.
(
INT.Ring
p
)
)
)
)
}
is non
empty
finite
set
{
{
(
0.
(
INT.Ring
p
)
)
,
(
-
(
(
(
(
L
`1_3
)
|^
3
)
+
(
0.
(
INT.Ring
p
)
)
)
+
(
0.
(
INT.Ring
p
)
)
)
)
}
,
{
(
0.
(
INT.Ring
p
)
)
}
}
is non
empty
finite
V49
()
set
the
addF
of
(
INT.Ring
p
)
.
[
(
0.
(
INT.Ring
p
)
)
,
(
-
(
(
(
(
L
`1_3
)
|^
3
)
+
(
0.
(
INT.Ring
p
)
)
)
+
(
0.
(
INT.Ring
p
)
)
)
)
]
is
set
(
0.
(
INT.Ring
p
)
)
-
(
(
(
L
`1_3
)
|^
3
)
+
(
0.
(
INT.Ring
p
)
)
)
is
left_add-cancelable
right_add-cancelable
add-cancelable
right_complementable
Element
of the
carrier
of
(
INT.Ring
p
)
-
(
(
(
L
`1_3
)
|^
3
)
+
(
0.
(
INT.Ring
p
)
)
)
is
left_add-cancelable
right_add-cancelable
add-cancelable
right_complementable
Element
of the
carrier
of
(
INT.Ring
p
)
(
0.
(
INT.Ring
p
)
)
+
(
-
(
(
(
L
`1_3
)
|^
3
)
+
(
0.
(
INT.Ring
p
)
)
)
)
is
left_add-cancelable
right_add-cancelable
add-cancelable
right_complementable
Element
of the
carrier
of
(
INT.Ring
p
)
the
addF
of
(
INT.Ring
p
)
.
(
(
0.
(
INT.Ring
p
)
)
,
(
-
(
(
(
L
`1_3
)
|^
3
)
+
(
0.
(
INT.Ring
p
)
)
)
)
) is
left_add-cancelable
right_add-cancelable
add-cancelable
right_complementable
Element
of the
carrier
of
(
INT.Ring
p
)
[
(
0.
(
INT.Ring
p
)
)
,
(
-
(
(
(
L
`1_3
)
|^
3
)
+
(
0.
(
INT.Ring
p
)
)
)
)
]
is
V26
()
set
{
(
0.
(
INT.Ring
p
)
)
,
(
-
(
(
(
L
`1_3
)
|^
3
)
+
(
0.
(
INT.Ring
p
)
)
)
)
}
is non
empty
finite
set
{
{
(
0.
(
INT.Ring
p
)
)
,
(
-
(
(
(
L
`1_3
)
|^
3
)
+
(
0.
(
INT.Ring
p
)
)
)
)
}
,
{
(
0.
(
INT.Ring
p
)
)
}
}
is non
empty
finite
V49
()
set
the
addF
of
(
INT.Ring
p
)
.
[
(
0.
(
INT.Ring
p
)
)
,
(
-
(
(
(
L
`1_3
)
|^
3
)
+
(
0.
(
INT.Ring
p
)
)
)
)
]
is
set
(
0.
(
INT.Ring
p
)
)
-
(
(
L
`1_3
)
|^
3
)
is
left_add-cancelable
right_add-cancelable
add-cancelable
right_complementable
Element
of the
carrier
of
(
INT.Ring
p
)
-
(
(
L
`1_3
)
|^
3
)
is
left_add-cancelable
right_add-cancelable
add-cancelable
right_complementable
Element
of the
carrier
of
(
INT.Ring
p
)
(
0.
(
INT.Ring
p
)
)
+
(
-
(
(
L
`1_3
)
|^
3
)
)
is
left_add-cancelable
right_add-cancelable
add-cancelable
right_complementable
Element
of the
carrier
of
(
INT.Ring
p
)
the
addF
of
(
INT.Ring
p
)
.
(
(
0.
(
INT.Ring
p
)
)
,
(
-
(
(
L
`1_3
)
|^
3
)
)
) is
left_add-cancelable
right_add-cancelable
add-cancelable
right_complementable
Element
of the
carrier
of
(
INT.Ring
p
)
[
(
0.
(
INT.Ring
p
)
)
,
(
-
(
(
L
`1_3
)
|^
3
)
)
]
is
V26
()
set
{
(
0.
(
INT.Ring
p
)
)
,
(
-
(
(
L
`1_3
)
|^
3
)
)
}
is non
empty
finite
set
{
{
(
0.
(
INT.Ring
p
)
)
,
(
-
(
(
L
`1_3
)
|^
3
)
)
}
,
{
(
0.
(
INT.Ring
p
)
)
}
}
is non
empty
finite
V49
()
set
the
addF
of
(
INT.Ring
p
)
.
[
(
0.
(
INT.Ring
p
)
)
,
(
-
(
(
L
`1_3
)
|^
3
)
)
]
is
set
pp
is
Element
of (
(
INT.Ring
p
)
)
(
p
,
a
,
b
)
.
pp
is
left_add-cancelable
right_add-cancelable
add-cancelable
right_complementable
Element
of the
carrier
of
(
INT.Ring
p
)
(
(
L
`1_3
)
|^
3
)
+
(
-
(
(
L
`1_3
)
|^
3
)
)
is
left_add-cancelable
right_add-cancelable
add-cancelable
right_complementable
Element
of the
carrier
of
(
INT.Ring
p
)
the
addF
of
(
INT.Ring
p
)
.
(
(
(
L
`1_3
)
|^
3
)
,
(
-
(
(
L
`1_3
)
|^
3
)
)
) is
left_add-cancelable
right_add-cancelable
add-cancelable
right_complementable
Element
of the
carrier
of
(
INT.Ring
p
)
[
(
(
L
`1_3
)
|^
3
)
,
(
-
(
(
L
`1_3
)
|^
3
)
)
]
is
V26
()
set
{
(
(
L
`1_3
)
|^
3
)
,
(
-
(
(
L
`1_3
)
|^
3
)
)
}
is non
empty
finite
set
{
{
(
(
L
`1_3
)
|^
3
)
,
(
-
(
(
L
`1_3
)
|^
3
)
)
}
,
{
(
(
L
`1_3
)
|^
3
)
}
}
is non
empty
finite
V49
()
set
the
addF
of
(
INT.Ring
p
)
.
[
(
(
L
`1_3
)
|^
3
)
,
(
-
(
(
L
`1_3
)
|^
3
)
)
]
is
set
(
L
`1_3
)
*
(
L
`1_3
)
is
left_add-cancelable
right_add-cancelable
add-cancelable
right_complementable
Element
of the
carrier
of
(
INT.Ring
p
)
the
multF
of
(
INT.Ring
p
)
.
(
(
L
`1_3
)
,
(
L
`1_3
)
) is
left_add-cancelable
right_add-cancelable
add-cancelable
right_complementable
Element
of the
carrier
of
(
INT.Ring
p
)
[
(
L
`1_3
)
,
(
L
`1_3
)
]
is
V26
()
set
{
(
L
`1_3
)
,
(
L
`1_3
)
}
is non
empty
finite
set
{
{
(
L
`1_3
)
,
(
L
`1_3
)
}
,
{
(
L
`1_3
)
}
}
is non
empty
finite
V49
()
set
the
multF
of
(
INT.Ring
p
)
.
[
(
L
`1_3
)
,
(
L
`1_3
)
]
is
set
(
L
`1_3
)
|^
1 is
left_add-cancelable
right_add-cancelable
add-cancelable
right_complementable
Element
of the
carrier
of
(
INT.Ring
p
)
(
power
(
INT.Ring
p
)
)
.
(
(
L
`1_3
)
,1) is
set
[
(
L
`1_3
)
,1
]
is
V26
()
set
{
(
L
`1_3
)
,1
}
is non
empty
finite
set
{
{
(
L
`1_3
)
,1
}
,
{
(
L
`1_3
)
}
}
is non
empty
finite
V49
()
set
(
power
(
INT.Ring
p
)
)
.
[
(
L
`1_3
)
,1
]
is
set
(
(
L
`1_3
)
|^
1
)
*
(
L
`1_3
)
is
left_add-cancelable
right_add-cancelable
add-cancelable
right_complementable
Element
of the
carrier
of
(
INT.Ring
p
)
the
multF
of
(
INT.Ring
p
)
.
(
(
(
L
`1_3
)
|^
1
)
,
(
L
`1_3
)
) is
left_add-cancelable
right_add-cancelable
add-cancelable
right_complementable
Element
of the
carrier
of
(
INT.Ring
p
)
[
(
(
L
`1_3
)
|^
1
)
,
(
L
`1_3
)
]
is
V26
()
set
{
(
(
L
`1_3
)
|^
1
)
,
(
L
`1_3
)
}
is non
empty
finite
set
{
(
(
L
`1_3
)
|^
1
)
}
is non
empty
trivial
finite
1
-element
set
{
{
(
(
L
`1_3
)
|^
1
)
,
(
L
`1_3
)
}
,
{
(
(
L
`1_3
)
|^
1
)
}
}
is non
empty
finite
V49
()
set
the
multF
of
(
INT.Ring
p
)
.
[
(
(
L
`1_3
)
|^
1
)
,
(
L
`1_3
)
]
is
set
(
L
`1_3
)
|^
(
1
+
1
)
is
left_add-cancelable
right_add-cancelable
add-cancelable
right_complementable
Element
of the
carrier
of
(
INT.Ring
p
)
(
power
(
INT.Ring
p
)
)
.
(
(
L
`1_3
)
,
(
1
+
1
)
) is
set
[
(
L
`1_3
)
,
(
1
+
1
)
]
is
V26
()
set
{
(
L
`1_3
)
,
(
1
+
1
)
}
is non
empty
finite
set
{
{
(
L
`1_3
)
,
(
1
+
1
)
}
,
{
(
L
`1_3
)
}
}
is non
empty
finite
V49
()
set
(
power
(
INT.Ring
p
)
)
.
[
(
L
`1_3
)
,
(
1
+
1
)
]
is
set
(
L
`1_3
)
|^
2 is
left_add-cancelable
right_add-cancelable
add-cancelable
right_complementable
Element
of the
carrier
of
(
INT.Ring
p
)
(
power
(
INT.Ring
p
)
)
.
(
(
L
`1_3
)
,2) is
set
[
(
L
`1_3
)
,2
]
is
V26
()
set
{
(
L
`1_3
)
,2
}
is non
empty
finite
set
{
{
(
L
`1_3
)
,2
}
,
{
(
L
`1_3
)
}
}
is non
empty
finite
V49
()
set
(
power
(
INT.Ring
p
)
)
.
[
(
L
`1_3
)
,2
]
is
set
(
(
L
`1_3
)
|^
2
)
*
(
L
`1_3
)
is
left_add-cancelable
right_add-cancelable
add-cancelable
right_complementable
Element
of the
carrier
of
(
INT.Ring
p
)
the
multF
of
(
INT.Ring
p
)
.
(
(
(
L
`1_3
)
|^
2
)
,
(
L
`1_3
)
) is
left_add-cancelable
right_add-cancelable
add-cancelable
right_complementable
Element
of the
carrier
of
(
INT.Ring
p
)
[
(
(
L
`1_3
)
|^
2
)
,
(
L
`1_3
)
]
is
V26
()
set
{
(
(
L
`1_3
)
|^
2
)
,
(
L
`1_3
)
}
is non
empty
finite
set
{
(
(
L
`1_3
)
|^
2
)
}
is non
empty
trivial
finite
1
-element
set
{
{
(
(
L
`1_3
)
|^
2
)
,
(
L
`1_3
)
}
,
{
(
(
L
`1_3
)
|^
2
)
}
}
is non
empty
finite
V49
()
set
the
multF
of
(
INT.Ring
p
)
.
[
(
(
L
`1_3
)
|^
2
)
,
(
L
`1_3
)
]
is
set
(
L
`1_3
)
|^
(
2
+
1
)
is
left_add-cancelable
right_add-cancelable
add-cancelable
right_complementable
Element
of the
carrier
of
(
INT.Ring
p
)
(
power
(
INT.Ring
p
)
)
.
(
(
L
`1_3
)
,
(
2
+
1
)
) is
set
[
(
L
`1_3
)
,
(
2
+
1
)
]
is
V26
()
set
{
(
L
`1_3
)
,
(
2
+
1
)
}
is non
empty
finite
set
{
{
(
L
`1_3
)
,
(
2
+
1
)
}
,
{
(
L
`1_3
)
}
}
is non
empty
finite
V49
()
set
(
power
(
INT.Ring
p
)
)
.
[
(
L
`1_3
)
,
(
2
+
1
)
]
is
set
[
(
L
`1_3
)
,
(
L
`2_3
)
,
(
L
`3_3
)
]
is
V26
()
V27
()
Element
of
[:
the
carrier
of
(
INT.Ring
p
)
, the
carrier
of
(
INT.Ring
p
)
, the
carrier
of
(
INT.Ring
p
)
:]
[
(
L
`1_3
)
,
(
L
`2_3
)
]
is
V26
()
set
{
(
L
`1_3
)
,
(
L
`2_3
)
}
is non
empty
finite
set
{
{
(
L
`1_3
)
,
(
L
`2_3
)
}
,
{
(
L
`1_3
)
}
}
is non
empty
finite
V49
()
set
[
[
(
L
`1_3
)
,
(
L
`2_3
)
]
,
(
L
`3_3
)
]
is
V26
()
set
{
[
(
L
`1_3
)
,
(
L
`2_3
)
]
,
(
L
`3_3
)
}
is non
empty
finite
set
{
[
(
L
`1_3
)
,
(
L
`2_3
)
]
}
is non
empty
trivial
finite
1
-element
set
{
{
[
(
L
`1_3
)
,
(
L
`2_3
)
]
,
(
L
`3_3
)
}
,
{
[
(
L
`1_3
)
,
(
L
`2_3
)
]
}
}
is non
empty
finite
V49
()
set
[:
the
carrier
of
(
INT.Ring
p
)
, the
carrier
of
(
INT.Ring
p
)
, the
carrier
of
(
INT.Ring
p
)
:]
\
{
[
0
,
0
,
0
]
}
is
finite
Element
of
bool
[:
the
carrier
of
(
INT.Ring
p
)
, the
carrier
of
(
INT.Ring
p
)
, the
carrier
of
(
INT.Ring
p
)
:]
(
(
L
`2_3
)
"
)
*
(
L
`2_3
)
is
left_add-cancelable
right_add-cancelable
add-cancelable
right_complementable
Element
of the
carrier
of
(
INT.Ring
p
)
the
multF
of
(
INT.Ring
p
)
.
(
(
(
L
`2_3
)
"
)
,
(
L
`2_3
)
) is
left_add-cancelable
right_add-cancelable
add-cancelable
right_complementable
Element
of the
carrier
of
(
INT.Ring
p
)
[
(
(
L
`2_3
)
"
)
,
(
L
`2_3
)
]
is
V26
()
set
{
(
(
L
`2_3
)
"
)
,
(
L
`2_3
)
}
is non
empty
finite
set
{
(
(
L
`2_3
)
"
)
}
is non
empty
trivial
finite
1
-element
set
{
{
(
(
L
`2_3
)
"
)
,
(
L
`2_3
)
}
,
{
(
(
L
`2_3
)
"
)
}
}
is non
empty
finite
V49
()
set
the
multF
of
(
INT.Ring
p
)
.
[
(
(
L
`2_3
)
"
)
,
(
L
`2_3
)
]
is
set
1_
(
INT.Ring
p
)
is
left_add-cancelable
right_add-cancelable
add-cancelable
right_complementable
Element
of the
carrier
of
(
INT.Ring
p
)
1.
(
INT.Ring
p
)
is
V61
(
INT.Ring
p
)
V61
(
INT.Ring
p
)
left_add-cancelable
left_add-cancelable
right_add-cancelable
right_add-cancelable
add-cancelable
add-cancelable
right_complementable
right_complementable
(
p
)
Element
of the
carrier
of
(
INT.Ring
p
)
the
OneF
of
(
INT.Ring
p
)
is
left_add-cancelable
right_add-cancelable
add-cancelable
right_complementable
Element
of the
carrier
of
(
INT.Ring
p
)
(
(
L
`2_3
)
"
)
*
(
L
`1_3
)
is
left_add-cancelable
right_add-cancelable
add-cancelable
right_complementable
Element
of the
carrier
of
(
INT.Ring
p
)
the
multF
of
(
INT.Ring
p
)
.
(
(
(
L
`2_3
)
"
)
,
(
L
`1_3
)
) is
left_add-cancelable
right_add-cancelable
add-cancelable
right_complementable
Element
of the
carrier
of
(
INT.Ring
p
)
[
(
(
L
`2_3
)
"
)
,
(
L
`1_3
)
]
is
V26
()
set
{
(
(
L
`2_3
)
"
)
,
(
L
`1_3
)
}
is non
empty
finite
set
{
(
(
L
`2_3
)
"
)
}
is non
empty
trivial
finite
1
-element
set
{
{
(
(
L
`2_3
)
"
)
,
(
L
`1_3
)
}
,
{
(
(
L
`2_3
)
"
)
}
}
is non
empty
finite
V49
()
set
the
multF
of
(
INT.Ring
p
)
.
[
(
(
L
`2_3
)
"
)
,
(
L
`1_3
)
]
is
set
(
(
L
`2_3
)
"
)
*
(
L
`2_3
)
is
left_add-cancelable
right_add-cancelable
add-cancelable
right_complementable
Element
of the
carrier
of
(
INT.Ring
p
)
the
multF
of
(
INT.Ring
p
)
.
(
(
(
L
`2_3
)
"
)
,
(
L
`2_3
)
) is
left_add-cancelable
right_add-cancelable
add-cancelable
right_complementable
Element
of the
carrier
of
(
INT.Ring
p
)
[
(
(
L
`2_3
)
"
)
,
(
L
`2_3
)
]
is
V26
()
set
{
(
(
L
`2_3
)
"
)
,
(
L
`2_3
)
}
is non
empty
finite
set
{
{
(
(
L
`2_3
)
"
)
,
(
L
`2_3
)
}
,
{
(
(
L
`2_3
)
"
)
}
}
is non
empty
finite
V49
()
set
the
multF
of
(
INT.Ring
p
)
.
[
(
(
L
`2_3
)
"
)
,
(
L
`2_3
)
]
is
set
(
(
L
`2_3
)
"
)
*
(
L
`3_3
)
is
left_add-cancelable
right_add-cancelable
add-cancelable
right_complementable
Element
of the
carrier
of
(
INT.Ring
p
)
the
multF
of
(
INT.Ring
p
)
.
(
(
(
L
`2_3
)
"
)
,
(
L
`3_3
)
) is
left_add-cancelable
right_add-cancelable
add-cancelable
right_complementable
Element
of the
carrier
of
(
INT.Ring
p
)
[
(
(
L
`2_3
)
"
)
,
(
L
`3_3
)
]
is
V26
()
set
{
(
(
L
`2_3
)
"
)
,
(
L
`3_3
)
}
is non
empty
finite
set
{
{
(
(
L
`2_3
)
"
)
,
(
L
`3_3
)
}
,
{
(
(
L
`2_3
)
"
)
}
}
is non
empty
finite
V49
()
set
the
multF
of
(
INT.Ring
p
)
.
[
(
(
L
`2_3
)
"
)
,
(
L
`3_3
)
]
is
set
[
(
(
(
L
`2_3
)
"
)
*
(
L
`1_3
)
)
,
(
(
(
L
`2_3
)
"
)
*
(
L
`2_3
)
)
,
(
(
(
L
`2_3
)
"
)
*
(
L
`3_3
)
)
]
is
V26
()
V27
()
Element
of
[:
the
carrier
of
(
INT.Ring
p
)
, the
carrier
of
(
INT.Ring
p
)
, the
carrier
of
(
INT.Ring
p
)
:]
[
(
(
(
L
`2_3
)
"
)
*
(
L
`1_3
)
)
,
(
(
(
L
`2_3
)
"
)
*
(
L
`2_3
)
)
]
is
V26
()
set
{
(
(
(
L
`2_3
)
"
)
*
(
L
`1_3
)
)
,
(
(
(
L
`2_3
)
"
)
*
(
L
`2_3
)
)
}
is non
empty
finite
set
{
(
(
(
L
`2_3
)
"
)
*
(
L
`1_3
)
)
}
is non
empty
trivial
finite
1
-element
set
{
{
(
(
(
L
`2_3
)
"
)
*
(
L
`1_3
)
)
,
(
(
(
L
`2_3
)
"
)
*
(
L
`2_3
)
)
}
,
{
(
(
(
L
`2_3
)
"
)
*
(
L
`1_3
)
)
}
}
is non
empty
finite
V49
()
set
[
[
(
(
(
L
`2_3
)
"
)
*
(
L
`1_3
)
)
,
(
(
(
L
`2_3
)
"
)
*
(
L
`2_3
)
)
]
,
(
(
(
L
`2_3
)
"
)
*
(
L
`3_3
)
)
]
is
V26
()
set
{
[
(
(
(
L
`2_3
)
"
)
*
(
L
`1_3
)
)
,
(
(
(
L
`2_3
)
"
)
*
(
L
`2_3
)
)
]
,
(
(
(
L
`2_3
)
"
)
*
(
L
`3_3
)
)
}
is non
empty
finite
set
{
[
(
(
(
L
`2_3
)
"
)
*
(
L
`1_3
)
)
,
(
(
(
L
`2_3
)
"
)
*
(
L
`2_3
)
)
]
}
is non
empty
trivial
finite
1
-element
set
{
{
[
(
(
(
L
`2_3
)
"
)
*
(
L
`1_3
)
)
,
(
(
(
L
`2_3
)
"
)
*
(
L
`2_3
)
)
]
,
(
(
(
L
`2_3
)
"
)
*
(
L
`3_3
)
)
}
,
{
[
(
(
(
L
`2_3
)
"
)
*
(
L
`1_3
)
)
,
(
(
(
L
`2_3
)
"
)
*
(
L
`2_3
)
)
]
}
}
is non
empty
finite
V49
()
set
pp
is
Element
of
[:
the
carrier
of
(
INT.Ring
p
)
, the
carrier
of
(
INT.Ring
p
)
, the
carrier
of
(
INT.Ring
p
)
:]
pp
`1_3
is
left_add-cancelable
right_add-cancelable
add-cancelable
right_complementable
Element
of the
carrier
of
(
INT.Ring
p
)
pp
`1
is
set
(
pp
`1
)
`1
is
set
pp
`2_3
is
left_add-cancelable
right_add-cancelable
add-cancelable
right_complementable
Element
of the
carrier
of
(
INT.Ring
p
)
(
pp
`1
)
`2
is
set
pp
`3_3
is
left_add-cancelable
right_add-cancelable
add-cancelable
right_complementable
Element
of the
carrier
of
(
INT.Ring
p
)
FF
is
Element
of (
(
INT.Ring
p
)
)
(
p
,
a
,
b
)
.
FF
is
left_add-cancelable
right_add-cancelable
add-cancelable
right_complementable
Element
of the
carrier
of
(
INT.Ring
p
)
F1
is
Element
of (
(
INT.Ring
p
)
)
F1
`1_3
is
left_add-cancelable
right_add-cancelable
add-cancelable
right_complementable
Element
of the
carrier
of
(
INT.Ring
p
)
F1
`1
is
set
(
F1
`1
)
`1
is
set
F1
`2_3
is
left_add-cancelable
right_add-cancelable
add-cancelable
right_complementable
Element
of the
carrier
of
(
INT.Ring
p
)
(
F1
`1
)
`2
is
set
F1
`3_3
is
left_add-cancelable
right_add-cancelable
add-cancelable
right_complementable
Element
of the
carrier
of
(
INT.Ring
p
)
1_
(
INT.Ring
p
)
is
left_add-cancelable
right_add-cancelable
add-cancelable
right_complementable
Element
of the
carrier
of
(
INT.Ring
p
)
1.
(
INT.Ring
p
)
is
V61
(
INT.Ring
p
)
V61
(
INT.Ring
p
)
left_add-cancelable
left_add-cancelable
right_add-cancelable
right_add-cancelable
add-cancelable
add-cancelable
right_complementable
right_complementable
(
p
)
Element
of the
carrier
of
(
INT.Ring
p
)
the
OneF
of
(
INT.Ring
p
)
is
left_add-cancelable
right_add-cancelable
add-cancelable
right_complementable
Element
of the
carrier
of
(
INT.Ring
p
)
p
is non
empty
V4
()
V5
()
V6
()
V10
()
V11
()
V12
()
integer
V14
()
ext-real
positive
non
negative
finite
cardinal
set
INT.Ring
p
is non
empty
non
degenerated
non
trivial
finite
left_add-cancelable
right_add-cancelable
add-cancelable
right_complementable
almost_left_invertible
strict
unital
associative
commutative
Euclidian
right-distributive
left-distributive
right_unital
well-unital
distributive
left_unital
Abelian
add-associative
right_zeroed
()
doubleLoopStr
Segm
p
is
V117
()
V118
()
V119
()
V120
()
V121
()
V122
()
Element
of
bool
NAT
addint
p
is
Relation-like
[:
(
Segm
p
)
,
(
Segm
p
)
:]
-defined
Segm
p
-valued
Function-like
quasi_total
V35
()
V36
()
V37
()
V38
()
Element
of
bool
[:
[:
(
Segm
p
)
,
(
Segm
p
)
:]
,
(
Segm
p
)
:]
[:
(
Segm
p
)
,
(
Segm
p
)
:]
is
RAT
-valued
INT
-valued
V35
()
V36
()
V37
()
V38
()
set
[:
[:
(
Segm
p
)
,
(
Segm
p
)
:]
,
(
Segm
p
)
:]
is
RAT
-valued
INT
-valued
V35
()
V36
()
V37
()
V38
()
set
bool
[:
[:
(
Segm
p
)
,
(
Segm
p
)
:]
,
(
Segm
p
)
:]
is non
empty
set
multint
p
is
Relation-like
[:
(
Segm
p
)
,
(
Segm
p
)
:]
-defined
Segm
p
-valued
Function-like
quasi_total
V35
()
V36
()
V37
()
V38
()
Element
of
bool
[:
[:
(
Segm
p
)
,
(
Segm
p
)
:]
,
(
Segm
p
)
:]
K633
(1,
(
Segm
p
)
) is
V4
()
V5
()
V6
()
V10
()
V11
()
V12
()
integer
ext-real
non
negative
finite
cardinal
V113
()
Element
of
Segm
p
K633
(
0
,
(
Segm
p
)
) is
V4
()
V5
()
V6
()
V10
()
V11
()
V12
()
integer
ext-real
non
negative
finite
cardinal
V113
()
Element
of
Segm
p
doubleLoopStr
(#
(
Segm
p
)
,
(
addint
p
)
,
(
multint
p
)
,
K633
(1,
(
Segm
p
)
),
K633
(
0
,
(
Segm
p
)
) #) is
strict
doubleLoopStr
the
carrier
of
(
INT.Ring
p
)
is non
empty
non
trivial
finite
set
0.
(
INT.Ring
p
)
is
V61
(
INT.Ring
p
)
left_add-cancelable
right_add-cancelable
add-cancelable
right_complementable
Element
of the
carrier
of
(
INT.Ring
p
)
the
ZeroF
of
(
INT.Ring
p
)
is
left_add-cancelable
right_add-cancelable
add-cancelable
right_complementable
Element
of the
carrier
of
(
INT.Ring
p
)
[:
the
carrier
of
(
INT.Ring
p
)
, the
carrier
of
(
INT.Ring
p
)
, the
carrier
of
(
INT.Ring
p
)
:]
is non
empty
finite
set
(
(
INT.Ring
p
)
) is non
empty
finite
Element
of
bool
[:
the
carrier
of
(
INT.Ring
p
)
, the
carrier
of
(
INT.Ring
p
)
, the
carrier
of
(
INT.Ring
p
)
:]
bool
[:
the
carrier
of
(
INT.Ring
p
)
, the
carrier
of
(
INT.Ring
p
)
, the
carrier
of
(
INT.Ring
p
)
:]
is non
empty
finite
V49
()
set
[
(
0.
(
INT.Ring
p
)
)
,
(
0.
(
INT.Ring
p
)
)
,
(
0.
(
INT.Ring
p
)
)
]
is
V26
()
V27
()
Element
of
[:
the
carrier
of
(
INT.Ring
p
)
, the
carrier
of
(
INT.Ring
p
)
, the
carrier
of
(
INT.Ring
p
)
:]
[
(
0.
(
INT.Ring
p
)
)
,
(
0.
(
INT.Ring
p
)
)
]
is
V26
()
set
{
(
0.
(
INT.Ring
p
)
)
,
(
0.
(
INT.Ring
p
)
)
}
is non
empty
finite
set
{
(
0.
(
INT.Ring
p
)
)
}
is non
empty
trivial
finite
1
-element
set
{
{
(
0.
(
INT.Ring
p
)
)
,
(
0.
(
INT.Ring
p
)
)
}
,
{
(
0.
(
INT.Ring
p
)
)
}
}
is non
empty
finite
V49
()
set
[
[
(
0.
(
INT.Ring
p
)
)
,
(
0.
(
INT.Ring
p
)
)
]
,
(
0.
(
INT.Ring
p
)
)
]
is
V26
()
set
{
[
(
0.
(
INT.Ring
p
)
)
,
(
0.
(
INT.Ring
p
)
)
]
,
(
0.
(
INT.Ring
p
)
)
}
is non
empty
finite
set
{
[
(
0.
(
INT.Ring
p
)
)
,
(
0.
(
INT.Ring
p
)
)
]
}
is non
empty
trivial
finite
1
-element
set
{
{
[
(
0.
(
INT.Ring
p
)
)
,
(
0.
(
INT.Ring
p
)
)
]
,
(
0.
(
INT.Ring
p
)
)
}
,
{
[
(
0.
(
INT.Ring
p
)
)
,
(
0.
(
INT.Ring
p
)
)
]
}
}
is non
empty
finite
V49
()
set
{
[
(
0.
(
INT.Ring
p
)
)
,
(
0.
(
INT.Ring
p
)
)
,
(
0.
(
INT.Ring
p
)
)
]
}
is non
empty
trivial
finite
1
-element
Element
of
bool
[:
the
carrier
of
(
INT.Ring
p
)
, the
carrier
of
(
INT.Ring
p
)
, the
carrier
of
(
INT.Ring
p
)
:]
[:
the
carrier
of
(
INT.Ring
p
)
, the
carrier
of
(
INT.Ring
p
)
, the
carrier
of
(
INT.Ring
p
)
:]
\
{
[
(
0.
(
INT.Ring
p
)
)
,
(
0.
(
INT.Ring
p
)
)
,
(
0.
(
INT.Ring
p
)
)
]
}
is
finite
Element
of
bool
[:
the
carrier
of
(
INT.Ring
p
)
, the
carrier
of
(
INT.Ring
p
)
, the
carrier
of
(
INT.Ring
p
)
:]
a
is
left_add-cancelable
right_add-cancelable
add-cancelable
right_complementable
Element
of the
carrier
of
(
INT.Ring
p
)
b
is
left_add-cancelable
right_add-cancelable
add-cancelable
right_complementable
Element
of the
carrier
of
(
INT.Ring
p
)
(
p
,
a
,
b
) is
left_add-cancelable
right_add-cancelable
add-cancelable
right_complementable
Element
of the
carrier
of
(
INT.Ring
p
)
(
p
,
a
,
b
) is non
empty
finite
Element
of
bool
(
(
INT.Ring
p
)
)
bool
(
(
INT.Ring
p
)
) is non
empty
finite
V49
()
set
(
p
,
a
,
b
) is
Relation-like
[:
the
carrier
of
(
INT.Ring
p
)
, the
carrier
of
(
INT.Ring
p
)
, the
carrier
of
(
INT.Ring
p
)
:]
-defined
the
carrier
of
(
INT.Ring
p
)
-valued
Function-like
quasi_total
finite
Element
of
bool
[:
[:
the
carrier
of
(
INT.Ring
p
)
, the
carrier
of
(
INT.Ring
p
)
, the
carrier
of
(
INT.Ring
p
)
:]
, the
carrier
of
(
INT.Ring
p
)
:]
[:
[:
the
carrier
of
(
INT.Ring
p
)
, the
carrier
of
(
INT.Ring
p
)
, the
carrier
of
(
INT.Ring
p
)
:]
, the
carrier
of
(
INT.Ring
p
)
:]
is non
empty
finite
set
bool
[:
[:
the
carrier
of
(
INT.Ring
p
)
, the
carrier
of
(
INT.Ring
p
)
, the
carrier
of
(
INT.Ring
p
)
:]
, the
carrier
of
(
INT.Ring
p
)
:]
is non
empty
finite
V49
()
set
{
b
1
where
b
1
is
Element
of (
(
INT.Ring
p
)
) : (
p
,
a
,
b
)
.
b
1
=
0.
