REAL  is  V163() V164() V165() V169()  set 
 
 NAT  is  V163() V164() V165() V166() V167() V168() V169()  Element of K6(REAL)
 
K6(REAL) is   non  empty   set 
 
 COMPLEX  is  V163() V169()  set 
 
 omega  is  V163() V164() V165() V166() V167() V168() V169()  set 
 
K6(omega) is   non  empty   set 
 
 I[01]  is   non  empty   strict   TopSpace-like   TopStruct 
 
 the carrier of I[01] is   non  empty   set 
 
1 is   non  empty   natural  V11()  real   ext-real   positive  V115() V116() V163() V164() V165() V166() V167() V168()  Element of  NAT 
 
K7(1,1) is   non  empty   set 
 
K6(K7(1,1)) is   non  empty   set 
 
K7(K7(1,1),1) is   non  empty   set 
 
K6(K7(K7(1,1),1)) is   non  empty   set 
 
K7(K7(1,1),REAL) is    set 
 
K6(K7(K7(1,1),REAL)) is   non  empty   set 
 
K7(REAL,REAL) is    set 
 
K7(K7(REAL,REAL),REAL) is    set 
 
K6(K7(K7(REAL,REAL),REAL)) is   non  empty   set 
 
2 is   non  empty   natural  V11()  real   ext-real   positive  V115() V116() V163() V164() V165() V166() V167() V168()  Element of  NAT 
 
K7(2,2) is   non  empty   set 
 
K7(K7(2,2),REAL) is    set 
 
K6(K7(K7(2,2),REAL)) is   non  empty   set 
 
 RealSpace  is   strict   MetrStruct 
 
K263() is   TopSpace-like   TopStruct 
 
K6(NAT) is   non  empty   set 
 
 RAT  is  V163() V164() V165() V166() V169()  set 
 
 INT  is  V163() V164() V165() V166() V167() V169()  set 
 
K6(K7(REAL,REAL)) is   non  empty   set 
 
 TOP-REAL 2 is   non  empty   TopSpace-like  V129()  Abelian   add-associative   right_zeroed   vector-distributive   scalar-distributive   scalar-associative   scalar-unital   strict   RLTopStruct 
 
 the carrier of (TOP-REAL 2) is   non  empty   set 
 
K6( the carrier of (TOP-REAL 2)) is   non  empty   set 
 
K7(COMPLEX,COMPLEX) is    set 
 
K6(K7(COMPLEX,COMPLEX)) is   non  empty   set 
 
K7(K7(COMPLEX,COMPLEX),COMPLEX) is    set 
 
K6(K7(K7(COMPLEX,COMPLEX),COMPLEX)) is   non  empty   set 
 
K7(RAT,RAT) is    set 
 
K6(K7(RAT,RAT)) is   non  empty   set 
 
K7(K7(RAT,RAT),RAT) is    set 
 
K6(K7(K7(RAT,RAT),RAT)) is   non  empty   set 
 
K7(INT,INT) is    set 
 
K6(K7(INT,INT)) is   non  empty   set 
 
K7(K7(INT,INT),INT) is    set 
 
K6(K7(K7(INT,INT),INT)) is   non  empty   set 
 
K7(NAT,NAT) is    set 
 
K7(K7(NAT,NAT),NAT) is    set 
 
K6(K7(K7(NAT,NAT),NAT)) is   non  empty   set 
 
 {}  is   empty  V163() V164() V165() V166() V167() V168() V169()  set 
 
 the   empty  V163() V164() V165() V166() V167() V168() V169()  set  is   empty  V163() V164() V165() V166() V167() V168() V169()  set 
 
 0  is   empty   natural  V11()  real   ext-real  V115() V116() V163() V164() V165() V166() V167() V168() V169()  Element of  NAT 
 
[.0,1.] is  V163() V164() V165()  Element of K6(REAL)
 
K265() is   non  empty   strict   TopSpace-like   SubSpace of K263()
 
 the carrier of K265() is   non  empty   set 
 
 Euclid 2 is   non  empty   strict   Reflexive   discerning   symmetric   triangle   MetrStruct 
 
 REAL 2 is   non  empty  V114() M18( REAL )
 
K383(2,REAL) is  V114() M18( REAL )
 
 Pitag_dist 2 is  V22() V25(K7((REAL 2),(REAL 2))) V26( REAL )  Function-like  V33(K7((REAL 2),(REAL 2)), REAL )  Element of K6(K7(K7((REAL 2),(REAL 2)),REAL))
 
K7((REAL 2),(REAL 2)) is   non  empty   set 
 
K7(K7((REAL 2),(REAL 2)),REAL) is    set 
 
K6(K7(K7((REAL 2),(REAL 2)),REAL)) is   non  empty   set 
 
 MetrStruct(# (REAL 2),(Pitag_dist 2) #) is   strict   MetrStruct 
 
 the carrier of (Euclid 2) is   non  empty   set 
 
 {  b1 where b1 is  V11()  real   ext-real   Element of  REAL  : (  0  <= b1 & b1 <= 1 )  }   is    set 
 
p is   non  empty   TopSpace-like   TopStruct 
 
 the carrier of p is   non  empty   set 
 
K7( the carrier of I[01], the carrier of p) is   non  empty   set 
 
K6(K7( the carrier of I[01], the carrier of p)) is   non  empty   set 
 
y0 is    Element of  the carrier of p
 
P is    Element of  the carrier of p
 
w1 is  V22() V25( the carrier of I[01]) V26( the carrier of p)  Function-like  V33( the carrier of I[01], the carrier of p)  Element of K6(K7( the carrier of I[01], the carrier of p))
 
w1 . 0 is    set 
 
w1 . 1 is    set 
 
 dom w1 is    Element of K6( the carrier of I[01])
 
K6( the carrier of I[01]) is   non  empty   set 
 
 rng w1 is    Element of K6( the carrier of p)
 
K6( the carrier of p) is   non  empty   set 
 
w1 is   non  empty   TopSpace-like   TopStruct 
 
 the carrier of w1 is   non  empty   set 
 
K7( the carrier of w1, the carrier of p) is   non  empty   set 
 
K6(K7( the carrier of w1, the carrier of p)) is   non  empty   set 
 
w2 is  V22() V25( the carrier of w1) V26( the carrier of p)  Function-like  V33( the carrier of w1, the carrier of p)  Element of K6(K7( the carrier of w1, the carrier of p))
 
 rng w2 is    Element of K6( the carrier of p)
 
p is   non  empty   TopSpace-like   TopStruct 
 
 the carrier of p is   non  empty   set 
 
K6( the carrier of p) is   non  empty   set 
 
y0 is    Element of K6( the carrier of p)
 
p | y0 is   strict   TopSpace-like   SubSpace of p
 
 the carrier of (p | y0) is    set 
 
K7( the carrier of I[01], the carrier of (p | y0)) is    set 
 
K6(K7( the carrier of I[01], the carrier of (p | y0))) is   non  empty   set 
 
P is   non  empty   Element of K6( the carrier of p)
 
p | P is   non  empty   strict   TopSpace-like   SubSpace of p
 
 the carrier of (p | P) is   non  empty   set 
 
K7( the carrier of I[01], the carrier of (p | P)) is   non  empty   set 
 
K6(K7( the carrier of I[01], the carrier of (p | P))) is   non  empty   set 
 
w1 is    Element of  the carrier of p
 
w2 is    Element of  the carrier of p
 
x1 is    Element of  the carrier of (p | P)
 
I[01] --> x1 is  V22() V25( the carrier of I[01]) V26( the carrier of (p | P))  Function-like  V33( the carrier of I[01], the carrier of (p | P))  continuous   Element of K6(K7( the carrier of I[01], the carrier of (p | P)))
 
K431( the carrier of (p | P), the carrier of I[01],x1) is  V22() V25( the carrier of I[01]) V26( the carrier of (p | P))  Function-like  V33( the carrier of I[01], the carrier of (p | P))  Element of K6(K7( the carrier of I[01], the carrier of (p | P)))
 
x2 is  V22() V25( the carrier of I[01]) V26( the carrier of (p | P))  Function-like  V33( the carrier of I[01], the carrier of (p | P))  Element of K6(K7( the carrier of I[01], the carrier of (p | P)))
 
x2 . 0 is    set 
 
x2 . 1 is    set 
 
w1 is    Element of  the carrier of (p | P)
 
w2 is    Element of  the carrier of (p | P)
 
 [#] (p | P) is   non  empty   non  proper   closed   Element of K6( the carrier of (p | P))
 
K6( the carrier of (p | P)) is   non  empty   set 
 
K6( the carrier of (p | y0)) is   non  empty   set 
 
 [#] (p | y0) is   non  proper   closed   Element of K6( the carrier of (p | y0))
 
w1 is    Element of K6( the carrier of (p | y0))
 
w2 is    Element of K6( the carrier of (p | y0))
 
w1 \/ w2 is    Element of K6( the carrier of (p | y0))
 
 {} (p | y0) is   empty   closed  V163() V164() V165() V166() V167() V168() V169()  Element of K6( the carrier of (p | y0))
 
P is   empty   proper   closed  V163() V164() V165() V166() V167() V168() V169()  Element of K6( the carrier of p)
 
p | P is   empty  V50() V51()  {}  -element   strict   TopSpace-like   T_0   SubSpace of p
 
 [#] (p | P) is   empty  V2()  non  proper   closed  V163() V164() V165() V166() V167() V168() V169()  Element of K6( the carrier of (p | P))
 
 the carrier of (p | P) is   empty  V2() V36() V163() V164() V165() V166() V167() V168() V169()  set 
 
K6( the carrier of (p | P)) is   non  empty   set 
 
p is   non  empty   TopSpace-like   TopStruct 
 
 the carrier of p is   non  empty   set 
 
K6( the carrier of p) is   non  empty   set 
 
y0 is    Element of K6( the carrier of p)
 
P is    Element of K6( the carrier of p)
 
y0 \/ P is    Element of K6( the carrier of p)
 
p is   non  empty   TopSpace-like   TopStruct 
 
 the carrier of p is   non  empty   set 
 
K6( the carrier of p) is   non  empty   set 
 
y0 is    Element of K6( the carrier of p)
 
P is    Element of K6( the carrier of p)
 
w1 is    Element of K6( the carrier of p)
 
y0 \/ P is    Element of K6( the carrier of p)
 
(y0 \/ P) \/ w1 is    Element of K6( the carrier of p)
 
P /\ w1 is    Element of K6( the carrier of p)
 
(y0 \/ P) /\ w1 is    Element of K6( the carrier of p)
 
y0 /\ w1 is    Element of K6( the carrier of p)
 
(y0 /\ w1) \/ (P /\ w1) is    Element of K6( the carrier of p)
 
p is   non  empty   TopSpace-like   TopStruct 
 
 the carrier of p is   non  empty   set 
 
K6( the carrier of p) is   non  empty   set 
 
y0 is    Element of K6( the carrier of p)
 
P is    Element of K6( the carrier of p)
 
w1 is    Element of K6( the carrier of p)
 
w2 is    Element of K6( the carrier of p)
 
y0 \/ P is    Element of K6( the carrier of p)
 
(y0 \/ P) \/ w1 is    Element of K6( the carrier of p)
 
((y0 \/ P) \/ w1) \/ w2 is    Element of K6( the carrier of p)
 
w1 /\ w2 is    Element of K6( the carrier of p)
 
((y0 \/ P) \/ w1) /\ w2 is    Element of K6( the carrier of p)
 
(y0 \/ P) /\ w2 is    Element of K6( the carrier of p)
 
((y0 \/ P) /\ w2) \/ (w1 /\ w2) is    Element of K6( the carrier of p)
 
p is   non  empty  V129()  Abelian   add-associative   right_zeroed   vector-distributive   scalar-distributive   scalar-associative   scalar-unital   RLSStruct 
 
 the carrier of p is   non  empty   set 
 
K6( the carrier of p) is   non  empty   set 
 
y0 is    Element of K6( the carrier of p)
 
P is    Element of  the carrier of p
 
w1 is    Element of  the carrier of p
 
 LSeg (P,w1) is   non  empty   convex   Element of K6( the carrier of p)
 
 {  (((1 - b1) * P) + (b1 * w1)) where b1 is  V11()  real   ext-real   Element of  REAL  : (  0  <= b1 & b1 <= 1 )  }   is    set 
 
p is   natural  V11()  real   ext-real   set 
 
 TOP-REAL p is   non  empty   TopSpace-like  V129()  Abelian   add-associative   right_zeroed   vector-distributive   scalar-distributive   scalar-associative   scalar-unital   strict   RLTopStruct 
 
 the carrier of (TOP-REAL p) is   non  empty   set 
 
K6( the carrier of (TOP-REAL p)) is   non  empty   set 
 
y0 is    Element of K6( the carrier of (TOP-REAL p))
 
(TOP-REAL p) | y0 is   strict   TopSpace-like   SubSpace of  TOP-REAL p
 
 the carrier of ((TOP-REAL p) | y0) is    set 
 
K7( the carrier of I[01], the carrier of ((TOP-REAL p) | y0)) is    set 
 
K6(K7( the carrier of I[01], the carrier of ((TOP-REAL p) | y0))) is   non  empty   set 
 
P is  V43(p) V112() V155()  Element of  the carrier of (TOP-REAL p)
 
w1 is  V43(p) V112() V155()  Element of  the carrier of (TOP-REAL p)
 
 LSeg (P,w1) is   non  empty   convex   Element of K6( the carrier of (TOP-REAL p))
 
 {  (((1 - b1) * P) + (b1 * w1)) where b1 is  V11()  real   ext-real   Element of  REAL  : (  0  <= b1 & b1 <= 1 )  }   is    set 
 
(TOP-REAL p) | (LSeg (P,w1)) is   non  empty   strict   TopSpace-like   SubSpace of  TOP-REAL p
 
 the carrier of ((TOP-REAL p) | (LSeg (P,w1))) is   non  empty   set 
 
K7( the carrier of I[01], the carrier of ((TOP-REAL p) | (LSeg (P,w1)))) is   non  empty   set 
 
K6(K7( the carrier of I[01], the carrier of ((TOP-REAL p) | (LSeg (P,w1))))) is   non  empty   set 
 
w2 is  V22() V25( the carrier of I[01]) V26( the carrier of ((TOP-REAL p) | (LSeg (P,w1))))  Function-like  V33( the carrier of I[01], the carrier of ((TOP-REAL p) | (LSeg (P,w1))))  Element of K6(K7( the carrier of I[01], the carrier of ((TOP-REAL p) | (LSeg (P,w1)))))
 
w2 . 0 is    set 
 
w2 . 1 is    set 
 
 rng w2 is    Element of K6( the carrier of ((TOP-REAL p) | (LSeg (P,w1))))
 
K6( the carrier of ((TOP-REAL p) | (LSeg (P,w1)))) is   non  empty   set 
 
 [#] ((TOP-REAL p) | (LSeg (P,w1))) is   non  empty   non  proper   closed   Element of K6( the carrier of ((TOP-REAL p) | (LSeg (P,w1))))
 
 [#] ((TOP-REAL p) | y0) is   non  proper   closed   Element of K6( the carrier of ((TOP-REAL p) | y0))
 
K6( the carrier of ((TOP-REAL p) | y0)) is   non  empty   set 
 
 dom w2 is    Element of K6( the carrier of I[01])
 
K6( the carrier of I[01]) is   non  empty   set 
 
K7([.0,1.],y0) is    set 
 
K6(K7([.0,1.],y0)) is   non  empty   set 
 
x1 is  V22() V25([.0,1.]) V26(y0)  Function-like  V33([.0,1.],y0)  Element of K6(K7([.0,1.],y0))
 
x2 is  V22() V25( the carrier of I[01]) V26( the carrier of ((TOP-REAL p) | y0))  Function-like  V33( the carrier of I[01], the carrier of ((TOP-REAL p) | y0))  Element of K6(K7( the carrier of I[01], the carrier of ((TOP-REAL p) | y0)))
 
K6((REAL 2)) is   non  empty   set 
 
p is  V11()  real   ext-real   Element of  REAL 
 
 {  |[b1,b2]| where b1, b2 is  V11()  real   ext-real   Element of  REAL  :  not p <= b1  }   is    set 
 
y0 is    set 
 
P is  V11()  real   ext-real   Element of  REAL 
 
w1 is  V11()  real   ext-real   Element of  REAL 
 
|[P,w1]| is  V43(2) V112() V155()  Element of  the carrier of (TOP-REAL 2)
 
p is  V11()  real   ext-real   Element of  REAL 
 
 {  |[b1,b2]| where b1, b2 is  V11()  real   ext-real   Element of  REAL  :  not p <= b2  }   is    set 
 
y0 is    set 
 
P is  V11()  real   ext-real   Element of  REAL 
 
w1 is  V11()  real   ext-real   Element of  REAL 
 
|[P,w1]| is  V43(2) V112() V155()  Element of  the carrier of (TOP-REAL 2)
 
p is  V11()  real   ext-real   Element of  REAL 
 
 {  |[b1,b2]| where b1, b2 is  V11()  real   ext-real   Element of  REAL  :  not b1 <= p  }   is    set 
 
y0 is    set 
 
P is  V11()  real   ext-real   Element of  REAL 
 
w1 is  V11()  real   ext-real   Element of  REAL 
 
|[P,w1]| is  V43(2) V112() V155()  Element of  the carrier of (TOP-REAL 2)
 
p is  V11()  real   ext-real   Element of  REAL 
 
 {  |[b1,b2]| where b1, b2 is  V11()  real   ext-real   Element of  REAL  :  not b2 <= p  }   is    set 
 
y0 is    set 
 
P is  V11()  real   ext-real   Element of  REAL 
 
w1 is  V11()  real   ext-real   Element of  REAL 
 
|[P,w1]| is  V43(2) V112() V155()  Element of  the carrier of (TOP-REAL 2)
 
p is  V11()  real   ext-real   Element of  REAL 
 
y0 is  V11()  real   ext-real   Element of  REAL 
 
P is  V11()  real   ext-real   Element of  REAL 
 
w1 is  V11()  real   ext-real   Element of  REAL 
 
 {  |[b1,b2]| where b1, b2 is  V11()  real   ext-real   Element of  REAL  : (  not b1 <= p &  not y0 <= b1 &  not b2 <= P &  not w1 <= b2 )  }   is    set 
 
w2 is    set 
 
x1 is  V11()  real   ext-real   Element of  REAL 
 
x2 is  V11()  real   ext-real   Element of  REAL 
 
|[x1,x2]| is  V43(2) V112() V155()  Element of  the carrier of (TOP-REAL 2)
 
p is  V11()  real   ext-real   Element of  REAL 
 
y0 is  V11()  real   ext-real   Element of  REAL 
 
P is  V11()  real   ext-real   Element of  REAL 
 
w1 is  V11()  real   ext-real   Element of  REAL 
 
 {  |[b1,b2]| where b1, b2 is  V11()  real   ext-real   Element of  REAL  : (  not p <= b1 or  not b1 <= y0 or  not P <= b2 or  not b2 <= w1 )  }   is    set 
 
w2 is    set 
 
x1 is  V11()  real   ext-real   Element of  REAL 
 
x2 is  V11()  real   ext-real   Element of  REAL 
 
|[x1,x2]| is  V43(2) V112() V155()  Element of  the carrier of (TOP-REAL 2)
 
p is  V11()  real   ext-real   Element of  REAL 
 
 {  |[b1,b2]| where b1, b2 is  V11()  real   ext-real   Element of  REAL  :  not b1 <= p  }   is    set 
 
y0 is  V11()  real   ext-real   Element of  REAL 
 
 {  |[b1,b2]| where b1, b2 is  V11()  real   ext-real   Element of  REAL  :  not y0 <= b1  }   is    set 
 
 {  |[b1,b2]| where b1, b2 is  V11()  real   ext-real   Element of  REAL  :  not b1 <= p  }   /\  {  |[b1,b2]| where b1, b2 is  V11()  real   ext-real   Element of  REAL  :  not y0 <= b1  }   is    set 
 
P is  V11()  real   ext-real   Element of  REAL 
 
 {  |[b1,b2]| where b1, b2 is  V11()  real   ext-real   Element of  REAL  :  not b2 <= P  }   is    set 
 
( {  |[b1,b2]| where b1, b2 is  V11()  real   ext-real   Element of  REAL  :  not b1 <= p  }   /\  {  |[b1,b2]| where b1, b2 is  V11()  real   ext-real   Element of  REAL  :  not y0 <= b1  }  ) /\  {  |[b1,b2]| where b1, b2 is  V11()  real   ext-real   Element of  REAL  :  not b2 <= P  }   is    set 
 
w1 is  V11()  real   ext-real   Element of  REAL 
 
 {  |[b1,b2]| where b1, b2 is  V11()  real   ext-real   Element of  REAL  : (  not b1 <= p &  not y0 <= b1 &  not b2 <= P &  not w1 <= b2 )  }   is    set 
 
 {  |[b1,b2]| where b1, b2 is  V11()  real   ext-real   Element of  REAL  :  not w1 <= b2  }   is    set 
 
(( {  |[b1,b2]| where b1, b2 is  V11()  real   ext-real   Element of  REAL  :  not b1 <= p  }   /\  {  |[b1,b2]| where b1, b2 is  V11()  real   ext-real   Element of  REAL  :  not y0 <= b1  }  ) /\  {  |[b1,b2]| where b1, b2 is  V11()  real   ext-real   Element of  REAL  :  not b2 <= P  }  ) /\  {  |[b1,b2]| where b1, b2 is  V11()  real   ext-real   Element of  REAL  :  not w1 <= b2  }   is    set 
 
w2 is    set 
 
x1 is  V11()  real   ext-real   Element of  REAL 
 
x2 is  V11()  real   ext-real   Element of  REAL 
 
|[x1,x2]| is  V43(2) V112() V155()  Element of  the carrier of (TOP-REAL 2)
 
x1 is  V11()  real   ext-real   Element of  REAL 
 
x2 is  V11()  real   ext-real   Element of  REAL 
 
|[x1,x2]| is  V43(2) V112() V155()  Element of  the carrier of (TOP-REAL 2)
 
x1 is  V11()  real   ext-real   Element of  REAL 
 
x2 is  V11()  real   ext-real   Element of  REAL 
 
|[x1,x2]| is  V43(2) V112() V155()  Element of  the carrier of (TOP-REAL 2)
 
x1 is  V11()  real   ext-real   Element of  REAL 
 
x2 is  V11()  real   ext-real   Element of  REAL 
 
|[x1,x2]| is  V43(2) V112() V155()  Element of  the carrier of (TOP-REAL 2)
 
w2 is    set 
 
x1 is  V11()  real   ext-real   Element of  REAL 
 
x2 is  V11()  real   ext-real   Element of  REAL 
 
|[x1,x2]| is  V43(2) V112() V155()  Element of  the carrier of (TOP-REAL 2)
 
v1 is  V11()  real   ext-real   Element of  REAL 
 
l is  V11()  real   ext-real   Element of  REAL 
 
|[v1,l]| is  V43(2) V112() V155()  Element of  the carrier of (TOP-REAL 2)
 
v is  V43(2) V112() V155()  Element of  the carrier of (TOP-REAL 2)
 
v `1  is  V11()  real   ext-real   Element of  REAL 
 
v `2  is  V11()  real   ext-real   Element of  REAL 
 
v1 is  V11()  real   ext-real   Element of  REAL 
 
l is  V11()  real   ext-real   Element of  REAL 
 
|[v1,l]| is  V43(2) V112() V155()  Element of  the carrier of (TOP-REAL 2)
 
v1 is  V11()  real   ext-real   Element of  REAL 
 
l is  V11()  real   ext-real   Element of  REAL 
 
|[v1,l]| is  V43(2) V112() V155()  Element of  the carrier of (TOP-REAL 2)
 
v1 is  V11()  real   ext-real   Element of  REAL 
 
l is  V11()  real   ext-real   Element of  REAL 
 
|[v1,l]| is  V43(2) V112() V155()  Element of  the carrier of (TOP-REAL 2)
 
p is  V11()  real   ext-real   Element of  REAL 
 
 {  |[b1,b2]| where b1, b2 is  V11()  real   ext-real   Element of  REAL  :  not p <= b1  }   is    set 
 
y0 is  V11()  real   ext-real   Element of  REAL 
 
 {  |[b1,b2]| where b1, b2 is  V11()  real   ext-real   Element of  REAL  :  not b1 <= y0  }   is    set 
 
P is  V11()  real   ext-real   Element of  REAL 
 
 {  |[b1,b2]| where b1, b2 is  V11()  real   ext-real   Element of  REAL  :  not P <= b2  }   is    set 
 
 {  |[b1,b2]| where b1, b2 is  V11()  real   ext-real   Element of  REAL  :  not p <= b1  }   \/  {  |[b1,b2]| where b1, b2 is  V11()  real   ext-real   Element of  REAL  :  not P <= b2  }   is    set 
 
( {  |[b1,b2]| where b1, b2 is  V11()  real   ext-real   Element of  REAL  :  not p <= b1  }   \/  {  |[b1,b2]| where b1, b2 is  V11()  real   ext-real   Element of  REAL  :  not P <= b2  }  ) \/  {  |[b1,b2]| where b1, b2 is  V11()  real   ext-real   Element of  REAL  :  not b1 <= y0  }   is    set 
 
w1 is  V11()  real   ext-real   Element of  REAL 
 
 {  |[b1,b2]| where b1, b2 is  V11()  real   ext-real   Element of  REAL  : (  not p <= b1 or  not b1 <= y0 or  not P <= b2 or  not b2 <= w1 )  }   is    set 
 
 {  |[b1,b2]| where b1, b2 is  V11()  real   ext-real   Element of  REAL  :  not b2 <= w1  }   is    set 
 
(( {  |[b1,b2]| where b1, b2 is  V11()  real   ext-real   Element of  REAL  :  not p <= b1  }   \/  {  |[b1,b2]| where b1, b2 is  V11()  real   ext-real   Element of  REAL  :  not P <= b2  }  ) \/  {  |[b1,b2]| where b1, b2 is  V11()  real   ext-real   Element of  REAL  :  not b1 <= y0  }  ) \/  {  |[b1,b2]| where b1, b2 is  V11()  real   ext-real   Element of  REAL  :  not b2 <= w1  }   is    set 
 
w2 is    set 
 
x1 is  V11()  real   ext-real   Element of  REAL 
 
x2 is  V11()  real   ext-real   Element of  REAL 
 
|[x1,x2]| is  V43(2) V112() V155()  Element of  the carrier of (TOP-REAL 2)
 
w2 is    set 
 
x1 is  V11()  real   ext-real   Element of  REAL 
 
x2 is  V11()  real   ext-real   Element of  REAL 
 
|[x1,x2]| is  V43(2) V112() V155()  Element of  the carrier of (TOP-REAL 2)
 
v is  V11()  real   ext-real   Element of  REAL 
 
v1 is  V11()  real   ext-real   Element of  REAL 
 
|[v,v1]| is  V43(2) V112() V155()  Element of  the carrier of (TOP-REAL 2)
 
l is  V11()  real   ext-real   Element of  REAL 
 
q is  V11()  real   ext-real   Element of  REAL 
 
|[l,q]| is  V43(2) V112() V155()  Element of  the carrier of (TOP-REAL 2)
 
Q is  V11()  real   ext-real   Element of  REAL 
 
QQ is  V11()  real   ext-real   Element of  REAL 
 
|[Q,QQ]| is  V43(2) V112() V155()  Element of  the carrier of (TOP-REAL 2)
 
p is  V11()  real   ext-real   Element of  REAL 
 
y0 is  V11()  real   ext-real   Element of  REAL 
 
P is  V11()  real   ext-real   Element of  REAL 
 
w1 is  V11()  real   ext-real   Element of  REAL 
 
 {  |[b1,b2]| where b1, b2 is  V11()  real   ext-real   Element of  REAL  : (  not b1 <= p &  not P <= b1 &  not b2 <= y0 &  not w1 <= b2 )  }   is    set 
 
w2 is    Element of K6( the carrier of (TOP-REAL 2))
 
x1 is  V43(2) V112() V155()  Element of  the carrier of (TOP-REAL 2)
 
x2 is  V43(2) V112() V155()  Element of  the carrier of (TOP-REAL 2)
 
 LSeg (x1,x2) is   non  empty   connected   convex   Element of K6( the carrier of (TOP-REAL 2))
 
 {  (((1 - b1) * x1) + (b1 * x2)) where b1 is  V11()  real   ext-real   Element of  REAL  : (  0  <= b1 & b1 <= 1 )  }   is    set 
 
v is    set 
 
v1 is  V11()  real   ext-real   Element of  REAL 
 
l is  V11()  real   ext-real   Element of  REAL 
 
|[v1,l]| is  V43(2) V112() V155()  Element of  the carrier of (TOP-REAL 2)
 
x1 `1  is  V11()  real   ext-real   Element of  REAL 
 
x1 `2  is  V11()  real   ext-real   Element of  REAL 
 
q is  V11()  real   ext-real   Element of  REAL 
 
Q is  V11()  real   ext-real   Element of  REAL 
 
|[q,Q]| is  V43(2) V112() V155()  Element of  the carrier of (TOP-REAL 2)
 
x2 `1  is  V11()  real   ext-real   Element of  REAL 
 
x2 `2  is  V11()  real   ext-real   Element of  REAL 
 
QQ is  V11()  real   ext-real   Element of  REAL 
 
1 - QQ is  V11()  real   ext-real   Element of  REAL 
 
(1 - QQ) * x1 is  V43(2) V112() V155()  Element of  the carrier of (TOP-REAL 2)
 
QQ * x2 is  V43(2) V112() V155()  Element of  the carrier of (TOP-REAL 2)
 
((1 - QQ) * x1) + (QQ * x2) is  V43(2) V112() V155()  Element of  the carrier of (TOP-REAL 2)
 
((1 - QQ) * x1) `1  is  V11()  real   ext-real   Element of  REAL 
 
(QQ * x2) `1  is  V11()  real   ext-real   Element of  REAL 
 
(((1 - QQ) * x1) `1) + ((QQ * x2) `1) is  V11()  real   ext-real   Element of  REAL 
 
((1 - QQ) * x1) `2  is  V11()  real   ext-real   Element of  REAL 
 
(QQ * x2) `2  is  V11()  real   ext-real   Element of  REAL 
 
(((1 - QQ) * x1) `2) + ((QQ * x2) `2) is  V11()  real   ext-real   Element of  REAL 
 
|[((((1 - QQ) * x1) `1) + ((QQ * x2) `1)),((((1 - QQ) * x1) `2) + ((QQ * x2) `2))]| is  V43(2) V112() V155()  Element of  the carrier of (TOP-REAL 2)
 
(1 - QQ) * (x1 `1) is  V11()  real   ext-real   Element of  REAL 
 
(1 - QQ) * (x1 `2) is  V11()  real   ext-real   Element of  REAL 
 
|[((1 - QQ) * (x1 `1)),((1 - QQ) * (x1 `2))]| is  V43(2) V112() V155()  Element of  the carrier of (TOP-REAL 2)
 
QQ * (x2 `1) is  V11()  real   ext-real   Element of  REAL 
 
QQ * (x2 `2) is  V11()  real   ext-real   Element of  REAL 
 
|[(QQ * (x2 `1)),(QQ * (x2 `2))]| is  V43(2) V112() V155()  Element of  the carrier of (TOP-REAL 2)
 
(((1 - QQ) * x1) + (QQ * x2)) `1  is  V11()  real   ext-real   Element of  REAL 
 
((1 - QQ) * (x1 `1)) + (QQ * (x2 `1)) is  V11()  real   ext-real   Element of  REAL 
 
(((1 - QQ) * x1) + (QQ * x2)) `2  is  V11()  real   ext-real   Element of  REAL 
 
((1 - QQ) * (x1 `2)) + (QQ * (x2 `2)) is  V11()  real   ext-real   Element of  REAL 
 
|[((((1 - QQ) * x1) + (QQ * x2)) `1),((((1 - QQ) * x1) + (QQ * x2)) `2)]| is  V43(2) V112() V155()  Element of  the carrier of (TOP-REAL 2)
 
p is  V11()  real   ext-real   Element of  REAL 
 
 {  |[b1,b2]| where b1, b2 is  V11()  real   ext-real   Element of  REAL  :  not b1 <= p  }   is    set 
 
y0 is    Element of K6( the carrier of (TOP-REAL 2))
 
