REAL  is   non  empty   non  trivial  V36() V155() V156() V157() V161()  set 
 
 NAT  is   non  trivial   ordinal  V36()  cardinal   limit_cardinal  V155() V156() V157() V158() V159() V160() V161()  Element of  bool REAL
 
 bool REAL is   non  empty   non  trivial  V36()  set 
 
 COMPLEX  is   non  empty   non  trivial  V36() V155() V161()  set 
 
 omega  is   non  trivial   ordinal  V36()  cardinal   limit_cardinal  V155() V156() V157() V158() V159() V160() V161()  set 
 
 bool omega is   non  empty   non  trivial  V36()  set 
 
K214() is    TopStruct 
 
 the carrier of K214() is    set 
 
 bool NAT is   non  empty   non  trivial  V36()  set 
 
 RAT  is   non  empty   non  trivial  V36() V155() V156() V157() V158() V161()  set 
 
 INT  is   non  empty   non  trivial  V36() V155() V156() V157() V158() V159() V161()  set 
 
[:REAL,REAL:] is   non  empty   non  trivial   Relation-like  V36()  complex-yielding   ext-real-valued   real-valued   set 
 
 bool [:REAL,REAL:] is   non  empty   non  trivial  V36()  set 
 
K375() is   non  empty   strict   multMagma 
 
 the carrier of K375() is   non  empty   set 
 
 <REAL,+>  is   non  empty   strict   unital   Group-like   associative   commutative   left-invertible   right-invertible   invertible   left-cancelable   right-cancelable  V182()  multMagma 
 
K381() is   non  empty   strict   associative   commutative   left-cancelable   right-cancelable  V182()  SubStr of  <REAL,+> 
 
 <NAT,+>  is   non  empty   strict   unital   associative   commutative   left-cancelable   right-cancelable  V182()  uniquely-decomposable   SubStr of K381()
 
 <REAL,*>  is   non  empty   strict   unital   associative   commutative   multMagma 
 
 <NAT,*>  is   non  empty   strict   unital   associative   commutative   uniquely-decomposable   SubStr of  <REAL,*> 
 
 {}  is   empty   ordinal   natural  V11()  real   ext-real   non  positive   non  negative   Relation-like   non-empty   empty-yielding   NAT  -defined   RAT  -valued   Function-like   one-to-one   constant   functional  V36() V37() V40()  cardinal   {}  -element  V85()  FinSequence-like   FinSubsequence-like   FinSequence-membered   complex-yielding   ext-real-valued   real-valued   natural-valued  V155() V156() V157() V158() V159() V160() V161()  FinSequence-yielding   finite-support   Function-yielding  V235() V282()  set 
 
2 is   non  empty   ordinal   natural  V11()  real   ext-real   positive   non  negative  V36()  cardinal  V85() V86() V155() V156() V157() V158() V159() V160()  Element of  NAT 
 
1 is   non  empty   ordinal   natural  V11()  real   ext-real   positive   non  negative  V36()  cardinal  V85() V86() V155() V156() V157() V158() V159() V160()  Element of  NAT 
 
[:1,1:] is   non  empty   Relation-like   RAT  -valued   INT  -valued  V36()  complex-yielding   ext-real-valued   real-valued   natural-valued   set 
 
 bool [:1,1:] is   non  empty  V36() V40()  set 
 
[:[:1,1:],1:] is   non  empty   Relation-like   RAT  -valued   INT  -valued  V36()  complex-yielding   ext-real-valued   real-valued   natural-valued   set 
 
 bool [:[:1,1:],1:] is   non  empty  V36() V40()  set 
 
[:[:1,1:],REAL:] is   non  empty   non  trivial   Relation-like  V36()  complex-yielding   ext-real-valued   real-valued   set 
 
 bool [:[:1,1:],REAL:] is   non  empty   non  trivial  V36()  set 
 
[:[:REAL,REAL:],REAL:] is   non  empty   non  trivial   Relation-like  V36()  complex-yielding   ext-real-valued   real-valued   set 
 
 bool [:[:REAL,REAL:],REAL:] is   non  empty   non  trivial  V36()  set 
 
[:2,2:] is   non  empty   Relation-like   RAT  -valued   INT  -valued  V36()  complex-yielding   ext-real-valued   real-valued   natural-valued   set 
 
[:[:2,2:],REAL:] is   non  empty   non  trivial   Relation-like  V36()  complex-yielding   ext-real-valued   real-valued   set 
 
 bool [:[:2,2:],REAL:] is   non  empty   non  trivial  V36()  set 
 
 TOP-REAL 2 is   non  empty   TopSpace-like   right_complementable   constituted-Functions   constituted-FinSeqs  V189() V190() V191() V192() V193() V194() V195() V228() L16()
 
 the carrier of (TOP-REAL 2) is   non  empty   set 
 
[:COMPLEX,COMPLEX:] is   non  empty   non  trivial   Relation-like  V36()  complex-yielding   set 
 
 bool [:COMPLEX,COMPLEX:] is   non  empty   non  trivial  V36()  set 
 
[:[:COMPLEX,COMPLEX:],COMPLEX:] is   non  empty   non  trivial   Relation-like  V36()  complex-yielding   set 
 
 bool [:[:COMPLEX,COMPLEX:],COMPLEX:] is   non  empty   non  trivial  V36()  set 
 
[:RAT,RAT:] is   non  empty   non  trivial   Relation-like   RAT  -valued  V36()  complex-yielding   ext-real-valued   real-valued   set 
 
 bool [:RAT,RAT:] is   non  empty   non  trivial  V36()  set 
 
[:[:RAT,RAT:],RAT:] is   non  empty   non  trivial   Relation-like   RAT  -valued  V36()  complex-yielding   ext-real-valued   real-valued   set 
 
 bool [:[:RAT,RAT:],RAT:] is   non  empty   non  trivial  V36()  set 
 
[:INT,INT:] is   non  empty   non  trivial   Relation-like   RAT  -valued   INT  -valued  V36()  complex-yielding   ext-real-valued   real-valued   set 
 
 bool [:INT,INT:] is   non  empty   non  trivial  V36()  set 
 
[:[:INT,INT:],INT:] is   non  empty   non  trivial   Relation-like   RAT  -valued   INT  -valued  V36()  complex-yielding   ext-real-valued   real-valued   set 
 
 bool [:[:INT,INT:],INT:] is   non  empty   non  trivial  V36()  set 
 
[:NAT,NAT:] is   Relation-like   RAT  -valued   INT  -valued   complex-yielding   ext-real-valued   real-valued   natural-valued   set 
 
[:[:NAT,NAT:],NAT:] is   Relation-like   RAT  -valued   INT  -valued   complex-yielding   ext-real-valued   real-valued   natural-valued   set 
 
 bool [:[:NAT,NAT:],NAT:] is   non  empty   set 
 
K610() is    set 
 
 0  is   empty   ordinal   natural  V11()  real   ext-real   non  positive   non  negative   Relation-like   non-empty   empty-yielding   NAT  -defined   RAT  -valued   Function-like   one-to-one   constant   functional  V36() V37() V40()  cardinal   {}  -element  V85() V86()  FinSequence-like   FinSubsequence-like   FinSequence-membered   complex-yielding   ext-real-valued   real-valued   natural-valued  V155() V156() V157() V158() V159() V160() V161()  FinSequence-yielding   finite-support   Function-yielding  V235() V282()  Element of  NAT 
 
K74(0,1,2) is   non  empty  V36() V155() V156() V157() V158() V159() V160()  set 
 
[:K74(0,1,2),K74(0,1,2):] is   non  empty   Relation-like   RAT  -valued   INT  -valued  V36()  complex-yielding   ext-real-valued   real-valued   natural-valued   set 
 
[:[:K74(0,1,2),K74(0,1,2):],K74(0,1,2):] is   non  empty   Relation-like   RAT  -valued   INT  -valued  V36()  complex-yielding   ext-real-valued   real-valued   natural-valued   set 
 
 bool [:[:K74(0,1,2),K74(0,1,2):],K74(0,1,2):] is   non  empty  V36() V40()  set 
 
 bool [:K74(0,1,2),K74(0,1,2):] is   non  empty  V36() V40()  set 
 
 F_Real  is   non  empty   non  degenerated   non  trivial   right_complementable   almost_left_invertible   strict   unital   associative   commutative   right-distributive   left-distributive   right_unital   well-unital  V136()  left_unital  V189() V190() V191()  doubleLoopStr 
 
K560() is   non  empty   Relation-like  [:REAL,REAL:] -defined   REAL  -valued   Function-like   total   quasi_total   complex-yielding   ext-real-valued   real-valued   Element of  bool [:[:REAL,REAL:],REAL:]
 
K562() is   non  empty   Relation-like  [:REAL,REAL:] -defined   REAL  -valued   Function-like   total   quasi_total   complex-yielding   ext-real-valued   real-valued   Element of  bool [:[:REAL,REAL:],REAL:]
 
 doubleLoopStr(# REAL,K560(),K562(),1,0 #) is   strict   doubleLoopStr 
 
 the carrier of F_Real is   non  empty   non  trivial  V155() V156() V157()  set 
 
{{},1} is   non  empty  V36() V40() V155() V156() V157() V158() V159() V160()  set 
 
K886() is    set 
 
 bool K886() is   non  empty   set 
 
K887() is    Element of  bool K886()
 
[:NAT,REAL:] is   non  trivial   Relation-like  V36()  complex-yielding   ext-real-valued   real-valued   set 
 
 bool [:NAT,REAL:] is   non  empty   non  trivial  V36()  set 
 
[:NAT,COMPLEX:] is   non  trivial   Relation-like  V36()  complex-yielding   set 
 
 bool [:NAT,COMPLEX:] is   non  empty   non  trivial  V36()  set 
 
K400(NAT) is  V187()  set 
 
 the carrier of F_Real *  is   non  empty   functional   FinSequence-membered   FinSequenceSet of  the carrier of F_Real
 
REAL *  is   non  empty   functional   FinSequence-membered   FinSequenceSet of  REAL 
 
3 is   non  empty   ordinal   natural  V11()  real   ext-real   positive   non  negative  V36()  cardinal  V85() V86() V155() V156() V157() V158() V159() V160()  Element of  NAT 
 
 REAL 0 is   non  empty   functional   FinSequence-membered   FinSequenceSet of  REAL 
 
0 -tuples_on REAL is   non  empty   functional   FinSequence-membered   FinSequenceSet of  REAL 
 
 TOP-REAL 0 is   non  empty   TopSpace-like   right_complementable   constituted-Functions   constituted-FinSeqs  V189() V190() V191() V192() V193() V194() V195() V228() L16()
 
 0. (TOP-REAL 0) is   empty   ordinal   natural  V11()  real   ext-real   non  positive   non  negative   Relation-like   non-empty   empty-yielding   NAT  -defined   RAT  -valued   Function-like   one-to-one   constant   functional  V36() V37() V40()  cardinal   0  -element  V61( TOP-REAL 0) V85()  FinSequence-like   FinSubsequence-like   FinSequence-membered   complex-yielding   ext-real-valued   real-valued   natural-valued  V155() V156() V157() V158() V159() V160() V161()  FinSequence-yielding   finite-support   Function-yielding  V235() V282()  Element of  the carrier of (TOP-REAL 0)
 
 the carrier of (TOP-REAL 0) is   non  empty   set 
 
 the ZeroF of (TOP-REAL 0) is   empty   ordinal   natural  V11()  real   ext-real   non  positive   non  negative   Relation-like   non-empty   empty-yielding   NAT  -defined   RAT  -valued   Function-like   one-to-one   constant   functional  V36() V37() V40()  cardinal   0  -element  V85()  FinSequence-like   FinSubsequence-like   FinSequence-membered   complex-yielding   ext-real-valued   real-valued   natural-valued  V155() V156() V157() V158() V159() V160() V161()  FinSequence-yielding   finite-support   Function-yielding  V235() V282()  Element of  the carrier of (TOP-REAL 0)
 
{(0. (TOP-REAL 0))} is   non  empty   trivial   functional  V36() V40() 1 -element  V155() V156() V157() V158() V159() V160()  set 
 
 - 1 is   non  empty  V11()  real   ext-real   non  positive   negative  V85()  set 
 
 Seg 1 is   non  empty   trivial  V16() V36() 1 -element  V155() V156() V157() V158() V159() V160()  Element of  bool NAT
 
 {  b1 where b1 is   ordinal   natural  V11()  real   ext-real   non  negative  V36()  cardinal  V85() V86() V155() V156() V157() V158() V159() V160()  Element of  NAT  : ( 1 <= b1 & b1 <= 1 )  }   is    set 
 
{1} is   non  empty   trivial  V36() V40() 1 -element  V155() V156() V157() V158() V159() V160()  set 
 
 Seg 2 is   non  empty  V16() V36() 2 -element  V155() V156() V157() V158() V159() V160()  Element of  bool NAT
 
 {  b1 where b1 is   ordinal   natural  V11()  real   ext-real   non  negative  V36()  cardinal  V85() V86() V155() V156() V157() V158() V159() V160()  Element of  NAT  : ( 1 <= b1 & b1 <= 2 )  }   is    set 
 
{1,2} is   non  empty  V36() V40() V155() V156() V157() V158() V159() V160()  set 
 
[1,1] is    set 
 
{1,1} is   non  empty  V36() V40() V155() V156() V157() V158() V159() V160()  set 
 
{{1,1},{1}} is   non  empty  V36() V40()  set 
 
[1,2] is    set 
 
{{1,2},{1}} is   non  empty  V36() V40()  set 
 
[2,1] is    set 
 
{2,1} is   non  empty  V36() V40() V155() V156() V157() V158() V159() V160()  set 
 
{2} is   non  empty   trivial  V36() V40() 1 -element  V155() V156() V157() V158() V159() V160()  set 
 
{{2,1},{2}} is   non  empty  V36() V40()  set 
 
[2,2] is    set 
 
{2,2} is   non  empty  V36() V40() V155() V156() V157() V158() V159() V160()  set 
 
{{2,2},{2}} is   non  empty  V36() V40()  set 
 
 0. F_Real is  V11()  real   ext-real  V61( F_Real )  Element of  the carrier of F_Real
 
 the ZeroF of F_Real is  V11()  real   ext-real   Element of  the carrier of F_Real
 
 sin  is   non  empty   Relation-like   REAL  -defined   REAL  -valued   Function-like   total   quasi_total   complex-yielding   ext-real-valued   real-valued   Element of  bool [:REAL,REAL:]
 
 cos  is   non  empty   Relation-like   REAL  -defined   REAL  -valued   Function-like   total   quasi_total   complex-yielding   ext-real-valued   real-valued   Element of  bool [:REAL,REAL:]
 
 cos 0 is  V11()  real   ext-real   Element of  REAL 
 
 sin 0 is  V11()  real   ext-real   Element of  REAL 
 
 PI  is  V11()  real   ext-real   Element of  REAL 
 
2 * PI is  V11()  real   ext-real   Element of  REAL 
 
PI / 2 is  V11()  real   ext-real   Element of  REAL 
 
2 "  is   non  empty  V11()  real   ext-real   positive   non  negative   set 
 
PI * (2 ") is  V11()  real   ext-real   set 
 
 - (PI / 2) is  V11()  real   ext-real   Element of  REAL 
 
[.(- (PI / 2)),(PI / 2).] is  V155() V156() V157()  Element of  bool REAL
 
K196(REAL,REAL,sin,[.(- (PI / 2)),(PI / 2).]) is  V155() V156() V157()  Element of  bool REAL
 
 - 1 is   non  empty  V11()  real   ext-real   non  positive   negative  V85()  Element of  REAL 
 
[.(- 1),1.] is  V155() V156() V157()  Element of  bool REAL
 
n is   ordinal   natural  V11()  real   ext-real   non  negative  V36()  cardinal  V85()  set 
 
 Seg n is  V16() V36() n -element  V155() V156() V157() V158() V159() V160()  Element of  bool NAT
 
 {  b1 where b1 is   ordinal   natural  V11()  real   ext-real   non  negative  V36()  cardinal  V85() V86() V155() V156() V157() V158() V159() V160()  Element of  NAT  : ( 1 <= b1 & b1 <= n )  }   is    set 
 
[:(Seg n),(Seg n):] is   Relation-like   RAT  -valued   INT  -valued  V36()  complex-yielding   ext-real-valued   real-valued   natural-valued   set 
 
 bool [:(Seg n),(Seg n):] is   non  empty  V36() V40()  set 
 
p is   non  empty   non  degenerated   non  trivial   right_complementable   almost_left_invertible   unital   associative   commutative   right-distributive   left-distributive   right_unital   well-unital  V136()  left_unital  V189() V190() V191()  doubleLoopStr 
 
 the carrier of p is   non  empty   non  trivial   set 
 
 the carrier of p *  is   non  empty   functional   FinSequence-membered   FinSequenceSet of  the carrier of p
 
q is   Relation-like   NAT  -defined   the carrier of p *  -valued   Function-like  V36()  FinSequence-like   FinSubsequence-like   FinSequence-yielding   finite-support   Function-yielding  V235()  tabular   Matrix of n,n, the carrier of p
 