(
INT.Ring
p
)
}
is
set
(
p
,
a
,
b
) is
Relation-like
(
p
,
a
,
b
)
-defined
(
p
,
a
,
b
)
-valued
total
finite
reflexive
symmetric
transitive
Element
of
bool
[:
(
p
,
a
,
b
),(
p
,
a
,
b
)
:]
[:
(
p
,
a
,
b
),(
p
,
a
,
b
)
:]
is non
empty
finite
set
bool
[:
(
p
,
a
,
b
),(
p
,
a
,
b
)
:]
is non
empty
finite
V49
()
set
(
p
) is
Relation-like
(
(
INT.Ring
p
)
)
-defined
(
(
INT.Ring
p
)
)
-valued
total
finite
reflexive
symmetric
transitive
Element
of
bool
[:
(
(
INT.Ring
p
)
),(
(
INT.Ring
p
)
)
:]
[:
(
(
INT.Ring
p
)
),(
(
INT.Ring
p
)
)
:]
is non
empty
finite
set
bool
[:
(
(
INT.Ring
p
)
),(
(
INT.Ring
p
)
)
:]
is non
empty
finite
V49
()
set
{
[
b
1
,
b
2
]
where
b
1
,
b
2
is
Element
of (
(
INT.Ring
p
)
) : (
p
,
b
1
,
b
2
)
}
is
set
nabla
(
p
,
a
,
b
) is
Relation-like
(
p
,
a
,
b
)
-defined
(
p
,
a
,
b
)
-valued
total
finite
reflexive
symmetric
transitive
Element
of
bool
[:
(
p
,
a
,
b
),(
p
,
a
,
b
)
:]
(
p
)
/\
(
nabla
(
p
,
a
,
b
)
)
is
Relation-like
(
(
INT.Ring
p
)
)
-defined
(
p
,
a
,
b
)
-defined
(
(
INT.Ring
p
)
)
-valued
(
p
,
a
,
b
)
-valued
finite
reflexive
symmetric
transitive
Element
of
bool
[:
(
p
,
a
,
b
),(
p
,
a
,
b
)
:]
Class
(
p
,
a
,
b
) is non
empty
finite
V49
()
V130
()
a_partition
of (
p
,
a
,
b
)
L
is
set
F
is
Element
of (
p
,
a
,
b
)
Class
((
p
,
a
,
b
),
F
) is
finite
Element
of
bool
(
p
,
a
,
b
)
bool
(
p
,
a
,
b
) is non
empty
finite
V49
()
set
pp
is
Element
of (
(
INT.Ring
p
)
)
pp
`3_3
is
left_add-cancelable
right_add-cancelable
add-cancelable
right_complementable
Element
of the
carrier
of
(
INT.Ring
p
)
FF
is
Element
of (
(
INT.Ring
p
)
)
FF
`1_3
is
left_add-cancelable
right_add-cancelable
add-cancelable
right_complementable
Element
of the
carrier
of
(
INT.Ring
p
)
FF
`1
is
set
(
FF
`1
)
`1
is
set
FF
`2_3
is
left_add-cancelable
right_add-cancelable
add-cancelable
right_complementable
Element
of the
carrier
of
(
INT.Ring
p
)
(
FF
`1
)
`2
is
set
FF
`3_3
is
left_add-cancelable
right_add-cancelable
add-cancelable
right_complementable
Element
of the
carrier
of
(
INT.Ring
p
)
[
FF
,
pp
]
is
V26
()
Element
of
[:
(
(
INT.Ring
p
)
),(
(
INT.Ring
p
)
)
:]
{
FF
,
pp
}
is non
empty
finite
set
{
FF
}
is non
empty
trivial
finite
1
-element
set
{
{
FF
,
pp
}
,
{
FF
}
}
is non
empty
finite
V49
()
set
Class
((
p
,
a
,
b
),
FF
) is
finite
Element
of
bool
(
p
,
a
,
b
)
pp
is
Element
of (
(
INT.Ring
p
)
)
pp
`3_3
is
left_add-cancelable
right_add-cancelable
add-cancelable
right_complementable
Element
of the
carrier
of
(
INT.Ring
p
)
FF
is
Element
of (
(
INT.Ring
p
)
)
FF
`3_3
is
left_add-cancelable
right_add-cancelable
add-cancelable
right_complementable
Element
of the
carrier
of
(
INT.Ring
p
)
FF
`1_3
is
left_add-cancelable
right_add-cancelable
add-cancelable
right_complementable
Element
of the
carrier
of
(
INT.Ring
p
)
FF
`1
is
set
(
FF
`1
)
`1
is
set
FF
`2_3
is
left_add-cancelable
right_add-cancelable
add-cancelable
right_complementable
Element
of the
carrier
of
(
INT.Ring
p
)
(
FF
`1
)
`2
is
set
[
(
FF
`1_3
)
,
(
FF
`2_3
)
,1
]
is
V26
()
V27
()
Element
of
[:
the
carrier
of
(
INT.Ring
p
)
, the
carrier
of
(
INT.Ring
p
)
,
NAT
:]
[:
the
carrier
of
(
INT.Ring
p
)
, the
carrier
of
(
INT.Ring
p
)
,
NAT
:]
is non
empty
set
[
(
FF
`1_3
)
,
(
FF
`2_3
)
]
is
V26
()
set
{
(
FF
`1_3
)
,
(
FF
`2_3
)
}
is non
empty
finite
set
{
(
FF
`1_3
)
}
is non
empty
trivial
finite
1
-element
set
{
{
(
FF
`1_3
)
,
(
FF
`2_3
)
}
,
{
(
FF
`1_3
)
}
}
is non
empty
finite
V49
()
set
[
[
(
FF
`1_3
)
,
(
FF
`2_3
)
]
,1
]
is
V26
()
set
{
[
(
FF
`1_3
)
,
(
FF
`2_3
)
]
,1
}
is non
empty
finite
set
{
[
(
FF
`1_3
)
,
(
FF
`2_3
)
]
}
is non
empty
trivial
finite
1
-element
set
{
{
[
(
FF
`1_3
)
,
(
FF
`2_3
)
]
,1
}
,
{
[
(
FF
`1_3
)
,
(
FF
`2_3
)
]
}
}
is non
empty
finite
V49
()
set
[
FF
,
pp
]
is
V26
()
Element
of
[:
(
(
INT.Ring
p
)
),(
(
INT.Ring
p
)
)
:]
{
FF
,
pp
}
is non
empty
finite
set
{
FF
}
is non
empty
trivial
finite
1
-element
set
{
{
FF
,
pp
}
,
{
FF
}
}
is non
empty
finite
V49
()
set
Class
((
p
,
a
,
b
),
FF
) is
finite
Element
of
bool
(
p
,
a
,
b
)
pp
is
Element
of (
(
INT.Ring
p
)
)
pp
`3_3
is
left_add-cancelable
right_add-cancelable
add-cancelable
right_complementable
Element
of the
carrier
of
(
INT.Ring
p
)
p
is non
empty
V4
()
V5
()
V6
()
V10
()
V11
()
V12
()
integer
V14
()
ext-real
positive
non
negative
finite
cardinal
set
INT.Ring
p
is non
empty
non
degenerated
non
trivial
finite
left_add-cancelable
right_add-cancelable
add-cancelable
right_complementable
almost_left_invertible
strict
unital
associative
commutative
Euclidian
right-distributive
left-distributive
right_unital
well-unital
distributive
left_unital
Abelian
add-associative
right_zeroed
()
doubleLoopStr
Segm
p
is
V117
()
V118
()
V119
()
V120
()
V121
()
V122
()
Element
of
bool
NAT
addint
p
is
Relation-like
[:
(
Segm
p
)
,
(
Segm
p
)
:]
-defined
Segm
p
-valued
Function-like
quasi_total
V35
()
V36
()
V37
()
V38
()
Element
of
bool
[:
[:
(
Segm
p
)
,
(
Segm
p
)
:]
,
(
Segm
p
)
:]
[:
(
Segm
p
)
,
(
Segm
p
)
:]
is
RAT
-valued
INT
-valued
V35
()
V36
()
V37
()
V38
()
set
[:
[:
(
Segm
p
)
,
(
Segm
p
)
:]
,
(
Segm
p
)
:]
is
RAT
-valued
INT
-valued
V35
()
V36
()
V37
()
V38
()
set
bool
[:
[:
(
Segm
p
)
,
(
Segm
p
)
:]
,
(
Segm
p
)
:]
is non
empty
set
multint
p
is
Relation-like
[:
(
Segm
p
)
,
(
Segm
p
)
:]
-defined
Segm
p
-valued
Function-like
quasi_total
V35
()
V36
()
V37
()
V38
()
Element
of
bool
[:
[:
(
Segm
p
)
,
(
Segm
p
)
:]
,
(
Segm
p
)
:]
K633
(1,
(
Segm
p
)
) is
V4
()
V5
()
V6
()
V10
()
V11
()
V12
()
integer
ext-real
non
negative
finite
cardinal
V113
()
Element
of
Segm
p
K633
(
0
,
(
Segm
p
)
) is
V4
()
V5
()
V6
()
V10
()
V11
()
V12
()
integer
ext-real
non
negative
finite
cardinal
V113
()
Element
of
Segm
p
doubleLoopStr
(#
(
Segm
p
)
,
(
addint
p
)
,
(
multint
p
)
,
K633
(1,
(
Segm
p
)
),
K633
(
0
,
(
Segm
p
)
) #) is
strict
doubleLoopStr
the
carrier
of
(
INT.Ring
p
)
is non
empty
non
trivial
finite
set
0.
(
INT.Ring
p
)
is
V61
(
INT.Ring
p
)
left_add-cancelable
right_add-cancelable
add-cancelable
right_complementable
Element
of the
carrier
of
(
INT.Ring
p
)
the
ZeroF
of
(
INT.Ring
p
)
is
left_add-cancelable
right_add-cancelable
add-cancelable
right_complementable
Element
of the
carrier
of
(
INT.Ring
p
)
[:
the
carrier
of
(
INT.Ring
p
)
, the
carrier
of
(
INT.Ring
p
)
, the
carrier
of
(
INT.Ring
p
)
:]
is non
empty
finite
set
(
(
INT.Ring
p
)
) is non
empty
finite
Element
of
bool
[:
the
carrier
of
(
INT.Ring
p
)
, the
carrier
of
(
INT.Ring
p
)
, the
carrier
of
(
INT.Ring
p
)
:]
bool
[:
the
carrier
of
(
INT.Ring
p
)
, the
carrier
of
(
INT.Ring
p
)
, the
carrier
of
(
INT.Ring
p
)
:]
is non
empty
finite
V49
()
set
[
(
0.
(
INT.Ring
p
)
)
,
(
0.
(
INT.Ring
p
)
)
,
(
0.
(
INT.Ring
p
)
)
]
is
V26
()
V27
()
Element
of
[:
the
carrier
of
(
INT.Ring
p
)
, the
carrier
of
(
INT.Ring
p
)
, the
carrier
of
(
INT.Ring
p
)
:]
[
(
0.
(
INT.Ring
p
)
)
,
(
0.
(
INT.Ring
p
)
)
]
is
V26
()
set
{
(
0.
(
INT.Ring
p
)
)
,
(
0.
(
INT.Ring
p
)
)
}
is non
empty
finite
set
{
(
0.
(
INT.Ring
p
)
)
}
is non
empty
trivial
finite
1
-element
set
{
{
(
0.
(
INT.Ring
p
)
)
,
(
0.
(
INT.Ring
p
)
)
}
,
{
(
0.
(
INT.Ring
p
)
)
}
}
is non
empty
finite
V49
()
set
[
[
(
0.
(
INT.Ring
p
)
)
,
(
0.
(
INT.Ring
p
)
)
]
,
(
0.
(
INT.Ring
p
)
)
]
is
V26
()
set
{
[
(
0.
(
INT.Ring
p
)
)
,
(
0.
(
INT.Ring
p
)
)
]
,
(
0.
(
INT.Ring
p
)
)
}
is non
empty
finite
set
{
[
(
0.
(
INT.Ring
p
)
)
,
(
0.
(
INT.Ring
p
)
)
]
}
is non
empty
trivial
finite
1
-element
set
{
{
[
(
0.
(
INT.Ring
p
)
)
,
(
0.
(
INT.Ring
p
)
)
]
,
(
0.
(
INT.Ring
p
)
)
}
,
{
[
(
0.
(
INT.Ring
p
)
)
,
(
0.
(
INT.Ring
p
)
)
]
}
}
is non
empty
finite
V49
()
set
{
[
(
0.
(
INT.Ring
p
)
)
,
(
0.
(
INT.Ring
p
)
)
,
(
0.
(
INT.Ring
p
)
)
]
}
is non
empty
trivial
finite
1
-element
Element
of
bool
[:
the
carrier
of
(
INT.Ring
p
)
, the
carrier
of
(
INT.Ring
p
)
, the
carrier
of
(
INT.Ring
p
)
:]
[:
the
carrier
of
(
INT.Ring
p
)
, the
carrier
of
(
INT.Ring
p
)
, the
carrier
of
(
INT.Ring
p
)
:]
\
{
[
(
0.
(
INT.Ring
p
)
)
,
(
0.
(
INT.Ring
p
)
)
,
(
0.
(
INT.Ring
p
)
)
]
}
is
finite
Element
of
bool
[:
the
carrier
of
(
INT.Ring
p
)
, the
carrier
of
(
INT.Ring
p
)
, the
carrier
of
(
INT.Ring
p
)
:]
a
is
left_add-cancelable
right_add-cancelable
add-cancelable
right_complementable
Element
of the
carrier
of
(
INT.Ring
p
)
b
is
left_add-cancelable
right_add-cancelable
add-cancelable
right_complementable
Element
of the
carrier
of
(
INT.Ring
p
)
(
p
,
a
,
b
) is
left_add-cancelable
right_add-cancelable
add-cancelable
right_complementable
Element
of the
carrier
of
(
INT.Ring
p
)
(
p
,
a
,
b
) is non
empty
finite
Element
of
bool
(
(
INT.Ring
p
)
)
bool
(
(
INT.Ring
p
)
) is non
empty
finite
V49
()
set
(
p
,
a
,
b
) is
Relation-like
[:
the
carrier
of
(
INT.Ring
p
)
, the
carrier
of
(
INT.Ring
p
)
, the
carrier
of
(
INT.Ring
p
)
:]
-defined
the
carrier
of
(
INT.Ring
p
)
-valued
Function-like
quasi_total
finite
Element
of
bool
[:
[:
the
carrier
of
(
INT.Ring
p
)
, the
carrier
of
(
INT.Ring
p
)
, the
carrier
of
(
INT.Ring
p
)
:]
, the
carrier
of
(
INT.Ring
p
)
:]
[:
[:
the
carrier
of
(
INT.Ring
p
)
, the
carrier
of
(
INT.Ring
p
)
, the
carrier
of
(
INT.Ring
p
)
:]
, the
carrier
of
(
INT.Ring
p
)
:]
is non
empty
finite
set
bool
[:
[:
the
carrier
of
(
INT.Ring
p
)
, the
carrier
of
(
INT.Ring
p
)
, the
carrier
of
(
INT.Ring
p
)
:]
, the
carrier
of
(
INT.Ring
p
)
:]
is non
empty
finite
V49
()
set
{
b
1
where
b
1
is
Element
of (
(
INT.Ring
p
)
) : (
p
,
a
,
b
)
.
b
1
=
0.
(
INT.Ring
p
)
}
is
set
(
p
,
a
,
b
) is
Relation-like
(
p
,
a
,
b
)
-defined
(
p
,
a
,
b
)
-valued
total
finite
reflexive
symmetric
transitive
Element
of
bool
[:
(
p
,
a
,
b
),(
p
,
a
,
b
)
:]
[:
(
p
,
a
,
b
),(
p
,
a
,
b
)
:]
is non
empty
finite
set
bool
[:
(
p
,
a
,
b
),(
p
,
a
,
b
)
:]
is non
empty
finite
V49
()
set
(
p
) is
Relation-like
(
(
INT.Ring
p
)
)
-defined
(
(
INT.Ring
p
)
)
-valued
total
finite
reflexive
symmetric
transitive
Element
of
bool
[:
(
(
INT.Ring
p
)
),(
(
INT.Ring
p
)
)
:]
[:
(
(
INT.Ring
p
)
),(
(
INT.Ring
p
)
)
:]
is non
empty
finite
set
bool
[:
(
(
INT.Ring
p
)
),(
(
INT.Ring
p
)
)
:]
is non
empty
finite
V49
()
set
{
[
b
1
,
b
2
]
where
b
1
,
b
2
is
Element
of (
(
INT.Ring
p
)
) : (
p
,
b
1
,
b
2
)
}
is
set
nabla
(
p
,
a
,
b
) is
Relation-like
(
p
,
a
,
b
)
-defined
(
p
,
a
,
b
)
-valued
total
finite
reflexive
symmetric
transitive
Element
of
bool
[:
(
p
,
a
,
b
),(
p
,
a
,
b
)
:]
(
p
)
/\
(
nabla
(
p
,
a
,
b
)
)
is
Relation-like
(
(
INT.Ring
p
)
)
-defined
(
p
,
a
,
b
)
-defined
(
(
INT.Ring
p
)
)
-valued
(
p
,
a
,
b
)
-valued
finite
reflexive
symmetric
transitive
Element
of
bool
[:
(
p
,
a
,
b
),(
p
,
a
,
b
)
:]
Class
(
p
,
a
,
b
) is non
empty
finite
V49
()
V130
()
a_partition
of (
p
,
a
,
b
)
bool
(
p
,
a
,
b
) is non
empty
finite
V49
()
set
Class
((
p
,
a
,
b
),
[
0
,1,
0
]
) is
finite
Element
of
bool
(
p
,
a
,
b
)
{
(
Class
((
p
,
a
,
b
),
[
0
,1,
0
]
)
)
}
is non
empty
trivial
finite
V49
() 1
-element
Element
of
bool
(
bool
(
p
,
a
,
b
)
)
bool
(
bool
(
p
,
a
,
b
)
)
is non
empty
finite
V49
()
set
{
(
Class
((
p
,
a
,
b
),
b
1
)
)
where
b
1
is
Element
of (
(
INT.Ring
p
)
) : (
b
1
in
(
p
,
a
,
b
) & ex
b
2
,
b
3
being
left_add-cancelable
right_add-cancelable
add-cancelable
right_complementable
Element
of the
carrier
of
(
INT.Ring
p
)
st
b
1
=
[
b
2
,
b
3
,1
]
)
}
is
set
{
(
Class
((
p
,
a
,
b
),
[
0
,1,
0
]
)
)
}
\/
{
(
Class
((
p
,
a
,
b
),
b
1
)
)
where
b
1
is
Element
of (
(
INT.Ring
p
)
) : (
b
1
in
(
p
,
a
,
b
) & ex
b
2
,
b
3
being
left_add-cancelable
right_add-cancelable
add-cancelable
right_complementable
Element
of the
carrier
of
(
INT.Ring
p
)
st
b
1
=
[
b
2
,
b
3
,1
]
)
}
is non
empty
set
FF
is
set
F1
is
Element
of (
(
INT.Ring
p
)
)
Class
((
p
,
a
,
b
),
F1
) is
finite
Element
of
bool
(
p
,
a
,
b
)
F2
is
Element
of (
(
INT.Ring
p
)
)
X
is
left_add-cancelable
right_add-cancelable
add-cancelable
right_complementable
Element
of the
carrier
of
(
INT.Ring
p
)
Y
is
left_add-cancelable
right_add-cancelable
add-cancelable
right_complementable
Element
of the
carrier
of
(
INT.Ring
p
)
[
X
,
Y
,1
]
is
V26
()
V27
()
Element
of
[:
the
carrier
of
(
INT.Ring
p
)
, the
carrier
of
(
INT.Ring
p
)
,
NAT
:]
[:
the
carrier
of
(
INT.Ring
p
)
, the
carrier
of
(
INT.Ring
p
)
,
NAT
:]
is non
empty
set
[
X
,
Y
]
is
V26
()
set
{
X
,
Y
}
is non
empty
finite
set
{
X
}
is non
empty
trivial
finite
1
-element
set
{
{
X
,
Y
}
,
{
X
}
}
is non
empty
finite
V49
()
set
[
[
X
,
Y
]
,1
]
is
V26
()
set
{
[
X
,
Y
]
,1
}
is non
empty
finite
set
{
[
X
,
Y
]
}
is non
empty
trivial
finite
1
-element
set
{
{
[
X
,
Y
]
,1
}
,
{
[
X
,
Y
]
}
}
is non
empty
finite
V49
()
set
Class
((
p
,
a
,
b
),
F2
) is
finite
Element
of
bool
(
p
,
a
,
b
)
pp
is
Element
of (
p
,
a
,
b
)
EqClass
((
p
,
a
,
b
),
pp
) is
finite
Element
of
Class
(
p
,
a
,
b
)
F1
is
Element
of (
(
INT.Ring
p
)
)
Class
((
p
,
a
,
b
),
F1
) is
finite
Element
of
bool
(
p
,
a
,
b
)
F2
is
left_add-cancelable
right_add-cancelable
add-cancelable
right_complementable
Element
of the
carrier
of
(
INT.Ring
p
)
X
is
left_add-cancelable
right_add-cancelable
add-cancelable
right_complementable
Element
of the
carrier
of
(
INT.Ring
p
)
[
F2
,
X
,1
]
is
V26
()
V27
()
Element
of
[:
the
carrier
of
(
INT.Ring
p
)
, the
carrier
of
(
INT.Ring
p
)
,
NAT
:]
[:
the
carrier
of
(
INT.Ring
p
)
, the
carrier
of
(
INT.Ring
p
)
,
NAT
:]
is non
empty
set
[
F2
,
X
]
is
V26
()
set
{
F2
,
X
}
is non
empty
finite
set
{
F2
}
is non
empty
trivial
finite
1
-element
set
{
{
F2
,
X
}
,
{
F2
}
}
is non
empty
finite
V49
()
set
[
[
F2
,
X
]
,1
]
is
V26
()
set
{
[
F2
,
X
]
,1
}
is non
empty
finite
set
{
[
F2
,
X
]
}
is non
empty
trivial
finite
1
-element
set
{
{
[
F2
,
X
]
,1
}
,
{
[
F2
,
X
]
}
}
is non
empty
finite
V49
()
set
F1
is
Element
of (
(
INT.Ring
p
)
)
Class
((
p
,
a
,
b
),
F1
) is
finite
Element
of
bool
(
p
,
a
,
b
)
X
is
left_add-cancelable
right_add-cancelable
add-cancelable
right_complementable
Element
of the
carrier
of
(
INT.Ring
p
)
Y
is
left_add-cancelable
right_add-cancelable
add-cancelable
right_complementable
Element
of the
carrier
of
(
INT.Ring
p
)
[
X
,
Y
,1
]
is
V26
()
V27
()
Element
of
[:
the
carrier
of
(
INT.Ring
p
)
, the
carrier
of
(
INT.Ring
p
)
,
NAT
:]
[:
the
carrier
of
(
INT.Ring
p
)
, the
carrier
of
(
INT.Ring
p
)
,
NAT
:]
is non
empty
set
[
X
,
Y
]
is
V26
()
set
{
X
,
Y
}
is non
empty
finite
set
{
X
}
is non
empty
trivial
finite
1
-element
set
{
{
X
,
Y
}
,
{
X
}
}
is non
empty
finite
V49
()
set
[
[
X
,
Y
]
,1
]
is
V26
()
set
{
[
X
,
Y
]
,1
}
is non
empty
finite
set
{
[
X
,
Y
]
}
is non
empty
trivial
finite
1
-element
set
{
{
[
X
,
Y
]
,1
}
,
{
[
X
,
Y
]
}
}
is non
empty
finite
V49
()
set
F2
is
Element
of (
p
,
a
,
b
)
EqClass
((
p
,
a
,
b
),
F2
) is
finite
Element
of
Class
(
p
,
a
,
b
)
X
is
left_add-cancelable
right_add-cancelable
add-cancelable
right_complementable
Element
of the
carrier
of
(
INT.Ring
p
)
Y
is
left_add-cancelable
right_add-cancelable
add-cancelable
right_complementable
Element
of the
carrier
of
(
INT.Ring
p
)
[
X
,
Y
,1
]
is
V26
()
V27
()
Element
of
[:
the
carrier
of
(
INT.Ring
p
)
, the
carrier
of
(
INT.Ring
p
)
,
NAT
:]
[:
the
carrier
of
(
INT.Ring
p
)
, the
carrier
of
(
INT.Ring
p
)
,
NAT
:]
is non
empty
set
[
X
,
Y
]
is
V26
()
set
{
X
,
Y
}
is non
empty
finite
set
{
X
}
is non
empty
trivial
finite
1
-element
set
{
{
X
,
Y
}
,
{
X
}
}
is non
empty
finite
V49
()
set
[
[
X
,
Y
]
,1
]
is
V26
()
set
{
[
X
,
Y
]
,1
}
is non
empty
finite
set
{
[
X
,
Y
]
}
is non
empty
trivial
finite
1
-element
set
{
{
[
X
,
Y
]
,1
}
,
{
[
X
,
Y
]
}
}
is non
empty
finite
V49
()
set
p
is non
empty
V4
()
V5
()
V6
()
V10
()
V11
()
V12
()
integer
V14
()
ext-real
positive
non
negative
finite
cardinal
set
INT.Ring
p
is non
empty
non
degenerated
non
trivial
finite
left_add-cancelable
right_add-cancelable
add-cancelable
right_complementable
almost_left_invertible
strict
unital
associative
commutative
Euclidian
right-distributive
left-distributive
right_unital
well-unital
distributive
left_unital
Abelian
add-associative
right_zeroed
()
doubleLoopStr
Segm
p
is
V117
()
V118
()
V119
()
V120
()
V121
()
V122
()
Element
of
bool
NAT
addint
p
is
Relation-like
[:
(
Segm
p
)
,
(
Segm
p
)
:]
-defined
Segm
p
-valued
Function-like
quasi_total
V35
()
V36
()
V37
()
V38
()
Element
of
bool
[:
[:
(
Segm
p
)
,
(
Segm
p
)
:]
,
(
Segm
p
)
:]
[:
(
Segm
p
)
,
(
Segm
p
)
:]
is
RAT
-valued
INT
-valued
V35
()
V36
()
V37
()
V38
()
set
[:
[:
(
Segm
p
)
,
(
Segm
p
)
:]
,
(
Segm
p
)
:]
is
RAT
-valued
INT
-valued
V35
()
V36
()
V37
()
V38
()
set
bool
[:
[:
(
Segm
p
)
,
(
Segm
p
)
:]
,
(
Segm
p
)
:]
is non
empty
set
multint
p
is
Relation-like
[:
(
Segm
p
)
,
(
Segm
p
)
:]
-defined
Segm
p
-valued
Function-like
quasi_total
V35
()
V36
()
V37
()
V38
()
Element
of
bool
[:
[:
(
Segm
p
)
,
(
Segm
p
)
:]
,
(
Segm
p
)
:]
K633
(1,
(
Segm
p
)
) is
V4
()
V5
()
V6
()
V10
()
V11
()
V12
()
integer
ext-real
non
negative
finite
cardinal
V113
()
Element
of
Segm
p
K633
(
0
,
(
Segm
p
)
) is
V4
()
V5
()
V6
()
V10
()
V11
()
V12
()
integer
ext-real
non
negative
finite
cardinal
V113
()
Element
of
Segm
p
doubleLoopStr
(#
(
Segm
p
)
,
(
addint
p
)
,
(
multint
p
)
,
K633
(1,
(
Segm
p
)
),
K633
(
0
,
(
Segm
p
)
) #) is
strict
doubleLoopStr
the
carrier
of
(
INT.Ring
p
)
is non
empty
non
trivial
finite
set
0.
(
INT.Ring
p
)
is
V61
(
INT.Ring
p
)
left_add-cancelable
right_add-cancelable
add-cancelable
right_complementable
Element
of the
carrier
of
(
INT.Ring
p
)
the
ZeroF
of
(
INT.Ring
p
)
is
left_add-cancelable
right_add-cancelable
add-cancelable
right_complementable
Element
of the
carrier
of
(
INT.Ring
p
)
a
is
left_add-cancelable
right_add-cancelable
add-cancelable
right_complementable
Element
of the
carrier
of
(
INT.Ring
p
)
b
is
left_add-cancelable
right_add-cancelable
add-cancelable
right_complementable
Element
of the
carrier
of
(
INT.Ring
p
)
(
p
,
a
,
b
) is
left_add-cancelable
right_add-cancelable
add-cancelable
right_complementable
Element
of the
carrier
of
(
INT.Ring
p
)
L
is
left_add-cancelable
right_add-cancelable
add-cancelable
right_complementable
Element
of the
carrier
of
(
INT.Ring
p
)
F
is
left_add-cancelable
right_add-cancelable
add-cancelable
right_complementable
Element
of the
carrier
of
(
INT.Ring
p
)
[
L
,
F
,1
]
is
V26
()
V27
()
Element
of
[:
the
carrier
of
(
INT.Ring
p
)
, the
carrier
of
(
INT.Ring
p
)
,
NAT
:]
[:
the
carrier
of
(
INT.Ring
p
)
, the
carrier
of
(
INT.Ring
p
)
,
NAT
:]
is non
empty
set
[
L
,
F
]
is
V26
()
set
{
L
,
F
}
is non
empty
finite
set
{
L
}
is non
empty
trivial
finite
1
-element
set
{
{
L
,
F
}
,
{
L
}
}
is non
empty
finite
V49
()
set
[
[
L
,
F
]
,1
]
is
V26
()
set
{
[
L
,
F
]
,1
}
is non
empty
finite
set
{
[
L
,
F
]
}
is non
empty
trivial
finite
1
-element
set
{
{
[
L
,
F
]
,1
}
,
{
[
L
,
F
]
}
}
is non
empty
finite
V49
()
set
(
p
,
a
,
b
) is non
empty
finite
Element
of
bool
(
(
INT.Ring
p
)
)
(
(
INT.Ring
p
)
) is non
empty
finite
Element
of
bool
[:
the
carrier
of
(
INT.Ring
p
)
, the
carrier
of
(
INT.Ring
p
)
, the
carrier
of
(
INT.Ring
p
)
:]
[:
the
carrier
of
(
INT.Ring
p
)
, the
carrier
of
(
INT.Ring
p
)
, the
carrier
of
(
INT.Ring
p
)
:]
is non
empty
finite
set
bool
[:
the
carrier
of
(
INT.Ring
p
)
, the
carrier
of
(
INT.Ring
p
)
, the
carrier
of
(
INT.Ring
p
)
:]
is non
empty
finite
V49
()
set
[
(
0.
(
INT.Ring
p
)
)
,
(
0.
(
INT.Ring
p
)
)
,
(
0.
(
INT.Ring
p
)
)
]
is
V26
()
V27
()
Element
of
[:
the
carrier
of
(
INT.Ring
p
)
, the
carrier
of
(
INT.Ring
p
)
, the
carrier
of
(
INT.Ring
p
)
:]
[
(
0.
(
INT.Ring
p
)
)
,
(
0.
(
INT.Ring
p
)
)
]
is
V26
()
set
{
(
0.
(
INT.Ring
p
)
)
,
(
0.
(
INT.Ring
p
)
)
}
is non
empty
finite
set
{
(
0.
(
INT.Ring
p
)
)
}
is non
empty
trivial
finite
1
-element
set
{
{
(
0.
(
INT.Ring
p
)
)
,
(
0.
(
INT.Ring
p
)
)
}
,
{
(
0.
(
INT.Ring
p
)
)
}
}
is non
empty
finite
V49
()
set
[
[
(
0.
(
INT.Ring
p
)
)
,
(
0.
(
INT.Ring
p
)
)
]
,
(
0.
(
INT.Ring
p
)
)
]
is
V26
()
set
{
[
(
0.
(
INT.Ring
p
)
)
,
(
0.
(
INT.Ring
p
)
)
]
,
(
0.
(
INT.Ring
p
)
)
}
is non
empty
finite
set
{
[
(
0.
(
INT.Ring
p
)
)
,
(
0.
(
INT.Ring
p
)
)
]
}
is non
empty
trivial
finite
1
-element
set
{
{
[
(
0.
(
INT.Ring
p
)
)
,
(
0.
(
INT.Ring
p
)
)
]
,
(
0.
(
INT.Ring
p
)
)
}
,
{
[
(
0.