P is  V43(2) V112() V155()  Element of  the carrier of (TOP-REAL 2)
 
w1 is  V43(2) V112() V155()  Element of  the carrier of (TOP-REAL 2)
 
 LSeg (P,w1) is   non  empty   connected   convex   Element of K6( the carrier of (TOP-REAL 2))
 
 {  (((1 - b1) * P) + (b1 * w1)) where b1 is  V11()  real   ext-real   Element of  REAL  : (  0  <= b1 & b1 <= 1 )  }   is    set 
 
w2 is    set 
 
x1 is  V11()  real   ext-real   Element of  REAL 
 
x2 is  V11()  real   ext-real   Element of  REAL 
 
|[x1,x2]| is  V43(2) V112() V155()  Element of  the carrier of (TOP-REAL 2)
 
P `1  is  V11()  real   ext-real   Element of  REAL 
 
v is  V11()  real   ext-real   Element of  REAL 
 
v1 is  V11()  real   ext-real   Element of  REAL 
 
|[v,v1]| is  V43(2) V112() V155()  Element of  the carrier of (TOP-REAL 2)
 
w1 `1  is  V11()  real   ext-real   Element of  REAL 
 
l is  V11()  real   ext-real   Element of  REAL 
 
1 - l is  V11()  real   ext-real   Element of  REAL 
 
(1 - l) * P is  V43(2) V112() V155()  Element of  the carrier of (TOP-REAL 2)
 
l * w1 is  V43(2) V112() V155()  Element of  the carrier of (TOP-REAL 2)
 
((1 - l) * P) + (l * w1) is  V43(2) V112() V155()  Element of  the carrier of (TOP-REAL 2)
 
((1 - l) * P) `1  is  V11()  real   ext-real   Element of  REAL 
 
(l * w1) `1  is  V11()  real   ext-real   Element of  REAL 
 
(((1 - l) * P) `1) + ((l * w1) `1) is  V11()  real   ext-real   Element of  REAL 
 
((1 - l) * P) `2  is  V11()  real   ext-real   Element of  REAL 
 
(l * w1) `2  is  V11()  real   ext-real   Element of  REAL 
 
(((1 - l) * P) `2) + ((l * w1) `2) is  V11()  real   ext-real   Element of  REAL 
 
|[((((1 - l) * P) `1) + ((l * w1) `1)),((((1 - l) * P) `2) + ((l * w1) `2))]| is  V43(2) V112() V155()  Element of  the carrier of (TOP-REAL 2)
 
(1 - l) * (P `1) is  V11()  real   ext-real   Element of  REAL 
 
P `2  is  V11()  real   ext-real   Element of  REAL 
 
(1 - l) * (P `2) is  V11()  real   ext-real   Element of  REAL 
 
|[((1 - l) * (P `1)),((1 - l) * (P `2))]| is  V43(2) V112() V155()  Element of  the carrier of (TOP-REAL 2)
 
l * (w1 `1) is  V11()  real   ext-real   Element of  REAL 
 
w1 `2  is  V11()  real   ext-real   Element of  REAL 
 
l * (w1 `2) is  V11()  real   ext-real   Element of  REAL 
 
|[(l * (w1 `1)),(l * (w1 `2))]| is  V43(2) V112() V155()  Element of  the carrier of (TOP-REAL 2)
 
(((1 - l) * P) + (l * w1)) `1  is  V11()  real   ext-real   Element of  REAL 
 
((1 - l) * (P `1)) + (l * (w1 `1)) is  V11()  real   ext-real   Element of  REAL 
 
(((1 - l) * P) + (l * w1)) `2  is  V11()  real   ext-real   Element of  REAL 
 
|[((((1 - l) * P) + (l * w1)) `1),((((1 - l) * P) + (l * w1)) `2)]| is  V43(2) V112() V155()  Element of  the carrier of (TOP-REAL 2)
 
p is  V11()  real   ext-real   Element of  REAL 
 
 {  |[b1,b2]| where b1, b2 is  V11()  real   ext-real   Element of  REAL  :  not p <= b1  }   is    set 
 
y0 is    Element of K6( the carrier of (TOP-REAL 2))
 
P is  V43(2) V112() V155()  Element of  the carrier of (TOP-REAL 2)
 
w1 is  V43(2) V112() V155()  Element of  the carrier of (TOP-REAL 2)
 
 LSeg (P,w1) is   non  empty   connected   convex   Element of K6( the carrier of (TOP-REAL 2))
 
 {  (((1 - b1) * P) + (b1 * w1)) where b1 is  V11()  real   ext-real   Element of  REAL  : (  0  <= b1 & b1 <= 1 )  }   is    set 
 
w2 is    set 
 
x1 is  V11()  real   ext-real   Element of  REAL 
 
x2 is  V11()  real   ext-real   Element of  REAL 
 
|[x1,x2]| is  V43(2) V112() V155()  Element of  the carrier of (TOP-REAL 2)
 
P `1  is  V11()  real   ext-real   Element of  REAL 
 
v is  V11()  real   ext-real   Element of  REAL 
 
v1 is  V11()  real   ext-real   Element of  REAL 
 
|[v,v1]| is  V43(2) V112() V155()  Element of  the carrier of (TOP-REAL 2)
 
w1 `1  is  V11()  real   ext-real   Element of  REAL 
 
l is  V11()  real   ext-real   Element of  REAL 
 
1 - l is  V11()  real   ext-real   Element of  REAL 
 
(1 - l) * P is  V43(2) V112() V155()  Element of  the carrier of (TOP-REAL 2)
 
l * w1 is  V43(2) V112() V155()  Element of  the carrier of (TOP-REAL 2)
 
((1 - l) * P) + (l * w1) is  V43(2) V112() V155()  Element of  the carrier of (TOP-REAL 2)
 
((1 - l) * P) `1  is  V11()  real   ext-real   Element of  REAL 
 
(l * w1) `1  is  V11()  real   ext-real   Element of  REAL 
 
(((1 - l) * P) `1) + ((l * w1) `1) is  V11()  real   ext-real   Element of  REAL 
 
((1 - l) * P) `2  is  V11()  real   ext-real   Element of  REAL 
 
(l * w1) `2  is  V11()  real   ext-real   Element of  REAL 
 
(((1 - l) * P) `2) + ((l * w1) `2) is  V11()  real   ext-real   Element of  REAL 
 
|[((((1 - l) * P) `1) + ((l * w1) `1)),((((1 - l) * P) `2) + ((l * w1) `2))]| is  V43(2) V112() V155()  Element of  the carrier of (TOP-REAL 2)
 
(1 - l) * (P `1) is  V11()  real   ext-real   Element of  REAL 
 
P `2  is  V11()  real   ext-real   Element of  REAL 
 
(1 - l) * (P `2) is  V11()  real   ext-real   Element of  REAL 
 
|[((1 - l) * (P `1)),((1 - l) * (P `2))]| is  V43(2) V112() V155()  Element of  the carrier of (TOP-REAL 2)
 
l * (w1 `1) is  V11()  real   ext-real   Element of  REAL 
 
w1 `2  is  V11()  real   ext-real   Element of  REAL 
 
l * (w1 `2) is  V11()  real   ext-real   Element of  REAL 
 
|[(l * (w1 `1)),(l * (w1 `2))]| is  V43(2) V112() V155()  Element of  the carrier of (TOP-REAL 2)
 
(((1 - l) * P) + (l * w1)) `1  is  V11()  real   ext-real   Element of  REAL 
 
((1 - l) * (P `1)) + (l * (w1 `1)) is  V11()  real   ext-real   Element of  REAL 
 
(((1 - l) * P) + (l * w1)) `2  is  V11()  real   ext-real   Element of  REAL 
 
|[((((1 - l) * P) + (l * w1)) `1),((((1 - l) * P) + (l * w1)) `2)]| is  V43(2) V112() V155()  Element of  the carrier of (TOP-REAL 2)
 
p is  V11()  real   ext-real   Element of  REAL 
 
 {  |[b1,b2]| where b1, b2 is  V11()  real   ext-real   Element of  REAL  :  not b2 <= p  }   is    set 
 
y0 is    Element of K6( the carrier of (TOP-REAL 2))
 
P is  V43(2) V112() V155()  Element of  the carrier of (TOP-REAL 2)
 
w1 is  V43(2) V112() V155()  Element of  the carrier of (TOP-REAL 2)
 
 LSeg (P,w1) is   non  empty   connected   convex   Element of K6( the carrier of (TOP-REAL 2))
 
 {  (((1 - b1) * P) + (b1 * w1)) where b1 is  V11()  real   ext-real   Element of  REAL  : (  0  <= b1 & b1 <= 1 )  }   is    set 
 
w2 is    set 
 
x1 is  V11()  real   ext-real   Element of  REAL 
 
x2 is  V11()  real   ext-real   Element of  REAL 
 
|[x1,x2]| is  V43(2) V112() V155()  Element of  the carrier of (TOP-REAL 2)
 
P `2  is  V11()  real   ext-real   Element of  REAL 
 
v is  V11()  real   ext-real   Element of  REAL 
 
v1 is  V11()  real   ext-real   Element of  REAL 
 
|[v,v1]| is  V43(2) V112() V155()  Element of  the carrier of (TOP-REAL 2)
 
w1 `2  is  V11()  real   ext-real   Element of  REAL 
 
l is  V11()  real   ext-real   Element of  REAL 
 
1 - l is  V11()  real   ext-real   Element of  REAL 
 
(1 - l) * P is  V43(2) V112() V155()  Element of  the carrier of (TOP-REAL 2)
 
l * w1 is  V43(2) V112() V155()  Element of  the carrier of (TOP-REAL 2)
 
((1 - l) * P) + (l * w1) is  V43(2) V112() V155()  Element of  the carrier of (TOP-REAL 2)
 
((1 - l) * P) `1  is  V11()  real   ext-real   Element of  REAL 
 
(l * w1) `1  is  V11()  real   ext-real   Element of  REAL 
 
(((1 - l) * P) `1) + ((l * w1) `1) is  V11()  real   ext-real   Element of  REAL 
 
((1 - l) * P) `2  is  V11()  real   ext-real   Element of  REAL 
 
(l * w1) `2  is  V11()  real   ext-real   Element of  REAL 
 
(((1 - l) * P) `2) + ((l * w1) `2) is  V11()  real   ext-real   Element of  REAL 
 
|[((((1 - l) * P) `1) + ((l * w1) `1)),((((1 - l) * P) `2) + ((l * w1) `2))]| is  V43(2) V112() V155()  Element of  the carrier of (TOP-REAL 2)
 
P `1  is  V11()  real   ext-real   Element of  REAL 
 
(1 - l) * (P `1) is  V11()  real   ext-real   Element of  REAL 
 
(1 - l) * (P `2) is  V11()  real   ext-real   Element of  REAL 
 
|[((1 - l) * (P `1)),((1 - l) * (P `2))]| is  V43(2) V112() V155()  Element of  the carrier of (TOP-REAL 2)
 
w1 `1  is  V11()  real   ext-real   Element of  REAL 
 
l * (w1 `1) is  V11()  real   ext-real   Element of  REAL 
 
l * (w1 `2) is  V11()  real   ext-real   Element of  REAL 
 
|[(l * (w1 `1)),(l * (w1 `2))]| is  V43(2) V112() V155()  Element of  the carrier of (TOP-REAL 2)
 
(((1 - l) * P) + (l * w1)) `2  is  V11()  real   ext-real   Element of  REAL 
 
((1 - l) * (P `2)) + (l * (w1 `2)) is  V11()  real   ext-real   Element of  REAL 
 
(((1 - l) * P) + (l * w1)) `1  is  V11()  real   ext-real   Element of  REAL 
 
|[((((1 - l) * P) + (l * w1)) `1),((((1 - l) * P) + (l * w1)) `2)]| is  V43(2) V112() V155()  Element of  the carrier of (TOP-REAL 2)
 
p is  V11()  real   ext-real   Element of  REAL 
 
 {  |[b1,b2]| where b1, b2 is  V11()  real   ext-real   Element of  REAL  :  not p <= b2  }   is    set 
 
y0 is    Element of K6( the carrier of (TOP-REAL 2))
 
P is  V43(2) V112() V155()  Element of  the carrier of (TOP-REAL 2)
 
w1 is  V43(2) V112() V155()  Element of  the carrier of (TOP-REAL 2)
 
 LSeg (P,w1) is   non  empty   connected   convex   Element of K6( the carrier of (TOP-REAL 2))
 
 {  (((1 - b1) * P) + (b1 * w1)) where b1 is  V11()  real   ext-real   Element of  REAL  : (  0  <= b1 & b1 <= 1 )  }   is    set 
 
w2 is    set 
 
x1 is  V11()  real   ext-real   Element of  REAL 
 
x2 is  V11()  real   ext-real   Element of  REAL 
 
|[x1,x2]| is  V43(2) V112() V155()  Element of  the carrier of (TOP-REAL 2)
 
P `2  is  V11()  real   ext-real   Element of  REAL 
 
v is  V11()  real   ext-real   Element of  REAL 
 
v1 is  V11()  real   ext-real   Element of  REAL 
 
|[v,v1]| is  V43(2) V112() V155()  Element of  the carrier of (TOP-REAL 2)
 
w1 `2  is  V11()  real   ext-real   Element of  REAL 
 
l is  V11()  real   ext-real   Element of  REAL 
 
1 - l is  V11()  real   ext-real   Element of  REAL 
 
(1 - l) * P is  V43(2) V112() V155()  Element of  the carrier of (TOP-REAL 2)
 
l * w1 is  V43(2) V112() V155()  Element of  the carrier of (TOP-REAL 2)
 
((1 - l) * P) + (l * w1) is  V43(2) V112() V155()  Element of  the carrier of (TOP-REAL 2)
 
((1 - l) * P) `1  is  V11()  real   ext-real   Element of  REAL 
 
(l * w1) `1  is  V11()  real   ext-real   Element of  REAL 
 
(((1 - l) * P) `1) + ((l * w1) `1) is  V11()  real   ext-real   Element of  REAL 
 
((1 - l) * P) `2  is  V11()  real   ext-real   Element of  REAL 
 
(l * w1) `2  is  V11()  real   ext-real   Element of  REAL 
 
(((1 - l) * P) `2) + ((l * w1) `2) is  V11()  real   ext-real   Element of  REAL 
 
|[((((1 - l) * P) `1) + ((l * w1) `1)),((((1 - l) * P) `2) + ((l * w1) `2))]| is  V43(2) V112() V155()  Element of  the carrier of (TOP-REAL 2)
 
P `1  is  V11()  real   ext-real   Element of  REAL 
 
(1 - l) * (P `1) is  V11()  real   ext-real   Element of  REAL 
 
(1 - l) * (P `2) is  V11()  real   ext-real   Element of  REAL 
 
|[((1 - l) * (P `1)),((1 - l) * (P `2))]| is  V43(2) V112() V155()  Element of  the carrier of (TOP-REAL 2)
 
w1 `1  is  V11()  real   ext-real   Element of  REAL 
 
l * (w1 `1) is  V11()  real   ext-real   Element of  REAL 
 
l * (w1 `2) is  V11()  real   ext-real   Element of  REAL 
 
|[(l * (w1 `1)),(l * (w1 `2))]| is  V43(2) V112() V155()  Element of  the carrier of (TOP-REAL 2)
 
(((1 - l) * P) + (l * w1)) `2  is  V11()  real   ext-real   Element of  REAL 
 
((1 - l) * (P `2)) + (l * (w1 `2)) is  V11()  real   ext-real   Element of  REAL 
 
(((1 - l) * P) + (l * w1)) `1  is  V11()  real   ext-real   Element of  REAL 
 
|[((((1 - l) * P) + (l * w1)) `1),((((1 - l) * P) + (l * w1)) `2)]| is  V43(2) V112() V155()  Element of  the carrier of (TOP-REAL 2)
 
p is  V11()  real   ext-real   Element of  REAL 
 
y0 is  V11()  real   ext-real   Element of  REAL 
 
P is  V11()  real   ext-real   Element of  REAL 
 
w1 is  V11()  real   ext-real   Element of  REAL 
 
 {  |[b1,b2]| where b1, b2 is  V11()  real   ext-real   Element of  REAL  : (  not p <= b1 or  not b1 <= P or  not y0 <= b2 or  not b2 <= w1 )  }   is    set 
 
w2 is    Element of K6( the carrier of (TOP-REAL 2))
 
 {  |[b1,b2]| where b1, b2 is  V11()  real   ext-real   Element of  REAL  :  not p <= b1  }   is    set 
 
 {  |[b1,b2]| where b1, b2 is  V11()  real   ext-real   Element of  REAL  :  not y0 <= b2  }   is    set 
 
 {  |[b1,b2]| where b1, b2 is  V11()  real   ext-real   Element of  REAL  :  not p <= b1  }   \/  {  |[b1,b2]| where b1, b2 is  V11()  real   ext-real   Element of  REAL  :  not y0 <= b2  }   is    set 
 
 {  |[b1,b2]| where b1, b2 is  V11()  real   ext-real   Element of  REAL  :  not b1 <= P  }   is    set 
 
( {  |[b1,b2]| where b1, b2 is  V11()  real   ext-real   Element of  REAL  :  not p <= b1  }   \/  {  |[b1,b2]| where b1, b2 is  V11()  real   ext-real   Element of  REAL  :  not y0 <= b2  }  ) \/  {  |[b1,b2]| where b1, b2 is  V11()  real   ext-real   Element of  REAL  :  not b1 <= P  }   is    set 
 
 {  |[b1,b2]| where b1, b2 is  V11()  real   ext-real   Element of  REAL  :  not b2 <= w1  }   is    set 
 
(( {  |[b1,b2]| where b1, b2 is  V11()  real   ext-real   Element of  REAL  :  not p <= b1  }   \/  {  |[b1,b2]| where b1, b2 is  V11()  real   ext-real   Element of  REAL  :  not y0 <= b2  }  ) \/  {  |[b1,b2]| where b1, b2 is  V11()  real   ext-real   Element of  REAL  :  not b1 <= P  }  ) \/  {  |[b1,b2]| where b1, b2 is  V11()  real   ext-real   Element of  REAL  :  not b2 <= w1  }   is    set 
 
p - 1 is  V11()  real   ext-real   Element of  REAL 
 
y0 - 1 is  V11()  real   ext-real   Element of  REAL 
 
|[(p - 1),(y0 - 1)]| is  V43(2) V112() V155()  Element of  the carrier of (TOP-REAL 2)
 
x1 is    Element of K6( the carrier of (TOP-REAL 2))
 
x2 is    Element of K6( the carrier of (TOP-REAL 2))
 
x1 /\ x2 is    Element of K6( the carrier of (TOP-REAL 2))
 
P + 1 is  V11()  real   ext-real   Element of  REAL 
 
|[(P + 1),(y0 - 1)]| is  V43(2) V112() V155()  Element of  the carrier of (TOP-REAL 2)
 
v is    Element of K6( the carrier of (TOP-REAL 2))
 
x2 /\ v is    Element of K6( the carrier of (TOP-REAL 2))
 
w1 + 1 is  V11()  real   ext-real   Element of  REAL 
 
|[(P + 1),(w1 + 1)]| is  V43(2) V112() V155()  Element of  the carrier of (TOP-REAL 2)
 
v1 is    Element of K6( the carrier of (TOP-REAL 2))
 
v /\ v1 is    Element of K6( the carrier of (TOP-REAL 2))
 
 the topology of (TOP-REAL 2) is   non  empty   Element of K6(K6( the carrier of (TOP-REAL 2)))
 
K6(K6( the carrier of (TOP-REAL 2))) is   non  empty   set 
 
 TopStruct(#  the carrier of (TOP-REAL 2), the topology of (TOP-REAL 2) #) is   non  empty   strict   TopSpace-like   TopStruct 
 
 TopSpaceMetr (Euclid 2) is    TopStruct 
 
 Family_open_set (Euclid 2) is    Element of K6(K6( the carrier of (Euclid 2)))
 
K6( the carrier of (Euclid 2)) is   non  empty   set 
 
K6(K6( the carrier of (Euclid 2))) is   non  empty   set 
 
 TopStruct(#  the carrier of (Euclid 2),(Family_open_set (Euclid 2)) #) is   non  empty   strict   TopStruct 
 
p is  V11()  real   ext-real   Element of  REAL 
 
 {  |[b1,b2]| where b1, b2 is  V11()  real   ext-real   Element of  REAL  :  not b1 <= p  }   is    set 
 
y0 is    Element of K6( the carrier of (TOP-REAL 2))
 
 the carrier of (TopSpaceMetr (Euclid 2)) is    set 
 
K6( the carrier of (TopSpaceMetr (Euclid 2))) is   non  empty   set 
 
w1 is    Element of  the carrier of (Euclid 2)
 
w2 is  V11()  real   ext-real   Element of  REAL 
 
x1 is  V11()  real   ext-real   Element of  REAL 
 
|[w2,x1]| is  V43(2) V112() V155()  Element of  the carrier of (TOP-REAL 2)
 
w2 - p is  V11()  real   ext-real   Element of  REAL 
 
(w2 - p) / 2 is  V11()  real   ext-real   Element of  REAL 
 
 Ball (w1,((w2 - p) / 2)) is    Element of K6( the carrier of (Euclid 2))
 
v is    set 
 
 {  b1 where b1 is    Element of  the carrier of (Euclid 2) :  not (w2 - p) / 2 <=  dist (w1,b1)  }   is    set 
 
v1 is    Element of  the carrier of (Euclid 2)
 
 dist (w1,v1) is  V11()  real   ext-real   Element of  REAL 
 
(Pitag_dist 2) . (w1,v1) is    set 
 
l is  V43(2) V112() V155()  Element of  the carrier of (TOP-REAL 2)
 
l `1  is  V11()  real   ext-real   Element of  REAL 
 
q is  V43(2) V112() V155()  Element of  the carrier of (TOP-REAL 2)
 
q `1  is  V11()  real   ext-real   Element of  REAL 
 
(l `1) - (q `1) is  V11()  real   ext-real   Element of  REAL 
 
((l `1) - (q `1)) ^2  is  V11()  real   ext-real   Element of  REAL 
 
K37(((l `1) - (q `1)),((l `1) - (q `1))) is  V11()  real   ext-real   set 
 
l `2  is  V11()  real   ext-real   Element of  REAL 
 
q `2  is  V11()  real   ext-real   Element of  REAL 
 
(l `2) - (q `2) is  V11()  real   ext-real   Element of  REAL 
 
((l `2) - (q `2)) ^2  is  V11()  real   ext-real   Element of  REAL 
 
K37(((l `2) - (q `2)),((l `2) - (q `2))) is  V11()  real   ext-real   set 
 
(((l `1) - (q `1)) ^2) + (((l `2) - (q `2)) ^2) is  V11()  real   ext-real   Element of  REAL 
 
 sqrt ((((l `1) - (q `1)) ^2) + (((l `2) - (q `2)) ^2)) is  V11()  real   ext-real   Element of  REAL 
 
0 + 0 is  V11()  real   ext-real   Element of  REAL 
 
((w2 - p) / 2) ^2  is  V11()  real   ext-real   Element of  REAL 
 
K37(((w2 - p) / 2),((w2 - p) / 2)) is  V11()  real   ext-real   set 
 
(sqrt ((((l `1) - (q `1)) ^2) + (((l `2) - (q `2)) ^2))) ^2  is  V11()  real   ext-real   Element of  REAL 
 
K37((sqrt ((((l `1) - (q `1)) ^2) + (((l `2) - (q `2)) ^2))),(sqrt ((((l `1) - (q `1)) ^2) + (((l `2) - (q `2)) ^2)))) is  V11()  real   ext-real   set 
 
(q `1) + ((w2 - p) / 2) is  V11()  real   ext-real   Element of  REAL 
 
(l `1) - ((w2 - p) / 2) is  V11()  real   ext-real   Element of  REAL 
 
w2 - ((w2 - p) / 2) is  V11()  real   ext-real   Element of  REAL 
 
((w2 - p) / 2) + p is  V11()  real   ext-real   Element of  REAL 
 
|[(q `1),(q `2)]| is  V43(2) V112() V155()  Element of  the carrier of (TOP-REAL 2)
 
P is    Element of K6( the carrier of (TopSpaceMetr (Euclid 2)))
 
p is  V11()  real   ext-real   Element of  REAL 
 
 {  |[b1,b2]| where b1, b2 is  V11()  real   ext-real   Element of  REAL  :  not p <= b1  }   is    set 
 
y0 is    Element of K6( the carrier of (TOP-REAL 2))
 
 the carrier of (TopSpaceMetr (Euclid 2)) is    set 
 
K6( the carrier of (TopSpaceMetr (Euclid 2))) is   non  empty   set 
 
w1 is    Element of  the carrier of (Euclid 2)
 
w2 is  V11()  real   ext-real   Element of  REAL 
 
x1 is  V11()  real   ext-real   Element of  REAL 
 
|[w2,x1]| is  V43(2) V112() V155()  Element of  the carrier of (TOP-REAL 2)
 
p - w2 is  V11()  real   ext-real   Element of  REAL 
 
(p - w2) / 2 is  V11()  real   ext-real   Element of  REAL 
 
 Ball (w1,((p - w2) / 2)) is    Element of K6( the carrier of (Euclid 2))
 
v is    set 
 
 {  b1 where b1 is    Element of  the carrier of (Euclid 2) :  not (p - w2) / 2 <=  dist (w1,b1)  }   is    set 
 
v1 is    Element of  the carrier of (Euclid 2)
 
 dist (w1,v1) is  V11()  real   ext-real   Element of  REAL 
 
(Pitag_dist 2) . (w1,v1) is    set 
 
l is  V43(2) V112() V155()  Element of  the carrier of (TOP-REAL 2)
 
l `1  is  V11()  real   ext-real   Element of  REAL 
 
q is  V43(2) V112() V155()  Element of  the carrier of (TOP-REAL 2)
 
q `1  is  V11()  real   ext-real   Element of  REAL 
 
(l `1) - (q `1) is  V11()  real   ext-real   Element of  REAL 
 
((l `1) - (q `1)) ^2  is  V11()  real   ext-real   Element of  REAL 
 
K37(((l `1) - (q `1)),((l `1) - (q `1))) is  V11()  real   ext-real   set 
 
l `2  is  V11()  real   ext-real   Element of  REAL 
 
q `2  is  V11()  real   ext-real   Element of  REAL 
 
(l `2) - (q `2) is  V11()  real   ext-real   Element of  REAL 
 
((l `2) - (q `2)) ^2  is  V11()  real   ext-real   Element of  REAL 
 
K37(((l `2) - (q `2)),((l `2) - (q `2))) is  V11()  real   ext-real   set 
 
(((l `1) - (q `1)) ^2) + (((l `2) - (q `2)) ^2) is  V11()  real   ext-real   Element of  REAL 
 
 sqrt ((((l `1) - (q `1)) ^2) + (((l `2) - (q `2)) ^2)) is  V11()  real   ext-real   Element of  REAL 
 
0 + 0 is  V11()  real   ext-real   Element of  REAL 
 
((p - w2) / 2) ^2  is  V11()  real   ext-real   Element of  REAL 
 
K37(((p - w2) / 2),((p - w2) / 2)) is  V11()  real   ext-real   set 
 
(sqrt ((((l `1) - (q `1)) ^2) + (((l `2) - (q `2)) ^2))) ^2  is  V11()  real   ext-real   Element of  REAL 
 
K37((sqrt ((((l `1) - (q `1)) ^2) + (((l `2) - (q `2)) ^2))),(sqrt ((((l `1) - (q `1)) ^2) + (((l `2) - (q `2)) ^2)))) is  V11()  real   ext-real   set 
 
(q `1) - (l `1) is  V11()  real   ext-real   Element of  REAL 
 
((q `1) - (l `1)) ^2  is  V11()  real   ext-real   Element of  REAL 
 
K37(((q `1) - (l `1)),((q `1) - (l `1))) is  V11()  real   ext-real   set 
 
(l `1) + ((p - w2) / 2) is  V11()  real   ext-real   Element of  REAL 
 
w2 + ((p - w2) / 2) is  V11()  real   ext-real   Element of  REAL 
 
p - ((p - w2) / 2) is  V11()  real   ext-real   Element of  REAL 
 
|[(q `1),(q `2)]| is  V43(2) V112() V155()  Element of  the carrier of (TOP-REAL 2)
 
P is    Element of K6( the carrier of (TopSpaceMetr (Euclid 2)))
 
p is  V11()  real   ext-real   Element of  REAL 
 
 {  |[b1,b2]| where b1, b2 is  V11()  real   ext-real   Element of  REAL  :  not b2 <= p  }   is    set 
 
y0 is    Element of K6( the carrier of (TOP-REAL 2))
 
 the carrier of (TopSpaceMetr (Euclid 2)) is    set 
 
K6( the carrier of (TopSpaceMetr (Euclid 2))) is   non  empty   set 
 
w1 is    Element of  the carrier of (Euclid 2)
 
w2 is  V11()  real   ext-real   Element of  REAL 
 
x1 is  V11()  real   ext-real   Element of  REAL 
 
|[w2,x1]| is  V43(2) V112() V155()  Element of  the carrier of (TOP-REAL 2)
 
x1 - p is  V11()  real   ext-real   Element of  REAL 
 
(x1 - p) / 2 is  V11()  real   ext-real   Element of  REAL 
 
 Ball (w1,((x1 - p) / 2)) is    Element of K6( the carrier of (Euclid 2))
 
v is    set 
 
 {  b1 where b1 is    Element of  the carrier of (Euclid 2) :  not (x1 - p) / 2 <=  dist (w1,b1)  }   is    set 
 
v1 is    Element of  the carrier of (Euclid 2)
 
 dist (w1,v1) is  V11()  real   ext-real   Element of  REAL 
 
(Pitag_dist 2) . (w1,v1) is    set 
 
l is  V43(2) V112() V155()  Element of  the carrier of (TOP-REAL 2)
 
l `1  is  V11()  real   ext-real   Element of  REAL 
 
q is  V43(2) V112() V155()  Element of  the carrier of (TOP-REAL 2)
 
q `1  is  V11()  real   ext-real   Element of  REAL 
 
(l `1) - (q `1) is  V11()  real   ext-real   Element of  REAL 
 
((l `1) - (q `1)) ^2  is  V11()  real   ext-real   Element of  REAL 
 
K37(((l `1) - (q `1)),((l `1) - (q `1))) is  V11()  real   ext-real   set 
 
l `2  is  V11()  real   ext-real   Element of  REAL 
 
q `2  is  V11()  real   ext-real   Element of  REAL 
 
(l `2) - (q `2) is  V11()  real   ext-real   Element of  REAL 
 
((l `2) - (q `2)) ^2  is  V11()  real   ext-real   Element of  REAL 
 
K37(((l `2) - (q `2)),((l `2) - (q `2))) is  V11()  real   ext-real   set 
 
(((l `1) - (q `1)) ^2) + (((l `2) - (q `2)) ^2) is  V11()  real   ext-real   Element of  REAL 
 
 sqrt ((((l `1) - (q `1)) ^2) + (((l `2) - (q `2)) ^2)) is  V11()  real   ext-real   Element of  REAL 
 
0 + 0 is  V11()  real   ext-real   Element of  REAL 
 
((x1 - p) / 2) ^2  is  V11()  real   ext-real   Element of  REAL 
 
K37(((x1 - p) / 2),((x1 - p) / 2)) is  V11()  real   ext-real   set 
 
(sqrt ((((l `1) - (q `1)) ^2) + (((l `2) - (q `2)) ^2))) ^2  is  V11()  real   ext-real   Element of  REAL 
 
K37((sqrt ((((l `1) - (q `1)) ^2) + (((l `2) - (q `2)) ^2))),(sqrt ((((l `1) - (q `1)) ^2) + (((l `2) - (q `2)) ^2)))) is  V11()  real   ext-real   set 
 
(((l `2) - (q `2)) ^2) + (((l `1) - (q `1)) ^2) is  V11()  real   ext-real   Element of  REAL 
 
(q `2) + ((x1 - p) / 2) is  V11()  real   ext-real   Element of  REAL 
 
(l `2) - ((x1 - p) / 2) is  V11()  real   ext-real   Element of  REAL 
 
x1 - ((x1 - p) / 2) is  V11()  real   ext-real   Element of  REAL 
 
((x1 - p) / 2) + p is  V11()  real   ext-real   Element of  REAL 
 
|[(q `1),(q `2)]| is  V43(2) V112() V155()  Element of  the carrier of (TOP-REAL 2)
 