 Det q is    Element of  the carrier of p
 
 Indices q is    set 
 
TR is   Relation-like   Seg n -defined   Seg n -valued   Function-like   one-to-one   total   quasi_total   onto   bijective  V36()  complex-yielding   ext-real-valued   real-valued   natural-valued   finite-support   Element of  bool [:(Seg n),(Seg n):]
 
q * TR is   Relation-like   NAT  -defined   Seg n -defined   the carrier of p *  -valued   the carrier of p *  -valued   Function-like  V36()  FinSequence-like   FinSubsequence-like   FinSequence-yielding   finite-support   Function-yielding  V235()  tabular   Matrix of n,n, the carrier of p
 
(q * TR) @  is   Relation-like   NAT  -defined   the carrier of p *  -valued   Function-like  V36()  FinSequence-like   FinSubsequence-like   FinSequence-yielding   finite-support   Function-yielding  V235()  tabular   Matrix of n,n, the carrier of p
 
((q * TR) @) * TR is   Relation-like   NAT  -defined   Seg n -defined   the carrier of p *  -valued   the carrier of p *  -valued   Function-like  V36()  FinSequence-like   FinSubsequence-like   FinSequence-yielding   finite-support   Function-yielding  V235()  tabular   Matrix of n,n, the carrier of p
 
(((q * TR) @) * TR) @  is   Relation-like   NAT  -defined   the carrier of p *  -valued   Function-like  V36()  FinSequence-like   FinSubsequence-like   FinSequence-yielding   finite-support   Function-yielding  V235()  tabular   Matrix of n,n, the carrier of p
 
 Det ((((q * TR) @) * TR) @) is    Element of  the carrier of p
 
 Permutations n is   non  empty   permutational   set 
 
 len (Permutations n) is   ordinal   natural  V11()  real   ext-real   non  negative  V36()  cardinal  V85() V86() V155() V156() V157() V158() V159() V160()  Element of  NAT 
 
 Seg (len (Permutations n)) is  V16() V36()  len (Permutations n) -element  V155() V156() V157() V158() V159() V160()  Element of  bool NAT
 
 {  b1 where b1 is   ordinal   natural  V11()  real   ext-real   non  negative  V36()  cardinal  V85() V86() V155() V156() V157() V158() V159() V160()  Element of  NAT  : ( 1 <= b1 & b1 <=  len (Permutations n) )  }   is    set 
 
 - (Det q) is    Element of  the carrier of p
 
 - (- (Det q)) is    Element of  the carrier of p
 
n1 is   Relation-like   Seg (len (Permutations n)) -defined   Seg (len (Permutations n)) -valued   Function-like   one-to-one   total   quasi_total   onto   bijective  V36()  complex-yielding   ext-real-valued   real-valued   natural-valued   finite-support   Element of  Permutations n
 
 - ((Det q),n1) is    Element of  the carrier of p
 
 Det (((q * TR) @) * TR) is    Element of  the carrier of p
 
 Det ((q * TR) @) is    Element of  the carrier of p
 
 - ((Det ((q * TR) @)),n1) is    Element of  the carrier of p
 
 Det (q * TR) is    Element of  the carrier of p
 
 - ((Det (q * TR)),n1) is    Element of  the carrier of p
 
 - ((- ((Det q),n1)),n1) is    Element of  the carrier of p
 
f is   ordinal   natural  V11()  real   ext-real   non  negative  V36()  cardinal  V85()  set 
 
TR . f is   ordinal   natural  V11()  real   ext-real   non  negative  V36()  cardinal  V85()  Element of  REAL 
 
X is   ordinal   natural  V11()  real   ext-real   non  negative  V36()  cardinal  V85()  set 
 
[f,X] is    set 
 
{f,X} is   non  empty  V36() V40() V155() V156() V157() V158() V159() V160()  set 
 
{f} is   non  empty   trivial  V36() V40() 1 -element  V155() V156() V157() V158() V159() V160()  set 
 
{{f,X},{f}} is   non  empty  V36() V40()  set 
 
((((q * TR) @) * TR) @) * (f,X) is    Element of  the carrier of p
 
TR . X is   ordinal   natural  V11()  real   ext-real   non  negative  V36()  cardinal  V85()  Element of  REAL 
 
q * ((TR . f),(TR . X)) is    Element of  the carrier of p
 
 Indices ((((q * TR) @) * TR) @) is    set 
 
[X,f] is    set 
 
{X,f} is   non  empty  V36() V40() V155() V156() V157() V158() V159() V160()  set 
 
{X} is   non  empty   trivial  V36() V40() 1 -element  V155() V156() V157() V158() V159() V160()  set 
 
{{X,f},{X}} is   non  empty  V36() V40()  set 
 
 Indices (((q * TR) @) * TR) is    set 
 
(((q * TR) @) * TR) * (X,f) is    Element of  the carrier of p
 
 Indices ((q * TR) @) is    set 
 
[f,(TR . X)] is    set 
 
{f,(TR . X)} is   non  empty  V36() V40() V155() V156() V157() V158() V159() V160()  set 
 
{{f,(TR . X)},{f}} is   non  empty  V36() V40()  set 
 
 Indices (q * TR) is    set 
 
z is   ordinal   natural  V11()  real   ext-real   non  negative  V36()  cardinal  V85()  set 
 
[z,f] is    set 
 
{z,f} is   non  empty  V36() V40() V155() V156() V157() V158() V159() V160()  set 
 
{z} is   non  empty   trivial  V36() V40() 1 -element  V155() V156() V157() V158() V159() V160()  set 
 
{{z,f},{z}} is   non  empty  V36() V40()  set 
 
((q * TR) @) * (z,f) is    Element of  the carrier of p
 
(q * TR) * (f,(TR . X)) is    Element of  the carrier of p
 
z is   ordinal   natural  V11()  real   ext-real   non  negative  V36()  cardinal  V85()  set 
 
[z,f] is    set 
 
{z,f} is   non  empty  V36() V40() V155() V156() V157() V158() V159() V160()  set 
 
{z} is   non  empty   trivial  V36() V40() 1 -element  V155() V156() V157() V158() V159() V160()  set 
 
{{z,f},{z}} is   non  empty  V36() V40()  set 
 
((q * TR) @) * (z,f) is    Element of  the carrier of p
 
n is   ordinal   natural  V11()  real   ext-real   non  negative  V36()  cardinal  V85()  set 
 
p is   non  empty   non  degenerated   non  trivial   right_complementable   almost_left_invertible   unital   associative   commutative   right-distributive   left-distributive   right_unital   well-unital  V136()  left_unital  V189() V190() V191()  doubleLoopStr 
 
 the carrier of p is   non  empty   non  trivial   set 
 
 the carrier of p *  is   non  empty   functional   FinSequence-membered   FinSequenceSet of  the carrier of p
 
q is   Relation-like   NAT  -defined   the carrier of p *  -valued   Function-like  V36()  FinSequence-like   FinSubsequence-like   FinSequence-yielding   finite-support   Function-yielding  V235()  tabular   diagonal   upper_triangular   lower_triangular   Matrix of n,n, the carrier of p
 
q @  is   Relation-like   NAT  -defined   the carrier of p *  -valued   Function-like  V36()  FinSequence-like   FinSubsequence-like   FinSequence-yielding   finite-support   Function-yielding  V235()  tabular   Matrix of n,n, the carrier of p
 
 Indices q is    set 
 
TR is   ordinal   natural  V11()  real   ext-real   non  negative  V36()  cardinal  V85()  set 
 
n1 is   ordinal   natural  V11()  real   ext-real   non  negative  V36()  cardinal  V85()  set 
 
[TR,n1] is    set 
 
{TR,n1} is   non  empty  V36() V40() V155() V156() V157() V158() V159() V160()  set 
 
{TR} is   non  empty   trivial  V36() V40() 1 -element  V155() V156() V157() V158() V159() V160()  set 
 
{{TR,n1},{TR}} is   non  empty  V36() V40()  set 
 
q * (TR,n1) is    Element of  the carrier of p
 
(q @) * (TR,n1) is    Element of  the carrier of p
 
[n1,TR] is    set 
 
{n1,TR} is   non  empty  V36() V40() V155() V156() V157() V158() V159() V160()  set 
 
{n1} is   non  empty   trivial  V36() V40() 1 -element  V155() V156() V157() V158() V159() V160()  set 
 
{{n1,TR},{n1}} is   non  empty  V36() V40()  set 
 
q * (n1,TR) is    Element of  the carrier of p
 
 0. p is  V61(p)  Element of  the carrier of p
 
 the ZeroF of p is    Element of  the carrier of p
 
n is  V11()  real   ext-real   set 
 
n ^2  is  V11()  real   ext-real   set 
 
n * n is  V11()  real   ext-real   set 
 
p is   Relation-like   NAT  -defined   Function-like  V36()  FinSequence-like   FinSubsequence-like   complex-yielding   ext-real-valued   real-valued   finite-support   set 
 
 dom p is  V36() V155() V156() V157() V158() V159() V160()  Element of  bool NAT
 
 sqr p is   Relation-like   NAT  -defined   REAL  -valued   Function-like  V36()  FinSequence-like   FinSubsequence-like   complex-yielding   ext-real-valued   real-valued   finite-support   FinSequence of  REAL 
 
 Sum (sqr p) is  V11()  real   ext-real   Element of  REAL 
 
q is   ordinal   natural  V11()  real   ext-real   non  negative  V36()  cardinal  V85()  set 
 
p +* (q,n) is   Relation-like   NAT  -defined   Function-like  V36()  FinSequence-like   FinSubsequence-like   complex-yielding   ext-real-valued   real-valued   finite-support   set 
 
 sqr (p +* (q,n)) is   Relation-like   NAT  -defined   REAL  -valued   Function-like  V36()  FinSequence-like   FinSubsequence-like   complex-yielding   ext-real-valued   real-valued   finite-support   FinSequence of  REAL 
 
 Sum (sqr (p +* (q,n))) is  V11()  real   ext-real   Element of  REAL 
 
p . q is  V11()  real   ext-real   Element of  REAL 
 
(p . q) ^2  is  V11()  real   ext-real   Element of  REAL 
 
(p . q) * (p . q) is  V11()  real   ext-real   set 
 
(Sum (sqr p)) - ((p . q) ^2) is  V11()  real   ext-real   Element of  REAL 
 
 - ((p . q) ^2) is  V11()  real   ext-real   set 
 
(Sum (sqr p)) + (- ((p . q) ^2)) is  V11()  real   ext-real   set 
 
((Sum (sqr p)) - ((p . q) ^2)) + (n ^2) is  V11()  real   ext-real   Element of  REAL 
 
 @ p is   Relation-like   NAT  -defined   the carrier of F_Real -valued   Function-like  V36()  FinSequence-like   FinSubsequence-like   complex-yielding   ext-real-valued   real-valued   finite-support   FinSequence of  the carrier of F_Real
 
 @ (@ p) is   Relation-like   NAT  -defined   REAL  -valued   Function-like  V36()  FinSequence-like   FinSubsequence-like   complex-yielding   ext-real-valued   real-valued   finite-support   FinSequence of  REAL 
 
q -' 1 is   ordinal   natural  V11()  real   ext-real   non  negative  V36()  cardinal  V85() V86() V155() V156() V157() V158() V159() V160()  Element of  NAT 
 
(@ (@ p)) | (q -' 1) is   Relation-like   NAT  -defined   REAL  -valued   Function-like  V36()  FinSequence-like   FinSubsequence-like   complex-yielding   ext-real-valued   real-valued   finite-support   FinSequence of  REAL 
 
 Seg (q -' 1) is  V16() V36() q -' 1 -element  V155() V156() V157() V158() V159() V160()  Element of  bool NAT
 
 {  b1 where b1 is   ordinal   natural  V11()  real   ext-real   non  negative  V36()  cardinal  V85() V86() V155() V156() V157() V158() V159() V160()  Element of  NAT  : ( 1 <= b1 & b1 <= q -' 1 )  }   is    set 
 
(@ (@ p)) | (Seg (q -' 1)) is   Relation-like   NAT  -defined   Seg (q -' 1) -defined   NAT  -defined   REAL  -valued   Function-like  V36()  FinSubsequence-like   complex-yielding   ext-real-valued   real-valued   finite-support   set 
 
(@ (@ p)) /^ q is   Relation-like   NAT  -defined   REAL  -valued   Function-like  V36()  FinSequence-like   FinSubsequence-like   complex-yielding   ext-real-valued   real-valued   finite-support   FinSequence of  REAL 
 
TR is  V11()  real   ext-real   Element of  REAL 
 
<*TR*> is   non  empty   trivial   Relation-like   NAT  -defined   REAL  -valued   Function-like   one-to-one   constant  V36() 1 -element   FinSequence-like   FinSubsequence-like   complex-yielding   ext-real-valued   real-valued  V149()  decreasing   non-decreasing   non-increasing   finite-support   Element of 1 -tuples_on REAL
 
1 -tuples_on REAL is   non  empty   functional   FinSequence-membered   FinSequenceSet of  REAL 
 
[1,TR] is    set 
 
{1,TR} is   non  empty  V36() V155() V156() V157()  set 
 
{{1,TR},{1}} is   non  empty  V36() V40()  set 
 
{[1,TR]} is   non  empty   trivial   Relation-like   Function-like   constant  V36() 1 -element   finite-support   set 
 
 sqr <*TR*> is   non  empty   trivial   Relation-like   NAT  -defined   REAL  -valued   Function-like   one-to-one   constant  V36() 1 -element   FinSequence-like   FinSubsequence-like   complex-yielding   ext-real-valued   real-valued  V149()  decreasing   non-decreasing   non-increasing   finite-support   Element of 1 -tuples_on REAL
 
TR ^2  is  V11()  real   ext-real   Element of  REAL 
 
TR * TR is  V11()  real   ext-real   set 
 
<*(TR ^2)*> is   non  empty   trivial   Relation-like   NAT  -defined   REAL  -valued   Function-like   one-to-one   constant  V36() 1 -element   FinSequence-like   FinSubsequence-like   complex-yielding   ext-real-valued   real-valued  V149()  decreasing   non-decreasing   non-increasing   finite-support   Element of 1 -tuples_on REAL
 
[1,(TR ^2)] is    set 
 
{1,(TR ^2)} is   non  empty  V36() V155() V156() V157()  set 
 
{{1,(TR ^2)},{1}} is   non  empty  V36() V40()  set 
 
{[1,(TR ^2)]} is   non  empty   trivial   Relation-like   Function-like   constant  V36() 1 -element   finite-support   set 
 
(@ (@ p)) +* (q,TR) is   Relation-like   NAT  -defined   REAL  -valued   Function-like  V36()  FinSequence-like   FinSubsequence-like   complex-yielding   ext-real-valued   real-valued   finite-support   set 
 
((@ (@ p)) | (q -' 1)) ^ <*TR*> is   non  empty   Relation-like   NAT  -defined   REAL  -valued   Function-like  V36()  FinSequence-like   FinSubsequence-like   complex-yielding   ext-real-valued   real-valued   finite-support   Element of REAL * 
 
(((@ (@ p)) | (q -' 1)) ^ <*TR*>) ^ ((@ (@ p)) /^ q) is   non  empty   Relation-like   NAT  -defined   REAL  -valued   Function-like  V36()  FinSequence-like   FinSubsequence-like   complex-yielding   ext-real-valued   real-valued   finite-support   Element of REAL * 
 
 sqr (@ (@ p)) is   Relation-like   NAT  -defined   REAL  -valued   Function-like  V36()  FinSequence-like   FinSubsequence-like   complex-yielding   ext-real-valued   real-valued   finite-support   FinSequence of  REAL 
 
 sqr (((@ (@ p)) | (q -' 1)) ^ <*TR*>) is   Relation-like   NAT  -defined   REAL  -valued   Function-like  V36()  FinSequence-like   FinSubsequence-like   complex-yielding   ext-real-valued   real-valued   finite-support   FinSequence of  REAL 
 
 sqr ((@ (@ p)) /^ q) is   Relation-like   NAT  -defined   REAL  -valued   Function-like  V36()  FinSequence-like   FinSubsequence-like   complex-yielding   ext-real-valued   real-valued   finite-support   FinSequence of  REAL 
 
(sqr (((@ (@ p)) | (q -' 1)) ^ <*TR*>)) ^ (sqr ((@ (@ p)) /^ q)) is   Relation-like   NAT  -defined   REAL  -valued   Function-like  V36()  FinSequence-like   FinSubsequence-like   complex-yielding   ext-real-valued   real-valued   finite-support   Element of REAL * 
 
 sqr ((@ (@ p)) | (q -' 1)) is   Relation-like   NAT  -defined   REAL  -valued   Function-like  V36()  FinSequence-like   FinSubsequence-like   complex-yielding   ext-real-valued   real-valued   finite-support   FinSequence of  REAL 
 
(sqr ((@ (@ p)) | (q -' 1))) ^ (sqr <*TR*>) is   non  empty   Relation-like   NAT  -defined   REAL  -valued   Function-like  V36()  FinSequence-like   FinSubsequence-like   complex-yielding   ext-real-valued   real-valued   finite-support   Element of REAL * 
 