(
INT.Ring
p
)
)
,
(
0.
(
INT.Ring
p
)
)
]
}
}
is non
empty
finite
V49
()
set
{
[
(
0.
(
INT.Ring
p
)
)
,
(
0.
(
INT.Ring
p
)
)
,
(
0.
(
INT.Ring
p
)
)
]
}
is non
empty
trivial
finite
1
-element
Element
of
bool
[:
the
carrier
of
(
INT.Ring
p
)
, the
carrier
of
(
INT.Ring
p
)
, the
carrier
of
(
INT.Ring
p
)
:]
[:
the
carrier
of
(
INT.Ring
p
)
, the
carrier
of
(
INT.Ring
p
)
, the
carrier
of
(
INT.Ring
p
)
:]
\
{
[
(
0.
(
INT.Ring
p
)
)
,
(
0.
(
INT.Ring
p
)
)
,
(
0.
(
INT.Ring
p
)
)
]
}
is
finite
Element
of
bool
[:
the
carrier
of
(
INT.Ring
p
)
, the
carrier
of
(
INT.Ring
p
)
, the
carrier
of
(
INT.Ring
p
)
:]
bool
(
(
INT.Ring
p
)
) is non
empty
finite
V49
()
set
(
p
,
a
,
b
) is
Relation-like
[:
the
carrier
of
(
INT.Ring
p
)
, the
carrier
of
(
INT.Ring
p
)
, the
carrier
of
(
INT.Ring
p
)
:]
-defined
the
carrier
of
(
INT.Ring
p
)
-valued
Function-like
quasi_total
finite
Element
of
bool
[:
[:
the
carrier
of
(
INT.Ring
p
)
, the
carrier
of
(
INT.Ring
p
)
, the
carrier
of
(
INT.Ring
p
)
:]
, the
carrier
of
(
INT.Ring
p
)
:]
[:
[:
the
carrier
of
(
INT.Ring
p
)
, the
carrier
of
(
INT.Ring
p
)
, the
carrier
of
(
INT.Ring
p
)
:]
, the
carrier
of
(
INT.Ring
p
)
:]
is non
empty
finite
set
bool
[:
[:
the
carrier
of
(
INT.Ring
p
)
, the
carrier
of
(
INT.Ring
p
)
, the
carrier
of
(
INT.Ring
p
)
:]
, the
carrier
of
(
INT.Ring
p
)
:]
is non
empty
finite
V49
()
set
{
b
1
where
b
1
is
Element
of (
(
INT.Ring
p
)
) : (
p
,
a
,
b
)
.
b
1
=
0.
(
INT.Ring
p
)
}
is
set
pp
is
left_add-cancelable
right_add-cancelable
add-cancelable
right_complementable
Element
of the
carrier
of
(
INT.Ring
p
)
FF
is
left_add-cancelable
right_add-cancelable
add-cancelable
right_complementable
Element
of the
carrier
of
(
INT.Ring
p
)
[
pp
,
FF
,1
]
is
V26
()
V27
()
Element
of
[:
the
carrier
of
(
INT.Ring
p
)
, the
carrier
of
(
INT.Ring
p
)
,
NAT
:]
[
pp
,
FF
]
is
V26
()
set
{
pp
,
FF
}
is non
empty
finite
set
{
pp
}
is non
empty
trivial
finite
1
-element
set
{
{
pp
,
FF
}
,
{
pp
}
}
is non
empty
finite
V49
()
set
[
[
pp
,
FF
]
,1
]
is
V26
()
set
{
[
pp
,
FF
]
,1
}
is non
empty
finite
set
{
[
pp
,
FF
]
}
is non
empty
trivial
finite
1
-element
set
{
{
[
pp
,
FF
]
,1
}
,
{
[
pp
,
FF
]
}
}
is non
empty
finite
V49
()
set
(
p
,
a
,
b
) is
Relation-like
(
p
,
a
,
b
)
-defined
(
p
,
a
,
b
)
-valued
total
finite
reflexive
symmetric
transitive
Element
of
bool
[:
(
p
,
a
,
b
),(
p
,
a
,
b
)
:]
[:
(
p
,
a
,
b
),(
p
,
a
,
b
)
:]
is non
empty
finite
set
bool
[:
(
p
,
a
,
b
),(
p
,
a
,
b
)
:]
is non
empty
finite
V49
()
set
(
p
) is
Relation-like
(
(
INT.Ring
p
)
)
-defined
(
(
INT.Ring
p
)
)
-valued
total
finite
reflexive
symmetric
transitive
Element
of
bool
[:
(
(
INT.Ring
p
)
),(
(
INT.Ring
p
)
)
:]
[:
(
(
INT.Ring
p
)
),(
(
INT.Ring
p
)
)
:]
is non
empty
finite
set
bool
[:
(
(
INT.Ring
p
)
),(
(
INT.Ring
p
)
)
:]
is non
empty
finite
V49
()
set
{
[
b
1
,
b
2
]
where
b
1
,
b
2
is
Element
of (
(
INT.Ring
p
)
) : (
p
,
b
1
,
b
2
)
}
is
set
nabla
(
p
,
a
,
b
) is
Relation-like
(
p
,
a
,
b
)
-defined
(
p
,
a
,
b
)
-valued
total
finite
reflexive
symmetric
transitive
Element
of
bool
[:
(
p
,
a
,
b
),(
p
,
a
,
b
)
:]
(
p
)
/\
(
nabla
(
p
,
a
,
b
)
)
is
Relation-like
(
p
,
a
,
b
)
-defined
(
(
INT.Ring
p
)
)
-defined
(
p
,
a
,
b
)
-valued
(
(
INT.Ring
p
)
)
-valued
finite
reflexive
symmetric
transitive
Element
of
bool
[:
(
p
,
a
,
b
),(
p
,
a
,
b
)
:]
Class
((
p
,
a
,
b
),
[
L
,
F
,1
]
) is
finite
Element
of
bool
(
p
,
a
,
b
)
bool
(
p
,
a
,
b
) is non
empty
finite
V49
()
set
Class
((
p
,
a
,
b
),
[
pp
,
FF
,1
]
) is
finite
Element
of
bool
(
p
,
a
,
b
)
[
[
L
,
F
,1
]
,
[
pp
,
FF
,1
]
]
is
V26
()
Element
of
[:
[:
the
carrier
of
(
INT.Ring
p
)
, the
carrier
of
(
INT.Ring
p
)
,
NAT
:]
,
[:
the
carrier
of
(
INT.Ring
p
)
, the
carrier
of
(
INT.Ring
p
)
,
NAT
:]
:]
[:
[:
the
carrier
of
(
INT.Ring
p
)
, the
carrier
of
(
INT.Ring
p
)
,
NAT
:]
,
[:
the
carrier
of
(
INT.Ring
p
)
, the
carrier
of
(
INT.Ring
p
)
,
NAT
:]
:]
is non
empty
set
{
[
L
,
F
,1
]
,
[
pp
,
FF
,1
]
}
is non
empty
finite
set
{
[
L
,
F
,1
]
}
is non
empty
trivial
finite
1
-element
set
{
{
[
L
,
F
,1
]
,
[
pp
,
FF
,1
]
}
,
{
[
L
,
F
,1
]
}
}
is non
empty
finite
V49
()
set
F1
is
Element
of (
(
INT.Ring
p
)
)
F2
is
Element
of (
(
INT.Ring
p
)
)
F2
`1_3
is
left_add-cancelable
right_add-cancelable
add-cancelable
right_complementable
Element
of the
carrier
of
(
INT.Ring
p
)
F2
`1
is
set
(
F2
`1
)
`1
is
set
F1
`1_3
is
left_add-cancelable
right_add-cancelable
add-cancelable
right_complementable
Element
of the
carrier
of
(
INT.Ring
p
)
F1
`1
is
set
(
F1
`1
)
`1
is
set
F2
`2_3
is
left_add-cancelable
right_add-cancelable
add-cancelable
right_complementable
Element
of the
carrier
of
(
INT.Ring
p
)
(
F2
`1
)
`2
is
set
F1
`2_3
is
left_add-cancelable
right_add-cancelable
add-cancelable
right_complementable
Element
of the
carrier
of
(
INT.Ring
p
)
(
F1
`1
)
`2
is
set
F2
`3_3
is
left_add-cancelable
right_add-cancelable
add-cancelable
right_complementable
Element
of the
carrier
of
(
INT.Ring
p
)
F1
`3_3
is
left_add-cancelable
right_add-cancelable
add-cancelable
right_complementable
Element
of the
carrier
of
(
INT.Ring
p
)
X
is
left_add-cancelable
right_add-cancelable
add-cancelable
right_complementable
Element
of the
carrier
of
(
INT.Ring
p
)
X
*
(
F1
`1_3
)
is
left_add-cancelable
right_add-cancelable
add-cancelable
right_complementable
Element
of the
carrier
of
(
INT.Ring
p
)
the
multF
of
(
INT.Ring
p
)
is
Relation-like
[:
the
carrier
of
(
INT.Ring
p
)
, the
carrier
of
(
INT.Ring
p
)
:]
-defined
the
carrier
of
(
INT.Ring
p
)
-valued
Function-like
quasi_total
finite
Element
of
bool
[:
[:
the
carrier
of
(
INT.Ring
p
)
, the
carrier
of
(
INT.Ring
p
)
:]
, the
carrier
of
(
INT.Ring
p
)
:]
[:
the
carrier
of
(
INT.Ring
p
)
, the
carrier
of
(
INT.Ring
p
)
:]
is non
empty
finite
set
[:
[:
the
carrier
of
(
INT.Ring
p
)
, the
carrier
of
(
INT.Ring
p
)
:]
, the
carrier
of
(
INT.Ring
p
)
:]
is non
empty
finite
set
bool
[:
[:
the
carrier
of
(
INT.Ring
p
)
, the
carrier
of
(
INT.Ring
p
)
:]
, the
carrier
of
(
INT.Ring
p
)
:]
is non
empty
finite
V49
()
set
the
multF
of
(
INT.Ring
p
)
.
(
X
,
(
F1
`1_3
)
) is
left_add-cancelable
right_add-cancelable
add-cancelable
right_complementable
Element
of the
carrier
of
(
INT.Ring
p
)
[
X
,
(
F1
`1_3
)
]
is
V26
()
set
{
X
,
(
F1
`1_3
)
}
is non
empty
finite
set
{
X
}
is non
empty
trivial
finite
1
-element
set
{
{
X
,
(
F1
`1_3
)
}
,
{
X
}
}
is non
empty
finite
V49
()
set
the
multF
of
(
INT.Ring
p
)
.
[
X
,
(
F1
`1_3
)
]
is
set
X
*
(
F1
`2_3
)
is
left_add-cancelable
right_add-cancelable
add-cancelable
right_complementable
Element
of the
carrier
of
(
INT.Ring
p
)
the
multF
of
(
INT.Ring
p
)
.
(
X
,
(
F1
`2_3
)
) is
left_add-cancelable
right_add-cancelable
add-cancelable
right_complementable
Element
of the
carrier
of
(
INT.Ring
p
)
[
X
,
(
F1
`2_3
)
]
is
V26
()
set
{
X
,
(
F1
`2_3
)
}
is non
empty
finite
set
{
{
X
,
(
F1
`2_3
)
}
,
{
X
}
}
is non
empty
finite
V49
()
set
the
multF
of
(
INT.Ring
p
)
.
[
X
,
(
F1
`2_3
)
]
is
set
X
*
(
F1
`3_3
)
is
left_add-cancelable
right_add-cancelable
add-cancelable
right_complementable
Element
of the
carrier
of
(
INT.Ring
p
)
the
multF
of
(
INT.Ring
p
)
.
(
X
,
(
F1
`3_3
)
) is
left_add-cancelable
right_add-cancelable
add-cancelable
right_complementable
Element
of the
carrier
of
(
INT.Ring
p
)
[
X
,
(
F1
`3_3
)
]
is
V26
()
set
{
X
,
(
F1
`3_3
)
}
is non
empty
finite
set
{
{
X
,
(
F1
`3_3
)
}
,
{
X
}
}
is non
empty
finite
V49
()
set
the
multF
of
(
INT.Ring
p
)
.
[
X
,
(
F1
`3_3
)
]
is
set
1.
(
INT.Ring
p
)
is
V61
(
INT.Ring
p
)
V61
(
INT.Ring
p
)
left_add-cancelable
left_add-cancelable
right_add-cancelable
right_add-cancelable
add-cancelable
add-cancelable
right_complementable
right_complementable
(
p
)
Element
of the
carrier
of
(
INT.Ring
p
)
the
OneF
of
(
INT.Ring
p
)
is
left_add-cancelable
right_add-cancelable
add-cancelable
right_complementable
Element
of the
carrier
of
(
INT.Ring
p
)
p
is non
empty
V4
()
V5
()
V6
()
V10
()
V11
()
V12
()
integer
V14
()
ext-real
positive
non
negative
finite
cardinal
set
INT.Ring
p
is non
empty
non
degenerated
non
trivial
finite
left_add-cancelable
right_add-cancelable
add-cancelable
right_complementable
almost_left_invertible
strict
unital
associative
commutative
Euclidian
right-distributive
left-distributive
right_unital
well-unital
distributive
left_unital
Abelian
add-associative
right_zeroed
()
doubleLoopStr
Segm
p
is
V117
()
V118
()
V119
()
V120
()
V121
()
V122
()
Element
of
bool
NAT
addint
p
is
Relation-like
[:
(
Segm
p
)
,
(
Segm
p
)
:]
-defined
Segm
p
-valued
Function-like
quasi_total
V35
()
V36
()
V37
()
V38
()
Element
of
bool
[:
[:
(
Segm
p
)
,
(
Segm
p
)
:]
,
(
Segm
p
)
:]
[:
(
Segm
p
)
,
(
Segm
p
)
:]
is
RAT
-valued
INT
-valued
V35
()
V36
()
V37
()
V38
()
set
[:
[:
(
Segm
p
)
,
(
Segm
p
)
:]
,
(
Segm
p
)
:]
is
RAT
-valued
INT
-valued
V35
()
V36
()
V37
()
V38
()
set
bool
[:
[:
(
Segm
p
)
,
(
Segm
p
)
:]
,
(
Segm
p
)
:]
is non
empty
set
multint
p
is
Relation-like
[:
(
Segm
p
)
,
(
Segm
p
)
:]
-defined
Segm
p
-valued
Function-like
quasi_total
V35
()
V36
()
V37
()
V38
()
Element
of
bool
[:
[:
(
Segm
p
)
,
(
Segm
p
)
:]
,
(
Segm
p
)
:]
K633
(1,
(
Segm
p
)
) is
V4
()
V5
()
V6
()
V10
()
V11
()
V12
()
integer
ext-real
non
negative
finite
cardinal
V113
()
Element
of
Segm
p
K633
(
0
,
(
Segm
p
)
) is
V4
()
V5
()
V6
()
V10
()
V11
()
V12
()
integer
ext-real
non
negative
finite
cardinal
V113
()
Element
of
Segm
p
doubleLoopStr
(#
(
Segm
p
)
,
(
addint
p
)
,
(
multint
p
)
,
K633
(1,
(
Segm
p
)
),
K633
(
0
,
(
Segm
p
)
) #) is
strict
doubleLoopStr
the
carrier
of
(
INT.Ring
p
)
is non
empty
non
trivial
finite
set
0.
(
INT.Ring
p
)
is
V61
(
INT.Ring
p
)
left_add-cancelable
right_add-cancelable
add-cancelable
right_complementable
Element
of the
carrier
of
(
INT.Ring
p
)
the
ZeroF
of
(
INT.Ring
p
)
is
left_add-cancelable
right_add-cancelable
add-cancelable
right_complementable
Element
of the
carrier
of
(
INT.Ring
p
)
[:
the
carrier
of
(
INT.Ring
p
)
, the
carrier
of
(
INT.Ring
p
)
, the
carrier
of
(
INT.Ring
p
)
:]
is non
empty
finite
set
(
(
INT.Ring
p
)
) is non
empty
finite
Element
of
bool
[:
the
carrier
of
(
INT.Ring
p
)
, the
carrier
of
(
INT.Ring
p
)
, the
carrier
of
(
INT.Ring
p
)
:]
bool
[:
the
carrier
of
(
INT.Ring
p
)
, the
carrier
of
(
INT.Ring
p
)
, the
carrier
of
(
INT.Ring
p
)
:]
is non
empty
finite
V49
()
set
[
(
0.
(
INT.Ring
p
)
)
,
(
0.
(
INT.Ring
p
)
)
,
(
0.
(
INT.Ring
p
)
)
]
is
V26
()
V27
()
Element
of
[:
the
carrier
of
(
INT.Ring
p
)
, the
carrier
of
(
INT.Ring
p
)
, the
carrier
of
(
INT.Ring
p
)
:]
[
(
0.
(
INT.Ring
p
)
)
,
(
0.
(
INT.Ring
p
)
)
]
is
V26
()
set
{
(
0.
(
INT.Ring
p
)
)
,
(
0.
(
INT.Ring
p
)
)
}
is non
empty
finite
set
{
(
0.
(
INT.Ring
p
)
)
}
is non
empty
trivial
finite
1
-element
set
{
{
(
0.
(
INT.Ring
p
)
)
,
(
0.
(
INT.Ring
p
)
)
}
,
{
(
0.
(
INT.Ring
p
)
)
}
}
is non
empty
finite
V49
()
set
[
[
(
0.
(
INT.Ring
p
)
)
,
(
0.
(
INT.Ring
p
)
)
]
,
(
0.
(
INT.Ring
p
)
)
]
is
V26
()
set
{
[
(
0.
(
INT.Ring
p
)
)
,
(
0.
(
INT.Ring
p
)
)
]
,
(
0.
(
INT.Ring
p
)
)
}
is non
empty
finite
set
{
[
(
0.
(
INT.Ring
p
)
)
,
(
0.
(
INT.Ring
p
)
)
]
}
is non
empty
trivial
finite
1
-element
set
{
{
[
(
0.
(
INT.Ring
p
)
)
,
(
0.
(
INT.Ring
p
)
)
]
,
(
0.
(
INT.Ring
p
)
)
}
,
{
[
(
0.
(
INT.Ring
p
)
)
,
(
0.
(
INT.Ring
p
)
)
]
}
}
is non
empty
finite
V49
()
set
{
[
(
0.
(
INT.Ring
p
)
)
,
(
0.
(
INT.Ring
p
)
)
,
(
0.
(
INT.Ring
p
)
)
]
}
is non
empty
trivial
finite
1
-element
Element
of
bool
[:
the
carrier
of
(
INT.Ring
p
)
, the
carrier
of
(
INT.Ring
p
)
, the
carrier
of
(
INT.Ring
p
)
:]
[:
the
carrier
of
(
INT.Ring
p
)
, the
carrier
of
(
INT.Ring
p
)
, the
carrier
of
(
INT.Ring
p
)
:]
\
{
[
(
0.
(
INT.Ring
p
)
)
,
(
0.
(
INT.Ring
p
)
)
,
(
0.
(
INT.Ring
p
)
)
]
}
is
finite
Element
of
bool
[:
the
carrier
of
(
INT.Ring
p
)
, the
carrier
of
(
INT.Ring
p
)
, the
carrier
of
(
INT.Ring
p
)
:]
a
is
left_add-cancelable
right_add-cancelable
add-cancelable
right_complementable
Element
of the
carrier
of
(
INT.Ring
p
)
b
is
left_add-cancelable
right_add-cancelable
add-cancelable
right_complementable
Element
of the
carrier
of
(
INT.Ring
p
)
(
p
,
a
,
b
) is
left_add-cancelable
right_add-cancelable
add-cancelable
right_complementable
Element
of the
carrier
of
(
INT.Ring
p
)
(
p
,
a
,
b
) is non
empty
finite
Element
of
bool
(
(
INT.Ring
p
)
)
bool
(
(
INT.Ring
p
)
) is non
empty
finite
V49
()
set
(
p
,
a
,
b
) is
Relation-like
[:
the
carrier
of
(
INT.Ring
p
)
, the
carrier
of
(
INT.Ring
p
)
, the
carrier
of
(
INT.Ring
p
)
:]
-defined
the
carrier
of
(
INT.Ring
p
)
-valued
Function-like
quasi_total
finite
Element
of
bool
[:
[:
the
carrier
of
(
INT.Ring
p
)
, the
carrier
of
(
INT.Ring
p
)
, the
carrier
of
(
INT.Ring
p
)
:]
, the
carrier
of
(
INT.Ring
p
)
:]
[:
[:
the
carrier
of
(
INT.Ring
p
)
, the
carrier
of
(
INT.Ring
p
)
, the
carrier
of
(
INT.Ring
p
)
:]
, the
carrier
of
(
INT.Ring
p
)
:]
is non
empty
finite
set
bool
[:
[:
the
carrier
of
(
INT.Ring
p
)
, the
carrier
of
(
INT.Ring
p
)
, the
carrier
of
(
INT.Ring
p
)
:]
, the
carrier
of
(
INT.Ring
p
)
:]
is non
empty
finite
V49
()
set
{
b
1
where
b
1
is
Element
of (
(
INT.Ring
p
)
) : (
p
,
a
,
b
)
.
b
1
=
0.
(
INT.Ring
p
)
}
is
set
bool
(
p
,
a
,
b
) is non
empty
finite
V49
()
set
(
p
,
a
,
b
) is
Relation-like
(
p
,
a
,
b
)
-defined
(
p
,
a
,
b
)
-valued
total
finite
reflexive
symmetric
transitive
Element
of
bool
[:
(
p
,
a
,
b
),(
p
,
a
,
b
)
:]
[:
(
p
,
a
,
b
),(
p
,
a
,
b
)
:]
is non
empty
finite
set
bool
[:
(
p
,
a
,
b
),(
p
,
a
,
b
)
:]
is non
empty
finite
V49
()
set
(
p
) is
Relation-like
(
(
INT.Ring
p
)
)
-defined
(
(
INT.Ring
p
)
)
-valued
total
finite
reflexive
symmetric
transitive
Element
of
bool
[:
(
(
INT.Ring
p
)
),(
(
INT.Ring
p
)
)
:]
[:
(
(
INT.Ring
p
)
),(
(
INT.Ring
p
)
)
:]
is non
empty
finite
set
bool
[:
(
(
INT.Ring
p
)
),(
(
INT.Ring
p
)
)
:]
is non
empty
finite
V49
()
set
{
[
b
1
,
b
2
]
where
b
1
,
b
2
is
Element
of (
(
INT.Ring
p
)
) : (
p
,
b
1
,
b
2
)
}
is
set
nabla
(
p
,
a
,
b
) is
Relation-like
(
p
,
a
,
b
)
-defined
(
p
,
a
,
b
)
-valued
total
finite
reflexive
symmetric
transitive
Element
of
bool
[:
(
p
,
a
,
b
),(
p
,
a
,
b
)
:]
(
p
)
/\
(
nabla
(
p
,
a
,
b
)
)
is
Relation-like
(
(
INT.Ring
p
)
)
-defined
(
p
,
a
,
b
)
-defined
(
(
INT.Ring
p
)
)
-valued
(
p
,
a
,
b
)
-valued
finite
reflexive
symmetric
transitive
Element
of
bool
[:
(
p
,
a
,
b
),(
p
,
a
,
b
)
:]
Class
((
p
,
a
,
b
),
[
0
,1,
0
]
) is
finite
Element
of
bool
(
p
,
a
,
b
)
{
(
Class
((
p
,
a
,
b
),
[
0
,1,
0
]
)
)
}
is non
empty
trivial
finite
V49
() 1
-element
Element
of
bool
(
bool
(
p
,
a
,
b
)
)
bool
(
bool
(
p
,
a
,
b
)
)
is non
empty
finite
V49
()
set
{
(
Class
((
p
,
a
,
b
),
b
1
)
)
where
b
1
is
Element
of (
(
INT.Ring
p
)
) : (
b
1
in
(
p
,
a
,
b
) & ex
b
2
,
b
3
being
left_add-cancelable
right_add-cancelable
add-cancelable
right_complementable
Element
of the
carrier
of
(
INT.Ring
p
)
st
b
1
=
[
b
2
,
b
3
,1
]
)
}
is
set
L
is
set
F
is
set
L
/\
F
is
set
pp
is
set
FF
is
Element
of (
(
INT.Ring
p
)
)
Class
((
p
,
a
,
b
),
FF
) is
finite
Element
of
bool
(
p
,
a
,
b
)
F1
is
left_add-cancelable
right_add-cancelable
add-cancelable
right_complementable
Element
of the
carrier
of
(
INT.Ring
p
)
F2
is
left_add-cancelable
right_add-cancelable
add-cancelable
right_complementable
Element
of the
carrier
of
(
INT.Ring
p
)
[
F1
,
F2
,1
]
is
V26
()
V27
()
Element
of
[:
the
carrier
of
(
INT.Ring
p
)
, the
carrier
of
(
INT.Ring
p
)
,
NAT
:]
[:
the
carrier
of
(
INT.Ring
p
)
, the
carrier
of
(
INT.Ring
p
)
,
NAT
:]
is non
empty
set
[
F1
,
F2
]
is
V26
()
set
{
F1
,
F2
}
is non
empty
finite
set
{
F1
}
is non
empty
trivial
finite
1
-element
set
{
{
F1
,
F2
}
,
{
F1
}
}
is non
empty
finite
V49
()
set
[
[
F1
,
F2
]
,1
]
is
V26
()
set
{
[
F1
,
F2
]
,1
}
is non
empty
finite
set
{
[
F1
,
F2
]
}
is non
empty
trivial
finite
1
-element
set
{
{
[
F1
,
F2
]
,1
}
,
{
[
F1
,
F2
]
}
}
is non
empty
finite
V49
()
set
F1
is
left_add-cancelable
right_add-cancelable
add-cancelable
right_complementable
Element
of the
carrier
of
(
INT.Ring
p
)
F2
is
left_add-cancelable
right_add-cancelable
add-cancelable
right_complementable
Element
of the
carrier
of
(
INT.Ring
p
)
[
F1
,
F2
,1
]
is
V26
()
V27
()
Element
of
[:
the
carrier
of
(
INT.Ring
p
)
, the
carrier
of
(
INT.Ring
p
)
,
NAT
:]
[:
the
carrier
of
(
INT.Ring
p
)
, the
carrier
of
(
INT.Ring
p
)
,
NAT
:]
is non
empty
set
[
F1
,
F2
]
is
V26
()
set
{
F1
,
F2
}
is non
empty
finite
set
{
F1
}
is non
empty
trivial
finite
1
-element
set
{
{
F1
,
F2
}
,
{
F1
}
}
is non
empty
finite
V49
()
set
[
[
F1
,
F2
]
,1
]
is
V26
()
set
{
[
F1
,
F2
]
,1
}
is non
empty
finite
set
{
[
F1
,
F2
]
}
is non
empty
trivial
finite
1
-element
set
{
{
[
F1
,
F2
]
,1
}
,
{
[
F1
,
F2
]
}
}
is non
empty
finite
V49
()
set
X
is
Element
of (
(
INT.Ring
p
)
)
Y
is
left_add-cancelable
right_add-cancelable
add-cancelable
right_complementable
Element
of the
carrier
of
(
INT.Ring
p
)
n1
is
left_add-cancelable
right_add-cancelable
add-cancelable
right_complementable
Element
of the
carrier
of
(
INT.Ring
p
)
[
Y
,
n1
,1
]
is
V26
()
V27
()
Element
of
[:
the
carrier
of
(
INT.Ring
p
)
, the
carrier
of
(
INT.Ring
p
)
,
NAT
:]
[
Y
,
n1
]
is
V26
()
set
{
Y
,
n1
}
is non
empty
finite
set
{
Y
}
is non
empty
trivial
finite
1
-element
set
{
{
Y
,
n1
}
,
{
Y
}
}
is non
empty
finite
V49
()
set
[
[
Y
,
n1
]
,1
]
is
V26
()
set
{
[
Y
,
n1
]
,1
}
is non
empty
finite
set
{
[
Y
,
n1
]
}
is non
empty
trivial
finite
1
-element
set
{
{
[
Y
,
n1
]
,1
}
,
{
[
Y
,
n1
]
}
}
is non
empty
finite
V49
()
set
[
FF
,
X
]
is
V26
()
Element
of
[:
(
(
INT.Ring
p
)
),(
(
INT.Ring
p
)
)
:]
{
FF
,
X
}
is non
empty
finite
set
{
FF
}
is non
empty
trivial
finite
1
-element
set
{
{
FF
,
X
}
,
{
FF
}
}
is non
empty
finite
V49
()
set
Y
is
left_add-cancelable
right_add-cancelable
add-cancelable
right_complementable
Element
of the
carrier
of
(
INT.Ring
p
)
n1
is
left_add-cancelable
right_add-cancelable
add-cancelable
right_complementable
Element
of the
carrier
of
(
INT.Ring
p
)
[
Y
,
n1
,1
]
is
V26
()
V27
()
Element
of
[:
the
carrier
of
(
INT.Ring
p
)
, the
carrier
of
(
INT.Ring
p
)
,
NAT
:]
[
Y
,
n1
]
is
V26
()
set
{
Y
,
n1
}
is non
empty
finite
set
{
Y
}
is non
empty
trivial
finite
1
-element
set
{
{
Y
,
n1
}
,
{
Y
}
}
is non
empty
finite
V49
()
set
[
[
Y
,
n1
]
,1
]
is
V26
()
set
{
[
Y
,
n1
]
,1
}
is non
empty
finite
set
{
[
Y
,
n1
]
}
is non
empty
trivial
finite
1
-element
set
{
{
[
Y
,
n1
]
,1
}
,
{
[
Y
,
n1
]
}
}
is non
empty
finite
V49
()
set
X
`1_3
is
left_add-cancelable
right_add-cancelable
add-cancelable
right_complementable
Element
of the
carrier
of
(
INT.Ring
p
)
X
`1
is
set
(
X
`1
)
`1
is
set
FF
`1_3
is
left_add-cancelable
right_add-cancelable
add-cancelable
right_complementable
Element
of the
carrier
of
(
INT.Ring
p
)
FF
`1
is
set
(
FF
`1
)
`1
is
set
X
`2_3
is
left_add-cancelable
right_add-cancelable
add-cancelable
right_complementable
Element
of the
carrier
of
(
INT.Ring
p
)
(
X
`1
)
`2
is
set
FF
`2_3
is
left_add-cancelable
right_add-cancelable
add-cancelable
right_complementable
Element
of the
carrier
of
(
INT.Ring
p
)
(
FF
`1
)
`2
is
set
X
`3_3
is
left_add-cancelable
right_add-cancelable
add-cancelable
right_complementable
Element
of the
carrier
of
(
INT.Ring
p
)
FF
`3_3
is
left_add-cancelable
right_add-cancelable
add-cancelable
right_complementable
Element
of the
carrier
of
(
INT.Ring
p
)
Y
is
left_add-cancelable
right_add-cancelable
add-cancelable
right_complementable
Element
of the
carrier
of
(
INT.Ring
p
)
Y
*
(
FF
`1_3
)
is
left_add-cancelable
right_add-cancelable
add-cancelable
right_complementable
Element
of the
carrier
of
(
INT.Ring
p
)
the
multF
of
(
INT.Ring
p
)
is
Relation-like
[:
the
carrier
of
(
INT.Ring
p
)
, the
carrier
of
(
INT.Ring
p
)
:]
-defined
the
carrier
of
(
INT.Ring
p
)
-valued
Function-like
quasi_total
finite
Element
of
bool
[:
[:
the
carrier
of
(
INT.Ring
p
)
, the
carrier
of
(
INT.Ring
p
)
:]
, the
carrier
of
(
INT.Ring
p
)
:]
[:
the
carrier
of
(
INT.Ring
p
)
, the
carrier
of
(
INT.Ring
p
)
:]
is non
empty
finite
set
[:
[:
the
carrier
of
(
INT.Ring
p
)
, the
carrier
of
(
INT.Ring
p
)
:]
, the
carrier
of
(
INT.Ring
p
)
:]
is non
empty
finite
set
bool
[:
[:
the
carrier
of
(
INT.Ring
p
)
, the
carrier
of
(
INT.Ring
p
)
:]
, the
carrier
of
(
INT.Ring
p
)
:]
is non
empty
finite
V49
()
set
the
multF
of
(
INT.Ring
p
)
.
(
Y
,
(
FF
`1_3
)
) is
left_add-cancelable
right_add-cancelable
add-cancelable
right_complementable
Element
of the
carrier
of
(
INT.Ring
p
)
[
Y
,
(
FF
`1_3
)
]
is
V26
()
set
{
Y
,
(
FF
`1_3
)
}
is non
empty
finite
set
{
Y
}
is non
empty
trivial
finite
1
-element
set
{
{
Y
,
(
FF
`1_3
)
}
,
{
Y
}
}
is non
empty
finite
V49
()
set
the
multF
of
(
INT.Ring
p
)
.