P is    Element of K6( the carrier of (TopSpaceMetr (Euclid 2)))
 
p is  V11()  real   ext-real   Element of  REAL 
 
 {  |[b1,b2]| where b1, b2 is  V11()  real   ext-real   Element of  REAL  :  not p <= b2  }   is    set 
 
y0 is    Element of K6( the carrier of (TOP-REAL 2))
 
 the carrier of (TopSpaceMetr (Euclid 2)) is    set 
 
K6( the carrier of (TopSpaceMetr (Euclid 2))) is   non  empty   set 
 
w1 is    Element of  the carrier of (Euclid 2)
 
w2 is  V11()  real   ext-real   Element of  REAL 
 
x1 is  V11()  real   ext-real   Element of  REAL 
 
|[w2,x1]| is  V43(2) V112() V155()  Element of  the carrier of (TOP-REAL 2)
 
p - x1 is  V11()  real   ext-real   Element of  REAL 
 
(p - x1) / 2 is  V11()  real   ext-real   Element of  REAL 
 
 Ball (w1,((p - x1) / 2)) is    Element of K6( the carrier of (Euclid 2))
 
v is    set 
 
 {  b1 where b1 is    Element of  the carrier of (Euclid 2) :  not (p - x1) / 2 <=  dist (w1,b1)  }   is    set 
 
v1 is    Element of  the carrier of (Euclid 2)
 
 dist (w1,v1) is  V11()  real   ext-real   Element of  REAL 
 
(Pitag_dist 2) . (w1,v1) is    set 
 
l is  V43(2) V112() V155()  Element of  the carrier of (TOP-REAL 2)
 
l `1  is  V11()  real   ext-real   Element of  REAL 
 
q is  V43(2) V112() V155()  Element of  the carrier of (TOP-REAL 2)
 
q `1  is  V11()  real   ext-real   Element of  REAL 
 
(l `1) - (q `1) is  V11()  real   ext-real   Element of  REAL 
 
((l `1) - (q `1)) ^2  is  V11()  real   ext-real   Element of  REAL 
 
K37(((l `1) - (q `1)),((l `1) - (q `1))) is  V11()  real   ext-real   set 
 
l `2  is  V11()  real   ext-real   Element of  REAL 
 
q `2  is  V11()  real   ext-real   Element of  REAL 
 
(l `2) - (q `2) is  V11()  real   ext-real   Element of  REAL 
 
((l `2) - (q `2)) ^2  is  V11()  real   ext-real   Element of  REAL 
 
K37(((l `2) - (q `2)),((l `2) - (q `2))) is  V11()  real   ext-real   set 
 
(((l `1) - (q `1)) ^2) + (((l `2) - (q `2)) ^2) is  V11()  real   ext-real   Element of  REAL 
 
 sqrt ((((l `1) - (q `1)) ^2) + (((l `2) - (q `2)) ^2)) is  V11()  real   ext-real   Element of  REAL 
 
0 + 0 is  V11()  real   ext-real   Element of  REAL 
 
((p - x1) / 2) ^2  is  V11()  real   ext-real   Element of  REAL 
 
K37(((p - x1) / 2),((p - x1) / 2)) is  V11()  real   ext-real   set 
 
(sqrt ((((l `1) - (q `1)) ^2) + (((l `2) - (q `2)) ^2))) ^2  is  V11()  real   ext-real   Element of  REAL 
 
K37((sqrt ((((l `1) - (q `1)) ^2) + (((l `2) - (q `2)) ^2))),(sqrt ((((l `1) - (q `1)) ^2) + (((l `2) - (q `2)) ^2)))) is  V11()  real   ext-real   set 
 
(q `2) - (l `2) is  V11()  real   ext-real   Element of  REAL 
 
((q `2) - (l `2)) ^2  is  V11()  real   ext-real   Element of  REAL 
 
K37(((q `2) - (l `2)),((q `2) - (l `2))) is  V11()  real   ext-real   set 
 
(l `2) + ((p - x1) / 2) is  V11()  real   ext-real   Element of  REAL 
 
x1 + ((p - x1) / 2) is  V11()  real   ext-real   Element of  REAL 
 
p - ((p - x1) / 2) is  V11()  real   ext-real   Element of  REAL 
 
|[(q `1),(q `2)]| is  V43(2) V112() V155()  Element of  the carrier of (TOP-REAL 2)
 
P is    Element of K6( the carrier of (TopSpaceMetr (Euclid 2)))
 
p is  V11()  real   ext-real   Element of  REAL 
 
y0 is  V11()  real   ext-real   Element of  REAL 
 
P is  V11()  real   ext-real   Element of  REAL 
 
w1 is  V11()  real   ext-real   Element of  REAL 
 
 {  |[b1,b2]| where b1, b2 is  V11()  real   ext-real   Element of  REAL  : (  not b1 <= p &  not P <= b1 &  not b2 <= y0 &  not w1 <= b2 )  }   is    set 
 
w2 is    Element of K6( the carrier of (TOP-REAL 2))
 
 {  |[b1,b2]| where b1, b2 is  V11()  real   ext-real   Element of  REAL  :  not b1 <= p  }   is    set 
 
 {  |[b1,b2]| where b1, b2 is  V11()  real   ext-real   Element of  REAL  :  not P <= b1  }   is    set 
 
 {  |[b1,b2]| where b1, b2 is  V11()  real   ext-real   Element of  REAL  :  not b2 <= y0  }   is    set 
 
 {  |[b1,b2]| where b1, b2 is  V11()  real   ext-real   Element of  REAL  :  not w1 <= b2  }   is    set 
 
x1 is    Element of K6( the carrier of (TOP-REAL 2))
 
x2 is    Element of K6( the carrier of (TOP-REAL 2))
 
x1 /\ x2 is    Element of K6( the carrier of (TOP-REAL 2))
 
v is    Element of K6( the carrier of (TOP-REAL 2))
 
(x1 /\ x2) /\ v is    Element of K6( the carrier of (TOP-REAL 2))
 
v1 is    Element of K6( the carrier of (TOP-REAL 2))
 
((x1 /\ x2) /\ v) /\ v1 is    Element of K6( the carrier of (TOP-REAL 2))
 
p is  V11()  real   ext-real   Element of  REAL 
 
y0 is  V11()  real   ext-real   Element of  REAL 
 
P is  V11()  real   ext-real   Element of  REAL 
 
w1 is  V11()  real   ext-real   Element of  REAL 
 
 {  |[b1,b2]| where b1, b2 is  V11()  real   ext-real   Element of  REAL  : (  not p <= b1 or  not b1 <= P or  not y0 <= b2 or  not b2 <= w1 )  }   is    set 
 
w2 is    Element of K6( the carrier of (TOP-REAL 2))
 
 {  |[b1,b2]| where b1, b2 is  V11()  real   ext-real   Element of  REAL  :  not p <= b1  }   is    set 
 
 {  |[b1,b2]| where b1, b2 is  V11()  real   ext-real   Element of  REAL  :  not y0 <= b2  }   is    set 
 
 {  |[b1,b2]| where b1, b2 is  V11()  real   ext-real   Element of  REAL  :  not p <= b1  }   \/  {  |[b1,b2]| where b1, b2 is  V11()  real   ext-real   Element of  REAL  :  not y0 <= b2  }   is    set 
 
 {  |[b1,b2]| where b1, b2 is  V11()  real   ext-real   Element of  REAL  :  not b1 <= P  }   is    set 
 
( {  |[b1,b2]| where b1, b2 is  V11()  real   ext-real   Element of  REAL  :  not p <= b1  }   \/  {  |[b1,b2]| where b1, b2 is  V11()  real   ext-real   Element of  REAL  :  not y0 <= b2  }  ) \/  {  |[b1,b2]| where b1, b2 is  V11()  real   ext-real   Element of  REAL  :  not b1 <= P  }   is    set 
 
 {  |[b1,b2]| where b1, b2 is  V11()  real   ext-real   Element of  REAL  :  not b2 <= w1  }   is    set 
 
(( {  |[b1,b2]| where b1, b2 is  V11()  real   ext-real   Element of  REAL  :  not p <= b1  }   \/  {  |[b1,b2]| where b1, b2 is  V11()  real   ext-real   Element of  REAL  :  not y0 <= b2  }  ) \/  {  |[b1,b2]| where b1, b2 is  V11()  real   ext-real   Element of  REAL  :  not b1 <= P  }  ) \/  {  |[b1,b2]| where b1, b2 is  V11()  real   ext-real   Element of  REAL  :  not b2 <= w1  }   is    set 
 
x1 is    Element of K6( the carrier of (TOP-REAL 2))
 
x2 is    Element of K6( the carrier of (TOP-REAL 2))
 
x1 \/ x2 is    Element of K6( the carrier of (TOP-REAL 2))
 
v is    Element of K6( the carrier of (TOP-REAL 2))
 
(x1 \/ x2) \/ v is    Element of K6( the carrier of (TOP-REAL 2))
 
v1 is    Element of K6( the carrier of (TOP-REAL 2))
 
p is  V11()  real   ext-real   Element of  REAL 
 
y0 is  V11()  real   ext-real   Element of  REAL 
 
P is  V11()  real   ext-real   Element of  REAL 
 
w1 is  V11()  real   ext-real   Element of  REAL 
 
 {  |[b1,b2]| where b1, b2 is  V11()  real   ext-real   Element of  REAL  : (  not b1 <= p &  not P <= b1 &  not b2 <= y0 &  not w1 <= b2 )  }   is    set 
 
 {  |[b1,b2]| where b1, b2 is  V11()  real   ext-real   Element of  REAL  : (  not p <= b1 or  not b1 <= P or  not y0 <= b2 or  not b2 <= w1 )  }   is    set 
 
w2 is    Element of K6( the carrier of (TOP-REAL 2))
 
x1 is    Element of K6( the carrier of (TOP-REAL 2))
 
x2 is    set 
 
v is  V11()  real   ext-real   Element of  REAL 
 
v1 is  V11()  real   ext-real   Element of  REAL 
 
|[v,v1]| is  V43(2) V112() V155()  Element of  the carrier of (TOP-REAL 2)
 
|[v,v1]| `1  is  V11()  real   ext-real   Element of  REAL 
 
|[v,v1]| `2  is  V11()  real   ext-real   Element of  REAL 
 
q is  V11()  real   ext-real   Element of  REAL 
 
Q is  V11()  real   ext-real   Element of  REAL 
 
|[q,Q]| is  V43(2) V112() V155()  Element of  the carrier of (TOP-REAL 2)
 
p is  V11()  real   ext-real   Element of  REAL 
 
y0 is  V11()  real   ext-real   Element of  REAL 
 
P is  V11()  real   ext-real   Element of  REAL 
 
w1 is  V11()  real   ext-real   Element of  REAL 
 
 {  b1 where b1 is  V43(2) V112() V155()  Element of  the carrier of (TOP-REAL 2) : (  not b1 `1  <= p &  not y0 <= b1 `1  &  not b1 `2  <= P &  not w1 <= b1 `2  )  }   is    set 
 
 {  |[b1,b2]| where b1, b2 is  V11()  real   ext-real   Element of  REAL  : (  not b1 <= p &  not y0 <= b1 &  not b2 <= P &  not w1 <= b2 )  }   is    set 
 
w2 is    set 
 
x1 is  V43(2) V112() V155()  Element of  the carrier of (TOP-REAL 2)
 
x1 `1  is  V11()  real   ext-real   Element of  REAL 
 
x1 `2  is  V11()  real   ext-real   Element of  REAL 
 
|[(x1 `1),(x1 `2)]| is  V43(2) V112() V155()  Element of  the carrier of (TOP-REAL 2)
 
x1 is  V11()  real   ext-real   Element of  REAL 
 
x2 is  V11()  real   ext-real   Element of  REAL 
 
|[x1,x2]| is  V43(2) V112() V155()  Element of  the carrier of (TOP-REAL 2)
 
|[x1,x2]| `1  is  V11()  real   ext-real   Element of  REAL 
 
|[x1,x2]| `2  is  V11()  real   ext-real   Element of  REAL 
 
p is  V11()  real   ext-real   Element of  REAL 
 
y0 is  V11()  real   ext-real   Element of  REAL 
 
P is  V11()  real   ext-real   Element of  REAL 
 
w1 is  V11()  real   ext-real   Element of  REAL 
 
 {  b1 where b1 is  V43(2) V112() V155()  Element of  the carrier of (TOP-REAL 2) : (  not p <= b1 `1  or  not b1 `1  <= y0 or  not P <= b1 `2  or  not b1 `2  <= w1 )  }   is    set 
 
 {  |[b1,b2]| where b1, b2 is  V11()  real   ext-real   Element of  REAL  : (  not p <= b1 or  not b1 <= y0 or  not P <= b2 or  not b2 <= w1 )  }   is    set 
 
w2 is    set 
 
x1 is  V43(2) V112() V155()  Element of  the carrier of (TOP-REAL 2)
 
x1 `1  is  V11()  real   ext-real   Element of  REAL 
 
x1 `2  is  V11()  real   ext-real   Element of  REAL 
 
|[(x1 `1),(x1 `2)]| is  V43(2) V112() V155()  Element of  the carrier of (TOP-REAL 2)
 
x1 is  V11()  real   ext-real   Element of  REAL 
 
x2 is  V11()  real   ext-real   Element of  REAL 
 
|[x1,x2]| is  V43(2) V112() V155()  Element of  the carrier of (TOP-REAL 2)
 
|[x1,x2]| `1  is  V11()  real   ext-real   Element of  REAL 
 
|[x1,x2]| `2  is  V11()  real   ext-real   Element of  REAL 
 
p is  V11()  real   ext-real   Element of  REAL 
 
y0 is  V11()  real   ext-real   Element of  REAL 
 
P is  V11()  real   ext-real   Element of  REAL 
 
w1 is  V11()  real   ext-real   Element of  REAL 
 
 {  b1 where b1 is  V43(2) V112() V155()  Element of  the carrier of (TOP-REAL 2) : (  not b1 `1  <= p &  not y0 <= b1 `1  &  not b1 `2  <= P &  not w1 <= b1 `2  )  }   is    set 
 
 {  |[b1,b2]| where b1, b2 is  V11()  real   ext-real   Element of  REAL  : (  not b1 <= p &  not y0 <= b1 &  not b2 <= P &  not w1 <= b2 )  }   is    set 
 
p is  V11()  real   ext-real   Element of  REAL 
 
y0 is  V11()  real   ext-real   Element of  REAL 
 
P is  V11()  real   ext-real   Element of  REAL 
 
w1 is  V11()  real   ext-real   Element of  REAL 
 
 {  b1 where b1 is  V43(2) V112() V155()  Element of  the carrier of (TOP-REAL 2) : (  not p <= b1 `1  or  not b1 `1  <= y0 or  not P <= b1 `2  or  not b1 `2  <= w1 )  }   is    set 
 
 {  |[b1,b2]| where b1, b2 is  V11()  real   ext-real   Element of  REAL  : (  not p <= b1 or  not b1 <= y0 or  not P <= b2 or  not b2 <= w1 )  }   is    set 
 
p is  V11()  real   ext-real   Element of  REAL 
 
y0 is  V11()  real   ext-real   Element of  REAL 
 
P is  V11()  real   ext-real   Element of  REAL 
 
w1 is  V11()  real   ext-real   Element of  REAL 
 
 {  b1 where b1 is  V43(2) V112() V155()  Element of  the carrier of (TOP-REAL 2) : (  not b1 `1  <= p &  not P <= b1 `1  &  not b1 `2  <= y0 &  not w1 <= b1 `2  )  }   is    set 
 
w2 is    Element of K6( the carrier of (TOP-REAL 2))
 
 {  |[b1,b2]| where b1, b2 is  V11()  real   ext-real   Element of  REAL  : (  not b1 <= p &  not P <= b1 &  not b2 <= y0 &  not w1 <= b2 )  }   is    set 
 
p is  V11()  real   ext-real   Element of  REAL 
 
y0 is  V11()  real   ext-real   Element of  REAL 
 
P is  V11()  real   ext-real   Element of  REAL 
 
w1 is  V11()  real   ext-real   Element of  REAL 
 
 {  b1 where b1 is  V43(2) V112() V155()  Element of  the carrier of (TOP-REAL 2) : (  not p <= b1 `1  or  not b1 `1  <= P or  not y0 <= b1 `2  or  not b1 `2  <= w1 )  }   is    set 
 
w2 is    Element of K6( the carrier of (TOP-REAL 2))
 
 {  |[b1,b2]| where b1, b2 is  V11()  real   ext-real   Element of  REAL  : (  not p <= b1 or  not b1 <= P or  not y0 <= b2 or  not b2 <= w1 )  }   is    set 
 
p is  V11()  real   ext-real   Element of  REAL 
 
y0 is  V11()  real   ext-real   Element of  REAL 
 
P is  V11()  real   ext-real   Element of  REAL 
 
w1 is  V11()  real   ext-real   Element of  REAL 
 
 {  b1 where b1 is  V43(2) V112() V155()  Element of  the carrier of (TOP-REAL 2) : (  not b1 `1  <= p &  not P <= b1 `1  &  not b1 `2  <= y0 &  not w1 <= b1 `2  )  }   is    set 
 
w2 is    Element of K6( the carrier of (TOP-REAL 2))
 
 {  |[b1,b2]| where b1, b2 is  V11()  real   ext-real   Element of  REAL  : (  not b1 <= p &  not P <= b1 &  not b2 <= y0 &  not w1 <= b2 )  }   is    set 
 
p is  V11()  real   ext-real   Element of  REAL 
 
y0 is  V11()  real   ext-real   Element of  REAL 
 
P is  V11()  real   ext-real   Element of  REAL 
 
w1 is  V11()  real   ext-real   Element of  REAL 
 
 {  b1 where b1 is  V43(2) V112() V155()  Element of  the carrier of (TOP-REAL 2) : (  not p <= b1 `1  or  not b1 `1  <= P or  not y0 <= b1 `2  or  not b1 `2  <= w1 )  }   is    set 
 
w2 is    Element of K6( the carrier of (TOP-REAL 2))
 
 {  |[b1,b2]| where b1, b2 is  V11()  real   ext-real   Element of  REAL  : (  not p <= b1 or  not b1 <= P or  not y0 <= b2 or  not b2 <= w1 )  }   is    set 
 
p is  V11()  real   ext-real   Element of  REAL 
 
y0 is  V11()  real   ext-real   Element of  REAL 
 
P is  V11()  real   ext-real   Element of  REAL 
 
w1 is  V11()  real   ext-real   Element of  REAL 
 
 {  b1 where b1 is  V43(2) V112() V155()  Element of  the carrier of (TOP-REAL 2) : (  not b1 `1  <= p &  not P <= b1 `1  &  not b1 `2  <= y0 &  not w1 <= b1 `2  )  }   is    set 
 
 {  b1 where b1 is  V43(2) V112() V155()  Element of  the carrier of (TOP-REAL 2) : (  not p <= b1 `1  or  not b1 `1  <= P or  not y0 <= b1 `2  or  not b1 `2  <= w1 )  }   is    set 
 
w2 is    Element of K6( the carrier of (TOP-REAL 2))
 
x1 is    Element of K6( the carrier of (TOP-REAL 2))
 
 {  |[b1,b2]| where b1, b2 is  V11()  real   ext-real   Element of  REAL  : (  not b1 <= p &  not P <= b1 &  not b2 <= y0 &  not w1 <= b2 )  }   is    set 
 
 {  |[b1,b2]| where b1, b2 is  V11()  real   ext-real   Element of  REAL  : (  not p <= b1 or  not b1 <= P or  not y0 <= b2 or  not b2 <= w1 )  }   is    set 
 
p is  V11()  real   ext-real   Element of  REAL 
 
y0 is  V11()  real   ext-real   Element of  REAL 
 
P is  V11()  real   ext-real   Element of  REAL 
 
w1 is  V11()  real   ext-real   Element of  REAL 
 
 {  b1 where b1 is  V43(2) V112() V155()  Element of  the carrier of (TOP-REAL 2) : ( ( b1 `1  = p & b1 `2  <= w1 & y0 <= b1 `2  ) or ( b1 `1  <= P & p <= b1 `1  & b1 `2  = w1 ) or ( b1 `1  <= P & p <= b1 `1  & b1 `2  = y0 ) or ( b1 `1  = P & b1 `2  <= w1 & y0 <= b1 `2  ) )  }   is    set 
 
 {  b1 where b1 is  V43(2) V112() V155()  Element of  the carrier of (TOP-REAL 2) : (  not b1 `1  <= p &  not P <= b1 `1  &  not b1 `2  <= y0 &  not w1 <= b1 `2  )  }   is    set 
 
 {  b1 where b1 is  V43(2) V112() V155()  Element of  the carrier of (TOP-REAL 2) : (  not p <= b1 `1  or  not b1 `1  <= P or  not y0 <= b1 `2  or  not b1 `2  <= w1 )  }   is    set 
 
w2 is    Element of K6( the carrier of (TOP-REAL 2))
 
x1 is    Element of K6( the carrier of (TOP-REAL 2))
 
x2 is    Element of K6( the carrier of (TOP-REAL 2))
 
w2 `  is    Element of K6( the carrier of (TOP-REAL 2))
 
 the carrier of (TOP-REAL 2) \ w2 is    set 
 
x1 \/ x2 is    Element of K6( the carrier of (TOP-REAL 2))
 
(TOP-REAL 2) | (w2 `) is   strict   TopSpace-like   SubSpace of  TOP-REAL 2
 
 the carrier of ((TOP-REAL 2) | (w2 `)) is    set 
 
K6( the carrier of ((TOP-REAL 2) | (w2 `))) is   non  empty   set 
 
v is    set 
 
v1 is  V43(2) V112() V155()  Element of  the carrier of (TOP-REAL 2)
 
v1 `1  is  V11()  real   ext-real   Element of  REAL 
 
v1 `2  is  V11()  real   ext-real   Element of  REAL 
 
v is    set 
 
v1 is  V43(2) V112() V155()  Element of  the carrier of (TOP-REAL 2)
 
v1 `1  is  V11()  real   ext-real   Element of  REAL 
 
v1 `2  is  V11()  real   ext-real   Element of  REAL 
 
l is  V43(2) V112() V155()  Element of  the carrier of (TOP-REAL 2)
 
l `1  is  V11()  real   ext-real   Element of  REAL 
 
l `2  is  V11()  real   ext-real   Element of  REAL 
 
v1 is  V43(2) V112() V155()  Element of  the carrier of (TOP-REAL 2)
 
v1 `1  is  V11()  real   ext-real   Element of  REAL 
 
v1 `2  is  V11()  real   ext-real   Element of  REAL 
 
l is  V43(2) V112() V155()  Element of  the carrier of (TOP-REAL 2)
 
l `1  is  V11()  real   ext-real   Element of  REAL 
 
l `2  is  V11()  real   ext-real   Element of  REAL 
 
p + P is  V11()  real   ext-real   Element of  REAL 
 
(p + P) / 2 is  V11()  real   ext-real   Element of  REAL 
 
y0 + w1 is  V11()  real   ext-real   Element of  REAL 
 
(y0 + w1) / 2 is  V11()  real   ext-real   Element of  REAL 
 
p + p is  V11()  real   ext-real   Element of  REAL 
 
y0 + y0 is  V11()  real   ext-real   Element of  REAL 
 
(p + p) / 2 is  V11()  real   ext-real   Element of  REAL 
 
(y0 + y0) / 2 is  V11()  real   ext-real   Element of  REAL 
 
P + P is  V11()  real   ext-real   Element of  REAL 
 
w1 + w1 is  V11()  real   ext-real   Element of  REAL 
 
(P + P) / 2 is  V11()  real   ext-real   Element of  REAL 
 
(w1 + w1) / 2 is  V11()  real   ext-real   Element of  REAL 
 
|[((p + P) / 2),((y0 + w1) / 2)]| is  V43(2) V112() V155()  Element of  the carrier of (TOP-REAL 2)
 
|[((p + P) / 2),((y0 + w1) / 2)]| `1  is  V11()  real   ext-real   Element of  REAL 
 
|[((p + P) / 2),((y0 + w1) / 2)]| `2  is  V11()  real   ext-real   Element of  REAL 
 
x1 /\ x2 is    Element of K6( the carrier of (TOP-REAL 2))
 
Q is    Element of K6( the carrier of ((TOP-REAL 2) | (w2 `)))
 
QQ is    Element of K6( the carrier of ((TOP-REAL 2) | (w2 `)))
 
 {  |[b1,b2]| where b1, b2 is  V11()  real   ext-real   Element of  REAL  : (  not p <= b1 or  not b1 <= P or  not y0 <= b2 or  not b2 <= w1 )  }   is    set 
 
 {  |[b1,b2]| where b1, b2 is  V11()  real   ext-real   Element of  REAL  :  not p <= b1  }   is    set 
 
 {  |[b1,b2]| where b1, b2 is  V11()  real   ext-real   Element of  REAL  :  not y0 <= b2  }   is    set 
 
 {  |[b1,b2]| where b1, b2 is  V11()  real   ext-real   Element of  REAL  :  not b1 <= P  }   is    set 
 
 {  |[b1,b2]| where b1, b2 is  V11()  real   ext-real   Element of  REAL  :  not b2 <= w1  }   is    set 
 
r is    Element of K6( the carrier of (TOP-REAL 2))
 
r is    Element of K6( the carrier of (TOP-REAL 2))
 
r \/ r is    Element of K6( the carrier of (TOP-REAL 2))
 
pa is    Element of K6( the carrier of (TOP-REAL 2))
 
(r \/ r) \/ pa is    Element of K6( the carrier of (TOP-REAL 2))
 
qa is    Element of K6( the carrier of (TOP-REAL 2))
 
((r \/ r) \/ pa) \/ qa is    Element of K6( the carrier of (TOP-REAL 2))
 
w1 + 1 is  V11()  real   ext-real   Element of  REAL 
 
P + 1 is  V11()  real   ext-real   Element of  REAL 
 
|[(P + 1),(w1 + 1)]| is  V43(2) V112() V155()  Element of  the carrier of (TOP-REAL 2)
 
qa is    Element of K6( the carrier of ((TOP-REAL 2) | (w2 `)))
 
((TOP-REAL 2) | (w2 `)) | qa is   strict   TopSpace-like   SubSpace of (TOP-REAL 2) | (w2 `)
 
Q /\ qa is    Element of K6( the carrier of ((TOP-REAL 2) | (w2 `)))
 
 the carrier of (((TOP-REAL 2) | (w2 `)) | qa) is    set 
 
K6( the carrier of (((TOP-REAL 2) | (w2 `)) | qa)) is   non  empty   set 
 
x1 /\ (w2 `) is    Element of K6( the carrier of (TOP-REAL 2))
 
 [#] ((TOP-REAL 2) | (w2 `)) is   non  proper   closed   Element of K6( the carrier of ((TOP-REAL 2) | (w2 `)))
 
x1 /\ ([#] ((TOP-REAL 2) | (w2 `))) is    Element of K6( the carrier of ((TOP-REAL 2) | (w2 `)))
 
 the topology of ((TOP-REAL 2) | (w2 `)) is   non  empty   Element of K6(K6( the carrier of ((TOP-REAL 2) | (w2 `))))
 
K6(K6( the carrier of ((TOP-REAL 2) | (w2 `)))) is   non  empty   set 
 
 [#] (((TOP-REAL 2) | (w2 `)) | qa) is   non  proper   closed   Element of K6( the carrier of (((TOP-REAL 2) | (w2 `)) | qa))
 
BP is    Element of K6( the carrier of (((TOP-REAL 2) | (w2 `)) | qa))
 
 {} (((TOP-REAL 2) | (w2 `)) | qa) is   empty   closed  V163() V164() V165() V166() V167() V168() V169()  Element of K6( the carrier of (((TOP-REAL 2) | (w2 `)) | qa))
 
 the topology of (((TOP-REAL 2) | (w2 `)) | qa) is   non  empty   Element of K6(K6( the carrier of (((TOP-REAL 2) | (w2 `)) | qa)))
 
K6(K6( the carrier of (((TOP-REAL 2) | (w2 `)) | qa))) is   non  empty   set 
 
QQ /\ qa is    Element of K6( the carrier of ((TOP-REAL 2) | (w2 `)))
 
x2 /\ (w2 `) is    Element of K6( the carrier of (TOP-REAL 2))
 
x2 /\ ([#] ((TOP-REAL 2) | (w2 `))) is    Element of K6( the carrier of ((TOP-REAL 2) | (w2 `)))
 
AP is    Element of K6( the carrier of (((TOP-REAL 2) | (w2 `)) | qa))
 
Q \/ QQ is    Element of K6( the carrier of ((TOP-REAL 2) | (w2 `)))
 
(Q \/ QQ) /\ qa is    Element of K6( the carrier of ((TOP-REAL 2) | (w2 `)))
 
BP \/ AP is    Element of K6( the carrier of (((TOP-REAL 2) | (w2 `)) | qa))
 
BP /\ AP is    Element of K6( the carrier of (((TOP-REAL 2) | (w2 `)) | qa))
 
Q /\ (QQ /\ qa) is    Element of K6( the carrier of ((TOP-REAL 2) | (w2 `)))
 
(Q /\ (QQ /\ qa)) /\ qa is    Element of K6( the carrier of ((TOP-REAL 2) | (w2 `)))
 
Q /\ QQ is    Element of K6( the carrier of ((TOP-REAL 2) | (w2 `)))
 
(Q /\ QQ) /\ qa is    Element of K6( the carrier of ((TOP-REAL 2) | (w2 `)))
 
((Q /\ QQ) /\ qa) /\ qa is    Element of K6( the carrier of ((TOP-REAL 2) | (w2 `)))
 
qa /\ qa is    Element of K6( the carrier of ((TOP-REAL 2) | (w2 `)))
 
(Q /\ QQ) /\ (qa /\ qa) is    Element of K6( the carrier of ((TOP-REAL 2) | (w2 `)))
 
qa is    Element of K6( the carrier of ((TOP-REAL 2) | (w2 `)))
 
((TOP-REAL 2) | (w2 `)) | qa is   strict   TopSpace-like   SubSpace of (TOP-REAL 2) | (w2 `)
 
QQ /\ qa is    Element of K6( the carrier of ((TOP-REAL 2) | (w2 `)))
 
 the carrier of (((TOP-REAL 2) | (w2 `)) | qa) is    set 
 
K6( the carrier of (((TOP-REAL 2) | (w2 `)) | qa)) is   non  empty   set 
 
x2 /\ (w2 `) is    Element of K6( the carrier of (TOP-REAL 2))
 
 [#] ((TOP-REAL 2) | (w2 `)) is   non  proper   closed   Element of K6( the carrier of ((TOP-REAL 2) | (w2 `)))
 
x2 /\ ([#] ((TOP-REAL 2) | (w2 `))) is    Element of K6( the carrier of ((TOP-REAL 2) | (w2 `)))
 
 the topology of ((TOP-REAL 2) | (w2 `)) is   non  empty   Element of K6(K6( the carrier of ((TOP-REAL 2) | (w2 `))))
 
K6(K6( the carrier of ((TOP-REAL 2) | (w2 `)))) is   non  empty   set 
 
 [#] (((TOP-REAL 2) | (w2 `)) | qa) is   non  proper   closed   Element of K6( the carrier of (((TOP-REAL 2) | (w2 `)) | qa))
 
BP is    Element of K6( the carrier of (((TOP-REAL 2) | (w2 `)) | qa))
 
 {} (((TOP-REAL 2) | (w2 `)) | qa) is   empty   closed  V163() V164() V165() V166() V167() V168() V169()  Element of K6( the carrier of (((TOP-REAL 2) | (w2 `)) | qa))
 
 the topology of (((TOP-REAL 2) | (w2 `)) | qa) is   non  empty   Element of K6(K6( the carrier of (((TOP-REAL 2) | (w2 `)) | qa)))
 