((sqr ((@ (@ p)) | (q -' 1))) ^ (sqr <*TR*>)) ^ (sqr ((@ (@ p)) /^ q)) is   non  empty   Relation-like   NAT  -defined   REAL  -valued   Function-like  V36()  FinSequence-like   FinSubsequence-like   complex-yielding   ext-real-valued   real-valued   finite-support   Element of REAL * 
 
 Sum (sqr (@ (@ p))) is  V11()  real   ext-real   Element of  REAL 
 
 Sum ((sqr ((@ (@ p)) | (q -' 1))) ^ (sqr <*TR*>)) is  V11()  real   ext-real   Element of  REAL 
 
 Sum (sqr ((@ (@ p)) /^ q)) is  V11()  real   ext-real   Element of  REAL 
 
(Sum ((sqr ((@ (@ p)) | (q -' 1))) ^ (sqr <*TR*>))) + (Sum (sqr ((@ (@ p)) /^ q))) is  V11()  real   ext-real   Element of  REAL 
 
 Sum (sqr ((@ (@ p)) | (q -' 1))) is  V11()  real   ext-real   Element of  REAL 
 
(Sum (sqr ((@ (@ p)) | (q -' 1)))) + (TR ^2) is  V11()  real   ext-real   Element of  REAL 
 
((Sum (sqr ((@ (@ p)) | (q -' 1)))) + (TR ^2)) + (Sum (sqr ((@ (@ p)) /^ q))) is  V11()  real   ext-real   Element of  REAL 
 
z is  V11()  real   ext-real   Element of  REAL 
 
<*z*> is   non  empty   trivial   Relation-like   NAT  -defined   REAL  -valued   Function-like   one-to-one   constant  V36() 1 -element   FinSequence-like   FinSubsequence-like   complex-yielding   ext-real-valued   real-valued  V149()  decreasing   non-decreasing   non-increasing   finite-support   Element of 1 -tuples_on REAL
 
[1,z] is    set 
 
{1,z} is   non  empty  V36() V155() V156() V157()  set 
 
{{1,z},{1}} is   non  empty  V36() V40()  set 
 
{[1,z]} is   non  empty   trivial   Relation-like   Function-like   constant  V36() 1 -element   finite-support   set 
 
 sqr <*z*> is   non  empty   trivial   Relation-like   NAT  -defined   REAL  -valued   Function-like   one-to-one   constant  V36() 1 -element   FinSequence-like   FinSubsequence-like   complex-yielding   ext-real-valued   real-valued  V149()  decreasing   non-decreasing   non-increasing   finite-support   Element of 1 -tuples_on REAL
 
z ^2  is  V11()  real   ext-real   Element of  REAL 
 
z * z is  V11()  real   ext-real   set 
 
<*(z ^2)*> is   non  empty   trivial   Relation-like   NAT  -defined   REAL  -valued   Function-like   one-to-one   constant  V36() 1 -element   FinSequence-like   FinSubsequence-like   complex-yielding   ext-real-valued   real-valued  V149()  decreasing   non-decreasing   non-increasing   finite-support   Element of 1 -tuples_on REAL
 
[1,(z ^2)] is    set 
 
{1,(z ^2)} is   non  empty  V36() V155() V156() V157()  set 
 
{{1,(z ^2)},{1}} is   non  empty  V36() V40()  set 
 
{[1,(z ^2)]} is   non  empty   trivial   Relation-like   Function-like   constant  V36() 1 -element   finite-support   set 
 
(@ (@ p)) +* (q,z) is   Relation-like   NAT  -defined   REAL  -valued   Function-like  V36()  FinSequence-like   FinSubsequence-like   complex-yielding   ext-real-valued   real-valued   finite-support   set 
 
((@ (@ p)) | (q -' 1)) ^ <*z*> is   non  empty   Relation-like   NAT  -defined   REAL  -valued   Function-like  V36()  FinSequence-like   FinSubsequence-like   complex-yielding   ext-real-valued   real-valued   finite-support   Element of REAL * 
 
(((@ (@ p)) | (q -' 1)) ^ <*z*>) ^ ((@ (@ p)) /^ q) is   non  empty   Relation-like   NAT  -defined   REAL  -valued   Function-like  V36()  FinSequence-like   FinSubsequence-like   complex-yielding   ext-real-valued   real-valued   finite-support   Element of REAL * 
 
 sqr ((@ (@ p)) +* (q,z)) is   Relation-like   NAT  -defined   REAL  -valued   Function-like  V36()  FinSequence-like   FinSubsequence-like   complex-yielding   ext-real-valued   real-valued   finite-support   FinSequence of  REAL 
 
 sqr (((@ (@ p)) | (q -' 1)) ^ <*z*>) is   Relation-like   NAT  -defined   REAL  -valued   Function-like  V36()  FinSequence-like   FinSubsequence-like   complex-yielding   ext-real-valued   real-valued   finite-support   FinSequence of  REAL 
 
(sqr (((@ (@ p)) | (q -' 1)) ^ <*z*>)) ^ (sqr ((@ (@ p)) /^ q)) is   Relation-like   NAT  -defined   REAL  -valued   Function-like  V36()  FinSequence-like   FinSubsequence-like   complex-yielding   ext-real-valued   real-valued   finite-support   Element of REAL * 
 
(sqr ((@ (@ p)) | (q -' 1))) ^ (sqr <*z*>) is   non  empty   Relation-like   NAT  -defined   REAL  -valued   Function-like  V36()  FinSequence-like   FinSubsequence-like   complex-yielding   ext-real-valued   real-valued   finite-support   Element of REAL * 
 
((sqr ((@ (@ p)) | (q -' 1))) ^ (sqr <*z*>)) ^ (sqr ((@ (@ p)) /^ q)) is   non  empty   Relation-like   NAT  -defined   REAL  -valued   Function-like  V36()  FinSequence-like   FinSubsequence-like   complex-yielding   ext-real-valued   real-valued   finite-support   Element of REAL * 
 
 Sum (sqr ((@ (@ p)) +* (q,z))) is  V11()  real   ext-real   Element of  REAL 
 
 Sum ((sqr ((@ (@ p)) | (q -' 1))) ^ (sqr <*z*>)) is  V11()  real   ext-real   Element of  REAL 
 
(Sum ((sqr ((@ (@ p)) | (q -' 1))) ^ (sqr <*z*>))) + (Sum (sqr ((@ (@ p)) /^ q))) is  V11()  real   ext-real   Element of  REAL 
 
(Sum (sqr ((@ (@ p)) | (q -' 1)))) + (z ^2) is  V11()  real   ext-real   Element of  REAL 
 
((Sum (sqr ((@ (@ p)) | (q -' 1)))) + (z ^2)) + (Sum (sqr ((@ (@ p)) /^ q))) is  V11()  real   ext-real   Element of  REAL 
 
n is    set 
 
p is   Relation-like   Function-like   Function-yielding  V235()  set 
 
 dom p is    set 
 
q is   Relation-like   Function-like   set 
 
p . q is   Relation-like   Function-like   set 
 
TR is    set 
 
(p . q) . TR is    set 
 
q . TR is    set 
 
n is    set 
 
 bool n is   non  empty   set 
 
p is    Element of  bool n
 
q is   Relation-like   Function-like   Function-yielding  V235()  set 
 
TR is   Relation-like   Function-like   set 
 
 dom q is    set 
 
q . TR is   Relation-like   Function-like   set 
 
n1 is    set 
 
(q . TR) . n1 is    set 
 
TR . n1 is    set 
 
n is    set 
 
p is    set 
 
n /\ p is    set 
 
q is   Relation-like   Function-like   Function-yielding  V235()  set 
 
TR is   Relation-like   Function-like   set 
 
 dom q is    set 
 
q . TR is   Relation-like   Function-like   set 
 
n1 is    set 
 
(q . TR) . n1 is    set 
 
TR . n1 is    set 
 
n \/ p is    set 
 
TR is   Relation-like   Function-like   Function-yielding  V235() (p)  set 
 
q is   Relation-like   Function-like   Function-yielding  V235() (n)  set 
 
TR (#) q is   Relation-like   Function-like   Function-yielding  V235()  set 
 
f is   Relation-like   Function-like   set 
 
 dom (TR (#) q) is    set 
 
(TR (#) q) . f is   Relation-like   Function-like   set 
 
X is    set 
 
((TR (#) q) . f) . X is    set 
 
f . X is    set 
 
 dom TR is    set 
 
TR . f is   Relation-like   Function-like   set 
 
(TR . f) . X is    set 
 
q . (TR . f) is   Relation-like   Function-like   set 
 
 dom q is    set 
 
n is   ordinal   natural  V11()  real   ext-real   non  negative  V36()  cardinal  V85()  set 
 
 TOP-REAL n is   non  empty   TopSpace-like   right_complementable   constituted-Functions   constituted-FinSeqs  V189() V190() V191() V192() V193() V194() V195() V228() L16()
 
 the carrier of (TOP-REAL n) is   non  empty   set 
 
[: the carrier of (TOP-REAL n), the carrier of (TOP-REAL n):] is   non  empty   Relation-like   set 
 
 bool [: the carrier of (TOP-REAL n), the carrier of (TOP-REAL n):] is   non  empty   set 
 
p is   ordinal   natural  V11()  real   ext-real   non  negative  V36()  cardinal  V85() V86() V155() V156() V157() V158() V159() V160()  Element of  NAT 
 
 TOP-REAL p is   non  empty   TopSpace-like   right_complementable   constituted-Functions   constituted-FinSeqs  V189() V190() V191() V192() V193() V194() V195() V228() L16()
 
 the carrier of (TOP-REAL p) is   non  empty   set 
 
[: the carrier of (TOP-REAL p), the carrier of (TOP-REAL p):] is   non  empty   Relation-like   set 
 
 bool [: the carrier of (TOP-REAL p), the carrier of (TOP-REAL p):] is   non  empty   set 
 
 the   non  empty   Relation-like   the carrier of (TOP-REAL p) -defined   the carrier of (TOP-REAL p) -valued   Function-like   total   quasi_total   homogeneous   Element of  bool [: the carrier of (TOP-REAL p), the carrier of (TOP-REAL p):] is   non  empty   Relation-like   the carrier of (TOP-REAL p) -defined   the carrier of (TOP-REAL p) -valued   Function-like   total   quasi_total   homogeneous   Element of  bool [: the carrier of (TOP-REAL p), the carrier of (TOP-REAL p):]
 
n is   ordinal   natural  V11()  real   ext-real   non  negative  V36()  cardinal  V85()  set 
 
 TOP-REAL n is   non  empty   TopSpace-like   right_complementable   constituted-Functions   constituted-FinSeqs  V189() V190() V191() V192() V193() V194() V195() V228() L16()
 
 the carrier of (TOP-REAL n) is   non  empty   set 
 
p is   ordinal   natural  V11()  real   ext-real   non  negative  V36()  cardinal  V85()  set 
 
 TOP-REAL p is   non  empty   TopSpace-like   right_complementable   constituted-Functions   constituted-FinSeqs  V189() V190() V191() V192() V193() V194() V195() V228() L16()
 
 the carrier of (TOP-REAL p) is   non  empty   set 
 
[: the carrier of (TOP-REAL n), the carrier of (TOP-REAL p):] is   non  empty   Relation-like   set 
 
 bool [: the carrier of (TOP-REAL n), the carrier of (TOP-REAL p):] is   non  empty   set 
 
q is   non  empty   Relation-like   the carrier of (TOP-REAL n) -defined   the carrier of (TOP-REAL p) -valued   Function-like   total   quasi_total   Element of  bool [: the carrier of (TOP-REAL n), the carrier of (TOP-REAL p):]
 
TR is    set 
 
 dom q is   non  empty   set 
 
 rng q is   non  empty   set 
 
q . TR is    set 
 
n is   ordinal   natural  V11()  real   ext-real   non  negative  V36()  cardinal  V85()  set 
 
p is   ordinal   natural  V11()  real   ext-real   non  negative  V36()  cardinal  V85()  set 
 
 TOP-REAL n is   non  empty   TopSpace-like   right_complementable   constituted-Functions   constituted-FinSeqs  V189() V190() V191() V192() V193() V194() V195() V228() L16()
 
 TOP-REAL p is   non  empty   TopSpace-like   right_complementable   constituted-Functions   constituted-FinSeqs  V189() V190() V191() V192() V193() V194() V195() V228() L16()
 
q is   Relation-like   NAT  -defined   the carrier of F_Real *  -valued   Function-like  V36()  FinSequence-like   FinSubsequence-like   FinSequence-yielding   finite-support   Function-yielding  V235()  tabular   Matrix of n,p, the carrier of F_Real
 
 Mx2Tran q is   non  empty   Relation-like   the carrier of (TOP-REAL n) -defined   the carrier of (TOP-REAL p) -valued   Function-like   total   quasi_total   FinSequence-yielding   Function-yielding  V235()  Element of  bool [: the carrier of (TOP-REAL n), the carrier of (TOP-REAL p):]
 
 the carrier of (TOP-REAL n) is   non  empty   set 
 
 the carrier of (TOP-REAL p) is   non  empty   set 
 
[: the carrier of (TOP-REAL n), the carrier of (TOP-REAL p):] is   non  empty   Relation-like   set 
 
 bool [: the carrier of (TOP-REAL n), the carrier of (TOP-REAL p):] is   non  empty   set 
 
TR is   Relation-like   NAT  -defined   Function-like  V36() n -element   FinSequence-like   FinSubsequence-like   complex-yielding   ext-real-valued   real-valued   finite-support   Element of  the carrier of (TOP-REAL n)
 
n1 is   Relation-like   NAT  -defined   Function-like  V36() n -element   FinSequence-like   FinSubsequence-like   complex-yielding   ext-real-valued   real-valued   finite-support   Element of  the carrier of (TOP-REAL n)
 
TR + n1 is   Relation-like   NAT  -defined   Function-like  V36() n -element   FinSequence-like   FinSubsequence-like   complex-yielding   ext-real-valued   real-valued   finite-support   Element of  the carrier of (TOP-REAL n)
 
 the addF of (TOP-REAL n) is   non  empty   Relation-like  [: the carrier of (TOP-REAL n), the carrier of (TOP-REAL n):] -defined   the carrier of (TOP-REAL n) -valued   Function-like   total   quasi_total   Element of  bool [:[: the carrier of (TOP-REAL n), the carrier of (TOP-REAL n):], the carrier of (TOP-REAL n):]
 
[: the carrier of (TOP-REAL n), the carrier of (TOP-REAL n):] is   non  empty   Relation-like   set 
 
[:[: the carrier of (TOP-REAL n), the carrier of (TOP-REAL n):], the carrier of (TOP-REAL n):] is   non  empty   Relation-like   set 
 
 bool [:[: the carrier of (TOP-REAL n), the carrier of (TOP-REAL n):], the carrier of (TOP-REAL n):] is   non  empty   set 
 
 the addF of (TOP-REAL n) . (TR,n1) is   Relation-like   NAT  -defined   Function-like  V36() n -element   FinSequence-like   FinSubsequence-like   complex-yielding   ext-real-valued   real-valued   finite-support   Element of  the carrier of (TOP-REAL n)
 
TR + n1 is   Relation-like   NAT  -defined   REAL  -valued   Function-like  V36()  FinSequence-like   FinSubsequence-like   complex-yielding   ext-real-valued   real-valued   finite-support   FinSequence of  REAL 
 
(Mx2Tran q) . (TR + n1) is   Relation-like   NAT  -defined   Function-like  V36() p -element   FinSequence-like   FinSubsequence-like   complex-yielding   ext-real-valued   real-valued   finite-support   Element of  the carrier of (TOP-REAL p)
 
(Mx2Tran q) . TR is   Relation-like   NAT  -defined   Function-like  V36() p -element   FinSequence-like   FinSubsequence-like   complex-yielding   ext-real-valued   real-valued   finite-support   Element of  the carrier of (TOP-REAL p)
 
(Mx2Tran q) . n1 is   Relation-like   NAT  -defined   Function-like  V36() p -element   FinSequence-like   FinSubsequence-like   complex-yielding   ext-real-valued   real-valued   finite-support   Element of  the carrier of (TOP-REAL p)
 
((Mx2Tran q) . TR) + ((Mx2Tran q) . n1) is   Relation-like   NAT  -defined   Function-like  V36() p -element   FinSequence-like   FinSubsequence-like   complex-yielding   ext-real-valued   real-valued   finite-support   Element of  the carrier of (TOP-REAL p)
 
 the addF of (TOP-REAL p) is   non  empty   Relation-like  [: the carrier of (TOP-REAL p), the carrier of (TOP-REAL p):] -defined   the carrier of (TOP-REAL p) -valued   Function-like   total   quasi_total   Element of  bool [:[: the carrier of (TOP-REAL p), the carrier of (TOP-REAL p):], the carrier of (TOP-REAL p):]
 
[: the carrier of (TOP-REAL p), the carrier of (TOP-REAL p):] is   non  empty   Relation-like   set 
 