[
Y
,
(
FF
`1_3
)
]
is
set
Y
*
(
FF
`2_3
)
is
left_add-cancelable
right_add-cancelable
add-cancelable
right_complementable
Element
of the
carrier
of
(
INT.Ring
p
)
the
multF
of
(
INT.Ring
p
)
.
(
Y
,
(
FF
`2_3
)
) is
left_add-cancelable
right_add-cancelable
add-cancelable
right_complementable
Element
of the
carrier
of
(
INT.Ring
p
)
[
Y
,
(
FF
`2_3
)
]
is
V26
()
set
{
Y
,
(
FF
`2_3
)
}
is non
empty
finite
set
{
{
Y
,
(
FF
`2_3
)
}
,
{
Y
}
}
is non
empty
finite
V49
()
set
the
multF
of
(
INT.Ring
p
)
.
[
Y
,
(
FF
`2_3
)
]
is
set
Y
*
(
FF
`3_3
)
is
left_add-cancelable
right_add-cancelable
add-cancelable
right_complementable
Element
of the
carrier
of
(
INT.Ring
p
)
the
multF
of
(
INT.Ring
p
)
.
(
Y
,
(
FF
`3_3
)
) is
left_add-cancelable
right_add-cancelable
add-cancelable
right_complementable
Element
of the
carrier
of
(
INT.Ring
p
)
[
Y
,
(
FF
`3_3
)
]
is
V26
()
set
{
Y
,
(
FF
`3_3
)
}
is non
empty
finite
set
{
{
Y
,
(
FF
`3_3
)
}
,
{
Y
}
}
is non
empty
finite
V49
()
set
the
multF
of
(
INT.Ring
p
)
.
[
Y
,
(
FF
`3_3
)
]
is
set
1.
(
INT.Ring
p
)
is
V61
(
INT.Ring
p
)
V61
(
INT.Ring
p
)
left_add-cancelable
left_add-cancelable
right_add-cancelable
right_add-cancelable
add-cancelable
add-cancelable
right_complementable
right_complementable
(
p
)
Element
of the
carrier
of
(
INT.Ring
p
)
the
OneF
of
(
INT.Ring
p
)
is
left_add-cancelable
right_add-cancelable
add-cancelable
right_complementable
Element
of the
carrier
of
(
INT.Ring
p
)
p
is non
empty
finite
set
[:
p
,
p
:]
is non
empty
finite
set
bool
[:
p
,
p
:]
is non
empty
finite
V49
()
set
bool
p
is non
empty
finite
V49
()
set
a
is
Relation-like
p
-defined
p
-valued
total
finite
reflexive
symmetric
transitive
Element
of
bool
[:
p
,
p
:]
Class
a
is non
empty
finite
V49
()
V130
()
a_partition
of
p
b
is
Relation-like
Class
a
-valued
Function-like
set
dom
b
is
set
L
is
set
b
.
L
is
set
p
is non
empty
set
[:
p
,
p
:]
is non
empty
set
bool
[:
p
,
p
:]
is non
empty
set
a
is
Relation-like
p
-defined
p
-valued
total
reflexive
symmetric
transitive
Element
of
bool
[:
p
,
p
:]
Class
a
is non
empty
V130
()
a_partition
of
p
b
is
Relation-like
Class
a
-valued
Function-like
set
L
is
set
F
is
set
dom
b
is
set
b
.
L
is
set
b
.
F
is
set
dom
b
is
set
b
.
L
is
set
b
.
F
is
set
dom
b
is
set
p
is non
empty
set
[:
p
,
p
:]
is non
empty
set
bool
[:
p
,
p
:]
is non
empty
set
a
is
Relation-like
p
-defined
p
-valued
total
reflexive
symmetric
transitive
Element
of
bool
[:
p
,
p
:]
Class
a
is non
empty
V130
()
a_partition
of
p
b
is
Relation-like
Class
a
-valued
Function-like
set
Union
b
is
set
rng
b
is
set
union
(
rng
b
)
is
set
union
(
Class
a
)
is
set
p
is non
empty
finite
set
[:
p
,
p
:]
is non
empty
finite
set
bool
[:
p
,
p
:]
is non
empty
finite
V49
()
set
card
p
is non
empty
V4
()
V5
()
V6
()
V10
()
V11
()
V12
()
integer
ext-real
positive
non
negative
finite
cardinal
V113
()
V117
()
V118
()
V119
()
V120
()
V121
()
V122
()
Element
of
NAT
a
is
Relation-like
p
-defined
p
-valued
total
finite
reflexive
symmetric
transitive
Element
of
bool
[:
p
,
p
:]
Class
a
is non
empty
finite
V49
()
V130
()
a_partition
of
p
b
is
Relation-like
Class
a
-valued
Function-like
set
dom
b
is
set
L
is
Relation-like
NAT
-defined
NAT
-valued
Function-like
V35
()
V36
()
V37
()
V38
()
FinSequence-like
FinSequence
of
NAT
dom
L
is
V117
()
V118
()
V119
()
V120
()
V121
()
V122
()
Element
of
bool
NAT
Sum
L
is
V4
()
V5
()
V6
()
V10
()
V11
()
V12
()
integer
ext-real
non
negative
finite
cardinal
V113
()
V117
()
V118
()
V119
()
V120
()
V121
()
V122
()
Element
of
NAT
F
is
V4
()
V5
()
V6
()
V10
()
V11
()
V12
()
integer
ext-real
non
negative
finite
cardinal
set
b
.
F
is
set
L
.
F
is
V4
()
V5
()
V6
()
V10
()
V11
()
V12
()
integer
ext-real
non
negative
finite
cardinal
set
card
(
b
.
F
)
is
V4
()
V5
()
V6
()
cardinal
set
Union
b
is
set
rng
b
is
set
union
(
rng
b
)
is
set
p
is non
empty
V4
()
V5
()
V6
()
V10
()
V11
()
V12
()
integer
V14
()
ext-real
positive
non
negative
finite
cardinal
set
INT.Ring
p
is non
empty
non
degenerated
non
trivial
finite
left_add-cancelable
right_add-cancelable
add-cancelable
right_complementable
almost_left_invertible
strict
unital
associative
commutative
Euclidian
right-distributive
left-distributive
right_unital
well-unital
distributive
left_unital
Abelian
add-associative
right_zeroed
()
doubleLoopStr
Segm
p
is
V117
()
V118
()
V119
()
V120
()
V121
()
V122
()
Element
of
bool
NAT
addint
p
is
Relation-like
[:
(
Segm
p
)
,
(
Segm
p
)
:]
-defined
Segm
p
-valued
Function-like
quasi_total
V35
()
V36
()
V37
()
V38
()
Element
of
bool
[:
[:
(
Segm
p
)
,
(
Segm
p
)
:]
,
(
Segm
p
)
:]
[:
(
Segm
p
)
,
(
Segm
p
)
:]
is
RAT
-valued
INT
-valued
V35
()
V36
()
V37
()
V38
()
set
[:
[:
(
Segm
p
)
,
(
Segm
p
)
:]
,
(
Segm
p
)
:]
is
RAT
-valued
INT
-valued
V35
()
V36
()
V37
()
V38
()
set
bool
[:
[:
(
Segm
p
)
,
(
Segm
p
)
:]
,
(
Segm
p
)
:]
is non
empty
set
multint
p
is
Relation-like
[:
(
Segm
p
)
,
(
Segm
p
)
:]
-defined
Segm
p
-valued
Function-like
quasi_total
V35
()
V36
()
V37
()
V38
()
Element
of
bool
[:
[:
(
Segm
p
)
,
(
Segm
p
)
:]
,
(
Segm
p
)
:]
K633
(1,
(
Segm
p
)
) is
V4
()
V5
()
V6
()
V10
()
V11
()
V12
()
integer
ext-real
non
negative
finite
cardinal
V113
()
Element
of
Segm
p
K633
(
0
,
(
Segm
p
)
) is
V4
()
V5
()
V6
()
V10
()
V11
()
V12
()
integer
ext-real
non
negative
finite
cardinal
V113
()
Element
of
Segm
p
doubleLoopStr
(#
(
Segm
p
)
,
(
addint
p
)
,
(
multint
p
)
,
K633
(1,
(
Segm
p
)
),
K633
(
0
,
(
Segm
p
)
) #) is
strict
doubleLoopStr
the
carrier
of
(
INT.Ring
p
)
is non
empty
non
trivial
finite
set
0.
(
INT.Ring
p
)
is
V61
(
INT.Ring
p
)
left_add-cancelable
right_add-cancelable
add-cancelable
right_complementable
Element
of the
carrier
of
(
INT.Ring
p
)
the
ZeroF
of
(
INT.Ring
p
)
is
left_add-cancelable
right_add-cancelable
add-cancelable
right_complementable
Element
of the
carrier
of
(
INT.Ring
p
)
a
is
left_add-cancelable
right_add-cancelable
add-cancelable
right_complementable
Element
of the
carrier
of
(
INT.Ring
p
)
b
is
left_add-cancelable
right_add-cancelable
add-cancelable
right_complementable
Element
of the
carrier
of
(
INT.Ring
p
)
(
p
,
a
,
b
) is
left_add-cancelable
right_add-cancelable
add-cancelable
right_complementable
Element
of the
carrier
of
(
INT.Ring
p
)
L
is
left_add-cancelable
right_add-cancelable
add-cancelable
right_complementable
Element
of the
carrier
of
(
INT.Ring
p
)
L
|^
3 is
left_add-cancelable
right_add-cancelable
add-cancelable
right_complementable
Element
of the
carrier
of
(
INT.Ring
p
)
power
(
INT.Ring
p
)
is
Relation-like
[:
the
carrier
of
(
INT.Ring
p
)
,
NAT
:]
-defined
the
carrier
of
(
INT.Ring
p
)
-valued
Function-like
quasi_total
Element
of
bool
[:
[:
the
carrier
of
(
INT.Ring
p
)
,
NAT
:]
, the
carrier
of
(
INT.Ring
p
)
:]
[:
the
carrier
of
(
INT.Ring
p
)
,
NAT
:]
is non
empty
non
trivial
RAT
-valued
INT
-valued
V35
()
V36
()
V37
()
V38
() non
finite
set
[:
[:
the
carrier
of
(
INT.Ring
p
)
,
NAT
:]
, the
carrier
of
(
INT.Ring
p
)
:]
is non
empty
non
trivial
non
finite
set
bool
[:
[:
the
carrier
of
(
INT.Ring
p
)
,
NAT
:]
, the
carrier
of
(
INT.Ring
p
)
:]
is non
empty
non
trivial
non
finite
set
(
power
(
INT.Ring
p
)
)
.
(
L
,3) is
set
[
L
,3
]
is
V26
()
set
{
L
,3
}
is non
empty
finite
set
{
L
}
is non
empty
trivial
finite
1
-element
set
{
{
L
,3
}
,
{
L
}
}
is non
empty
finite
V49
()
set
(
power
(
INT.Ring
p
)
)
.
[
L
,3
]
is
set
a
*
L
is
left_add-cancelable
right_add-cancelable
add-cancelable
right_complementable
Element
of the
carrier
of
(
INT.Ring
p
)
the
multF
of
(
INT.Ring
p
)
is
Relation-like
[:
the
carrier
of
(
INT.Ring
p
)
, the
carrier
of
(
INT.Ring
p
)
:]
-defined
the
carrier
of
(
INT.Ring
p
)
-valued
Function-like
quasi_total
finite
Element
of
bool
[:
[:
the
carrier
of
(
INT.Ring
p
)
, the
carrier
of
(
INT.Ring
p
)
:]
, the
carrier
of
(
INT.Ring
p
)
:]
[:
the
carrier
of
(
INT.Ring
p
)
, the
carrier
of
(
INT.Ring
p
)
:]
is non
empty
finite
set
[:
[:
the
carrier
of
(
INT.Ring
p
)
, the
carrier
of
(
INT.Ring
p
)
:]
, the
carrier
of
(
INT.Ring
p
)
:]
is non
empty
finite
set
bool
[:
[:
the
carrier
of
(
INT.Ring
p
)
, the
carrier
of
(
INT.Ring
p
)
:]
, the
carrier
of
(
INT.Ring
p
)
:]
is non
empty
finite
V49
()
set
the
multF
of
(
INT.Ring
p
)
.
(
a
,
L
) is
left_add-cancelable
right_add-cancelable
add-cancelable
right_complementable
Element
of the
carrier
of
(
INT.Ring
p
)
[
a
,
L
]
is
V26
()
set
{
a
,
L
}
is non
empty
finite
set
{
a
}
is non
empty
trivial
finite
1
-element
set
{
{
a
,
L
}
,
{
a
}
}
is non
empty
finite
V49
()
set
the
multF
of
(
INT.Ring
p
)
.
[
a
,
L
]
is
set
(
L
|^
3
)
+
(
a
*
L
)
is
left_add-cancelable
right_add-cancelable
add-cancelable
right_complementable
Element
of the
carrier
of
(
INT.Ring
p
)
the
addF
of
(
INT.Ring
p
)
is
Relation-like
[:
the
carrier
of
(
INT.Ring
p
)
, the
carrier
of
(
INT.Ring
p
)
:]
-defined
the
carrier
of
(
INT.Ring
p
)
-valued
Function-like
quasi_total
finite
Element
of
bool
[:
[:
the
carrier
of
(
INT.Ring
p
)
, the
carrier
of
(
INT.Ring
p
)
:]
, the
carrier
of
(
INT.Ring
p
)
:]
the
addF
of
(
INT.Ring
p
)
.
(
(
L
|^
3
)
,
(
a
*
L
)
) is
left_add-cancelable
right_add-cancelable
add-cancelable
right_complementable
Element
of the
carrier
of
(
INT.Ring
p
)
[
(
L
|^
3
)
,
(
a
*
L
)
]
is
V26
()
set
{
(
L
|^
3
)
,
(
a
*
L
)
}
is non
empty
finite
set
{
(
L
|^
3
)
}
is non
empty
trivial
finite
1
-element
set
{
{
(
L
|^
3
)
,
(
a
*
L
)
}
,
{
(
L
|^
3
)
}
}
is non
empty
finite
V49
()
set
the
addF
of
(
INT.Ring
p
)
.
[
(
L
|^
3
)
,
(
a
*
L
)
]
is
set
(
(
L
|^
3
)
+
(
a
*
L
)
)
+
b
is
left_add-cancelable
right_add-cancelable
add-cancelable
right_complementable
Element
of the
carrier
of
(
INT.Ring
p
)
the
addF
of
(
INT.Ring
p
)
.
(
(
(
L
|^
3
)
+
(
a
*
L
)
)
,
b
) is
left_add-cancelable
right_add-cancelable
add-cancelable
right_complementable
Element
of the
carrier
of
(
INT.Ring
p
)
[
(
(
L
|^
3
)
+
(
a
*
L
)
)
,
b
]
is
V26
()
set
{
(
(
L
|^
3
)
+
(
a
*
L
)
)
,
b
}
is non
empty
finite
set
{
(
(
L
|^
3
)
+
(
a
*
L
)
)
}
is non
empty
trivial
finite
1
-element
set
{
{
(
(
L
|^
3
)
+
(
a
*
L
)
)
,
b
}
,
{
(
(
L
|^
3
)
+
(
a
*
L
)
)
}
}
is non
empty
finite
V49
()
set
the
addF
of
(
INT.Ring
p
)
.
[
(
(
L
|^
3
)
+
(
a
*
L
)
)
,
b
]
is
set
{
b
1
where
b
1
is
left_add-cancelable
right_add-cancelable
add-cancelable
right_complementable
Element
of the
carrier
of
(
INT.Ring
p
)
:
b
1
|^
2
=
(
(
L
|^
3
)
+
(
a
*
L
)
)
+
b
}
is
set
(
p
,
a
,
b
) is non
empty
finite
Element
of
bool
(
(
INT.Ring
p
)
)
(
(
INT.Ring
p
)
) is non
empty
finite
Element
of
bool
[:
the
carrier
of
(
INT.Ring
p
)
, the
carrier
of
(
INT.Ring
p
)
, the
carrier
of
(
INT.Ring
p
)
:]
[:
the
carrier
of
(
INT.Ring
p
)
, the
carrier
of
(
INT.Ring
p
)
, the
carrier
of
(
INT.Ring
p
)
:]
is non
empty
finite
set
bool
[:
the
carrier
of
(
INT.Ring
p
)
, the
carrier
of
(
INT.Ring
p
)
, the
carrier
of
(
INT.Ring
p
)
:]
is non
empty
finite
V49
()
set
[
(
0.
(
INT.Ring
p
)
)
,
(
0.
(
INT.Ring
p
)
)
,
(
0.
(
INT.Ring
p
)
)
]
is
V26
()
V27
()
Element
of
[:
the
carrier
of
(
INT.Ring
p
)
, the
carrier
of
(
INT.Ring
p
)
, the
carrier
of
(
INT.Ring
p
)
:]
[
(
0.
(
INT.Ring
p
)
)
,
(
0.
(
INT.Ring
p
)
)
]
is
V26
()
set
{
(
0.
(
INT.Ring
p
)
)
,
(
0.
(
INT.Ring
p
)
)
}
is non
empty
finite
set
{
(
0.
(
INT.Ring
p
)
)
}
is non
empty
trivial
finite
1
-element
set
{
{
(
0.
(
INT.Ring
p
)
)
,
(
0.
(
INT.Ring
p
)
)
}
,
{
(
0.
(
INT.Ring
p
)
)
}
}
is non
empty
finite
V49
()
set
[
[
(
0.
(
INT.Ring
p
)
)
,
(
0.
(
INT.Ring
p
)
)
]
,
(
0.
(
INT.Ring
p
)
)
]
is
V26
()
set
{
[
(
0.
(
INT.Ring
p
)
)
,
(
0.
(
INT.Ring
p
)
)
]
,
(
0.
(
INT.Ring
p
)
)
}
is non
empty
finite
set
{
[
(
0.
(
INT.Ring
p
)
)
,
(
0.
(
INT.Ring
p
)
)
]
}
is non
empty
trivial
finite
1
-element
set
{
{
[
(
0.
(
INT.Ring
p
)
)
,
(
0.
(
INT.Ring
p
)
)
]
,
(
0.
(
INT.Ring
p
)
)
}
,
{
[
(
0.
(
INT.Ring
p
)
)
,
(
0.
(
INT.Ring
p
)
)
]
}
}
is non
empty
finite
V49
()
set
{
[
(
0.
(
INT.Ring
p
)
)
,
(
0.
(
INT.Ring
p
)
)
,
(
0.
(
INT.Ring
p
)
)
]
}
is non
empty
trivial
finite
1
-element
Element
of
bool
[:
the
carrier
of
(
INT.Ring
p
)
, the
carrier
of
(
INT.Ring
p
)
, the
carrier
of
(
INT.Ring
p
)
:]
[:
the
carrier
of
(
INT.Ring
p
)
, the
carrier
of
(
INT.Ring
p
)
, the
carrier
of
(
INT.Ring
p
)
:]
\
{
[
(
0.
(
INT.Ring
p
)
)
,
(
0.
(
INT.Ring
p
)
)
,
(
0.
(
INT.Ring
p
)
)
]
}
is
finite
Element
of
bool
[:
the
carrier
of
(
INT.Ring
p
)
, the
carrier
of
(
INT.Ring
p
)
, the
carrier
of
(
INT.Ring
p
)
:]
bool
(
(
INT.Ring
p
)
) is non
empty
finite
V49
()
set
(
p
,
a
,
b
) is
Relation-like
[:
the
carrier
of
(
INT.Ring
p
)
, the
carrier
of
(
INT.Ring
p
)
, the
carrier
of
(
INT.Ring
p
)
:]
-defined
the
carrier
of
(
INT.Ring
p
)
-valued
Function-like
quasi_total
finite
Element
of
bool
[:
[:
the
carrier
of
(
INT.Ring
p
)
, the
carrier
of
(
INT.Ring
p
)
, the
carrier
of
(
INT.Ring
p
)
:]
, the
carrier
of
(
INT.Ring
p
)
:]
[:
[:
the
carrier
of
(
INT.Ring
p
)
, the
carrier
of
(
INT.Ring
p
)
, the
carrier
of
(
INT.Ring
p
)
:]
, the
carrier
of
(
INT.Ring
p
)
:]
is non
empty
finite
set
bool
[:
[:
the
carrier
of
(
INT.Ring
p
)
, the
carrier
of
(
INT.Ring
p
)
, the
carrier
of
(
INT.Ring
p
)
:]
, the
carrier
of
(
INT.Ring
p
)
:]
is non
empty
finite
V49
()
set
{
b
1
where
b
1
is
Element
of (
(
INT.Ring
p
)
) : (
p
,
a
,
b
)
.
b
1
=
0.
(
INT.Ring
p
)
}
is
set
(
p
,
a
,
b
) is
Relation-like
(
p
,
a
,
b
)
-defined
(
p
,
a
,
b
)
-valued
total
finite
reflexive
symmetric
transitive
Element
of
bool
[:
(
p
,
a
,
b
),(
p
,
a
,
b
)
:]
[:
(
p
,
a
,
b
),(
p
,
a
,
b
)
:]
is non
empty
finite
set
bool
[:
(
p
,
a
,
b
),(
p
,
a
,
b
)
:]
is non
empty
finite
V49
()
set
(
p
) is
Relation-like
(
(
INT.Ring
p
)
)
-defined
(
(
INT.Ring
p
)
)
-valued
total
finite
reflexive
symmetric
transitive
Element
of
bool
[:
(
(
INT.Ring
p
)
),(
(
INT.Ring
p
)
)
:]
[:
(
(
INT.Ring
p
)
),(
(
INT.Ring
p
)
)
:]
is non
empty
finite
set
bool
[:
(
(
INT.Ring
p
)
),(
(
INT.Ring
p
)
)
:]
is non
empty
finite
V49
()
set
{
[
b
1
,
b
2
]
where
b
1
,
b
2
is
Element
of (
(
INT.Ring
p
)
) : (
p
,
b
1
,
b
2
)
}
is
set
nabla
(
p
,
a
,
b
) is
Relation-like
(
p
,
a
,
b
)
-defined
(
p
,
a
,
b
)
-valued
total
finite
reflexive
symmetric
transitive
Element
of
bool
[:
(
p
,
a
,
b
),(
p
,
a
,
b
)
:]
(
p
)
/\
(
nabla
(
p
,
a
,
b
)
)
is
Relation-like
(
p
,
a
,
b
)
-defined
(
(
INT.Ring
p
)
)
-defined
(
p
,
a
,
b
)
-valued
(
(
INT.Ring
p
)
)
-valued
finite
reflexive
symmetric
transitive
Element
of
bool
[:
(
p
,
a
,
b
),(
p
,
a
,
b
)
:]
{
(
Class
((
p
,
a
,
b
),
[
L
,
b
1
,1
]
)
)
where
b
1
is
left_add-cancelable
right_add-cancelable
add-cancelable
right_complementable
Element
of the
carrier
of
(
INT.Ring
p
)
:
[
L
,
b
1
,1
]
in
(
p
,
a
,
b
)
}
is
set
F
is
set
pp
is
set
[:
F
,
pp
:]
is
set
bool
[:
F
,
pp
:]
is non
empty
set
FF
is
set
F1
is
left_add-cancelable
right_add-cancelable
add-cancelable
right_complementable
Element
of the
carrier
of
(
INT.Ring
p
)
F1
|^
2 is
left_add-cancelable
right_add-cancelable
add-cancelable
right_complementable
Element
of the
carrier
of
(
INT.Ring
p
)
(
power
(
INT.Ring
p
)
)
.
(
F1
,2) is
set
[
F1
,2
]
is
V26
()
set
{
F1
,2
}
is non
empty
finite
set
{
F1
}
is non
empty
trivial
finite
1
-element
set
{
{
F1
,2
}
,
{
F1
}
}
is non
empty
finite
V49
()
set
(
power
(
INT.Ring
p
)
)
.
[
F1
,2
]
is
set
[
L
,
F1
,1
]
is
V26
()
V27
()
Element
of
[:
the
carrier
of
(
INT.Ring
p
)
, the
carrier
of
(
INT.Ring
p
)
,
NAT
:]
[:
the
carrier
of
(
INT.Ring
p
)
, the
carrier
of
(
INT.Ring
p
)
,
NAT
:]
is non
empty
set
[
L
,
F1
]
is
V26
()
set
{
L
,
F1
}
is non
empty
finite
set
{
{
L
,
F1
}
,
{
L
}
}
is non
empty
finite
V49
()
set
[
[
L
,
F1
]
,1
]
is
V26
()
set
{
[
L
,
F1
]
,1
}
is non
empty
finite
set
{
[
L
,
F1
]
}
is non
empty
trivial
finite
1
-element
set
{
{
[
L
,
F1
]
,1
}
,
{
[
L
,
F1
]
}
}
is non
empty
finite
V49
()
set
Class
((
p
,
a
,
b
),
[
L
,
F1
,1
]
) is
finite
Element
of
bool
(
p
,
a
,
b
)
bool
(
p
,
a
,
b
) is non
empty
finite
V49
()
set
F2
is
set
[
L
,
F2
,1
]
is
V26
()
V27
()
set
[
L
,
F2
]
is
V26
()
set
{
L
,
F2
}
is non
empty
finite
set
{
{
L
,
F2
}
,
{
L
}
}
is non
empty
finite
V49
()
set
[
[
L
,
F2
]
,1
]
is
V26
()
set
{
[
L
,
F2
]
,1
}
is non
empty
finite
set
{
[
L
,
F2
]
}
is non
empty
trivial
finite
1
-element
set
{
{
[
L
,
F2
]
,1
}
,
{
[
L
,
F2
]
}
}
is non
empty
finite
V49
()
set
Class
((
p
,
a
,
b
),
[
L
,
F2
,1
]
) is
finite
Element
of
bool
(
p
,
a
,
b
)
X
is
left_add-cancelable
right_add-cancelable
add-cancelable
right_complementable
Element
of the
carrier
of
(
INT.Ring
p
)
X
|^
2 is
left_add-cancelable
right_add-cancelable
add-cancelable
right_complementable
Element
of the
carrier
of
(
INT.Ring
p
)
(
power
(
INT.Ring
p
)
)
.
(
X
,2) is
set
[
X
,2
]
is
V26
()
set
{
X
,2
}
is non
empty
finite
set
{
X
}
is non
empty
trivial
finite
1
-element
set
{
{
X
,2
}
,
{
X
}
}
is non
empty
finite
V49
()
set
(
power
(
INT.Ring
p
)
)
.
[
X
,2
]
is
set
[
L
,
X
,1
]
is
V26
()
V27
()
Element
of
[:
the
carrier
of
(
INT.Ring
p
)
, the
carrier
of
(
INT.Ring
p
)
,
NAT
:]
[
L
,
X
]
is
V26
()
set
{
L
,
X
}
is non
empty
finite
set
{
{
L
,
X
}
,
{
L
}
}
is non
empty
finite
V49
()
set
[
[
L
,
X
]
,1
]
is
V26
()
set
{
[
L
,
X
]
,1
}
is non
empty
finite
set
{
[
L
,
X
]
}
is non
empty
trivial
finite
1
-element
set
{
{
[
L
,
X
]
,1
}
,
{
[
L
,
X
]
}
}
is non
empty
finite
V49
()
set
F2
is
Relation-like
F
-defined
pp
-valued
Function-like
quasi_total
Element
of
bool
[:
F
,
pp
:]
X
is
set
Y
is
left_add-cancelable
right_add-cancelable
add-cancelable
right_complementable
Element
of the
carrier
of
(
INT.Ring
p
)
[
L
,
Y
,1
]
is
V26
()
V27
()
Element
of
[:
the
carrier
of
(
INT.Ring
p
)
, the
carrier
of
(
INT.Ring
p
)
,
NAT
:]
[
L
,
Y
]
is
V26
()
set
{
L
,
Y
}
is non
empty
finite
set
{
{
L
,
Y
}
,
{
L
}
}
is non
empty
finite
V49
()
set
[
[
L
,
Y
]
,1
]
is
V26
()
set
{
[
L
,
Y
]
,1
}
is non
empty
finite
set
{
[
L
,
Y
]
}
is non
empty
trivial
finite
1
-element
set
{
{
[
L
,
Y
]
,1
}
,
{
[
L
,
Y
]
}
}
is non
empty
finite
V49
()
set
Class
((
p
,
a
,
b
),
[
L
,
Y
,1
]
) is
finite
Element
of
bool
(
p
,
a
,
b
)
Y
|^
2 is
left_add-cancelable
right_add-cancelable
add-cancelable
right_complementable
Element
of the
carrier
of
(
INT.Ring
p
)
(
power
(
INT.Ring
p
)
)
.
(
Y
,2) is
set
[
Y
,2
]
is
V26
()
set
{
Y
,2
}
is non
empty
finite
set
{
Y
}
is non
empty
trivial
finite
1
-element
set
{
{
Y
,2
}
,
{
Y
}
}
is non
empty
finite
V49
()
set
(
power
(
INT.Ring
p
)
)
.
[
Y
,2
]
is
set
F2
.
Y
is
set
rng
F2
is
Element
of
bool
pp
bool
pp
is non
empty
set
X
is
set
dom
F2
is
Element
of
bool
F
bool
F
is non
empty
set
Y
is
set
F2
.
X
is
set
F2
.
Y
is
set
n1
is
left_add-cancelable
right_add-cancelable
add-cancelable
right_complementable
Element
of the
carrier
of
(
INT.Ring
p
)
n1
|^
2 is
left_add-cancelable
right_add-cancelable
add-cancelable
right_complementable
Element
of the
carrier
of
(
INT.Ring
p
)
(
power
(
INT.Ring
p
)
)
.
(
n1
,2) is
set
[
n1
,2
]
is
V26
()
set
{
n1
,2
}
is non
empty
finite
set
{
n1
}
is non
empty
trivial
finite
1
-element
set
{
{
n1
,2
}
,
{
n1
}
}
is non
empty
finite
V49
()
set
(
power
(
INT.Ring
p
)
)
.
[
n1
,2
]
is
set
n
is
left_add-cancelable
right_add-cancelable
add-cancelable
right_complementable
Element
of the
carrier
of
(
INT.Ring
p
)
n
|^
2 is
left_add-cancelable
right_add-cancelable
add-cancelable
right_complementable
Element
of the
carrier
of
(
INT.Ring
p
)
(
power
(
INT.Ring
p
)
)
.
(
n
,2) is
set
[
n
,2
]
is
V26
()
set
{
n
,2
}
is non
empty
finite
set
{
n
}
is non
empty
trivial
finite
1
-element
set
{
{
n
,2
}
,
{
n
}
}
is non
empty
finite
V49
()
set
(
power
(
INT.Ring
p
)
)
.