K6(K6( the carrier of (((TOP-REAL 2) | (w2 `)) | qa))) is   non  empty   set 
 
Q /\ qa is    Element of K6( the carrier of ((TOP-REAL 2) | (w2 `)))
 
x1 /\ (w2 `) is    Element of K6( the carrier of (TOP-REAL 2))
 
x1 /\ ([#] ((TOP-REAL 2) | (w2 `))) is    Element of K6( the carrier of ((TOP-REAL 2) | (w2 `)))
 
AP is    Element of K6( the carrier of (((TOP-REAL 2) | (w2 `)) | qa))
 
Q \/ QQ is    Element of K6( the carrier of ((TOP-REAL 2) | (w2 `)))
 
(Q \/ QQ) /\ qa is    Element of K6( the carrier of ((TOP-REAL 2) | (w2 `)))
 
AP \/ BP is    Element of K6( the carrier of (((TOP-REAL 2) | (w2 `)) | qa))
 
AP /\ BP is    Element of K6( the carrier of (((TOP-REAL 2) | (w2 `)) | qa))
 
Q /\ (QQ /\ qa) is    Element of K6( the carrier of ((TOP-REAL 2) | (w2 `)))
 
(Q /\ (QQ /\ qa)) /\ qa is    Element of K6( the carrier of ((TOP-REAL 2) | (w2 `)))
 
Q /\ QQ is    Element of K6( the carrier of ((TOP-REAL 2) | (w2 `)))
 
(Q /\ QQ) /\ qa is    Element of K6( the carrier of ((TOP-REAL 2) | (w2 `)))
 
((Q /\ QQ) /\ qa) /\ qa is    Element of K6( the carrier of ((TOP-REAL 2) | (w2 `)))
 
qa /\ qa is    Element of K6( the carrier of ((TOP-REAL 2) | (w2 `)))
 
(Q /\ QQ) /\ (qa /\ qa) is    Element of K6( the carrier of ((TOP-REAL 2) | (w2 `)))
 
Q is    Element of K6( the carrier of ((TOP-REAL 2) | (w2 `)))
 
QQ is    Element of K6( the carrier of ((TOP-REAL 2) | (w2 `)))
 
p is  V11()  real   ext-real   Element of  REAL 
 
y0 is  V11()  real   ext-real   Element of  REAL 
 
P is  V11()  real   ext-real   Element of  REAL 
 
w1 is  V11()  real   ext-real   Element of  REAL 
 
 {  b1 where b1 is  V43(2) V112() V155()  Element of  the carrier of (TOP-REAL 2) : ( ( b1 `1  = p & b1 `2  <= w1 & y0 <= b1 `2  ) or ( b1 `1  <= P & p <= b1 `1  & b1 `2  = w1 ) or ( b1 `1  <= P & p <= b1 `1  & b1 `2  = y0 ) or ( b1 `1  = P & b1 `2  <= w1 & y0 <= b1 `2  ) )  }   is    set 
 
 {  b1 where b1 is  V43(2) V112() V155()  Element of  the carrier of (TOP-REAL 2) : (  not b1 `1  <= p &  not P <= b1 `1  &  not b1 `2  <= y0 &  not w1 <= b1 `2  )  }   is    set 
 
w2 is    Element of K6( the carrier of (TOP-REAL 2))
 
x1 is    Element of K6( the carrier of (TOP-REAL 2))
 
 Cl x1 is    Element of K6( the carrier of (TOP-REAL 2))
 
w2 \/ x1 is    Element of K6( the carrier of (TOP-REAL 2))
 
 {  b1 where b1 is  V43(2) V112() V155()  Element of  the carrier of (TOP-REAL 2) : (  not p <= b1 `1  or  not b1 `1  <= P or  not y0 <= b1 `2  or  not b1 `2  <= w1 )  }   is    set 
 
w2 `  is    Element of K6( the carrier of (TOP-REAL 2))
 
 the carrier of (TOP-REAL 2) \ w2 is    set 
 
v is    Element of K6( the carrier of (TOP-REAL 2))
 
x2 is    Element of K6( the carrier of (TOP-REAL 2))
 
x1 \/ x2 is    Element of K6( the carrier of (TOP-REAL 2))
 
x2 `  is    Element of K6( the carrier of (TOP-REAL 2))
 
 the carrier of (TOP-REAL 2) \ x2 is    set 
 
(x1 \/ x2) `  is    Element of K6( the carrier of (TOP-REAL 2))
 
 the carrier of (TOP-REAL 2) \ (x1 \/ x2) is    set 
 
 [#] (TOP-REAL 2) is   non  empty   non  proper   closed   Element of K6( the carrier of (TOP-REAL 2))
 
([#] (TOP-REAL 2)) \ x1 is    Element of K6( the carrier of (TOP-REAL 2))
 
([#] (TOP-REAL 2)) \ x2 is    Element of K6( the carrier of (TOP-REAL 2))
 
(([#] (TOP-REAL 2)) \ x1) /\ (([#] (TOP-REAL 2)) \ x2) is    Element of K6( the carrier of (TOP-REAL 2))
 
w2 \/ (x1 \/ x2) is    Element of K6( the carrier of (TOP-REAL 2))
 
(w2 \/ x1) \/ x2 is    Element of K6( the carrier of (TOP-REAL 2))
 
v1 is    set 
 
v1 is    set 
 
([#] (TOP-REAL 2)) \ (x2 `) is    Element of K6( the carrier of (TOP-REAL 2))
 
(x2 `) `  is    Element of K6( the carrier of (TOP-REAL 2))
 
 the carrier of (TOP-REAL 2) \ (x2 `) is    set 
 
v1 is    set 
 
v1 is    set 
 
l is  V43(2) V112() V155()  Element of  the carrier of (TOP-REAL 2)
 
l `1  is  V11()  real   ext-real   Element of  REAL 
 
l `2  is  V11()  real   ext-real   Element of  REAL 
 
Q is    Element of K6( the carrier of (TOP-REAL 2))
 
 the carrier of (TopSpaceMetr (Euclid 2)) is    set 
 
K6( the carrier of (TopSpaceMetr (Euclid 2))) is   non  empty   set 
 
QQ is    Element of K6( the carrier of (TopSpaceMetr (Euclid 2)))
 
q is    Element of  the carrier of (Euclid 2)
 
r is  V11()  real   ext-real   set 
 
 Ball (q,r) is    Element of K6( the carrier of (Euclid 2))
 
r is  V11()  real   ext-real   Element of  REAL 
 
r / 2 is  V11()  real   ext-real   Element of  REAL 
 
P - p is  V11()  real   ext-real   Element of  REAL 
 
(P - p) / 2 is  V11()  real   ext-real   Element of  REAL 
 
w1 - y0 is  V11()  real   ext-real   Element of  REAL 
 
(w1 - y0) / 2 is  V11()  real   ext-real   Element of  REAL 
 
 min (((P - p) / 2),((w1 - y0) / 2)) is  V11()  real   ext-real   Element of  REAL 
 
 min ((r / 2),(min (((P - p) / 2),((w1 - y0) / 2)))) is  V11()  real   ext-real   Element of  REAL 
 
(l `1) + (min ((r / 2),(min (((P - p) / 2),((w1 - y0) / 2))))) is  V11()  real   ext-real   Element of  REAL 
 
|[((l `1) + (min ((r / 2),(min (((P - p) / 2),((w1 - y0) / 2)))))),(l `2)]| is  V43(2) V112() V155()  Element of  the carrier of (TOP-REAL 2)
 
|[((l `1) + (min ((r / 2),(min (((P - p) / 2),((w1 - y0) / 2)))))),(l `2)]| `1  is  V11()  real   ext-real   Element of  REAL 
 
|[((l `1) + (min ((r / 2),(min (((P - p) / 2),((w1 - y0) / 2)))))),(l `2)]| `2  is  V11()  real   ext-real   Element of  REAL 
 
P - (l `1) is  V11()  real   ext-real   Element of  REAL 
 
(l `1) - (|[((l `1) + (min ((r / 2),(min (((P - p) / 2),((w1 - y0) / 2)))))),(l `2)]| `1) is  V11()  real   ext-real   Element of  REAL 
 
((l `1) - (|[((l `1) + (min ((r / 2),(min (((P - p) / 2),((w1 - y0) / 2)))))),(l `2)]| `1)) ^2  is  V11()  real   ext-real   Element of  REAL 
 
K37(((l `1) - (|[((l `1) + (min ((r / 2),(min (((P - p) / 2),((w1 - y0) / 2)))))),(l `2)]| `1)),((l `1) - (|[((l `1) + (min ((r / 2),(min (((P - p) / 2),((w1 - y0) / 2)))))),(l `2)]| `1))) is  V11()  real   ext-real   set 
 
(l `2) - (|[((l `1) + (min ((r / 2),(min (((P - p) / 2),((w1 - y0) / 2)))))),(l `2)]| `2) is  V11()  real   ext-real   Element of  REAL 
 
((l `2) - (|[((l `1) + (min ((r / 2),(min (((P - p) / 2),((w1 - y0) / 2)))))),(l `2)]| `2)) ^2  is  V11()  real   ext-real   Element of  REAL 
 
K37(((l `2) - (|[((l `1) + (min ((r / 2),(min (((P - p) / 2),((w1 - y0) / 2)))))),(l `2)]| `2)),((l `2) - (|[((l `1) + (min ((r / 2),(min (((P - p) / 2),((w1 - y0) / 2)))))),(l `2)]| `2))) is  V11()  real   ext-real   set 
 
0 + 0 is  V11()  real   ext-real   Element of  REAL 
 
(((l `1) - (|[((l `1) + (min ((r / 2),(min (((P - p) / 2),((w1 - y0) / 2)))))),(l `2)]| `1)) ^2) + (((l `2) - (|[((l `1) + (min ((r / 2),(min (((P - p) / 2),((w1 - y0) / 2)))))),(l `2)]| `2)) ^2) is  V11()  real   ext-real   Element of  REAL 
 
(|[((l `1) + (min ((r / 2),(min (((P - p) / 2),((w1 - y0) / 2)))))),(l `2)]| `1) - (l `1) is  V11()  real   ext-real   Element of  REAL 
 
((|[((l `1) + (min ((r / 2),(min (((P - p) / 2),((w1 - y0) / 2)))))),(l `2)]| `1) - (l `1)) ^2  is  V11()  real   ext-real   Element of  REAL 
 
K37(((|[((l `1) + (min ((r / 2),(min (((P - p) / 2),((w1 - y0) / 2)))))),(l `2)]| `1) - (l `1)),((|[((l `1) + (min ((r / 2),(min (((P - p) / 2),((w1 - y0) / 2)))))),(l `2)]| `1) - (l `1))) is  V11()  real   ext-real   set 
 
r ^2  is  V11()  real   ext-real   Element of  REAL 
 
K37(r,r) is  V11()  real   ext-real   set 
 
 sqrt ((((l `1) - (|[((l `1) + (min ((r / 2),(min (((P - p) / 2),((w1 - y0) / 2)))))),(l `2)]| `1)) ^2) + (((l `2) - (|[((l `1) + (min ((r / 2),(min (((P - p) / 2),((w1 - y0) / 2)))))),(l `2)]| `2)) ^2)) is  V11()  real   ext-real   Element of  REAL 
 
(sqrt ((((l `1) - (|[((l `1) + (min ((r / 2),(min (((P - p) / 2),((w1 - y0) / 2)))))),(l `2)]| `1)) ^2) + (((l `2) - (|[((l `1) + (min ((r / 2),(min (((P - p) / 2),((w1 - y0) / 2)))))),(l `2)]| `2)) ^2))) ^2  is  V11()  real   ext-real   Element of  REAL 
 
K37((sqrt ((((l `1) - (|[((l `1) + (min ((r / 2),(min (((P - p) / 2),((w1 - y0) / 2)))))),(l `2)]| `1)) ^2) + (((l `2) - (|[((l `1) + (min ((r / 2),(min (((P - p) / 2),((w1 - y0) / 2)))))),(l `2)]| `2)) ^2))),(sqrt ((((l `1) - (|[((l `1) + (min ((r / 2),(min (((P - p) / 2),((w1 - y0) / 2)))))),(l `2)]| `1)) ^2) + (((l `2) - (|[((l `1) + (min ((r / 2),(min (((P - p) / 2),((w1 - y0) / 2)))))),(l `2)]| `2)) ^2)))) is  V11()  real   ext-real   set 
 
qa is    Element of  the carrier of (Euclid 2)
 
(Pitag_dist 2) . (q,qa) is    set 
 
 dist (q,qa) is  V11()  real   ext-real   Element of  REAL 
 
 Ball (q,r) is    Element of K6( the carrier of (Euclid 2))
 
Q is    Element of K6( the carrier of (TOP-REAL 2))
 
 the carrier of (TopSpaceMetr (Euclid 2)) is    set 
 
K6( the carrier of (TopSpaceMetr (Euclid 2))) is   non  empty   set 
 
QQ is    Element of K6( the carrier of (TopSpaceMetr (Euclid 2)))
 
q is    Element of  the carrier of (Euclid 2)
 
r is  V11()  real   ext-real   set 
 
 Ball (q,r) is    Element of K6( the carrier of (Euclid 2))
 
r is  V11()  real   ext-real   Element of  REAL 
 
r / 2 is  V11()  real   ext-real   Element of  REAL 
 
P - p is  V11()  real   ext-real   Element of  REAL 
 
(P - p) / 2 is  V11()  real   ext-real   Element of  REAL 
 
w1 - y0 is  V11()  real   ext-real   Element of  REAL 
 
(w1 - y0) / 2 is  V11()  real   ext-real   Element of  REAL 
 
 min (((P - p) / 2),((w1 - y0) / 2)) is  V11()  real   ext-real   Element of  REAL 
 
 min ((r / 2),(min (((P - p) / 2),((w1 - y0) / 2)))) is  V11()  real   ext-real   Element of  REAL 
 
(l `1) + (min ((r / 2),(min (((P - p) / 2),((w1 - y0) / 2))))) is  V11()  real   ext-real   Element of  REAL 
 
(l `2) + (min ((r / 2),(min (((P - p) / 2),((w1 - y0) / 2))))) is  V11()  real   ext-real   Element of  REAL 
 
|[((l `1) + (min ((r / 2),(min (((P - p) / 2),((w1 - y0) / 2)))))),((l `2) + (min ((r / 2),(min (((P - p) / 2),((w1 - y0) / 2))))))]| is  V43(2) V112() V155()  Element of  the carrier of (TOP-REAL 2)
 
|[((l `1) + (min ((r / 2),(min (((P - p) / 2),((w1 - y0) / 2)))))),((l `2) + (min ((r / 2),(min (((P - p) / 2),((w1 - y0) / 2))))))]| `1  is  V11()  real   ext-real   Element of  REAL 
 
|[((l `1) + (min ((r / 2),(min (((P - p) / 2),((w1 - y0) / 2)))))),((l `2) + (min ((r / 2),(min (((P - p) / 2),((w1 - y0) / 2))))))]| `2  is  V11()  real   ext-real   Element of  REAL 
 
P - (l `1) is  V11()  real   ext-real   Element of  REAL 
 
w1 - (l `2) is  V11()  real   ext-real   Element of  REAL 
 
(l `1) - (|[((l `1) + (min ((r / 2),(min (((P - p) / 2),((w1 - y0) / 2)))))),((l `2) + (min ((r / 2),(min (((P - p) / 2),((w1 - y0) / 2))))))]| `1) is  V11()  real   ext-real   Element of  REAL 
 
((l `1) - (|[((l `1) + (min ((r / 2),(min (((P - p) / 2),((w1 - y0) / 2)))))),((l `2) + (min ((r / 2),(min (((P - p) / 2),((w1 - y0) / 2))))))]| `1)) ^2  is  V11()  real   ext-real   Element of  REAL 
 
K37(((l `1) - (|[((l `1) + (min ((r / 2),(min (((P - p) / 2),((w1 - y0) / 2)))))),((l `2) + (min ((r / 2),(min (((P - p) / 2),((w1 - y0) / 2))))))]| `1)),((l `1) - (|[((l `1) + (min ((r / 2),(min (((P - p) / 2),((w1 - y0) / 2)))))),((l `2) + (min ((r / 2),(min (((P - p) / 2),((w1 - y0) / 2))))))]| `1))) is  V11()  real   ext-real   set 
 
(l `2) - (|[((l `1) + (min ((r / 2),(min (((P - p) / 2),((w1 - y0) / 2)))))),((l `2) + (min ((r / 2),(min (((P - p) / 2),((w1 - y0) / 2))))))]| `2) is  V11()  real   ext-real   Element of  REAL 
 
((l `2) - (|[((l `1) + (min ((r / 2),(min (((P - p) / 2),((w1 - y0) / 2)))))),((l `2) + (min ((r / 2),(min (((P - p) / 2),((w1 - y0) / 2))))))]| `2)) ^2  is  V11()  real   ext-real   Element of  REAL 
 
K37(((l `2) - (|[((l `1) + (min ((r / 2),(min (((P - p) / 2),((w1 - y0) / 2)))))),((l `2) + (min ((r / 2),(min (((P - p) / 2),((w1 - y0) / 2))))))]| `2)),((l `2) - (|[((l `1) + (min ((r / 2),(min (((P - p) / 2),((w1 - y0) / 2)))))),((l `2) + (min ((r / 2),(min (((P - p) / 2),((w1 - y0) / 2))))))]| `2))) is  V11()  real   ext-real   set 
 
0 + 0 is  V11()  real   ext-real   Element of  REAL 
 
(((l `1) - (|[((l `1) + (min ((r / 2),(min (((P - p) / 2),((w1 - y0) / 2)))))),((l `2) + (min ((r / 2),(min (((P - p) / 2),((w1 - y0) / 2))))))]| `1)) ^2) + (((l `2) - (|[((l `1) + (min ((r / 2),(min (((P - p) / 2),((w1 - y0) / 2)))))),((l `2) + (min ((r / 2),(min (((P - p) / 2),((w1 - y0) / 2))))))]| `2)) ^2) is  V11()  real   ext-real   Element of  REAL 
 
(|[((l `1) + (min ((r / 2),(min (((P - p) / 2),((w1 - y0) / 2)))))),((l `2) + (min ((r / 2),(min (((P - p) / 2),((w1 - y0) / 2))))))]| `1) - (l `1) is  V11()  real   ext-real   Element of  REAL 
 
((|[((l `1) + (min ((r / 2),(min (((P - p) / 2),((w1 - y0) / 2)))))),((l `2) + (min ((r / 2),(min (((P - p) / 2),((w1 - y0) / 2))))))]| `1) - (l `1)) ^2  is  V11()  real   ext-real   Element of  REAL 
 
K37(((|[((l `1) + (min ((r / 2),(min (((P - p) / 2),((w1 - y0) / 2)))))),((l `2) + (min ((r / 2),(min (((P - p) / 2),((w1 - y0) / 2))))))]| `1) - (l `1)),((|[((l `1) + (min ((r / 2),(min (((P - p) / 2),((w1 - y0) / 2)))))),((l `2) + (min ((r / 2),(min (((P - p) / 2),((w1 - y0) / 2))))))]| `1) - (l `1))) is  V11()  real   ext-real   set 
 
(r / 2) ^2  is  V11()  real   ext-real   Element of  REAL 
 
K37((r / 2),(r / 2)) is  V11()  real   ext-real   set 
 
((r / 2) ^2) + ((r / 2) ^2) is  V11()  real   ext-real   Element of  REAL 
 
r ^2  is  V11()  real   ext-real   Element of  REAL 
 
K37(r,r) is  V11()  real   ext-real   set 
 
2 * (r / 2) is  V11()  real   ext-real   Element of  REAL 
 
(2 * (r / 2)) * (r / 2) is  V11()  real   ext-real   Element of  REAL 
 
(((r / 2) ^2) + ((r / 2) ^2)) + ((2 * (r / 2)) * (r / 2)) is  V11()  real   ext-real   Element of  REAL 
 
 sqrt ((((l `1) - (|[((l `1) + (min ((r / 2),(min (((P - p) / 2),((w1 - y0) / 2)))))),((l `2) + (min ((r / 2),(min (((P - p) / 2),((w1 - y0) / 2))))))]| `1)) ^2) + (((l `2) - (|[((l `1) + (min ((r / 2),(min (((P - p) / 2),((w1 - y0) / 2)))))),((l `2) + (min ((r / 2),(min (((P - p) / 2),((w1 - y0) / 2))))))]| `2)) ^2)) is  V11()  real   ext-real   Element of  REAL 
 
(sqrt ((((l `1) - (|[((l `1) + (min ((r / 2),(min (((P - p) / 2),((w1 - y0) / 2)))))),((l `2) + (min ((r / 2),(min (((P - p) / 2),((w1 - y0) / 2))))))]| `1)) ^2) + (((l `2) - (|[((l `1) + (min ((r / 2),(min (((P - p) / 2),((w1 - y0) / 2)))))),((l `2) + (min ((r / 2),(min (((P - p) / 2),((w1 - y0) / 2))))))]| `2)) ^2))) ^2  is  V11()  real   ext-real   Element of  REAL 
 
K37((sqrt ((((l `1) - (|[((l `1) + (min ((r / 2),(min (((P - p) / 2),((w1 - y0) / 2)))))),((l `2) + (min ((r / 2),(min (((P - p) / 2),((w1 - y0) / 2))))))]| `1)) ^2) + (((l `2) - (|[((l `1) + (min ((r / 2),(min (((P - p) / 2),((w1 - y0) / 2)))))),((l `2) + (min ((r / 2),(min (((P - p) / 2),((w1 - y0) / 2))))))]| `2)) ^2))),(sqrt ((((l `1) - (|[((l `1) + (min ((r / 2),(min (((P - p) / 2),((w1 - y0) / 2)))))),((l `2) + (min ((r / 2),(min (((P - p) / 2),((w1 - y0) / 2))))))]| `1)) ^2) + (((l `2) - (|[((l `1) + (min ((r / 2),(min (((P - p) / 2),((w1 - y0) / 2)))))),((l `2) + (min ((r / 2),(min (((P - p) / 2),((w1 - y0) / 2))))))]| `2)) ^2)))) is  V11()  real   ext-real   set 
 
qa is    Element of  the carrier of (Euclid 2)
 
(Pitag_dist 2) . (q,qa) is    set 
 
 dist (q,qa) is  V11()  real   ext-real   Element of  REAL 
 
 Ball (q,r) is    Element of K6( the carrier of (Euclid 2))
 
Q is    Element of K6( the carrier of (TOP-REAL 2))
 
 the carrier of (TopSpaceMetr (Euclid 2)) is    set 
 
K6( the carrier of (TopSpaceMetr (Euclid 2))) is   non  empty   set 
 
QQ is    Element of K6( the carrier of (TopSpaceMetr (Euclid 2)))
 
q is    Element of  the carrier of (Euclid 2)
 
r is  V11()  real   ext-real   set 
 
 Ball (q,r) is    Element of K6( the carrier of (Euclid 2))
 
r is  V11()  real   ext-real   Element of  REAL 
 
r / 2 is  V11()  real   ext-real   Element of  REAL 
 
P - p is  V11()  real   ext-real   Element of  REAL 
 
(P - p) / 2 is  V11()  real   ext-real   Element of  REAL 
 
w1 - y0 is  V11()  real   ext-real   Element of  REAL 
 
(w1 - y0) / 2 is  V11()  real   ext-real   Element of  REAL 
 
 min (((P - p) / 2),((w1 - y0) / 2)) is  V11()  real   ext-real   Element of  REAL 
 
 min ((r / 2),(min (((P - p) / 2),((w1 - y0) / 2)))) is  V11()  real   ext-real   Element of  REAL 
 
(l `1) + (min ((r / 2),(min (((P - p) / 2),((w1 - y0) / 2))))) is  V11()  real   ext-real   Element of  REAL 
 
(l `2) - (min ((r / 2),(min (((P - p) / 2),((w1 - y0) / 2))))) is  V11()  real   ext-real   Element of  REAL 
 
|[((l `1) + (min ((r / 2),(min (((P - p) / 2),((w1 - y0) / 2)))))),((l `2) - (min ((r / 2),(min (((P - p) / 2),((w1 - y0) / 2))))))]| is  V43(2) V112() V155()  Element of  the carrier of (TOP-REAL 2)
 
|[((l `1) + (min ((r / 2),(min (((P - p) / 2),((w1 - y0) / 2)))))),((l `2) - (min ((r / 2),(min (((P - p) / 2),((w1 - y0) / 2))))))]| `1  is  V11()  real   ext-real   Element of  REAL 
 
|[((l `1) + (min ((r / 2),(min (((P - p) / 2),((w1 - y0) / 2)))))),((l `2) - (min ((r / 2),(min (((P - p) / 2),((w1 - y0) / 2))))))]| `2  is  V11()  real   ext-real   Element of  REAL 
 
P - (l `1) is  V11()  real   ext-real   Element of  REAL 
 
(l `2) - y0 is  V11()  real   ext-real   Element of  REAL 
 
(l `1) - (|[((l `1) + (min ((r / 2),(min (((P - p) / 2),((w1 - y0) / 2)))))),((l `2) - (min ((r / 2),(min (((P - p) / 2),((w1 - y0) / 2))))))]| `1) is  V11()  real   ext-real   Element of  REAL 
 
((l `1) - (|[((l `1) + (min ((r / 2),(min (((P - p) / 2),((w1 - y0) / 2)))))),((l `2) - (min ((r / 2),(min (((P - p) / 2),((w1 - y0) / 2))))))]| `1)) ^2  is  V11()  real   ext-real   Element of  REAL 
 
K37(((l `1) - (|[((l `1) + (min ((r / 2),(min (((P - p) / 2),((w1 - y0) / 2)))))),((l `2) - (min ((r / 2),(min (((P - p) / 2),((w1 - y0) / 2))))))]| `1)),((l `1) - (|[((l `1) + (min ((r / 2),(min (((P - p) / 2),((w1 - y0) / 2)))))),((l `2) - (min ((r / 2),(min (((P - p) / 2),((w1 - y0) / 2))))))]| `1))) is  V11()  real   ext-real   set 
 
(l `2) - (|[((l `1) + (min ((r / 2),(min (((P - p) / 2),((w1 - y0) / 2)))))),((l `2) - (min ((r / 2),(min (((P - p) / 2),((w1 - y0) / 2))))))]| `2) is  V11()  real   ext-real   Element of  REAL 
 
((l `2) - (|[((l `1) + (min ((r / 2),(min (((P - p) / 2),((w1 - y0) / 2)))))),((l `2) - (min ((r / 2),(min (((P - p) / 2),((w1 - y0) / 2))))))]| `2)) ^2  is  V11()  real   ext-real   Element of  REAL 
 
K37(((l `2) - (|[((l `1) + (min ((r / 2),(min (((P - p) / 2),((w1 - y0) / 2)))))),((l `2) - (min ((r / 2),(min (((P - p) / 2),((w1 - y0) / 2))))))]| `2)),((l `2) - (|[((l `1) + (min ((r / 2),(min (((P - p) / 2),((w1 - y0) / 2)))))),((l `2) - (min ((r / 2),(min (((P - p) / 2),((w1 - y0) / 2))))))]| `2))) is  V11()  real   ext-real   set 
 
0 + 0 is  V11()  real   ext-real   Element of  REAL 
 
(((l `1) - (|[((l `1) + (min ((r / 2),(min (((P - p) / 2),((w1 - y0) / 2)))))),((l `2) - (min ((r / 2),(min (((P - p) / 2),((w1 - y0) / 2))))))]| `1)) ^2) + (((l `2) - (|[((l `1) + (min ((r / 2),(min (((P - p) / 2),((w1 - y0) / 2)))))),((l `2) - (min ((r / 2),(min (((P - p) / 2),((w1 - y0) / 2))))))]| `2)) ^2) is  V11()  real   ext-real   Element of  REAL 
 
(min ((r / 2),(min (((P - p) / 2),((w1 - y0) / 2))))) ^2  is  V11()  real   ext-real   Element of  REAL 
 
K37((min ((r / 2),(min (((P - p) / 2),((w1 - y0) / 2))))),(min ((r / 2),(min (((P - p) / 2),((w1 - y0) / 2)))))) is  V11()  real   ext-real   set 
 
(r / 2) ^2  is  V11()  real   ext-real   Element of  REAL 
 
K37((r / 2),(r / 2)) is  V11()  real   ext-real   set 
 
((r / 2) ^2) + ((r / 2) ^2) is  V11()  real   ext-real   Element of  REAL 
 
r ^2  is  V11()  real   ext-real   Element of  REAL 
 
K37(r,r) is  V11()  real   ext-real   set 
 
2 * (r / 2) is  V11()  real   ext-real   Element of  REAL 
 
(2 * (r / 2)) * (r / 2) is  V11()  real   ext-real   Element of  REAL 
 
(((r / 2) ^2) + ((r / 2) ^2)) + ((2 * (r / 2)) * (r / 2)) is  V11()  real   ext-real   Element of  REAL 
 
 sqrt ((((l `1) - (|[((l `1) + (min ((r / 2),(min (((P - p) / 2),((w1 - y0) / 2)))))),((l `2) - (min ((r / 2),(min (((P - p) / 2),((w1 - y0) / 2))))))]| `1)) ^2) + (((l `2) - (|[((l `1) + (min ((r / 2),(min (((P - p) / 2),((w1 - y0) / 2)))))),((l `2) - (min ((r / 2),(min (((P - p) / 2),((w1 - y0) / 2))))))]| `2)) ^2)) is  V11()  real   ext-real   Element of  REAL 
 
(sqrt ((((l `1) - (|[((l `1) + (min ((r / 2),(min (((P - p) / 2),((w1 - y0) / 2)))))),((l `2) - (min ((r / 2),(min (((P - p) / 2),((w1 - y0) / 2))))))]| `1)) ^2) + (((l `2) - (|[((l `1) + (min ((r / 2),(min (((P - p) / 2),((w1 - y0) / 2)))))),((l `2) - (min ((r / 2),(min (((P - p) / 2),((w1 - y0) / 2))))))]| `2)) ^2))) ^2  is  V11()  real   ext-real   Element of  REAL 
 
K37((sqrt ((((l `1) - (|[((l `1) + (min ((r / 2),(min (((P - p) / 2),((w1 - y0) / 2)))))),((l `2) - (min ((r / 2),(min (((P - p) / 2),((w1 - y0) / 2))))))]| `1)) ^2) + (((l `2) - (|[((l `1) + (min ((r / 2),(min (((P - p) / 2),((w1 - y0) / 2)))))),((l `2) - (min ((r / 2),(min (((P - p) / 2),((w1 - y0) / 2))))))]| `2)) ^2))),(sqrt ((((l `1) - (|[((l `1) + (min ((r / 2),(min (((P - p) / 2),((w1 - y0) / 2)))))),((l `2) - (min ((r / 2),(min (((P - p) / 2),((w1 - y0) / 2))))))]| `1)) ^2) + (((l `2) - (|[((l `1) + (min ((r / 2),(min (((P - p) / 2),((w1 - y0) / 2)))))),((l `2) - (min ((r / 2),(min (((P - p) / 2),((w1 - y0) / 2))))))]| `2)) ^2)))) is  V11()  real   ext-real   set 
 
qa is    Element of  the carrier of (Euclid 2)
 
(Pitag_dist 2) . (q,qa) is    set 
 
 dist (q,qa) is  V11()  real   ext-real   Element of  REAL 
 
 Ball (q,r) is    Element of K6( the carrier of (Euclid 2))
 
Q is    Element of K6( the carrier of (TOP-REAL 2))
 
 the carrier of (TopSpaceMetr (Euclid 2)) is    set 
 
K6( the carrier of (TopSpaceMetr (Euclid 2))) is   non  empty   set 
 
QQ is    Element of K6( the carrier of (TopSpaceMetr (Euclid 2)))
 
q is    Element of  the carrier of (Euclid 2)
 
r is  V11()  real   ext-real   set 
 
 Ball (q,r) is    Element of K6( the carrier of (Euclid 2))
 
r is  V11()  real   ext-real   Element of  REAL 
 
r / 2 is  V11()  real   ext-real   Element of  REAL 
 
P - p is  V11()  real   ext-real   Element of  REAL 
 
(P - p) / 2 is  V11()  real   ext-real   Element of  REAL 
 
w1 - y0 is  V11()  real   ext-real   Element of  REAL 
 
(w1 - y0) / 2 is  V11()  real   ext-real   Element of  REAL 
 
 min (((P - p) / 2),((w1 - y0) / 2)) is  V11()  real   ext-real   Element of  REAL 
 
 min ((r / 2),(min (((P - p) / 2),((w1 - y0) / 2)))) is  V11()  real   ext-real   Element of  REAL 
 
