REAL  is   non  empty  V46() V73() V74() V75() V79()  set 
 
 NAT  is   non  empty   epsilon-transitive   epsilon-connected   ordinal  V73() V74() V75() V76() V77() V78() V79()  Element of  Trivial-SigmaField REAL
 
 Trivial-SigmaField REAL is   non  empty  V98()  set 
 
 ExtREAL  is   non  empty  V74()  set 
 
 +infty  is   non  empty   non  real   ext-real   positive   non  negative   set 
 
 -infty  is   non  empty   non  real   ext-real   non  positive   negative   set 
 
 0  is   empty   epsilon-transitive   epsilon-connected   ordinal   T-Sequence-like   c=-linear   natural  V11()  real   ext-real   non  positive   non  negative  V71() V72() V73() V74() V75() V76() V77() V78() V79()  Element of  NAT 
 
[0,REAL] is    set 
 
{0,REAL} is   non  empty  V98()  set 
 
{0} is   non  empty  V73() V74() V75() V76() V77() V78()  set 
 
{{0,REAL},{0}} is   non  empty   set 
 
{+infty,-infty} is   non  empty  V74()  set 
 
REAL \/ {+infty,-infty} is   non  empty  V74()  set 
 
K7(NAT,ExtREAL) is   non  empty  V34()  set 
 
 Trivial-SigmaField K7(NAT,ExtREAL) is   non  empty  V98()  set 
 
 Trivial-SigmaField ExtREAL is   non  empty  V98()  set 
 
 omega  is   non  empty   epsilon-transitive   epsilon-connected   ordinal  V73() V74() V75() V76() V77() V78() V79()  set 
 
 Trivial-SigmaField omega is   non  empty  V98()  set 
 
K7(NAT,REAL) is   non  empty  V33() V34() V35()  set 
 
 Trivial-SigmaField K7(NAT,REAL) is   non  empty  V98()  set 
 
 Trivial-SigmaField (Trivial-SigmaField REAL) is   non  empty  V98()  set 
 
 Trivial-SigmaField NAT is   non  empty  V98()  set 
 
 COMPLEX  is   non  empty  V46() V73() V79()  set 
 
 RAT  is   non  empty  V46() V73() V74() V75() V76() V79()  set 
 
 INT  is   non  empty  V46() V73() V74() V75() V76() V77() V79()  set 
 
K7(COMPLEX,COMPLEX) is   non  empty  V33()  set 
 
 Trivial-SigmaField K7(COMPLEX,COMPLEX) is   non  empty  V98()  set 
 
K7(K7(COMPLEX,COMPLEX),COMPLEX) is   non  empty  V33()  set 
 
 Trivial-SigmaField K7(K7(COMPLEX,COMPLEX),COMPLEX) is   non  empty  V98()  set 
 
K7(REAL,REAL) is   non  empty  V33() V34() V35()  set 
 
 Trivial-SigmaField K7(REAL,REAL) is   non  empty  V98()  set 
 
K7(K7(REAL,REAL),REAL) is   non  empty  V33() V34() V35()  set 
 
 Trivial-SigmaField K7(K7(REAL,REAL),REAL) is   non  empty  V98()  set 
 
K7(RAT,RAT) is   non  empty  V17( RAT ) V33() V34() V35()  set 
 
 Trivial-SigmaField K7(RAT,RAT) is   non  empty  V98()  set 
 
K7(K7(RAT,RAT),RAT) is   non  empty  V17( RAT ) V33() V34() V35()  set 
 
 Trivial-SigmaField K7(K7(RAT,RAT),RAT) is   non  empty  V98()  set 
 
K7(INT,INT) is   non  empty  V17( RAT ) V17( INT ) V33() V34() V35()  set 
 
 Trivial-SigmaField K7(INT,INT) is   non  empty  V98()  set 
 
K7(K7(INT,INT),INT) is   non  empty  V17( RAT ) V17( INT ) V33() V34() V35()  set 
 
 Trivial-SigmaField K7(K7(INT,INT),INT) is   non  empty  V98()  set 
 
K7(NAT,NAT) is   non  empty  V17( RAT ) V17( INT ) V33() V34() V35() V36()  set 
 
K7(K7(NAT,NAT),NAT) is   non  empty  V17( RAT ) V17( INT ) V33() V34() V35() V36()  set 
 
 Trivial-SigmaField K7(K7(NAT,NAT),NAT) is   non  empty  V98()  set 
 
 Trivial-SigmaField RAT is   non  empty  V98()  set 
 
1 is   non  empty   epsilon-transitive   epsilon-connected   ordinal   natural  V11()  real   ext-real   positive   non  negative  V71() V72() V73() V74() V75() V76() V77() V78()  Element of  NAT 
 
 {}  is   empty   epsilon-transitive   epsilon-connected   ordinal   T-Sequence-like   c=-linear   natural  V11()  real   ext-real   non  positive   non  negative  V73() V74() V75() V76() V77() V78() V79()  set 
 
].-infty,+infty.[ is    set 
 
Omega is  V11()  real   ext-real   set 
 
Sigma is  V11()  real   ext-real   set 
 
[.Omega,Sigma.[ is    set 
 
[.Omega,Sigma.[ is  V73() V74() V75()  Element of  Trivial-SigmaField REAL
 
Omega is  V11()  real   ext-real   set 
 
[.Omega,+infty.[ is  V73() V74() V75()  Element of  Trivial-SigmaField REAL
 
REAL \ [.Omega,+infty.[ is  V73() V74() V75()  Element of  Trivial-SigmaField REAL
 
].-infty,Omega.[ is  V73() V74() V75()  Element of  Trivial-SigmaField REAL
 
Sigma is    set 
 
].-infty,+infty.[ is  V73() V74() V75()  Element of  Trivial-SigmaField REAL
 
x is  V11()  real   ext-real   Element of  REAL 
 
 {  b1 where b1 is   ext-real   Element of  ExtREAL  : (  not b1 <=  -infty  &  not Omega <= b1 )  }   is    set 
 
x is   ext-real   Element of  ExtREAL 
 
f is   ext-real   Element of  ExtREAL 
 
r is  V11()  real   ext-real   Element of  REAL 
 
Omega is  V11()  real   ext-real   set 
 
].-infty,Omega.[ is  V73() V74() V75()  Element of  Trivial-SigmaField REAL
 
REAL \ ].-infty,Omega.[ is  V73() V74() V75()  Element of  Trivial-SigmaField REAL
 
[.Omega,+infty.[ is  V73() V74() V75()  Element of  Trivial-SigmaField REAL
 
Sigma is    set 
 
].-infty,+infty.[ is  V73() V74() V75()  Element of  Trivial-SigmaField REAL
 
x is  V11()  real   ext-real   Element of  REAL 
 
 {  b1 where b1 is   ext-real   Element of  ExtREAL  : ( Omega <= b1 &  not  +infty  <= b1 )  }   is    set 
 
x is   ext-real   Element of  ExtREAL 
 
f is   ext-real   Element of  ExtREAL 
 
r is  V11()  real   ext-real   Element of  REAL 
 
K139(REAL) is   non  empty   compl-closed   sigma-multiplicative  V98()  Element of  Trivial-SigmaField (Trivial-SigmaField REAL)
 
K7(NAT,K139(REAL)) is   non  empty   set 
 
 Trivial-SigmaField K7(NAT,K139(REAL)) is   non  empty  V98()  set 
 
Omega is  V11()  real   ext-real   set 
 
Sigma is  V11()  real   ext-real   set 
 
Sigma + 1 is  V11()  real   ext-real   Element of  REAL 
 
(Omega,(Sigma + 1)) is  V73() V74() V75()  Element of  Trivial-SigmaField REAL
 
x is   epsilon-transitive   epsilon-connected   ordinal   natural  V11()  real   ext-real   non  negative  V71() V72() V73() V74() V75() V76() V77() V78()  Element of  NAT 
 
f is  V73() V74() V75()  Element of  Trivial-SigmaField REAL
 
x + 1 is   non  empty   epsilon-transitive   epsilon-connected   ordinal   natural  V11()  real   ext-real   positive   non  negative  V71() V72() V73() V74() V75() V76() V77() V78()  Element of  NAT 
 
1 / (x + 1) is   non  empty  V11()  real   ext-real   positive   non  negative  V72()  Element of  RAT 
 
Sigma + (1 / (x + 1)) is  V11()  real   ext-real   Element of  REAL 
 
(Omega,(Sigma + (1 / (x + 1)))) is  V73() V74() V75()  Element of  Trivial-SigmaField REAL
 
X is   epsilon-transitive   epsilon-connected   ordinal   natural  V11()  real   ext-real   non  negative   set 
 
r is  V73() V74() V75()  Element of  Trivial-SigmaField REAL
 
jpi is  V73() V74() V75()  Element of  Trivial-SigmaField REAL
 
X + 1 is   non  empty   epsilon-transitive   epsilon-connected   ordinal   natural  V11()  real   ext-real   positive   non  negative  V71() V72() V73() V74() V75() V76() V77() V78()  Element of  NAT 
 
1 / (X + 1) is   non  empty  V11()  real   ext-real   positive   non  negative  V72()  Element of  RAT 
 
Sigma + (1 / (X + 1)) is  V11()  real   ext-real   Element of  REAL 
 
(Omega,(Sigma + (1 / (X + 1)))) is  V73() V74() V75()  Element of  Trivial-SigmaField REAL
 
x is   non  empty  V13() V16( NAT ) V17(K139(REAL))  Function-like  V23( NAT ) V27( NAT ,K139(REAL))  Element of  Trivial-SigmaField K7(NAT,K139(REAL))
 
x . 0 is  V73() V74() V75()  Element of K139(REAL)
 
f is   epsilon-transitive   epsilon-connected   ordinal   natural  V11()  real   ext-real   non  negative   set 
 
f + 1 is   non  empty   epsilon-transitive   epsilon-connected   ordinal   natural  V11()  real   ext-real   positive   non  negative  V71() V72() V73() V74() V75() V76() V77() V78()  Element of  NAT 
 
x . (f + 1) is  V73() V74() V75()  Element of K139(REAL)
 
1 / (f + 1) is   non  empty  V11()  real   ext-real   positive   non  negative  V72()  Element of  RAT 
 
Sigma + (1 / (f + 1)) is  V11()  real   ext-real   Element of  REAL 
 
(Omega,(Sigma + (1 / (f + 1)))) is  V73() V74() V75()  Element of  Trivial-SigmaField REAL
 
r is   epsilon-transitive   epsilon-connected   ordinal   natural  V11()  real   ext-real   non  negative  V71() V72() V73() V74() V75() V76() V77() V78()  Element of  NAT 
 
x . r is  V73() V74() V75()  Element of K139(REAL)
 
r + 1 is   non  empty   epsilon-transitive   epsilon-connected   ordinal   natural  V11()  real   ext-real   positive   non  negative  V71() V72() V73() V74() V75() V76() V77() V78()  Element of  NAT 
 
x . (r + 1) is  V73() V74() V75()  Element of K139(REAL)
 
G is   epsilon-transitive   epsilon-connected   ordinal   natural  V11()  real   ext-real   non  negative   set 
 
jpi is  V73() V74() V75()  Element of  Trivial-SigmaField REAL
 
X is  V73() V74() V75()  Element of  Trivial-SigmaField REAL
 
G + 1 is   non  empty   epsilon-transitive   epsilon-connected   ordinal   natural  V11()  real   ext-real   positive   non  negative  V71() V72() V73() V74() V75() V76() V77() V78()  Element of  NAT 
 
1 / (G + 1) is   non  empty  V11()  real   ext-real   positive   non  negative  V72()  Element of  RAT 
 
Sigma + (1 / (G + 1)) is  V11()  real   ext-real   Element of  REAL 
 
(Omega,(Sigma + (1 / (G + 1)))) is  V73() V74() V75()  Element of  Trivial-SigmaField REAL
 
x is   non  empty  V13() V16( NAT ) V17(K139(REAL))  Function-like  V23( NAT ) V27( NAT ,K139(REAL))  Element of  Trivial-SigmaField K7(NAT,K139(REAL))
 
x . 0 is  V73() V74() V75()  Element of K139(REAL)
 
f is   non  empty  V13() V16( NAT ) V17(K139(REAL))  Function-like  V23( NAT ) V27( NAT ,K139(REAL))  Element of  Trivial-SigmaField K7(NAT,K139(REAL))
 
f . 0 is  V73() V74() V75()  Element of K139(REAL)
 
r is    set 
 
x . r is    set 
 
f . r is    set 
 
x . 0 is    set 
 
f . 0 is    set 
 
X is   epsilon-transitive   epsilon-connected   ordinal   natural  V11()  real   ext-real   non  negative  V71() V72() V73() V74() V75() V76() V77() V78()  Element of  NAT 
 
x . X is    set 
 
f . X is    set 
 
X + 1 is   non  empty   epsilon-transitive   epsilon-connected   ordinal   natural  V11()  real   ext-real   positive   non  negative  V71() V72() V73() V74() V75() V76() V77() V78()  Element of  NAT 
 
x . (X + 1) is    set 
 
f . (X + 1) is    set 
 
x . X is  V73() V74() V75()  Element of K139(REAL)
 
f . X is  V73() V74() V75()  Element of K139(REAL)
 
x . (X + 1) is  V73() V74() V75()  Element of K139(REAL)
 
1 / (X + 1) is   non  empty  V11()  real   ext-real   positive   non  negative  V72()  Element of  RAT 
 
Sigma + (1 / (X + 1)) is  V11()  real   ext-real   Element of  REAL 
 
(Omega,(Sigma + (1 / (X + 1)))) is  V73() V74() V75()  Element of  Trivial-SigmaField REAL
 
f . (X + 1) is  V73() V74() V75()  Element of K139(REAL)
 
jpi is   epsilon-transitive   epsilon-connected   ordinal   natural  V11()  real   ext-real   non  negative  V71() V72() V73() V74() V75() V76() V77() V78()  Element of  NAT 
 
x . jpi is  V73() V74() V75()  Element of K139(REAL)
 
f . jpi is  V73() V74() V75()  Element of K139(REAL)
 