[:[: the carrier of (TOP-REAL p), the carrier of (TOP-REAL p):], the carrier of (TOP-REAL p):] is   non  empty   Relation-like   set 
 
 bool [:[: the carrier of (TOP-REAL p), the carrier of (TOP-REAL p):], the carrier of (TOP-REAL p):] is   non  empty   set 
 
 the addF of (TOP-REAL p) . (((Mx2Tran q) . TR),((Mx2Tran q) . n1)) is   Relation-like   NAT  -defined   Function-like  V36() p -element   FinSequence-like   FinSubsequence-like   complex-yielding   ext-real-valued   real-valued   finite-support   Element of  the carrier of (TOP-REAL p)
 
((Mx2Tran q) . TR) + ((Mx2Tran q) . n1) is   Relation-like   NAT  -defined   REAL  -valued   Function-like  V36()  FinSequence-like   FinSubsequence-like   complex-yielding   ext-real-valued   real-valued   finite-support   FinSequence of  REAL 
 
n is   ordinal   natural  V11()  real   ext-real   non  negative  V36()  cardinal  V85()  set 
 
p is   Relation-like   NAT  -defined   the carrier of F_Real *  -valued   Function-like  V36()  FinSequence-like   FinSubsequence-like   FinSequence-yielding   finite-support   Function-yielding  V235()  tabular   Matrix of n,n, the carrier of F_Real
 
 Mx2Tran p is   non  empty   Relation-like   the carrier of (TOP-REAL n) -defined   the carrier of (TOP-REAL n) -valued   Function-like   total   quasi_total   additive   FinSequence-yielding   Function-yielding  V235()  Element of  bool [: the carrier of (TOP-REAL n), the carrier of (TOP-REAL n):]
 
 TOP-REAL n is   non  empty   TopSpace-like   right_complementable   constituted-Functions   constituted-FinSeqs  V189() V190() V191() V192() V193() V194() V195() V228() L16()
 
 the carrier of (TOP-REAL n) is   non  empty   set 
 
[: the carrier of (TOP-REAL n), the carrier of (TOP-REAL n):] is   non  empty   Relation-like   set 
 
 bool [: the carrier of (TOP-REAL n), the carrier of (TOP-REAL n):] is   non  empty   set 
 
q is  V11()  real   ext-real   set 
 
TR is   Relation-like   NAT  -defined   Function-like  V36() n -element   FinSequence-like   FinSubsequence-like   complex-yielding   ext-real-valued   real-valued   finite-support   Element of  the carrier of (TOP-REAL n)
 
q * TR is   Relation-like   NAT  -defined   Function-like  V36() n -element   FinSequence-like   FinSubsequence-like   complex-yielding   ext-real-valued   real-valued   finite-support   Element of  the carrier of (TOP-REAL n)
 
q * TR is   Relation-like   NAT  -defined   REAL  -valued   Function-like  V36()  FinSequence-like   FinSubsequence-like   complex-yielding   ext-real-valued   real-valued   finite-support   FinSequence of  REAL 
 
(Mx2Tran p) . (q * TR) is   Relation-like   NAT  -defined   Function-like  V36() n -element   FinSequence-like   FinSubsequence-like   complex-yielding   ext-real-valued   real-valued   finite-support   Element of  the carrier of (TOP-REAL n)
 
(Mx2Tran p) . TR is   Relation-like   NAT  -defined   Function-like  V36() n -element   FinSequence-like   FinSubsequence-like   complex-yielding   ext-real-valued   real-valued   finite-support   Element of  the carrier of (TOP-REAL n)
 
q * ((Mx2Tran p) . TR) is   Relation-like   NAT  -defined   Function-like  V36() n -element   FinSequence-like   FinSubsequence-like   complex-yielding   ext-real-valued   real-valued   finite-support   Element of  the carrier of (TOP-REAL n)
 
q * ((Mx2Tran p) . TR) is   Relation-like   NAT  -defined   REAL  -valued   Function-like  V36()  FinSequence-like   FinSubsequence-like   complex-yielding   ext-real-valued   real-valued   finite-support   FinSequence of  REAL 
 
n is   ordinal   natural  V11()  real   ext-real   non  negative  V36()  cardinal  V85()  set 
 
 TOP-REAL n is   non  empty   TopSpace-like   right_complementable   constituted-Functions   constituted-FinSeqs  V189() V190() V191() V192() V193() V194() V195() V228() L16()
 
 the carrier of (TOP-REAL n) is   non  empty   set 
 
[: the carrier of (TOP-REAL n), the carrier of (TOP-REAL n):] is   non  empty   Relation-like   set 
 
 bool [: the carrier of (TOP-REAL n), the carrier of (TOP-REAL n):] is   non  empty   set 
 
q is   non  empty   Relation-like   the carrier of (TOP-REAL n) -defined   the carrier of (TOP-REAL n) -valued   Function-like   total   quasi_total   FinSequence-yielding   homogeneous   Function-yielding  V235()  Element of  bool [: the carrier of (TOP-REAL n), the carrier of (TOP-REAL n):]
 
p is   non  empty   Relation-like   the carrier of (TOP-REAL n) -defined   the carrier of (TOP-REAL n) -valued   Function-like   total   quasi_total   FinSequence-yielding   homogeneous   Function-yielding  V235()  Element of  bool [: the carrier of (TOP-REAL n), the carrier of (TOP-REAL n):]
 
p * q is   non  empty   Relation-like   the carrier of (TOP-REAL n) -defined   the carrier of (TOP-REAL n) -valued   Function-like   total   quasi_total   quasi_total   FinSequence-yielding   Function-yielding  V235()  Element of  bool [: the carrier of (TOP-REAL n), the carrier of (TOP-REAL n):]
 
f is   Relation-like   NAT  -defined   Function-like  V36() n -element   FinSequence-like   FinSubsequence-like   complex-yielding   ext-real-valued   real-valued   finite-support   Element of  the carrier of (TOP-REAL n)
 
q . f is   Relation-like   NAT  -defined   Function-like  V36() n -element   FinSequence-like   FinSubsequence-like   complex-yielding   ext-real-valued   real-valued   finite-support   Element of  the carrier of (TOP-REAL n)
 
 dom (p * q) is   non  empty   set 
 
n1 is  V11()  real   ext-real   set 
 
n1 * f is   Relation-like   NAT  -defined   Function-like  V36() n -element   FinSequence-like   FinSubsequence-like   complex-yielding   ext-real-valued   real-valued   finite-support   Element of  the carrier of (TOP-REAL n)
 
n1 * f is   Relation-like   NAT  -defined   REAL  -valued   Function-like  V36()  FinSequence-like   FinSubsequence-like   complex-yielding   ext-real-valued   real-valued   finite-support   FinSequence of  REAL 
 
(p * q) . (n1 * f) is   Relation-like   NAT  -defined   Function-like  V36() n -element   FinSequence-like   FinSubsequence-like   complex-yielding   ext-real-valued   real-valued   finite-support   Element of  the carrier of (TOP-REAL n)
 
q . (n1 * f) is   Relation-like   NAT  -defined   Function-like  V36() n -element   FinSequence-like   FinSubsequence-like   complex-yielding   ext-real-valued   real-valued   finite-support   Element of  the carrier of (TOP-REAL n)
 
p . (q . (n1 * f)) is   Relation-like   NAT  -defined   Function-like  V36() n -element   FinSequence-like   FinSubsequence-like   complex-yielding   ext-real-valued   real-valued   finite-support   Element of  the carrier of (TOP-REAL n)
 
X is   Relation-like   NAT  -defined   Function-like  V36() n -element   FinSequence-like   FinSubsequence-like   complex-yielding   ext-real-valued   real-valued   finite-support   Element of  the carrier of (TOP-REAL n)
 
n1 * X is   Relation-like   NAT  -defined   Function-like  V36() n -element   FinSequence-like   FinSubsequence-like   complex-yielding   ext-real-valued   real-valued   finite-support   Element of  the carrier of (TOP-REAL n)
 
n1 * X is   Relation-like   NAT  -defined   REAL  -valued   Function-like  V36()  FinSequence-like   FinSubsequence-like   complex-yielding   ext-real-valued   real-valued   finite-support   FinSequence of  REAL 
 
p . (n1 * X) is   Relation-like   NAT  -defined   Function-like  V36() n -element   FinSequence-like   FinSubsequence-like   complex-yielding   ext-real-valued   real-valued   finite-support   Element of  the carrier of (TOP-REAL n)
 
p . X is   Relation-like   NAT  -defined   Function-like  V36() n -element   FinSequence-like   FinSubsequence-like   complex-yielding   ext-real-valued   real-valued   finite-support   Element of  the carrier of (TOP-REAL n)
 
n1 * (p . X) is   Relation-like   NAT  -defined   Function-like  V36() n -element   FinSequence-like   FinSubsequence-like   complex-yielding   ext-real-valued   real-valued   finite-support   Element of  the carrier of (TOP-REAL n)
 
n1 * (p . X) is   Relation-like   NAT  -defined   REAL  -valued   Function-like  V36()  FinSequence-like   FinSubsequence-like   complex-yielding   ext-real-valued   real-valued   finite-support   FinSequence of  REAL 
 
(p * q) . f is   Relation-like   NAT  -defined   Function-like  V36() n -element   FinSequence-like   FinSubsequence-like   complex-yielding   ext-real-valued   real-valued   finite-support   Element of  the carrier of (TOP-REAL n)
 
n1 * ((p * q) . f) is   Relation-like   NAT  -defined   Function-like  V36() n -element   FinSequence-like   FinSubsequence-like   complex-yielding   ext-real-valued   real-valued   finite-support   Element of  the carrier of (TOP-REAL n)
 
n1 * ((p * q) . f) is   Relation-like   NAT  -defined   REAL  -valued   Function-like  V36()  FinSequence-like   FinSubsequence-like   complex-yielding   ext-real-valued   real-valued   finite-support   FinSequence of  REAL 
 
n1 is   non  empty   Relation-like   the carrier of (TOP-REAL n) -defined   the carrier of (TOP-REAL n) -valued   Function-like   total   quasi_total   FinSequence-yielding   Function-yielding  V235()  Element of  bool [: the carrier of (TOP-REAL n), the carrier of (TOP-REAL n):]
 
 1. F_Real is  V11()  real   ext-real  V61( F_Real )  Element of  the carrier of F_Real
 
 the OneF of F_Real is  V11()  real   ext-real   Element of  the carrier of F_Real
 
 - (1. F_Real) is  V11()  real   ext-real   Element of  the carrier of F_Real
 
K534((1. F_Real)) is  V11()  real   ext-real   Element of  REAL 
 
n is   ordinal   natural  V11()  real   ext-real   non  negative  V36()  cardinal  V85()  set 
 
p is   ordinal   natural  V11()  real   ext-real   non  negative  V36()  cardinal  V85()  set 
 
 Seg p is  V16() V36() p -element  V155() V156() V157() V158() V159() V160()  Element of  bool NAT
 
 {  b1 where b1 is   ordinal   natural  V11()  real   ext-real   non  negative  V36()  cardinal  V85() V86() V155() V156() V157() V158() V159() V160()  Element of  NAT  : ( 1 <= b1 & b1 <= p )  }   is    set 
 
 the multF of F_Real is   non  empty   Relation-like  [: the carrier of F_Real, the carrier of F_Real:] -defined   the carrier of F_Real -valued   Function-like   total   quasi_total   complex-yielding   ext-real-valued   real-valued   associative  V287( the carrier of F_Real)  Element of  bool [:[: the carrier of F_Real, the carrier of F_Real:], the carrier of F_Real:]
 
[: the carrier of F_Real, the carrier of F_Real:] is   non  empty   Relation-like   complex-yielding   ext-real-valued   real-valued   set 
 
[:[: the carrier of F_Real, the carrier of F_Real:], the carrier of F_Real:] is   non  empty   Relation-like   complex-yielding   ext-real-valued   real-valued   set 
 
 bool [:[: the carrier of F_Real, the carrier of F_Real:], the carrier of F_Real:] is   non  empty   set 
 
n1 is   ordinal   natural  V11()  real   ext-real   non  negative  V36()  cardinal  V85() V86() V155() V156() V157() V158() V159() V160()  Element of  NAT 
 
 Seg n1 is  V16() V36() n1 -element  V155() V156() V157() V158() V159() V160()  Element of  bool NAT
 
 {  b1 where b1 is   ordinal   natural  V11()  real   ext-real   non  negative  V36()  cardinal  V85() V86() V155() V156() V157() V158() V159() V160()  Element of  NAT  : ( 1 <= b1 & b1 <= n1 )  }   is    set 
 
[:(Seg n1),(Seg n1):] is   Relation-like   RAT  -valued   INT  -valued  V36()  complex-yielding   ext-real-valued   real-valued   natural-valued   set 
 
f is   ordinal   natural  V11()  real   ext-real   non  negative  V36()  cardinal  V85()  set 
 
X is   ordinal   natural  V11()  real   ext-real   non  negative  V36()  cardinal  V85()  set 
 
[f,X] is    set 
 
{f,X} is   non  empty  V36() V40() V155() V156() V157() V158() V159() V160()  set 
 
{f} is   non  empty   trivial  V36() V40() 1 -element  V155() V156() V157() V158() V159() V160()  set 
 
{{f,X},{f}} is   non  empty  V36() V40()  set 
 
f is   Relation-like   NAT  -defined   the carrier of F_Real *  -valued   Function-like  V36()  FinSequence-like   FinSubsequence-like   FinSequence-yielding   finite-support   Function-yielding  V235()  tabular   Matrix of n1,n1, the carrier of F_Real
 
 Indices f is    set 
 
X is   Relation-like   NAT  -defined   the carrier of F_Real *  -valued   Function-like  V36()  FinSequence-like   FinSubsequence-like   FinSequence-yielding   finite-support   Function-yielding  V235()  tabular   Matrix of p,p, the carrier of F_Real
 
 Indices X is    set 
 
[:(Seg p),(Seg p):] is   Relation-like   RAT  -valued   INT  -valued  V36()  complex-yielding   ext-real-valued   real-valued   natural-valued   set 
 
z is   ordinal   natural  V11()  real   ext-real   non  negative  V36()  cardinal  V85() V86() V155() V156() V157() V158() V159() V160()  Element of  NAT 
 
fp is   ordinal   natural  V11()  real   ext-real   non  negative  V36()  cardinal  V85() V86() V155() V156() V157() V158() V159() V160()  Element of  NAT 
 
[z,fp] is    set 
 
{z,fp} is   non  empty  V36() V40() V155() V156() V157() V158() V159() V160()  set 
 
{z} is   non  empty   trivial  V36() V40() 1 -element  V155() V156() V157() V158() V159() V160()  set 
 
{{z,fp},{z}} is   non  empty  V36() V40()  set 
 
X * (z,fp) is  V11()  real   ext-real   Element of  the carrier of F_Real
 
 diagonal_of_Matrix X is   Relation-like   NAT  -defined   the carrier of F_Real -valued   Function-like  V36()  FinSequence-like   FinSubsequence-like   complex-yielding   ext-real-valued   real-valued   finite-support   FinSequence of  the carrier of F_Real
 
 len (diagonal_of_Matrix X) is   ordinal   natural  V11()  real   ext-real   non  negative  V36()  cardinal  V85() V86() V155() V156() V157() V158() V159() V160()  Element of  NAT 
 
fp is   ordinal   natural  V11()  real   ext-real   non  negative  V36()  cardinal  V85()  set 
 
fp + n is   ordinal   natural  V11()  real   ext-real   non  negative  V36()  cardinal  V85()  set 
 
(diagonal_of_Matrix X) | (fp + n) is   Relation-like   NAT  -defined   the carrier of F_Real -valued   Function-like  V36()  FinSequence-like   FinSubsequence-like   complex-yielding   ext-real-valued   real-valued   finite-support   FinSequence of  the carrier of F_Real
 
 Seg (fp + n) is  V16() V36() fp + n -element  V155() V156() V157() V158() V159() V160()  Element of  bool NAT
 
 {  b1 where b1 is   ordinal   natural  V11()  real   ext-real   non  negative  V36()  cardinal  V85() V86() V155() V156() V157() V158() V159() V160()  Element of  NAT  : ( 1 <= b1 & b1 <= fp + n )  }   is    set 
 
(diagonal_of_Matrix X) | (Seg (fp + n)) is   Relation-like   NAT  -defined   Seg (fp + n) -defined   NAT  -defined   the carrier of F_Real -valued   Function-like  V36()  FinSubsequence-like   complex-yielding   ext-real-valued   real-valued   finite-support   set 
 
 the multF of F_Real "**" ((diagonal_of_Matrix X) | (fp + n)) is  V11()  real   ext-real   Element of  the carrier of F_Real
 
fp + 1 is   non  empty   ordinal   natural  V11()  real   ext-real   positive   non  negative  V36()  cardinal  V85() V86() V155() V156() V157() V158() V159() V160()  Element of  NAT 
 
(fp + 1) + n is   non  empty   ordinal   natural  V11()  real   ext-real   positive   non  negative  V36()  cardinal  V85()  set 
 