(l `2) - (min ((r / 2),(min (((P - p) / 2),((w1 - y0) / 2))))) is  V11()  real   ext-real   Element of  REAL 
 
|[(l `1),((l `2) - (min ((r / 2),(min (((P - p) / 2),((w1 - y0) / 2))))))]| is  V43(2) V112() V155()  Element of  the carrier of (TOP-REAL 2)
 
|[(l `1),((l `2) - (min ((r / 2),(min (((P - p) / 2),((w1 - y0) / 2))))))]| `1  is  V11()  real   ext-real   Element of  REAL 
 
|[(l `1),((l `2) - (min ((r / 2),(min (((P - p) / 2),((w1 - y0) / 2))))))]| `2  is  V11()  real   ext-real   Element of  REAL 
 
(l `2) - y0 is  V11()  real   ext-real   Element of  REAL 
 
(l `1) - (|[(l `1),((l `2) - (min ((r / 2),(min (((P - p) / 2),((w1 - y0) / 2))))))]| `1) is  V11()  real   ext-real   Element of  REAL 
 
((l `1) - (|[(l `1),((l `2) - (min ((r / 2),(min (((P - p) / 2),((w1 - y0) / 2))))))]| `1)) ^2  is  V11()  real   ext-real   Element of  REAL 
 
K37(((l `1) - (|[(l `1),((l `2) - (min ((r / 2),(min (((P - p) / 2),((w1 - y0) / 2))))))]| `1)),((l `1) - (|[(l `1),((l `2) - (min ((r / 2),(min (((P - p) / 2),((w1 - y0) / 2))))))]| `1))) is  V11()  real   ext-real   set 
 
(l `2) - (|[(l `1),((l `2) - (min ((r / 2),(min (((P - p) / 2),((w1 - y0) / 2))))))]| `2) is  V11()  real   ext-real   Element of  REAL 
 
((l `2) - (|[(l `1),((l `2) - (min ((r / 2),(min (((P - p) / 2),((w1 - y0) / 2))))))]| `2)) ^2  is  V11()  real   ext-real   Element of  REAL 
 
K37(((l `2) - (|[(l `1),((l `2) - (min ((r / 2),(min (((P - p) / 2),((w1 - y0) / 2))))))]| `2)),((l `2) - (|[(l `1),((l `2) - (min ((r / 2),(min (((P - p) / 2),((w1 - y0) / 2))))))]| `2))) is  V11()  real   ext-real   set 
 
0 + 0 is  V11()  real   ext-real   Element of  REAL 
 
(((l `1) - (|[(l `1),((l `2) - (min ((r / 2),(min (((P - p) / 2),((w1 - y0) / 2))))))]| `1)) ^2) + (((l `2) - (|[(l `1),((l `2) - (min ((r / 2),(min (((P - p) / 2),((w1 - y0) / 2))))))]| `2)) ^2) is  V11()  real   ext-real   Element of  REAL 
 
r ^2  is  V11()  real   ext-real   Element of  REAL 
 
K37(r,r) is  V11()  real   ext-real   set 
 
 sqrt ((((l `1) - (|[(l `1),((l `2) - (min ((r / 2),(min (((P - p) / 2),((w1 - y0) / 2))))))]| `1)) ^2) + (((l `2) - (|[(l `1),((l `2) - (min ((r / 2),(min (((P - p) / 2),((w1 - y0) / 2))))))]| `2)) ^2)) is  V11()  real   ext-real   Element of  REAL 
 
(sqrt ((((l `1) - (|[(l `1),((l `2) - (min ((r / 2),(min (((P - p) / 2),((w1 - y0) / 2))))))]| `1)) ^2) + (((l `2) - (|[(l `1),((l `2) - (min ((r / 2),(min (((P - p) / 2),((w1 - y0) / 2))))))]| `2)) ^2))) ^2  is  V11()  real   ext-real   Element of  REAL 
 
K37((sqrt ((((l `1) - (|[(l `1),((l `2) - (min ((r / 2),(min (((P - p) / 2),((w1 - y0) / 2))))))]| `1)) ^2) + (((l `2) - (|[(l `1),((l `2) - (min ((r / 2),(min (((P - p) / 2),((w1 - y0) / 2))))))]| `2)) ^2))),(sqrt ((((l `1) - (|[(l `1),((l `2) - (min ((r / 2),(min (((P - p) / 2),((w1 - y0) / 2))))))]| `1)) ^2) + (((l `2) - (|[(l `1),((l `2) - (min ((r / 2),(min (((P - p) / 2),((w1 - y0) / 2))))))]| `2)) ^2)))) is  V11()  real   ext-real   set 
 
qa is    Element of  the carrier of (Euclid 2)
 
(Pitag_dist 2) . (q,qa) is    set 
 
 dist (q,qa) is  V11()  real   ext-real   Element of  REAL 
 
 Ball (q,r) is    Element of K6( the carrier of (Euclid 2))
 
Q is    Element of K6( the carrier of (TOP-REAL 2))
 
 the carrier of (TopSpaceMetr (Euclid 2)) is    set 
 
K6( the carrier of (TopSpaceMetr (Euclid 2))) is   non  empty   set 
 
QQ is    Element of K6( the carrier of (TopSpaceMetr (Euclid 2)))
 
q is    Element of  the carrier of (Euclid 2)
 
r is  V11()  real   ext-real   set 
 
 Ball (q,r) is    Element of K6( the carrier of (Euclid 2))
 
r is  V11()  real   ext-real   Element of  REAL 
 
r / 2 is  V11()  real   ext-real   Element of  REAL 
 
P - p is  V11()  real   ext-real   Element of  REAL 
 
(P - p) / 2 is  V11()  real   ext-real   Element of  REAL 
 
w1 - y0 is  V11()  real   ext-real   Element of  REAL 
 
(w1 - y0) / 2 is  V11()  real   ext-real   Element of  REAL 
 
 min (((P - p) / 2),((w1 - y0) / 2)) is  V11()  real   ext-real   Element of  REAL 
 
 min ((r / 2),(min (((P - p) / 2),((w1 - y0) / 2)))) is  V11()  real   ext-real   Element of  REAL 
 
(l `1) + (min ((r / 2),(min (((P - p) / 2),((w1 - y0) / 2))))) is  V11()  real   ext-real   Element of  REAL 
 
(l `2) - (min ((r / 2),(min (((P - p) / 2),((w1 - y0) / 2))))) is  V11()  real   ext-real   Element of  REAL 
 
|[((l `1) + (min ((r / 2),(min (((P - p) / 2),((w1 - y0) / 2)))))),((l `2) - (min ((r / 2),(min (((P - p) / 2),((w1 - y0) / 2))))))]| is  V43(2) V112() V155()  Element of  the carrier of (TOP-REAL 2)
 
|[((l `1) + (min ((r / 2),(min (((P - p) / 2),((w1 - y0) / 2)))))),((l `2) - (min ((r / 2),(min (((P - p) / 2),((w1 - y0) / 2))))))]| `1  is  V11()  real   ext-real   Element of  REAL 
 
|[((l `1) + (min ((r / 2),(min (((P - p) / 2),((w1 - y0) / 2)))))),((l `2) - (min ((r / 2),(min (((P - p) / 2),((w1 - y0) / 2))))))]| `2  is  V11()  real   ext-real   Element of  REAL 
 
(l `2) - y0 is  V11()  real   ext-real   Element of  REAL 
 
P - (l `1) is  V11()  real   ext-real   Element of  REAL 
 
(l `1) - (|[((l `1) + (min ((r / 2),(min (((P - p) / 2),((w1 - y0) / 2)))))),((l `2) - (min ((r / 2),(min (((P - p) / 2),((w1 - y0) / 2))))))]| `1) is  V11()  real   ext-real   Element of  REAL 
 
((l `1) - (|[((l `1) + (min ((r / 2),(min (((P - p) / 2),((w1 - y0) / 2)))))),((l `2) - (min ((r / 2),(min (((P - p) / 2),((w1 - y0) / 2))))))]| `1)) ^2  is  V11()  real   ext-real   Element of  REAL 
 
K37(((l `1) - (|[((l `1) + (min ((r / 2),(min (((P - p) / 2),((w1 - y0) / 2)))))),((l `2) - (min ((r / 2),(min (((P - p) / 2),((w1 - y0) / 2))))))]| `1)),((l `1) - (|[((l `1) + (min ((r / 2),(min (((P - p) / 2),((w1 - y0) / 2)))))),((l `2) - (min ((r / 2),(min (((P - p) / 2),((w1 - y0) / 2))))))]| `1))) is  V11()  real   ext-real   set 
 
(l `2) - (|[((l `1) + (min ((r / 2),(min (((P - p) / 2),((w1 - y0) / 2)))))),((l `2) - (min ((r / 2),(min (((P - p) / 2),((w1 - y0) / 2))))))]| `2) is  V11()  real   ext-real   Element of  REAL 
 
((l `2) - (|[((l `1) + (min ((r / 2),(min (((P - p) / 2),((w1 - y0) / 2)))))),((l `2) - (min ((r / 2),(min (((P - p) / 2),((w1 - y0) / 2))))))]| `2)) ^2  is  V11()  real   ext-real   Element of  REAL 
 
K37(((l `2) - (|[((l `1) + (min ((r / 2),(min (((P - p) / 2),((w1 - y0) / 2)))))),((l `2) - (min ((r / 2),(min (((P - p) / 2),((w1 - y0) / 2))))))]| `2)),((l `2) - (|[((l `1) + (min ((r / 2),(min (((P - p) / 2),((w1 - y0) / 2)))))),((l `2) - (min ((r / 2),(min (((P - p) / 2),((w1 - y0) / 2))))))]| `2))) is  V11()  real   ext-real   set 
 
0 + 0 is  V11()  real   ext-real   Element of  REAL 
 
(((l `1) - (|[((l `1) + (min ((r / 2),(min (((P - p) / 2),((w1 - y0) / 2)))))),((l `2) - (min ((r / 2),(min (((P - p) / 2),((w1 - y0) / 2))))))]| `1)) ^2) + (((l `2) - (|[((l `1) + (min ((r / 2),(min (((P - p) / 2),((w1 - y0) / 2)))))),((l `2) - (min ((r / 2),(min (((P - p) / 2),((w1 - y0) / 2))))))]| `2)) ^2) is  V11()  real   ext-real   Element of  REAL 
 
(r / 2) ^2  is  V11()  real   ext-real   Element of  REAL 
 
K37((r / 2),(r / 2)) is  V11()  real   ext-real   set 
 
((r / 2) ^2) + ((r / 2) ^2) is  V11()  real   ext-real   Element of  REAL 
 
r ^2  is  V11()  real   ext-real   Element of  REAL 
 
K37(r,r) is  V11()  real   ext-real   set 
 
2 * (r / 2) is  V11()  real   ext-real   Element of  REAL 
 
(2 * (r / 2)) * (r / 2) is  V11()  real   ext-real   Element of  REAL 
 
(((r / 2) ^2) + ((r / 2) ^2)) + ((2 * (r / 2)) * (r / 2)) is  V11()  real   ext-real   Element of  REAL 
 
 sqrt ((((l `1) - (|[((l `1) + (min ((r / 2),(min (((P - p) / 2),((w1 - y0) / 2)))))),((l `2) - (min ((r / 2),(min (((P - p) / 2),((w1 - y0) / 2))))))]| `1)) ^2) + (((l `2) - (|[((l `1) + (min ((r / 2),(min (((P - p) / 2),((w1 - y0) / 2)))))),((l `2) - (min ((r / 2),(min (((P - p) / 2),((w1 - y0) / 2))))))]| `2)) ^2)) is  V11()  real   ext-real   Element of  REAL 
 
(sqrt ((((l `1) - (|[((l `1) + (min ((r / 2),(min (((P - p) / 2),((w1 - y0) / 2)))))),((l `2) - (min ((r / 2),(min (((P - p) / 2),((w1 - y0) / 2))))))]| `1)) ^2) + (((l `2) - (|[((l `1) + (min ((r / 2),(min (((P - p) / 2),((w1 - y0) / 2)))))),((l `2) - (min ((r / 2),(min (((P - p) / 2),((w1 - y0) / 2))))))]| `2)) ^2))) ^2  is  V11()  real   ext-real   Element of  REAL 
 
K37((sqrt ((((l `1) - (|[((l `1) + (min ((r / 2),(min (((P - p) / 2),((w1 - y0) / 2)))))),((l `2) - (min ((r / 2),(min (((P - p) / 2),((w1 - y0) / 2))))))]| `1)) ^2) + (((l `2) - (|[((l `1) + (min ((r / 2),(min (((P - p) / 2),((w1 - y0) / 2)))))),((l `2) - (min ((r / 2),(min (((P - p) / 2),((w1 - y0) / 2))))))]| `2)) ^2))),(sqrt ((((l `1) - (|[((l `1) + (min ((r / 2),(min (((P - p) / 2),((w1 - y0) / 2)))))),((l `2) - (min ((r / 2),(min (((P - p) / 2),((w1 - y0) / 2))))))]| `1)) ^2) + (((l `2) - (|[((l `1) + (min ((r / 2),(min (((P - p) / 2),((w1 - y0) / 2)))))),((l `2) - (min ((r / 2),(min (((P - p) / 2),((w1 - y0) / 2))))))]| `2)) ^2)))) is  V11()  real   ext-real   set 
 
qa is    Element of  the carrier of (Euclid 2)
 
(Pitag_dist 2) . (q,qa) is    set 
 
 dist (q,qa) is  V11()  real   ext-real   Element of  REAL 
 
 Ball (q,r) is    Element of K6( the carrier of (Euclid 2))
 
Q is    Element of K6( the carrier of (TOP-REAL 2))
 
 the carrier of (TopSpaceMetr (Euclid 2)) is    set 
 
K6( the carrier of (TopSpaceMetr (Euclid 2))) is   non  empty   set 
 
QQ is    Element of K6( the carrier of (TopSpaceMetr (Euclid 2)))
 
q is    Element of  the carrier of (Euclid 2)
 
r is  V11()  real   ext-real   set 
 
 Ball (q,r) is    Element of K6( the carrier of (Euclid 2))
 
r is  V11()  real   ext-real   Element of  REAL 
 
r / 2 is  V11()  real   ext-real   Element of  REAL 
 
P - p is  V11()  real   ext-real   Element of  REAL 
 
(P - p) / 2 is  V11()  real   ext-real   Element of  REAL 
 
w1 - y0 is  V11()  real   ext-real   Element of  REAL 
 
(w1 - y0) / 2 is  V11()  real   ext-real   Element of  REAL 
 
 min (((P - p) / 2),((w1 - y0) / 2)) is  V11()  real   ext-real   Element of  REAL 
 
 min ((r / 2),(min (((P - p) / 2),((w1 - y0) / 2)))) is  V11()  real   ext-real   Element of  REAL 
 
(l `1) - (min ((r / 2),(min (((P - p) / 2),((w1 - y0) / 2))))) is  V11()  real   ext-real   Element of  REAL 
 
(l `2) - (min ((r / 2),(min (((P - p) / 2),((w1 - y0) / 2))))) is  V11()  real   ext-real   Element of  REAL 
 
|[((l `1) - (min ((r / 2),(min (((P - p) / 2),((w1 - y0) / 2)))))),((l `2) - (min ((r / 2),(min (((P - p) / 2),((w1 - y0) / 2))))))]| is  V43(2) V112() V155()  Element of  the carrier of (TOP-REAL 2)
 
|[((l `1) - (min ((r / 2),(min (((P - p) / 2),((w1 - y0) / 2)))))),((l `2) - (min ((r / 2),(min (((P - p) / 2),((w1 - y0) / 2))))))]| `1  is  V11()  real   ext-real   Element of  REAL 
 
|[((l `1) - (min ((r / 2),(min (((P - p) / 2),((w1 - y0) / 2)))))),((l `2) - (min ((r / 2),(min (((P - p) / 2),((w1 - y0) / 2))))))]| `2  is  V11()  real   ext-real   Element of  REAL 
 
(l `1) - p is  V11()  real   ext-real   Element of  REAL 
 
(l `2) - y0 is  V11()  real   ext-real   Element of  REAL 
 
(l `1) - (|[((l `1) - (min ((r / 2),(min (((P - p) / 2),((w1 - y0) / 2)))))),((l `2) - (min ((r / 2),(min (((P - p) / 2),((w1 - y0) / 2))))))]| `1) is  V11()  real   ext-real   Element of  REAL 
 
((l `1) - (|[((l `1) - (min ((r / 2),(min (((P - p) / 2),((w1 - y0) / 2)))))),((l `2) - (min ((r / 2),(min (((P - p) / 2),((w1 - y0) / 2))))))]| `1)) ^2  is  V11()  real   ext-real   Element of  REAL 
 
K37(((l `1) - (|[((l `1) - (min ((r / 2),(min (((P - p) / 2),((w1 - y0) / 2)))))),((l `2) - (min ((r / 2),(min (((P - p) / 2),((w1 - y0) / 2))))))]| `1)),((l `1) - (|[((l `1) - (min ((r / 2),(min (((P - p) / 2),((w1 - y0) / 2)))))),((l `2) - (min ((r / 2),(min (((P - p) / 2),((w1 - y0) / 2))))))]| `1))) is  V11()  real   ext-real   set 
 
(l `2) - (|[((l `1) - (min ((r / 2),(min (((P - p) / 2),((w1 - y0) / 2)))))),((l `2) - (min ((r / 2),(min (((P - p) / 2),((w1 - y0) / 2))))))]| `2) is  V11()  real   ext-real   Element of  REAL 
 
((l `2) - (|[((l `1) - (min ((r / 2),(min (((P - p) / 2),((w1 - y0) / 2)))))),((l `2) - (min ((r / 2),(min (((P - p) / 2),((w1 - y0) / 2))))))]| `2)) ^2  is  V11()  real   ext-real   Element of  REAL 
 
K37(((l `2) - (|[((l `1) - (min ((r / 2),(min (((P - p) / 2),((w1 - y0) / 2)))))),((l `2) - (min ((r / 2),(min (((P - p) / 2),((w1 - y0) / 2))))))]| `2)),((l `2) - (|[((l `1) - (min ((r / 2),(min (((P - p) / 2),((w1 - y0) / 2)))))),((l `2) - (min ((r / 2),(min (((P - p) / 2),((w1 - y0) / 2))))))]| `2))) is  V11()  real   ext-real   set 
 
0 + 0 is  V11()  real   ext-real   Element of  REAL 
 
(((l `1) - (|[((l `1) - (min ((r / 2),(min (((P - p) / 2),((w1 - y0) / 2)))))),((l `2) - (min ((r / 2),(min (((P - p) / 2),((w1 - y0) / 2))))))]| `1)) ^2) + (((l `2) - (|[((l `1) - (min ((r / 2),(min (((P - p) / 2),((w1 - y0) / 2)))))),((l `2) - (min ((r / 2),(min (((P - p) / 2),((w1 - y0) / 2))))))]| `2)) ^2) is  V11()  real   ext-real   Element of  REAL 
 
(min ((r / 2),(min (((P - p) / 2),((w1 - y0) / 2))))) ^2  is  V11()  real   ext-real   Element of  REAL 
 
K37((min ((r / 2),(min (((P - p) / 2),((w1 - y0) / 2))))),(min ((r / 2),(min (((P - p) / 2),((w1 - y0) / 2)))))) is  V11()  real   ext-real   set 
 
(r / 2) ^2  is  V11()  real   ext-real   Element of  REAL 
 
K37((r / 2),(r / 2)) is  V11()  real   ext-real   set 
 
((r / 2) ^2) + ((r / 2) ^2) is  V11()  real   ext-real   Element of  REAL 
 
r ^2  is  V11()  real   ext-real   Element of  REAL 
 
K37(r,r) is  V11()  real   ext-real   set 
 
2 * (r / 2) is  V11()  real   ext-real   Element of  REAL 
 
(2 * (r / 2)) * (r / 2) is  V11()  real   ext-real   Element of  REAL 
 
(((r / 2) ^2) + ((r / 2) ^2)) + ((2 * (r / 2)) * (r / 2)) is  V11()  real   ext-real   Element of  REAL 
 
 sqrt ((((l `1) - (|[((l `1) - (min ((r / 2),(min (((P - p) / 2),((w1 - y0) / 2)))))),((l `2) - (min ((r / 2),(min (((P - p) / 2),((w1 - y0) / 2))))))]| `1)) ^2) + (((l `2) - (|[((l `1) - (min ((r / 2),(min (((P - p) / 2),((w1 - y0) / 2)))))),((l `2) - (min ((r / 2),(min (((P - p) / 2),((w1 - y0) / 2))))))]| `2)) ^2)) is  V11()  real   ext-real   Element of  REAL 
 
(sqrt ((((l `1) - (|[((l `1) - (min ((r / 2),(min (((P - p) / 2),((w1 - y0) / 2)))))),((l `2) - (min ((r / 2),(min (((P - p) / 2),((w1 - y0) / 2))))))]| `1)) ^2) + (((l `2) - (|[((l `1) - (min ((r / 2),(min (((P - p) / 2),((w1 - y0) / 2)))))),((l `2) - (min ((r / 2),(min (((P - p) / 2),((w1 - y0) / 2))))))]| `2)) ^2))) ^2  is  V11()  real   ext-real   Element of  REAL 
 
K37((sqrt ((((l `1) - (|[((l `1) - (min ((r / 2),(min (((P - p) / 2),((w1 - y0) / 2)))))),((l `2) - (min ((r / 2),(min (((P - p) / 2),((w1 - y0) / 2))))))]| `1)) ^2) + (((l `2) - (|[((l `1) - (min ((r / 2),(min (((P - p) / 2),((w1 - y0) / 2)))))),((l `2) - (min ((r / 2),(min (((P - p) / 2),((w1 - y0) / 2))))))]| `2)) ^2))),(sqrt ((((l `1) - (|[((l `1) - (min ((r / 2),(min (((P - p) / 2),((w1 - y0) / 2)))))),((l `2) - (min ((r / 2),(min (((P - p) / 2),((w1 - y0) / 2))))))]| `1)) ^2) + (((l `2) - (|[((l `1) - (min ((r / 2),(min (((P - p) / 2),((w1 - y0) / 2)))))),((l `2) - (min ((r / 2),(min (((P - p) / 2),((w1 - y0) / 2))))))]| `2)) ^2)))) is  V11()  real   ext-real   set 
 
qa is    Element of  the carrier of (Euclid 2)
 
(Pitag_dist 2) . (q,qa) is    set 
 
 dist (q,qa) is  V11()  real   ext-real   Element of  REAL 
 
 Ball (q,r) is    Element of K6( the carrier of (Euclid 2))
 
Q is    Element of K6( the carrier of (TOP-REAL 2))
 
 the carrier of (TopSpaceMetr (Euclid 2)) is    set 
 
K6( the carrier of (TopSpaceMetr (Euclid 2))) is   non  empty   set 
 
QQ is    Element of K6( the carrier of (TopSpaceMetr (Euclid 2)))
 
q is    Element of  the carrier of (Euclid 2)
 
r is  V11()  real   ext-real   set 
 
 Ball (q,r) is    Element of K6( the carrier of (Euclid 2))
 
r is  V11()  real   ext-real   Element of  REAL 
 
r / 2 is  V11()  real   ext-real   Element of  REAL 
 
P - p is  V11()  real   ext-real   Element of  REAL 
 
(P - p) / 2 is  V11()  real   ext-real   Element of  REAL 
 
w1 - y0 is  V11()  real   ext-real   Element of  REAL 
 
(w1 - y0) / 2 is  V11()  real   ext-real   Element of  REAL 
 
 min (((P - p) / 2),((w1 - y0) / 2)) is  V11()  real   ext-real   Element of  REAL 
 
 min ((r / 2),(min (((P - p) / 2),((w1 - y0) / 2)))) is  V11()  real   ext-real   Element of  REAL 
 
(l `2) + (min ((r / 2),(min (((P - p) / 2),((w1 - y0) / 2))))) is  V11()  real   ext-real   Element of  REAL 
 
|[(l `1),((l `2) + (min ((r / 2),(min (((P - p) / 2),((w1 - y0) / 2))))))]| is  V43(2) V112() V155()  Element of  the carrier of (TOP-REAL 2)
 
|[(l `1),((l `2) + (min ((r / 2),(min (((P - p) / 2),((w1 - y0) / 2))))))]| `2  is  V11()  real   ext-real   Element of  REAL 
 
|[(l `1),((l `2) + (min ((r / 2),(min (((P - p) / 2),((w1 - y0) / 2))))))]| `1  is  V11()  real   ext-real   Element of  REAL 
 
w1 - (l `2) is  V11()  real   ext-real   Element of  REAL 
 
(l `1) - (|[(l `1),((l `2) + (min ((r / 2),(min (((P - p) / 2),((w1 - y0) / 2))))))]| `1) is  V11()  real   ext-real   Element of  REAL 
 
((l `1) - (|[(l `1),((l `2) + (min ((r / 2),(min (((P - p) / 2),((w1 - y0) / 2))))))]| `1)) ^2  is  V11()  real   ext-real   Element of  REAL 
 
K37(((l `1) - (|[(l `1),((l `2) + (min ((r / 2),(min (((P - p) / 2),((w1 - y0) / 2))))))]| `1)),((l `1) - (|[(l `1),((l `2) + (min ((r / 2),(min (((P - p) / 2),((w1 - y0) / 2))))))]| `1))) is  V11()  real   ext-real   set 
 
(l `2) - (|[(l `1),((l `2) + (min ((r / 2),(min (((P - p) / 2),((w1 - y0) / 2))))))]| `2) is  V11()  real   ext-real   Element of  REAL 
 
((l `2) - (|[(l `1),((l `2) + (min ((r / 2),(min (((P - p) / 2),((w1 - y0) / 2))))))]| `2)) ^2  is  V11()  real   ext-real   Element of  REAL 
 
K37(((l `2) - (|[(l `1),((l `2) + (min ((r / 2),(min (((P - p) / 2),((w1 - y0) / 2))))))]| `2)),((l `2) - (|[(l `1),((l `2) + (min ((r / 2),(min (((P - p) / 2),((w1 - y0) / 2))))))]| `2))) is  V11()  real   ext-real   set 
 
0 + 0 is  V11()  real   ext-real   Element of  REAL 
 
(((l `1) - (|[(l `1),((l `2) + (min ((r / 2),(min (((P - p) / 2),((w1 - y0) / 2))))))]| `1)) ^2) + (((l `2) - (|[(l `1),((l `2) + (min ((r / 2),(min (((P - p) / 2),((w1 - y0) / 2))))))]| `2)) ^2) is  V11()  real   ext-real   Element of  REAL 
 
(|[(l `1),((l `2) + (min ((r / 2),(min (((P - p) / 2),((w1 - y0) / 2))))))]| `2) - (l `2) is  V11()  real   ext-real   Element of  REAL 
 
((|[(l `1),((l `2) + (min ((r / 2),(min (((P - p) / 2),((w1 - y0) / 2))))))]| `2) - (l `2)) ^2  is  V11()  real   ext-real   Element of  REAL 
 
K37(((|[(l `1),((l `2) + (min ((r / 2),(min (((P - p) / 2),((w1 - y0) / 2))))))]| `2) - (l `2)),((|[(l `1),((l `2) + (min ((r / 2),(min (((P - p) / 2),((w1 - y0) / 2))))))]| `2) - (l `2))) is  V11()  real   ext-real   set 
 
r ^2  is  V11()  real   ext-real   Element of  REAL 
 
K37(r,r) is  V11()  real   ext-real   set 
 
 sqrt ((((l `1) - (|[(l `1),((l `2) + (min ((r / 2),(min (((P - p) / 2),((w1 - y0) / 2))))))]| `1)) ^2) + (((l `2) - (|[(l `1),((l `2) + (min ((r / 2),(min (((P - p) / 2),((w1 - y0) / 2))))))]| `2)) ^2)) is  V11()  real   ext-real   Element of  REAL 
 
(sqrt ((((l `1) - (|[(l `1),((l `2) + (min ((r / 2),(min (((P - p) / 2),((w1 - y0) / 2))))))]| `1)) ^2) + (((l `2) - (|[(l `1),((l `2) + (min ((r / 2),(min (((P - p) / 2),((w1 - y0) / 2))))))]| `2)) ^2))) ^2  is  V11()  real   ext-real   Element of  REAL 
 
K37((sqrt ((((l `1) - (|[(l `1),((l `2) + (min ((r / 2),(min (((P - p) / 2),((w1 - y0) / 2))))))]| `1)) ^2) + (((l `2) - (|[(l `1),((l `2) + (min ((r / 2),(min (((P - p) / 2),((w1 - y0) / 2))))))]| `2)) ^2))),(sqrt ((((l `1) - (|[(l `1),((l `2) + (min ((r / 2),(min (((P - p) / 2),((w1 - y0) / 2))))))]| `1)) ^2) + (((l `2) - (|[(l `1),((l `2) + (min ((r / 2),(min (((P - p) / 2),((w1 - y0) / 2))))))]| `2)) ^2)))) is  V11()  real   ext-real   set 
 
qa is    Element of  the carrier of (Euclid 2)
 
(Pitag_dist 2) . (q,qa) is    set 
 
 dist (q,qa) is  V11()  real   ext-real   Element of  REAL 
 
 Ball (q,r) is    Element of K6( the carrier of (Euclid 2))
 
Q is    Element of K6( the carrier of (TOP-REAL 2))
 
 the carrier of (TopSpaceMetr (Euclid 2)) is    set 
 
K6( the carrier of (TopSpaceMetr (Euclid 2))) is   non  empty   set 
 
QQ is    Element of K6( the carrier of (TopSpaceMetr (Euclid 2)))
 
q is    Element of  the carrier of (Euclid 2)
 
r is  V11()  real   ext-real   set 
 
 Ball (q,r) is    Element of K6( the carrier of (Euclid 2))
 
r is  V11()  real   ext-real   Element of  REAL 
 
r / 2 is  V11()  real   ext-real   Element of  REAL 
 
P - p is  V11()  real   ext-real   Element of  REAL 
 
(P - p) / 2 is  V11()  real   ext-real   Element of  REAL 
 
w1 - y0 is  V11()  real   ext-real   Element of  REAL 
 
(w1 - y0) / 2 is  V11()  real   ext-real   Element of  REAL 
 
 min (((P - p) / 2),((w1 - y0) / 2)) is  V11()  real   ext-real   Element of  REAL 
 
 min ((r / 2),(min (((P - p) / 2),((w1 - y0) / 2)))) is  V11()  real   ext-real   Element of  REAL 
 
(l `1) + (min ((r / 2),(min (((P - p) / 2),((w1 - y0) / 2))))) is  V11()  real   ext-real   Element of  REAL 
 
(l `2) + (min ((r / 2),(min (((P - p) / 2),((w1 - y0) / 2))))) is  V11()  real   ext-real   Element of  REAL 
 
|[((l `1) + (min ((r / 2),(min (((P - p) / 2),((w1 - y0) / 2)))))),((l `2) + (min ((r / 2),(min (((P - p) / 2),((w1 - y0) / 2))))))]| is  V43(2) V112() V155()  Element of  the carrier of (TOP-REAL 2)
 
|[((l `1) + (min ((r / 2),(min (((P - p) / 2),((w1 - y0) / 2)))))),((l `2) + (min ((r / 2),(min (((P - p) / 2),((w1 - y0) / 2))))))]| `1  is  V11()  real   ext-real   Element of  REAL 
 
|[((l `1) + (min ((r / 2),(min (((P - p) / 2),((w1 - y0) / 2)))))),((l `2) + (min ((r / 2),(min (((P - p) / 2),((w1 - y0) / 2))))))]| `2  is  V11()  real   ext-real   Element of  REAL 
 
P - (l `1) is  V11()  real   ext-real   Element of  REAL 
 
w1 - (l `2) is  V11()  real   ext-real   Element of  REAL 
 
(l `1) - (|[((l `1) + (min ((r / 2),(min (((P - p) / 2),((w1 - y0) / 2)))))),((l `2) + (min ((r / 2),(min (((P - p) / 2),((w1 - y0) / 2))))))]| `1) is  V11()  real   ext-real   Element of  REAL 
 