Omega is  V11()  real   ext-real   Element of  REAL 
 
NAT --> Omega is   non  empty   T-Sequence-like  V13() V16( NAT ) V17( REAL )  Function-like  V23( NAT ) V27( NAT , REAL ) V33() V34() V35()  Element of  Trivial-SigmaField K7(NAT,REAL)
 
(NAT --> Omega) . 0 is  V11()  real   ext-real   Element of  REAL 
 
Sigma is   epsilon-transitive   epsilon-connected   ordinal   natural  V11()  real   ext-real   non  negative  V71() V72() V73() V74() V75() V76() V77() V78()  Element of  NAT 
 
(NAT --> Omega) . Sigma is  V11()  real   ext-real   Element of  REAL 
 
Omega is   non  empty  V13() V16( NAT ) V17( REAL )  Function-like  V23( NAT ) V27( NAT , REAL ) V33() V34() V35()  Element of  Trivial-SigmaField K7(NAT,REAL)
 
Sigma is   non  empty  V13() V16( NAT ) V17( REAL )  Function-like  V23( NAT ) V27( NAT , REAL ) V33() V34() V35()  Element of  Trivial-SigmaField K7(NAT,REAL)
 
Omega (#) Sigma is  V13() V16( NAT )  Function-like  V23( NAT ) V33() V34() V35()  set 
 
Omega (#) Sigma is   non  empty  V13() V16( NAT ) V17( REAL )  Function-like  V23( NAT ) V27( NAT , REAL ) V33() V34() V35()  Element of  Trivial-SigmaField K7(NAT,REAL)
 
Sigma is   non  empty  V13() V16( NAT ) V17( REAL )  Function-like  V23( NAT ) V27( NAT , REAL ) V33() V34() V35()  Element of  Trivial-SigmaField K7(NAT,REAL)
 
x is   non  empty  V13() V16( NAT ) V17( REAL )  Function-like  V23( NAT ) V27( NAT , REAL ) V33() V34() V35()  Element of  Trivial-SigmaField K7(NAT,REAL)
 
(Sigma,x) is   non  empty  V13() V16( NAT ) V17( REAL )  Function-like  V23( NAT ) V27( NAT , REAL ) V33() V34() V35()  Element of  Trivial-SigmaField K7(NAT,REAL)
 
 Partial_Sums (Sigma,x) is   non  empty  V13() V16( NAT ) V17( REAL )  Function-like  V23( NAT ) V27( NAT , REAL ) V33() V34() V35()  Element of  Trivial-SigmaField K7(NAT,REAL)
 
Omega is   epsilon-transitive   epsilon-connected   ordinal   natural  V11()  real   ext-real   non  negative   set 
 
(Partial_Sums (Sigma,x)) . Omega is  V11()  real   ext-real   Element of  REAL 
 
(Sigma,x) ^\ 1 is   non  empty  V13() V16( NAT ) V17( REAL )  Function-like  V23( NAT ) V27( NAT , REAL ) V33() V34() V35()  Element of  Trivial-SigmaField K7(NAT,REAL)
 
 Partial_Sums ((Sigma,x) ^\ 1) is   non  empty  V13() V16( NAT ) V17( REAL )  Function-like  V23( NAT ) V27( NAT , REAL ) V33() V34() V35()  Element of  Trivial-SigmaField K7(NAT,REAL)
 
Omega - 1 is  V11()  real   ext-real   Element of  REAL 
 
(Partial_Sums ((Sigma,x) ^\ 1)) . (Omega - 1) is  V11()  real   ext-real   Element of  REAL 
 
Omega is    set 
 
 Trivial-SigmaField Omega is   non  empty  V98()  set 
 
 Trivial-SigmaField (Trivial-SigmaField Omega) is   non  empty  V98()  set 
 
Sigma is    set 
 
 Trivial-SigmaField Sigma is   non  empty  V98()  set 
 
 Trivial-SigmaField (Trivial-SigmaField Sigma) is   non  empty  V98()  set 
 
Omega is    set 
 
 Trivial-SigmaField Omega is   non  empty  V98()  set 
 
 Trivial-SigmaField (Trivial-SigmaField Omega) is   non  empty  V98()  set 
 
Sigma is    set 
 
 Trivial-SigmaField Sigma is   non  empty  V98()  set 
 
 Trivial-SigmaField (Trivial-SigmaField Sigma) is   non  empty  V98()  set 
 
K7(Omega,Sigma) is    set 
 
 Trivial-SigmaField K7(Omega,Sigma) is   non  empty  V98()  set 
 
x is   non  empty   compl-closed   sigma-multiplicative  V98()  Element of  Trivial-SigmaField (Trivial-SigmaField Omega)
 
f is   non  empty   compl-closed   sigma-multiplicative  V98()  Element of  Trivial-SigmaField (Trivial-SigmaField Sigma)
 
 {  b1 where b1 is  V13() V16(Omega) V17(Sigma)  Function-like  V27(Omega,Sigma)  Element of  Trivial-SigmaField K7(Omega,Sigma) : (Omega,Sigma,x,f,b1)  }   is    set 
 
Omega is   non  empty   set 
 
 Trivial-SigmaField Omega is   non  empty  V98()  set 
 
 Trivial-SigmaField (Trivial-SigmaField Omega) is   non  empty  V98()  set 
 
Sigma is   non  empty   set 
 
 Trivial-SigmaField Sigma is   non  empty  V98()  set 
 
 Trivial-SigmaField (Trivial-SigmaField Sigma) is   non  empty  V98()  set 
 
x is   non  empty   compl-closed   sigma-multiplicative  V98()  Element of  Trivial-SigmaField (Trivial-SigmaField Omega)
 
f is   non  empty   compl-closed   sigma-multiplicative  V98()  Element of  Trivial-SigmaField (Trivial-SigmaField Sigma)
 
(Omega,Sigma,x,f) is    set 
 
K7(Omega,Sigma) is   non  empty   set 
 
 Trivial-SigmaField K7(Omega,Sigma) is   non  empty  V98()  set 
 
 {  b1 where b1 is  V13() V16(Omega) V17(Sigma)  Function-like  V27(Omega,Sigma)  Element of  Trivial-SigmaField K7(Omega,Sigma) : (Omega,Sigma,x,f,b1)  }   is    set 
 
 the    Element of Sigma is    Element of Sigma
 
Omega -->  the    Element of Sigma is   non  empty  V13() V16(Omega) V17(Sigma)  Function-like  V23(Omega) V27(Omega,Sigma)  Element of  Trivial-SigmaField K7(Omega,Sigma)
 
G is    Element of f
 
 {  b1 where b1 is    Element of Omega : (Omega -->  the    Element of Sigma) . b1 is    Element of G  }   is    set 
 
G is    Element of f
 
 {  b1 where b1 is    Element of Omega : (Omega -->  the    Element of Sigma) . b1 is    Element of G  }   is    set 
 
w is    set 
 
g2 is    Element of Omega
 
(Omega -->  the    Element of Sigma) . g2 is    Element of Sigma
 
(Omega -->  the    Element of Sigma) . w is    set 
 
w is    set 
 
g2 is    Element of Omega
 
(Omega -->  the    Element of Sigma) . g2 is    Element of Sigma
 
G is    Element of f
 
 {  b1 where b1 is    Element of Omega : (Omega -->  the    Element of Sigma) . b1 is    Element of G  }   is    set 
 
jpi is   non  empty  V13() V16(Omega) V17(Sigma)  Function-like  V23(Omega) V27(Omega,Sigma)  Element of  Trivial-SigmaField K7(Omega,Sigma)
 
jpi is   non  empty  V13() V16(Omega) V17(Sigma)  Function-like  V23(Omega) V27(Omega,Sigma)  Element of  Trivial-SigmaField K7(Omega,Sigma)
 
Omega is   non  empty   set 
 
 Trivial-SigmaField Omega is   non  empty  V98()  set 
 
 Trivial-SigmaField (Trivial-SigmaField Omega) is   non  empty  V98()  set 
 
Sigma is   non  empty   set 
 
 Trivial-SigmaField Sigma is   non  empty  V98()  set 
 
 Trivial-SigmaField (Trivial-SigmaField Sigma) is   non  empty  V98()  set 
 
r is    set 
 
x is   non  empty   compl-closed   sigma-multiplicative  V98()  Element of  Trivial-SigmaField (Trivial-SigmaField Omega)
 
f is   non  empty   compl-closed   sigma-multiplicative  V98()  Element of  Trivial-SigmaField (Trivial-SigmaField Sigma)
 
(Omega,Sigma,x,f) is   non  empty   set 
 
K7(Omega,Sigma) is   non  empty   set 
 
 Trivial-SigmaField K7(Omega,Sigma) is   non  empty  V98()  set 
 
 {  b1 where b1 is  V13() V16(Omega) V17(Sigma)  Function-like  V27(Omega,Sigma)  Element of  Trivial-SigmaField K7(Omega,Sigma) : (Omega,Sigma,x,f,b1)  }   is    set 
 
jpi is    Element of r
 
X is   non  empty  V13() V16(Omega) V17(Sigma)  Function-like  V23(Omega) V27(Omega,Sigma)  Element of  Trivial-SigmaField K7(Omega,Sigma)
 
Omega is   non  empty   set 
 
 Trivial-SigmaField Omega is   non  empty  V98()  set 
 
 Trivial-SigmaField (Trivial-SigmaField Omega) is   non  empty  V98()  set 
 
x is   non  empty   set 
 
K7(Omega,REAL) is   non  empty  V33() V34() V35()  set 
 
 Trivial-SigmaField K7(Omega,REAL) is   non  empty  V98()  set 
 
Sigma is   non  empty   compl-closed   sigma-multiplicative  V98()  Element of  Trivial-SigmaField (Trivial-SigmaField Omega)
 
 Borel_Sets  is   non  empty   compl-closed   sigma-multiplicative  V98()  Element of  Trivial-SigmaField (Trivial-SigmaField REAL)
 
 Family_of_halflines  is    Element of  Trivial-SigmaField (Trivial-SigmaField REAL)
 
 {  (halfline b1) where b1 is  V11()  real   ext-real   Element of  REAL  : verum  }   is    set 
 
 sigma Family_of_halflines is   non  empty   compl-closed   sigma-multiplicative  V98()  Element of  Trivial-SigmaField (Trivial-SigmaField REAL)
 
f is    Element of x
 
(Omega,REAL,Sigma,Borel_Sets,x,f) is   non  empty  V13() V16(Omega) V17( REAL )  Function-like  V23(Omega) V27(Omega, REAL ) V33() V34() V35()  Element of  Trivial-SigmaField K7(Omega,REAL)
 
r is   non  empty  V13() V16(Omega) V17( REAL )  Function-like  V23(Omega) V27(Omega, REAL ) V33() V34() V35()  Element of  Trivial-SigmaField K7(Omega,REAL)
 
r is   non  empty  V13() V16(Omega) V17( REAL )  Function-like  V23(Omega) V27(Omega, REAL ) V33() V34() V35()  Element of  Trivial-SigmaField K7(Omega,REAL)
 
jpi is   non  empty  V13() V16(Omega) V17( REAL )  Function-like  V23(Omega) V27(Omega, REAL ) V33() V34() V35()  Element of  Trivial-SigmaField K7(Omega,REAL)
 
X is    Element of Omega
 
r . X is  V11()  real   ext-real   set 
 
jpi . X is  V11()  real   ext-real   set 
 
r . X is  V11()  real   ext-real   Element of  REAL 
 
(Omega,REAL,Sigma,Borel_Sets,x,f) . X is  V11()  real   ext-real   Element of  REAL 
 
jpi . X is  V11()  real   ext-real   Element of  REAL 
 
Sigma is   non  empty   set 
 
 Trivial-SigmaField Sigma is   non  empty  V98()  set 
 
 Trivial-SigmaField (Trivial-SigmaField Sigma) is   non  empty  V98()  set 
 
x is   non  empty   set 
 
 Trivial-SigmaField x is   non  empty  V98()  set 
 
 Trivial-SigmaField (Trivial-SigmaField x) is   non  empty  V98()  set 
 
jpi is    set 
 
f is   non  empty   compl-closed   sigma-multiplicative  V98()  Element of  Trivial-SigmaField (Trivial-SigmaField Sigma)
 
r is   non  empty   compl-closed   sigma-multiplicative  V98()  Element of  Trivial-SigmaField (Trivial-SigmaField x)
 
(Sigma,x,f,r) is   non  empty   set 
 
K7(Sigma,x) is   non  empty   set 
 
 Trivial-SigmaField K7(Sigma,x) is   non  empty  V98()  set 
 
 {  b1 where b1 is  V13() V16(Sigma) V17(x)  Function-like  V27(Sigma,x)  Element of  Trivial-SigmaField K7(Sigma,x) : (Sigma,x,f,r,b1)  }   is    set 
 
K7(NAT,jpi) is    set 
 
 Trivial-SigmaField K7(NAT,jpi) is   non  empty  V98()  set 
 
X is  V13() V16( NAT ) V17(jpi)  Function-like  V27( NAT ,jpi)  Element of  Trivial-SigmaField K7(NAT,jpi)
 
Omega is   epsilon-transitive   epsilon-connected   ordinal   natural  V11()  real   ext-real   non  negative   set 
 
X . Omega is    set 
 
G is   epsilon-transitive   epsilon-connected   ordinal   natural  V11()  real   ext-real   non  negative  V71() V72() V73() V74() V75() V76() V77() V78()  Element of  NAT 
 