(diagonal_of_Matrix X) | ((fp + 1) + n) is   Relation-like   NAT  -defined   the carrier of F_Real -valued   Function-like  V36()  FinSequence-like   FinSubsequence-like   complex-yielding   ext-real-valued   real-valued   finite-support   FinSequence of  the carrier of F_Real
 
 Seg ((fp + 1) + n) is   non  empty  V16() V36() (fp + 1) + n -element  V155() V156() V157() V158() V159() V160()  Element of  bool NAT
 
 {  b1 where b1 is   ordinal   natural  V11()  real   ext-real   non  negative  V36()  cardinal  V85() V86() V155() V156() V157() V158() V159() V160()  Element of  NAT  : ( 1 <= b1 & b1 <= (fp + 1) + n )  }   is    set 
 
(diagonal_of_Matrix X) | (Seg ((fp + 1) + n)) is   Relation-like   NAT  -defined   Seg ((fp + 1) + n) -defined   NAT  -defined   the carrier of F_Real -valued   Function-like  V36()  FinSubsequence-like   complex-yielding   ext-real-valued   real-valued   finite-support   set 
 
 the multF of F_Real "**" ((diagonal_of_Matrix X) | ((fp + 1) + n)) is  V11()  real   ext-real   Element of  the carrier of F_Real
 
(fp + 1) + n is   non  empty   ordinal   natural  V11()  real   ext-real   positive   non  negative  V36()  cardinal  V85() V86() V155() V156() V157() V158() V159() V160()  Element of  NAT 
 
(fp + n) + 1 is   non  empty   ordinal   natural  V11()  real   ext-real   positive   non  negative  V36()  cardinal  V85() V86() V155() V156() V157() V158() V159() V160()  Element of  NAT 
 
 dom (diagonal_of_Matrix X) is  V36() V155() V156() V157() V158() V159() V160()  Element of  bool NAT
 
(diagonal_of_Matrix X) | ((fp + 1) + n) is   Relation-like   NAT  -defined   the carrier of F_Real -valued   Function-like  V36()  FinSequence-like   FinSubsequence-like   complex-yielding   ext-real-valued   real-valued   finite-support   FinSequence of  the carrier of F_Real
 
 Seg ((fp + 1) + n) is   non  empty  V16() V36() (fp + 1) + n -element  V155() V156() V157() V158() V159() V160()  Element of  bool NAT
 
 {  b1 where b1 is   ordinal   natural  V11()  real   ext-real   non  negative  V36()  cardinal  V85() V86() V155() V156() V157() V158() V159() V160()  Element of  NAT  : ( 1 <= b1 & b1 <= (fp + 1) + n )  }   is    set 
 
(diagonal_of_Matrix X) | (Seg ((fp + 1) + n)) is   Relation-like   NAT  -defined   Seg ((fp + 1) + n) -defined   NAT  -defined   the carrier of F_Real -valued   Function-like  V36()  FinSubsequence-like   complex-yielding   ext-real-valued   real-valued   finite-support   set 
 
(diagonal_of_Matrix X) . ((fp + 1) + n) is  V11()  real   ext-real   Element of  REAL 
 
<*((diagonal_of_Matrix X) . ((fp + 1) + n))*> is   non  empty   trivial   Relation-like   NAT  -defined   REAL  -valued   Function-like   one-to-one   constant  V36() 1 -element   FinSequence-like   FinSubsequence-like   complex-yielding   ext-real-valued   real-valued  V149()  decreasing   non-decreasing   non-increasing   finite-support   Element of 1 -tuples_on REAL
 
1 -tuples_on REAL is   non  empty   functional   FinSequence-membered   FinSequenceSet of  REAL 
 
[1,((diagonal_of_Matrix X) . ((fp + 1) + n))] is    set 
 
{1,((diagonal_of_Matrix X) . ((fp + 1) + n))} is   non  empty  V36() V155() V156() V157()  set 
 
{{1,((diagonal_of_Matrix X) . ((fp + 1) + n))},{1}} is   non  empty  V36() V40()  set 
 
{[1,((diagonal_of_Matrix X) . ((fp + 1) + n))]} is   non  empty   trivial   Relation-like   Function-like   constant  V36() 1 -element   finite-support   set 
 
((diagonal_of_Matrix X) | (fp + n)) ^ <*((diagonal_of_Matrix X) . ((fp + 1) + n))*> is   non  empty   Relation-like   NAT  -defined   Function-like  V36()  FinSequence-like   FinSubsequence-like   finite-support   set 
 
[((fp + 1) + n),((fp + 1) + n)] is    set 
 
{((fp + 1) + n),((fp + 1) + n)} is   non  empty  V36() V40() V155() V156() V157() V158() V159() V160()  set 
 
{((fp + 1) + n)} is   non  empty   trivial  V36() V40() 1 -element  V155() V156() V157() V158() V159() V160()  set 
 
{{((fp + 1) + n),((fp + 1) + n)},{((fp + 1) + n)}} is   non  empty  V36() V40()  set 
 
X * (((fp + 1) + n),((fp + 1) + n)) is  V11()  real   ext-real   Element of  the carrier of F_Real
 
 the multF of F_Real "**" ((diagonal_of_Matrix X) | ((fp + 1) + n)) is  V11()  real   ext-real   Element of  the carrier of F_Real
 
(- (1. F_Real)) * (1. F_Real) is  V11()  real   ext-real   Element of  the carrier of F_Real
 
 the multF of F_Real . ((- (1. F_Real)),(1. F_Real)) is  V11()  real   ext-real   Element of  the carrier of F_Real
 
K538((- (1. F_Real)),(1. F_Real)) is  V11()  real   ext-real   Element of  REAL 
 
(diagonal_of_Matrix X) | {} is   empty   ordinal   natural  V11()  real   ext-real   non  positive   non  negative   Relation-like   non-empty   empty-yielding   NAT  -defined   RAT  -valued   the carrier of F_Real -valued   Function-like   one-to-one   constant   functional  V36() V37() V40()  cardinal   {}  -element  V85()  FinSequence-like   FinSubsequence-like   FinSequence-membered   complex-yielding   ext-real-valued   real-valued   natural-valued  V155() V156() V157() V158() V159() V160() V161()  FinSequence-yielding   finite-support   Function-yielding  V235() V282()  FinSequence of  the carrier of F_Real
 
 Seg {} is   empty   ordinal   natural  V11()  real   ext-real   non  positive   non  negative  V16()  Relation-like   non-empty   empty-yielding   NAT  -defined   RAT  -valued   Function-like   one-to-one   constant   functional  V36() V37() V40()  cardinal   {}  -element   {}  -element  V85()  FinSequence-like   FinSubsequence-like   FinSequence-membered   complex-yielding   ext-real-valued   real-valued   natural-valued  V155() V156() V157() V158() V159() V160() V161()  FinSequence-yielding   finite-support   Function-yielding  V235() V282()  Element of  bool NAT
 
 {  b1 where b1 is   ordinal   natural  V11()  real   ext-real   non  negative  V36()  cardinal  V85() V86() V155() V156() V157() V158() V159() V160()  Element of  NAT  : ( 1 <= b1 & b1 <=  {}  )  }   is    set 
 
(diagonal_of_Matrix X) | (Seg {}) is   empty   ordinal   natural  V11()  real   ext-real   non  positive   non  negative   Relation-like   non-empty   empty-yielding   NAT  -defined   Seg {} -defined   NAT  -defined   RAT  -valued   the carrier of F_Real -valued   Function-like   one-to-one   constant   functional  V36() V37() V40()  cardinal   {}  -element  V85()  FinSequence-like   FinSubsequence-like   FinSequence-membered   complex-yielding   ext-real-valued   real-valued   natural-valued  V155() V156() V157() V158() V159() V160() V161()  FinSequence-yielding   finite-support   Function-yielding  V235() V282()  set 
 
 the multF of F_Real "**" ((diagonal_of_Matrix X) | {}) is  V11()  real   ext-real   Element of  the carrier of F_Real
 
 <*>  the carrier of F_Real is   empty   ordinal   natural  V11()  real   ext-real   non  positive   non  negative   Relation-like   non-empty   empty-yielding   NAT  -defined   the carrier of F_Real -valued   Function-like   one-to-one   constant   functional  V36() V37() V40()  cardinal   {}  -element  V85()  FinSequence-like   FinSubsequence-like   FinSequence-membered   complex-yielding   ext-real-valued   real-valued   natural-valued  V155() V156() V157() V158() V159() V160() V161()  FinSequence-yielding   finite-support   Function-yielding  V235() V282()  Element of  the carrier of F_Real * 
 
 the_unity_wrt  the multF of F_Real is  V11()  real   ext-real   Element of  the carrier of F_Real
 
p - n is  V11()  real   ext-real  V85()  set 
 
 - n is  V11()  real   ext-real   non  positive  V85()  set 
 
p + (- n) is  V11()  real   ext-real  V85()  set 
 
(p - n) + n is  V11()  real   ext-real  V85()  set 
 
 Det X is  V11()  real   ext-real   Element of  the carrier of F_Real
 
X * (n,n) is  V11()  real   ext-real   Element of  the carrier of F_Real
 
fp is   ordinal   natural  V11()  real   ext-real   non  negative  V36()  cardinal  V85()  set 
 
(diagonal_of_Matrix X) | fp is   Relation-like   NAT  -defined   the carrier of F_Real -valued   Function-like  V36()  FinSequence-like   FinSubsequence-like   complex-yielding   ext-real-valued   real-valued   finite-support   FinSequence of  the carrier of F_Real
 
 Seg fp is  V16() V36() fp -element  V155() V156() V157() V158() V159() V160()  Element of  bool NAT
 
 {  b1 where b1 is   ordinal   natural  V11()  real   ext-real   non  negative  V36()  cardinal  V85() V86() V155() V156() V157() V158() V159() V160()  Element of  NAT  : ( 1 <= b1 & b1 <= fp )  }   is    set 
 
(diagonal_of_Matrix X) | (Seg fp) is   Relation-like   NAT  -defined   Seg fp -defined   NAT  -defined   the carrier of F_Real -valued   Function-like  V36()  FinSubsequence-like   complex-yielding   ext-real-valued   real-valued   finite-support   set 
 
 the multF of F_Real "**" ((diagonal_of_Matrix X) | fp) is  V11()  real   ext-real   Element of  the carrier of F_Real
 
fp + 1 is   non  empty   ordinal   natural  V11()  real   ext-real   positive   non  negative  V36()  cardinal  V85() V86() V155() V156() V157() V158() V159() V160()  Element of  NAT 
 
(diagonal_of_Matrix X) | (fp + 1) is   Relation-like   NAT  -defined   the carrier of F_Real -valued   Function-like  V36()  FinSequence-like   FinSubsequence-like   complex-yielding   ext-real-valued   real-valued   finite-support   FinSequence of  the carrier of F_Real
 
 Seg (fp + 1) is   non  empty  V16() V36() fp + 1 -element  fp + 1 -element  V155() V156() V157() V158() V159() V160()  Element of  bool NAT
 
 {  b1 where b1 is   ordinal   natural  V11()  real   ext-real   non  negative  V36()  cardinal  V85() V86() V155() V156() V157() V158() V159() V160()  Element of  NAT  : ( 1 <= b1 & b1 <= fp + 1 )  }   is    set 
 
(diagonal_of_Matrix X) | (Seg (fp + 1)) is   Relation-like   NAT  -defined   Seg (fp + 1) -defined   NAT  -defined   the carrier of F_Real -valued   Function-like  V36()  FinSubsequence-like   complex-yielding   ext-real-valued   real-valued   finite-support   set 
 
 the multF of F_Real "**" ((diagonal_of_Matrix X) | (fp + 1)) is  V11()  real   ext-real   Element of  the carrier of F_Real
 
 dom (diagonal_of_Matrix X) is  V36() V155() V156() V157() V158() V159() V160()  Element of  bool NAT
 
(diagonal_of_Matrix X) . (fp + 1) is  V11()  real   ext-real   Element of  REAL 
 
<*((diagonal_of_Matrix X) . (fp + 1))*> is   non  empty   trivial   Relation-like   NAT  -defined   REAL  -valued   Function-like   one-to-one   constant  V36() 1 -element   FinSequence-like   FinSubsequence-like   complex-yielding   ext-real-valued   real-valued  V149()  decreasing   non-decreasing   non-increasing   finite-support   Element of 1 -tuples_on REAL
 
1 -tuples_on REAL is   non  empty   functional   FinSequence-membered   FinSequenceSet of  REAL 
 
[1,((diagonal_of_Matrix X) . (fp + 1))] is    set 
 
{1,((diagonal_of_Matrix X) . (fp + 1))} is   non  empty  V36() V155() V156() V157()  set 
 
{{1,((diagonal_of_Matrix X) . (fp + 1))},{1}} is   non  empty  V36() V40()  set 
 
{[1,((diagonal_of_Matrix X) . (fp + 1))]} is   non  empty   trivial   Relation-like   Function-like   constant  V36() 1 -element   finite-support   set 
 
((diagonal_of_Matrix X) | fp) ^ <*((diagonal_of_Matrix X) . (fp + 1))*> is   non  empty   Relation-like   NAT  -defined   Function-like  V36()  FinSequence-like   FinSubsequence-like   finite-support   set 
 
[(fp + 1),(fp + 1)] is    set 
 
{(fp + 1),(fp + 1)} is   non  empty  V36() V40() V155() V156() V157() V158() V159() V160()  set 
 
{(fp + 1)} is   non  empty   trivial  V36() V40() 1 -element  V155() V156() V157() V158() V159() V160()  set 
 
{{(fp + 1),(fp + 1)},{(fp + 1)}} is   non  empty  V36() V40()  set 
 
X * ((fp + 1),(fp + 1)) is  V11()  real   ext-real   Element of  the carrier of F_Real
 
(1. F_Real) * (1. F_Real) is  V11()  real   ext-real   Element of  the carrier of F_Real
 
 the multF of F_Real . ((1. F_Real),(1. F_Real)) is  V11()  real   ext-real   Element of  the carrier of F_Real
 
K538((1. F_Real),(1. F_Real)) is  V11()  real   ext-real   Element of  REAL 
 
{} + n is   ordinal   natural  V11()  real   ext-real   non  negative  V36()  cardinal  V85()  set 
 
(diagonal_of_Matrix X) | ({} + n) is   Relation-like   NAT  -defined   the carrier of F_Real -valued   Function-like  V36()  FinSequence-like   FinSubsequence-like   complex-yielding   ext-real-valued   real-valued   finite-support   FinSequence of  the carrier of F_Real
 
 Seg ({} + n) is  V16() V36() {} + n -element  V155() V156() V157() V158() V159() V160()  Element of  bool NAT
 
 {  b1 where b1 is   ordinal   natural  V11()  real   ext-real   non  negative  V36()  cardinal  V85() V86() V155() V156() V157() V158() V159() V160()  Element of  NAT  : ( 1 <= b1 & b1 <= {} + n )  }   is    set 
 
(diagonal_of_Matrix X) | (Seg ({} + n)) is   Relation-like   NAT  -defined   Seg ({} + n) -defined   NAT  -defined   the carrier of F_Real -valued   Function-like  V36()  FinSubsequence-like   complex-yielding   ext-real-valued   real-valued   finite-support   set 
 
 the multF of F_Real "**" ((diagonal_of_Matrix X) | ({} + n)) is  V11()  real   ext-real   Element of  the carrier of F_Real
 
n - 1 is  V11()  real   ext-real  V85()  Element of  REAL 
 
n + (- 1) is  V11()  real   ext-real  V85()  set 
 
fp is   ordinal   natural  V11()  real   ext-real   non  negative  V36()  cardinal  V85()  set 
 
fp + 1 is   non  empty   ordinal   natural  V11()  real   ext-real   positive   non  negative  V36()  cardinal  V85() V86() V155() V156() V157() V158() V159() V160()  Element of  NAT 
 
(diagonal_of_Matrix X) | fp is   Relation-like   NAT  -defined   the carrier of F_Real -valued   Function-like  V36()  FinSequence-like   FinSubsequence-like   complex-yielding   ext-real-valued   real-valued   finite-support   FinSequence of  the carrier of F_Real
 
 Seg fp is  V16() V36() fp -element  V155() V156() V157() V158() V159() V160()  Element of  bool NAT
 
 {  b1 where b1 is   ordinal   natural  V11()  real   ext-real   non  negative  V36()  cardinal  V85() V86() V155() V156() V157() V158() V159() V160()  Element of  NAT  : ( 1 <= b1 & b1 <= fp )  }   is    set 
 
(diagonal_of_Matrix X) | (Seg fp) is   Relation-like   NAT  -defined   Seg fp -defined   NAT  -defined   the carrier of F_Real -valued   Function-like  V36()  FinSubsequence-like   complex-yielding   ext-real-valued   real-valued   finite-support   set 
 
 the multF of F_Real "**" ((diagonal_of_Matrix X) | fp) is  V11()  real   ext-real   Element of  the carrier of F_Real
 
 dom (diagonal_of_Matrix X) is  V36() V155() V156() V157() V158() V159() V160()  Element of  bool NAT
 