[
n
,2
]
is
set
[
L
,
X
,1
]
is
V26
()
V27
()
set
[
L
,
X
]
is
V26
()
set
{
L
,
X
}
is non
empty
finite
set
{
{
L
,
X
}
,
{
L
}
}
is non
empty
finite
V49
()
set
[
[
L
,
X
]
,1
]
is
V26
()
set
{
[
L
,
X
]
,1
}
is non
empty
finite
set
{
[
L
,
X
]
}
is non
empty
trivial
finite
1
-element
set
{
{
[
L
,
X
]
,1
}
,
{
[
L
,
X
]
}
}
is non
empty
finite
V49
()
set
Class
((
p
,
a
,
b
),
[
L
,
X
,1
]
) is
finite
Element
of
bool
(
p
,
a
,
b
)
[
L
,
Y
,1
]
is
V26
()
V27
()
set
[
L
,
Y
]
is
V26
()
set
{
L
,
Y
}
is non
empty
finite
set
{
{
L
,
Y
}
,
{
L
}
}
is non
empty
finite
V49
()
set
[
[
L
,
Y
]
,1
]
is
V26
()
set
{
[
L
,
Y
]
,1
}
is non
empty
finite
set
{
[
L
,
Y
]
}
is non
empty
trivial
finite
1
-element
set
{
{
[
L
,
Y
]
,1
}
,
{
[
L
,
Y
]
}
}
is non
empty
finite
V49
()
set
Class
((
p
,
a
,
b
),
[
L
,
Y
,1
]
) is
finite
Element
of
bool
(
p
,
a
,
b
)
[
L
,
n
,1
]
is
V26
()
V27
()
Element
of
[:
the
carrier
of
(
INT.Ring
p
)
, the
carrier
of
(
INT.Ring
p
)
,
NAT
:]
[
L
,
n
]
is
V26
()
set
{
L
,
n
}
is non
empty
finite
set
{
{
L
,
n
}
,
{
L
}
}
is non
empty
finite
V49
()
set
[
[
L
,
n
]
,1
]
is
V26
()
set
{
[
L
,
n
]
,1
}
is non
empty
finite
set
{
[
L
,
n
]
}
is non
empty
trivial
finite
1
-element
set
{
{
[
L
,
n
]
,1
}
,
{
[
L
,
n
]
}
}
is non
empty
finite
V49
()
set
[
L
,
n1
,1
]
is
V26
()
V27
()
Element
of
[:
the
carrier
of
(
INT.Ring
p
)
, the
carrier
of
(
INT.Ring
p
)
,
NAT
:]
[
L
,
n1
]
is
V26
()
set
{
L
,
n1
}
is non
empty
finite
set
{
{
L
,
n1
}
,
{
L
}
}
is non
empty
finite
V49
()
set
[
[
L
,
n1
]
,1
]
is
V26
()
set
{
[
L
,
n1
]
,1
}
is non
empty
finite
set
{
[
L
,
n1
]
}
is non
empty
trivial
finite
1
-element
set
{
{
[
L
,
n1
]
,1
}
,
{
[
L
,
n1
]
}
}
is non
empty
finite
V49
()
set
p
is non
empty
V4
()
V5
()
V6
()
V10
()
V11
()
V12
()
integer
V14
()
ext-real
positive
non
negative
finite
cardinal
set
INT.Ring
p
is non
empty
non
degenerated
non
trivial
finite
left_add-cancelable
right_add-cancelable
add-cancelable
right_complementable
almost_left_invertible
strict
unital
associative
commutative
Euclidian
right-distributive
left-distributive
right_unital
well-unital
distributive
left_unital
Abelian
add-associative
right_zeroed
()
doubleLoopStr
Segm
p
is
V117
()
V118
()
V119
()
V120
()
V121
()
V122
()
Element
of
bool
NAT
addint
p
is
Relation-like
[:
(
Segm
p
)
,
(
Segm
p
)
:]
-defined
Segm
p
-valued
Function-like
quasi_total
V35
()
V36
()
V37
()
V38
()
Element
of
bool
[:
[:
(
Segm
p
)
,
(
Segm
p
)
:]
,
(
Segm
p
)
:]
[:
(
Segm
p
)
,
(
Segm
p
)
:]
is
RAT
-valued
INT
-valued
V35
()
V36
()
V37
()
V38
()
set
[:
[:
(
Segm
p
)
,
(
Segm
p
)
:]
,
(
Segm
p
)
:]
is
RAT
-valued
INT
-valued
V35
()
V36
()
V37
()
V38
()
set
bool
[:
[:
(
Segm
p
)
,
(
Segm
p
)
:]
,
(
Segm
p
)
:]
is non
empty
set
multint
p
is
Relation-like
[:
(
Segm
p
)
,
(
Segm
p
)
:]
-defined
Segm
p
-valued
Function-like
quasi_total
V35
()
V36
()
V37
()
V38
()
Element
of
bool
[:
[:
(
Segm
p
)
,
(
Segm
p
)
:]
,
(
Segm
p
)
:]
K633
(1,
(
Segm
p
)
) is
V4
()
V5
()
V6
()
V10
()
V11
()
V12
()
integer
ext-real
non
negative
finite
cardinal
V113
()
Element
of
Segm
p
K633
(
0
,
(
Segm
p
)
) is
V4
()
V5
()
V6
()
V10
()
V11
()
V12
()
integer
ext-real
non
negative
finite
cardinal
V113
()
Element
of
Segm
p
doubleLoopStr
(#
(
Segm
p
)
,
(
addint
p
)
,
(
multint
p
)
,
K633
(1,
(
Segm
p
)
),
K633
(
0
,
(
Segm
p
)
) #) is
strict
doubleLoopStr
the
carrier
of
(
INT.Ring
p
)
is non
empty
non
trivial
finite
set
0.
(
INT.Ring
p
)
is
V61
(
INT.Ring
p
)
left_add-cancelable
right_add-cancelable
add-cancelable
right_complementable
Element
of the
carrier
of
(
INT.Ring
p
)
the
ZeroF
of
(
INT.Ring
p
)
is
left_add-cancelable
right_add-cancelable
add-cancelable
right_complementable
Element
of the
carrier
of
(
INT.Ring
p
)
a
is
left_add-cancelable
right_add-cancelable
add-cancelable
right_complementable
Element
of the
carrier
of
(
INT.Ring
p
)
b
is
left_add-cancelable
right_add-cancelable
add-cancelable
right_complementable
Element
of the
carrier
of
(
INT.Ring
p
)
(
p
,
a
,
b
) is
left_add-cancelable
right_add-cancelable
add-cancelable
right_complementable
Element
of the
carrier
of
(
INT.Ring
p
)
(
p
,
a
,
b
) is non
empty
finite
Element
of
bool
(
(
INT.Ring
p
)
)
(
(
INT.Ring
p
)
) is non
empty
finite
Element
of
bool
[:
the
carrier
of
(
INT.Ring
p
)
, the
carrier
of
(
INT.Ring
p
)
, the
carrier
of
(
INT.Ring
p
)
:]
[:
the
carrier
of
(
INT.Ring
p
)
, the
carrier
of
(
INT.Ring
p
)
, the
carrier
of
(
INT.Ring
p
)
:]
is non
empty
finite
set
bool
[:
the
carrier
of
(
INT.Ring
p
)
, the
carrier
of
(
INT.Ring
p
)
, the
carrier
of
(
INT.Ring
p
)
:]
is non
empty
finite
V49
()
set
[
(
0.
(
INT.Ring
p
)
)
,
(
0.
(
INT.Ring
p
)
)
,
(
0.
(
INT.Ring
p
)
)
]
is
V26
()
V27
()
Element
of
[:
the
carrier
of
(
INT.Ring
p
)
, the
carrier
of
(
INT.Ring
p
)
, the
carrier
of
(
INT.Ring
p
)
:]
[
(
0.
(
INT.Ring
p
)
)
,
(
0.
(
INT.Ring
p
)
)
]
is
V26
()
set
{
(
0.
(
INT.Ring
p
)
)
,
(
0.
(
INT.Ring
p
)
)
}
is non
empty
finite
set
{
(
0.
(
INT.Ring
p
)
)
}
is non
empty
trivial
finite
1
-element
set
{
{
(
0.
(
INT.Ring
p
)
)
,
(
0.
(
INT.Ring
p
)
)
}
,
{
(
0.
(
INT.Ring
p
)
)
}
}
is non
empty
finite
V49
()
set
[
[
(
0.
(
INT.Ring
p
)
)
,
(
0.
(
INT.Ring
p
)
)
]
,
(
0.
(
INT.Ring
p
)
)
]
is
V26
()
set
{
[
(
0.
(
INT.Ring
p
)
)
,
(
0.
(
INT.Ring
p
)
)
]
,
(
0.
(
INT.Ring
p
)
)
}
is non
empty
finite
set
{
[
(
0.
(
INT.Ring
p
)
)
,
(
0.
(
INT.Ring
p
)
)
]
}
is non
empty
trivial
finite
1
-element
set
{
{
[
(
0.
(
INT.Ring
p
)
)
,
(
0.
(
INT.Ring
p
)
)
]
,
(
0.
(
INT.Ring
p
)
)
}
,
{
[
(
0.
(
INT.Ring
p
)
)
,
(
0.
(
INT.Ring
p
)
)
]
}
}
is non
empty
finite
V49
()
set
{
[
(
0.
(
INT.Ring
p
)
)
,
(
0.
(
INT.Ring
p
)
)
,
(
0.
(
INT.Ring
p
)
)
]
}
is non
empty
trivial
finite
1
-element
Element
of
bool
[:
the
carrier
of
(
INT.Ring
p
)
, the
carrier
of
(
INT.Ring
p
)
, the
carrier
of
(
INT.Ring
p
)
:]
[:
the
carrier
of
(
INT.Ring
p
)
, the
carrier
of
(
INT.Ring
p
)
, the
carrier
of
(
INT.Ring
p
)
:]
\
{
[
(
0.
(
INT.Ring
p
)
)
,
(
0.
(
INT.Ring
p
)
)
,
(
0.
(
INT.Ring
p
)
)
]
}
is
finite
Element
of
bool
[:
the
carrier
of
(
INT.Ring
p
)
, the
carrier
of
(
INT.Ring
p
)
, the
carrier
of
(
INT.Ring
p
)
:]
bool
(
(
INT.Ring
p
)
) is non
empty
finite
V49
()
set
(
p
,
a
,
b
) is
Relation-like
[:
the
carrier
of
(
INT.Ring
p
)
, the
carrier
of
(
INT.Ring
p
)
, the
carrier
of
(
INT.Ring
p
)
:]
-defined
the
carrier
of
(
INT.Ring
p
)
-valued
Function-like
quasi_total
finite
Element
of
bool
[:
[:
the
carrier
of
(
INT.Ring
p
)
, the
carrier
of
(
INT.Ring
p
)
, the
carrier
of
(
INT.Ring
p
)
:]
, the
carrier
of
(
INT.Ring
p
)
:]
[:
[:
the
carrier
of
(
INT.Ring
p
)
, the
carrier
of
(
INT.Ring
p
)
, the
carrier
of
(
INT.Ring
p
)
:]
, the
carrier
of
(
INT.Ring
p
)
:]
is non
empty
finite
set
bool
[:
[:
the
carrier
of
(
INT.Ring
p
)
, the
carrier
of
(
INT.Ring
p
)
, the
carrier
of
(
INT.Ring
p
)
:]
, the
carrier
of
(
INT.Ring
p
)
:]
is non
empty
finite
V49
()
set
{
b
1
where
b
1
is
Element
of (
(
INT.Ring
p
)
) : (
p
,
a
,
b
)
.
b
1
=
0.
(
INT.Ring
p
)
}
is
set
(
p
,
a
,
b
) is
Relation-like
(
p
,
a
,
b
)
-defined
(
p
,
a
,
b
)
-valued
total
finite
reflexive
symmetric
transitive
Element
of
bool
[:
(
p
,
a
,
b
),(
p
,
a
,
b
)
:]
[:
(
p
,
a
,
b
),(
p
,
a
,
b
)
:]
is non
empty
finite
set
bool
[:
(
p
,
a
,
b
),(
p
,
a
,
b
)
:]
is non
empty
finite
V49
()
set
(
p
) is
Relation-like
(
(
INT.Ring
p
)
)
-defined
(
(
INT.Ring
p
)
)
-valued
total
finite
reflexive
symmetric
transitive
Element
of
bool
[:
(
(
INT.Ring
p
)
),(
(
INT.Ring
p
)
)
:]
[:
(
(
INT.Ring
p
)
),(
(
INT.Ring
p
)
)
:]
is non
empty
finite
set
bool
[:
(
(
INT.Ring
p
)
),(
(
INT.Ring
p
)
)
:]
is non
empty
finite
V49
()
set
{
[
b
1
,
b
2
]
where
b
1
,
b
2
is
Element
of (
(
INT.Ring
p
)
) : (
p
,
b
1
,
b
2
)
}
is
set
nabla
(
p
,
a
,
b
) is
Relation-like
(
p
,
a
,
b
)
-defined
(
p
,
a
,
b
)
-valued
total
finite
reflexive
symmetric
transitive
Element
of
bool
[:
(
p
,
a
,
b
),(
p
,
a
,
b
)
:]
(
p
)
/\
(
nabla
(
p
,
a
,
b
)
)
is
Relation-like
(
p
,
a
,
b
)
-defined
(
(
INT.Ring
p
)
)
-defined
(
p
,
a
,
b
)
-valued
(
(
INT.Ring
p
)
)
-valued
finite
reflexive
symmetric
transitive
Element
of
bool
[:
(
p
,
a
,
b
),(
p
,
a
,
b
)
:]
L
is
left_add-cancelable
right_add-cancelable
add-cancelable
right_complementable
Element
of the
carrier
of
(
INT.Ring
p
)
{
(
Class
((
p
,
a
,
b
),
[
L
,
b
1
,1
]
)
)
where
b
1
is
left_add-cancelable
right_add-cancelable
add-cancelable
right_complementable
Element
of the
carrier
of
(
INT.Ring
p
)
:
[
L
,
b
1
,1
]
in
(
p
,
a
,
b
)
}
is
set
card
{
(
Class
((
p
,
a
,
b
),
[
L
,
b
1
,1
]
)
)
where
b
1
is
left_add-cancelable
right_add-cancelable
add-cancelable
right_complementable
Element
of the
carrier
of
(
INT.Ring
p
)
:
[
L
,
b
1
,1
]
in
(
p
,
a
,
b
)
}
is
V4
()
V5
()
V6
()
cardinal
set
L
|^
3 is
left_add-cancelable
right_add-cancelable
add-cancelable
right_complementable
Element
of the
carrier
of
(
INT.Ring
p
)
power
(
INT.Ring
p
)
is
Relation-like
[:
the
carrier
of
(
INT.Ring
p
)
,
NAT
:]
-defined
the
carrier
of
(
INT.Ring
p
)
-valued
Function-like
quasi_total
Element
of
bool
[:
[:
the
carrier
of
(
INT.Ring
p
)
,
NAT
:]
, the
carrier
of
(
INT.Ring
p
)
:]
[:
the
carrier
of
(
INT.Ring
p
)
,
NAT
:]
is non
empty
non
trivial
RAT
-valued
INT
-valued
V35
()
V36
()
V37
()
V38
() non
finite
set
[:
[:
the
carrier
of
(
INT.Ring
p
)
,
NAT
:]
, the
carrier
of
(
INT.Ring
p
)
:]
is non
empty
non
trivial
non
finite
set
bool
[:
[:
the
carrier
of
(
INT.Ring
p
)
,
NAT
:]
, the
carrier
of
(
INT.Ring
p
)
:]
is non
empty
non
trivial
non
finite
set
(
power
(
INT.Ring
p
)
)
.
(
L
,3) is
set
[
L
,3
]
is
V26
()
set
{
L
,3
}
is non
empty
finite
set
{
L
}
is non
empty
trivial
finite
1
-element
set
{
{
L
,3
}
,
{
L
}
}
is non
empty
finite
V49
()
set
(
power
(
INT.Ring
p
)
)
.
[
L
,3
]
is
set
a
*
L
is
left_add-cancelable
right_add-cancelable
add-cancelable
right_complementable
Element
of the
carrier
of
(
INT.Ring
p
)
the
multF
of
(
INT.Ring
p
)
is
Relation-like
[:
the
carrier
of
(
INT.Ring
p
)
, the
carrier
of
(
INT.Ring
p
)
:]
-defined
the
carrier
of
(
INT.Ring
p
)
-valued
Function-like
quasi_total
finite
Element
of
bool
[:
[:
the
carrier
of
(
INT.Ring
p
)
, the
carrier
of
(
INT.Ring
p
)
:]
, the
carrier
of
(
INT.Ring
p
)
:]
[:
the
carrier
of
(
INT.Ring
p
)
, the
carrier
of
(
INT.Ring
p
)
:]
is non
empty
finite
set
[:
[:
the
carrier
of
(
INT.Ring
p
)
, the
carrier
of
(
INT.Ring
p
)
:]
, the
carrier
of
(
INT.Ring
p
)
:]
is non
empty
finite
set
bool
[:
[:
the
carrier
of
(
INT.Ring
p
)
, the
carrier
of
(
INT.Ring
p
)
:]
, the
carrier
of
(
INT.Ring
p
)
:]
is non
empty
finite
V49
()
set
the
multF
of
(
INT.Ring
p
)
.
(
a
,
L
) is
left_add-cancelable
right_add-cancelable
add-cancelable
right_complementable
Element
of the
carrier
of
(
INT.Ring
p
)
[
a
,
L
]
is
V26
()
set
{
a
,
L
}
is non
empty
finite
set
{
a
}
is non
empty
trivial
finite
1
-element
set
{
{
a
,
L
}
,
{
a
}
}
is non
empty
finite
V49
()
set
the
multF
of
(
INT.Ring
p
)
.
[
a
,
L
]
is
set
(
L
|^
3
)
+
(
a
*
L
)
is
left_add-cancelable
right_add-cancelable
add-cancelable
right_complementable
Element
of the
carrier
of
(
INT.Ring
p
)
the
addF
of
(
INT.Ring
p
)
is
Relation-like
[:
the
carrier
of
(
INT.Ring
p
)
, the
carrier
of
(
INT.Ring
p
)
:]
-defined
the
carrier
of
(
INT.Ring
p
)
-valued
Function-like
quasi_total
finite
Element
of
bool
[:
[:
the
carrier
of
(
INT.Ring
p
)
, the
carrier
of
(
INT.Ring
p
)
:]
, the
carrier
of
(
INT.Ring
p
)
:]
the
addF
of
(
INT.Ring
p
)
.
(
(
L
|^
3
)
,
(
a
*
L
)
) is
left_add-cancelable
right_add-cancelable
add-cancelable
right_complementable
Element
of the
carrier
of
(
INT.Ring
p
)
[
(
L
|^
3
)
,
(
a
*
L
)
]
is
V26
()
set
{
(
L
|^
3
)
,
(
a
*
L
)
}
is non
empty
finite
set
{
(
L
|^
3
)
}
is non
empty
trivial
finite
1
-element
set
{
{
(
L
|^
3
)
,
(
a
*
L
)
}
,
{
(
L
|^
3
)
}
}
is non
empty
finite
V49
()
set
the
addF
of
(
INT.Ring
p
)
.
[
(
L
|^
3
)
,
(
a
*
L
)
]
is
set
(
(
L
|^
3
)
+
(
a
*
L
)
)
+
b
is
left_add-cancelable
right_add-cancelable
add-cancelable
right_complementable
Element
of the
carrier
of
(
INT.Ring
p
)
the
addF
of
(
INT.Ring
p
)
.
(
(
(
L
|^
3
)
+
(
a
*
L
)
)
,
b
) is
left_add-cancelable
right_add-cancelable
add-cancelable
right_complementable
Element
of the
carrier
of
(
INT.Ring
p
)
[
(
(
L
|^
3
)
+
(
a
*
L
)
)
,
b
]
is
V26
()
set
{
(
(
L
|^
3
)
+
(
a
*
L
)
)
,
b
}
is non
empty
finite
set
{
(
(
L
|^
3
)
+
(
a
*
L
)
)
}
is non
empty
trivial
finite
1
-element
set
{
{
(
(
L
|^
3
)
+
(
a
*
L
)
)
,
b
}
,
{
(
(
L
|^
3
)
+
(
a
*
L
)
)
}
}
is non
empty
finite
V49
()
set
the
addF
of
(
INT.Ring
p
)
.
[
(
(
L
|^
3
)
+
(
a
*
L
)
)
,
b
]
is
set
(
p
,
(
(
(
L
|^
3
)
+
(
a
*
L
)
)
+
b
)
) is
V11
()
V12
()
integer
ext-real
set
1
+
(
p
,
(
(
(
L
|^
3
)
+
(
a
*
L
)
)
+
b
)
) is
V11
()
V12
()
integer
ext-real
set
{
b
1
where
b
1
is
left_add-cancelable
right_add-cancelable
add-cancelable
right_complementable
Element
of the
carrier
of
(
INT.Ring
p
)
:
b
1
|^
2
=
(
(
L
|^
3
)
+
(
a
*
L
)
)
+
b
}
is
set
FF
is
set
F1
is
left_add-cancelable
right_add-cancelable
add-cancelable
right_complementable
Element
of the
carrier
of
(
INT.Ring
p
)
[
L
,
F1
,1
]
is
V26
()
V27
()
Element
of
[:
the
carrier
of
(
INT.Ring
p
)
, the
carrier
of
(
INT.Ring
p
)
,
NAT
:]
[:
the
carrier
of
(
INT.Ring
p
)
, the
carrier
of
(
INT.Ring
p
)
,
NAT
:]
is non
empty
set
[
L
,
F1
]
is
V26
()
set
{
L
,
F1
}
is non
empty
finite
set
{
{
L
,
F1
}
,
{
L
}
}
is non
empty
finite
V49
()
set
[
[
L
,
F1
]
,1
]
is
V26
()
set
{
[
L
,
F1
]
,1
}
is non
empty
finite
set
{
[
L
,
F1
]
}
is non
empty
trivial
finite
1
-element
set
{
{
[
L
,
F1
]
,1
}
,
{
[
L
,
F1
]
}
}
is non
empty
finite
V49
()
set
Class
((
p
,
a
,
b
),
[
L
,
F1
,1
]
) is
finite
Element
of
bool
(
p
,
a
,
b
)
bool
(
p
,
a
,
b
) is non
empty
finite
V49
()
set
F1
|^
2 is
left_add-cancelable
right_add-cancelable
add-cancelable
right_complementable
Element
of the
carrier
of
(
INT.Ring
p
)
(
power
(
INT.Ring
p
)
)
.
(
F1
,2) is
set
[
F1
,2
]
is
V26
()
set
{
F1
,2
}
is non
empty
finite
set
{
F1
}
is non
empty
trivial
finite
1
-element
set
{
{
F1
,2
}
,
{
F1
}
}
is non
empty
finite
V49
()
set
(
power
(
INT.Ring
p
)
)
.
[
F1
,2
]
is
set
FF
is
set
F1
is
left_add-cancelable
right_add-cancelable
add-cancelable
right_complementable
Element
of the
carrier
of
(
INT.Ring
p
)
F1
|^
2 is
left_add-cancelable
right_add-cancelable
add-cancelable
right_complementable
Element
of the
carrier
of
(
INT.Ring
p
)
(
power
(
INT.Ring
p
)
)
.
(
F1
,2) is
set
[
F1
,2
]
is
V26
()
set
{
F1
,2
}
is non
empty
finite
set
{
F1
}
is non
empty
trivial
finite
1
-element
set
{
{
F1
,2
}
,
{
F1
}
}
is non
empty
finite
V49
()
set
(
power
(
INT.Ring
p
)
)
.
[
F1
,2
]
is
set
[
L
,
F1
,1
]
is
V26
()
V27
()
Element
of
[:
the
carrier
of
(
INT.Ring
p
)
, the
carrier
of
(
INT.Ring
p
)
,
NAT
:]
[:
the
carrier
of
(
INT.Ring
p
)
, the
carrier
of
(
INT.Ring
p
)
,
NAT
:]
is non
empty
set
[
L
,
F1
]
is
V26
()
set
{
L
,
F1
}
is non
empty
finite
set
{
{
L
,
F1
}
,
{
L
}
}
is non
empty
finite
V49
()
set
[
[
L
,
F1
]
,1
]
is
V26
()
set
{
[
L
,
F1
]
,1
}
is non
empty
finite
set
{
[
L
,
F1
]
}
is non
empty
trivial
finite
1
-element
set
{
{
[
L
,
F1
]
,1
}
,
{
[
L
,
F1
]
}
}
is non
empty
finite
V49
()
set
Class
((
p
,
a
,
b
),
[
L
,
F1
,1
]
) is
finite
Element
of
bool
(
p
,
a
,
b
)
bool
(
p
,
a
,
b
) is non
empty
finite
V49
()
set
[:
{
b
1
where
b
1
is
left_add-cancelable
right_add-cancelable
add-cancelable
right_complementable
Element
of the
carrier
of
(
INT.Ring
p
)
:
b
1
|^
2
=
(
(
L
|^
3
)
+
(
a
*
L
)
)
+
b
}
,
{
(
Class
((
p
,
a
,
b
),
[
L
,
b
1
,1
]
)
)
where
b
1
is
left_add-cancelable
right_add-cancelable
add-cancelable
right_complementable
Element
of the
carrier
of
(
INT.Ring
p
)
:
[
L
,
b
1
,1
]
in
(
p
,
a
,
b
)
}
:]
is
set
bool
[:
{
b
1
where
b
1
is
left_add-cancelable
right_add-cancelable
add-cancelable
right_complementable
Element
of the
carrier
of
(
INT.Ring
p
)
:
b
1
|^
2
=
(
(
L
|^
3
)
+
(
a
*
L
)
)
+
b
}
,
{
(
Class
((
p
,
a
,
b
),
[
L
,
b
1
,1
]
)
)
where
b
1
is
left_add-cancelable
right_add-cancelable
add-cancelable
right_complementable
Element
of the
carrier
of
(
INT.Ring
p
)
:
[
L
,
b
1
,1
]
in
(
p
,
a
,
b
)
}
:]
is non
empty
set
F2
is
Relation-like
{
b
1
where
b
1
is
left_add-cancelable
right_add-cancelable
add-cancelable
right_complementable
Element
of the
carrier
of
(
INT.Ring
p
)
:
b
1
|^
2
=
(
(
L
|^
3
)
+
(
a
*
L
)
)
+
b
}
-defined
{
(
Class
((
p
,
a
,
b
),
[
L
,
b
1
,1
]
)
)
where
b
1
is
left_add-cancelable
right_add-cancelable
add-cancelable
right_complementable
Element
of the
carrier
of
(
INT.Ring
p
)
:
[
L
,
b
1
,1
]
in
(
p
,
a
,
b
)
}
-valued
Function-like
quasi_total
Element
of
bool
[:
{
b
1
where
b
1
is
left_add-cancelable
right_add-cancelable
add-cancelable
right_complementable
Element
of the
carrier
of
(
INT.Ring
p
)
:
b
1
|^
2
=
(
(
L
|^
3
)
+
(
a
*
L
)
)
+
b
}
,
{
(
Class
((
p
,
a
,
b
),
[
L
,
b
1
,1
]
)
)
where
b
1
is
left_add-cancelable
right_add-cancelable
add-cancelable
right_complementable
Element
of the
carrier
of
(
INT.Ring
p
)
:
[
L
,
b
1
,1
]
in
(
p
,
a
,
b
)
}
:]
dom
F2
is
Element
of
bool
{
b
1
where
b
1
is
left_add-cancelable
right_add-cancelable
add-cancelable
right_complementable
Element
of the
carrier
of
(
INT.Ring
p
)
:
b
1
|^
2
=
(
(
L
|^
3
)
+
(
a
*
L
)
)
+
b
}
bool
{
b
1
where
b
1
is
left_add-cancelable
right_add-cancelable
add-cancelable
right_complementable
Element
of the
carrier
of
(
INT.Ring
p
)
:
b
1
|^
2
=
(
(
L
|^
3
)
+
(
a
*
L
)
)
+
b
}
is non
empty
set
rng
F2
is
Element
of
bool
{
(
Class
((
p
,
a
,
b
),
[
L
,
b
1
,1
]
)
)
where
b
1
is
left_add-cancelable
right_add-cancelable
add-cancelable
right_complementable
Element
of the
carrier
of
(
INT.Ring
p
)
:
[
L
,
b
1
,1
]
in
(
p
,
a
,
b
)
}
bool
{
(
Class
((
p
,
a
,
b
),
[
L
,
b
1
,1
]
)
)
where
b
1
is
left_add-cancelable
right_add-cancelable
add-cancelable
right_complementable
Element
of the
carrier
of
(
INT.Ring
p
)
:
[
L
,
b
1
,1
]
in
(
p
,
a
,
b
)
}
is non
empty
set
card
{
b
1
where
b
1
is
left_add-cancelable
right_add-cancelable
add-cancelable
right_complementable
Element
of the
carrier
of
(
INT.Ring
p
)
:
b
1
|^
2
=
(
(
L
|^
3
)
+
(
a
*
L
)
)
+
b
}
is
V4
()
V5
()
V6
()
cardinal
set
[:
{
(
Class
((
p
,
a
,
b
),
[
L
,
b
1
,1
]
)
)
where
b
1
is
left_add-cancelable
right_add-cancelable
add-cancelable
right_complementable
Element
of the
carrier
of
(
INT.Ring
p
)
:
[
L
,
b
1
,1
]
in
(
p
,
a
,
b
)
}
,
{
b
1
where
b
1
is
left_add-cancelable
right_add-cancelable
add-cancelable
right_complementable
Element
of the
carrier
of
(
INT.Ring
p
)
:
b
1
|^
2
=
(
(
L
|^
3
)
+
(
a
*
L
)
)
+
b
}
:]
is
set
bool
[:
{
(
Class
((
p
,
a
,
b
),
[
L
,
b
1
,1
]
)
)
where
b
1
is
left_add-cancelable
right_add-cancelable
add-cancelable
right_complementable
Element
of the
carrier
of
(
INT.Ring
p
)
:
[
L
,
b
1
,1
]
in
(
p
,
a
,
b
)
}
,
{
b
1
where
b
1
is
left_add-cancelable
right_add-cancelable
add-cancelable
right_complementable
Element
of the
carrier
of
(
INT.Ring
p
)
:
b
1
|^
2
=
(
(
L
|^
3
)
+
(
a
*
L
)
)
+
b
}
:]
is non
empty
set
F2
"
is
Relation-like
Function-like
set
F2
*
(
F2
"
)
is
Relation-like
set
id
{
b
1
where
b
1
is
left_add-cancelable
right_add-cancelable
add-cancelable
right_complementable
Element
of the
carrier
of
(
INT.Ring
p
)
:
b
1
|^
2
=
(
(
L
|^
3
)
+
(
a
*
L
)
)
+
b
}
is
Relation-like
{
b
1
where
b
1
is
left_add-cancelable
right_add-cancelable
add-cancelable
right_complementable
Element
of the
carrier
of
(
INT.Ring
p
)
:
b
1
|^
2
=
(
(
L
|^
3
)
+
(
a
*
L
)
)
+
b
}
-defined
{
b
1
where
b
1
is
left_add-cancelable
right_add-cancelable
add-cancelable
right_complementable
Element
of the
carrier
of
(
INT.Ring
p
)
:
b
1
|^
2
=
(
(
L
|^
3
)
+
(
a
*
L
)
)
+
b
}
-valued
total
reflexive
symmetric
antisymmetric
transitive
Element
of
bool
[:
{
b
1
where
b
1
is
left_add-cancelable
right_add-cancelable
add-cancelable
right_complementable
Element
of the
carrier
of
(
INT.Ring
p
)
:
b
1
|^
2
=
(
(
L
|^
3
)
+
(
a
*
L
)
)
+
b
}
,
{
b
1
where
b
1
is
left_add-cancelable
right_add-cancelable
add-cancelable
right_complementable
Element
of the
carrier
of
(
INT.Ring
p
)
:
b
1
|^
2
=
(
(
L
|^
3
)
+
(
a
*
L
)
)
+
b
}
:]
[:
{
b
1
where
b
1
is
left_add-cancelable
right_add-cancelable
add-cancelable
right_complementable
Element
of the
carrier
of
(
INT.Ring
p
)
:
b
1
|^
2
=
(
(
L
|^
3
)
+
(
a
*
L
)
)
+
b
}
,
{
b
1
where
b
1
is
left_add-cancelable
right_add-cancelable
add-cancelable
right_complementable
Element
of the
carrier
of
(
INT.Ring
p
)
:
b
1
|^
2
=
(
(
L
|^
3
)
+
(
a
*
L
)
)
+
b
}
:]
is
set
bool
[:
{
b
1
where
b
1
is
left_add-cancelable
right_add-cancelable
add-cancelable
right_complementable
Element
of the
carrier
of
(
INT.Ring
p
)
:
b
1
|^
2
=
(
(
L
|^
3
)
+
(
a
*
L
)
)
+
b
}
,
{
b
1
where
b
1
is
left_add-cancelable
right_add-cancelable
add-cancelable
right_complementable
Element
of the
carrier
of
(
INT.Ring
p
)
:
b
1
|^
2
=
(
(
L
|^
3
)
+
(
a
*
L
)
)
+
b
}
:]
is non
empty
set
(
F2
"
)
*
F2
is
Relation-like
set
id
{
(
Class
((
p
,
a
,
b
),
[
L
,
b
1
,1
]
)
)
where
b
1
is
left_add-cancelable
right_add-cancelable
add-cancelable
right_complementable