X . G is    Element of jpi
 
x is   non  empty  V13() V16(Sigma) V17(x)  Function-like  V23(Sigma) V27(Sigma,x)  Element of  Trivial-SigmaField K7(Sigma,x)
 
Omega is   non  empty   set 
 
 Trivial-SigmaField Omega is   non  empty  V98()  set 
 
 Trivial-SigmaField (Trivial-SigmaField Omega) is   non  empty  V98()  set 
 
x is   non  empty   set 
 
K7(NAT,x) is   non  empty   set 
 
 Trivial-SigmaField K7(NAT,x) is   non  empty  V98()  set 
 
Sigma is   non  empty   compl-closed   sigma-multiplicative  V98()  Element of  Trivial-SigmaField (Trivial-SigmaField Omega)
 
r is   non  empty  V13() V16( NAT ) V17(x)  Function-like  V23( NAT ) V27( NAT ,x)  Element of  Trivial-SigmaField K7(NAT,x)
 
f is    Element of Omega
 
jpi is   non  empty  V13() V16( NAT ) V17( REAL )  Function-like  V23( NAT ) V27( NAT , REAL ) V33() V34() V35()  Element of  Trivial-SigmaField K7(NAT,REAL)
 
X is   non  empty  V13() V16( NAT ) V17( REAL )  Function-like  V23( NAT ) V27( NAT , REAL ) V33() V34() V35()  Element of  Trivial-SigmaField K7(NAT,REAL)
 
X is   non  empty  V13() V16( NAT ) V17( REAL )  Function-like  V23( NAT ) V27( NAT , REAL ) V33() V34() V35()  Element of  Trivial-SigmaField K7(NAT,REAL)
 
G is   non  empty  V13() V16( NAT ) V17( REAL )  Function-like  V23( NAT ) V27( NAT , REAL ) V33() V34() V35()  Element of  Trivial-SigmaField K7(NAT,REAL)
 
x is   epsilon-transitive   epsilon-connected   ordinal   natural  V11()  real   ext-real   non  negative  V71() V72() V73() V74() V75() V76() V77() V78()  Element of  NAT 
 
X . x is  V11()  real   ext-real   set 
 
G . x is  V11()  real   ext-real   set 
 
X . x is  V11()  real   ext-real   Element of  REAL 
 
r . x is    Element of x
 
(Omega,Sigma,x,(r . x)) is   non  empty  V13() V16(Omega) V17( REAL )  Function-like  V23(Omega) V27(Omega, REAL ) V33() V34() V35()  Element of  Trivial-SigmaField K7(Omega,REAL)
 
K7(Omega,REAL) is   non  empty  V33() V34() V35()  set 
 
 Trivial-SigmaField K7(Omega,REAL) is   non  empty  V98()  set 
 
(Omega,Sigma,x,(r . x)) . f is  V11()  real   ext-real   Element of  REAL 
 
jpi . x is  V11()  real   ext-real   Element of  REAL 
 
((Omega,Sigma,x,(r . x)) . f) * (jpi . x) is  V11()  real   ext-real   Element of  REAL 
 
G . x is  V11()  real   ext-real   Element of  REAL 
 
x is   non  empty   set 
 
 Trivial-SigmaField x is   non  empty  V98()  set 
 
 Trivial-SigmaField (Trivial-SigmaField x) is   non  empty  V98()  set 
 
r is   non  empty   set 
 
K7(NAT,r) is   non  empty   set 
 
 Trivial-SigmaField K7(NAT,r) is   non  empty  V98()  set 
 
f is   non  empty   compl-closed   sigma-multiplicative  V98()  Element of  Trivial-SigmaField (Trivial-SigmaField x)
 
X is    Element of x
 
jpi is   non  empty  V13() V16( NAT ) V17(r)  Function-like  V23( NAT ) V27( NAT ,r)  Element of  Trivial-SigmaField K7(NAT,r)
 
Sigma is   non  empty  V13() V16( NAT ) V17( REAL )  Function-like  V23( NAT ) V27( NAT , REAL ) V33() V34() V35()  Element of  Trivial-SigmaField K7(NAT,REAL)
 
(x,f,r,X,jpi,Sigma) is   non  empty  V13() V16( NAT ) V17( REAL )  Function-like  V23( NAT ) V27( NAT , REAL ) V33() V34() V35()  Element of  Trivial-SigmaField K7(NAT,REAL)
 
 Partial_Sums (x,f,r,X,jpi,Sigma) is   non  empty  V13() V16( NAT ) V17( REAL )  Function-like  V23( NAT ) V27( NAT , REAL ) V33() V34() V35()  Element of  Trivial-SigmaField K7(NAT,REAL)
 
Omega is   epsilon-transitive   epsilon-connected   ordinal   natural  V11()  real   ext-real   non  negative   set 
 
(Partial_Sums (x,f,r,X,jpi,Sigma)) . Omega is  V11()  real   ext-real   Element of  REAL 
 
(x,f,r,X,jpi,Sigma) ^\ 1 is   non  empty  V13() V16( NAT ) V17( REAL )  Function-like  V23( NAT ) V27( NAT , REAL ) V33() V34() V35()  Element of  Trivial-SigmaField K7(NAT,REAL)
 
 Partial_Sums ((x,f,r,X,jpi,Sigma) ^\ 1) is   non  empty  V13() V16( NAT ) V17( REAL )  Function-like  V23( NAT ) V27( NAT , REAL ) V33() V34() V35()  Element of  Trivial-SigmaField K7(NAT,REAL)
 
Omega - 1 is  V11()  real   ext-real   Element of  REAL 
 
(Partial_Sums ((x,f,r,X,jpi,Sigma) ^\ 1)) . (Omega - 1) is  V11()  real   ext-real   Element of  REAL 
 
Omega is  V11()  real   ext-real   set 
 
 halfline Omega is  V73() V74() V75()  Element of  Trivial-SigmaField REAL
 
].-infty,Omega.[ is    set 
 
 Trivial-SigmaField Borel_Sets is   non  empty  V98()  set 
 
Omega is  V11()  real   ext-real   set 
 
[.Omega,+infty.[ is  V73() V74() V75()  Element of  Trivial-SigmaField REAL
 
].-infty,Omega.[ is  V73() V74() V75()  Element of  Trivial-SigmaField REAL
 
 halfline Omega is  V73() V74() V75()  Element of  Trivial-SigmaField REAL
 
].-infty,Omega.[ is    set 
 
].-infty,Omega.[ `  is  V73() V74() V75()  Element of  Trivial-SigmaField REAL
 
REAL \ ].-infty,Omega.[ is  V73() V74() V75()  set 
 
Sigma is  V11()  real   ext-real   set 
 
Omega is  V11()  real   ext-real   set 
 
[.Sigma,Omega.[ is  V73() V74() V75()  Element of  Trivial-SigmaField REAL
 
].-infty,Sigma.[ is  V73() V74() V75()  Element of  Trivial-SigmaField REAL
 
REAL \ ].-infty,Sigma.[ is  V73() V74() V75()  Element of  Trivial-SigmaField REAL
 
[.Sigma,+infty.[ is  V73() V74() V75()  Element of  Trivial-SigmaField REAL
 
].-infty,Sigma.[ `  is  V73() V74() V75()  Element of  Trivial-SigmaField REAL
 
REAL \ ].-infty,Sigma.[ is  V73() V74() V75()  set 
 
].-infty,Omega.[ is  V73() V74() V75()  Element of  Trivial-SigmaField REAL
 
[.Omega,+infty.[ is  V73() V74() V75()  Element of  Trivial-SigmaField REAL
 
].-infty,Omega.[ /\ (].-infty,Sigma.[ `) is  V73() V74() V75()  Element of  Trivial-SigmaField REAL
 
].-infty,Omega.[ /\ [.Sigma,+infty.[ is  V73() V74() V75()  Element of  Trivial-SigmaField REAL
 
Omega is  V11()  real   ext-real   set 
 
Sigma is  V11()  real   ext-real   set 
 
(Omega,Sigma) is   non  empty  V13() V16( NAT ) V17(K139(REAL))  Function-like  V23( NAT ) V27( NAT ,K139(REAL))  Element of  Trivial-SigmaField K7(NAT,K139(REAL))
 
 Intersection (Omega,Sigma) is  V73() V74() V75()  Element of  Trivial-SigmaField REAL
 
 Complement (Omega,Sigma) is   non  empty  V13() V16( NAT ) V17(K139(REAL))  Function-like  V23( NAT ) V27( NAT ,K139(REAL))  Element of  Trivial-SigmaField K7(NAT,K139(REAL))
 
 Union (Complement (Omega,Sigma)) is  V73() V74() V75()  Element of  Trivial-SigmaField REAL
 
(Union (Complement (Omega,Sigma))) `  is  V73() V74() V75()  Element of  Trivial-SigmaField REAL
 
REAL \ (Union (Complement (Omega,Sigma))) is  V73() V74() V75()  set 
 
x is   epsilon-transitive   epsilon-connected   ordinal   natural  V11()  real   ext-real   non  negative  V71() V72() V73() V74() V75() V76() V77() V78()  Element of  NAT 
 
(Complement (Omega,Sigma)) . x is  V73() V74() V75()  Element of K139(REAL)
 
(Omega,Sigma) . x is  V73() V74() V75()  Element of K139(REAL)
 
((Omega,Sigma) . x) `  is  V73() V74() V75()  Element of  Trivial-SigmaField REAL
 
REAL \ ((Omega,Sigma) . x) is  V73() V74() V75()  set 
 
(Omega,Sigma) . 0 is  V73() V74() V75()  Element of K139(REAL)
 
Sigma + 1 is  V11()  real   ext-real   Element of  REAL 
 
(Omega,(Sigma + 1)) is  V73() V74() V75()  Element of  Trivial-SigmaField REAL
 
f is   epsilon-transitive   epsilon-connected   ordinal   natural  V11()  real   ext-real   non  negative   set 
 
f + 1 is   non  empty   epsilon-transitive   epsilon-connected   ordinal   natural  V11()  real   ext-real   positive   non  negative  V71() V72() V73() V74() V75() V76() V77() V78()  Element of  NAT 
 
f is   epsilon-transitive   epsilon-connected   ordinal   natural  V11()  real   ext-real   non  negative   set 
 
f + 1 is   non  empty   epsilon-transitive   epsilon-connected   ordinal   natural  V11()  real   ext-real   positive   non  negative  V71() V72() V73() V74() V75() V76() V77() V78()  Element of  NAT 
 
r is   epsilon-transitive   epsilon-connected   ordinal   natural  V11()  real   ext-real   non  negative  V71() V72() V73() V74() V75() V76() V77() V78()  Element of  NAT 
 
r + 1 is   non  empty   epsilon-transitive   epsilon-connected   ordinal   natural  V11()  real   ext-real   positive   non  negative  V71() V72() V73() V74() V75() V76() V77() V78()  Element of  NAT 
 
(Omega,Sigma) . (r + 1) is  V73() V74() V75()  Element of K139(REAL)
 
1 / (r + 1) is   non  empty  V11()  real   ext-real   positive   non  negative  V72()  Element of  RAT 
 
Sigma + (1 / (r + 1)) is  V11()  real   ext-real   Element of  REAL 
 
(Omega,(Sigma + (1 / (r + 1)))) is  V73() V74() V75()  Element of  Trivial-SigmaField REAL
 
Omega is  V11()  real   ext-real   set 
 
Sigma is  V11()  real   ext-real   set 
 
(Omega,Sigma) is   non  empty  V13() V16( NAT ) V17(K139(REAL))  Function-like  V23( NAT ) V27( NAT ,K139(REAL))  Element of  Trivial-SigmaField K7(NAT,K139(REAL))
 
 Intersection (Omega,Sigma) is  V73() V74() V75()  Element of  Trivial-SigmaField REAL
 
 Complement (Omega,Sigma) is   non  empty  V13() V16( NAT ) V17(K139(REAL))  Function-like  V23( NAT ) V27( NAT ,K139(REAL))  Element of  Trivial-SigmaField K7(NAT,K139(REAL))
 
 Union (Complement (Omega,Sigma)) is  V73() V74() V75()  Element of  Trivial-SigmaField REAL
 
(Union (Complement (Omega,Sigma))) `  is  V73() V74() V75()  Element of  Trivial-SigmaField REAL
 
REAL \ (Union (Complement (Omega,Sigma))) is  V73() V74() V75()  set 
 
[.Omega,Sigma.] is  V73() V74() V75()  Element of  Trivial-SigmaField REAL
 
x is    set 
 
f is  V11()  real   ext-real   Element of  REAL 
 
 {  b1 where b1 is   ext-real   Element of  ExtREAL  : ( Omega <= b1 & b1 <= Sigma )  }   is    set 
 
r is   ext-real   Element of  ExtREAL 
 
r is   empty   epsilon-transitive   epsilon-connected   ordinal   T-Sequence-like   c=-linear   natural  V11()  real   ext-real   non  positive   non  negative  V71() V72() V73() V74() V75() V76() V77() V78() V79()  Element of  NAT 
 
(Omega,Sigma) . r is  V73() V74() V75()  Element of K139(REAL)
 
(Omega,Sigma) . 0 is  V73() V74() V75()  Element of K139(REAL)
 
Sigma + 1 is  V11()  real   ext-real   Element of  REAL 
 
(Omega,(Sigma + 1)) is  V73() V74() V75()  Element of  Trivial-SigmaField REAL
 
 {  b1 where b1 is   ext-real   Element of  ExtREAL  : ( Omega <= b1 &  not Sigma + 1 <= b1 )  }   is    set 
 
jpi is   ext-real   Element of  ExtREAL 
 
r is   epsilon-transitive   epsilon-connected   ordinal   natural  V11()  real   ext-real   non  negative  V71() V72() V73() V74() V75() V76() V77() V78()  Element of  NAT 
 