(diagonal_of_Matrix X) | n is   Relation-like   NAT  -defined   the carrier of F_Real -valued   Function-like  V36()  FinSequence-like   FinSubsequence-like   complex-yielding   ext-real-valued   real-valued   finite-support   FinSequence of  the carrier of F_Real
 
 Seg n is  V16() V36() n -element  V155() V156() V157() V158() V159() V160()  Element of  bool NAT
 
 {  b1 where b1 is   ordinal   natural  V11()  real   ext-real   non  negative  V36()  cardinal  V85() V86() V155() V156() V157() V158() V159() V160()  Element of  NAT  : ( 1 <= b1 & b1 <= n )  }   is    set 
 
(diagonal_of_Matrix X) | (Seg n) is   Relation-like   NAT  -defined   Seg n -defined   NAT  -defined   the carrier of F_Real -valued   Function-like  V36()  FinSubsequence-like   complex-yielding   ext-real-valued   real-valued   finite-support   set 
 
(diagonal_of_Matrix X) . n is  V11()  real   ext-real   Element of  REAL 
 
<*((diagonal_of_Matrix X) . n)*> is   non  empty   trivial   Relation-like   NAT  -defined   REAL  -valued   Function-like   one-to-one   constant  V36() 1 -element   FinSequence-like   FinSubsequence-like   complex-yielding   ext-real-valued   real-valued  V149()  decreasing   non-decreasing   non-increasing   finite-support   Element of 1 -tuples_on REAL
 
1 -tuples_on REAL is   non  empty   functional   FinSequence-membered   FinSequenceSet of  REAL 
 
[1,((diagonal_of_Matrix X) . n)] is    set 
 
{1,((diagonal_of_Matrix X) . n)} is   non  empty  V36() V155() V156() V157()  set 
 
{{1,((diagonal_of_Matrix X) . n)},{1}} is   non  empty  V36() V40()  set 
 
{[1,((diagonal_of_Matrix X) . n)]} is   non  empty   trivial   Relation-like   Function-like   constant  V36() 1 -element   finite-support   set 
 
((diagonal_of_Matrix X) | fp) ^ <*((diagonal_of_Matrix X) . n)*> is   non  empty   Relation-like   NAT  -defined   Function-like  V36()  FinSequence-like   FinSubsequence-like   finite-support   set 
 
[n,n] is    set 
 
{n,n} is   non  empty  V36() V40() V155() V156() V157() V158() V159() V160()  set 
 
{n} is   non  empty   trivial  V36() V40() 1 -element  V155() V156() V157() V158() V159() V160()  set 
 
{{n,n},{n}} is   non  empty  V36() V40()  set 
 
(1. F_Real) * (- (1. F_Real)) is  V11()  real   ext-real   Element of  the carrier of F_Real
 
 the multF of F_Real . ((1. F_Real),(- (1. F_Real))) is  V11()  real   ext-real   Element of  the carrier of F_Real
 
K538((1. F_Real),(- (1. F_Real))) is  V11()  real   ext-real   Element of  REAL 
 
(diagonal_of_Matrix X) | p is   Relation-like   NAT  -defined   the carrier of F_Real -valued   Function-like  V36()  FinSequence-like   FinSubsequence-like   complex-yielding   ext-real-valued   real-valued   finite-support   FinSequence of  the carrier of F_Real
 
(diagonal_of_Matrix X) | (Seg p) is   Relation-like   NAT  -defined   Seg p -defined   NAT  -defined   the carrier of F_Real -valued   Function-like  V36()  FinSubsequence-like   complex-yielding   ext-real-valued   real-valued   finite-support   set 
 
 the multF of F_Real "**" ((diagonal_of_Matrix X) | p) is  V11()  real   ext-real   Element of  the carrier of F_Real
 
 the multF of F_Real "**" (diagonal_of_Matrix X) is  V11()  real   ext-real   Element of  the carrier of F_Real
 
[n,n] is    set 
 
{n,n} is   non  empty  V36() V40() V155() V156() V157() V158() V159() V160()  set 
 
{n} is   non  empty   trivial  V36() V40() 1 -element  V155() V156() V157() V158() V159() V160()  set 
 
{{n,n},{n}} is   non  empty  V36() V40()  set 
 
fp is   ordinal   natural  V11()  real   ext-real   non  negative  V36()  cardinal  V85()  set 
 
X * (fp,fp) is  V11()  real   ext-real   Element of  the carrier of F_Real
 
z is   ordinal   natural  V11()  real   ext-real   non  negative  V36()  cardinal  V85()  set 
 
[fp,z] is    set 
 
{fp,z} is   non  empty  V36() V40() V155() V156() V157() V158() V159() V160()  set 
 
{fp} is   non  empty   trivial  V36() V40() 1 -element  V155() V156() V157() V158() V159() V160()  set 
 
{{fp,z},{fp}} is   non  empty  V36() V40()  set 
 
X * (fp,z) is  V11()  real   ext-real   Element of  the carrier of F_Real
 
p is   ordinal   natural  V11()  real   ext-real   non  negative  V36()  cardinal  V85()  set 
 
n is   ordinal   natural  V11()  real   ext-real   non  negative  V36()  cardinal  V85()  set 
 
 Seg n is  V16() V36() n -element  V155() V156() V157() V158() V159() V160()  Element of  bool NAT
 
 {  b1 where b1 is   ordinal   natural  V11()  real   ext-real   non  negative  V36()  cardinal  V85() V86() V155() V156() V157() V158() V159() V160()  Element of  NAT  : ( 1 <= b1 & b1 <= n )  }   is    set 
 
q is   Relation-like   NAT  -defined   the carrier of F_Real *  -valued   Function-like  V36()  FinSequence-like   FinSubsequence-like   FinSequence-yielding   finite-support   Function-yielding  V235()  tabular   Matrix of n,n, the carrier of F_Real
 
 Det q is  V11()  real   ext-real   Element of  the carrier of F_Real
 
q * (p,p) is  V11()  real   ext-real   Element of  the carrier of F_Real
 
 Indices q is    set 
 
q is   Relation-like   NAT  -defined   the carrier of F_Real *  -valued   Function-like  V36()  FinSequence-like   FinSubsequence-like   FinSequence-yielding   finite-support   Function-yielding  V235()  tabular   invertible   Matrix of n,n, the carrier of F_Real
 
q * (p,p) is  V11()  real   ext-real   Element of  the carrier of F_Real
 
 Indices q is    set 
 
TR is   Relation-like   NAT  -defined   the carrier of F_Real *  -valued   Function-like  V36()  FinSequence-like   FinSubsequence-like   FinSequence-yielding   finite-support   Function-yielding  V235()  tabular   invertible   Matrix of n,n, the carrier of F_Real
 
TR * (p,p) is  V11()  real   ext-real   Element of  the carrier of F_Real
 
 Indices TR is    set 
 
n1 is   ordinal   natural  V11()  real   ext-real   non  negative  V36()  cardinal  V85()  set 
 
f is   ordinal   natural  V11()  real   ext-real   non  negative  V36()  cardinal  V85()  set 
 
[n1,f] is    set 
 
{n1,f} is   non  empty  V36() V40() V155() V156() V157() V158() V159() V160()  set 
 
{n1} is   non  empty   trivial  V36() V40() 1 -element  V155() V156() V157() V158() V159() V160()  set 
 
{{n1,f},{n1}} is   non  empty  V36() V40()  set 
 
q * (n1,f) is  V11()  real   ext-real   Element of  the carrier of F_Real
 
TR * (n1,f) is  V11()  real   ext-real   Element of  the carrier of F_Real
 
n is   ordinal   natural  V11()  real   ext-real   non  negative  V36()  cardinal  V85()  set 
 
p is   ordinal   natural  V11()  real   ext-real   non  negative  V36()  cardinal  V85()  set 
 
 Seg p is  V16() V36() p -element  V155() V156() V157() V158() V159() V160()  Element of  bool NAT
 
 {  b1 where b1 is   ordinal   natural  V11()  real   ext-real   non  negative  V36()  cardinal  V85() V86() V155() V156() V157() V158() V159() V160()  Element of  NAT  : ( 1 <= b1 & b1 <= p )  }   is    set 
 
(p,n) is   Relation-like   NAT  -defined   the carrier of F_Real *  -valued   Function-like  V36()  FinSequence-like   FinSubsequence-like   FinSequence-yielding   finite-support   Function-yielding  V235()  tabular   invertible   Matrix of p,p, the carrier of F_Real
 
 Det (p,n) is  V11()  real   ext-real   Element of  the carrier of F_Real
 
q is   Relation-like   NAT  -defined   the carrier of F_Real *  -valued   Function-like  V36()  FinSequence-like   FinSubsequence-like   FinSequence-yielding   finite-support   Function-yielding  V235()  tabular   Matrix of p,p, the carrier of F_Real
 
 Det q is  V11()  real   ext-real   Element of  the carrier of F_Real
 
q * (n,n) is  V11()  real   ext-real   Element of  the carrier of F_Real
 
 Indices q is    set 
 
n is   ordinal   natural  V11()  real   ext-real   non  negative  V36()  cardinal  V85()  set 
 
p is   ordinal   natural  V11()  real   ext-real   non  negative  V36()  cardinal  V85()  set 
 
 TOP-REAL p is   non  empty   TopSpace-like   right_complementable   constituted-Functions   constituted-FinSeqs  V189() V190() V191() V192() V193() V194() V195() V228() L16()
 
 the carrier of (TOP-REAL p) is   non  empty   set 
 
 Seg p is  V16() V36() p -element  V155() V156() V157() V158() V159() V160()  Element of  bool NAT
 
 {  b1 where b1 is   ordinal   natural  V11()  real   ext-real   non  negative  V36()  cardinal  V85() V86() V155() V156() V157() V158() V159() V160()  Element of  NAT  : ( 1 <= b1 & b1 <= p )  }   is    set 
 
(p,n) is   Relation-like   NAT  -defined   the carrier of F_Real *  -valued   Function-like  V36()  FinSequence-like   FinSubsequence-like   FinSequence-yielding   finite-support   Function-yielding  V235()  tabular   invertible   Matrix of p,p, the carrier of F_Real
 
q is   ordinal   natural  V11()  real   ext-real   non  negative  V36()  cardinal  V85()  set 
 
 Col ((p,n),q) is   Relation-like   NAT  -defined   the carrier of F_Real -valued   Function-like  V36()  len (p,n) -element   FinSequence-like   FinSubsequence-like   finite-support   Element of (len (p,n)) -tuples_on  the carrier of F_Real
 
 len (p,n) is   ordinal   natural  V11()  real   ext-real   non  negative  V36()  cardinal  V85() V86() V155() V156() V157() V158() V159() V160()  Element of  NAT 
 
(len (p,n)) -tuples_on  the carrier of F_Real is   non  empty   functional   FinSequence-membered   FinSequenceSet of  the carrier of F_Real
 
TR is   Relation-like   NAT  -defined   Function-like  V36() p -element   FinSequence-like   FinSubsequence-like   complex-yielding   ext-real-valued   real-valued   finite-support   Element of  the carrier of (TOP-REAL p)
 
 @ TR is   Relation-like   NAT  -defined   the carrier of F_Real -valued   Function-like  V36()  FinSequence-like   FinSubsequence-like   complex-yielding   ext-real-valued   real-valued   finite-support   FinSequence of  the carrier of F_Real
 
(@ TR) "*" (Col ((p,n),q)) is  V11()  real   ext-real   Element of  the carrier of F_Real
 
 mlt ((@ TR),(Col ((p,n),q))) is   Relation-like   NAT  -defined   the carrier of F_Real -valued   Function-like  V36()  FinSequence-like   FinSubsequence-like   complex-yielding   ext-real-valued   real-valued   finite-support   FinSequence of  the carrier of F_Real
 
 the multF of F_Real is   non  empty   Relation-like  [: the carrier of F_Real, the carrier of F_Real:] -defined   the carrier of F_Real -valued   Function-like   total   quasi_total   complex-yielding   ext-real-valued   real-valued   associative  V287( the carrier of F_Real)  Element of  bool [:[: the carrier of F_Real, the carrier of F_Real:], the carrier of F_Real:]
 
[: the carrier of F_Real, the carrier of F_Real:] is   non  empty   Relation-like   complex-yielding   ext-real-valued   real-valued   set 
 
[:[: the carrier of F_Real, the carrier of F_Real:], the carrier of F_Real:] is   non  empty   Relation-like   complex-yielding   ext-real-valued   real-valued   set 
 
 bool [:[: the carrier of F_Real, the carrier of F_Real:], the carrier of F_Real:] is   non  empty   set 
 
K721( the carrier of F_Real, the carrier of F_Real, the carrier of F_Real, the multF of F_Real,(@ TR),(Col ((p,n),q))) is   Relation-like   NAT  -defined   the carrier of F_Real -valued   Function-like  V36()  FinSequence-like   FinSubsequence-like   complex-yielding   ext-real-valued   real-valued   finite-support   FinSequence of  the carrier of F_Real
 
 Sum (mlt ((@ TR),(Col ((p,n),q)))) is  V11()  real   ext-real   Element of  the carrier of F_Real
 
 the addF of F_Real is   non  empty   Relation-like  [: the carrier of F_Real, the carrier of F_Real:] -defined   the carrier of F_Real -valued   Function-like   total   quasi_total   complex-yielding   ext-real-valued   real-valued   Element of  bool [:[: the carrier of F_Real, the carrier of F_Real:], the carrier of F_Real:]
 
 the addF of F_Real "**" (mlt ((@ TR),(Col ((p,n),q)))) is  V11()  real   ext-real   Element of  the carrier of F_Real
 
TR . q is  V11()  real   ext-real   Element of  REAL 
 
 Indices (p,n) is    set 
 
[:(Seg p),(Seg p):] is   Relation-like   RAT  -valued   INT  -valued  V36()  complex-yielding   ext-real-valued   real-valued   natural-valued   set 
 
[q,q] is    set 
 
{q,q} is   non  empty  V36() V40() V155() V156() V157() V158() V159() V160()  set 
 
{q} is   non  empty   trivial  V36() V40() 1 -element  V155() V156() V157() V158() V159() V160()  set 
 
{{q,q},{q}} is   non  empty  V36() V40()  set 
 
 dom (p,n) is  V36() V155() V156() V157() V158() V159() V160()  Element of  bool NAT
 
 len (Col ((p,n),q)) is   ordinal   natural  V11()  real   ext-real   non  negative  V36()  cardinal  V85() V86() V155() V156() V157() V158() V159() V160()  Element of  NAT 
 
 dom (Col ((p,n),q)) is  V36()  len (p,n) -element  V155() V156() V157() V158() V159() V160()  Element of  bool NAT
 
z is   ordinal   natural  V11()  real   ext-real   non  negative  V36()  cardinal  V85()  set 
 
[z,q] is    set 
 
{z,q} is   non  empty  V36() V40() V155() V156() V157() V158() V159() V160()  set 
 
{z} is   non  empty   trivial  V36() V40() 1 -element  V155() V156() V157() V158() V159() V160()  set 
 
{{z,q},{z}} is   non  empty  V36() V40()  set 
 
(Col ((p,n),q)) . z is    set 
 
(p,n) * (z,q) is  V11()  real   ext-real   Element of  the carrier of F_Real
 
 len TR is   ordinal   natural  V11()  real   ext-real   non  negative  V36()  cardinal  V85() V86() V155() V156() V157() V158() V159() V160()  Element of  NAT 
 
 dom TR is  V36() p -element  V155() V156() V157() V158() V159() V160()  Element of  bool NAT
 
(Col ((p,n),q)) . q is    set 
 
(p,n) * (q,q) is  V11()  real   ext-real   Element of  the carrier of F_Real
 
 mlt ((Col ((p,n),q)),(@ TR)) is   Relation-like   NAT  -defined   the carrier of F_Real -valued   Function-like  V36()  FinSequence-like   FinSubsequence-like   complex-yielding   ext-real-valued   real-valued   finite-support   FinSequence of  the carrier of F_Real
 
K721( the carrier of F_Real, the carrier of F_Real, the carrier of F_Real, the multF of F_Real,(Col ((p,n),q)),(@ TR)) is   Relation-like   NAT  -defined   the carrier of F_Real -valued   Function-like  V36()  FinSequence-like   FinSubsequence-like   complex-yielding   ext-real-valued   real-valued   finite-support   FinSequence of  the carrier of F_Real
 
 Sum (mlt ((Col ((p,n),q)),(@ TR))) is  V11()  real   ext-real   Element of  the carrier of F_Real
 
 the addF of F_Real "**" (mlt ((Col ((p,n),q)),(@ TR))) is  V11()  real   ext-real   Element of  the carrier of F_Real
 
n is   ordinal   natural  V11()  real   ext-real   non  negative  V36()  cardinal  V85()  set 
 
p is   ordinal   natural  V11()  real   ext-real   non  negative  V36()  cardinal  V85()  set 
 
 TOP-REAL p is   non  empty   TopSpace-like   right_complementable   constituted-Functions   constituted-FinSeqs  V189() V190() V191() V192() V193() V194() V195() V228() L16()
 
 the carrier of (TOP-REAL p) is   non  empty   set 
 
 Seg p is  V16() V36() p -element  V155() V156() V157() V158() V159() V160()  Element of  bool NAT
 