Element
of the
carrier
of
(
INT.Ring
p
)
:
[
L
,
b
1
,1
]
in
(
p
,
a
,
b
)
}
is
Relation-like
{
(
Class
((
p
,
a
,
b
),
[
L
,
b
1
,1
]
)
)
where
b
1
is
left_add-cancelable
right_add-cancelable
add-cancelable
right_complementable
Element
of the
carrier
of
(
INT.Ring
p
)
:
[
L
,
b
1
,1
]
in
(
p
,
a
,
b
)
}
-defined
{
(
Class
((
p
,
a
,
b
),
[
L
,
b
1
,1
]
)
)
where
b
1
is
left_add-cancelable
right_add-cancelable
add-cancelable
right_complementable
Element
of the
carrier
of
(
INT.Ring
p
)
:
[
L
,
b
1
,1
]
in
(
p
,
a
,
b
)
}
-valued
total
reflexive
symmetric
antisymmetric
transitive
Element
of
bool
[:
{
(
Class
((
p
,
a
,
b
),
[
L
,
b
1
,1
]
)
)
where
b
1
is
left_add-cancelable
right_add-cancelable
add-cancelable
right_complementable
Element
of the
carrier
of
(
INT.Ring
p
)
:
[
L
,
b
1
,1
]
in
(
p
,
a
,
b
)
}
,
{
(
Class
((
p
,
a
,
b
),
[
L
,
b
1
,1
]
)
)
where
b
1
is
left_add-cancelable
right_add-cancelable
add-cancelable
right_complementable
Element
of the
carrier
of
(
INT.Ring
p
)
:
[
L
,
b
1
,1
]
in
(
p
,
a
,
b
)
}
:]
[:
{
(
Class
((
p
,
a
,
b
),
[
L
,
b
1
,1
]
)
)
where
b
1
is
left_add-cancelable
right_add-cancelable
add-cancelable
right_complementable
Element
of the
carrier
of
(
INT.Ring
p
)
:
[
L
,
b
1
,1
]
in
(
p
,
a
,
b
)
}
,
{
(
Class
((
p
,
a
,
b
),
[
L
,
b
1
,1
]
)
)
where
b
1
is
left_add-cancelable
right_add-cancelable
add-cancelable
right_complementable
Element
of the
carrier
of
(
INT.Ring
p
)
:
[
L
,
b
1
,1
]
in
(
p
,
a
,
b
)
}
:]
is
set
bool
[:
{
(
Class
((
p
,
a
,
b
),
[
L
,
b
1
,1
]
)
)
where
b
1
is
left_add-cancelable
right_add-cancelable
add-cancelable
right_complementable
Element
of the
carrier
of
(
INT.Ring
p
)
:
[
L
,
b
1
,1
]
in
(
p
,
a
,
b
)
}
,
{
(
Class
((
p
,
a
,
b
),
[
L
,
b
1
,1
]
)
)
where
b
1
is
left_add-cancelable
right_add-cancelable
add-cancelable
right_complementable
Element
of the
carrier
of
(
INT.Ring
p
)
:
[
L
,
b
1
,1
]
in
(
p
,
a
,
b
)
}
:]
is non
empty
set
X
is
Relation-like
{
(
Class
((
p
,
a
,
b
),
[
L
,
b
1
,1
]
)
)
where
b
1
is
left_add-cancelable
right_add-cancelable
add-cancelable
right_complementable
Element
of the
carrier
of
(
INT.Ring
p
)
:
[
L
,
b
1
,1
]
in
(
p
,
a
,
b
)
}
-defined
{
b
1
where
b
1
is
left_add-cancelable
right_add-cancelable
add-cancelable
right_complementable
Element
of the
carrier
of
(
INT.Ring
p
)
:
b
1
|^
2
=
(
(
L
|^
3
)
+
(
a
*
L
)
)
+
b
}
-valued
Function-like
quasi_total
Element
of
bool
[:
{
(
Class
((
p
,
a
,
b
),
[
L
,
b
1
,1
]
)
)
where
b
1
is
left_add-cancelable
right_add-cancelable
add-cancelable
right_complementable
Element
of the
carrier
of
(
INT.Ring
p
)
:
[
L
,
b
1
,1
]
in
(
p
,
a
,
b
)
}
,
{
b
1
where
b
1
is
left_add-cancelable
right_add-cancelable
add-cancelable
right_complementable
Element
of the
carrier
of
(
INT.Ring
p
)
:
b
1
|^
2
=
(
(
L
|^
3
)
+
(
a
*
L
)
)
+
b
}
:]
rng
X
is
Element
of
bool
{
b
1
where
b
1
is
left_add-cancelable
right_add-cancelable
add-cancelable
right_complementable
Element
of the
carrier
of
(
INT.Ring
p
)
:
b
1
|^
2
=
(
(
L
|^
3
)
+
(
a
*
L
)
)
+
b
}
dom
X
is
Element
of
bool
{
(
Class
((
p
,
a
,
b
),
[
L
,
b
1
,1
]
)
)
where
b
1
is
left_add-cancelable
right_add-cancelable
add-cancelable
right_complementable
Element
of the
carrier
of
(
INT.Ring
p
)
:
[
L
,
b
1
,1
]
in
(
p
,
a
,
b
)
}
p
is non
empty
V4
()
V5
()
V6
()
V10
()
V11
()
V12
()
integer
V14
()
ext-real
positive
non
negative
finite
cardinal
set
Seg
p
is
V117
()
V118
()
V119
()
V120
()
V121
()
V122
()
Element
of
bool
NAT
{
b
1
where
b
1
is
V4
()
V5
()
V6
()
V10
()
V11
()
V12
()
integer
ext-real
non
negative
finite
cardinal
V113
()
V117
()
V118
()
V119
()
V120
()
V121
()
V122
()
Element
of
NAT
: ( 1
<=
b
1
&
b
1
<=
p
)
}
is
set
INT.Ring
p
is non
empty
non
degenerated
non
trivial
finite
left_add-cancelable
right_add-cancelable
add-cancelable
right_complementable
almost_left_invertible
strict
unital
associative
commutative
Euclidian
right-distributive
left-distributive
right_unital
well-unital
distributive
left_unital
Abelian
add-associative
right_zeroed
()
doubleLoopStr
Segm
p
is
V117
()
V118
()
V119
()
V120
()
V121
()
V122
()
Element
of
bool
NAT
addint
p
is
Relation-like
[:
(
Segm
p
)
,
(
Segm
p
)
:]
-defined
Segm
p
-valued
Function-like
quasi_total
V35
()
V36
()
V37
()
V38
()
Element
of
bool
[:
[:
(
Segm
p
)
,
(
Segm
p
)
:]
,
(
Segm
p
)
:]
[:
(
Segm
p
)
,
(
Segm
p
)
:]
is
RAT
-valued
INT
-valued
V35
()
V36
()
V37
()
V38
()
set
[:
[:
(
Segm
p
)
,
(
Segm
p
)
:]
,
(
Segm
p
)
:]
is
RAT
-valued
INT
-valued
V35
()
V36
()
V37
()
V38
()
set
bool
[:
[:
(
Segm
p
)
,
(
Segm
p
)
:]
,
(
Segm
p
)
:]
is non
empty
set
multint
p
is
Relation-like
[:
(
Segm
p
)
,
(
Segm
p
)
:]
-defined
Segm
p
-valued
Function-like
quasi_total
V35
()
V36
()
V37
()
V38
()
Element
of
bool
[:
[:
(
Segm
p
)
,
(
Segm
p
)
:]
,
(
Segm
p
)
:]
K633
(1,
(
Segm
p
)
) is
V4
()
V5
()
V6
()
V10
()
V11
()
V12
()
integer
ext-real
non
negative
finite
cardinal
V113
()
Element
of
Segm
p
K633
(
0
,
(
Segm
p
)
) is
V4
()
V5
()
V6
()
V10
()
V11
()
V12
()
integer
ext-real
non
negative
finite
cardinal
V113
()
Element
of
Segm
p
doubleLoopStr
(#
(
Segm
p
)
,
(
addint
p
)
,
(
multint
p
)
,
K633
(1,
(
Segm
p
)
),
K633
(
0
,
(
Segm
p
)
) #) is
strict
doubleLoopStr
the
carrier
of
(
INT.Ring
p
)
is non
empty
non
trivial
finite
set
a
is
V4
()
V5
()
V6
()
V10
()
V11
()
V12
()
integer
ext-real
non
negative
finite
cardinal
set
a
-
1 is
V11
()
V12
()
integer
ext-real
set
1
-
1 is
V11
()
V12
()
integer
ext-real
set
p
-
1 is
V11
()
V12
()
integer
ext-real
set
p
-
0
is non
empty
V11
()
V12
()
integer
ext-real
positive
non
negative
set
p
is non
empty
V4
()
V5
()
V6
()
V10
()
V11
()
V12
()
integer
V14
()
ext-real
positive
non
negative
finite
cardinal
set
INT.Ring
p
is non
empty
non
degenerated
non
trivial
finite
left_add-cancelable
right_add-cancelable
add-cancelable
right_complementable
almost_left_invertible
strict
unital
associative
commutative
Euclidian
right-distributive
left-distributive
right_unital
well-unital
distributive
left_unital
Abelian
add-associative
right_zeroed
()
doubleLoopStr
Segm
p
is
V117
()
V118
()
V119
()
V120
()
V121
()
V122
()
Element
of
bool
NAT
addint
p
is
Relation-like
[:
(
Segm
p
)
,
(
Segm
p
)
:]
-defined
Segm
p
-valued
Function-like
quasi_total
V35
()
V36
()
V37
()
V38
()
Element
of
bool
[:
[:
(
Segm
p
)
,
(
Segm
p
)
:]
,
(
Segm
p
)
:]
[:
(
Segm
p
)
,
(
Segm
p
)
:]
is
RAT
-valued
INT
-valued
V35
()
V36
()
V37
()
V38
()
set
[:
[:
(
Segm
p
)
,
(
Segm
p
)
:]
,
(
Segm
p
)
:]
is
RAT
-valued
INT
-valued
V35
()
V36
()
V37
()
V38
()
set
bool
[:
[:
(
Segm
p
)
,
(
Segm
p
)
:]
,
(
Segm
p
)
:]
is non
empty
set
multint
p
is
Relation-like
[:
(
Segm
p
)
,
(
Segm
p
)
:]
-defined
Segm
p
-valued
Function-like
quasi_total
V35
()
V36
()
V37
()
V38
()
Element
of
bool
[:
[:
(
Segm
p
)
,
(
Segm
p
)
:]
,
(
Segm
p
)
:]
K633
(1,
(
Segm
p
)
) is
V4
()
V5
()
V6
()
V10
()
V11
()
V12
()
integer
ext-real
non
negative
finite
cardinal
V113
()
Element
of
Segm
p
K633
(
0
,
(
Segm
p
)
) is
V4
()
V5
()
V6
()
V10
()
V11
()
V12
()
integer
ext-real
non
negative
finite
cardinal
V113
()
Element
of
Segm
p
doubleLoopStr
(#
(
Segm
p
)
,
(
addint
p
)
,
(
multint
p
)
,
K633
(1,
(
Segm
p
)
),
K633
(
0
,
(
Segm
p
)
) #) is
strict
doubleLoopStr
the
carrier
of
(
INT.Ring
p
)
is non
empty
non
trivial
finite
set
0.
(
INT.Ring
p
)
is
V61
(
INT.Ring
p
)
left_add-cancelable
right_add-cancelable
add-cancelable
right_complementable
Element
of the
carrier
of
(
INT.Ring
p
)
the
ZeroF
of
(
INT.Ring
p
)
is
left_add-cancelable
right_add-cancelable
add-cancelable
right_complementable
Element
of the
carrier
of
(
INT.Ring
p
)
Seg
p
is
V117
()
V118
()
V119
()
V120
()
V121
()
V122
()
Element
of
bool
NAT
{
b
1
where
b
1
is
V4
()
V5
()
V6
()
V10
()
V11
()
V12
()
integer
ext-real
non
negative
finite
cardinal
V113
()
V117
()
V118
()
V119
()
V120
()
V121
()
V122
()
Element
of
NAT
: ( 1
<=
b
1
&
b
1
<=
p
)
}
is
set
[:
the
carrier
of
(
INT.Ring
p
)
, the
carrier
of
(
INT.Ring
p
)
, the
carrier
of
(
INT.Ring
p
)
:]
is non
empty
finite
set
(
(
INT.Ring
p
)
) is non
empty
finite
Element
of
bool
[:
the
carrier
of
(
INT.Ring
p
)
, the
carrier
of
(
INT.Ring
p
)
, the
carrier
of
(
INT.Ring
p
)
:]
bool
[:
the
carrier
of
(
INT.Ring
p
)
, the
carrier
of
(
INT.Ring
p
)
, the
carrier
of
(
INT.Ring
p
)
:]
is non
empty
finite
V49
()
set
[
(
0.
(
INT.Ring
p
)
)
,
(
0.
(
INT.Ring
p
)
)
,
(
0.
(
INT.Ring
p
)
)
]
is
V26
()
V27
()
Element
of
[:
the
carrier
of
(
INT.Ring
p
)
, the
carrier
of
(
INT.Ring
p
)
, the
carrier
of
(
INT.Ring
p
)
:]
[
(
0.
(
INT.Ring
p
)
)
,
(
0.
(
INT.Ring
p
)
)
]
is
V26
()
set
{
(
0.
(
INT.Ring
p
)
)
,
(
0.
(
INT.Ring
p
)
)
}
is non
empty
finite
set
{
(
0.
(
INT.Ring
p
)
)
}
is non
empty
trivial
finite
1
-element
set
{
{
(
0.
(
INT.Ring
p
)
)
,
(
0.
(
INT.Ring
p
)
)
}
,
{
(
0.
(
INT.Ring
p
)
)
}
}
is non
empty
finite
V49
()
set
[
[
(
0.
(
INT.Ring
p
)
)
,
(
0.
(
INT.Ring
p
)
)
]
,
(
0.
(
INT.Ring
p
)
)
]
is
V26
()
set
{
[
(
0.
(
INT.Ring
p
)
)
,
(
0.
(
INT.Ring
p
)
)
]
,
(
0.
(
INT.Ring
p
)
)
}
is non
empty
finite
set
{
[
(
0.
(
INT.Ring
p
)
)
,
(
0.
(
INT.Ring
p
)
)
]
}
is non
empty
trivial
finite
1
-element
set
{
{
[
(
0.
(
INT.Ring
p
)
)
,
(
0.
(
INT.Ring
p
)
)
]
,
(
0.
(
INT.Ring
p
)
)
}
,
{
[
(
0.
(
INT.Ring
p
)
)
,
(
0.
(
INT.Ring
p
)
)
]
}
}
is non
empty
finite
V49
()
set
{
[
(
0.
(
INT.Ring
p
)
)
,
(
0.
(
INT.Ring
p
)
)
,
(
0.
(
INT.Ring
p
)
)
]
}
is non
empty
trivial
finite
1
-element
Element
of
bool
[:
the
carrier
of
(
INT.Ring
p
)
, the
carrier
of
(
INT.Ring
p
)
, the
carrier
of
(
INT.Ring
p
)
:]
[:
the
carrier
of
(
INT.Ring
p
)
, the
carrier
of
(
INT.Ring
p
)
, the
carrier
of
(
INT.Ring
p
)
:]
\
{
[
(
0.
(
INT.Ring
p
)
)
,
(
0.
(
INT.Ring
p
)
)
,
(
0.
(
INT.Ring
p
)
)
]
}
is
finite
Element
of
bool
[:
the
carrier
of
(
INT.Ring
p
)
, the
carrier
of
(
INT.Ring
p
)
, the
carrier
of
(
INT.Ring
p
)
:]
a
is
left_add-cancelable
right_add-cancelable
add-cancelable
right_complementable
Element
of the
carrier
of
(
INT.Ring
p
)
b
is
left_add-cancelable
right_add-cancelable
add-cancelable
right_complementable
Element
of the
carrier
of
(
INT.Ring
p
)
(
p
,
a
,
b
) is
left_add-cancelable
right_add-cancelable
add-cancelable
right_complementable
Element
of the
carrier
of
(
INT.Ring
p
)
(
p
,
a
,
b
) is non
empty
finite
Element
of
bool
(
(
INT.Ring
p
)
)
bool
(
(
INT.Ring
p
)
) is non
empty
finite
V49
()
set
(
p
,
a
,
b
) is
Relation-like
[:
the
carrier
of
(
INT.Ring
p
)
, the
carrier
of
(
INT.Ring
p
)
, the
carrier
of
(
INT.Ring
p
)
:]
-defined
the
carrier
of
(
INT.Ring
p
)
-valued
Function-like
quasi_total
finite
Element
of
bool
[:
[:
the
carrier
of
(
INT.Ring
p
)
, the
carrier
of
(
INT.Ring
p
)
, the
carrier
of
(
INT.Ring
p
)
:]
, the
carrier
of
(
INT.Ring
p
)
:]
[:
[:
the
carrier
of
(
INT.Ring
p
)
, the
carrier
of
(
INT.Ring
p
)
, the
carrier
of
(
INT.Ring
p
)
:]
, the
carrier
of
(
INT.Ring
p
)
:]
is non
empty
finite
set
bool
[:
[:
the
carrier
of
(
INT.Ring
p
)
, the
carrier
of
(
INT.Ring
p
)
, the
carrier
of
(
INT.Ring
p
)
:]
, the
carrier
of
(
INT.Ring
p
)
:]
is non
empty
finite
V49
()
set
{
b
1
where
b
1
is
Element
of (
(
INT.Ring
p
)
) : (
p
,
a
,
b
)
.
b
1
=
0.
(
INT.Ring
p
)
}
is
set
(
p
,
a
,
b
) is
Relation-like
(
p
,
a
,
b
)
-defined
(
p
,
a
,
b
)
-valued
total
finite
reflexive
symmetric
transitive
Element
of
bool
[:
(
p
,
a
,
b
),(
p
,
a
,
b
)
:]
[:
(
p
,
a
,
b
),(
p
,
a
,
b
)
:]
is non
empty
finite
set
bool
[:
(
p
,
a
,
b
),(
p
,
a
,
b
)
:]
is non
empty
finite
V49
()
set
(
p
) is
Relation-like
(
(
INT.Ring
p
)
)
-defined
(
(
INT.Ring
p
)
)
-valued
total
finite
reflexive
symmetric
transitive
Element
of
bool
[:
(
(
INT.Ring
p
)
),(
(
INT.Ring
p
)
)
:]
[:
(
(
INT.Ring
p
)
),(
(
INT.Ring
p
)
)
:]
is non
empty
finite
set
bool
[:
(
(
INT.Ring
p
)
),(
(
INT.Ring
p
)
)
:]
is non
empty
finite
V49
()
set
{
[
b
1
,
b
2
]
where
b
1
,
b
2
is
Element
of (
(
INT.Ring
p
)
) : (
p
,
b
1
,
b
2
)
}
is
set
nabla
(
p
,
a
,
b
) is
Relation-like
(
p
,
a
,
b
)
-defined
(
p
,
a
,
b
)
-valued
total
finite
reflexive
symmetric
transitive
Element
of
bool
[:
(
p
,
a
,
b
),(
p
,
a
,
b
)
:]
(
p
)
/\
(
nabla
(
p
,
a
,
b
)
)
is
Relation-like
(
(
INT.Ring
p
)
)
-defined
(
p
,
a
,
b
)
-defined
(
(
INT.Ring
p
)
)
-valued
(
p
,
a
,
b
)
-valued
finite
reflexive
symmetric
transitive
Element
of
bool
[:
(
p
,
a
,
b
),(
p
,
a
,
b
)
:]
{
(
Class
((
p
,
a
,
b
),
b
1
)
)
where
b
1
is
Element
of (
(
INT.Ring
p
)
) : (
b
1
in
(
p
,
a
,
b
) & ex
b
2
,
b
3
being
left_add-cancelable
right_add-cancelable
add-cancelable
right_complementable
Element
of the
carrier
of
(
INT.Ring
p
)
st
b
1
=
[
b
2
,
b
3
,1
]
)
}
is
set
{
(
Class
((
p
,
a
,
b
),
[
(
a
1
-
1
)
,
b
1
,1
]
)
)
where
b
1
is
left_add-cancelable
right_add-cancelable
add-cancelable
right_complementable
Element
of the
carrier
of
(
INT.Ring
p
)
:
[
(
a
1
-
1
)
,
b
1
,1
]
in
(
p
,
a
,
b
)
}
is
set
pp
is
Relation-like
Function-like
FinSequence-like
set
len
pp
is
V4
()
V5
()
V6
()
V10
()
V11
()
V12
()
integer
ext-real
non
negative
finite
cardinal
V113
()
V117
()
V118
()
V119
()
V120
()
V121
()
V122
()
Element
of
NAT
dom
pp
is
V117
()
V118
()
V119
()
V120
()
V121
()
V122
()
Element
of
bool
NAT
dom
pp
is
set
Union
pp
is
set
rng
pp
is
set
union
(
rng
pp
)
is
set
FF
is
V4
()
V5
()
V6
()
V10
()
V11
()
V12
()
integer
ext-real
non
negative
finite
cardinal
set
pp
.
FF
is
set
FF
-
1 is
V11
()
V12
()
integer
ext-real
set
{
(
Class
((
p
,
a
,
b
),
[
(
FF
-
1
)
,
b
1
,1
]
)
)
where
b
1
is
left_add-cancelable
right_add-cancelable
add-cancelable
right_complementable
Element
of the
carrier
of
(
INT.Ring
p
)
:
[
(
FF
-
1
)
,
b
1
,1
]
in
(
p
,
a
,
b
)
}
is
set
FF
is
set
F1
is
set
F2
is
V4
()
V5
()
V6
()
V10
()
V11
()
V12
()
integer
ext-real
non
negative
finite
cardinal
set
F2
-
1 is
V11
()
V12
()
integer
ext-real
set
X
is
V4
()
V5
()
V6
()
V10
()
V11
()
V12
()
integer
ext-real
non
negative
finite
cardinal
set
X
-
1 is
V11
()
V12
()
integer
ext-real
set
pp
.
F2
is
set
{
(
Class
((
p
,
a
,
b
),
[
(
F2
-
1
)
,
b
1
,1
]
)
)
where
b
1
is
left_add-cancelable
right_add-cancelable
add-cancelable
right_complementable
Element
of the
carrier
of
(
INT.Ring
p
)
:
[
(
F2
-
1
)
,
b
1
,1
]
in
(
p
,
a
,
b
)
}
is
set
pp
.
X
is
set
{
(
Class
((
p
,
a
,
b
),
[
(
X
-
1
)
,
b
1
,1
]
)
)
where
b
1
is
left_add-cancelable
right_add-cancelable
add-cancelable
right_complementable
Element
of the
carrier
of
(
INT.Ring
p
)
:
[
(
X
-
1
)
,
b
1
,1
]
in
(
p
,
a
,
b
)
}
is
set
pp
.
FF
is
set
pp
.
F1
is
set
Y
is
set
n1
is
left_add-cancelable
right_add-cancelable
add-cancelable
right_complementable
Element
of the
carrier
of
(
INT.Ring
p
)
[
(
F2
-
1
)
,
n1
,1
]
is
V26
()
V27
()
set
[
(
F2
-
1
)
,
n1
]
is
V26
()
set
{
(
F2
-
1
)
,
n1
}
is non
empty
finite
set
{
(
F2
-
1
)
}
is non
empty
trivial
finite
1
-element
V117
()
V118
()
V119
()
V120
()
V121
()
set
{
{
(
F2
-
1
)
,
n1
}
,
{
(
F2
-
1
)
}
}
is non
empty
finite
V49
()
set
[
[
(
F2
-
1
)
,
n1
]
,1
]
is
V26
()
set
{
[
(
F2
-
1
)
,
n1
]
,1
}
is non
empty
finite
set
{
[
(
F2
-
1
)
,
n1
]
}
is non
empty
trivial
finite
1
-element
set
{
{
[
(
F2
-
1
)
,
n1
]
,1
}
,
{
[
(
F2
-
1
)
,
n1
]
}
}
is non
empty
finite
V49
()
set
Class
((
p
,
a
,
b
),
[
(
F2
-
1
)
,
n1
,1
]
) is
finite
Element
of
bool
(
p
,
a
,
b
)
bool
(
p
,
a
,
b
) is non
empty
finite
V49
()
set
n
is
left_add-cancelable
right_add-cancelable
add-cancelable
right_complementable
Element
of the
carrier
of
(
INT.Ring
p
)
[
(
X
-
1
)
,
n
,1
]
is
V26
()
V27
()
set
[
(
X
-
1
)
,
n
]
is
V26
()
set
{
(
X
-
1
)
,
n
}
is non
empty
finite
set
{
(
X
-
1
)
}
is non
empty
trivial
finite
1
-element
V117
()
V118
()
V119
()
V120
()
V121
()
set
{
{
(
X
-
1
)
,
n
}
,
{
(
X
-
1
)
}
}
is non
empty
finite
V49
()
set
[
[
(
X
-
1
)
,
n
]
,1
]
is
V26
()
set
{
[
(
X
-
1
)
,
n
]
,1
}
is non
empty
finite
set
{
[
(
X
-
1
)
,
n
]
}
is non
empty
trivial
finite
1
-element
set
{
{
[
(
X
-
1
)
,
n
]
,1
}
,
{
[
(
X
-
1
)
,
n
]
}
}
is non
empty
finite
V49
()
set
Class
((
p
,
a
,
b
),
[
(
X
-
1
)
,
n
,1
]
) is
finite
Element
of
bool
(
p
,
a
,
b
)
pp
.
FF
is
set
pp
.
F1
is
set
FF
is
V4
()
V5
()
V6
()
V10
()
V11
()
V12
()
integer
ext-real
non
negative
finite
cardinal
set
pp
.
FF
is
set
FF
-
1 is
V11
()
V12
()
integer
ext-real
set
{
(
Class
((
p
,
a
,
b
),
[
(
FF
-
1
)
,
b
1
,1
]
)
)
where
b
1
is
left_add-cancelable
right_add-cancelable
add-cancelable
right_complementable
Element
of the
carrier
of
(
INT.Ring
p
)
:
[
(
FF
-
1
)
,
b
1
,1
]
in
(
p
,
a
,
b
)
}
is
set
1
-
1 is
V11
()
V12
()
integer
ext-real
set
p
-
1 is
V11
()
V12
()
integer
ext-real
set
p
-
0
is non
empty
V11
()
V12
()
integer
ext-real
positive
non
negative
set
card
(
pp
.
FF
)
is
V4
()
V5
()
V6
()
cardinal
set
F1
is
left_add-cancelable
right_add-cancelable
add-cancelable
right_complementable
Element
of the
carrier
of
(
INT.Ring
p
)
{
(
Class
((
p
,
a
,
b
),
[
F1
,
b
1
,1
]
)
)
where
b
1
is
left_add-cancelable
right_add-cancelable
add-cancelable
right_complementable
Element
of the
carrier
of
(
INT.Ring
p
)
:
[
F1
,
b
1
,1
]
in
(
p
,
a
,
b
)
}
is
set
card
{
(
Class
((
p
,
a
,
b
),
[
F1
,
b
1
,1
]
)
)
where
b
1
is
left_add-cancelable
right_add-cancelable
add-cancelable
right_complementable
Element
of the
carrier
of
(
INT.Ring
p
)
:
[
F1
,
b
1
,1
]
in
(
p
,
a
,
b
)
}
is
V4
()
V5
()
V6
()
cardinal
set
F1
|^
3 is
left_add-cancelable
right_add-cancelable
add-cancelable
right_complementable
Element
of the
carrier
of
(
INT.Ring
p
)
power
(
INT.Ring
p
)
is
Relation-like
[:
the
carrier
of
(
INT.Ring
p
)
,
NAT
:]
-defined
the
carrier
of
(
INT.Ring
p
)
-valued
Function-like
quasi_total
Element
of
bool
[:
[:
the
carrier
of
(
INT.Ring
p
)
,
NAT
:]
, the
carrier
of
(
INT.Ring
p
)
:]
[:
the
carrier
of
(
INT.Ring
p
)
,
NAT
:]
is non
empty
non
trivial
RAT
-valued
INT
-valued
V35
()
V36
()
V37
()
V38
() non
finite
set
[:
[:
the
carrier
of
(
INT.Ring
p
)
,
NAT
:]
, the
carrier
of
(
INT.Ring
p
)
:]
is non
empty
non
trivial
non
finite
set
bool
[:
[:
the
carrier
of
(
INT.Ring
p
)
,
NAT
:]
, the
carrier
of
(
INT.Ring
p
)
:]
is non
empty
non
trivial
non
finite
set
(
power
(
INT.Ring
p
)
)
.
(
F1
,3) is
set
[
F1
,3
]
is
V26
()
set
{
F1
,3
}
is non
empty
finite
set
{
F1
}
is non
empty
trivial
finite
1
-element
set
{
{
F1
,3
}
,
{
F1
}
}
is non
empty
finite
V49
()
set
(
power
(
INT.Ring
p
)
)
.
[
F1
,3
]
is
set
a
*
F1
is
left_add-cancelable
right_add-cancelable
add-cancelable
right_complementable
Element
of the
carrier
of
(
INT.Ring
p
)
the
multF
of
(
INT.Ring
p
)
is
Relation-like
[:
the
carrier
of
(
INT.Ring
p
)
, the
carrier
of
(
INT.Ring
p
)
:]
-defined
the
carrier
of
(
INT.Ring
p
)
-valued
Function-like
quasi_total
finite
Element
of
bool
[:
[:
the
carrier
of
(
INT.Ring
p
)
, the
carrier
of
(
INT.Ring
p
)
:]
, the
carrier
of
(
INT.Ring
p
)
:]
[:
the
carrier
of
(
INT.Ring
p
)
, the
carrier
of
(
INT.Ring
p
)
:]
is non
empty
finite
set
[:
[:
the
carrier
of
(
INT.Ring
p
)
, the
carrier
of
(
INT.Ring
p
)
:]
, the
carrier
of
(
INT.Ring
p
)
:]
is non
empty
finite
set
bool
[:
[:
the
carrier
of
(
INT.Ring
p
)
, the
carrier
of
(
INT.Ring
p
)
:]
, the
carrier
of
(
INT.Ring
p
)
:]
is non
empty
finite
V49
()
set
the
multF
of
(
INT.Ring
p
)
.
(
a
,
F1
) is
left_add-cancelable
right_add-cancelable
add-cancelable
right_complementable
Element
of the
carrier
of
(
INT.Ring
p
)
[
a
,
F1
]
is
V26
()
set
{
a
,
F1
}
is non
empty
finite
set
{
a
}
is non
empty
trivial
finite
1
-element
set
{
{
a
,
F1
}
,
{
a
}
}
is non
empty
finite
V49
()
set
the
multF
of
(
INT.Ring
p
)
.
[
a
,
F1
]
is
set
(
F1
|^
3
)
+
(
a
*
F1
)
is
left_add-cancelable
right_add-cancelable
add-cancelable
right_complementable
Element
of the
carrier
of
(
INT.Ring
p
)
the
addF
of
(
INT.Ring
p
)
is
Relation-like
[:
the
carrier
of
(
INT.Ring
p
)
, the
carrier
of
(
INT.Ring
p
)
:]
-defined
the
carrier
of
(
INT.Ring
p
)
-valued
Function-like
quasi_total
finite
Element
of
bool
[:
[:
the
carrier
of
(
INT.Ring
p
)
, the
carrier
of
(
INT.Ring
p
)
:]
, the
carrier
of
(
INT.Ring
p
)
:]
the
addF
of
(
INT.Ring
p
)
.
(
(
F1
|^
3
)
,
(
a
*
F1
)
) is
left_add-cancelable
right_add-cancelable
add-cancelable
right_complementable
Element
of the
carrier
of
(
INT.Ring
p
)
[
(
F1
|^
3
)
,
(
a
*
F1
)
]
is
V26
()
set
{
(
F1
|^
3
)
,
(
a
*
F1
)
}
is non
empty
finite
set
{
(
F1
|^
3
)
}
is non
empty
trivial
finite
1
-element
set
{
{
(
F1
|^
3
)
,
(
a
*
F1
)
}
,
{
(
F1
|^
3
)
}
}
is non
empty
finite
V49
()
set
the
addF
of
(
INT.Ring
p
)
.
[
(
F1
|^
3
)
,
(
a
*
F1
)
]
is
set
(
(
F1
|^
3
)
+
(
a
*
F1
)
)
+
b
is
left_add-cancelable
right_add-cancelable
add-cancelable
right_complementable
Element
of the
carrier
of
(
INT.Ring
p
)
the
addF
of
(
INT.Ring
p
)
.
(
(
(
F1
|^
3
)
+
(
a
*
F1
)
)
,
b
) is
left_add-cancelable
right_add-cancelable
add-cancelable
right_complementable
Element
of the
carrier
of
(
INT.Ring
p
)
[
(
(
F1
|^
3
)
+
(
a
*
F1
)
)
,
b
]
is
V26
()
set
{
(
(
F1
|^
3
)
+
(
a
*
F1
)
)
,
b
}
is non
empty
finite
set
{
(
(
F1
|^
3
)
+
(
a
*
F1
)
)
}
is non
empty
trivial
finite
1
-element
set
{
{
(
(
F1
|^
3
)
+
(
a
*
F1
)
)
,
b
}
,
{
(
(
F1
|^
3
)
+
(
a
*
F1
)
)
}
}
is non
empty
finite
V49
()
set
the
addF
of
(
INT.Ring
p
)
.