(Omega,Sigma) . r is  V73() V74() V75()  Element of K139(REAL)
 
f - Sigma is  V11()  real   ext-real   Element of  REAL 
 
r is   epsilon-transitive   epsilon-connected   ordinal   natural  V11()  real   ext-real   non  negative  V71() V72() V73() V74() V75() V76() V77() V78()  Element of  NAT 
 
1 / r is  V11()  real   ext-real   non  negative  V72()  Element of  RAT 
 
(f - Sigma) + Sigma is  V11()  real   ext-real   Element of  REAL 
 
(1 / r) + Sigma is  V11()  real   ext-real   Element of  REAL 
 
Sigma + (1 / r) is  V11()  real   ext-real   Element of  REAL 
 
r + 1 is   non  empty   epsilon-transitive   epsilon-connected   ordinal   natural  V11()  real   ext-real   positive   non  negative  V71() V72() V73() V74() V75() V76() V77() V78()  Element of  NAT 
 
(Omega,Sigma) . (r + 1) is  V73() V74() V75()  Element of K139(REAL)
 
1 / (r + 1) is   non  empty  V11()  real   ext-real   positive   non  negative  V72()  Element of  RAT 
 
Sigma + (1 / (r + 1)) is  V11()  real   ext-real   Element of  REAL 
 
[.Omega,(Sigma + (1 / (r + 1))).[ is  V73() V74() V75()  Element of  Trivial-SigmaField REAL
 
 {  b1 where b1 is   ext-real   Element of  ExtREAL  : ( Omega <= b1 &  not Sigma + (1 / (r + 1)) <= b1 )  }   is    set 
 
jpi is   ext-real   Element of  ExtREAL 
 
(r + 1) * 1 is   non  empty   epsilon-transitive   epsilon-connected   ordinal   natural  V11()  real   ext-real   positive   non  negative  V71() V72() V73() V74() V75() V76() V77() V78()  Element of  NAT 
 
r * 1 is   epsilon-transitive   epsilon-connected   ordinal   natural  V11()  real   ext-real   non  negative  V71() V72() V73() V74() V75() V76() V77() V78()  Element of  NAT 
 
X is   epsilon-transitive   epsilon-connected   ordinal   natural  V11()  real   ext-real   non  negative  V71() V72() V73() V74() V75() V76() V77() V78()  Element of  NAT 
 
X / r is  V11()  real   ext-real   non  negative  V72()  Element of  RAT 
 
X / (r + 1) is  V11()  real   ext-real   non  negative  V72()  Element of  RAT 
 
x is    set 
 
f is   epsilon-transitive   epsilon-connected   ordinal   natural  V11()  real   ext-real   non  negative  V71() V72() V73() V74() V75() V76() V77() V78()  Element of  NAT 
 
(Omega,Sigma) . f is  V73() V74() V75()  Element of K139(REAL)
 
Sigma + 1 is  V11()  real   ext-real   Element of  REAL 
 
(Omega,Sigma) . 0 is  V73() V74() V75()  Element of K139(REAL)
 
(Omega,(Sigma + 1)) is  V73() V74() V75()  Element of  Trivial-SigmaField REAL
 
r is   epsilon-transitive   epsilon-connected   ordinal   natural  V11()  real   ext-real   non  negative   set 
 
r + 1 is   non  empty   epsilon-transitive   epsilon-connected   ordinal   natural  V11()  real   ext-real   positive   non  negative  V71() V72() V73() V74() V75() V76() V77() V78()  Element of  NAT 
 
jpi is   epsilon-transitive   epsilon-connected   ordinal   natural  V11()  real   ext-real   non  negative  V71() V72() V73() V74() V75() V76() V77() V78()  Element of  NAT 
 
jpi + 1 is   non  empty   epsilon-transitive   epsilon-connected   ordinal   natural  V11()  real   ext-real   positive   non  negative  V71() V72() V73() V74() V75() V76() V77() V78()  Element of  NAT 
 
(Omega,Sigma) . (jpi + 1) is  V73() V74() V75()  Element of K139(REAL)
 
1 / (jpi + 1) is   non  empty  V11()  real   ext-real   positive   non  negative  V72()  Element of  RAT 
 
Sigma + (1 / (jpi + 1)) is  V11()  real   ext-real   Element of  REAL 
 
(Omega,(Sigma + (1 / (jpi + 1)))) is  V73() V74() V75()  Element of  Trivial-SigmaField REAL
 
1 / f is  V11()  real   ext-real   non  negative  V72()  Element of  RAT 
 
Sigma + (1 / f) is  V11()  real   ext-real   Element of  REAL 
 
x is    set 
 
f is    set 
 
Omega is  V11()  real   ext-real   set 
 
Sigma is  V11()  real   ext-real   set 
 
(Omega,Sigma) is   non  empty  V13() V16( NAT ) V17(K139(REAL))  Function-like  V23( NAT ) V27( NAT ,K139(REAL))  Element of  Trivial-SigmaField K7(NAT,K139(REAL))
 
 Partial_Intersection (Omega,Sigma) is   non  empty  V13() V16( NAT ) V17(K139(REAL))  Function-like  V23( NAT ) V27( NAT ,K139(REAL))  Element of  Trivial-SigmaField K7(NAT,K139(REAL))
 
(Partial_Intersection (Omega,Sigma)) . 0 is    set 
 
(Partial_Intersection (Omega,Sigma)) . 0 is  V73() V74() V75()  Element of K139(REAL)
 
(Omega,Sigma) . 0 is  V73() V74() V75()  Element of K139(REAL)
 
Sigma + 1 is  V11()  real   ext-real   Element of  REAL 
 
(Omega,(Sigma + 1)) is  V73() V74() V75()  Element of  Trivial-SigmaField REAL
 
x is   epsilon-transitive   epsilon-connected   ordinal   natural  V11()  real   ext-real   non  negative   set 
 
(Partial_Intersection (Omega,Sigma)) . x is    set 
 
x + 1 is   non  empty   epsilon-transitive   epsilon-connected   ordinal   natural  V11()  real   ext-real   positive   non  negative  V71() V72() V73() V74() V75() V76() V77() V78()  Element of  NAT 
 
(Partial_Intersection (Omega,Sigma)) . (x + 1) is    set 
 
f is   epsilon-transitive   epsilon-connected   ordinal   natural  V11()  real   ext-real   non  negative  V71() V72() V73() V74() V75() V76() V77() V78()  Element of  NAT 
 
f + 1 is   non  empty   epsilon-transitive   epsilon-connected   ordinal   natural  V11()  real   ext-real   positive   non  negative  V71() V72() V73() V74() V75() V76() V77() V78()  Element of  NAT 
 
(Partial_Intersection (Omega,Sigma)) . (f + 1) is  V73() V74() V75()  Element of K139(REAL)
 
(Partial_Intersection (Omega,Sigma)) . f is  V73() V74() V75()  Element of K139(REAL)
 
(Omega,Sigma) . (f + 1) is  V73() V74() V75()  Element of K139(REAL)
 
((Partial_Intersection (Omega,Sigma)) . f) /\ ((Omega,Sigma) . (f + 1)) is  V73() V74() V75() M9( REAL ,K139(REAL))
 
1 / (f + 1) is   non  empty  V11()  real   ext-real   positive   non  negative  V72()  Element of  RAT 
 
Sigma + (1 / (f + 1)) is  V11()  real   ext-real   Element of  REAL 
 
(Omega,(Sigma + (1 / (f + 1)))) is  V73() V74() V75()  Element of  Trivial-SigmaField REAL
 
((Partial_Intersection (Omega,Sigma)) . f) /\ (Omega,(Sigma + (1 / (f + 1)))) is  V73() V74() V75()  Element of  Trivial-SigmaField REAL
 
[.Omega,(Sigma + (1 / (f + 1))).[ is  V73() V74() V75()  Element of  Trivial-SigmaField REAL
 
x is   epsilon-transitive   epsilon-connected   ordinal   natural  V11()  real   ext-real   non  negative   set 
 
(Partial_Intersection (Omega,Sigma)) . x is    set 
 
Sigma is  V11()  real   ext-real   set 
 
Omega is  V11()  real   ext-real   set 
 
[.Sigma,Omega.] is  V73() V74() V75()  Element of  Trivial-SigmaField REAL
 
(Sigma,Omega) is   non  empty  V13() V16( NAT ) V17(K139(REAL))  Function-like  V23( NAT ) V27( NAT ,K139(REAL))  Element of  Trivial-SigmaField K7(NAT,K139(REAL))
 
 Intersection (Sigma,Omega) is  V73() V74() V75()  Element of  Trivial-SigmaField REAL
 
 Complement (Sigma,Omega) is   non  empty  V13() V16( NAT ) V17(K139(REAL))  Function-like  V23( NAT ) V27( NAT ,K139(REAL))  Element of  Trivial-SigmaField K7(NAT,K139(REAL))
 
 Union (Complement (Sigma,Omega)) is  V73() V74() V75()  Element of  Trivial-SigmaField REAL
 
(Union (Complement (Sigma,Omega))) `  is  V73() V74() V75()  Element of  Trivial-SigmaField REAL
 
REAL \ (Union (Complement (Sigma,Omega))) is  V73() V74() V75()  set 
 
Omega is   non  empty   set 
 
 Trivial-SigmaField Omega is   non  empty  V98()  set 
 
 Trivial-SigmaField (Trivial-SigmaField Omega) is   non  empty  V98()  set 
 
K7(Omega,REAL) is   non  empty  V33() V34() V35()  set 
 
 Trivial-SigmaField K7(Omega,REAL) is   non  empty  V98()  set 
 
Sigma is   non  empty   compl-closed   sigma-multiplicative  V98()  Element of  Trivial-SigmaField (Trivial-SigmaField Omega)
 
x is   non  empty  V13() V16(Omega) V17( REAL )  Function-like  V23(Omega) V27(Omega, REAL ) V33() V34() V35()  Element of  Trivial-SigmaField K7(Omega,REAL)
 
f is  V11()  real   ext-real   set 
 
 {  b1 where b1 is    Element of Omega : f <= x . b1  }   is    set 
 
 {  b1 where b1 is    Element of Omega :  not f <= x . b1  }   is    set 
 
[.f,+infty.] is    set 
 
r is    set 
 
jpi is    Element of Omega
 
x . jpi is  V11()  real   ext-real   Element of  REAL 
 
jpi is    Element of Omega
 
x . jpi is  V11()  real   ext-real   Element of  REAL 
 
 {  b1 where b1 is   ext-real   Element of  ExtREAL  : ( f <= b1 & b1 <=  +infty  )  }   is    set 
 
X is   ext-real   Element of  ExtREAL 
 
jpi is    Element of Omega
 
x . jpi is  V11()  real   ext-real   Element of  REAL 
 
X is    Element of Omega
 
x . X is  V11()  real   ext-real   Element of  REAL 
 
G is    Element of Omega
 
x . G is  V11()  real   ext-real   Element of  REAL 
 
[.f,+infty.[ is  V73() V74() V75()  Element of  Trivial-SigmaField REAL
 
 {  b1 where b1 is    Element of Omega : x . b1 in [.f,+infty.[  }   is    set 
 
r is    set 
 
jpi is    Element of Omega
 
x . jpi is  V11()  real   ext-real   Element of  REAL 
 
jpi is    Element of Omega
 
x . jpi is  V11()  real   ext-real   Element of  REAL 
 
X is    Element of Omega
 
x . X is  V11()  real   ext-real   Element of  REAL 
 
 {  b1 where b1 is    Element of Omega : x . b1 in [.f,+infty.]  }   is    set 
 
jpi is    Element of Omega
 
x . jpi is  V11()  real   ext-real   Element of  REAL 
 
 {  b1 where b1 is   ext-real   Element of  ExtREAL  : ( f <= b1 & b1 <=  +infty  )  }   is    set 
 
X is   ext-real   Element of  ExtREAL 
 
 {  b1 where b1 is   ext-real   Element of  ExtREAL  : ( f <= b1 &  not  +infty  <= b1 )  }   is    set 
 
jpi is    Element of Omega
 
x . jpi is  V11()  real   ext-real   Element of  REAL 
 
X is   ext-real   Element of  ExtREAL 
 
jpi is    Element of Omega
 
x . jpi is  V11()  real   ext-real   Element of  REAL 
 
 {  b1 where b1 is    Element of Omega : x . b1 is  V11()  real   ext-real   Element of [.f,+infty.[  }   is    set 
 
r is    set 
 
jpi is    Element of Omega
 
x . jpi is  V11()  real   ext-real   Element of  REAL 
 
jpi is    Element of Omega
 
x . jpi is  V11()  real   ext-real   Element of  REAL 
 
].-infty,f.[ is  V73() V74() V75()  Element of  Trivial-SigmaField REAL
 
[.-infty,f.[ is    set 
 
r is    set 
 
jpi is    Element of Omega
 
x . jpi is  V11()  real   ext-real   Element of  REAL 
 
jpi is    Element of Omega
 
x . jpi is  V11()  real   ext-real   Element of  REAL 
 
 {  b1 where b1 is   ext-real   Element of  ExtREAL  : (  -infty  <= b1 &  not f <= b1 )  }   is    set 
 
X is   ext-real   Element of  ExtREAL 
 
jpi is    Element of Omega
 
x . jpi is  V11()  real   ext-real   Element of  REAL 
 
X is    Element of Omega
 
x . X is  V11()  real   ext-real   Element of  REAL 
 
G is    Element of Omega
 
x . G is  V11()  real   ext-real   Element of  REAL 
 
 {  b1 where b1 is    Element of Omega : x . b1 in ].-infty,f.[  }   is    set 
 
r is    set 
 
jpi is    Element of Omega
 
x . jpi is  V11()  real   ext-real   Element of  REAL 
 
jpi is    Element of Omega
 
x . jpi is  V11()  real   ext-real   Element of  REAL 
 
X is    Element of Omega
 
x . X is  V11()  real   ext-real   Element of  REAL 
 
 {  b1 where b1 is    Element of Omega : x . b1 in [.-infty,f.[  }   is    set 
 
jpi is    Element of Omega
 
x . jpi is  V11()  real   ext-real   Element of  REAL 
 
 {  b1 where b1 is   ext-real   Element of  ExtREAL  : (  -infty  <= b1 &  not f <= b1 )  }   is    set 
 