 {  b1 where b1 is   ordinal   natural  V11()  real   ext-real   non  negative  V36()  cardinal  V85() V86() V155() V156() V157() V158() V159() V160()  Element of  NAT  : ( 1 <= b1 & b1 <= p )  }   is    set 
 
(p,n) is   Relation-like   NAT  -defined   the carrier of F_Real *  -valued   Function-like  V36()  FinSequence-like   FinSubsequence-like   FinSequence-yielding   finite-support   Function-yielding  V235()  tabular   invertible   Matrix of p,p, the carrier of F_Real
 
 Col ((p,n),n) is   Relation-like   NAT  -defined   the carrier of F_Real -valued   Function-like  V36()  len (p,n) -element   FinSequence-like   FinSubsequence-like   finite-support   Element of (len (p,n)) -tuples_on  the carrier of F_Real
 
 len (p,n) is   ordinal   natural  V11()  real   ext-real   non  negative  V36()  cardinal  V85() V86() V155() V156() V157() V158() V159() V160()  Element of  NAT 
 
(len (p,n)) -tuples_on  the carrier of F_Real is   non  empty   functional   FinSequence-membered   FinSequenceSet of  the carrier of F_Real
 
q is   Relation-like   NAT  -defined   Function-like  V36() p -element   FinSequence-like   FinSubsequence-like   complex-yielding   ext-real-valued   real-valued   finite-support   Element of  the carrier of (TOP-REAL p)
 
 @ q is   Relation-like   NAT  -defined   the carrier of F_Real -valued   Function-like  V36()  FinSequence-like   FinSubsequence-like   complex-yielding   ext-real-valued   real-valued   finite-support   FinSequence of  the carrier of F_Real
 
(@ q) "*" (Col ((p,n),n)) is  V11()  real   ext-real   Element of  the carrier of F_Real
 
 mlt ((@ q),(Col ((p,n),n))) is   Relation-like   NAT  -defined   the carrier of F_Real -valued   Function-like  V36()  FinSequence-like   FinSubsequence-like   complex-yielding   ext-real-valued   real-valued   finite-support   FinSequence of  the carrier of F_Real
 
 the multF of F_Real is   non  empty   Relation-like  [: the carrier of F_Real, the carrier of F_Real:] -defined   the carrier of F_Real -valued   Function-like   total   quasi_total   complex-yielding   ext-real-valued   real-valued   associative  V287( the carrier of F_Real)  Element of  bool [:[: the carrier of F_Real, the carrier of F_Real:], the carrier of F_Real:]
 
[: the carrier of F_Real, the carrier of F_Real:] is   non  empty   Relation-like   complex-yielding   ext-real-valued   real-valued   set 
 
[:[: the carrier of F_Real, the carrier of F_Real:], the carrier of F_Real:] is   non  empty   Relation-like   complex-yielding   ext-real-valued   real-valued   set 
 
 bool [:[: the carrier of F_Real, the carrier of F_Real:], the carrier of F_Real:] is   non  empty   set 
 
K721( the carrier of F_Real, the carrier of F_Real, the carrier of F_Real, the multF of F_Real,(@ q),(Col ((p,n),n))) is   Relation-like   NAT  -defined   the carrier of F_Real -valued   Function-like  V36()  FinSequence-like   FinSubsequence-like   complex-yielding   ext-real-valued   real-valued   finite-support   FinSequence of  the carrier of F_Real
 
 Sum (mlt ((@ q),(Col ((p,n),n)))) is  V11()  real   ext-real   Element of  the carrier of F_Real
 
 the addF of F_Real is   non  empty   Relation-like  [: the carrier of F_Real, the carrier of F_Real:] -defined   the carrier of F_Real -valued   Function-like   total   quasi_total   complex-yielding   ext-real-valued   real-valued   Element of  bool [:[: the carrier of F_Real, the carrier of F_Real:], the carrier of F_Real:]
 
 the addF of F_Real "**" (mlt ((@ q),(Col ((p,n),n)))) is  V11()  real   ext-real   Element of  the carrier of F_Real
 
q . n is  V11()  real   ext-real   Element of  REAL 
 
 - (q . n) is  V11()  real   ext-real   Element of  REAL 
 
(@ q) . n is  V11()  real   ext-real   Element of  REAL 
 
 dom (p,n) is  V36() V155() V156() V157() V158() V159() V160()  Element of  bool NAT
 
(Col ((p,n),n)) . n is    set 
 
(p,n) * (n,n) is  V11()  real   ext-real   Element of  the carrier of F_Real
 
 len q is   ordinal   natural  V11()  real   ext-real   non  negative  V36()  cardinal  V85() V86() V155() V156() V157() V158() V159() V160()  Element of  NAT 
 
 len (Col ((p,n),n)) is   ordinal   natural  V11()  real   ext-real   non  negative  V36()  cardinal  V85() V86() V155() V156() V157() V158() V159() V160()  Element of  NAT 
 
 len (mlt ((@ q),(Col ((p,n),n)))) is   ordinal   natural  V11()  real   ext-real   non  negative  V36()  cardinal  V85() V86() V155() V156() V157() V158() V159() V160()  Element of  NAT 
 
 dom (mlt ((@ q),(Col ((p,n),n)))) is  V36() V155() V156() V157() V158() V159() V160()  Element of  bool NAT
 
 Indices (p,n) is    set 
 
[:(Seg p),(Seg p):] is   Relation-like   RAT  -valued   INT  -valued  V36()  complex-yielding   ext-real-valued   real-valued   natural-valued   set 
 
z is   ordinal   natural  V11()  real   ext-real   non  negative  V36()  cardinal  V85()  set 
 
(mlt ((@ q),(Col ((p,n),n)))) . z is  V11()  real   ext-real   Element of  REAL 
 
(@ q) . z is  V11()  real   ext-real   Element of  REAL 
 
[z,n] is    set 
 
{z,n} is   non  empty  V36() V40() V155() V156() V157() V158() V159() V160()  set 
 
{z} is   non  empty   trivial  V36() V40() 1 -element  V155() V156() V157() V158() V159() V160()  set 
 
{{z,n},{z}} is   non  empty  V36() V40()  set 
 
(Col ((p,n),n)) . z is    set 
 
(p,n) * (z,n) is  V11()  real   ext-real   Element of  the carrier of F_Real
 
fp is  V11()  real   ext-real   Element of  the carrier of F_Real
 
fp * ((p,n) * (z,n)) is  V11()  real   ext-real   Element of  the carrier of F_Real
 
 the multF of F_Real . (fp,((p,n) * (z,n))) is  V11()  real   ext-real   Element of  the carrier of F_Real
 
K538(fp,((p,n) * (z,n))) is  V11()  real   ext-real   Element of  REAL 
 
fp * (0. F_Real) is  V11()  real   ext-real   Element of  the carrier of F_Real
 
 the multF of F_Real . (fp,(0. F_Real)) is  V11()  real   ext-real   Element of  the carrier of F_Real
 
K538(fp,(0. F_Real)) is  V11()  real   ext-real   Element of  REAL 
 
(mlt ((@ q),(Col ((p,n),n)))) . n is  V11()  real   ext-real   Element of  REAL 
 
n1 is  V11()  real   ext-real   Element of  the carrier of F_Real
 
n1 * ((p,n) * (n,n)) is  V11()  real   ext-real   Element of  the carrier of F_Real
 
 the multF of F_Real . (n1,((p,n) * (n,n))) is  V11()  real   ext-real   Element of  the carrier of F_Real
 
K538(n1,((p,n) * (n,n))) is  V11()  real   ext-real   Element of  REAL 
 
n1 * (- (1. F_Real)) is  V11()  real   ext-real   Element of  the carrier of F_Real
 
 the multF of F_Real . (n1,(- (1. F_Real))) is  V11()  real   ext-real   Element of  the carrier of F_Real
 
K538(n1,(- (1. F_Real))) is  V11()  real   ext-real   Element of  REAL 
 
n is   ordinal   natural  V11()  real   ext-real   non  negative  V36()  cardinal  V85()  set 
 
p is   ordinal   natural  V11()  real   ext-real   non  negative  V36()  cardinal  V85()  set 
 
 Seg p is  V16() V36() p -element  V155() V156() V157() V158() V159() V160()  Element of  bool NAT
 
 {  b1 where b1 is   ordinal   natural  V11()  real   ext-real   non  negative  V36()  cardinal  V85() V86() V155() V156() V157() V158() V159() V160()  Element of  NAT  : ( 1 <= b1 & b1 <= p )  }   is    set 
 
(p,n) is   Relation-like   NAT  -defined   the carrier of F_Real *  -valued   Function-like  V36()  FinSequence-like   FinSubsequence-like   FinSequence-yielding   finite-support   Function-yielding  V235()  tabular   invertible   Matrix of p,p, the carrier of F_Real
 
(p,n) ~  is   Relation-like   NAT  -defined   the carrier of F_Real *  -valued   Function-like  V36()  FinSequence-like   FinSubsequence-like   FinSequence-yielding   finite-support   Function-yielding  V235()  tabular   Matrix of p,p, the carrier of F_Real
 
 1. (F_Real,p) is   Relation-like   NAT  -defined   the carrier of F_Real *  -valued   Function-like  V36()  FinSequence-like   FinSubsequence-like   FinSequence-yielding   finite-support   Function-yielding  V235()  tabular   Matrix of p,p, the carrier of F_Real
 
(p,n) * (p,n) is   Relation-like   NAT  -defined   the carrier of F_Real *  -valued   Function-like  V36()  FinSequence-like   FinSubsequence-like   FinSequence-yielding   finite-support   Function-yielding  V235()  tabular   Matrix of p,p, the carrier of F_Real
 
 Indices (p,n) is    set 
 
X is   ordinal   natural  V11()  real   ext-real   non  negative  V36()  cardinal  V85()  set 
 
z is   ordinal   natural  V11()  real   ext-real   non  negative  V36()  cardinal  V85()  set 
 
[X,z] is    set 
 
{X,z} is   non  empty  V36() V40() V155() V156() V157() V158() V159() V160()  set 
 
{X} is   non  empty   trivial  V36() V40() 1 -element  V155() V156() V157() V158() V159() V160()  set 
 
{{X,z},{X}} is   non  empty  V36() V40()  set 
 
(p,n) * (X,z) is  V11()  real   ext-real   Element of  the carrier of F_Real
 
 Indices ((p,n) * (p,n)) is    set 
 
X is   ordinal   natural  V11()  real   ext-real   non  negative  V36()  cardinal  V85()  set 
 
z is   ordinal   natural  V11()  real   ext-real   non  negative  V36()  cardinal  V85()  set 
 
[X,z] is    set 
 
{X,z} is   non  empty  V36() V40() V155() V156() V157() V158() V159() V160()  set 
 
{X} is   non  empty   trivial  V36() V40() 1 -element  V155() V156() V157() V158() V159() V160()  set 
 
{{X,z},{X}} is   non  empty  V36() V40()  set 
 
((p,n) * (p,n)) * (X,z) is  V11()  real   ext-real   Element of  the carrier of F_Real
 
(1. (F_Real,p)) * (X,z) is  V11()  real   ext-real   Element of  the carrier of F_Real
 
 width (p,n) is   ordinal   natural  V11()  real   ext-real   non  negative  V36()  cardinal  V85() V86() V155() V156() V157() V158() V159() V160()  Element of  NAT 
 
 Line ((p,n),X) is   Relation-like   NAT  -defined   the carrier of F_Real -valued   Function-like  V36()  width (p,n) -element   FinSequence-like   FinSubsequence-like   finite-support   Element of (width (p,n)) -tuples_on  the carrier of F_Real
 
(width (p,n)) -tuples_on  the carrier of F_Real is   non  empty   functional   FinSequence-membered   FinSequenceSet of  the carrier of F_Real
 
 @ (Line ((p,n),X)) is   Relation-like   NAT  -defined   REAL  -valued   Function-like  V36()  FinSequence-like   FinSubsequence-like   complex-yielding   ext-real-valued   real-valued   finite-support   FinSequence of  REAL 
 
 len (@ (Line ((p,n),X))) is   ordinal   natural  V11()  real   ext-real   non  negative  V36()  cardinal  V85() V86() V155() V156() V157() V158() V159() V160()  Element of  NAT 
 
 TOP-REAL p is   non  empty   TopSpace-like   right_complementable   constituted-Functions   constituted-FinSeqs  V189() V190() V191() V192() V193() V194() V195() V228() L16()
 
 the carrier of (TOP-REAL p) is   non  empty   set 
 
 len (p,n) is   ordinal   natural  V11()  real   ext-real   non  negative  V36()  cardinal  V85() V86() V155() V156() V157() V158() V159() V160()  Element of  NAT 
 
fp is   Relation-like   NAT  -defined   Function-like  V36() p -element   FinSequence-like   FinSubsequence-like   complex-yielding   ext-real-valued   real-valued   finite-support   Element of  the carrier of (TOP-REAL p)
 
 @ fp is   Relation-like   NAT  -defined   the carrier of F_Real -valued   Function-like  V36()  FinSequence-like   FinSubsequence-like   complex-yielding   ext-real-valued   real-valued   finite-support   FinSequence of  the carrier of F_Real
 
 Col ((p,n),z) is   Relation-like   NAT  -defined   the carrier of F_Real -valued   Function-like  V36()  len (p,n) -element   FinSequence-like   FinSubsequence-like   finite-support   Element of (len (p,n)) -tuples_on  the carrier of F_Real
 
(len (p,n)) -tuples_on  the carrier of F_Real is   non  empty   functional   FinSequence-membered   FinSequenceSet of  the carrier of F_Real
 
(@ fp) "*" (Col ((p,n),z)) is  V11()  real   ext-real   Element of  the carrier of F_Real
 
 mlt ((@ fp),(Col ((p,n),z))) is   Relation-like   NAT  -defined   the carrier of F_Real -valued   Function-like  V36()  FinSequence-like   FinSubsequence-like   complex-yielding   ext-real-valued   real-valued   finite-support   FinSequence of  the carrier of F_Real
 
 the multF of F_Real is   non  empty   Relation-like  [: the carrier of F_Real, the carrier of F_Real:] -defined   the carrier of F_Real -valued   Function-like   total   quasi_total   complex-yielding   ext-real-valued   real-valued   associative  V287( the carrier of F_Real)  Element of  bool [:[: the carrier of F_Real, the carrier of F_Real:], the carrier of F_Real:]
 
[: the carrier of F_Real, the carrier of F_Real:] is   non  empty   Relation-like   complex-yielding   ext-real-valued   real-valued   set 
 
[:[: the carrier of F_Real, the carrier of F_Real:], the carrier of F_Real:] is   non  empty   Relation-like   complex-yielding   ext-real-valued   real-valued   set 
 
 bool [:[: the carrier of F_Real, the carrier of F_Real:], the carrier of F_Real:] is   non  empty   set 
 
K721( the carrier of F_Real, the carrier of F_Real, the carrier of F_Real, the multF of F_Real,(@ fp),(Col ((p,n),z))) is   Relation-like   NAT  -defined   the carrier of F_Real -valued   Function-like  V36()  FinSequence-like   FinSubsequence-like   complex-yielding   ext-real-valued   real-valued   finite-support   FinSequence of  the carrier of F_Real
 
 Sum (mlt ((@ fp),(Col ((p,n),z)))) is  V11()  real   ext-real   Element of  the carrier of F_Real
 
 the addF of F_Real is   non  empty   Relation-like  [: the carrier of F_Real, the carrier of F_Real:] -defined   the carrier of F_Real -valued   Function-like   total   quasi_total   complex-yielding   ext-real-valued   real-valued   Element of  bool [:[: the carrier of F_Real, the carrier of F_Real:], the carrier of F_Real:]
 
 the addF of F_Real "**" (mlt ((@ fp),(Col ((p,n),z)))) is  V11()  real   ext-real   Element of  the carrier of F_Real
 
[:(Seg p),(Seg p):] is   Relation-like   RAT  -valued   INT  -valued  V36()  complex-yielding   ext-real-valued   real-valued   natural-valued   set 
 
(Line ((p,n),X)) . z is    set 
 
(p,n) * (X,z) is  V11()  real   ext-real   Element of  the carrier of F_Real
 
 Indices (1. (F_Real,p)) is    set 
 
 - ((p,n) * (X,z)) is  V11()  real   ext-real   Element of  the carrier of F_Real
 
K534(((p,n) * (X,z))) is  V11()  real   ext-real   Element of  REAL 
 
 - (- (1. F_Real)) is  V11()  real   ext-real   Element of  the carrier of F_Real
 
K534((- (1. F_Real))) is  V11()  real   ext-real   Element of  REAL 
 
n is   ordinal   natural  V11()  real   ext-real   non  negative  V36()  cardinal  V85()  set 
 
p is   ordinal   natural  V11()  real   ext-real   non  negative  V36()  cardinal  V85()  set 
 