[
(
(
F1
|^
3
)
+
(
a
*
F1
)
)
,
b
]
is
set
(
p
,
(
(
(
F1
|^
3
)
+
(
a
*
F1
)
)
+
b
)
) is
V11
()
V12
()
integer
ext-real
set
1
+
(
p
,
(
(
(
F1
|^
3
)
+
(
a
*
F1
)
)
+
b
)
) is
V11
()
V12
()
integer
ext-real
set
F1
is
set
F2
is
set
X
is
set
pp
.
X
is
set
Y
is
V4
()
V5
()
V6
()
V10
()
V11
()
V12
()
integer
ext-real
non
negative
finite
cardinal
set
pp
.
Y
is
set
Y
-
1 is
V11
()
V12
()
integer
ext-real
set
{
(
Class
((
p
,
a
,
b
),
[
(
Y
-
1
)
,
b
1
,1
]
)
)
where
b
1
is
left_add-cancelable
right_add-cancelable
add-cancelable
right_complementable
Element
of the
carrier
of
(
INT.Ring
p
)
:
[
(
Y
-
1
)
,
b
1
,1
]
in
(
p
,
a
,
b
)
}
is
set
n1
is
left_add-cancelable
right_add-cancelable
add-cancelable
right_complementable
Element
of the
carrier
of
(
INT.Ring
p
)
[
(
Y
-
1
)
,
n1
,1
]
is
V26
()
V27
()
set
[
(
Y
-
1
)
,
n1
]
is
V26
()
set
{
(
Y
-
1
)
,
n1
}
is non
empty
finite
set
{
(
Y
-
1
)
}
is non
empty
trivial
finite
1
-element
V117
()
V118
()
V119
()
V120
()
V121
()
set
{
{
(
Y
-
1
)
,
n1
}
,
{
(
Y
-
1
)
}
}
is non
empty
finite
V49
()
set
[
[
(
Y
-
1
)
,
n1
]
,1
]
is
V26
()
set
{
[
(
Y
-
1
)
,
n1
]
,1
}
is non
empty
finite
set
{
[
(
Y
-
1
)
,
n1
]
}
is non
empty
trivial
finite
1
-element
set
{
{
[
(
Y
-
1
)
,
n1
]
,1
}
,
{
[
(
Y
-
1
)
,
n1
]
}
}
is non
empty
finite
V49
()
set
Class
((
p
,
a
,
b
),
[
(
Y
-
1
)
,
n1
,1
]
) is
finite
Element
of
bool
(
p
,
a
,
b
)
bool
(
p
,
a
,
b
) is non
empty
finite
V49
()
set
F2
is
Element
of (
(
INT.Ring
p
)
)
Class
((
p
,
a
,
b
),
F2
) is
finite
Element
of
bool
(
p
,
a
,
b
)
X
is
left_add-cancelable
right_add-cancelable
add-cancelable
right_complementable
Element
of the
carrier
of
(
INT.Ring
p
)
Y
is
left_add-cancelable
right_add-cancelable
add-cancelable
right_complementable
Element
of the
carrier
of
(
INT.Ring
p
)
[
X
,
Y
,1
]
is
V26
()
V27
()
Element
of
[:
the
carrier
of
(
INT.Ring
p
)
, the
carrier
of
(
INT.Ring
p
)
,
NAT
:]
[:
the
carrier
of
(
INT.Ring
p
)
, the
carrier
of
(
INT.Ring
p
)
,
NAT
:]
is non
empty
set
[
X
,
Y
]
is
V26
()
set
{
X
,
Y
}
is non
empty
finite
set
{
X
}
is non
empty
trivial
finite
1
-element
set
{
{
X
,
Y
}
,
{
X
}
}
is non
empty
finite
V49
()
set
[
[
X
,
Y
]
,1
]
is
V26
()
set
{
[
X
,
Y
]
,1
}
is non
empty
finite
set
{
[
X
,
Y
]
}
is non
empty
trivial
finite
1
-element
set
{
{
[
X
,
Y
]
,1
}
,
{
[
X
,
Y
]
}
}
is non
empty
finite
V49
()
set
X
is
left_add-cancelable
right_add-cancelable
add-cancelable
right_complementable
Element
of the
carrier
of
(
INT.Ring
p
)
Y
is
left_add-cancelable
right_add-cancelable
add-cancelable
right_complementable
Element
of the
carrier
of
(
INT.Ring
p
)
[
X
,
Y
,1
]
is
V26
()
V27
()
Element
of
[:
the
carrier
of
(
INT.Ring
p
)
, the
carrier
of
(
INT.Ring
p
)
,
NAT
:]
[:
the
carrier
of
(
INT.Ring
p
)
, the
carrier
of
(
INT.Ring
p
)
,
NAT
:]
is non
empty
set
[
X
,
Y
]
is
V26
()
set
{
X
,
Y
}
is non
empty
finite
set
{
X
}
is non
empty
trivial
finite
1
-element
set
{
{
X
,
Y
}
,
{
X
}
}
is non
empty
finite
V49
()
set
[
[
X
,
Y
]
,1
]
is
V26
()
set
{
[
X
,
Y
]
,1
}
is non
empty
finite
set
{
[
X
,
Y
]
}
is non
empty
trivial
finite
1
-element
set
{
{
[
X
,
Y
]
,1
}
,
{
[
X
,
Y
]
}
}
is non
empty
finite
V49
()
set
n1
is
V4
()
V5
()
V6
()
V10
()
V11
()
V12
()
integer
ext-real
non
negative
finite
cardinal
set
0
+
1 is non
empty
V4
()
V5
()
V6
()
V10
()
V11
()
V12
()
integer
ext-real
positive
non
negative
finite
cardinal
V113
()
V117
()
V118
()
V119
()
V120
()
V121
()
V122
()
Element
of
NAT
n1
+
1 is non
empty
V4
()
V5
()
V6
()
V10
()
V11
()
V12
()
integer
ext-real
positive
non
negative
finite
cardinal
V113
()
V117
()
V118
()
V119
()
V120
()
V121
()
V122
()
Element
of
NAT
(
n1
+
1
)
-
1 is
V11
()
V12
()
integer
ext-real
set
{
(
Class
((
p
,
a
,
b
),
[
(
(
n1
+
1
)
-
1
)
,
b
1
,1
]
)
)
where
b
1
is
left_add-cancelable
right_add-cancelable
add-cancelable
right_complementable
Element
of the
carrier
of
(
INT.Ring
p
)
:
[
(
(
n1
+
1
)
-
1
)
,
b
1
,1
]
in
(
p
,
a
,
b
)
}
is
set
y1
is
left_add-cancelable
right_add-cancelable
add-cancelable
right_complementable
Element
of the
carrier
of
(
INT.Ring
p
)
a1
is
left_add-cancelable
right_add-cancelable
add-cancelable
right_complementable
Element
of the
carrier
of
(
INT.Ring
p
)
[
y1
,
a1
,1
]
is
V26
()
V27
()
Element
of
[:
the
carrier
of
(
INT.Ring
p
)
, the
carrier
of
(
INT.Ring
p
)
,
NAT
:]
[
y1
,
a1
]
is
V26
()
set
{
y1
,
a1
}
is non
empty
finite
set
{
y1
}
is non
empty
trivial
finite
1
-element
set
{
{
y1
,
a1
}
,
{
y1
}
}
is non
empty
finite
V49
()
set
[
[
y1
,
a1
]
,1
]
is
V26
()
set
{
[
y1
,
a1
]
,1
}
is non
empty
finite
set
{
[
y1
,
a1
]
}
is non
empty
trivial
finite
1
-element
set
{
{
[
y1
,
a1
]
,1
}
,
{
[
y1
,
a1
]
}
}
is non
empty
finite
V49
()
set
pp
.
(
n1
+
1
)
is
set
p
is non
empty
V4
()
V5
()
V6
()
V10
()
V11
()
V12
()
integer
V14
()
ext-real
positive
non
negative
finite
cardinal
set
INT.Ring
p
is non
empty
non
degenerated
non
trivial
finite
left_add-cancelable
right_add-cancelable
add-cancelable
right_complementable
almost_left_invertible
strict
unital
associative
commutative
Euclidian
right-distributive
left-distributive
right_unital
well-unital
distributive
left_unital
Abelian
add-associative
right_zeroed
()
doubleLoopStr
Segm
p
is
V117
()
V118
()
V119
()
V120
()
V121
()
V122
()
Element
of
bool
NAT
addint
p
is
Relation-like
[:
(
Segm
p
)
,
(
Segm
p
)
:]
-defined
Segm
p
-valued
Function-like
quasi_total
V35
()
V36
()
V37
()
V38
()
Element
of
bool
[:
[:
(
Segm
p
)
,
(
Segm
p
)
:]
,
(
Segm
p
)
:]
[:
(
Segm
p
)
,
(
Segm
p
)
:]
is
RAT
-valued
INT
-valued
V35
()
V36
()
V37
()
V38
()
set
[:
[:
(
Segm
p
)
,
(
Segm
p
)
:]
,
(
Segm
p
)
:]
is
RAT
-valued
INT
-valued
V35
()
V36
()
V37
()
V38
()
set
bool
[:
[:
(
Segm
p
)
,
(
Segm
p
)
:]
,
(
Segm
p
)
:]
is non
empty
set
multint
p
is
Relation-like
[:
(
Segm
p
)
,
(
Segm
p
)
:]
-defined
Segm
p
-valued
Function-like
quasi_total
V35
()
V36
()
V37
()
V38
()
Element
of
bool
[:
[:
(
Segm
p
)
,
(
Segm
p
)
:]
,
(
Segm
p
)
:]
K633
(1,
(
Segm
p
)
) is
V4
()
V5
()
V6
()
V10
()
V11
()
V12
()
integer
ext-real
non
negative
finite
cardinal
V113
()
Element
of
Segm
p
K633
(
0
,
(
Segm
p
)
) is
V4
()
V5
()
V6
()
V10
()
V11
()
V12
()
integer
ext-real
non
negative
finite
cardinal
V113
()
Element
of
Segm
p
doubleLoopStr
(#
(
Segm
p
)
,
(
addint
p
)
,
(
multint
p
)
,
K633
(1,
(
Segm
p
)
),
K633
(
0
,
(
Segm
p
)
) #) is
strict
doubleLoopStr
the
carrier
of
(
INT.Ring
p
)
is non
empty
non
trivial
finite
set
0.
(
INT.Ring
p
)
is
V61
(
INT.Ring
p
)
left_add-cancelable
right_add-cancelable
add-cancelable
right_complementable
Element
of the
carrier
of
(
INT.Ring
p
)
the
ZeroF
of
(
INT.Ring
p
)
is
left_add-cancelable
right_add-cancelable
add-cancelable
right_complementable
Element
of the
carrier
of
(
INT.Ring
p
)
Seg
p
is
V117
()
V118
()
V119
()
V120
()
V121
()
V122
()
Element
of
bool
NAT
{
b
1
where
b
1
is
V4
()
V5
()
V6
()
V10
()
V11
()
V12
()
integer
ext-real
non
negative
finite
cardinal
V113
()
V117
()
V118
()
V119
()
V120
()
V121
()
V122
()
Element
of
NAT
: ( 1
<=
b
1
&
b
1
<=
p
)
}
is
set
[:
the
carrier
of
(
INT.Ring
p
)
, the
carrier
of
(
INT.Ring
p
)
, the
carrier
of
(
INT.Ring
p
)
:]
is non
empty
finite
set
(
(
INT.Ring
p
)
) is non
empty
finite
Element
of
bool
[:
the
carrier
of
(
INT.Ring
p
)
, the
carrier
of
(
INT.Ring
p
)
, the
carrier
of
(
INT.Ring
p
)
:]
bool
[:
the
carrier
of
(
INT.Ring
p
)
, the
carrier
of
(
INT.Ring
p
)
, the
carrier
of
(
INT.Ring
p
)
:]
is non
empty
finite
V49
()
set
[
(
0.
(
INT.Ring
p
)
)
,
(
0.
(
INT.Ring
p
)
)
,
(
0.
(
INT.Ring
p
)
)
]
is
V26
()
V27
()
Element
of
[:
the
carrier
of
(
INT.Ring
p
)
, the
carrier
of
(
INT.Ring
p
)
, the
carrier
of
(
INT.Ring
p
)
:]
[
(
0.
(
INT.Ring
p
)
)
,
(
0.
(
INT.Ring
p
)
)
]
is
V26
()
set
{
(
0.
(
INT.Ring
p
)
)
,
(
0.
(
INT.Ring
p
)
)
}
is non
empty
finite
set
{
(
0.
(
INT.Ring
p
)
)
}
is non
empty
trivial
finite
1
-element
set
{
{
(
0.
(
INT.Ring
p
)
)
,
(
0.
(
INT.Ring
p
)
)
}
,
{
(
0.
(
INT.Ring
p
)
)
}
}
is non
empty
finite
V49
()
set
[
[
(
0.
(
INT.Ring
p
)
)
,
(
0.
(
INT.Ring
p
)
)
]
,
(
0.
(
INT.Ring
p
)
)
]
is
V26
()
set
{
[
(
0.
(
INT.Ring
p
)
)
,
(
0.
(
INT.Ring
p
)
)
]
,
(
0.
(
INT.Ring
p
)
)
}
is non
empty
finite
set
{
[
(
0.
(
INT.Ring
p
)
)
,
(
0.
(
INT.Ring
p
)
)
]
}
is non
empty
trivial
finite
1
-element
set
{
{
[
(
0.
(
INT.Ring
p
)
)
,
(
0.
(
INT.Ring
p
)
)
]
,
(
0.
(
INT.Ring
p
)
)
}
,
{
[
(
0.
(
INT.Ring
p
)
)
,
(
0.
(
INT.Ring
p
)
)
]
}
}
is non
empty
finite
V49
()
set
{
[
(
0.
(
INT.Ring
p
)
)
,
(
0.
(
INT.Ring
p
)
)
,
(
0.
(
INT.Ring
p
)
)
]
}
is non
empty
trivial
finite
1
-element
Element
of
bool
[:
the
carrier
of
(
INT.Ring
p
)
, the
carrier
of
(
INT.Ring
p
)
, the
carrier
of
(
INT.Ring
p
)
:]
[:
the
carrier
of
(
INT.Ring
p
)
, the
carrier
of
(
INT.Ring
p
)
, the
carrier
of
(
INT.Ring
p
)
:]
\
{
[
(
0.
(
INT.Ring
p
)
)
,
(
0.
(
INT.Ring
p
)
)
,
(
0.
(
INT.Ring
p
)
)
]
}
is
finite
Element
of
bool
[:
the
carrier
of
(
INT.Ring
p
)
, the
carrier
of
(
INT.Ring
p
)
, the
carrier
of
(
INT.Ring
p
)
:]
a
is
left_add-cancelable
right_add-cancelable
add-cancelable
right_complementable
Element
of the
carrier
of
(
INT.Ring
p
)
b
is
left_add-cancelable
right_add-cancelable
add-cancelable
right_complementable
Element
of the
carrier
of
(
INT.Ring
p
)
(
p
,
a
,
b
) is
left_add-cancelable
right_add-cancelable
add-cancelable
right_complementable
Element
of the
carrier
of
(
INT.Ring
p
)
(
p
,
a
,
b
) is non
empty
finite
Element
of
bool
(
(
INT.Ring
p
)
)
bool
(
(
INT.Ring
p
)
) is non
empty
finite
V49
()
set
(
p
,
a
,
b
) is
Relation-like
[:
the
carrier
of
(
INT.Ring
p
)
, the
carrier
of
(
INT.Ring
p
)
, the
carrier
of
(
INT.Ring
p
)
:]
-defined
the
carrier
of
(
INT.Ring
p
)
-valued
Function-like
quasi_total
finite
Element
of
bool
[:
[:
the
carrier
of
(
INT.Ring
p
)
, the
carrier
of
(
INT.Ring
p
)
, the
carrier
of
(
INT.Ring
p
)
:]
, the
carrier
of
(
INT.Ring
p
)
:]
[:
[:
the
carrier
of
(
INT.Ring
p
)
, the
carrier
of
(
INT.Ring
p
)
, the
carrier
of
(
INT.Ring
p
)
:]
, the
carrier
of
(
INT.Ring
p
)
:]
is non
empty
finite
set
bool
[:
[:
the
carrier
of
(
INT.Ring
p
)
, the
carrier
of
(
INT.Ring
p
)
, the
carrier
of
(
INT.Ring
p
)
:]
, the
carrier
of
(
INT.Ring
p
)
:]
is non
empty
finite
V49
()
set
{
b
1
where
b
1
is
Element
of (
(
INT.Ring
p
)
) : (
p
,
a
,
b
)
.
b
1
=
0.
(
INT.Ring
p
)
}
is
set
(
p
,
a
,
b
) is
Relation-like
(
p
,
a
,
b
)
-defined
(
p
,
a
,
b
)
-valued
total
finite
reflexive
symmetric
transitive
Element
of
bool
[:
(
p
,
a
,
b
),(
p
,
a
,
b
)
:]
[:
(
p
,
a
,
b
),(
p
,
a
,
b
)
:]
is non
empty
finite
set
bool
[:
(
p
,
a
,
b
),(
p
,
a
,
b
)
:]
is non
empty
finite
V49
()
set
(
p
) is
Relation-like
(
(
INT.Ring
p
)
)
-defined
(
(
INT.Ring
p
)
)
-valued
total
finite
reflexive
symmetric
transitive
Element
of
bool
[:
(
(
INT.Ring
p
)
),(
(
INT.Ring
p
)
)
:]
[:
(
(
INT.Ring
p
)
),(
(
INT.Ring
p
)
)
:]
is non
empty
finite
set
bool
[:
(
(
INT.Ring
p
)
),(
(
INT.Ring
p
)
)
:]
is non
empty
finite
V49
()
set
{
[
b
1
,
b
2
]
where
b
1
,
b
2
is
Element
of (
(
INT.Ring
p
)
) : (
p
,
b
1
,
b
2
)
}
is
set
nabla
(
p
,
a
,
b
) is
Relation-like
(
p
,
a
,
b
)
-defined
(
p
,
a
,
b
)
-valued
total
finite
reflexive
symmetric
transitive
Element
of
bool
[:
(
p
,
a
,
b
),(
p
,
a
,
b
)
:]
(
p
)
/\
(
nabla
(
p
,
a
,
b
)
)
is
Relation-like
(
(
INT.Ring
p
)
)
-defined
(
p
,
a
,
b
)
-defined
(
(
INT.Ring
p
)
)
-valued
(
p
,
a
,
b
)
-valued
finite
reflexive
symmetric
transitive
Element
of
bool
[:
(
p
,
a
,
b
),(
p
,
a
,
b
)
:]
{
(
Class
((
p
,
a
,
b
),
b
1
)
)
where
b
1
is
Element
of (
(
INT.Ring
p
)
) : (
b
1
in
(
p
,
a
,
b
) & ex
b
2
,
b
3
being
left_add-cancelable
right_add-cancelable
add-cancelable
right_complementable
Element
of the
carrier
of
(
INT.Ring
p
)
st
b
1
=
[
b
2
,
b
3
,1
]
)
}
is
set
card
{
(
Class
((
p
,
a
,
b
),
b
1
)
)
where
b
1
is
Element
of (
(
INT.Ring
p
)
) : (
b
1
in
(
p
,
a
,
b
) & ex
b
2
,
b
3
being
left_add-cancelable
right_add-cancelable
add-cancelable
right_complementable
Element
of the
carrier
of
(
INT.Ring
p
)
st
b
1
=
[
b
2
,
b
3
,1
]
)
}
is
V4
()
V5
()
V6
()
cardinal
set
L
is
Relation-like
Function-like
set
dom
L
is
set
Union
L
is
set
rng
L
is
set
union
(
rng
L
)
is
set
F
is
V4
()
V5
()
V6
()
V10
()
V11
()
V12
()
integer
ext-real
non
negative
finite
cardinal
set
L
.
F
is
set
card
(
L
.
F
)
is
V4
()
V5
()
V6
()
cardinal
set
pp
is
V4
()
V5
()
V6
()
V10
()
V11
()
V12
()
integer
ext-real
non
negative
finite
cardinal
V113
()
V117
()
V118
()
V119
()
V120
()
V121
()
V122
()
Element
of
NAT
FF
is
V4
()
V5
()
V6
()
V10
()
V11
()
V12
()
integer
ext-real
non
negative
finite
cardinal
V113
()
V117
()
V118
()
V119
()
V120
()
V121
()
V122
()
Element
of
NAT
F
is
Relation-like
NAT
-defined
NAT
-valued
Function-like
V35
()
V36
()
V37
()
V38
()
FinSequence-like
FinSequence
of
NAT
dom
F
is
V117
()
V118
()
V119
()
V120
()
V121
()
V122
()
Element
of
bool
NAT
len
F
is
V4
()
V5
()
V6
()
V10
()
V11
()
V12
()
integer
ext-real
non
negative
finite
cardinal
V113
()
V117
()
V118
()
V119
()
V120
()
V121
()
V122
()
Element
of
NAT
Sum
F
is
V4
()
V5
()
V6
()
V10
()
V11
()
V12
()
integer
ext-real
non
negative
finite
cardinal
V113
()
V117
()
V118
()
V119
()
V120
()
V121
()
V122
()
Element
of
NAT
pp
is
V4
()
V5
()
V6
()
V10
()
V11
()
V12
()
integer
ext-real
non
negative
finite
cardinal
set
1
-
1 is
V11
()
V12
()
integer
ext-real
set
pp
-
1 is
V11
()
V12
()
integer
ext-real
set
p
-
1 is
V11
()
V12
()
integer
ext-real
set
p
-
0
is non
empty
V11
()
V12
()
integer
ext-real
positive
non
negative
set
FF
is
left_add-cancelable
right_add-cancelable
add-cancelable
right_complementable
Element
of the
carrier
of
(
INT.Ring
p
)
F1
is
left_add-cancelable
right_add-cancelable
add-cancelable
right_complementable
Element
of the
carrier
of
(
INT.Ring
p
)
F
.
pp
is
V4
()
V5
()
V6
()
V10
()
V11
()
V12
()
integer
ext-real
non
negative
finite
cardinal
set
L
.
pp
is
set
card
(
L
.
pp
)
is
V4
()
V5
()
V6
()
cardinal
set
{
(
Class
((
p
,
a
,
b
),
[
(
pp
-
1
)
,
b
1
,1
]
)
)
where
b
1
is
left_add-cancelable
right_add-cancelable
add-cancelable
right_complementable
Element
of the
carrier
of
(
INT.Ring
p
)
:
[
(
pp
-
1
)
,
b
1
,1
]
in
(
p
,
a
,
b
)
}
is
set
card
{
(
Class
((
p
,
a
,
b
),
[
(
pp
-
1
)
,
b
1
,1
]
)
)
where
b
1
is
left_add-cancelable
right_add-cancelable
add-cancelable
right_complementable
Element
of the
carrier
of
(
INT.Ring
p
)
:
[
(
pp
-
1
)
,
b
1
,1
]
in
(
p
,
a
,
b
)
}
is
V4
()
V5
()
V6
()
cardinal
set
{
(
Class
((
p
,
a
,
b
),
[
F1
,
b
1
,1
]
)
)
where
b
1
is
left_add-cancelable
right_add-cancelable
add-cancelable
right_complementable
Element
of the
carrier
of
(
INT.Ring
p
)
:
[
F1
,
b
1
,1
]
in
(
p
,
a
,
b
)
}
is
set
card
{
(
Class
((
p
,
a
,
b
),
[
F1
,
b
1
,1
]
)
)
where
b
1
is
left_add-cancelable
right_add-cancelable
add-cancelable
right_complementable
Element
of the
carrier
of
(
INT.Ring
p
)
:
[
F1
,
b
1
,1
]
in
(
p
,
a
,
b
)
}
is
V4
()
V5
()
V6
()
cardinal
set
F1
|^
3 is
left_add-cancelable
right_add-cancelable
add-cancelable
right_complementable
Element
of the
carrier
of
(
INT.Ring
p
)
power
(
INT.Ring
p
)
is
Relation-like
[:
the
carrier
of
(
INT.Ring
p
)
,
NAT
:]
-defined
the
carrier
of
(
INT.Ring
p
)
-valued
Function-like
quasi_total
Element
of
bool
[:
[:
the
carrier
of
(
INT.Ring
p
)
,
NAT
:]
, the
carrier
of
(
INT.Ring
p
)
:]
[:
the
carrier
of
(
INT.Ring
p
)
,
NAT
:]
is non
empty
non
trivial
RAT
-valued
INT
-valued
V35
()
V36
()
V37
()
V38
() non
finite
set
[:
[:
the
carrier
of
(
INT.Ring
p
)
,
NAT
:]
, the
carrier
of
(
INT.Ring
p
)
:]
is non
empty
non
trivial
non
finite
set
bool
[:
[:
the
carrier
of
(
INT.Ring
p
)
,
NAT
:]
, the
carrier
of
(
INT.Ring
p
)
:]
is non
empty
non
trivial
non
finite
set
(
power
(
INT.Ring
p
)
)
.
(
F1
,3) is
set
[
F1
,3
]
is
V26
()
set
{
F1
,3
}
is non
empty
finite
set
{
F1
}
is non
empty
trivial
finite
1
-element
set
{
{
F1
,3
}
,
{
F1
}
}
is non
empty
finite
V49
()
set
(
power
(
INT.Ring
p
)
)
.
[
F1
,3
]
is
set
a
*
F1
is
left_add-cancelable
right_add-cancelable
add-cancelable
right_complementable
Element
of the
carrier
of
(
INT.Ring
p
)
the
multF
of
(
INT.Ring
p
)
is
Relation-like
[:
the
carrier
of
(
INT.Ring
p
)
, the
carrier
of
(
INT.Ring
p
)
:]
-defined
the
carrier
of
(
INT.Ring
p
)
-valued
Function-like
quasi_total
finite
Element
of
bool
[:
[:
the
carrier
of
(
INT.Ring
p
)
, the
carrier
of
(
INT.Ring
p
)
:]
, the
carrier
of
(
INT.Ring
p
)
:]
[:
the
carrier
of
(
INT.Ring
p
)
, the
carrier
of
(
INT.Ring
p
)
:]
is non
empty
finite
set
[:
[:
the
carrier
of
(
INT.Ring
p
)
, the
carrier
of
(
INT.Ring
p
)
:]
, the
carrier
of
(
INT.Ring
p
)
:]
is non
empty
finite
set
bool
[:
[:
the
carrier
of
(
INT.Ring
p
)
, the
carrier
of
(
INT.Ring
p
)
:]
, the
carrier
of
(
INT.Ring
p
)
:]
is non
empty
finite
V49
()
set
the
multF
of
(
INT.Ring
p
)
.
(
a
,
F1
) is
left_add-cancelable
right_add-cancelable
add-cancelable
right_complementable
Element
of the
carrier
of
(
INT.Ring
p
)
[
a
,
F1
]
is
V26
()
set
{
a
,
F1
}
is non
empty
finite
set
{
a
}
is non
empty
trivial
finite
1
-element
set
{
{
a
,
F1
}
,
{
a
}
}
is non
empty
finite
V49
()
set
the
multF
of
(
INT.Ring
p
)
.
[
a
,
F1
]
is
set
(
F1
|^
3
)
+
(
a
*
F1
)
is
left_add-cancelable
right_add-cancelable
add-cancelable
right_complementable
Element
of the
carrier
of
(
INT.Ring
p
)
the
addF
of
(
INT.Ring
p
)
is
Relation-like
[:
the
carrier
of
(
INT.Ring
p
)
, the
carrier
of
(
INT.Ring
p
)
:]
-defined
the
carrier
of
(
INT.Ring
p
)
-valued
Function-like
quasi_total
finite
Element
of
bool
[:
[:
the
carrier
of
(
INT.Ring
p
)
, the
carrier
of
(
INT.Ring
p
)
:]
, the
carrier
of
(
INT.Ring
p
)
:]
the
addF
of
(
INT.Ring
p
)
.
(
(
F1
|^
3
)
,
(
a
*
F1
)
) is
left_add-cancelable
right_add-cancelable
add-cancelable
right_complementable
Element
of the
carrier
of
(
INT.Ring
p
)
[
(
F1
|^
3
)
,
(
a
*
F1
)
]
is
V26
()
set
{
(
F1
|^
3
)
,
(
a
*
F1
)
}
is non
empty
finite
set
{
(
F1
|^
3
)
}
is non
empty
trivial
finite
1
-element
set
{
{
(
F1
|^
3
)
,
(
a
*
F1
)
}
,
{
(
F1
|^
3
)
}
}
is non
empty
finite
V49
()
set
the
addF
of
(
INT.Ring
p
)
.
[
(
F1
|^
3
)
,
(
a
*
F1
)
]
is
set
(
(
F1
|^
3
)
+
(
a
*
F1
)
)
+
b
is
left_add-cancelable
right_add-cancelable
add-cancelable
right_complementable
Element
of the
carrier
of
(
INT.Ring
p
)
the
addF
of
(
INT.Ring
p
)
.
(
(
(
F1
|^
3
)
+
(
a
*
F1
)
)
,
b
) is
left_add-cancelable
right_add-cancelable
add-cancelable
right_complementable
Element
of the
carrier
of
(
INT.Ring
p
)
[
(
(
F1
|^
3
)
+
(
a
*
F1
)
)
,
b
]
is
V26
()
set
{
(
(
F1
|^
3
)
+
(
a
*
F1
)
)
,
b
}
is non
empty
finite
set
{
(
(
F1
|^
3
)
+
(
a
*
F1
)
)
}
is non
empty
trivial
finite
1
-element
set
{
{
(
(
F1
|^
3
)
+
(
a
*
F1
)
)
,
b
}
,
{
(
(
F1
|^
3
)
+
(
a
*
F1
)
)
}
}
is non
empty
finite
V49
()
set
the
addF
of
(
INT.Ring
p
)
.
[
(
(
F1
|^
3
)
+
(
a
*
F1
)
)
,
b
]
is
set
(
p
,
(
(
(
F1
|^
3
)
+
(
a
*
F1
)
)
+
b
)
) is
V11
()
V12
()
integer
ext-real
set
1
+
(
p
,
(
(
(
F1
|^
3
)
+
(
a
*
F1
)
)
+
b
)
) is
V11
()
V12
()
integer
ext-real
set
pp
is
V4
()
V5
()
V6
()
V10
()
V11
()
V12
()
integer
ext-real
non
negative
finite
cardinal
set
L
.
pp
is
set
F
.
pp
is
V4
()
V5
()
V6
()
V10
()
V11
()
V12
()
integer
ext-real
non
negative
finite
cardinal
set
card
(
L
.
pp
)
is
V4
()
V5
()
V6
()
cardinal
set
pp
is
V4
()
V5
()
V6
()
V10
()
V11
()
V12
()
integer
ext-real
non
negative
finite
cardinal
set
pp
-
1 is
V11
()
V12
()
integer
ext-real
set
F
.
pp
is
V4
()
V5
()
V6
()
V10
()
V11
()
V12
()
integer
ext-real
non
negative
finite
cardinal
set
p
is non
empty
V4
()
V5
()
V6
()
V10
()
V11
()
V12
()
integer
V14
()
ext-real
positive
non
negative
finite
cardinal
set
INT.Ring
p
is non
empty
non
degenerated
non
trivial
finite
left_add-cancelable
right_add-cancelable
add-cancelable
right_complementable
almost_left_invertible
strict
unital
associative
commutative
Euclidian
right-distributive
left-distributive
right_unital
well-unital
distributive
left_unital
Abelian
add-associative
right_zeroed
()
doubleLoopStr
Segm
p
is
V117
()
V118
()
V119
()
V120
()
V121
()
V122
()
Element
of
bool
NAT
addint
p
is
Relation-like
[:
(
Segm
p
)
,
(
Segm
p
)
:]
-defined
Segm
p
-valued
Function-like
quasi_total
V35
()
V36
()
V37
()
V38
()
Element
of
bool
[:
[:
(
Segm
p
)
,
(
Segm
p
)
:]
,
(
Segm
p
)
:]
[:
(
Segm
p
)
,
(
Segm
p
)
:]
is
RAT
-valued
INT
-valued
V35
()
V36
()
V37
()
V38
()
set
[:
[:
(
Segm
p
)
,
(
Segm
p
)
:]
,
(
Segm
p
)
:]
is
RAT
-valued
INT
-valued
V35
()
V36
()
V37
()
V38
()
set
bool
[:
[:
(
Segm
p
)
,
(
Segm
p
)
:]
,
(
Segm
p
)
:]
is non
empty
set
multint
p
is
Relation-like
[:
(
Segm
p
)
,
(
Segm
p
)
:]
-defined
Segm
p
-valued
Function-like
quasi_total
V35
()
V36
()
V37
()
V38
()
Element
of
bool
[:
[:
(
Segm
p
)
,
(
Segm
p
)
:]
,
(
Segm
p
)
:]
K633
(1,
(
Segm
p
)
) is
V4
()
V5
()
V6
()
V10
()
V11
()
V12
()
integer
ext-real
non
negative
finite
cardinal
V113
()
Element
of
Segm
p
K633
(
0
,
(
Segm
p
)
) is
V4
()
V5
()
V6
()
V10
()
V11
()
V12
()
integer
ext-real
non
negative
finite
cardinal
V113
()
Element
of
Segm
p
doubleLoopStr
(#
(
Segm
p
)
,
(
addint
p
)
,
(
multint
p
)
,
K633
(1,
(
Segm
p
)
),
K633
(
0
,
(
Segm
p
)
) #) is
strict
doubleLoopStr
the
carrier
of
(
INT.Ring
p
)
is non
empty
non
trivial
finite
set
0.