X is   ext-real   Element of  ExtREAL 
 
 {  b1 where b1 is   ext-real   Element of  ExtREAL  : (  not b1 <=  -infty  &  not f <= b1 )  }   is    set 
 
jpi is    Element of Omega
 
x . jpi is  V11()  real   ext-real   Element of  REAL 
 
X is   ext-real   Element of  ExtREAL 
 
jpi is    Element of Omega
 
x . jpi is  V11()  real   ext-real   Element of  REAL 
 
 {  b1 where b1 is    Element of Omega : x . b1 is  V11()  real   ext-real   Element of ].-infty,f.[  }   is    set 
 
r is    set 
 
jpi is    Element of Omega
 
x . jpi is  V11()  real   ext-real   Element of  REAL 
 
jpi is    Element of Omega
 
x . jpi is  V11()  real   ext-real   Element of  REAL 
 
r is  V11()  real   ext-real   set 
 
f is  V11()  real   ext-real   set 
 
 {  b1 where b1 is    Element of Omega : ( f <= x . b1 &  not r <= x . b1 )  }   is    set 
 
[.f,r.[ is  V73() V74() V75()  Element of  Trivial-SigmaField REAL
 
 {  b1 where b1 is    Element of Omega : x . b1 is  V11()  real   ext-real   Element of [.f,r.[  }   is    set 
 
jpi is    set 
 
X is    Element of Omega
 
x . X is  V11()  real   ext-real   Element of  REAL 
 
 R_EAL (x . X) is   ext-real   Element of  ExtREAL 
 
G is   ext-real   Element of  ExtREAL 
 
 {  b1 where b1 is   ext-real   Element of  ExtREAL  : ( f <= b1 &  not r <= b1 )  }   is    set 
 
X is    Element of Omega
 
x . X is  V11()  real   ext-real   Element of  REAL 
 
G is   ext-real   Element of  ExtREAL 
 
[.r,f.[ is  V73() V74() V75()  Element of  Trivial-SigmaField REAL
 
f is  V11()  real   ext-real   set 
 
r is  V11()  real   ext-real   set 
 
 {  b1 where b1 is    Element of Omega : ( f <= x . b1 & x . b1 <= r )  }   is    set 
 
[.f,r.] is  V73() V74() V75()  Element of  Trivial-SigmaField REAL
 
 {  b1 where b1 is    Element of Omega : x . b1 is  V11()  real   ext-real   Element of [.f,r.]  }   is    set 
 
jpi is    set 
 
X is    Element of Omega
 
x . X is  V11()  real   ext-real   Element of  REAL 
 
 R_EAL (x . X) is   ext-real   Element of  ExtREAL 
 
G is   ext-real   Element of  ExtREAL 
 
 {  b1 where b1 is   ext-real   Element of  ExtREAL  : ( f <= b1 & b1 <= r )  }   is    set 
 
X is    Element of Omega
 
x . X is  V11()  real   ext-real   Element of  REAL 
 
G is   ext-real   Element of  ExtREAL 
 
[.f,r.[ is  V73() V74() V75()  Element of  Trivial-SigmaField REAL
 
f is  V11()  real   ext-real   set 
 
 less_dom (x,f) is    set 
 
 {  b1 where b1 is    Element of Omega :  not f <= x . b1  }   is    set 
 
r is    set 
 
 dom x is    Element of  Trivial-SigmaField Omega
 
x . r is  V11()  real   ext-real   Element of  REAL 
 
jpi is    Element of Omega
 
x . jpi is  V11()  real   ext-real   Element of  REAL 
 
jpi is    Element of Omega
 
x . jpi is  V11()  real   ext-real   Element of  REAL 
 
f is  V11()  real   ext-real   set 
 
 great_eq_dom (x,f) is    set 
 
 {  b1 where b1 is    Element of Omega : f <= x . b1  }   is    set 
 
r is    set 
 
 dom x is    Element of  Trivial-SigmaField Omega
 
x . r is  V11()  real   ext-real   Element of  REAL 
 
jpi is    Element of Omega
 
x . jpi is  V11()  real   ext-real   Element of  REAL 
 
jpi is    Element of Omega
 
x . jpi is  V11()  real   ext-real   Element of  REAL 
 
f is  V11()  real   ext-real   set 
 
 eq_dom (x,f) is    set 
 
 {  b1 where b1 is    Element of Omega : x . b1 = f  }   is    set 
 
r is    set 
 
 dom x is    Element of  Trivial-SigmaField Omega
 
x . r is  V11()  real   ext-real   Element of  REAL 
 
jpi is    Element of Omega
 
x . jpi is  V11()  real   ext-real   Element of  REAL 
 
jpi is    Element of Omega
 
x . jpi is  V11()  real   ext-real   Element of  REAL 
 
f is  V11()  real   ext-real   set 
 
 eq_dom (x,f) is    set 
 
 {  b1 where b1 is    Element of Omega : ( f <= x . b1 & x . b1 <= f )  }   is    set 
 
 {  b1 where b1 is    Element of Omega : x . b1 = f  }   is    set 
 
r is    set 
 
jpi is    Element of Omega
 
x . jpi is  V11()  real   ext-real   Element of  REAL 
 
jpi is    Element of Omega
 
x . jpi is  V11()  real   ext-real   Element of  REAL 
 
X is    Element of Omega
 
x . X is  V11()  real   ext-real   Element of  REAL 
 
jpi is    Element of Omega
 
x . jpi is  V11()  real   ext-real   Element of  REAL 
 
f is  V11()  real   ext-real   set 
 
 {  b1 where b1 is    Element of Omega : f <= x . b1  }   is    set 
 
r is  V11()  real   ext-real   set 
 
 {  b1 where b1 is    Element of Omega :  not r <= x . b1  }   is    set 
 
X is  V11()  real   ext-real   set 
 
jpi is  V11()  real   ext-real   set 
 
 {  b1 where b1 is    Element of Omega : ( jpi <= x . b1 &  not X <= x . b1 )  }   is    set 
 
G is  V11()  real   ext-real   set 
 
x is  V11()  real   ext-real   set 
 
 {  b1 where b1 is    Element of Omega : ( G <= x . b1 & x . b1 <= x )  }   is    set 
 
w is  V11()  real   ext-real   set 
 
 less_dom (x,w) is    set 
 
 {  b1 where b1 is    Element of Omega :  not w <= x . b1  }   is    set 
 
g2 is  V11()  real   ext-real   set 
 
 great_eq_dom (x,g2) is    set 
 
 {  b1 where b1 is    Element of Omega : g2 <= x . b1  }   is    set 
 
c12 is  V11()  real   ext-real   set 
 
 eq_dom (x,c12) is    set 
 
 {  b1 where b1 is    Element of Omega : x . b1 = c12  }   is    set 
 
c13 is  V11()  real   ext-real   set 
 
 eq_dom (x,c13) is    set 
 
Omega is   non  empty   set 
 
 Trivial-SigmaField Omega is   non  empty  V98()  set 
 
 Trivial-SigmaField (Trivial-SigmaField Omega) is   non  empty  V98()  set 
 
Sigma is   non  empty   compl-closed   sigma-multiplicative  V98()  Element of  Trivial-SigmaField (Trivial-SigmaField Omega)
 
x is  V11()  real   ext-real   set 
 
Omega --> x is   non  empty  V13() V16(Omega) V17({x})  Function-like  V23(Omega) V27(Omega,{x}) V33() V34() V35()  Element of  Trivial-SigmaField K7(Omega,{x})
 
{x} is   non  empty  V73() V74() V75()  set 
 
K7(Omega,{x}) is   non  empty  V33() V34() V35()  set 
 
 Trivial-SigmaField K7(Omega,{x}) is   non  empty  V98()  set 
 
r is    Element of  Borel_Sets 
 
 {  b1 where b1 is    Element of Omega : (Omega --> x) . b1 is    Element of r  }   is    set 
 
 {  b1 where b1 is    Element of Omega : (Omega --> x) . b1 is    Element of r  }   is    set 
 
jpi is    set 
 
X is    Element of Omega
 
(Omega --> x) . X is  V11()  real   ext-real   Element of  REAL 
 
X is    Element of Omega
 
(Omega --> x) . X is  V11()  real   ext-real   Element of  REAL 
 
 {  b1 where b1 is    Element of Omega : (Omega --> x) . b1 is    Element of r  }   is    set 
 
jpi is    set 
 
X is    Element of Omega
 
(Omega --> x) . X is  V11()  real   ext-real   Element of  REAL 
 
Omega is   non  empty  V13() V16( NAT ) V17( REAL )  Function-like  V23( NAT ) V27( NAT , REAL ) V33() V34() V35()  Element of  Trivial-SigmaField K7(NAT,REAL)
 
Omega . 0 is  V11()  real   ext-real   Element of  REAL 
 
Sigma is   non  empty  V13() V16( NAT ) V17( REAL )  Function-like  V23( NAT ) V27( NAT , REAL ) V33() V34() V35() ()
 
x is   epsilon-transitive   epsilon-connected   ordinal   natural  V11()  real   ext-real   non  negative   set 
 
(x,Omega,Sigma) is  V11()  real   ext-real   Element of  REAL 
 
(Omega,Sigma) is   non  empty  V13() V16( NAT ) V17( REAL )  Function-like  V23( NAT ) V27( NAT , REAL ) V33() V34() V35()  Element of  Trivial-SigmaField K7(NAT,REAL)
 
 Partial_Sums (Omega,Sigma) is   non  empty  V13() V16( NAT ) V17( REAL )  Function-like  V23( NAT ) V27( NAT , REAL ) V33() V34() V35()  Element of  Trivial-SigmaField K7(NAT,REAL)
 
(Partial_Sums (Omega,Sigma)) . x is  V11()  real   ext-real   Element of  REAL 
 
(x,Omega,Sigma) is  V11()  real   ext-real   Element of  REAL 
 
(Omega,Sigma) ^\ 1 is   non  empty  V13() V16( NAT ) V17( REAL )  Function-like  V23( NAT ) V27( NAT , REAL ) V33() V34() V35()  Element of  Trivial-SigmaField K7(NAT,REAL)
 
 Partial_Sums ((Omega,Sigma) ^\ 1) is   non  empty  V13() V16( NAT ) V17( REAL )  Function-like  V23( NAT ) V27( NAT , REAL ) V33() V34() V35()  Element of  Trivial-SigmaField K7(NAT,REAL)
 
x - 1 is  V11()  real   ext-real   Element of  REAL 
 
(Partial_Sums ((Omega,Sigma) ^\ 1)) . (x - 1) is  V11()  real   ext-real   Element of  REAL 
 
(Omega . 0) + (x,Omega,Sigma) is  V11()  real   ext-real   Element of  REAL 
 
0 + 1 is   non  empty   epsilon-transitive   epsilon-connected   ordinal   natural  V11()  real   ext-real   positive   non  negative  V71() V72() V73() V74() V75() V76() V77() V78()  Element of  NAT 
 
(Partial_Sums (Omega,Sigma)) . (0 + 1) is  V11()  real   ext-real   Element of  REAL 
 
(Partial_Sums ((Omega,Sigma) ^\ 1)) . 0 is  V11()  real   ext-real   Element of  REAL 
 
(Omega . 0) + ((Partial_Sums ((Omega,Sigma) ^\ 1)) . 0) is  V11()  real   ext-real   Element of  REAL 
 
(Partial_Sums (Omega,Sigma)) . 0 is  V11()  real   ext-real   Element of  REAL 
 
(Omega,Sigma) . 1 is  V11()  real   ext-real   Element of  REAL 
 
((Partial_Sums (Omega,Sigma)) . 0) + ((Omega,Sigma) . 1) is  V11()  real   ext-real   Element of  REAL 
 
(Omega,Sigma) . 0 is  V11()  real   ext-real   Element of  REAL 
 
((Omega,Sigma) . 0) + ((Omega,Sigma) . 1) is  V11()  real   ext-real   Element of  REAL 
 
((Omega,Sigma) ^\ 1) . 0 is  V11()  real   ext-real   Element of  REAL 
 
((Omega,Sigma) . 0) + (((Omega,Sigma) ^\ 1) . 0) is  V11()  real   ext-real   Element of  REAL 
 
((Omega,Sigma) . 0) + ((Partial_Sums ((Omega,Sigma) ^\ 1)) . 0) is  V11()  real   ext-real   Element of  REAL 
 
Sigma . 0 is  V11()  real   ext-real   Element of  REAL 
 
(Omega . 0) * (Sigma . 0) is  V11()  real   ext-real   Element of  REAL 
 
((Omega . 0) * (Sigma . 0)) + ((Partial_Sums ((Omega,Sigma) ^\ 1)) . 0) is  V11()  real   ext-real   Element of  REAL 
 
(Omega . 0) * 1 is  V11()  real   ext-real   Element of  REAL 
 
((Omega . 0) * 1) + ((Partial_Sums ((Omega,Sigma) ^\ 1)) . 0) is  V11()  real   ext-real   Element of  REAL 
 
f is   epsilon-transitive   epsilon-connected   ordinal   natural  V11()  real   ext-real   non  negative   set 
 
f + 1 is   non  empty   epsilon-transitive   epsilon-connected   ordinal   natural  V11()  real   ext-real   positive   non  negative  V71() V72() V73() V74() V75() V76() V77() V78()  Element of  NAT 
 