((l `1) - (|[((l `1) + (min ((r / 2),(min (((P - p) / 2),((w1 - y0) / 2)))))),((l `2) + (min ((r / 2),(min (((P - p) / 2),((w1 - y0) / 2))))))]| `1)) ^2  is  V11()  real   ext-real   Element of  REAL 
 
K37(((l `1) - (|[((l `1) + (min ((r / 2),(min (((P - p) / 2),((w1 - y0) / 2)))))),((l `2) + (min ((r / 2),(min (((P - p) / 2),((w1 - y0) / 2))))))]| `1)),((l `1) - (|[((l `1) + (min ((r / 2),(min (((P - p) / 2),((w1 - y0) / 2)))))),((l `2) + (min ((r / 2),(min (((P - p) / 2),((w1 - y0) / 2))))))]| `1))) is  V11()  real   ext-real   set 
 
(l `2) - (|[((l `1) + (min ((r / 2),(min (((P - p) / 2),((w1 - y0) / 2)))))),((l `2) + (min ((r / 2),(min (((P - p) / 2),((w1 - y0) / 2))))))]| `2) is  V11()  real   ext-real   Element of  REAL 
 
((l `2) - (|[((l `1) + (min ((r / 2),(min (((P - p) / 2),((w1 - y0) / 2)))))),((l `2) + (min ((r / 2),(min (((P - p) / 2),((w1 - y0) / 2))))))]| `2)) ^2  is  V11()  real   ext-real   Element of  REAL 
 
K37(((l `2) - (|[((l `1) + (min ((r / 2),(min (((P - p) / 2),((w1 - y0) / 2)))))),((l `2) + (min ((r / 2),(min (((P - p) / 2),((w1 - y0) / 2))))))]| `2)),((l `2) - (|[((l `1) + (min ((r / 2),(min (((P - p) / 2),((w1 - y0) / 2)))))),((l `2) + (min ((r / 2),(min (((P - p) / 2),((w1 - y0) / 2))))))]| `2))) is  V11()  real   ext-real   set 
 
0 + 0 is  V11()  real   ext-real   Element of  REAL 
 
(((l `1) - (|[((l `1) + (min ((r / 2),(min (((P - p) / 2),((w1 - y0) / 2)))))),((l `2) + (min ((r / 2),(min (((P - p) / 2),((w1 - y0) / 2))))))]| `1)) ^2) + (((l `2) - (|[((l `1) + (min ((r / 2),(min (((P - p) / 2),((w1 - y0) / 2)))))),((l `2) + (min ((r / 2),(min (((P - p) / 2),((w1 - y0) / 2))))))]| `2)) ^2) is  V11()  real   ext-real   Element of  REAL 
 
(|[((l `1) + (min ((r / 2),(min (((P - p) / 2),((w1 - y0) / 2)))))),((l `2) + (min ((r / 2),(min (((P - p) / 2),((w1 - y0) / 2))))))]| `1) - (l `1) is  V11()  real   ext-real   Element of  REAL 
 
((|[((l `1) + (min ((r / 2),(min (((P - p) / 2),((w1 - y0) / 2)))))),((l `2) + (min ((r / 2),(min (((P - p) / 2),((w1 - y0) / 2))))))]| `1) - (l `1)) ^2  is  V11()  real   ext-real   Element of  REAL 
 
K37(((|[((l `1) + (min ((r / 2),(min (((P - p) / 2),((w1 - y0) / 2)))))),((l `2) + (min ((r / 2),(min (((P - p) / 2),((w1 - y0) / 2))))))]| `1) - (l `1)),((|[((l `1) + (min ((r / 2),(min (((P - p) / 2),((w1 - y0) / 2)))))),((l `2) + (min ((r / 2),(min (((P - p) / 2),((w1 - y0) / 2))))))]| `1) - (l `1))) is  V11()  real   ext-real   set 
 
(r / 2) ^2  is  V11()  real   ext-real   Element of  REAL 
 
K37((r / 2),(r / 2)) is  V11()  real   ext-real   set 
 
((r / 2) ^2) + ((r / 2) ^2) is  V11()  real   ext-real   Element of  REAL 
 
r ^2  is  V11()  real   ext-real   Element of  REAL 
 
K37(r,r) is  V11()  real   ext-real   set 
 
2 * (r / 2) is  V11()  real   ext-real   Element of  REAL 
 
(2 * (r / 2)) * (r / 2) is  V11()  real   ext-real   Element of  REAL 
 
(((r / 2) ^2) + ((r / 2) ^2)) + ((2 * (r / 2)) * (r / 2)) is  V11()  real   ext-real   Element of  REAL 
 
 sqrt ((((l `1) - (|[((l `1) + (min ((r / 2),(min (((P - p) / 2),((w1 - y0) / 2)))))),((l `2) + (min ((r / 2),(min (((P - p) / 2),((w1 - y0) / 2))))))]| `1)) ^2) + (((l `2) - (|[((l `1) + (min ((r / 2),(min (((P - p) / 2),((w1 - y0) / 2)))))),((l `2) + (min ((r / 2),(min (((P - p) / 2),((w1 - y0) / 2))))))]| `2)) ^2)) is  V11()  real   ext-real   Element of  REAL 
 
(sqrt ((((l `1) - (|[((l `1) + (min ((r / 2),(min (((P - p) / 2),((w1 - y0) / 2)))))),((l `2) + (min ((r / 2),(min (((P - p) / 2),((w1 - y0) / 2))))))]| `1)) ^2) + (((l `2) - (|[((l `1) + (min ((r / 2),(min (((P - p) / 2),((w1 - y0) / 2)))))),((l `2) + (min ((r / 2),(min (((P - p) / 2),((w1 - y0) / 2))))))]| `2)) ^2))) ^2  is  V11()  real   ext-real   Element of  REAL 
 
K37((sqrt ((((l `1) - (|[((l `1) + (min ((r / 2),(min (((P - p) / 2),((w1 - y0) / 2)))))),((l `2) + (min ((r / 2),(min (((P - p) / 2),((w1 - y0) / 2))))))]| `1)) ^2) + (((l `2) - (|[((l `1) + (min ((r / 2),(min (((P - p) / 2),((w1 - y0) / 2)))))),((l `2) + (min ((r / 2),(min (((P - p) / 2),((w1 - y0) / 2))))))]| `2)) ^2))),(sqrt ((((l `1) - (|[((l `1) + (min ((r / 2),(min (((P - p) / 2),((w1 - y0) / 2)))))),((l `2) + (min ((r / 2),(min (((P - p) / 2),((w1 - y0) / 2))))))]| `1)) ^2) + (((l `2) - (|[((l `1) + (min ((r / 2),(min (((P - p) / 2),((w1 - y0) / 2)))))),((l `2) + (min ((r / 2),(min (((P - p) / 2),((w1 - y0) / 2))))))]| `2)) ^2)))) is  V11()  real   ext-real   set 
 
qa is    Element of  the carrier of (Euclid 2)
 
(Pitag_dist 2) . (q,qa) is    set 
 
 dist (q,qa) is  V11()  real   ext-real   Element of  REAL 
 
 Ball (q,r) is    Element of K6( the carrier of (Euclid 2))
 
Q is    Element of K6( the carrier of (TOP-REAL 2))
 
 the carrier of (TopSpaceMetr (Euclid 2)) is    set 
 
K6( the carrier of (TopSpaceMetr (Euclid 2))) is   non  empty   set 
 
QQ is    Element of K6( the carrier of (TopSpaceMetr (Euclid 2)))
 
q is    Element of  the carrier of (Euclid 2)
 
r is  V11()  real   ext-real   set 
 
 Ball (q,r) is    Element of K6( the carrier of (Euclid 2))
 
r is  V11()  real   ext-real   Element of  REAL 
 
r / 2 is  V11()  real   ext-real   Element of  REAL 
 
P - p is  V11()  real   ext-real   Element of  REAL 
 
(P - p) / 2 is  V11()  real   ext-real   Element of  REAL 
 
w1 - y0 is  V11()  real   ext-real   Element of  REAL 
 
(w1 - y0) / 2 is  V11()  real   ext-real   Element of  REAL 
 
 min (((P - p) / 2),((w1 - y0) / 2)) is  V11()  real   ext-real   Element of  REAL 
 
 min ((r / 2),(min (((P - p) / 2),((w1 - y0) / 2)))) is  V11()  real   ext-real   Element of  REAL 
 
(l `1) - (min ((r / 2),(min (((P - p) / 2),((w1 - y0) / 2))))) is  V11()  real   ext-real   Element of  REAL 
 
(l `2) + (min ((r / 2),(min (((P - p) / 2),((w1 - y0) / 2))))) is  V11()  real   ext-real   Element of  REAL 
 
|[((l `1) - (min ((r / 2),(min (((P - p) / 2),((w1 - y0) / 2)))))),((l `2) + (min ((r / 2),(min (((P - p) / 2),((w1 - y0) / 2))))))]| is  V43(2) V112() V155()  Element of  the carrier of (TOP-REAL 2)
 
|[((l `1) - (min ((r / 2),(min (((P - p) / 2),((w1 - y0) / 2)))))),((l `2) + (min ((r / 2),(min (((P - p) / 2),((w1 - y0) / 2))))))]| `1  is  V11()  real   ext-real   Element of  REAL 
 
|[((l `1) - (min ((r / 2),(min (((P - p) / 2),((w1 - y0) / 2)))))),((l `2) + (min ((r / 2),(min (((P - p) / 2),((w1 - y0) / 2))))))]| `2  is  V11()  real   ext-real   Element of  REAL 
 
w1 - (l `2) is  V11()  real   ext-real   Element of  REAL 
 
(l `1) - p is  V11()  real   ext-real   Element of  REAL 
 
(l `1) - (|[((l `1) - (min ((r / 2),(min (((P - p) / 2),((w1 - y0) / 2)))))),((l `2) + (min ((r / 2),(min (((P - p) / 2),((w1 - y0) / 2))))))]| `1) is  V11()  real   ext-real   Element of  REAL 
 
((l `1) - (|[((l `1) - (min ((r / 2),(min (((P - p) / 2),((w1 - y0) / 2)))))),((l `2) + (min ((r / 2),(min (((P - p) / 2),((w1 - y0) / 2))))))]| `1)) ^2  is  V11()  real   ext-real   Element of  REAL 
 
K37(((l `1) - (|[((l `1) - (min ((r / 2),(min (((P - p) / 2),((w1 - y0) / 2)))))),((l `2) + (min ((r / 2),(min (((P - p) / 2),((w1 - y0) / 2))))))]| `1)),((l `1) - (|[((l `1) - (min ((r / 2),(min (((P - p) / 2),((w1 - y0) / 2)))))),((l `2) + (min ((r / 2),(min (((P - p) / 2),((w1 - y0) / 2))))))]| `1))) is  V11()  real   ext-real   set 
 
(l `2) - (|[((l `1) - (min ((r / 2),(min (((P - p) / 2),((w1 - y0) / 2)))))),((l `2) + (min ((r / 2),(min (((P - p) / 2),((w1 - y0) / 2))))))]| `2) is  V11()  real   ext-real   Element of  REAL 
 
((l `2) - (|[((l `1) - (min ((r / 2),(min (((P - p) / 2),((w1 - y0) / 2)))))),((l `2) + (min ((r / 2),(min (((P - p) / 2),((w1 - y0) / 2))))))]| `2)) ^2  is  V11()  real   ext-real   Element of  REAL 
 
K37(((l `2) - (|[((l `1) - (min ((r / 2),(min (((P - p) / 2),((w1 - y0) / 2)))))),((l `2) + (min ((r / 2),(min (((P - p) / 2),((w1 - y0) / 2))))))]| `2)),((l `2) - (|[((l `1) - (min ((r / 2),(min (((P - p) / 2),((w1 - y0) / 2)))))),((l `2) + (min ((r / 2),(min (((P - p) / 2),((w1 - y0) / 2))))))]| `2))) is  V11()  real   ext-real   set 
 
0 + 0 is  V11()  real   ext-real   Element of  REAL 
 
(((l `1) - (|[((l `1) - (min ((r / 2),(min (((P - p) / 2),((w1 - y0) / 2)))))),((l `2) + (min ((r / 2),(min (((P - p) / 2),((w1 - y0) / 2))))))]| `1)) ^2) + (((l `2) - (|[((l `1) - (min ((r / 2),(min (((P - p) / 2),((w1 - y0) / 2)))))),((l `2) + (min ((r / 2),(min (((P - p) / 2),((w1 - y0) / 2))))))]| `2)) ^2) is  V11()  real   ext-real   Element of  REAL 
 
(min ((r / 2),(min (((P - p) / 2),((w1 - y0) / 2))))) ^2  is  V11()  real   ext-real   Element of  REAL 
 
K37((min ((r / 2),(min (((P - p) / 2),((w1 - y0) / 2))))),(min ((r / 2),(min (((P - p) / 2),((w1 - y0) / 2)))))) is  V11()  real   ext-real   set 
 
(r / 2) ^2  is  V11()  real   ext-real   Element of  REAL 
 
K37((r / 2),(r / 2)) is  V11()  real   ext-real   set 
 
((r / 2) ^2) + ((r / 2) ^2) is  V11()  real   ext-real   Element of  REAL 
 
r ^2  is  V11()  real   ext-real   Element of  REAL 
 
K37(r,r) is  V11()  real   ext-real   set 
 
2 * (r / 2) is  V11()  real   ext-real   Element of  REAL 
 
(2 * (r / 2)) * (r / 2) is  V11()  real   ext-real   Element of  REAL 
 
(((r / 2) ^2) + ((r / 2) ^2)) + ((2 * (r / 2)) * (r / 2)) is  V11()  real   ext-real   Element of  REAL 
 
 sqrt ((((l `1) - (|[((l `1) - (min ((r / 2),(min (((P - p) / 2),((w1 - y0) / 2)))))),((l `2) + (min ((r / 2),(min (((P - p) / 2),((w1 - y0) / 2))))))]| `1)) ^2) + (((l `2) - (|[((l `1) - (min ((r / 2),(min (((P - p) / 2),((w1 - y0) / 2)))))),((l `2) + (min ((r / 2),(min (((P - p) / 2),((w1 - y0) / 2))))))]| `2)) ^2)) is  V11()  real   ext-real   Element of  REAL 
 
(sqrt ((((l `1) - (|[((l `1) - (min ((r / 2),(min (((P - p) / 2),((w1 - y0) / 2)))))),((l `2) + (min ((r / 2),(min (((P - p) / 2),((w1 - y0) / 2))))))]| `1)) ^2) + (((l `2) - (|[((l `1) - (min ((r / 2),(min (((P - p) / 2),((w1 - y0) / 2)))))),((l `2) + (min ((r / 2),(min (((P - p) / 2),((w1 - y0) / 2))))))]| `2)) ^2))) ^2  is  V11()  real   ext-real   Element of  REAL 
 
K37((sqrt ((((l `1) - (|[((l `1) - (min ((r / 2),(min (((P - p) / 2),((w1 - y0) / 2)))))),((l `2) + (min ((r / 2),(min (((P - p) / 2),((w1 - y0) / 2))))))]| `1)) ^2) + (((l `2) - (|[((l `1) - (min ((r / 2),(min (((P - p) / 2),((w1 - y0) / 2)))))),((l `2) + (min ((r / 2),(min (((P - p) / 2),((w1 - y0) / 2))))))]| `2)) ^2))),(sqrt ((((l `1) - (|[((l `1) - (min ((r / 2),(min (((P - p) / 2),((w1 - y0) / 2)))))),((l `2) + (min ((r / 2),(min (((P - p) / 2),((w1 - y0) / 2))))))]| `1)) ^2) + (((l `2) - (|[((l `1) - (min ((r / 2),(min (((P - p) / 2),((w1 - y0) / 2)))))),((l `2) + (min ((r / 2),(min (((P - p) / 2),((w1 - y0) / 2))))))]| `2)) ^2)))) is  V11()  real   ext-real   set 
 
qa is    Element of  the carrier of (Euclid 2)
 
(Pitag_dist 2) . (q,qa) is    set 
 
 dist (q,qa) is  V11()  real   ext-real   Element of  REAL 
 
 Ball (q,r) is    Element of K6( the carrier of (Euclid 2))
 
Q is    Element of K6( the carrier of (TOP-REAL 2))
 
 the carrier of (TopSpaceMetr (Euclid 2)) is    set 
 
K6( the carrier of (TopSpaceMetr (Euclid 2))) is   non  empty   set 
 
QQ is    Element of K6( the carrier of (TopSpaceMetr (Euclid 2)))
 
q is    Element of  the carrier of (Euclid 2)
 
r is  V11()  real   ext-real   set 
 
 Ball (q,r) is    Element of K6( the carrier of (Euclid 2))
 
r is  V11()  real   ext-real   Element of  REAL 
 
r / 2 is  V11()  real   ext-real   Element of  REAL 
 
P - p is  V11()  real   ext-real   Element of  REAL 
 
(P - p) / 2 is  V11()  real   ext-real   Element of  REAL 
 
w1 - y0 is  V11()  real   ext-real   Element of  REAL 
 
(w1 - y0) / 2 is  V11()  real   ext-real   Element of  REAL 
 
 min (((P - p) / 2),((w1 - y0) / 2)) is  V11()  real   ext-real   Element of  REAL 
 
 min ((r / 2),(min (((P - p) / 2),((w1 - y0) / 2)))) is  V11()  real   ext-real   Element of  REAL 
 
(l `1) - (min ((r / 2),(min (((P - p) / 2),((w1 - y0) / 2))))) is  V11()  real   ext-real   Element of  REAL 
 
|[((l `1) - (min ((r / 2),(min (((P - p) / 2),((w1 - y0) / 2)))))),(l `2)]| is  V43(2) V112() V155()  Element of  the carrier of (TOP-REAL 2)
 
|[((l `1) - (min ((r / 2),(min (((P - p) / 2),((w1 - y0) / 2)))))),(l `2)]| `2  is  V11()  real   ext-real   Element of  REAL 
 
|[((l `1) - (min ((r / 2),(min (((P - p) / 2),((w1 - y0) / 2)))))),(l `2)]| `1  is  V11()  real   ext-real   Element of  REAL 
 
(l `1) - p is  V11()  real   ext-real   Element of  REAL 
 
(l `1) - (|[((l `1) - (min ((r / 2),(min (((P - p) / 2),((w1 - y0) / 2)))))),(l `2)]| `1) is  V11()  real   ext-real   Element of  REAL 
 
((l `1) - (|[((l `1) - (min ((r / 2),(min (((P - p) / 2),((w1 - y0) / 2)))))),(l `2)]| `1)) ^2  is  V11()  real   ext-real   Element of  REAL 
 
K37(((l `1) - (|[((l `1) - (min ((r / 2),(min (((P - p) / 2),((w1 - y0) / 2)))))),(l `2)]| `1)),((l `1) - (|[((l `1) - (min ((r / 2),(min (((P - p) / 2),((w1 - y0) / 2)))))),(l `2)]| `1))) is  V11()  real   ext-real   set 
 
(l `2) - (|[((l `1) - (min ((r / 2),(min (((P - p) / 2),((w1 - y0) / 2)))))),(l `2)]| `2) is  V11()  real   ext-real   Element of  REAL 
 
((l `2) - (|[((l `1) - (min ((r / 2),(min (((P - p) / 2),((w1 - y0) / 2)))))),(l `2)]| `2)) ^2  is  V11()  real   ext-real   Element of  REAL 
 
K37(((l `2) - (|[((l `1) - (min ((r / 2),(min (((P - p) / 2),((w1 - y0) / 2)))))),(l `2)]| `2)),((l `2) - (|[((l `1) - (min ((r / 2),(min (((P - p) / 2),((w1 - y0) / 2)))))),(l `2)]| `2))) is  V11()  real   ext-real   set 
 
0 + 0 is  V11()  real   ext-real   Element of  REAL 
 
(((l `1) - (|[((l `1) - (min ((r / 2),(min (((P - p) / 2),((w1 - y0) / 2)))))),(l `2)]| `1)) ^2) + (((l `2) - (|[((l `1) - (min ((r / 2),(min (((P - p) / 2),((w1 - y0) / 2)))))),(l `2)]| `2)) ^2) is  V11()  real   ext-real   Element of  REAL 
 
r ^2  is  V11()  real   ext-real   Element of  REAL 
 
K37(r,r) is  V11()  real   ext-real   set 
 
 sqrt ((((l `1) - (|[((l `1) - (min ((r / 2),(min (((P - p) / 2),((w1 - y0) / 2)))))),(l `2)]| `1)) ^2) + (((l `2) - (|[((l `1) - (min ((r / 2),(min (((P - p) / 2),((w1 - y0) / 2)))))),(l `2)]| `2)) ^2)) is  V11()  real   ext-real   Element of  REAL 
 
(sqrt ((((l `1) - (|[((l `1) - (min ((r / 2),(min (((P - p) / 2),((w1 - y0) / 2)))))),(l `2)]| `1)) ^2) + (((l `2) - (|[((l `1) - (min ((r / 2),(min (((P - p) / 2),((w1 - y0) / 2)))))),(l `2)]| `2)) ^2))) ^2  is  V11()  real   ext-real   Element of  REAL 
 
K37((sqrt ((((l `1) - (|[((l `1) - (min ((r / 2),(min (((P - p) / 2),((w1 - y0) / 2)))))),(l `2)]| `1)) ^2) + (((l `2) - (|[((l `1) - (min ((r / 2),(min (((P - p) / 2),((w1 - y0) / 2)))))),(l `2)]| `2)) ^2))),(sqrt ((((l `1) - (|[((l `1) - (min ((r / 2),(min (((P - p) / 2),((w1 - y0) / 2)))))),(l `2)]| `1)) ^2) + (((l `2) - (|[((l `1) - (min ((r / 2),(min (((P - p) / 2),((w1 - y0) / 2)))))),(l `2)]| `2)) ^2)))) is  V11()  real   ext-real   set 
 
qa is    Element of  the carrier of (Euclid 2)
 
(Pitag_dist 2) . (q,qa) is    set 
 
 dist (q,qa) is  V11()  real   ext-real   Element of  REAL 
 
 Ball (q,r) is    Element of K6( the carrier of (Euclid 2))
 
Q is    Element of K6( the carrier of (TOP-REAL 2))
 
 the carrier of (TopSpaceMetr (Euclid 2)) is    set 
 
K6( the carrier of (TopSpaceMetr (Euclid 2))) is   non  empty   set 
 
QQ is    Element of K6( the carrier of (TopSpaceMetr (Euclid 2)))
 
q is    Element of  the carrier of (Euclid 2)
 
r is  V11()  real   ext-real   set 
 
 Ball (q,r) is    Element of K6( the carrier of (Euclid 2))
 
r is  V11()  real   ext-real   Element of  REAL 
 
r / 2 is  V11()  real   ext-real   Element of  REAL 
 
P - p is  V11()  real   ext-real   Element of  REAL 
 
(P - p) / 2 is  V11()  real   ext-real   Element of  REAL 
 
w1 - y0 is  V11()  real   ext-real   Element of  REAL 
 
(w1 - y0) / 2 is  V11()  real   ext-real   Element of  REAL 
 
 min (((P - p) / 2),((w1 - y0) / 2)) is  V11()  real   ext-real   Element of  REAL 
 
 min ((r / 2),(min (((P - p) / 2),((w1 - y0) / 2)))) is  V11()  real   ext-real   Element of  REAL 
 
(l `1) - (min ((r / 2),(min (((P - p) / 2),((w1 - y0) / 2))))) is  V11()  real   ext-real   Element of  REAL 
 
(l `2) + (min ((r / 2),(min (((P - p) / 2),((w1 - y0) / 2))))) is  V11()  real   ext-real   Element of  REAL 
 
|[((l `1) - (min ((r / 2),(min (((P - p) / 2),((w1 - y0) / 2)))))),((l `2) + (min ((r / 2),(min (((P - p) / 2),((w1 - y0) / 2))))))]| is  V43(2) V112() V155()  Element of  the carrier of (TOP-REAL 2)
 
|[((l `1) - (min ((r / 2),(min (((P - p) / 2),((w1 - y0) / 2)))))),((l `2) + (min ((r / 2),(min (((P - p) / 2),((w1 - y0) / 2))))))]| `2  is  V11()  real   ext-real   Element of  REAL 
 
|[((l `1) - (min ((r / 2),(min (((P - p) / 2),((w1 - y0) / 2)))))),((l `2) + (min ((r / 2),(min (((P - p) / 2),((w1 - y0) / 2))))))]| `1  is  V11()  real   ext-real   Element of  REAL 
 
(l `1) - p is  V11()  real   ext-real   Element of  REAL 
 
w1 - (l `2) is  V11()  real   ext-real   Element of  REAL 
 
(l `1) - (|[((l `1) - (min ((r / 2),(min (((P - p) / 2),((w1 - y0) / 2)))))),((l `2) + (min ((r / 2),(min (((P - p) / 2),((w1 - y0) / 2))))))]| `1) is  V11()  real   ext-real   Element of  REAL 
 
((l `1) - (|[((l `1) - (min ((r / 2),(min (((P - p) / 2),((w1 - y0) / 2)))))),((l `2) + (min ((r / 2),(min (((P - p) / 2),((w1 - y0) / 2))))))]| `1)) ^2  is  V11()  real   ext-real   Element of  REAL 
 
K37(((l `1) - (|[((l `1) - (min ((r / 2),(min (((P - p) / 2),((w1 - y0) / 2)))))),((l `2) + (min ((r / 2),(min (((P - p) / 2),((w1 - y0) / 2))))))]| `1)),((l `1) - (|[((l `1) - (min ((r / 2),(min (((P - p) / 2),((w1 - y0) / 2)))))),((l `2) + (min ((r / 2),(min (((P - p) / 2),((w1 - y0) / 2))))))]| `1))) is  V11()  real   ext-real   set 
 
(l `2) - (|[((l `1) - (min ((r / 2),(min (((P - p) / 2),((w1 - y0) / 2)))))),((l `2) + (min ((r / 2),(min (((P - p) / 2),((w1 - y0) / 2))))))]| `2) is  V11()  real   ext-real   Element of  REAL 
 
((l `2) - (|[((l `1) - (min ((r / 2),(min (((P - p) / 2),((w1 - y0) / 2)))))),((l `2) + (min ((r / 2),(min (((P - p) / 2),((w1 - y0) / 2))))))]| `2)) ^2  is  V11()  real   ext-real   Element of  REAL 
 
K37(((l `2) - (|[((l `1) - (min ((r / 2),(min (((P - p) / 2),((w1 - y0) / 2)))))),((l `2) + (min ((r / 2),(min (((P - p) / 2),((w1 - y0) / 2))))))]| `2)),((l `2) - (|[((l `1) - (min ((r / 2),(min (((P - p) / 2),((w1 - y0) / 2)))))),((l `2) + (min ((r / 2),(min (((P - p) / 2),((w1 - y0) / 2))))))]| `2))) is  V11()  real   ext-real   set 
 
0 + 0 is  V11()  real   ext-real   Element of  REAL 
 
(((l `1) - (|[((l `1) - (min ((r / 2),(min (((P - p) / 2),((w1 - y0) / 2)))))),((l `2) + (min ((r / 2),(min (((P - p) / 2),((w1 - y0) / 2))))))]| `1)) ^2) + (((l `2) - (|[((l `1) - (min ((r / 2),(min (((P - p) / 2),((w1 - y0) / 2)))))),((l `2) + (min ((r / 2),(min (((P - p) / 2),((w1 - y0) / 2))))))]| `2)) ^2) is  V11()  real   ext-real   Element of  REAL 
 
(r / 2) ^2  is  V11()  real   ext-real   Element of  REAL 
 
K37((r / 2),(r / 2)) is  V11()  real   ext-real   set 
 
((r / 2) ^2) + ((r / 2) ^2) is  V11()  real   ext-real   Element of  REAL 
 
r ^2  is  V11()  real   ext-real   Element of  REAL 
 
K37(r,r) is  V11()  real   ext-real   set 
 
2 * (r / 2) is  V11()  real   ext-real   Element of  REAL 
 
(2 * (r / 2)) * (r / 2) is  V11()  real   ext-real   Element of  REAL 
 
(((r / 2) ^2) + ((r / 2) ^2)) + ((2 * (r / 2)) * (r / 2)) is  V11()  real   ext-real   Element of  REAL 
 
 sqrt ((((l `1) - (|[((l `1) - (min ((r / 2),(min (((P - p) / 2),((w1 - y0) / 2)))))),((l `2) + (min ((r / 2),(min (((P - p) / 2),((w1 - y0) / 2))))))]| `1)) ^2) + (((l `2) - (|[((l `1) - (min ((r / 2),(min (((P - p) / 2),((w1 - y0) / 2)))))),((l `2) + (min ((r / 2),(min (((P - p) / 2),((w1 - y0) / 2))))))]| `2)) ^2)) is  V11()  real   ext-real   Element of  REAL 
 
(sqrt ((((l `1) - (|[((l `1) - (min ((r / 2),(min (((P - p) / 2),((w1 - y0) / 2)))))),((l `2) + (min ((r / 2),(min (((P - p) / 2),((w1 - y0) / 2))))))]| `1)) ^2) + (((l `2) - (|[((l `1) - (min ((r / 2),(min (((P - p) / 2),((w1 - y0) / 2)))))),((l `2) + (min ((r / 2),(min (((P - p) / 2),((w1 - y0) / 2))))))]| `2)) ^2))) ^2  is  V11()  real   ext-real   Element of  REAL 
 
K37((sqrt ((((l `1) - (|[((l `1) - (min ((r / 2),(min (((P - p) / 2),((w1 - y0) / 2)))))),((l `2) + (min ((r / 2),(min (((P - p) / 2),((w1 - y0) / 2))))))]| `1)) ^2) + (((l `2) - (|[((l `1) - (min ((r / 2),(min (((P - p) / 2),((w1 - y0) / 2)))))),((l `2) + (min ((r / 2),(min (((P - p) / 2),((w1 - y0) / 2))))))]| `2)) ^2))),(sqrt ((((l `1) - (|[((l `1) - (min ((r / 2),(min (((P - p) / 2),((w1 - y0) / 2)))))),((l `2) + (min ((r / 2),(min (((P - p) / 2),((w1 - y0) / 2))))))]| `1)) ^2) + (((l `2) - (|[((l `1) - (min ((r / 2),(min (((P - p) / 2),((w1 - y0) / 2)))))),((l `2) + (min ((r / 2),(min (((P - p) / 2),((w1 - y0) / 2))))))]| `2)) ^2)))) is  V11()  real   ext-real   set 
 
qa is    Element of  the carrier of (Euclid 2)
 
(Pitag_dist 2) . (q,qa) is    set 
 
 dist (q,qa) is  V11()  real   ext-real   Element of  REAL 
 
 Ball (q,r) is    Element of K6( the carrier of (Euclid 2))
 
Q is    Element of K6( the carrier of (TOP-REAL 2))
 
 the carrier of (TopSpaceMetr (Euclid 2)) is    set 
 
K6( the carrier of (TopSpaceMetr (Euclid 2))) is   non  empty   set 
 
QQ is    Element of K6( the carrier of (TopSpaceMetr (Euclid 2)))
 
q is    Element of  the carrier of (Euclid 2)
 
r is  V11()  real   ext-real   set 
 
 Ball (q,r) is    Element of K6( the carrier of (Euclid 2))
 
r is  V11()  real   ext-real   Element of  REAL 
 
r / 2 is  V11()  real   ext-real   Element of  REAL 
 
P - p is  V11()  real   ext-real   Element of  REAL 
 
(P - p) / 2 is  V11()  real   ext-real   Element of  REAL 
 
w1 - y0 is  V11()  real   ext-real   Element of  REAL 
 
(w1 - y0) / 2 is  V11()  real   ext-real   Element of  REAL 
 
 min (((P - p) / 2),((w1 - y0) / 2)) is  V11()  real   ext-real   Element of  REAL 
 
 min ((r / 2),(min (((P - p) / 2),((w1 - y0) / 2)))) is  V11()  real   ext-real   Element of  REAL 
 
(l `1) - (min ((r / 2),(min (((P - p) / 2),((w1 - y0) / 2))))) is  V11()  real   ext-real   Element of  REAL 
 