(
INT.Ring
p
)
is
V61
(
INT.Ring
p
)
left_add-cancelable
right_add-cancelable
add-cancelable
right_complementable
Element
of the
carrier
of
(
INT.Ring
p
)
the
ZeroF
of
(
INT.Ring
p
)
is
left_add-cancelable
right_add-cancelable
add-cancelable
right_complementable
Element
of the
carrier
of
(
INT.Ring
p
)
Seg
p
is
V117
()
V118
()
V119
()
V120
()
V121
()
V122
()
Element
of
bool
NAT
{
b
1
where
b
1
is
V4
()
V5
()
V6
()
V10
()
V11
()
V12
()
integer
ext-real
non
negative
finite
cardinal
V113
()
V117
()
V118
()
V119
()
V120
()
V121
()
V122
()
Element
of
NAT
: ( 1
<=
b
1
&
b
1
<=
p
)
}
is
set
1
+
p
is non
empty
V4
()
V5
()
V6
()
V10
()
V11
()
V12
()
integer
ext-real
positive
non
negative
finite
cardinal
V113
()
V117
()
V118
()
V119
()
V120
()
V121
()
V122
()
Element
of
NAT
a
is
left_add-cancelable
right_add-cancelable
add-cancelable
right_complementable
Element
of the
carrier
of
(
INT.Ring
p
)
b
is
left_add-cancelable
right_add-cancelable
add-cancelable
right_complementable
Element
of the
carrier
of
(
INT.Ring
p
)
(
p
,
a
,
b
) is
left_add-cancelable
right_add-cancelable
add-cancelable
right_complementable
Element
of the
carrier
of
(
INT.Ring
p
)
(
p
,
a
,
b
) is non
empty
finite
Element
of
bool
(
(
INT.Ring
p
)
)
(
(
INT.Ring
p
)
) is non
empty
finite
Element
of
bool
[:
the
carrier
of
(
INT.Ring
p
)
, the
carrier
of
(
INT.Ring
p
)
, the
carrier
of
(
INT.Ring
p
)
:]
[:
the
carrier
of
(
INT.Ring
p
)
, the
carrier
of
(
INT.Ring
p
)
, the
carrier
of
(
INT.Ring
p
)
:]
is non
empty
finite
set
bool
[:
the
carrier
of
(
INT.Ring
p
)
, the
carrier
of
(
INT.Ring
p
)
, the
carrier
of
(
INT.Ring
p
)
:]
is non
empty
finite
V49
()
set
[
(
0.
(
INT.Ring
p
)
)
,
(
0.
(
INT.Ring
p
)
)
,
(
0.
(
INT.Ring
p
)
)
]
is
V26
()
V27
()
Element
of
[:
the
carrier
of
(
INT.Ring
p
)
, the
carrier
of
(
INT.Ring
p
)
, the
carrier
of
(
INT.Ring
p
)
:]
[
(
0.
(
INT.Ring
p
)
)
,
(
0.
(
INT.Ring
p
)
)
]
is
V26
()
set
{
(
0.
(
INT.Ring
p
)
)
,
(
0.
(
INT.Ring
p
)
)
}
is non
empty
finite
set
{
(
0.
(
INT.Ring
p
)
)
}
is non
empty
trivial
finite
1
-element
set
{
{
(
0.
(
INT.Ring
p
)
)
,
(
0.
(
INT.Ring
p
)
)
}
,
{
(
0.
(
INT.Ring
p
)
)
}
}
is non
empty
finite
V49
()
set
[
[
(
0.
(
INT.Ring
p
)
)
,
(
0.
(
INT.Ring
p
)
)
]
,
(
0.
(
INT.Ring
p
)
)
]
is
V26
()
set
{
[
(
0.
(
INT.Ring
p
)
)
,
(
0.
(
INT.Ring
p
)
)
]
,
(
0.
(
INT.Ring
p
)
)
}
is non
empty
finite
set
{
[
(
0.
(
INT.Ring
p
)
)
,
(
0.
(
INT.Ring
p
)
)
]
}
is non
empty
trivial
finite
1
-element
set
{
{
[
(
0.
(
INT.Ring
p
)
)
,
(
0.
(
INT.Ring
p
)
)
]
,
(
0.
(
INT.Ring
p
)
)
}
,
{
[
(
0.
(
INT.Ring
p
)
)
,
(
0.
(
INT.Ring
p
)
)
]
}
}
is non
empty
finite
V49
()
set
{
[
(
0.
(
INT.Ring
p
)
)
,
(
0.
(
INT.Ring
p
)
)
,
(
0.
(
INT.Ring
p
)
)
]
}
is non
empty
trivial
finite
1
-element
Element
of
bool
[:
the
carrier
of
(
INT.Ring
p
)
, the
carrier
of
(
INT.Ring
p
)
, the
carrier
of
(
INT.Ring
p
)
:]
[:
the
carrier
of
(
INT.Ring
p
)
, the
carrier
of
(
INT.Ring
p
)
, the
carrier
of
(
INT.Ring
p
)
:]
\
{
[
(
0.
(
INT.Ring
p
)
)
,
(
0.
(
INT.Ring
p
)
)
,
(
0.
(
INT.Ring
p
)
)
]
}
is
finite
Element
of
bool
[:
the
carrier
of
(
INT.Ring
p
)
, the
carrier
of
(
INT.Ring
p
)
, the
carrier
of
(
INT.Ring
p
)
:]
bool
(
(
INT.Ring
p
)
) is non
empty
finite
V49
()
set
(
p
,
a
,
b
) is
Relation-like
[:
the
carrier
of
(
INT.Ring
p
)
, the
carrier
of
(
INT.Ring
p
)
, the
carrier
of
(
INT.Ring
p
)
:]
-defined
the
carrier
of
(
INT.Ring
p
)
-valued
Function-like
quasi_total
finite
Element
of
bool
[:
[:
the
carrier
of
(
INT.Ring
p
)
, the
carrier
of
(
INT.Ring
p
)
, the
carrier
of
(
INT.Ring
p
)
:]
, the
carrier
of
(
INT.Ring
p
)
:]
[:
[:
the
carrier
of
(
INT.Ring
p
)
, the
carrier
of
(
INT.Ring
p
)
, the
carrier
of
(
INT.Ring
p
)
:]
, the
carrier
of
(
INT.Ring
p
)
:]
is non
empty
finite
set
bool
[:
[:
the
carrier
of
(
INT.Ring
p
)
, the
carrier
of
(
INT.Ring
p
)
, the
carrier
of
(
INT.Ring
p
)
:]
, the
carrier
of
(
INT.Ring
p
)
:]
is non
empty
finite
V49
()
set
{
b
1
where
b
1
is
Element
of (
(
INT.Ring
p
)
) : (
p
,
a
,
b
)
.
b
1
=
0.
(
INT.Ring
p
)
}
is
set
(
p
,
a
,
b
) is
Relation-like
(
p
,
a
,
b
)
-defined
(
p
,
a
,
b
)
-valued
total
finite
reflexive
symmetric
transitive
Element
of
bool
[:
(
p
,
a
,
b
),(
p
,
a
,
b
)
:]
[:
(
p
,
a
,
b
),(
p
,
a
,
b
)
:]
is non
empty
finite
set
bool
[:
(
p
,
a
,
b
),(
p
,
a
,
b
)
:]
is non
empty
finite
V49
()
set
(
p
) is
Relation-like
(
(
INT.Ring
p
)
)
-defined
(
(
INT.Ring
p
)
)
-valued
total
finite
reflexive
symmetric
transitive
Element
of
bool
[:
(
(
INT.Ring
p
)
),(
(
INT.Ring
p
)
)
:]
[:
(
(
INT.Ring
p
)
),(
(
INT.Ring
p
)
)
:]
is non
empty
finite
set
bool
[:
(
(
INT.Ring
p
)
),(
(
INT.Ring
p
)
)
:]
is non
empty
finite
V49
()
set
{
[
b
1
,
b
2
]
where
b
1
,
b
2
is
Element
of (
(
INT.Ring
p
)
) : (
p
,
b
1
,
b
2
)
}
is
set
nabla
(
p
,
a
,
b
) is
Relation-like
(
p
,
a
,
b
)
-defined
(
p
,
a
,
b
)
-valued
total
finite
reflexive
symmetric
transitive
Element
of
bool
[:
(
p
,
a
,
b
),(
p
,
a
,
b
)
:]
(
p
)
/\
(
nabla
(
p
,
a
,
b
)
)
is
Relation-like
(
p
,
a
,
b
)
-defined
(
(
INT.Ring
p
)
)
-defined
(
p
,
a
,
b
)
-valued
(
(
INT.Ring
p
)
)
-valued
finite
reflexive
symmetric
transitive
Element
of
bool
[:
(
p
,
a
,
b
),(
p
,
a
,
b
)
:]
Class
(
p
,
a
,
b
) is non
empty
finite
V49
()
V130
()
a_partition
of (
p
,
a
,
b
)
card
(
Class
(
p
,
a
,
b
)
)
is non
empty
V4
()
V5
()
V6
()
V10
()
V11
()
V12
()
integer
ext-real
positive
non
negative
finite
cardinal
V113
()
V117
()
V118
()
V119
()
V120
()
V121
()
V122
()
Element
of
NAT
{
(
Class
((
p
,
a
,
b
),
b
1
)
)
where
b
1
is
Element
of (
(
INT.Ring
p
)
) : (
b
1
in
(
p
,
a
,
b
) & ex
b
2
,
b
3
being
left_add-cancelable
right_add-cancelable
add-cancelable
right_complementable
Element
of the
carrier
of
(
INT.Ring
p
)
st
b
1
=
[
b
2
,
b
3
,1
]
)
}
is
set
card
{
(
Class
((
p
,
a
,
b
),
b
1
)
)
where
b
1
is
Element
of (
(
INT.Ring
p
)
) : (
b
1
in
(
p
,
a
,
b
) & ex
b
2
,
b
3
being
left_add-cancelable
right_add-cancelable
add-cancelable
right_complementable
Element
of the
carrier
of
(
INT.Ring
p
)
st
b
1
=
[
b
2
,
b
3
,1
]
)
}
is
V4
()
V5
()
V6
()
cardinal
set
L
is
Relation-like
NAT
-defined
NAT
-valued
Function-like
V35
()
V36
()
V37
()
V38
()
FinSequence-like
FinSequence
of
NAT
len
L
is
V4
()
V5
()
V6
()
V10
()
V11
()
V12
()
integer
ext-real
non
negative
finite
cardinal
V113
()
V117
()
V118
()
V119
()
V120
()
V121
()
V122
()
Element
of
NAT
Sum
L
is
V4
()
V5
()
V6
()
V10
()
V11
()
V12
()
integer
ext-real
non
negative
finite
cardinal
V113
()
V117
()
V118
()
V119
()
V120
()
V121
()
V122
()
Element
of
NAT
F
is
V4
()
V5
()
V6
()
V10
()
V11
()
V12
()
integer
ext-real
non
negative
finite
cardinal
set
1
-
1 is
V11
()
V12
()
integer
ext-real
set
F
-
1 is
V11
()
V12
()
integer
ext-real
set
p
-
1 is
V11
()
V12
()
integer
ext-real
set
p
-
0
is non
empty
V11
()
V12
()
integer
ext-real
positive
non
negative
set
pp
is
left_add-cancelable
right_add-cancelable
add-cancelable
right_complementable
Element
of the
carrier
of
(
INT.Ring
p
)
pp
|^
3 is
left_add-cancelable
right_add-cancelable
add-cancelable
right_complementable
Element
of the
carrier
of
(
INT.Ring
p
)
power
(
INT.Ring
p
)
is
Relation-like
[:
the
carrier
of
(
INT.Ring
p
)
,
NAT
:]
-defined
the
carrier
of
(
INT.Ring
p
)
-valued
Function-like
quasi_total
Element
of
bool
[:
[:
the
carrier
of
(
INT.Ring
p
)
,
NAT
:]
, the
carrier
of
(
INT.Ring
p
)
:]
[:
the
carrier
of
(
INT.Ring
p
)
,
NAT
:]
is non
empty
non
trivial
RAT
-valued
INT
-valued
V35
()
V36
()
V37
()
V38
() non
finite
set
[:
[:
the
carrier
of
(
INT.Ring
p
)
,
NAT
:]
, the
carrier
of
(
INT.Ring
p
)
:]
is non
empty
non
trivial
non
finite
set
bool
[:
[:
the
carrier
of
(
INT.Ring
p
)
,
NAT
:]
, the
carrier
of
(
INT.Ring
p
)
:]
is non
empty
non
trivial
non
finite
set
(
power
(
INT.Ring
p
)
)
.
(
pp
,3) is
set
[
pp
,3
]
is
V26
()
set
{
pp
,3
}
is non
empty
finite
set
{
pp
}
is non
empty
trivial
finite
1
-element
set
{
{
pp
,3
}
,
{
pp
}
}
is non
empty
finite
V49
()
set
(
power
(
INT.Ring
p
)
)
.
[
pp
,3
]
is
set
a
*
pp
is
left_add-cancelable
right_add-cancelable
add-cancelable
right_complementable
Element
of the
carrier
of
(
INT.Ring
p
)
the
multF
of
(
INT.Ring
p
)
is
Relation-like
[:
the
carrier
of
(
INT.Ring
p
)
, the
carrier
of
(
INT.Ring
p
)
:]
-defined
the
carrier
of
(
INT.Ring
p
)
-valued
Function-like
quasi_total
finite
Element
of
bool
[:
[:
the
carrier
of
(
INT.Ring
p
)
, the
carrier
of
(
INT.Ring
p
)
:]
, the
carrier
of
(
INT.Ring
p
)
:]
[:
the
carrier
of
(
INT.Ring
p
)
, the
carrier
of
(
INT.Ring
p
)
:]
is non
empty
finite
set
[:
[:
the
carrier
of
(
INT.Ring
p
)
, the
carrier
of
(
INT.Ring
p
)
:]
, the
carrier
of
(
INT.Ring
p
)
:]
is non
empty
finite
set
bool
[:
[:
the
carrier
of
(
INT.Ring
p
)
, the
carrier
of
(
INT.Ring
p
)
:]
, the
carrier
of
(
INT.Ring
p
)
:]
is non
empty
finite
V49
()
set
the
multF
of
(
INT.Ring
p
)
.
(
a
,
pp
) is
left_add-cancelable
right_add-cancelable
add-cancelable
right_complementable
Element
of the
carrier
of
(
INT.Ring
p
)
[
a
,
pp
]
is
V26
()
set
{
a
,
pp
}
is non
empty
finite
set
{
a
}
is non
empty
trivial
finite
1
-element
set
{
{
a
,
pp
}
,
{
a
}
}
is non
empty
finite
V49
()
set
the
multF
of
(
INT.Ring
p
)
.
[
a
,
pp
]
is
set
(
pp
|^
3
)
+
(
a
*
pp
)
is
left_add-cancelable
right_add-cancelable
add-cancelable
right_complementable
Element
of the
carrier
of
(
INT.Ring
p
)
the
addF
of
(
INT.Ring
p
)
is
Relation-like
[:
the
carrier
of
(
INT.Ring
p
)
, the
carrier
of
(
INT.Ring
p
)
:]
-defined
the
carrier
of
(
INT.Ring
p
)
-valued
Function-like
quasi_total
finite
Element
of
bool
[:
[:
the
carrier
of
(
INT.Ring
p
)
, the
carrier
of
(
INT.Ring
p
)
:]
, the
carrier
of
(
INT.Ring
p
)
:]
the
addF
of
(
INT.Ring
p
)
.
(
(
pp
|^
3
)
,
(
a
*
pp
)
) is
left_add-cancelable
right_add-cancelable
add-cancelable
right_complementable
Element
of the
carrier
of
(
INT.Ring
p
)
[
(
pp
|^
3
)
,
(
a
*
pp
)
]
is
V26
()
set
{
(
pp
|^
3
)
,
(
a
*
pp
)
}
is non
empty
finite
set
{
(
pp
|^
3
)
}
is non
empty
trivial
finite
1
-element
set
{
{
(
pp
|^
3
)
,
(
a
*
pp
)
}
,
{
(
pp
|^
3
)
}
}
is non
empty
finite
V49
()
set
the
addF
of
(
INT.Ring
p
)
.
[
(
pp
|^
3
)
,
(
a
*
pp
)
]
is
set
(
(
pp
|^
3
)
+
(
a
*
pp
)
)
+
b
is
left_add-cancelable
right_add-cancelable
add-cancelable
right_complementable
Element
of the
carrier
of
(
INT.Ring
p
)
the
addF
of
(
INT.Ring
p
)
.
(
(
(
pp
|^
3
)
+
(
a
*
pp
)
)
,
b
) is
left_add-cancelable
right_add-cancelable
add-cancelable
right_complementable
Element
of the
carrier
of
(
INT.Ring
p
)
[
(
(
pp
|^
3
)
+
(
a
*
pp
)
)
,
b
]
is
V26
()
set
{
(
(
pp
|^
3
)
+
(
a
*
pp
)
)
,
b
}
is non
empty
finite
set
{
(
(
pp
|^
3
)
+
(
a
*
pp
)
)
}
is non
empty
trivial
finite
1
-element
set
{
{
(
(
pp
|^
3
)
+
(
a
*
pp
)
)
,
b
}
,
{
(
(
pp
|^
3
)
+
(
a
*
pp
)
)
}
}
is non
empty
finite
V49
()
set
the
addF
of
(
INT.Ring
p
)
.
[
(
(
pp
|^
3
)
+
(
a
*
pp
)
)
,
b
]
is
set
(
p
,
(
(
(
pp
|^
3
)
+
(
a
*
pp
)
)
+
b
)
) is
V11
()
V12
()
integer
ext-real
set
FF
is
V11
()
V12
()
integer
ext-real
V113
()
Element
of
INT
F1
is
V11
()
V12
()
integer
ext-real
V113
()
Element
of
INT
F
is
Relation-like
NAT
-defined
INT
-valued
Function-like
V35
()
V36
()
V37
()
FinSequence-like
FinSequence
of
INT
dom
F
is
V117
()
V118
()
V119
()
V120
()
V121
()
V122
()
Element
of
bool
NAT
len
F
is
V4
()
V5
()
V6
()
V10
()
V11
()
V12
()
integer
ext-real
non
negative
finite
cardinal
V113
()
V117
()
V118
()
V119
()
V120
()
V121
()
V122
()
Element
of
NAT
Sum
F
is
V11
()
V12
()
integer
ext-real
V113
()
Element
of
INT
(
1
+
p
)
+
(
Sum
F
)
is
V11
()
V12
()
integer
ext-real
set
p
-tuples_on
REAL
is non
empty
functional
FinSequence-membered
FinSequenceSet
of
REAL
REAL
*
is
functional
FinSequence-membered
FinSequenceSet
of
REAL
{
b
1
where
b
1
is
Relation-like
NAT
-defined
REAL
-valued
Function-like
FinSequence-like
Element
of
REAL
*
:
len
b
1
=
p
}
is
set
p
|->
1 is
Relation-like
NAT
-defined
REAL
-valued
Function-like
V35
()
V36
()
V37
()
p
-element
FinSequence-like
Element
of
p
-tuples_on
REAL
K401
(
(
Seg
p
)
,1) is
Relation-like
Seg
p
-defined
RAT
-valued
INT
-valued
{
1
}
-valued
Function-like
quasi_total
V35
()
V36
()
V37
()
V38
()
FinSequence-like
Element
of
bool
[:
(
Seg
p
)
,
{
1
}
:]
{
1
}
is non
empty
trivial
finite
V49
() 1
-element
V117
()
V118
()
V119
()
V120
()
V121
()
V122
()
set
[:
(
Seg
p
)
,
{
1
}
:]
is
RAT
-valued
INT
-valued
V35
()
V36
()
V37
()
V38
()
set
bool
[:
(
Seg
p
)
,
{
1
}
:]
is non
empty
set
F1
is
V4
()
V5
()
V6
()
V10
()
V11
()
V12
()
integer
ext-real
non
negative
finite
cardinal
set
F1
-
1 is
V11
()
V12
()
integer
ext-real
set
L
.
F1
is
V4
()
V5
()
V6
()
V10
()
V11
()
V12
()
integer
ext-real
non
negative
finite
cardinal
set
F
.
F1
is
V11
()
V12
()
integer
ext-real
set
(
p
|->
1
)
.
F1
is
V11
()
V12
()
ext-real
set
(
(
p
|->
1
)
.
F1
)
+
(
F
.
F1
)
is
V11
()
V12
()
ext-real
set
F2
is
left_add-cancelable
right_add-cancelable
add-cancelable
right_complementable
Element
of the
carrier
of
(
INT.Ring
p
)
F2
|^
3 is
left_add-cancelable
right_add-cancelable
add-cancelable
right_complementable
Element
of the
carrier
of
(
INT.Ring
p
)
(
power
(
INT.Ring
p
)
)
.
(
F2
,3) is
set
[
F2
,3
]
is
V26
()
set
{
F2
,3
}
is non
empty
finite
set
{
F2
}
is non
empty
trivial
finite
1
-element
set
{
{
F2
,3
}
,
{
F2
}
}
is non
empty
finite
V49
()
set
(
power
(
INT.Ring
p
)
)
.
[
F2
,3
]
is
set
a
*
F2
is
left_add-cancelable
right_add-cancelable
add-cancelable
right_complementable
Element
of the
carrier
of
(
INT.Ring
p
)
the
multF
of
(
INT.Ring
p
)
.
(
a
,
F2
) is
left_add-cancelable
right_add-cancelable
add-cancelable
right_complementable
Element
of the
carrier
of
(
INT.Ring
p
)
[
a
,
F2
]
is
V26
()
set
{
a
,
F2
}
is non
empty
finite
set
{
{
a
,
F2
}
,
{
a
}
}
is non
empty
finite
V49
()
set
the
multF
of
(
INT.Ring
p
)
.
[
a
,
F2
]
is
set
(
F2
|^
3
)
+
(
a
*
F2
)
is
left_add-cancelable
right_add-cancelable
add-cancelable
right_complementable
Element
of the
carrier
of
(
INT.Ring
p
)
the
addF
of
(
INT.Ring
p
)
.
(
(
F2
|^
3
)
,
(
a
*
F2
)
) is
left_add-cancelable
right_add-cancelable
add-cancelable
right_complementable
Element
of the
carrier
of
(
INT.Ring
p
)
[
(
F2
|^
3
)
,
(
a
*
F2
)
]
is
V26
()
set
{
(
F2
|^
3
)
,
(
a
*
F2
)
}
is non
empty
finite
set
{
(
F2
|^
3
)
}
is non
empty
trivial
finite
1
-element
set
{
{
(
F2
|^
3
)
,
(
a
*
F2
)
}
,
{
(
F2
|^
3
)
}
}
is non
empty
finite
V49
()
set
the
addF
of
(
INT.Ring
p
)
.
[
(
F2
|^
3
)
,
(
a
*
F2
)
]
is
set
(
(
F2
|^
3
)
+
(
a
*
F2
)
)
+
b
is
left_add-cancelable
right_add-cancelable
add-cancelable
right_complementable
Element
of the
carrier
of
(
INT.Ring
p
)
the
addF
of
(
INT.Ring
p
)
.
(
(
(
F2
|^
3
)
+
(
a
*
F2
)
)
,
b
) is
left_add-cancelable
right_add-cancelable
add-cancelable
right_complementable
Element
of the
carrier
of
(
INT.Ring
p
)
[
(
(
F2
|^
3
)
+
(
a
*
F2
)
)
,
b
]
is
V26
()
set
{
(
(
F2
|^
3
)
+
(
a
*
F2
)
)
,
b
}
is non
empty
finite
set
{
(
(
F2
|^
3
)
+
(
a
*
F2
)
)
}
is non
empty
trivial
finite
1
-element
set
{
{
(
(
F2
|^
3
)
+
(
a
*
F2
)
)
,
b
}
,
{
(
(
F2
|^
3
)
+
(
a
*
F2
)
)
}
}
is non
empty
finite
V49
()
set
the
addF
of
(
INT.Ring
p
)
.
[
(
(
F2
|^
3
)
+
(
a
*
F2
)
)
,
b
]
is
set
(
p
,
(
(
(
F2
|^
3
)
+
(
a
*
F2
)
)
+
b
)
) is
V11
()
V12
()
integer
ext-real
set
X
is
left_add-cancelable
right_add-cancelable
add-cancelable
right_complementable
Element
of the
carrier
of
(
INT.Ring
p
)
X
|^
3 is
left_add-cancelable
right_add-cancelable
add-cancelable
right_complementable
Element
of the
carrier
of
(
INT.Ring
p
)
(
power
(
INT.Ring
p
)
)
.
(
X
,3) is
set
[
X
,3
]
is
V26
()
set
{
X
,3
}
is non
empty
finite
set
{
X
}
is non
empty
trivial
finite
1
-element
set
{
{
X
,3
}
,
{
X
}
}
is non
empty
finite
V49
()
set
(
power
(
INT.Ring
p
)
)
.
[
X
,3
]
is
set
a
*
X
is
left_add-cancelable
right_add-cancelable
add-cancelable
right_complementable
Element
of the
carrier
of
(
INT.Ring
p
)
the
multF
of
(
INT.Ring
p
)
.
(
a
,
X
) is
left_add-cancelable
right_add-cancelable
add-cancelable
right_complementable
Element
of the
carrier
of
(
INT.Ring
p
)
[
a
,
X
]
is
V26
()
set
{
a
,
X
}
is non
empty
finite
set
{
{
a
,
X
}
,
{
a
}
}
is non
empty
finite
V49
()
set
the
multF
of
(
INT.Ring
p
)
.
[
a
,
X
]
is
set
(
X
|^
3
)
+
(
a
*
X
)
is
left_add-cancelable
right_add-cancelable
add-cancelable
right_complementable
Element
of the
carrier
of
(
INT.Ring
p
)
the
addF
of
(
INT.Ring
p
)
.
(
(
X
|^
3
)
,
(
a
*
X
)
) is
left_add-cancelable
right_add-cancelable
add-cancelable
right_complementable
Element
of the
carrier
of
(
INT.Ring
p
)
[
(
X
|^
3
)
,
(
a
*
X
)
]
is
V26
()
set
{
(
X
|^
3
)
,
(
a
*
X
)
}
is non
empty
finite
set
{
(
X
|^
3
)
}
is non
empty
trivial
finite
1
-element
set
{
{
(
X
|^
3
)
,
(
a
*
X
)
}
,
{
(
X
|^
3
)
}
}
is non
empty
finite
V49
()
set
the
addF
of
(
INT.Ring
p
)
.
[
(
X
|^
3
)
,
(
a
*
X
)
]
is
set
(
(
X
|^
3
)
+
(
a
*
X
)
)
+
b
is
left_add-cancelable
right_add-cancelable
add-cancelable
right_complementable
Element
of the
carrier
of
(
INT.Ring
p
)
the
addF
of
(
INT.Ring
p
)
.
(
(
(
X
|^
3
)
+
(
a
*
X
)
)
,
b
) is
left_add-cancelable
right_add-cancelable
add-cancelable
right_complementable
Element
of the
carrier
of
(
INT.Ring
p
)
[
(
(
X
|^
3
)
+
(
a
*
X
)
)
,
b
]
is
V26
()
set
{
(
(
X
|^
3
)
+
(
a
*
X
)
)
,
b
}
is non
empty
finite
set
{
(
(
X
|^
3
)
+
(
a
*
X
)
)
}
is non
empty
trivial
finite
1
-element
set
{
{
(
(
X
|^
3
)
+
(
a
*
X
)
)
,
b
}
,
{
(
(
X
|^
3
)
+
(
a
*
X
)
)
}
}
is non
empty
finite
V49
()
set
the
addF
of
(
INT.Ring
p
)
.
[
(
(
X
|^
3
)
+
(
a
*
X
)
)
,
b
]
is
set
(
p
,
(
(
(
X
|^
3
)
+
(
a
*
X
)
)
+
b
)
) is
V11
()
V12
()
integer
ext-real
set
1
+
(
p
,
(
(
(
X
|^
3
)
+
(
a
*
X
)
)
+
b
)
) is
V11
()
V12
()
integer
ext-real
set
pp
is
Relation-like
NAT
-defined
REAL
-valued
Function-like
V35
()
V36
()
V37
()
p
-element
FinSequence-like
Element
of
p
-tuples_on
REAL
FF
is
Relation-like
NAT
-defined
REAL
-valued
Function-like
V35
()
V36
()
V37
()
p
-element
FinSequence-like
Element
of
p
-tuples_on
REAL
pp
+
FF
is
Relation-like
NAT
-defined
REAL
-valued
Function-like
V35
()
V36
()
V37
()
p
-element
FinSequence-like
Element
of
p
-tuples_on
REAL
(
pp
+
FF
)
.
F1
is
V11
()
V12
()
ext-real
set
len
(
pp
+
FF
)
is
V4
()
V5
()
V6
()
V10
()
V11
()
V12
()
integer
ext-real
non
negative
finite
cardinal
V113
()
V117
()
V118
()
V119
()
V120
()
V121
()
V122
()
Element
of
NAT
Sum
(
p
|->
1
)
is
V11
()
V12
()
ext-real
Element
of
REAL
(
Sum
(
p
|->
1
)
)
+
(
Sum
F
)
is
V11
()
V12
()
ext-real
set
p
*
1 is
V4
()
V5
()
V6
()
V10
()
V11
()
V12
()
integer
ext-real
non
negative
finite
cardinal
V113
()
V117
()
V118
()
V119
()
V120
()
V121
()
V122
()
Element
of
NAT
(
p
*
1
)
+
(
Sum
F
)
is
V11
()
V12
()
integer
ext-real
set
bool
(
p
,
a
,
b
) is non
empty
finite
V49
()
set
Class
((
p
,
a
,
b
),
[
0
,1,
0
]
) is
finite
Element
of
bool
(
p
,
a
,
b
)
{
(
Class
((
p
,
a
,
b
),
[
0
,1,
0
]
)
)
}
is non
empty
trivial
finite
V49
() 1
-element
Element
of
bool
(
bool
(
p
,
a
,
b
)
)
bool
(
bool
(
p
,
a
,
b
)
)
is non
empty
finite
V49
()
set
F1
is
finite
set
card
F1
is
V4
()
V5
()
V6
()
V10
()
V11
()
V12
()
integer
ext-real
non
negative
finite
cardinal
V113
()
V117
()
V118
()
V119
()
V120
()
V121
()
V122
()
Element
of
NAT
F2
is
finite
set
F1
\/
F2
is
finite
set
card
(
F1
\/
F2
)
is
V4
()
V5
()
V6
()
V10
()
V11
()
V12
()
integer
ext-real
non
negative
finite
cardinal
V113
()
V117
()
V118
()
V119
()
V120
()
V121
()
V122
()
Element
of
NAT
p
+
(
Sum
F
)
is
V11
()
V12
()
integer
ext-real
set
1
+
(
p
+
(
Sum
F
)
)
is
V11
()
V12
()
integer
ext-real
set
X
is
V4
()
V5
()
V6
()
V10
()
V11
()
V12
()
integer
ext-real
non
negative
finite
cardinal
set
X
-
1 is
V11
()
V12
()
integer
ext-real
set
F
.
X
is
V11
()
V12
()
integer
ext-real
set