(Partial_Sums (Omega,Sigma)) . (f + 1) is  V11()  real   ext-real   Element of  REAL 
 
(Partial_Sums ((Omega,Sigma) ^\ 1)) . f is  V11()  real   ext-real   Element of  REAL 
 
(Omega . 0) + ((Partial_Sums ((Omega,Sigma) ^\ 1)) . f) is  V11()  real   ext-real   Element of  REAL 
 
(f + 1) + 1 is   non  empty   epsilon-transitive   epsilon-connected   ordinal   natural  V11()  real   ext-real   positive   non  negative  V71() V72() V73() V74() V75() V76() V77() V78()  Element of  NAT 
 
(Partial_Sums (Omega,Sigma)) . ((f + 1) + 1) is  V11()  real   ext-real   Element of  REAL 
 
(Partial_Sums ((Omega,Sigma) ^\ 1)) . (f + 1) is  V11()  real   ext-real   Element of  REAL 
 
(Omega . 0) + ((Partial_Sums ((Omega,Sigma) ^\ 1)) . (f + 1)) is  V11()  real   ext-real   Element of  REAL 
 
r is   epsilon-transitive   epsilon-connected   ordinal   natural  V11()  real   ext-real   non  negative  V71() V72() V73() V74() V75() V76() V77() V78()  Element of  NAT 
 
r + 1 is   non  empty   epsilon-transitive   epsilon-connected   ordinal   natural  V11()  real   ext-real   positive   non  negative  V71() V72() V73() V74() V75() V76() V77() V78()  Element of  NAT 
 
(r + 1) + 1 is   non  empty   epsilon-transitive   epsilon-connected   ordinal   natural  V11()  real   ext-real   positive   non  negative  V71() V72() V73() V74() V75() V76() V77() V78()  Element of  NAT 
 
(Partial_Sums (Omega,Sigma)) . ((r + 1) + 1) is  V11()  real   ext-real   Element of  REAL 
 
(Partial_Sums ((Omega,Sigma) ^\ 1)) . r is  V11()  real   ext-real   Element of  REAL 
 
(Omega . 0) + ((Partial_Sums ((Omega,Sigma) ^\ 1)) . r) is  V11()  real   ext-real   Element of  REAL 
 
(Omega,Sigma) . ((r + 1) + 1) is  V11()  real   ext-real   Element of  REAL 
 
((Omega . 0) + ((Partial_Sums ((Omega,Sigma) ^\ 1)) . r)) + ((Omega,Sigma) . ((r + 1) + 1)) is  V11()  real   ext-real   Element of  REAL 
 
((Omega,Sigma) ^\ 1) . (r + 1) is  V11()  real   ext-real   Element of  REAL 
 
((Omega . 0) + ((Partial_Sums ((Omega,Sigma) ^\ 1)) . r)) + (((Omega,Sigma) ^\ 1) . (r + 1)) is  V11()  real   ext-real   Element of  REAL 
 
((Partial_Sums ((Omega,Sigma) ^\ 1)) . r) + (((Omega,Sigma) ^\ 1) . (r + 1)) is  V11()  real   ext-real   Element of  REAL 
 
(Omega . 0) + (((Partial_Sums ((Omega,Sigma) ^\ 1)) . r) + (((Omega,Sigma) ^\ 1) . (r + 1))) is  V11()  real   ext-real   Element of  REAL 
 
(x - 1) + 1 is  V11()  real   ext-real   Element of  REAL 
 
(Partial_Sums (Omega,Sigma)) . ((x - 1) + 1) is  V11()  real   ext-real   Element of  REAL 
 
Omega is   non  empty   set 
 
 Trivial-SigmaField Omega is   non  empty  V98()  set 
 
 Trivial-SigmaField (Trivial-SigmaField Omega) is   non  empty  V98()  set 
 
Sigma is   non  empty   compl-closed   sigma-multiplicative  V98()  Element of  Trivial-SigmaField (Trivial-SigmaField Omega)
 
(Omega,REAL,Sigma,Borel_Sets) is   non  empty   set 
 
K7(Omega,REAL) is   non  empty  V33() V34() V35()  set 
 
 Trivial-SigmaField K7(Omega,REAL) is   non  empty  V98()  set 
 
 {  b1 where b1 is  V13() V16(Omega) V17( REAL )  Function-like  V27(Omega, REAL )  Element of  Trivial-SigmaField K7(Omega,REAL) : (Omega, REAL ,Sigma, Borel_Sets ,b1)  }   is    set 
 
K7(NAT,(Omega,REAL,Sigma,Borel_Sets)) is   non  empty   set 
 
 Trivial-SigmaField K7(NAT,(Omega,REAL,Sigma,Borel_Sets)) is   non  empty  V98()  set 
 
x is   epsilon-transitive   epsilon-connected   ordinal   natural  V11()  real   ext-real   non  negative   set 
 
f is  V11()  real   ext-real   set 
 
1 + f is  V11()  real   ext-real   Element of  REAL 
 
Omega --> (1 + f) is   non  empty  V13() V16(Omega) V17( REAL )  Function-like  V23(Omega) V27(Omega, REAL ) V33() V34() V35()  Element of  Trivial-SigmaField K7(Omega,REAL)
 
r is   non  empty  V13() V16( NAT ) V17( REAL )  Function-like  V23( NAT ) V27( NAT , REAL ) V33() V34() V35()  Element of  Trivial-SigmaField K7(NAT,REAL)
 
r . 0 is  V11()  real   ext-real   Element of  REAL 
 
(1 + f) * (r . 0) is  V11()  real   ext-real   Element of  REAL 
 
X is   non  empty  V13() V16( NAT ) V17((Omega,REAL,Sigma,Borel_Sets))  Function-like  V23( NAT ) V27( NAT ,(Omega,REAL,Sigma,Borel_Sets))  Element of  Trivial-SigmaField K7(NAT,(Omega,REAL,Sigma,Borel_Sets))
 
(0,Omega,REAL,Sigma,Borel_Sets,(Omega,REAL,Sigma,Borel_Sets),X) is   non  empty  V13() V16(Omega) V17( REAL )  Function-like  V23(Omega) V27(Omega, REAL ) V33() V34() V35()  Element of  Trivial-SigmaField K7(Omega,REAL)
 
G is    Element of Omega
 
(x,r,Omega,Sigma,(Omega,REAL,Sigma,Borel_Sets),X,G) is  V11()  real   ext-real   Element of  REAL 
 
(Omega,Sigma,(Omega,REAL,Sigma,Borel_Sets),G,X,r) is   non  empty  V13() V16( NAT ) V17( REAL )  Function-like  V23( NAT ) V27( NAT , REAL ) V33() V34() V35()  Element of  Trivial-SigmaField K7(NAT,REAL)
 
 Partial_Sums (Omega,Sigma,(Omega,REAL,Sigma,Borel_Sets),G,X,r) is   non  empty  V13() V16( NAT ) V17( REAL )  Function-like  V23( NAT ) V27( NAT , REAL ) V33() V34() V35()  Element of  Trivial-SigmaField K7(NAT,REAL)
 
(Partial_Sums (Omega,Sigma,(Omega,REAL,Sigma,Borel_Sets),G,X,r)) . x is  V11()  real   ext-real   Element of  REAL 
 
(x,r,Omega,Sigma,(Omega,REAL,Sigma,Borel_Sets),X,G) is  V11()  real   ext-real   Element of  REAL 
 
(Omega,Sigma,(Omega,REAL,Sigma,Borel_Sets),G,X,r) ^\ 1 is   non  empty  V13() V16( NAT ) V17( REAL )  Function-like  V23( NAT ) V27( NAT , REAL ) V33() V34() V35()  Element of  Trivial-SigmaField K7(NAT,REAL)
 
 Partial_Sums ((Omega,Sigma,(Omega,REAL,Sigma,Borel_Sets),G,X,r) ^\ 1) is   non  empty  V13() V16( NAT ) V17( REAL )  Function-like  V23( NAT ) V27( NAT , REAL ) V33() V34() V35()  Element of  Trivial-SigmaField K7(NAT,REAL)
 
x - 1 is  V11()  real   ext-real   Element of  REAL 
 
(Partial_Sums ((Omega,Sigma,(Omega,REAL,Sigma,Borel_Sets),G,X,r) ^\ 1)) . (x - 1) is  V11()  real   ext-real   Element of  REAL 
 
((1 + f) * (r . 0)) + (x,r,Omega,Sigma,(Omega,REAL,Sigma,Borel_Sets),X,G) is  V11()  real   ext-real   Element of  REAL 
 
0 + 1 is   non  empty   epsilon-transitive   epsilon-connected   ordinal   natural  V11()  real   ext-real   positive   non  negative  V71() V72() V73() V74() V75() V76() V77() V78()  Element of  NAT 
 
(Partial_Sums (Omega,Sigma,(Omega,REAL,Sigma,Borel_Sets),G,X,r)) . (0 + 1) is  V11()  real   ext-real   Element of  REAL 
 
(Partial_Sums ((Omega,Sigma,(Omega,REAL,Sigma,Borel_Sets),G,X,r) ^\ 1)) . 0 is  V11()  real   ext-real   Element of  REAL 
 
((1 + f) * (r . 0)) + ((Partial_Sums ((Omega,Sigma,(Omega,REAL,Sigma,Borel_Sets),G,X,r) ^\ 1)) . 0) is  V11()  real   ext-real   Element of  REAL 
 
(Partial_Sums (Omega,Sigma,(Omega,REAL,Sigma,Borel_Sets),G,X,r)) . 0 is  V11()  real   ext-real   Element of  REAL 
 
(Omega,Sigma,(Omega,REAL,Sigma,Borel_Sets),G,X,r) . 1 is  V11()  real   ext-real   Element of  REAL 
 
((Partial_Sums (Omega,Sigma,(Omega,REAL,Sigma,Borel_Sets),G,X,r)) . 0) + ((Omega,Sigma,(Omega,REAL,Sigma,Borel_Sets),G,X,r) . 1) is  V11()  real   ext-real   Element of  REAL 
 
(Omega,Sigma,(Omega,REAL,Sigma,Borel_Sets),G,X,r) . 0 is  V11()  real   ext-real   Element of  REAL 
 
((Omega,Sigma,(Omega,REAL,Sigma,Borel_Sets),G,X,r) . 0) + ((Omega,Sigma,(Omega,REAL,Sigma,Borel_Sets),G,X,r) . 1) is  V11()  real   ext-real   Element of  REAL 
 
((Omega,Sigma,(Omega,REAL,Sigma,Borel_Sets),G,X,r) ^\ 1) . 0 is  V11()  real   ext-real   Element of  REAL 
 
((Omega,Sigma,(Omega,REAL,Sigma,Borel_Sets),G,X,r) . 0) + (((Omega,Sigma,(Omega,REAL,Sigma,Borel_Sets),G,X,r) ^\ 1) . 0) is  V11()  real   ext-real   Element of  REAL 
 
((Omega,Sigma,(Omega,REAL,Sigma,Borel_Sets),G,X,r) . 0) + ((Partial_Sums ((Omega,Sigma,(Omega,REAL,Sigma,Borel_Sets),G,X,r) ^\ 1)) . 0) is  V11()  real   ext-real   Element of  REAL 
 
x is   epsilon-transitive   epsilon-connected   ordinal   natural  V11()  real   ext-real   non  negative  V71() V72() V73() V74() V75() V76() V77() V78()  Element of  NAT 
 
x + 1 is   non  empty   epsilon-transitive   epsilon-connected   ordinal   natural  V11()  real   ext-real   positive   non  negative  V71() V72() V73() V74() V75() V76() V77() V78()  Element of  NAT 
 
(Partial_Sums (Omega,Sigma,(Omega,REAL,Sigma,Borel_Sets),G,X,r)) . (x + 1) is  V11()  real   ext-real   Element of  REAL 
 
(Omega,Sigma,(Omega,REAL,Sigma,Borel_Sets),G,X,r) . x is  V11()  real   ext-real   Element of  REAL 
 
(Partial_Sums ((Omega,Sigma,(Omega,REAL,Sigma,Borel_Sets),G,X,r) ^\ 1)) . x is  V11()  real   ext-real   Element of  REAL 
 
((Omega,Sigma,(Omega,REAL,Sigma,Borel_Sets),G,X,r) . x) + ((Partial_Sums ((Omega,Sigma,(Omega,REAL,Sigma,Borel_Sets),G,X,r) ^\ 1)) . x) is  V11()  real   ext-real   Element of  REAL 
 
X . x is    Element of (Omega,REAL,Sigma,Borel_Sets)
 
(Omega,Sigma,(Omega,REAL,Sigma,Borel_Sets),(X . x)) is   non  empty  V13() V16(Omega) V17( REAL )  Function-like  V23(Omega) V27(Omega, REAL ) V33() V34() V35()  Element of  Trivial-SigmaField K7(Omega,REAL)
 
(Omega,Sigma,(Omega,REAL,Sigma,Borel_Sets),(X . x)) . G is  V11()  real   ext-real   Element of  REAL 
 
r . x is  V11()  real   ext-real   Element of  REAL 
 
((Omega,Sigma,(Omega,REAL,Sigma,Borel_Sets),(X . x)) . G) * (r . x) is  V11()  real   ext-real   Element of  REAL 
 
(((Omega,Sigma,(Omega,REAL,Sigma,Borel_Sets),(X . x)) . G) * (r . x)) + ((Partial_Sums ((Omega,Sigma,(Omega,REAL,Sigma,Borel_Sets),G,X,r) ^\ 1)) . x) is  V11()  real   ext-real   Element of  REAL 
 