(l `2) - (min ((r / 2),(min (((P - p) / 2),((w1 - y0) / 2))))) is  V11()  real   ext-real   Element of  REAL 
 
|[((l `1) - (min ((r / 2),(min (((P - p) / 2),((w1 - y0) / 2)))))),((l `2) - (min ((r / 2),(min (((P - p) / 2),((w1 - y0) / 2))))))]| is  V43(2) V112() V155()  Element of  the carrier of (TOP-REAL 2)
 
|[((l `1) - (min ((r / 2),(min (((P - p) / 2),((w1 - y0) / 2)))))),((l `2) - (min ((r / 2),(min (((P - p) / 2),((w1 - y0) / 2))))))]| `1  is  V11()  real   ext-real   Element of  REAL 
 
|[((l `1) - (min ((r / 2),(min (((P - p) / 2),((w1 - y0) / 2)))))),((l `2) - (min ((r / 2),(min (((P - p) / 2),((w1 - y0) / 2))))))]| `2  is  V11()  real   ext-real   Element of  REAL 
 
(l `1) - p is  V11()  real   ext-real   Element of  REAL 
 
(l `2) - y0 is  V11()  real   ext-real   Element of  REAL 
 
(l `1) - (|[((l `1) - (min ((r / 2),(min (((P - p) / 2),((w1 - y0) / 2)))))),((l `2) - (min ((r / 2),(min (((P - p) / 2),((w1 - y0) / 2))))))]| `1) is  V11()  real   ext-real   Element of  REAL 
 
((l `1) - (|[((l `1) - (min ((r / 2),(min (((P - p) / 2),((w1 - y0) / 2)))))),((l `2) - (min ((r / 2),(min (((P - p) / 2),((w1 - y0) / 2))))))]| `1)) ^2  is  V11()  real   ext-real   Element of  REAL 
 
K37(((l `1) - (|[((l `1) - (min ((r / 2),(min (((P - p) / 2),((w1 - y0) / 2)))))),((l `2) - (min ((r / 2),(min (((P - p) / 2),((w1 - y0) / 2))))))]| `1)),((l `1) - (|[((l `1) - (min ((r / 2),(min (((P - p) / 2),((w1 - y0) / 2)))))),((l `2) - (min ((r / 2),(min (((P - p) / 2),((w1 - y0) / 2))))))]| `1))) is  V11()  real   ext-real   set 
 
(l `2) - (|[((l `1) - (min ((r / 2),(min (((P - p) / 2),((w1 - y0) / 2)))))),((l `2) - (min ((r / 2),(min (((P - p) / 2),((w1 - y0) / 2))))))]| `2) is  V11()  real   ext-real   Element of  REAL 
 
((l `2) - (|[((l `1) - (min ((r / 2),(min (((P - p) / 2),((w1 - y0) / 2)))))),((l `2) - (min ((r / 2),(min (((P - p) / 2),((w1 - y0) / 2))))))]| `2)) ^2  is  V11()  real   ext-real   Element of  REAL 
 
K37(((l `2) - (|[((l `1) - (min ((r / 2),(min (((P - p) / 2),((w1 - y0) / 2)))))),((l `2) - (min ((r / 2),(min (((P - p) / 2),((w1 - y0) / 2))))))]| `2)),((l `2) - (|[((l `1) - (min ((r / 2),(min (((P - p) / 2),((w1 - y0) / 2)))))),((l `2) - (min ((r / 2),(min (((P - p) / 2),((w1 - y0) / 2))))))]| `2))) is  V11()  real   ext-real   set 
 
0 + 0 is  V11()  real   ext-real   Element of  REAL 
 
(((l `1) - (|[((l `1) - (min ((r / 2),(min (((P - p) / 2),((w1 - y0) / 2)))))),((l `2) - (min ((r / 2),(min (((P - p) / 2),((w1 - y0) / 2))))))]| `1)) ^2) + (((l `2) - (|[((l `1) - (min ((r / 2),(min (((P - p) / 2),((w1 - y0) / 2)))))),((l `2) - (min ((r / 2),(min (((P - p) / 2),((w1 - y0) / 2))))))]| `2)) ^2) is  V11()  real   ext-real   Element of  REAL 
 
(min ((r / 2),(min (((P - p) / 2),((w1 - y0) / 2))))) ^2  is  V11()  real   ext-real   Element of  REAL 
 
K37((min ((r / 2),(min (((P - p) / 2),((w1 - y0) / 2))))),(min ((r / 2),(min (((P - p) / 2),((w1 - y0) / 2)))))) is  V11()  real   ext-real   set 
 
(r / 2) ^2  is  V11()  real   ext-real   Element of  REAL 
 
K37((r / 2),(r / 2)) is  V11()  real   ext-real   set 
 
((r / 2) ^2) + ((r / 2) ^2) is  V11()  real   ext-real   Element of  REAL 
 
r ^2  is  V11()  real   ext-real   Element of  REAL 
 
K37(r,r) is  V11()  real   ext-real   set 
 
2 * (r / 2) is  V11()  real   ext-real   Element of  REAL 
 
(2 * (r / 2)) * (r / 2) is  V11()  real   ext-real   Element of  REAL 
 
(((r / 2) ^2) + ((r / 2) ^2)) + ((2 * (r / 2)) * (r / 2)) is  V11()  real   ext-real   Element of  REAL 
 
 sqrt ((((l `1) - (|[((l `1) - (min ((r / 2),(min (((P - p) / 2),((w1 - y0) / 2)))))),((l `2) - (min ((r / 2),(min (((P - p) / 2),((w1 - y0) / 2))))))]| `1)) ^2) + (((l `2) - (|[((l `1) - (min ((r / 2),(min (((P - p) / 2),((w1 - y0) / 2)))))),((l `2) - (min ((r / 2),(min (((P - p) / 2),((w1 - y0) / 2))))))]| `2)) ^2)) is  V11()  real   ext-real   Element of  REAL 
 
(sqrt ((((l `1) - (|[((l `1) - (min ((r / 2),(min (((P - p) / 2),((w1 - y0) / 2)))))),((l `2) - (min ((r / 2),(min (((P - p) / 2),((w1 - y0) / 2))))))]| `1)) ^2) + (((l `2) - (|[((l `1) - (min ((r / 2),(min (((P - p) / 2),((w1 - y0) / 2)))))),((l `2) - (min ((r / 2),(min (((P - p) / 2),((w1 - y0) / 2))))))]| `2)) ^2))) ^2  is  V11()  real   ext-real   Element of  REAL 
 
K37((sqrt ((((l `1) - (|[((l `1) - (min ((r / 2),(min (((P - p) / 2),((w1 - y0) / 2)))))),((l `2) - (min ((r / 2),(min (((P - p) / 2),((w1 - y0) / 2))))))]| `1)) ^2) + (((l `2) - (|[((l `1) - (min ((r / 2),(min (((P - p) / 2),((w1 - y0) / 2)))))),((l `2) - (min ((r / 2),(min (((P - p) / 2),((w1 - y0) / 2))))))]| `2)) ^2))),(sqrt ((((l `1) - (|[((l `1) - (min ((r / 2),(min (((P - p) / 2),((w1 - y0) / 2)))))),((l `2) - (min ((r / 2),(min (((P - p) / 2),((w1 - y0) / 2))))))]| `1)) ^2) + (((l `2) - (|[((l `1) - (min ((r / 2),(min (((P - p) / 2),((w1 - y0) / 2)))))),((l `2) - (min ((r / 2),(min (((P - p) / 2),((w1 - y0) / 2))))))]| `2)) ^2)))) is  V11()  real   ext-real   set 
 
qa is    Element of  the carrier of (Euclid 2)
 
(Pitag_dist 2) . (q,qa) is    set 
 
 dist (q,qa) is  V11()  real   ext-real   Element of  REAL 
 
 Ball (q,r) is    Element of K6( the carrier of (Euclid 2))
 
p is  V11()  real   ext-real   Element of  REAL 
 
y0 is  V11()  real   ext-real   Element of  REAL 
 
P is  V11()  real   ext-real   Element of  REAL 
 
w1 is  V11()  real   ext-real   Element of  REAL 
 
 {  b1 where b1 is  V43(2) V112() V155()  Element of  the carrier of (TOP-REAL 2) : ( ( b1 `1  = p & b1 `2  <= w1 & y0 <= b1 `2  ) or ( b1 `1  <= P & p <= b1 `1  & b1 `2  = w1 ) or ( b1 `1  <= P & p <= b1 `1  & b1 `2  = y0 ) or ( b1 `1  = P & b1 `2  <= w1 & y0 <= b1 `2  ) )  }   is    set 
 
 {  b1 where b1 is  V43(2) V112() V155()  Element of  the carrier of (TOP-REAL 2) : (  not p <= b1 `1  or  not b1 `1  <= P or  not y0 <= b1 `2  or  not b1 `2  <= w1 )  }   is    set 
 
w2 is    Element of K6( the carrier of (TOP-REAL 2))
 
x1 is    Element of K6( the carrier of (TOP-REAL 2))
 
 Cl x1 is    Element of K6( the carrier of (TOP-REAL 2))
 
w2 \/ x1 is    Element of K6( the carrier of (TOP-REAL 2))
 
 {  b1 where b1 is  V43(2) V112() V155()  Element of  the carrier of (TOP-REAL 2) : (  not b1 `1  <= p &  not P <= b1 `1  &  not b1 `2  <= y0 &  not w1 <= b1 `2  )  }   is    set 
 
w2 `  is    Element of K6( the carrier of (TOP-REAL 2))
 
 the carrier of (TOP-REAL 2) \ w2 is    set 
 
v is    Element of K6( the carrier of (TOP-REAL 2))
 
x2 is    Element of K6( the carrier of (TOP-REAL 2))
 
x2 \/ x1 is    Element of K6( the carrier of (TOP-REAL 2))
 
x2 `  is    Element of K6( the carrier of (TOP-REAL 2))
 
 the carrier of (TOP-REAL 2) \ x2 is    set 
 
(x2 \/ x1) `  is    Element of K6( the carrier of (TOP-REAL 2))
 
 the carrier of (TOP-REAL 2) \ (x2 \/ x1) is    set 
 
 [#] (TOP-REAL 2) is   non  empty   non  proper   closed   Element of K6( the carrier of (TOP-REAL 2))
 
([#] (TOP-REAL 2)) \ x2 is    Element of K6( the carrier of (TOP-REAL 2))
 
([#] (TOP-REAL 2)) \ x1 is    Element of K6( the carrier of (TOP-REAL 2))
 
(([#] (TOP-REAL 2)) \ x2) /\ (([#] (TOP-REAL 2)) \ x1) is    Element of K6( the carrier of (TOP-REAL 2))
 
x1 \/ x2 is    Element of K6( the carrier of (TOP-REAL 2))
 
w2 \/ (x1 \/ x2) is    Element of K6( the carrier of (TOP-REAL 2))
 
(w2 \/ x1) \/ x2 is    Element of K6( the carrier of (TOP-REAL 2))
 
v1 is    set 
 
v1 is    set 
 
([#] (TOP-REAL 2)) \ (x2 `) is    Element of K6( the carrier of (TOP-REAL 2))
 
(x2 `) `  is    Element of K6( the carrier of (TOP-REAL 2))
 
 the carrier of (TOP-REAL 2) \ (x2 `) is    set 
 
v1 is    set 
 
v1 is    set 
 
l is  V43(2) V112() V155()  Element of  the carrier of (TOP-REAL 2)
 
l `1  is  V11()  real   ext-real   Element of  REAL 
 
l `2  is  V11()  real   ext-real   Element of  REAL 
 
Q is    Element of K6( the carrier of (TOP-REAL 2))
 
 the carrier of (TopSpaceMetr (Euclid 2)) is    set 
 
K6( the carrier of (TopSpaceMetr (Euclid 2))) is   non  empty   set 
 
QQ is    Element of K6( the carrier of (TopSpaceMetr (Euclid 2)))
 
q is    Element of  the carrier of (Euclid 2)
 
r is  V11()  real   ext-real   set 
 
 Ball (q,r) is    Element of K6( the carrier of (Euclid 2))
 
r is  V11()  real   ext-real   Element of  REAL 
 
r / 2 is  V11()  real   ext-real   Element of  REAL 
 
(l `1) - (r / 2) is  V11()  real   ext-real   Element of  REAL 
 
|[((l `1) - (r / 2)),(l `2)]| is  V43(2) V112() V155()  Element of  the carrier of (TOP-REAL 2)
 
|[((l `1) - (r / 2)),(l `2)]| `1  is  V11()  real   ext-real   Element of  REAL 
 
|[((l `1) - (r / 2)),(l `2)]| `2  is  V11()  real   ext-real   Element of  REAL 
 
(l `1) - (|[((l `1) - (r / 2)),(l `2)]| `1) is  V11()  real   ext-real   Element of  REAL 
 
((l `1) - (|[((l `1) - (r / 2)),(l `2)]| `1)) ^2  is  V11()  real   ext-real   Element of  REAL 
 
K37(((l `1) - (|[((l `1) - (r / 2)),(l `2)]| `1)),((l `1) - (|[((l `1) - (r / 2)),(l `2)]| `1))) is  V11()  real   ext-real   set 
 
(l `2) - (|[((l `1) - (r / 2)),(l `2)]| `2) is  V11()  real   ext-real   Element of  REAL 
 
((l `2) - (|[((l `1) - (r / 2)),(l `2)]| `2)) ^2  is  V11()  real   ext-real   Element of  REAL 
 
K37(((l `2) - (|[((l `1) - (r / 2)),(l `2)]| `2)),((l `2) - (|[((l `1) - (r / 2)),(l `2)]| `2))) is  V11()  real   ext-real   set 
 
0 + 0 is  V11()  real   ext-real   Element of  REAL 
 
(((l `1) - (|[((l `1) - (r / 2)),(l `2)]| `1)) ^2) + (((l `2) - (|[((l `1) - (r / 2)),(l `2)]| `2)) ^2) is  V11()  real   ext-real   Element of  REAL 
 
r ^2  is  V11()  real   ext-real   Element of  REAL 
 
K37(r,r) is  V11()  real   ext-real   set 
 
 sqrt ((((l `1) - (|[((l `1) - (r / 2)),(l `2)]| `1)) ^2) + (((l `2) - (|[((l `1) - (r / 2)),(l `2)]| `2)) ^2)) is  V11()  real   ext-real   Element of  REAL 
 
(sqrt ((((l `1) - (|[((l `1) - (r / 2)),(l `2)]| `1)) ^2) + (((l `2) - (|[((l `1) - (r / 2)),(l `2)]| `2)) ^2))) ^2  is  V11()  real   ext-real   Element of  REAL 
 
K37((sqrt ((((l `1) - (|[((l `1) - (r / 2)),(l `2)]| `1)) ^2) + (((l `2) - (|[((l `1) - (r / 2)),(l `2)]| `2)) ^2))),(sqrt ((((l `1) - (|[((l `1) - (r / 2)),(l `2)]| `1)) ^2) + (((l `2) - (|[((l `1) - (r / 2)),(l `2)]| `2)) ^2)))) is  V11()  real   ext-real   set 
 
qa is    Element of  the carrier of (Euclid 2)
 
(Pitag_dist 2) . (q,qa) is    set 
 
 dist (q,qa) is  V11()  real   ext-real   Element of  REAL 
 
 Ball (q,r) is    Element of K6( the carrier of (Euclid 2))
 
x1 /\ Q is    Element of K6( the carrier of (TOP-REAL 2))
 
Q is    Element of K6( the carrier of (TOP-REAL 2))
 
 the carrier of (TopSpaceMetr (Euclid 2)) is    set 
 
K6( the carrier of (TopSpaceMetr (Euclid 2))) is   non  empty   set 
 
QQ is    Element of K6( the carrier of (TopSpaceMetr (Euclid 2)))
 
q is    Element of  the carrier of (Euclid 2)
 
r is  V11()  real   ext-real   set 
 
 Ball (q,r) is    Element of K6( the carrier of (Euclid 2))
 
r is  V11()  real   ext-real   Element of  REAL 
 
r / 2 is  V11()  real   ext-real   Element of  REAL 
 
(l `2) + (r / 2) is  V11()  real   ext-real   Element of  REAL 
 
|[(l `1),((l `2) + (r / 2))]| is  V43(2) V112() V155()  Element of  the carrier of (TOP-REAL 2)
 
|[(l `1),((l `2) + (r / 2))]| `1  is  V11()  real   ext-real   Element of  REAL 
 
|[(l `1),((l `2) + (r / 2))]| `2  is  V11()  real   ext-real   Element of  REAL 
 
(l `1) - (|[(l `1),((l `2) + (r / 2))]| `1) is  V11()  real   ext-real   Element of  REAL 
 
((l `1) - (|[(l `1),((l `2) + (r / 2))]| `1)) ^2  is  V11()  real   ext-real   Element of  REAL 
 
K37(((l `1) - (|[(l `1),((l `2) + (r / 2))]| `1)),((l `1) - (|[(l `1),((l `2) + (r / 2))]| `1))) is  V11()  real   ext-real   set 
 
(l `2) - (|[(l `1),((l `2) + (r / 2))]| `2) is  V11()  real   ext-real   Element of  REAL 
 
((l `2) - (|[(l `1),((l `2) + (r / 2))]| `2)) ^2  is  V11()  real   ext-real   Element of  REAL 
 
K37(((l `2) - (|[(l `1),((l `2) + (r / 2))]| `2)),((l `2) - (|[(l `1),((l `2) + (r / 2))]| `2))) is  V11()  real   ext-real   set 
 
0 + 0 is  V11()  real   ext-real   Element of  REAL 
 
(((l `1) - (|[(l `1),((l `2) + (r / 2))]| `1)) ^2) + (((l `2) - (|[(l `1),((l `2) + (r / 2))]| `2)) ^2) is  V11()  real   ext-real   Element of  REAL 
 
(|[(l `1),((l `2) + (r / 2))]| `2) - (l `2) is  V11()  real   ext-real   Element of  REAL 
 
((|[(l `1),((l `2) + (r / 2))]| `2) - (l `2)) ^2  is  V11()  real   ext-real   Element of  REAL 
 
K37(((|[(l `1),((l `2) + (r / 2))]| `2) - (l `2)),((|[(l `1),((l `2) + (r / 2))]| `2) - (l `2))) is  V11()  real   ext-real   set 
 
r ^2  is  V11()  real   ext-real   Element of  REAL 
 
K37(r,r) is  V11()  real   ext-real   set 
 
 sqrt ((((l `1) - (|[(l `1),((l `2) + (r / 2))]| `1)) ^2) + (((l `2) - (|[(l `1),((l `2) + (r / 2))]| `2)) ^2)) is  V11()  real   ext-real   Element of  REAL 
 
(sqrt ((((l `1) - (|[(l `1),((l `2) + (r / 2))]| `1)) ^2) + (((l `2) - (|[(l `1),((l `2) + (r / 2))]| `2)) ^2))) ^2  is  V11()  real   ext-real   Element of  REAL 
 
K37((sqrt ((((l `1) - (|[(l `1),((l `2) + (r / 2))]| `1)) ^2) + (((l `2) - (|[(l `1),((l `2) + (r / 2))]| `2)) ^2))),(sqrt ((((l `1) - (|[(l `1),((l `2) + (r / 2))]| `1)) ^2) + (((l `2) - (|[(l `1),((l `2) + (r / 2))]| `2)) ^2)))) is  V11()  real   ext-real   set 
 
qa is    Element of  the carrier of (Euclid 2)
 
(Pitag_dist 2) . (q,qa) is    set 
 
 dist (q,qa) is  V11()  real   ext-real   Element of  REAL 
 
 Ball (q,r) is    Element of K6( the carrier of (Euclid 2))
 
x1 /\ Q is    Element of K6( the carrier of (TOP-REAL 2))
 
Q is    Element of K6( the carrier of (TOP-REAL 2))
 
 the carrier of (TopSpaceMetr (Euclid 2)) is    set 
 
K6( the carrier of (TopSpaceMetr (Euclid 2))) is   non  empty   set 
 
QQ is    Element of K6( the carrier of (TopSpaceMetr (Euclid 2)))
 
q is    Element of  the carrier of (Euclid 2)
 
r is  V11()  real   ext-real   set 
 
 Ball (q,r) is    Element of K6( the carrier of (Euclid 2))
 
r is  V11()  real   ext-real   Element of  REAL 
 
r / 2 is  V11()  real   ext-real   Element of  REAL 
 
(l `2) - (r / 2) is  V11()  real   ext-real   Element of  REAL 
 
|[(l `1),((l `2) - (r / 2))]| is  V43(2) V112() V155()  Element of  the carrier of (TOP-REAL 2)
 
|[(l `1),((l `2) - (r / 2))]| `1  is  V11()  real   ext-real   Element of  REAL 
 
|[(l `1),((l `2) - (r / 2))]| `2  is  V11()  real   ext-real   Element of  REAL 
 
(l `1) - (|[(l `1),((l `2) - (r / 2))]| `1) is  V11()  real   ext-real   Element of  REAL 
 
((l `1) - (|[(l `1),((l `2) - (r / 2))]| `1)) ^2  is  V11()  real   ext-real   Element of  REAL 
 
K37(((l `1) - (|[(l `1),((l `2) - (r / 2))]| `1)),((l `1) - (|[(l `1),((l `2) - (r / 2))]| `1))) is  V11()  real   ext-real   set 
 
(l `2) - (|[(l `1),((l `2) - (r / 2))]| `2) is  V11()  real   ext-real   Element of  REAL 
 
((l `2) - (|[(l `1),((l `2) - (r / 2))]| `2)) ^2  is  V11()  real   ext-real   Element of  REAL 
 
K37(((l `2) - (|[(l `1),((l `2) - (r / 2))]| `2)),((l `2) - (|[(l `1),((l `2) - (r / 2))]| `2))) is  V11()  real   ext-real   set 
 
0 + 0 is  V11()  real   ext-real   Element of  REAL 
 
(((l `1) - (|[(l `1),((l `2) - (r / 2))]| `1)) ^2) + (((l `2) - (|[(l `1),((l `2) - (r / 2))]| `2)) ^2) is  V11()  real   ext-real   Element of  REAL 
 
r ^2  is  V11()  real   ext-real   Element of  REAL 
 
K37(r,r) is  V11()  real   ext-real   set 
 
 sqrt ((((l `1) - (|[(l `1),((l `2) - (r / 2))]| `1)) ^2) + (((l `2) - (|[(l `1),((l `2) - (r / 2))]| `2)) ^2)) is  V11()  real   ext-real   Element of  REAL 
 
(sqrt ((((l `1) - (|[(l `1),((l `2) - (r / 2))]| `1)) ^2) + (((l `2) - (|[(l `1),((l `2) - (r / 2))]| `2)) ^2))) ^2  is  V11()  real   ext-real   Element of  REAL 
 
K37((sqrt ((((l `1) - (|[(l `1),((l `2) - (r / 2))]| `1)) ^2) + (((l `2) - (|[(l `1),((l `2) - (r / 2))]| `2)) ^2))),(sqrt ((((l `1) - (|[(l `1),((l `2) - (r / 2))]| `1)) ^2) + (((l `2) - (|[(l `1),((l `2) - (r / 2))]| `2)) ^2)))) is  V11()  real   ext-real   set 
 
qa is    Element of  the carrier of (Euclid 2)
 
(Pitag_dist 2) . (q,qa) is    set 
 
 dist (q,qa) is  V11()  real   ext-real   Element of  REAL 
 
 Ball (q,r) is    Element of K6( the carrier of (Euclid 2))
 
Q is    Element of K6( the carrier of (TOP-REAL 2))
 
 the carrier of (TopSpaceMetr (Euclid 2)) is    set 
 
K6( the carrier of (TopSpaceMetr (Euclid 2))) is   non  empty   set 
 
QQ is    Element of K6( the carrier of (TopSpaceMetr (Euclid 2)))
 
q is    Element of  the carrier of (Euclid 2)
 
r is  V11()  real   ext-real   set 
 
 Ball (q,r) is    Element of K6( the carrier of (Euclid 2))
 
r is  V11()  real   ext-real   Element of  REAL 
 
r / 2 is  V11()  real   ext-real   Element of  REAL 
 
(l `1) + (r / 2) is  V11()  real   ext-real   Element of  REAL 
 
|[((l `1) + (r / 2)),(l `2)]| is  V43(2) V112() V155()  Element of  the carrier of (TOP-REAL 2)
 
|[((l `1) + (r / 2)),(l `2)]| `1  is  V11()  real   ext-real   Element of  REAL 
 
|[((l `1) + (r / 2)),(l `2)]| `2  is  V11()  real   ext-real   Element of  REAL 
 
(l `1) - (|[((l `1) + (r / 2)),(l `2)]| `1) is  V11()  real   ext-real   Element of  REAL 
 
((l `1) - (|[((l `1) + (r / 2)),(l `2)]| `1)) ^2  is  V11()  real   ext-real   Element of  REAL 
 
K37(((l `1) - (|[((l `1) + (r / 2)),(l `2)]| `1)),((l `1) - (|[((l `1) + (r / 2)),(l `2)]| `1))) is  V11()  real   ext-real   set 
 
(l `2) - (|[((l `1) + (r / 2)),(l `2)]| `2) is  V11()  real   ext-real   Element of  REAL 
 
((l `2) - (|[((l `1) + (r / 2)),(l `2)]| `2)) ^2  is  V11()  real   ext-real   Element of  REAL 
 
K37(((l `2) - (|[((l `1) + (r / 2)),(l `2)]| `2)),((l `2) - (|[((l `1) + (r / 2)),(l `2)]| `2))) is  V11()  real   ext-real   set 
 
0 + 0 is  V11()  real   ext-real   Element of  REAL 
 
(((l `1) - (|[((l `1) + (r / 2)),(l `2)]| `1)) ^2) + (((l `2) - (|[((l `1) + (r / 2)),(l `2)]| `2)) ^2) is  V11()  real   ext-real   Element of  REAL 
 
(|[((l `1) + (r / 2)),(l `2)]| `1) - (l `1) is  V11()  real   ext-real   Element of  REAL 
 
((|[((l `1) + (r / 2)),(l `2)]| `1) - (l `1)) ^2  is  V11()  real   ext-real   Element of  REAL 
 
K37(((|[((l `1) + (r / 2)),(l `2)]| `1) - (l `1)),((|[((l `1) + (r / 2)),(l `2)]| `1) - (l `1))) is  V11()  real   ext-real   set 
 
r ^2  is  V11()  real   ext-real   Element of  REAL 
 
K37(r,r) is  V11()  real   ext-real   set 
 
 sqrt ((((l `1) - (|[((l `1) + (r / 2)),(l `2)]| `1)) ^2) + (((l `2) - (|[((l `1) + (r / 2)),(l `2)]| `2)) ^2)) is  V11()  real   ext-real   Element of  REAL 
 
(sqrt ((((l `1) - (|[((l `1) + (r / 2)),(l `2)]| `1)) ^2) + (((l `2) - (|[((l `1) + (r / 2)),(l `2)]| `2)) ^2))) ^2  is  V11()  real   ext-real   Element of  REAL 
 
K37((sqrt ((((l `1) - (|[((l `1) + (r / 2)),(l `2)]| `1)) ^2) + (((l `2) - (|[((l `1) + (r / 2)),(l `2)]| `2)) ^2))),(sqrt ((((l `1) - (|[((l `1) + (r / 2)),(l `2)]| `1)) ^2) + (((l `2) - (|[((l `1) + (r / 2)),(l `2)]| `2)) ^2)))) is  V11()  real   ext-real   set 
 
qa is    Element of  the carrier of (Euclid 2)
 
(Pitag_dist 2) . (q,qa) is    set 
 
 dist (q,qa) is  V11()  real   ext-real   Element of  REAL 
 
 Ball (q,r) is    Element of K6( the carrier of (Euclid 2))
 
p is  V11()  real   ext-real   Element of  REAL 
 
y0 is  V11()  real   ext-real   Element of  REAL 
 
P is  V11()  real   ext-real   Element of  REAL 
 
w1 is  V11()  real   ext-real   Element of  REAL 
 
 {  b1 where b1 is  V43(2) V112() V155()  Element of  the carrier of (TOP-REAL 2) : ( ( b1 `1  = p & b1 `2  <= w1 & y0 <= b1 `2  ) or ( b1 `1  <= P & p <= b1 `1  & b1 `2  = w1 ) or ( b1 `1  <= P & p <= b1 `1  & b1 `2  = y0 ) or ( b1 `1  = P & b1 `2  <= w1 & y0 <= b1 `2  ) )  }   is    set 
 
 {  b1 where b1 is  V43(2) V112() V155()  Element of  the carrier of (TOP-REAL 2) : (  not b1 `1  <= p &  not P <= b1 `1  &  not b1 `2  <= y0 &  not w1 <= b1 `2  )  }   is    set 
 
 {  b1 where b1 is  V43(2) V112() V155()  Element of  the carrier of (TOP-REAL 2) : (  not p <= b1 `1  or  not b1 `1  <= P or  not y0 <= b1 `2  or  not b1 `2  <= w1 )  }   is    set 
 
w2 is    Element of K6( the carrier of (TOP-REAL 2))
 
x1 is    Element of K6( the carrier of (TOP-REAL 2))
 
x2 is    Element of K6( the carrier of (TOP-REAL 2))
 
 Cl x1 is    Element of K6( the carrier of (TOP-REAL 2))
 
(Cl x1) \ x1 is    Element of K6( the carrier of (TOP-REAL 2))
 
 Cl x2 is    Element of K6( the carrier of (TOP-REAL 2))
 
(Cl x2) \ x2 is    Element of K6( the carrier of (TOP-REAL 2))
 
w2 `  is    Element of K6( the carrier of (TOP-REAL 2))
 
 the carrier of (TOP-REAL 2) \ w2 is    set 
 
v is    Element of K6( the carrier of (TOP-REAL 2))
 
x1 \/ x2 is    Element of K6( the carrier of (TOP-REAL 2))
 
(x1 \/ x2) `  is    Element of K6( the carrier of (TOP-REAL 2))
 
 the carrier of (TOP-REAL 2) \ (x1 \/ x2) is    set 
 
 [#] (TOP-REAL 2) is   non  empty   non  proper   closed   Element of K6( the carrier of (TOP-REAL 2))
 
([#] (TOP-REAL 2)) \ x1 is    Element of K6( the carrier of (TOP-REAL 2))
 
([#] (TOP-REAL 2)) \ x2 is    Element of K6( the carrier of (TOP-REAL 2))
 
(([#] (TOP-REAL 2)) \ x1) /\ (([#] (TOP-REAL 2)) \ x2) is    Element of K6( the carrier of (TOP-REAL 2))
 
w2 \/ x2 is    Element of K6( the carrier of (TOP-REAL 2))
 
(w2 \/ x2) \ x2 is    Element of K6( the carrier of (TOP-REAL 2))
 
v1 is    set 
 
x2 `  is    Element of K6( the carrier of (TOP-REAL 2))
 
 the carrier of (TOP-REAL 2) \ x2 is    set 
 
(Cl x2) /\ (x2 `) is    Element of K6( the carrier of (TOP-REAL 2))
 
w2 \/ x1 is    Element of K6( the carrier of (TOP-REAL 2))
 
(w2 \/ x1) \ x1 is    Element of K6( the carrier of (TOP-REAL 2))
 
v1 is    set 
 
x1 `  is    Element of K6( the carrier of (TOP-REAL 2))
 
 the carrier of (TOP-REAL 2) \ x1 is    set 
 
(Cl x1) /\ (x1 `) is    Element of K6( the carrier of (TOP-REAL 2))
 
p is  V11()  real   ext-real   Element of  REAL 
 
y0 is  V11()  real   ext-real   Element of  REAL 
 
P is  V11()  real   ext-real   Element of  REAL 
 
w1 is  V11()  real   ext-real   Element of  REAL 
 
 {  b1 where b1 is  V43(2) V112() V155()  Element of  the carrier of (TOP-REAL 2) : ( ( b1 `1  = p & b1 `2  <= w1 & P <= b1 `2  ) or ( b1 `1  <= y0 & p <= b1 `1  & b1 `2  = w1 ) or ( b1 `1  <= y0 & p <= b1 `1  & b1 `2  = P ) or ( b1 `1  = y0 & b1 `2  <= w1 & P <= b1 `2  ) )  }   is    set 
 