(Omega,REAL,Sigma,Borel_Sets,(Omega,REAL,Sigma,Borel_Sets),(X . x)) is   non  empty  V13() V16(Omega) V17( REAL )  Function-like  V23(Omega) V27(Omega, REAL ) V33() V34() V35()  Element of  Trivial-SigmaField K7(Omega,REAL)
 
(Omega,REAL,Sigma,Borel_Sets,(Omega,REAL,Sigma,Borel_Sets),(X . x)) . G is  V11()  real   ext-real   Element of  REAL 
 
X . 0 is    Element of (Omega,REAL,Sigma,Borel_Sets)
 
x is   epsilon-transitive   epsilon-connected   ordinal   natural  V11()  real   ext-real   non  negative   set 
 
x + 1 is   non  empty   epsilon-transitive   epsilon-connected   ordinal   natural  V11()  real   ext-real   positive   non  negative  V71() V72() V73() V74() V75() V76() V77() V78()  Element of  NAT 
 
(Partial_Sums (Omega,Sigma,(Omega,REAL,Sigma,Borel_Sets),G,X,r)) . (x + 1) is  V11()  real   ext-real   Element of  REAL 
 
(Partial_Sums ((Omega,Sigma,(Omega,REAL,Sigma,Borel_Sets),G,X,r) ^\ 1)) . x is  V11()  real   ext-real   Element of  REAL 
 
((1 + f) * (r . 0)) + ((Partial_Sums ((Omega,Sigma,(Omega,REAL,Sigma,Borel_Sets),G,X,r) ^\ 1)) . x) is  V11()  real   ext-real   Element of  REAL 
 
(x + 1) + 1 is   non  empty   epsilon-transitive   epsilon-connected   ordinal   natural  V11()  real   ext-real   positive   non  negative  V71() V72() V73() V74() V75() V76() V77() V78()  Element of  NAT 
 
(Partial_Sums (Omega,Sigma,(Omega,REAL,Sigma,Borel_Sets),G,X,r)) . ((x + 1) + 1) is  V11()  real   ext-real   Element of  REAL 
 
(Partial_Sums ((Omega,Sigma,(Omega,REAL,Sigma,Borel_Sets),G,X,r) ^\ 1)) . (x + 1) is  V11()  real   ext-real   Element of  REAL 
 
((1 + f) * (r . 0)) + ((Partial_Sums ((Omega,Sigma,(Omega,REAL,Sigma,Borel_Sets),G,X,r) ^\ 1)) . (x + 1)) is  V11()  real   ext-real   Element of  REAL 
 
w is   epsilon-transitive   epsilon-connected   ordinal   natural  V11()  real   ext-real   non  negative  V71() V72() V73() V74() V75() V76() V77() V78()  Element of  NAT 
 
w + 1 is   non  empty   epsilon-transitive   epsilon-connected   ordinal   natural  V11()  real   ext-real   positive   non  negative  V71() V72() V73() V74() V75() V76() V77() V78()  Element of  NAT 
 
(w + 1) + 1 is   non  empty   epsilon-transitive   epsilon-connected   ordinal   natural  V11()  real   ext-real   positive   non  negative  V71() V72() V73() V74() V75() V76() V77() V78()  Element of  NAT 
 
(Partial_Sums (Omega,Sigma,(Omega,REAL,Sigma,Borel_Sets),G,X,r)) . ((w + 1) + 1) is  V11()  real   ext-real   Element of  REAL 
 
(Partial_Sums ((Omega,Sigma,(Omega,REAL,Sigma,Borel_Sets),G,X,r) ^\ 1)) . w is  V11()  real   ext-real   Element of  REAL 
 
((1 + f) * (r . 0)) + ((Partial_Sums ((Omega,Sigma,(Omega,REAL,Sigma,Borel_Sets),G,X,r) ^\ 1)) . w) is  V11()  real   ext-real   Element of  REAL 
 
(Omega,Sigma,(Omega,REAL,Sigma,Borel_Sets),G,X,r) . ((w + 1) + 1) is  V11()  real   ext-real   Element of  REAL 
 
(((1 + f) * (r . 0)) + ((Partial_Sums ((Omega,Sigma,(Omega,REAL,Sigma,Borel_Sets),G,X,r) ^\ 1)) . w)) + ((Omega,Sigma,(Omega,REAL,Sigma,Borel_Sets),G,X,r) . ((w + 1) + 1)) is  V11()  real   ext-real   Element of  REAL 
 
((Omega,Sigma,(Omega,REAL,Sigma,Borel_Sets),G,X,r) ^\ 1) . (w + 1) is  V11()  real   ext-real   Element of  REAL 
 
(((1 + f) * (r . 0)) + ((Partial_Sums ((Omega,Sigma,(Omega,REAL,Sigma,Borel_Sets),G,X,r) ^\ 1)) . w)) + (((Omega,Sigma,(Omega,REAL,Sigma,Borel_Sets),G,X,r) ^\ 1) . (w + 1)) is  V11()  real   ext-real   Element of  REAL 
 
((Partial_Sums ((Omega,Sigma,(Omega,REAL,Sigma,Borel_Sets),G,X,r) ^\ 1)) . w) + (((Omega,Sigma,(Omega,REAL,Sigma,Borel_Sets),G,X,r) ^\ 1) . (w + 1)) is  V11()  real   ext-real   Element of  REAL 
 
((1 + f) * (r . 0)) + (((Partial_Sums ((Omega,Sigma,(Omega,REAL,Sigma,Borel_Sets),G,X,r) ^\ 1)) . w) + (((Omega,Sigma,(Omega,REAL,Sigma,Borel_Sets),G,X,r) ^\ 1) . (w + 1))) is  V11()  real   ext-real   Element of  REAL 
 
(x - 1) + 1 is  V11()  real   ext-real   Element of  REAL 
 
(Partial_Sums (Omega,Sigma,(Omega,REAL,Sigma,Borel_Sets),G,X,r)) . ((x - 1) + 1) is  V11()  real   ext-real   Element of  REAL 
 
((1 + f) * (r . 0)) + ((Partial_Sums ((Omega,Sigma,(Omega,REAL,Sigma,Borel_Sets),G,X,r) ^\ 1)) . (x - 1)) is  V11()  real   ext-real   Element of  REAL 
 
 - 1 is   non  empty  V11()  real   ext-real   non  positive   negative  V71() V72()  Element of  INT 
 
Omega is   non  empty   set 
 
 Trivial-SigmaField Omega is   non  empty  V98()  set 
 
 Trivial-SigmaField (Trivial-SigmaField Omega) is   non  empty  V98()  set 
 
Sigma is   non  empty   compl-closed   sigma-multiplicative  V98()  Element of  Trivial-SigmaField (Trivial-SigmaField Omega)
 
(Omega,REAL,Sigma,Borel_Sets) is   non  empty   set 
 
K7(Omega,REAL) is   non  empty  V33() V34() V35()  set 
 
 Trivial-SigmaField K7(Omega,REAL) is   non  empty  V98()  set 
 
 {  b1 where b1 is  V13() V16(Omega) V17( REAL )  Function-like  V27(Omega, REAL )  Element of  Trivial-SigmaField K7(Omega,REAL) : (Omega, REAL ,Sigma, Borel_Sets ,b1)  }   is    set 
 
K7(NAT,(Omega,REAL,Sigma,Borel_Sets)) is   non  empty   set 
 
 Trivial-SigmaField K7(NAT,(Omega,REAL,Sigma,Borel_Sets)) is   non  empty  V98()  set 
 
x is   epsilon-transitive   epsilon-connected   ordinal   natural  V11()  real   ext-real   non  negative   set 
 
f is  V11()  real   ext-real   set 
 
1 + f is  V11()  real   ext-real   Element of  REAL 
 
Omega --> (1 + f) is   non  empty  V13() V16(Omega) V17( REAL )  Function-like  V23(Omega) V27(Omega, REAL ) V33() V34() V35()  Element of  Trivial-SigmaField K7(Omega,REAL)
 
r is   non  empty  V13() V16( NAT ) V17( REAL )  Function-like  V23( NAT ) V27( NAT , REAL ) V33() V34() V35()  Element of  Trivial-SigmaField K7(NAT,REAL)
 
jpi is   non  empty  V13() V16( NAT ) V17( REAL )  Function-like  V23( NAT ) V27( NAT , REAL ) V33() V34() V35() ()
 
(x,r,jpi) is  V11()  real   ext-real   Element of  REAL 
 
(r,jpi) is   non  empty  V13() V16( NAT ) V17( REAL )  Function-like  V23( NAT ) V27( NAT , REAL ) V33() V34() V35()  Element of  Trivial-SigmaField K7(NAT,REAL)
 
 Partial_Sums (r,jpi) is   non  empty  V13() V16( NAT ) V17( REAL )  Function-like  V23( NAT ) V27( NAT , REAL ) V33() V34() V35()  Element of  Trivial-SigmaField K7(NAT,REAL)
 
(Partial_Sums (r,jpi)) . x is  V11()  real   ext-real   Element of  REAL 
 
(x,r,jpi) is  V11()  real   ext-real   Element of  REAL 
 
(r,jpi) ^\ 1 is   non  empty  V13() V16( NAT ) V17( REAL )  Function-like  V23( NAT ) V27( NAT , REAL ) V33() V34() V35()  Element of  Trivial-SigmaField K7(NAT,REAL)
 
 Partial_Sums ((r,jpi) ^\ 1) is   non  empty  V13() V16( NAT ) V17( REAL )  Function-like  V23( NAT ) V27( NAT , REAL ) V33() V34() V35()  Element of  Trivial-SigmaField K7(NAT,REAL)
 
x - 1 is  V11()  real   ext-real   Element of  REAL 
 
(Partial_Sums ((r,jpi) ^\ 1)) . (x - 1) is  V11()  real   ext-real   Element of  REAL 
 
(1 + f) * (x,r,jpi) is  V11()  real   ext-real   Element of  REAL 
 
G is   non  empty  V13() V16( NAT ) V17((Omega,REAL,Sigma,Borel_Sets))  Function-like  V23( NAT ) V27( NAT ,(Omega,REAL,Sigma,Borel_Sets))  Element of  Trivial-SigmaField K7(NAT,(Omega,REAL,Sigma,Borel_Sets))
 
(0,Omega,REAL,Sigma,Borel_Sets,(Omega,REAL,Sigma,Borel_Sets),G) is   non  empty  V13() V16(Omega) V17( REAL )  Function-like  V23(Omega) V27(Omega, REAL ) V33() V34() V35()  Element of  Trivial-SigmaField K7(Omega,REAL)
 
x is    Element of Omega
 
(x,r,Omega,Sigma,(Omega,REAL,Sigma,Borel_Sets),G,x) is  V11()  real   ext-real   Element of  REAL 
 
(Omega,Sigma,(Omega,REAL,Sigma,Borel_Sets),x,G,r) is   non  empty  V13() V16( NAT ) V17( REAL )  Function-like  V23( NAT ) V27( NAT , REAL ) V33() V34() V35()  Element of  Trivial-SigmaField K7(NAT,REAL)
 
 Partial_Sums (Omega,Sigma,(Omega,REAL,Sigma,Borel_Sets),x,G,r) is   non  empty  V13() V16( NAT ) V17( REAL )  Function-like  V23( NAT ) V27( NAT , REAL ) V33() V34() V35()  Element of  Trivial-SigmaField K7(NAT,REAL)
 
(Partial_Sums (Omega,Sigma,(Omega,REAL,Sigma,Borel_Sets),x,G,r)) . x is  V11()  real   ext-real   Element of  REAL 
 
(x,r,Omega,Sigma,(Omega,REAL,Sigma,Borel_Sets),G,x) is  V11()  real   ext-real   Element of  REAL 
 
(Omega,Sigma,(Omega,REAL,Sigma,Borel_Sets),x,G,r) ^\ 1 is   non  empty  V13() V16( NAT ) V17( REAL )  Function-like  V23( NAT ) V27( NAT , REAL ) V33() V34() V35()  Element of  Trivial-SigmaField K7(NAT,REAL)
 
 Partial_Sums ((Omega,Sigma,(Omega,REAL,Sigma,Borel_Sets),x,G,r) ^\ 1) is   non  empty  V13() V16( NAT ) V17( REAL )  Function-like  V23( NAT ) V27( NAT , REAL ) V33() V34() V35()  Element of  Trivial-SigmaField K7(NAT,REAL)
 
(Partial_Sums ((Omega,Sigma,(Omega,REAL,Sigma,Borel_Sets),x,G,r) ^\ 1)) . (x - 1) is  V11()  real   ext-real   Element of  REAL 
 
(x,r,Omega,Sigma,(Omega,REAL,Sigma,Borel_Sets),G,x) - ((1 + f) * (x,r,jpi)) is  V11()  real   ext-real   Element of  REAL 
 
(1 + f) * (x,r,jpi) is  V11()  real   ext-real   Element of  REAL 
 
(x,r,Omega,Sigma,(Omega,REAL,Sigma,Borel_Sets),G,x) - ((1 + f) * (x,r,jpi)) is  V11()  real   ext-real   Element of  REAL 
 
((1 + f) * (x,r,jpi)) + ((x,r,Omega,Sigma,(Omega,REAL,Sigma,Borel_Sets),G,x) - ((1 + f) * (x,r,jpi))) is  V11()  real   ext-real   Element of  REAL 
 
r . 0 is  V11()  real   ext-real   Element of  REAL 
 
(r . 0) + (x,r,jpi) is  V11()  real   ext-real   Element of  REAL 
 
(1 + f) * ((r . 0) + (x,r,jpi)) is  V11()  real   ext-real   Element of  REAL 
 
(x,r,Omega,Sigma,(Omega,REAL,Sigma,Borel_Sets),G,x) - ((1 + f) * ((r . 0) + (x,r,jpi))) is  V11()  real   ext-real   Element of  REAL 
 
(1 + f) * (r . 0) is  V11()  real   ext-real   Element of  REAL 
 
((x,r,Omega,Sigma,(Omega,REAL,Sigma,Borel_Sets),G,x) - ((1 + f) * (x,r,jpi))) - ((1 + f) * (r . 0)) is  V11()  real   ext-real   Element of  REAL 
 
(x,r,Omega,Sigma,(Omega,REAL,Sigma,Borel_Sets),G,x) + ((1 + f) * (r . 0)) is  V11()  real   ext-real   Element of  REAL 
 
Omega is   non  empty   set 
 
 Trivial-SigmaField Omega is   non  empty  V98()  set 
 
 Trivial-SigmaField (Trivial-SigmaField Omega) is   non  empty  V98()  set 
 
Sigma is   non  empty   compl-closed   sigma-multiplicative  V98()  Element of  Trivial-SigmaField (Trivial-SigmaField Omega)
 
(Omega,REAL,Sigma,Borel_Sets) is   non  empty   set 
 
K7(Omega,REAL) is   non  empty  V33() V34() V35()  set 
 
 Trivial-SigmaField K7(Omega,REAL) is   non  empty  V98()  set 
 
 {  b1 where b1 is  V13() V16(Omega) V17( REAL )  Function-like  V27(Omega, REAL )  Element of  Trivial-SigmaField K7(Omega,REAL) : (Omega, REAL ,Sigma, Borel_Sets ,b1)  }   is    set 
 
K7(NAT,(Omega,REAL,Sigma,Borel_Sets)) is   non  empty   set 
 
 Trivial-SigmaField K7(NAT,(Omega,REAL,Sigma,Borel_Sets)) is   non  empty  V98()  set 
 
x is   epsilon-transitive   epsilon-connected   ordinal   natural  V11()  real   ext-real   non  negative   set 
 
f is  V11()  real   ext-real   set 
 
1 + f is  V11()  real   ext-real   Element of  REAL 
 
Omega --> (1 + f) is   non  empty  V13() V16(Omega) V17( REAL )  Function-like  V23(Omega) V27(Omega, REAL ) V33() V34() V35()  Element of  Trivial-SigmaField K7(Omega,REAL)
 
r is   non  empty  V13() V16( NAT ) V17( REAL )  Function-like  V23( NAT ) V27( NAT , REAL ) V33() V34() V35()  Element of  Trivial-SigmaField K7(NAT,REAL)
 
jpi is   non  empty  V13() V16( NAT ) V17( REAL )  Function-like  V23( NAT ) V27( NAT , REAL ) V33() V34() V35() ()
 
(x,r,jpi) is  V11()  real   ext-real   Element of  REAL 
 
(r,jpi) is   non  empty  V13() V16( NAT ) V17( REAL )  Function-like  V23( NAT ) V27( NAT , REAL ) V33() V34() V35()  Element of  Trivial-SigmaField K7(NAT,REAL)
 
 Partial_Sums (r,jpi) is   non  empty  V13() V16( NAT ) V17( REAL )  Function-like  V23( NAT ) V27( NAT , REAL ) V33() V34() V35()  Element of  Trivial-SigmaField K7(NAT,REAL)
 
(Partial_Sums (r,jpi)) . x is  V11()  real   ext-real   Element of  REAL 
 
(x,r,jpi) is  V11()  real   ext-real   Element of  REAL 
 
(r,jpi) ^\ 1 is   non  empty  V13() V16( NAT ) V17( REAL )  Function-like  V23( NAT ) V27( NAT , REAL ) V33() V34() V35()  Element of  Trivial-SigmaField K7(NAT,REAL)
 
 Partial_Sums ((r,jpi) ^\ 1) is   non  empty  V13() V16( NAT ) V17( REAL )  Function-like  V23( NAT ) V27( NAT , REAL ) V33() V34() V35()  Element of  Trivial-SigmaField K7(NAT,REAL)
 
x - 1 is  V11()  real   ext-real   Element of  REAL 
 
(Partial_Sums ((r,jpi) ^\ 1)) . (x - 1) is  V11()  real   ext-real   Element of  REAL 
 
(1 + f) * (x,r,jpi) is  V11()  real   ext-real   Element of  REAL 
 
G is   non  empty  V13() V16( NAT ) V17((Omega,REAL,Sigma,Borel_Sets))  Function-like  V23( NAT ) V27( NAT ,(Omega,REAL,Sigma,Borel_Sets))  Element of  Trivial-SigmaField K7(NAT,(Omega,REAL,Sigma,Borel_Sets))
 
(0,Omega,REAL,Sigma,Borel_Sets,(Omega,REAL,Sigma,Borel_Sets),G) is   non  empty  V13() V16(Omega) V17( REAL )  Function-like  V23(Omega) V27(Omega, REAL ) V33() V34() V35()  Element of  Trivial-SigmaField K7(Omega,REAL)
 
 {  b1 where b1 is    Element of Omega :  0  <= (x,r,Omega,Sigma,(Omega,REAL,Sigma,Borel_Sets),G,b1)  }   is    set 
 
 {  b1 where b1 is    Element of Omega : (1 + f) * (x,r,jpi) <= (x,r,Omega,Sigma,(Omega,REAL,Sigma,Borel_Sets),G,b1)  }   is    set 
 
 {  b1 where b1 is    Element of Omega :  not (x,r,Omega,Sigma,(Omega,REAL,Sigma,Borel_Sets),G,b1) <=  0   }   is    set 
 
 {  b1 where b1 is    Element of Omega :  not (x,r,Omega,Sigma,(Omega,REAL,Sigma,Borel_Sets),G,b1) <= (1 + f) * (x,r,jpi)  }   is    set 
 
x is    set 
 
w is    Element of Omega
 
(x,r,Omega,Sigma,(Omega,REAL,Sigma,Borel_Sets),G,w) is  V11()  real   ext-real   Element of  REAL 
 
(Omega,Sigma,(Omega,REAL,Sigma,Borel_Sets),w,G,r) is   non  empty  V13() V16( NAT ) V17( REAL )  Function-like  V23( NAT ) V27( NAT , REAL ) V33() V34() V35()  Element of  Trivial-SigmaField K7(NAT,REAL)
 
 Partial_Sums (Omega,Sigma,(Omega,REAL,Sigma,Borel_Sets),w,G,r) is   non  empty  V13() V16( NAT ) V17( REAL )  Function-like  V23( NAT ) V27( NAT , REAL ) V33() V34() V35()  Element of  Trivial-SigmaField K7(NAT,REAL)
 
(Partial_Sums (Omega,Sigma,(Omega,REAL,Sigma,Borel_Sets),w,G,r)) . x is  V11()  real   ext-real   Element of  REAL 
 
(x,r,Omega,Sigma,(Omega,REAL,Sigma,Borel_Sets),G,w) is  V11()  real   ext-real   Element of  REAL 
 
(Omega,Sigma,(Omega,REAL,Sigma,Borel_Sets),w,G,r) ^\ 1 is   non  empty  V13() V16( NAT ) V17( REAL )  Function-like  V23( NAT ) V27( NAT , REAL ) V33() V34() V35()  Element of  Trivial-SigmaField K7(NAT,REAL)
 
 Partial_Sums ((Omega,Sigma,(Omega,REAL,Sigma,Borel_Sets),w,G,r) ^\ 1) is   non  empty  V13() V16( NAT ) V17( REAL )  Function-like  V23( NAT ) V27( NAT , REAL ) V33() V34() V35()  Element of  Trivial-SigmaField K7(NAT,REAL)
 
(Partial_Sums ((Omega,Sigma,(Omega,REAL,Sigma,Borel_Sets),w,G,r) ^\ 1)) . (x - 1) is  V11()  real   ext-real   Element of  REAL 
 
(x,r,Omega,Sigma,(Omega,REAL,Sigma,Borel_Sets),G,w) - ((1 + f) * (x,r,jpi)) is  V11()  real   ext-real   Element of  REAL 
 
0 + ((1 + f) * (x,r,jpi)) is  V11()  real   ext-real   Element of  REAL 
 
x is    set 
 
w is    Element of Omega
 
(x,r,Omega,Sigma,(Omega,REAL,Sigma,Borel_Sets),G,w) is  V11()  real   ext-real   Element of  REAL 
 
(Omega,Sigma,(Omega,REAL,Sigma,Borel_Sets),w,G,r) is   non  empty  V13() V16( NAT ) V17( REAL )  Function-like  V23( NAT ) V27( NAT , REAL ) V33() V34() V35()  Element of  Trivial-SigmaField K7(NAT,REAL)
 
 Partial_Sums (Omega,Sigma,(Omega,REAL,Sigma,Borel_Sets),w,G,r) is   non  empty  V13() V16( NAT ) V17( REAL )  Function-like  V23( NAT ) V27( NAT , REAL ) V33() V34() V35()  Element of  Trivial-SigmaField K7(NAT,REAL)
 
(Partial_Sums (Omega,Sigma,(Omega,REAL,Sigma,Borel_Sets),w,G,r)) . x is  V11()  real   ext-real   Element of  REAL 
 
(x,r,Omega,Sigma,(Omega,REAL,Sigma,Borel_Sets),G,w) is  V11()  real   ext-real   Element of  REAL 
 
(Omega,Sigma,(Omega,REAL,Sigma,Borel_Sets),w,G,r) ^\ 1 is   non  empty  V13() V16( NAT ) V17( REAL )  Function-like  V23( NAT ) V27( NAT , REAL ) V33() V34() V35()  Element of  Trivial-SigmaField K7(NAT,REAL)
 
 Partial_Sums ((Omega,Sigma,(Omega,REAL,Sigma,Borel_Sets),w,G,r) ^\ 1) is   non  empty  V13() V16( NAT ) V17( REAL )  Function-like  V23( NAT ) V27( NAT , REAL ) V33() V34() V35()  Element of  Trivial-SigmaField K7(NAT,REAL)
 
(Partial_Sums ((Omega,Sigma,(Omega,REAL,Sigma,Borel_Sets),w,G,r) ^\ 1)) . (x - 1) is  V11()  real   ext-real   Element of  REAL 
 
(x,r,Omega,Sigma,(Omega,REAL,Sigma,Borel_Sets),G,w) - ((1 + f) * (x,r,jpi)) is  V11()  real   ext-real   Element of  REAL 
 
((x,r,Omega,Sigma,(Omega,REAL,Sigma,Borel_Sets),G,w) - ((1 + f) * (x,r,jpi))) + ((1 + f) * (x,r,jpi)) is  V11()  real   ext-real   Element of  REAL 
 
0 + ((1 + f) * (x,r,jpi)) is  V11()  real   ext-real   Element of  REAL 
 
Omega is   non  empty   set 
 
 Trivial-SigmaField Omega is   non  empty  V98()  set 
 
 Trivial-SigmaField (Trivial-SigmaField Omega) is   non  empty  V98()  set 
 
K7(Omega,REAL) is   non  empty  V33() V34() V35()  set 
 
 Trivial-SigmaField K7(Omega,REAL) is   non  empty  V98()  set 
 
Sigma is   non  empty   compl-closed   sigma-multiplicative  V98()  Element of  Trivial-SigmaField (Trivial-SigmaField Omega)
 
 [#] Sigma is   M9(Omega,Sigma)
 
x is   non  empty  V13() V16(Omega) V17( REAL )  Function-like  V23(Omega) V27(Omega, REAL ) V33() V34() V35()  Element of  Trivial-SigmaField K7(Omega,REAL)
 
f is  V11()  real   ext-real   Element of  REAL 
 
 less_dom (x,f) is    set 
 
Omega /\ (less_dom (x,f)) is    set 
 
 {  b1 where b1 is    Element of Omega :  not f <= x . b1  }   is    set 
 
f is  V11()  real   ext-real   set 
 
 less_dom (x,f) is    set 
 
([#] Sigma) /\ (less_dom (x,f)) is    Element of  Trivial-SigmaField Omega
 
r is  V11()  real   ext-real   Element of  REAL 
 
 less_dom (x,r) is    set 
 
([#] Sigma) /\ (less_dom (x,r)) is    Element of  Trivial-SigmaField Omega
 
f is    Element of Sigma
 
f is    Element of Sigma
 
Omega is   non  empty   set 
 
 Trivial-SigmaField Omega is   non  empty  V98()  set 
 
 Trivial-SigmaField (Trivial-SigmaField Omega) is   non  empty  V98()  set 
 
Sigma is   non  empty   compl-closed   sigma-multiplicative  V98()  Element of  Trivial-SigmaField (Trivial-SigmaField Omega)
 
(Omega,REAL,Sigma,Borel_Sets) is   non  empty   set 
 
K7(Omega,REAL) is   non  empty  V33() V34() V35()  set 
 
 Trivial-SigmaField K7(Omega,REAL) is   non  empty  V98()  set 
 
 {  b1 where b1 is  V13() V16(Omega) V17( REAL )  Function-like  V27(Omega, REAL )  Element of  Trivial-SigmaField K7(Omega,REAL) : (Omega, REAL ,Sigma, Borel_Sets ,b1)  }   is    set 
 
 Real-Valued-Random-Variables-Set Sigma is   non  empty   Element of  Trivial-SigmaField  the U1 of K527(Omega)
 
K527(Omega) is  V202() L14()
 
 the U1 of K527(Omega) is    set 
 
 Trivial-SigmaField  the U1 of K527(Omega) is   non  empty  V98()  set 
 
x is    set 
 
f is   non  empty  V13() V16(Omega) V17( REAL )  Function-like  V23(Omega) V27(Omega, REAL ) V33() V34() V35()  Element of  Trivial-SigmaField K7(Omega,REAL)
 
 {  b1 where b1 is   non  empty  V13() V16(Omega) V17( REAL )  Function-like  V23(Omega) V27(Omega, REAL ) V33() V34() V35()  Real-Valued-Random-Variable of Sigma : verum  }   is    set