 {  b1 where b1 is  V43(2) V112() V155()  Element of  the carrier of (TOP-REAL 2) : (  not b1 `1  <= p &  not y0 <= b1 `1  &  not b1 `2  <= P &  not w1 <= b1 `2  )  }   is    set 
 
w2 is    Element of K6( the carrier of (TOP-REAL 2))
 
w2 `  is    Element of K6( the carrier of (TOP-REAL 2))
 
 the carrier of (TOP-REAL 2) \ w2 is    set 
 
(TOP-REAL 2) | (w2 `) is   strict   TopSpace-like   SubSpace of  TOP-REAL 2
 
 [#] ((TOP-REAL 2) | (w2 `)) is   non  proper   closed   Element of K6( the carrier of ((TOP-REAL 2) | (w2 `)))
 
 the carrier of ((TOP-REAL 2) | (w2 `)) is    set 
 
K6( the carrier of ((TOP-REAL 2) | (w2 `))) is   non  empty   set 
 
x1 is    Element of K6( the carrier of (TOP-REAL 2))
 
x2 is    set 
 
v is  V43(2) V112() V155()  Element of  the carrier of (TOP-REAL 2)
 
v `1  is  V11()  real   ext-real   Element of  REAL 
 
v `2  is  V11()  real   ext-real   Element of  REAL 
 
v1 is  V43(2) V112() V155()  Element of  the carrier of (TOP-REAL 2)
 
v1 `1  is  V11()  real   ext-real   Element of  REAL 
 
v1 `2  is  V11()  real   ext-real   Element of  REAL 
 
p is  V11()  real   ext-real   Element of  REAL 
 
y0 is  V11()  real   ext-real   Element of  REAL 
 
P is  V11()  real   ext-real   Element of  REAL 
 
w1 is  V11()  real   ext-real   Element of  REAL 
 
 {  b1 where b1 is  V43(2) V112() V155()  Element of  the carrier of (TOP-REAL 2) : ( ( b1 `1  = p & b1 `2  <= w1 & P <= b1 `2  ) or ( b1 `1  <= y0 & p <= b1 `1  & b1 `2  = w1 ) or ( b1 `1  <= y0 & p <= b1 `1  & b1 `2  = P ) or ( b1 `1  = y0 & b1 `2  <= w1 & P <= b1 `2  ) )  }   is    set 
 
 {  b1 where b1 is  V43(2) V112() V155()  Element of  the carrier of (TOP-REAL 2) : (  not b1 `1  <= p &  not y0 <= b1 `1  &  not b1 `2  <= P &  not w1 <= b1 `2  )  }   is    set 
 
w2 is    Element of K6( the carrier of (TOP-REAL 2))
 
w2 `  is    Element of K6( the carrier of (TOP-REAL 2))
 
 the carrier of (TOP-REAL 2) \ w2 is    set 
 
(TOP-REAL 2) | (w2 `) is   strict   TopSpace-like   SubSpace of  TOP-REAL 2
 
 the carrier of ((TOP-REAL 2) | (w2 `)) is    set 
 
K6( the carrier of ((TOP-REAL 2) | (w2 `))) is   non  empty   set 
 
x1 is    Element of K6( the carrier of (TOP-REAL 2))
 
 [#] ((TOP-REAL 2) | (w2 `)) is   non  proper   closed   Element of K6( the carrier of ((TOP-REAL 2) | (w2 `)))
 
p is  V11()  real   ext-real   Element of  REAL 
 
y0 is  V11()  real   ext-real   Element of  REAL 
 
P is  V11()  real   ext-real   Element of  REAL 
 
w1 is  V11()  real   ext-real   Element of  REAL 
 
 {  b1 where b1 is  V43(2) V112() V155()  Element of  the carrier of (TOP-REAL 2) : ( ( b1 `1  = p & b1 `2  <= w1 & P <= b1 `2  ) or ( b1 `1  <= y0 & p <= b1 `1  & b1 `2  = w1 ) or ( b1 `1  <= y0 & p <= b1 `1  & b1 `2  = P ) or ( b1 `1  = y0 & b1 `2  <= w1 & P <= b1 `2  ) )  }   is    set 
 
 {  b1 where b1 is  V43(2) V112() V155()  Element of  the carrier of (TOP-REAL 2) : (  not p <= b1 `1  or  not b1 `1  <= y0 or  not P <= b1 `2  or  not b1 `2  <= w1 )  }   is    set 
 
w2 is    Element of K6( the carrier of (TOP-REAL 2))
 
w2 `  is    Element of K6( the carrier of (TOP-REAL 2))
 
 the carrier of (TOP-REAL 2) \ w2 is    set 
 
(TOP-REAL 2) | (w2 `) is   strict   TopSpace-like   SubSpace of  TOP-REAL 2
 
 [#] ((TOP-REAL 2) | (w2 `)) is   non  proper   closed   Element of K6( the carrier of ((TOP-REAL 2) | (w2 `)))
 
 the carrier of ((TOP-REAL 2) | (w2 `)) is    set 
 
K6( the carrier of ((TOP-REAL 2) | (w2 `))) is   non  empty   set 
 
x1 is    Element of K6( the carrier of (TOP-REAL 2))
 
x2 is    set 
 
v is  V43(2) V112() V155()  Element of  the carrier of (TOP-REAL 2)
 
v `1  is  V11()  real   ext-real   Element of  REAL 
 
v `2  is  V11()  real   ext-real   Element of  REAL 
 
v1 is  V43(2) V112() V155()  Element of  the carrier of (TOP-REAL 2)
 
v1 `1  is  V11()  real   ext-real   Element of  REAL 
 
v1 `2  is  V11()  real   ext-real   Element of  REAL 
 
p is  V11()  real   ext-real   Element of  REAL 
 
y0 is  V11()  real   ext-real   Element of  REAL 
 
P is  V11()  real   ext-real   Element of  REAL 
 
w1 is  V11()  real   ext-real   Element of  REAL 
 
 {  b1 where b1 is  V43(2) V112() V155()  Element of  the carrier of (TOP-REAL 2) : ( ( b1 `1  = p & b1 `2  <= w1 & P <= b1 `2  ) or ( b1 `1  <= y0 & p <= b1 `1  & b1 `2  = w1 ) or ( b1 `1  <= y0 & p <= b1 `1  & b1 `2  = P ) or ( b1 `1  = y0 & b1 `2  <= w1 & P <= b1 `2  ) )  }   is    set 
 
 {  b1 where b1 is  V43(2) V112() V155()  Element of  the carrier of (TOP-REAL 2) : (  not p <= b1 `1  or  not b1 `1  <= y0 or  not P <= b1 `2  or  not b1 `2  <= w1 )  }   is    set 
 
w2 is    Element of K6( the carrier of (TOP-REAL 2))
 
w2 `  is    Element of K6( the carrier of (TOP-REAL 2))
 
 the carrier of (TOP-REAL 2) \ w2 is    set 
 
(TOP-REAL 2) | (w2 `) is   strict   TopSpace-like   SubSpace of  TOP-REAL 2
 
 the carrier of ((TOP-REAL 2) | (w2 `)) is    set 
 
K6( the carrier of ((TOP-REAL 2) | (w2 `))) is   non  empty   set 
 
x1 is    Element of K6( the carrier of (TOP-REAL 2))
 
 [#] ((TOP-REAL 2) | (w2 `)) is   non  proper   closed   Element of K6( the carrier of ((TOP-REAL 2) | (w2 `)))
 
p is    Element of K6( the carrier of (TOP-REAL 2))
 
p `  is    Element of K6( the carrier of (TOP-REAL 2))
 
 the carrier of (TOP-REAL 2) \ p is    set 
 
(TOP-REAL 2) | (p `) is   strict   TopSpace-like   SubSpace of  TOP-REAL 2
 
 the carrier of ((TOP-REAL 2) | (p `)) is    set 
 
K6( the carrier of ((TOP-REAL 2) | (p `))) is   non  empty   set 
 
P is    Element of K6( the carrier of (TOP-REAL 2))
 
w1 is    Element of K6( the carrier of (TOP-REAL 2))
 
P \/ w1 is    Element of K6( the carrier of (TOP-REAL 2))
 
 Cl P is    Element of K6( the carrier of (TOP-REAL 2))
 
(Cl P) \ P is    Element of K6( the carrier of (TOP-REAL 2))
 
 Cl w1 is    Element of K6( the carrier of (TOP-REAL 2))
 
(Cl w1) \ w1 is    Element of K6( the carrier of (TOP-REAL 2))
 
 [#] ((TOP-REAL 2) | (p `)) is   non  proper   closed   Element of K6( the carrier of ((TOP-REAL 2) | (p `)))
 
y0 is   non  empty   Element of K6( the carrier of (TOP-REAL 2))
 
(TOP-REAL 2) | y0 is   non  empty   strict   TopSpace-like   SubSpace of  TOP-REAL 2
 
 the carrier of ((TOP-REAL 2) | y0) is   non  empty   set 
 
K6( the carrier of ((TOP-REAL 2) | y0)) is   non  empty   set 
 
w2 is    Element of K6( the carrier of ((TOP-REAL 2) | y0))
 
x1 is    Element of K6( the carrier of ((TOP-REAL 2) | y0))
 
x2 is    Element of K6( the carrier of ((TOP-REAL 2) | y0))
 
 {} ((TOP-REAL 2) | y0) is   empty   proper   closed  V163() V164() V165() V166() V167() V168() V169()  Element of K6( the carrier of ((TOP-REAL 2) | y0))
 
w2 \/ x1 is    Element of K6( the carrier of ((TOP-REAL 2) | y0))
 
x2 /\ (w2 \/ x1) is    Element of K6( the carrier of ((TOP-REAL 2) | y0))
 
x2 /\ w2 is    Element of K6( the carrier of ((TOP-REAL 2) | y0))
 
x2 /\ x1 is    Element of K6( the carrier of ((TOP-REAL 2) | y0))
 
(x2 /\ w2) \/ (x2 /\ x1) is    Element of K6( the carrier of ((TOP-REAL 2) | y0))
 
x2 \/ w2 is    Element of K6( the carrier of ((TOP-REAL 2) | y0))
 
x2 /\ w1 is    Element of K6( the carrier of (TOP-REAL 2))
 
x2 \/ x1 is    Element of K6( the carrier of ((TOP-REAL 2) | y0))
 
x2 /\ w1 is    Element of K6( the carrier of (TOP-REAL 2))
 
p is  V11()  real   ext-real   Element of  REAL 
 
y0 is  V11()  real   ext-real   Element of  REAL 
 
P is  V11()  real   ext-real   Element of  REAL 
 
w1 is  V11()  real   ext-real   Element of  REAL 
 
 {  b1 where b1 is  V43(2) V112() V155()  Element of  the carrier of (TOP-REAL 2) : ( ( b1 `1  = p & b1 `2  <= w1 & P <= b1 `2  ) or ( b1 `1  <= y0 & p <= b1 `1  & b1 `2  = w1 ) or ( b1 `1  <= y0 & p <= b1 `1  & b1 `2  = P ) or ( b1 `1  = y0 & b1 `2  <= w1 & P <= b1 `2  ) )  }   is    set 
 
w2 is    Element of K6( the carrier of (TOP-REAL 2))
 
 {  b1 where b1 is  V43(2) V112() V155()  Element of  the carrier of (TOP-REAL 2) : (  not b1 `1  <= p &  not y0 <= b1 `1  &  not b1 `2  <= P &  not w1 <= b1 `2  )  }   is    set 
 
 {  b1 where b1 is  V43(2) V112() V155()  Element of  the carrier of (TOP-REAL 2) : (  not p <= b1 `1  or  not b1 `1  <= y0 or  not P <= b1 `2  or  not b1 `2  <= w1 )  }   is    set 
 
w2 `  is    Element of K6( the carrier of (TOP-REAL 2))
 
 the carrier of (TOP-REAL 2) \ w2 is    set 
 
x1 is    Element of K6( the carrier of (TOP-REAL 2))
 
x2 is    Element of K6( the carrier of (TOP-REAL 2))
 
v is    Element of K6( the carrier of (TOP-REAL 2))
 
x1 \/ x2 is    Element of K6( the carrier of (TOP-REAL 2))
 
 Cl x1 is    Element of K6( the carrier of (TOP-REAL 2))
 
(Cl x1) \ x1 is    Element of K6( the carrier of (TOP-REAL 2))
 
 Cl x2 is    Element of K6( the carrier of (TOP-REAL 2))
 
(Cl x2) \ x2 is    Element of K6( the carrier of (TOP-REAL 2))
 
(TOP-REAL 2) | (w2 `) is   strict   TopSpace-like   SubSpace of  TOP-REAL 2
 
 the carrier of ((TOP-REAL 2) | (w2 `)) is    set 
 
K6( the carrier of ((TOP-REAL 2) | (w2 `))) is   non  empty   set 
 
v1 is    Element of K6( the carrier of ((TOP-REAL 2) | (w2 `)))
 
l is    Element of K6( the carrier of ((TOP-REAL 2) | (w2 `)))
 
P is  V11()  real   ext-real   Element of  REAL 
 
p is  V11()  real   ext-real   Element of  REAL 
 
w1 is  V11()  real   ext-real   Element of  REAL 
 
y0 is  V11()  real   ext-real   Element of  REAL 
 
w2 is    Element of K6( the carrier of (TOP-REAL 2))
 
 {  b1 where b1 is  V43(2) V112() V155()  Element of  the carrier of (TOP-REAL 2) : ( ( b1 `1  = p & b1 `2  <= w1 & y0 <= b1 `2  ) or ( b1 `1  <= P & p <= b1 `1  & b1 `2  = w1 ) or ( b1 `1  <= P & p <= b1 `1  & b1 `2  = y0 ) or ( b1 `1  = P & b1 `2  <= w1 & y0 <= b1 `2  ) )  }   is    set 
 
x1 is    Element of K6( the carrier of (TOP-REAL 2))
 
 {  b1 where b1 is  V43(2) V112() V155()  Element of  the carrier of (TOP-REAL 2) : (  not p <= b1 `1  or  not b1 `1  <= P or  not y0 <= b1 `2  or  not b1 `2  <= w1 )  }   is    set 
 
 Cl x1 is    Element of K6( the carrier of (TOP-REAL 2))
 
w2 \/ x1 is    Element of K6( the carrier of (TOP-REAL 2))
 
P is  V11()  real   ext-real   Element of  REAL 
 
p is  V11()  real   ext-real   Element of  REAL 
 
w1 is  V11()  real   ext-real   Element of  REAL 
 
y0 is  V11()  real   ext-real   Element of  REAL 
 
w2 is    Element of K6( the carrier of (TOP-REAL 2))
 
 {  b1 where b1 is  V43(2) V112() V155()  Element of  the carrier of (TOP-REAL 2) : ( ( b1 `1  = p & b1 `2  <= w1 & y0 <= b1 `2  ) or ( b1 `1  <= P & p <= b1 `1  & b1 `2  = w1 ) or ( b1 `1  <= P & p <= b1 `1  & b1 `2  = y0 ) or ( b1 `1  = P & b1 `2  <= w1 & y0 <= b1 `2  ) )  }   is    set 
 
x1 is    Element of K6( the carrier of (TOP-REAL 2))
 
 {  b1 where b1 is  V43(2) V112() V155()  Element of  the carrier of (TOP-REAL 2) : (  not b1 `1  <= p &  not P <= b1 `1  &  not b1 `2  <= y0 &  not w1 <= b1 `2  )  }   is    set 
 
 Cl x1 is    Element of K6( the carrier of (TOP-REAL 2))
 
w2 \/ x1 is    Element of K6( the carrier of (TOP-REAL 2))
 
P is  V43(2) V112() V155()  Element of  the carrier of (TOP-REAL 2)
 
p is  V43(2) V112() V155()  Element of  the carrier of (TOP-REAL 2)
 
y0 is  V43(2) V112() V155()  Element of  the carrier of (TOP-REAL 2)
 
 LSeg (p,y0) is   non  empty   connected   convex   Element of K6( the carrier of (TOP-REAL 2))
 
 {  (((1 - b1) * p) + (b1 * y0)) where b1 is  V11()  real   ext-real   Element of  REAL  : (  0  <= b1 & b1 <= 1 )  }   is    set 
 
{p,y0} is   non  empty   set 
 
(LSeg (p,y0)) \ {p,y0} is    Element of K6( the carrier of (TOP-REAL 2))
 
w1 is  V43(2) V112() V155()  Element of  the carrier of (TOP-REAL 2)
 
 LSeg (P,w1) is   non  empty   connected   convex   Element of K6( the carrier of (TOP-REAL 2))
 
 {  (((1 - b1) * P) + (b1 * w1)) where b1 is  V11()  real   ext-real   Element of  REAL  : (  0  <= b1 & b1 <= 1 )  }   is    set 
 
y0 is  V11()  real   ext-real   Element of  REAL 
 
p is  V11()  real   ext-real   Element of  REAL 
 
 {  |[b1,y0]| where b1 is  V11()  real   ext-real   Element of  REAL  : b1 <= p  }   is    set 
 
P is    Element of K6( the carrier of (TOP-REAL 2))
 
w1 is  V43(2) V112() V155()  Element of  the carrier of (TOP-REAL 2)
 
w2 is  V43(2) V112() V155()  Element of  the carrier of (TOP-REAL 2)
 
 LSeg (w1,w2) is   non  empty   connected   convex   Element of K6( the carrier of (TOP-REAL 2))
 
 {  (((1 - b1) * w1) + (b1 * w2)) where b1 is  V11()  real   ext-real   Element of  REAL  : (  0  <= b1 & b1 <= 1 )  }   is    set 
 
x1 is  V11()  real   ext-real   Element of  REAL 
 
|[x1,y0]| is  V43(2) V112() V155()  Element of  the carrier of (TOP-REAL 2)
 
x2 is  V11()  real   ext-real   Element of  REAL 
 
|[x2,y0]| is  V43(2) V112() V155()  Element of  the carrier of (TOP-REAL 2)
 
v is    set 
 
v1 is  V43(2) V112() V155()  Element of  the carrier of (TOP-REAL 2)
 
l is  V11()  real   ext-real   Element of  REAL 
 
1 - l is  V11()  real   ext-real   Element of  REAL 
 
(1 - l) * w1 is  V43(2) V112() V155()  Element of  the carrier of (TOP-REAL 2)
 
l * w2 is  V43(2) V112() V155()  Element of  the carrier of (TOP-REAL 2)
 
((1 - l) * w1) + (l * w2) is  V43(2) V112() V155()  Element of  the carrier of (TOP-REAL 2)
 
(1 - l) * x1 is  V11()  real   ext-real   Element of  REAL 
 
(1 - l) * y0 is  V11()  real   ext-real   Element of  REAL 
 
|[((1 - l) * x1),((1 - l) * y0)]| is  V43(2) V112() V155()  Element of  the carrier of (TOP-REAL 2)
 
l * |[x2,y0]| is  V43(2) V112() V155()  Element of  the carrier of (TOP-REAL 2)
 
|[((1 - l) * x1),((1 - l) * y0)]| + (l * |[x2,y0]|) is  V43(2) V112() V155()  Element of  the carrier of (TOP-REAL 2)
 
l * x2 is  V11()  real   ext-real   Element of  REAL 
 
l * y0 is  V11()  real   ext-real   Element of  REAL 
 
|[(l * x2),(l * y0)]| is  V43(2) V112() V155()  Element of  the carrier of (TOP-REAL 2)
 
|[((1 - l) * x1),((1 - l) * y0)]| + |[(l * x2),(l * y0)]| is  V43(2) V112() V155()  Element of  the carrier of (TOP-REAL 2)
 
((1 - l) * x1) + (l * x2) is  V11()  real   ext-real   Element of  REAL 
 
((1 - l) * y0) + (l * y0) is  V11()  real   ext-real   Element of  REAL 
 
|[(((1 - l) * x1) + (l * x2)),(((1 - l) * y0) + (l * y0))]| is  V43(2) V112() V155()  Element of  the carrier of (TOP-REAL 2)
 
1 * y0 is  V11()  real   ext-real   Element of  REAL 
 
|[(((1 - l) * x1) + (l * x2)),(1 * y0)]| is  V43(2) V112() V155()  Element of  the carrier of (TOP-REAL 2)
 
p is  V11()  real   ext-real   Element of  REAL 
 
y0 is  V11()  real   ext-real   Element of  REAL 
 
 {  |[p,b1]| where b1 is  V11()  real   ext-real   Element of  REAL  : b1 <= y0  }   is    set 
 
P is    Element of K6( the carrier of (TOP-REAL 2))
 
w1 is  V43(2) V112() V155()  Element of  the carrier of (TOP-REAL 2)
 
w2 is  V43(2) V112() V155()  Element of  the carrier of (TOP-REAL 2)
 
 LSeg (w1,w2) is   non  empty   connected   convex   Element of K6( the carrier of (TOP-REAL 2))
 
 {  (((1 - b1) * w1) + (b1 * w2)) where b1 is  V11()  real   ext-real   Element of  REAL  : (  0  <= b1 & b1 <= 1 )  }   is    set 
 
x1 is  V11()  real   ext-real   Element of  REAL 
 
|[p,x1]| is  V43(2) V112() V155()  Element of  the carrier of (TOP-REAL 2)
 
x2 is  V11()  real   ext-real   Element of  REAL 
 
|[p,x2]| is  V43(2) V112() V155()  Element of  the carrier of (TOP-REAL 2)
 
v is    set 
 
v1 is  V43(2) V112() V155()  Element of  the carrier of (TOP-REAL 2)
 
l is  V11()  real   ext-real   Element of  REAL 
 
1 - l is  V11()  real   ext-real   Element of  REAL 
 
(1 - l) * w1 is  V43(2) V112() V155()  Element of  the carrier of (TOP-REAL 2)
 
l * w2 is  V43(2) V112() V155()  Element of  the carrier of (TOP-REAL 2)
 
((1 - l) * w1) + (l * w2) is  V43(2) V112() V155()  Element of  the carrier of (TOP-REAL 2)
 
(1 - l) * p is  V11()  real   ext-real   Element of  REAL 
 
(1 - l) * x1 is  V11()  real   ext-real   Element of  REAL 
 
|[((1 - l) * p),((1 - l) * x1)]| is  V43(2) V112() V155()  Element of  the carrier of (TOP-REAL 2)
 
l * |[p,x2]| is  V43(2) V112() V155()  Element of  the carrier of (TOP-REAL 2)
 
|[((1 - l) * p),((1 - l) * x1)]| + (l * |[p,x2]|) is  V43(2) V112() V155()  Element of  the carrier of (TOP-REAL 2)
 
l * p is  V11()  real   ext-real   Element of  REAL 
 
l * x2 is  V11()  real   ext-real   Element of  REAL 
 
|[(l * p),(l * x2)]| is  V43(2) V112() V155()  Element of  the carrier of (TOP-REAL 2)
 
|[((1 - l) * p),((1 - l) * x1)]| + |[(l * p),(l * x2)]| is  V43(2) V112() V155()  Element of  the carrier of (TOP-REAL 2)
 
((1 - l) * p) + (l * p) is  V11()  real   ext-real   Element of  REAL 
 
((1 - l) * x1) + (l * x2) is  V11()  real   ext-real   Element of  REAL 
 
|[(((1 - l) * p) + (l * p)),(((1 - l) * x1) + (l * x2))]| is  V43(2) V112() V155()  Element of  the carrier of (TOP-REAL 2)
 
1 * p is  V11()  real   ext-real   Element of  REAL 
 
|[(1 * p),(((1 - l) * x1) + (l * x2))]| is  V43(2) V112() V155()  Element of  the carrier of (TOP-REAL 2)
 
y0 is  V11()  real   ext-real   Element of  REAL 
 
p is  V11()  real   ext-real   Element of  REAL 
 
 {  |[b1,y0]| where b1 is  V11()  real   ext-real   Element of  REAL  : p <= b1  }   is    set 
 
P is    Element of K6( the carrier of (TOP-REAL 2))
 
w1 is  V43(2) V112() V155()  Element of  the carrier of (TOP-REAL 2)
 
w2 is  V43(2) V112() V155()  Element of  the carrier of (TOP-REAL 2)
 
 LSeg (w1,w2) is   non  empty   connected   convex   Element of K6( the carrier of (TOP-REAL 2))
 
 {  (((1 - b1) * w1) + (b1 * w2)) where b1 is  V11()  real   ext-real   Element of  REAL  : (  0  <= b1 & b1 <= 1 )  }   is    set 
 
x1 is  V11()  real   ext-real   Element of  REAL 
 
|[x1,y0]| is  V43(2) V112() V155()  Element of  the carrier of (TOP-REAL 2)
 
x2 is  V11()  real   ext-real   Element of  REAL 
 
|[x2,y0]| is  V43(2) V112() V155()  Element of  the carrier of (TOP-REAL 2)
 
v is    set 
 
v1 is  V43(2) V112() V155()  Element of  the carrier of (TOP-REAL 2)
 
 {  (((1 - b1) * w2) + (b1 * w1)) where b1 is  V11()  real   ext-real   Element of  REAL  : (  0  <= b1 & b1 <= 1 )  }   is    set 
 
l is  V11()  real   ext-real   Element of  REAL 
 
1 - l is  V11()  real   ext-real   Element of  REAL 
 
(1 - l) * w2 is  V43(2) V112() V155()  Element of  the carrier of (TOP-REAL 2)
 
l * w1 is  V43(2) V112() V155()  Element of  the carrier of (TOP-REAL 2)
 
((1 - l) * w2) + (l * w1) is  V43(2) V112() V155()  Element of  the carrier of (TOP-REAL 2)
 
(1 - l) * x2 is  V11()  real   ext-real   Element of  REAL 
 
(1 - l) * y0 is  V11()  real   ext-real   Element of  REAL 
 
|[((1 - l) * x2),((1 - l) * y0)]| is  V43(2) V112() V155()  Element of  the carrier of (TOP-REAL 2)
 
l * |[x1,y0]| is  V43(2) V112() V155()  Element of  the carrier of (TOP-REAL 2)
 
|[((1 - l) * x2),((1 - l) * y0)]| + (l * |[x1,y0]|) is  V43(2) V112() V155()  Element of  the carrier of (TOP-REAL 2)
 
l * x1 is  V11()  real   ext-real   Element of  REAL 
 
l * y0 is  V11()  real   ext-real   Element of  REAL 
 
|[(l * x1),(l * y0)]| is  V43(2) V112() V155()  Element of  the carrier of (TOP-REAL 2)
 
|[((1 - l) * x2),((1 - l) * y0)]| + |[(l * x1),(l * y0)]| is  V43(2) V112() V155()  Element of  the carrier of (TOP-REAL 2)
 
((1 - l) * x2) + (l * x1) is  V11()  real   ext-real   Element of  REAL 
 
((1 - l) * y0) + (l * y0) is  V11()  real   ext-real   Element of  REAL 
 
|[(((1 - l) * x2) + (l * x1)),(((1 - l) * y0) + (l * y0))]| is  V43(2) V112() V155()  Element of  the carrier of (TOP-REAL 2)
 
1 * y0 is  V11()  real   ext-real   Element of  REAL 
 
|[(((1 - l) * x2) + (l * x1)),(1 * y0)]| is  V43(2) V112() V155()  Element of  the carrier of (TOP-REAL 2)
 
p is  V11()  real   ext-real   Element of  REAL 
 
y0 is  V11()  real   ext-real   Element of  REAL 
 
 {  |[p,b1]| where b1 is  V11()  real   ext-real   Element of  REAL  : y0 <= b1  }   is    set 
 
P is    Element of K6( the carrier of (TOP-REAL 2))
 
w1 is  V43(2) V112() V155()  Element of  the carrier of (TOP-REAL 2)
 
w2 is  V43(2) V112() V155()  Element of  the carrier of (TOP-REAL 2)
 
 LSeg (w1,w2) is   non  empty   connected   convex   Element of K6( the carrier of (TOP-REAL 2))
 
 {  (((1 - b1) * w1) + (b1 * w2)) where b1 is  V11()  real   ext-real   Element of  REAL  : (  0  <= b1 & b1 <= 1 )  }   is    set 
 
x1 is  V11()  real   ext-real   Element of  REAL 
 
|[p,x1]| is  V43(2) V112() V155()  Element of  the carrier of (TOP-REAL 2)
 
x2 is  V11()  real   ext-real   Element of  REAL 
 
|[p,x2]| is  V43(2) V112() V155()  Element of  the carrier of (TOP-REAL 2)
 
v is    set 
 
v1 is  V43(2) V112() V155()  Element of  the carrier of (TOP-REAL 2)
 
 {  (((1 - b1) * w2) + (b1 * w1)) where b1 is  V11()  real   ext-real   Element of  REAL  : (  0  <= b1 & b1 <= 1 )  }   is    set 
 
l is  V11()  real   ext-real   Element of  REAL 
 
1 - l is  V11()  real   ext-real   Element of  REAL 
 
(1 - l) * w2 is  V43(2) V112() V155()  Element of  the carrier of (TOP-REAL 2)
 
l * w1 is  V43(2) V112() V155()  Element of  the carrier of (TOP-REAL 2)
 
((1 - l) * w2) + (l * w1) is  V43(2) V112() V155()  Element of  the carrier of (TOP-REAL 2)
 
(1 - l) * p is  V11()  real   ext-real   Element of  REAL 
 
(1 - l) * x2 is  V11()  real   ext-real   Element of  REAL 
 
|[((1 - l) * p),((1 - l) * x2)]| is  V43(2) V112() V155()  Element of  the carrier of (TOP-REAL 2)
 
l * |[p,x1]| is  V43(2) V112() V155()  Element of  the carrier of (TOP-REAL 2)
 
|[((1 - l) * p),((1 - l) * x2)]| + (l * |[p,x1]|) is  V43(2) V112() V155()  Element of  the carrier of (TOP-REAL 2)
 
l * p is  V11()  real   ext-real   Element of  REAL 
 
l * x1 is  V11()  real   ext-real   Element of  REAL 
 
|[(l * p),(l * x1)]| is  V43(2) V112() V155()  Element of  the carrier of (TOP-REAL 2)
 
|[((1 - l) * p),((1 - l) * x2)]| + |[(l * p),(l * x1)]| is  V43(2) V112() V155()  Element of  the carrier of (TOP-REAL 2)
 
((1 - l) * p) + (l * p) is  V11()  real   ext-real   Element of  REAL 
 
((1 - l) * x2) + (l * x1) is  V11()  real   ext-real   Element of  REAL 
 
|[(((1 - l) * p) + (l * p)),(((1 - l) * x2) + (l * x1))]| is  V43(2) V112() V155()  Element of  the carrier of (TOP-REAL 2)
 
1 * p is  V11()  real   ext-real   Element of  REAL 
 
|[(1 * p),(((1 - l) * x2) + (l * x1))]| is  V43(2) V112() V155()  Element of  the carrier of (TOP-REAL 2)
 
p is  V43(2) V112() V155()  Element of  the carrier of (TOP-REAL 2)
 
 north_halfline p is    Element of K6( the carrier of (TOP-REAL 2))
 
p `1  is  V11()  real   ext-real   Element of  REAL 
 
p `2  is  V11()  real   ext-real   Element of  REAL 
 
 {  |[(p `1),b1]| where b1 is  V11()  real   ext-real   Element of  REAL  : p `2  <= b1  }   is    set 
 
 east_halfline p is    Element of K6( the carrier of (TOP-REAL 2))
 
p `2  is  V11()  real   ext-real   Element of  REAL 
 
p `1  is  V11()  real   ext-real   Element of  REAL 
 
 {  |[b1,(p `2)]| where b1 is  V11()  real   ext-real   Element of  REAL  : p `1  <= b1  }   is    set 
 
 south_halfline p is    Element of K6( the carrier of (TOP-REAL 2))
 
p `1  is  V11()  real   ext-real   Element of  REAL 
 
p `2  is  V11()  real   ext-real   Element of  REAL 
 
 {  |[(p `1),b1]| where b1 is  V11()  real   ext-real   Element of  REAL  : b1 <= p `2   }   is    set 
 
 west_halfline p is    Element of K6( the carrier of (TOP-REAL 2))
 
p `2  is  V11()  real   ext-real   Element of  REAL 
 
p `1  is  V11()  real   ext-real   Element of  REAL 
 
 {  |[b1,(p `2)]| where b1 is  V11()  real   ext-real   Element of  REAL  : b1 <= p `1   }   is    set