 TOP-REAL p is   non  empty   TopSpace-like   right_complementable   constituted-Functions   constituted-FinSeqs  V189() V190() V191() V192() V193() V194() V195() V228() L16()
 
 the carrier of (TOP-REAL p) is   non  empty   set 
 
 Seg p is  V16() V36() p -element  V155() V156() V157() V158() V159() V160()  Element of  bool NAT
 
 {  b1 where b1 is   ordinal   natural  V11()  real   ext-real   non  negative  V36()  cardinal  V85() V86() V155() V156() V157() V158() V159() V160()  Element of  NAT  : ( 1 <= b1 & b1 <= p )  }   is    set 
 
(p,n) is   Relation-like   NAT  -defined   the carrier of F_Real *  -valued   Function-like  V36()  FinSequence-like   FinSubsequence-like   FinSequence-yielding   finite-support   Function-yielding  V235()  tabular   invertible   Matrix of p,p, the carrier of F_Real
 
 Mx2Tran (p,n) is   non  empty   Relation-like   the carrier of (TOP-REAL p) -defined   the carrier of (TOP-REAL p) -valued   Function-like   total   quasi_total   additive   FinSequence-yielding   homogeneous   Function-yielding  V235()  being_homeomorphism   Element of  bool [: the carrier of (TOP-REAL p), the carrier of (TOP-REAL p):]
 
[: the carrier of (TOP-REAL p), the carrier of (TOP-REAL p):] is   non  empty   Relation-like   set 
 
 bool [: the carrier of (TOP-REAL p), the carrier of (TOP-REAL p):] is   non  empty   set 
 
q is   ordinal   natural  V11()  real   ext-real   non  negative  V36()  cardinal  V85()  set 
 
TR is   Relation-like   NAT  -defined   Function-like  V36() p -element   FinSequence-like   FinSubsequence-like   complex-yielding   ext-real-valued   real-valued   finite-support   Element of  the carrier of (TOP-REAL p)
 
(Mx2Tran (p,n)) . TR is   Relation-like   NAT  -defined   Function-like  V36() p -element   FinSequence-like   FinSubsequence-like   complex-yielding   ext-real-valued   real-valued   finite-support   Element of  the carrier of (TOP-REAL p)
 
((Mx2Tran (p,n)) . TR) . q is  V11()  real   ext-real   Element of  REAL 
 
TR . q is  V11()  real   ext-real   Element of  REAL 
 
 len ((Mx2Tran (p,n)) . TR) is   ordinal   natural  V11()  real   ext-real   non  negative  V36()  cardinal  V85() V86() V155() V156() V157() V158() V159() V160()  Element of  NAT 
 
 dom ((Mx2Tran (p,n)) . TR) is  V36() p -element  V155() V156() V157() V158() V159() V160()  Element of  bool NAT
 
 len TR is   ordinal   natural  V11()  real   ext-real   non  negative  V36()  cardinal  V85() V86() V155() V156() V157() V158() V159() V160()  Element of  NAT 
 
 dom TR is  V36() p -element  V155() V156() V157() V158() V159() V160()  Element of  bool NAT
 
 @ TR is   Relation-like   NAT  -defined   the carrier of F_Real -valued   Function-like  V36()  FinSequence-like   FinSubsequence-like   complex-yielding   ext-real-valued   real-valued   finite-support   FinSequence of  the carrier of F_Real
 
 Col ((p,n),q) is   Relation-like   NAT  -defined   the carrier of F_Real -valued   Function-like  V36()  len (p,n) -element   FinSequence-like   FinSubsequence-like   finite-support   Element of (len (p,n)) -tuples_on  the carrier of F_Real
 
 len (p,n) is   ordinal   natural  V11()  real   ext-real   non  negative  V36()  cardinal  V85() V86() V155() V156() V157() V158() V159() V160()  Element of  NAT 
 
(len (p,n)) -tuples_on  the carrier of F_Real is   non  empty   functional   FinSequence-membered   FinSequenceSet of  the carrier of F_Real
 
(@ TR) "*" (Col ((p,n),q)) is  V11()  real   ext-real   Element of  the carrier of F_Real
 
 mlt ((@ TR),(Col ((p,n),q))) is   Relation-like   NAT  -defined   the carrier of F_Real -valued   Function-like  V36()  FinSequence-like   FinSubsequence-like   complex-yielding   ext-real-valued   real-valued   finite-support   FinSequence of  the carrier of F_Real
 
 the multF of F_Real is   non  empty   Relation-like  [: the carrier of F_Real, the carrier of F_Real:] -defined   the carrier of F_Real -valued   Function-like   total   quasi_total   complex-yielding   ext-real-valued   real-valued   associative  V287( the carrier of F_Real)  Element of  bool [:[: the carrier of F_Real, the carrier of F_Real:], the carrier of F_Real:]
 
[: the carrier of F_Real, the carrier of F_Real:] is   non  empty   Relation-like   complex-yielding   ext-real-valued   real-valued   set 
 
[:[: the carrier of F_Real, the carrier of F_Real:], the carrier of F_Real:] is   non  empty   Relation-like   complex-yielding   ext-real-valued   real-valued   set 
 
 bool [:[: the carrier of F_Real, the carrier of F_Real:], the carrier of F_Real:] is   non  empty   set 
 
K721( the carrier of F_Real, the carrier of F_Real, the carrier of F_Real, the multF of F_Real,(@ TR),(Col ((p,n),q))) is   Relation-like   NAT  -defined   the carrier of F_Real -valued   Function-like  V36()  FinSequence-like   FinSubsequence-like   complex-yielding   ext-real-valued   real-valued   finite-support   FinSequence of  the carrier of F_Real
 
 Sum (mlt ((@ TR),(Col ((p,n),q)))) is  V11()  real   ext-real   Element of  the carrier of F_Real
 
 the addF of F_Real is   non  empty   Relation-like  [: the carrier of F_Real, the carrier of F_Real:] -defined   the carrier of F_Real -valued   Function-like   total   quasi_total   complex-yielding   ext-real-valued   real-valued   Element of  bool [:[: the carrier of F_Real, the carrier of F_Real:], the carrier of F_Real:]
 
 the addF of F_Real "**" (mlt ((@ TR),(Col ((p,n),q)))) is  V11()  real   ext-real   Element of  the carrier of F_Real
 
n is   ordinal   natural  V11()  real   ext-real   non  negative  V36()  cardinal  V85()  set 
 
p is   ordinal   natural  V11()  real   ext-real   non  negative  V36()  cardinal  V85()  set 
 
 TOP-REAL p is   non  empty   TopSpace-like   right_complementable   constituted-Functions   constituted-FinSeqs  V189() V190() V191() V192() V193() V194() V195() V228() L16()
 
 the carrier of (TOP-REAL p) is   non  empty   set 
 
 Seg p is  V16() V36() p -element  V155() V156() V157() V158() V159() V160()  Element of  bool NAT
 
 {  b1 where b1 is   ordinal   natural  V11()  real   ext-real   non  negative  V36()  cardinal  V85() V86() V155() V156() V157() V158() V159() V160()  Element of  NAT  : ( 1 <= b1 & b1 <= p )  }   is    set 
 
(p,n) is   Relation-like   NAT  -defined   the carrier of F_Real *  -valued   Function-like  V36()  FinSequence-like   FinSubsequence-like   FinSequence-yielding   finite-support   Function-yielding  V235()  tabular   invertible   Matrix of p,p, the carrier of F_Real
 
 Mx2Tran (p,n) is   non  empty   Relation-like   the carrier of (TOP-REAL p) -defined   the carrier of (TOP-REAL p) -valued   Function-like   total   quasi_total   additive   FinSequence-yielding   homogeneous   Function-yielding  V235()  being_homeomorphism   Element of  bool [: the carrier of (TOP-REAL p), the carrier of (TOP-REAL p):]
 
[: the carrier of (TOP-REAL p), the carrier of (TOP-REAL p):] is   non  empty   Relation-like   set 
 
 bool [: the carrier of (TOP-REAL p), the carrier of (TOP-REAL p):] is   non  empty   set 
 
q is   Relation-like   NAT  -defined   Function-like  V36() p -element   FinSequence-like   FinSubsequence-like   complex-yielding   ext-real-valued   real-valued   finite-support   Element of  the carrier of (TOP-REAL p)
 
(Mx2Tran (p,n)) . q is   Relation-like   NAT  -defined   Function-like  V36() p -element   FinSequence-like   FinSubsequence-like   complex-yielding   ext-real-valued   real-valued   finite-support   Element of  the carrier of (TOP-REAL p)
 
((Mx2Tran (p,n)) . q) . n is  V11()  real   ext-real   Element of  REAL 
 
q . n is  V11()  real   ext-real   Element of  REAL 
 
 - (q . n) is  V11()  real   ext-real   Element of  REAL 
 
 @ q is   Relation-like   NAT  -defined   the carrier of F_Real -valued   Function-like  V36()  FinSequence-like   FinSubsequence-like   complex-yielding   ext-real-valued   real-valued   finite-support   FinSequence of  the carrier of F_Real
 
 Col ((p,n),n) is   Relation-like   NAT  -defined   the carrier of F_Real -valued   Function-like  V36()  len (p,n) -element   FinSequence-like   FinSubsequence-like   finite-support   Element of (len (p,n)) -tuples_on  the carrier of F_Real
 
 len (p,n) is   ordinal   natural  V11()  real   ext-real   non  negative  V36()  cardinal  V85() V86() V155() V156() V157() V158() V159() V160()  Element of  NAT 
 
(len (p,n)) -tuples_on  the carrier of F_Real is   non  empty   functional   FinSequence-membered   FinSequenceSet of  the carrier of F_Real
 
(@ q) "*" (Col ((p,n),n)) is  V11()  real   ext-real   Element of  the carrier of F_Real
 
 mlt ((@ q),(Col ((p,n),n))) is   Relation-like   NAT  -defined   the carrier of F_Real -valued   Function-like  V36()  FinSequence-like   FinSubsequence-like   complex-yielding   ext-real-valued   real-valued   finite-support   FinSequence of  the carrier of F_Real
 
 the multF of F_Real is   non  empty   Relation-like  [: the carrier of F_Real, the carrier of F_Real:] -defined   the carrier of F_Real -valued   Function-like   total   quasi_total   complex-yielding   ext-real-valued   real-valued   associative  V287( the carrier of F_Real)  Element of  bool [:[: the carrier of F_Real, the carrier of F_Real:], the carrier of F_Real:]
 
[: the carrier of F_Real, the carrier of F_Real:] is   non  empty   Relation-like   complex-yielding   ext-real-valued   real-valued   set 
 
[:[: the carrier of F_Real, the carrier of F_Real:], the carrier of F_Real:] is   non  empty   Relation-like   complex-yielding   ext-real-valued   real-valued   set 
 
 bool [:[: the carrier of F_Real, the carrier of F_Real:], the carrier of F_Real:] is   non  empty   set 
 
K721( the carrier of F_Real, the carrier of F_Real, the carrier of F_Real, the multF of F_Real,(@ q),(Col ((p,n),n))) is   Relation-like   NAT  -defined   the carrier of F_Real -valued   Function-like  V36()  FinSequence-like   FinSubsequence-like   complex-yielding   ext-real-valued   real-valued   finite-support   FinSequence of  the carrier of F_Real
 
 Sum (mlt ((@ q),(Col ((p,n),n)))) is  V11()  real   ext-real   Element of  the carrier of F_Real
 
 the addF of F_Real is   non  empty   Relation-like  [: the carrier of F_Real, the carrier of F_Real:] -defined   the carrier of F_Real -valued   Function-like   total   quasi_total   complex-yielding   ext-real-valued   real-valued   Element of  bool [:[: the carrier of F_Real, the carrier of F_Real:], the carrier of F_Real:]
 
 the addF of F_Real "**" (mlt ((@ q),(Col ((p,n),n)))) is  V11()  real   ext-real   Element of  the carrier of F_Real
 
n is   ordinal   natural  V11()  real   ext-real   non  negative  V36()  cardinal  V85()  set 
 
p is   ordinal   natural  V11()  real   ext-real   non  negative  V36()  cardinal  V85()  set 
 
 TOP-REAL p is   non  empty   TopSpace-like   right_complementable   constituted-Functions   constituted-FinSeqs  V189() V190() V191() V192() V193() V194() V195() V228() L16()
 
 the carrier of (TOP-REAL p) is   non  empty   set 
 
 Seg p is  V16() V36() p -element  V155() V156() V157() V158() V159() V160()  Element of  bool NAT
 
 {  b1 where b1 is   ordinal   natural  V11()  real   ext-real   non  negative  V36()  cardinal  V85() V86() V155() V156() V157() V158() V159() V160()  Element of  NAT  : ( 1 <= b1 & b1 <= p )  }   is    set 
 
(p,n) is   Relation-like   NAT  -defined   the carrier of F_Real *  -valued   Function-like  V36()  FinSequence-like   FinSubsequence-like   FinSequence-yielding   finite-support   Function-yielding  V235()  tabular   invertible   Matrix of p,p, the carrier of F_Real
 
 Mx2Tran (p,n) is   non  empty   Relation-like   the carrier of (TOP-REAL p) -defined   the carrier of (TOP-REAL p) -valued   Function-like   total   quasi_total   additive   FinSequence-yielding   homogeneous   Function-yielding  V235()  being_homeomorphism   Element of  bool [: the carrier of (TOP-REAL p), the carrier of (TOP-REAL p):]
 
[: the carrier of (TOP-REAL p), the carrier of (TOP-REAL p):] is   non  empty   Relation-like   set 
 
 bool [: the carrier of (TOP-REAL p), the carrier of (TOP-REAL p):] is   non  empty   set 
 
q is   Relation-like   NAT  -defined   Function-like  V36() p -element   FinSequence-like   FinSubsequence-like   complex-yielding   ext-real-valued   real-valued   finite-support   Element of  the carrier of (TOP-REAL p)
 
(Mx2Tran (p,n)) . q is   Relation-like   NAT  -defined   Function-like  V36() p -element   FinSequence-like   FinSubsequence-like   complex-yielding   ext-real-valued   real-valued   finite-support   Element of  the carrier of (TOP-REAL p)
 
q . n is  V11()  real   ext-real   Element of  REAL 
 
 - (q . n) is  V11()  real   ext-real   Element of  REAL 
 
q +* (n,(- (q . n))) is   Relation-like   NAT  -defined   Function-like  V36()  FinSequence-like   FinSubsequence-like   complex-yielding   ext-real-valued   real-valued   finite-support   set 
 
 len q is   ordinal   natural  V11()  real   ext-real   non  negative  V36()  cardinal  V85() V86() V155() V156() V157() V158() V159() V160()  Element of  NAT 
 
X is   ordinal   natural  V11()  real   ext-real   non  negative  V36()  cardinal  V85()  set 
 
((Mx2Tran (p,n)) . q) . X is  V11()  real   ext-real   Element of  REAL 
 
(q +* (n,(- (q . n)))) . X is  V11()  real   ext-real   Element of  REAL 
 
 dom q is  V36() p -element  V155() V156() V157() V158() V159() V160()  Element of  bool NAT
 
q . X is  V11()  real   ext-real   Element of  REAL 
 
 len (q +* (n,(- (q . n)))) is   ordinal   natural  V11()  real   ext-real   non  negative  V36()  cardinal  V85() V86() V155() V156() V157() V158() V159() V160()  Element of  NAT 
 
 len ((Mx2Tran (p,n)) . q) is   ordinal   natural  V11()  real   ext-real   non  negative  V36()  cardinal  V85() V86() V155() V156() V157() V158() V159() V160()  Element of  NAT 
 
n is   ordinal   natural  V11()  real   ext-real   non  negative  V36()  cardinal  V85()  set 
 
{n} is   non  empty   trivial  V36() V40() 1 -element  V155() V156() V157() V158() V159() V160()  Element of  bool NAT
 
p is   ordinal   natural  V11()  real   ext-real   non  negative  V36()  cardinal  V85()  set 
 
 Seg p is  V16() V36() p -element  V155() V156() V157() V158() V159() V160()  Element of  bool NAT
 
 {  b1 where b1 is   ordinal   natural  V11()  real   ext-real   non  negative  V36()  cardinal  V85() V86() V155() V156() V157() V158() V159() V160()  Element of  NAT  : ( 1 <= b1 & b1 <= p )  }   is    set 
 
(p,n) is   Relation-like   NAT  -defined   the carrier of F_Real *  -valued   Function-like  V36()  FinSequence-like   FinSubsequence-like   FinSequence-yielding   finite-support   Function-yielding  V235()  tabular   invertible   Matrix of p,p, the carrier of F_Real
 
 Mx2Tran (p,n) is   non  empty   Relation-like   the carrier of (TOP-REAL p) -defined   the carrier of (TOP-REAL p) -valued   Function-like   total   quasi_total   additive   FinSequence-yielding   homogeneous   Function-yielding  V235()  being_homeomorphism   Element of  bool [: the carrier of (TOP-REAL p), the carrier of (TOP-REAL p):]
 
 TOP-REAL p is   non  empty   TopSpace-like   right_complementable   constituted-Functions   constituted-FinSeqs  V189() V190() V191() V192() V193() V194() V195() V228() L16()
 
 the carrier of (TOP-REAL p) is   non  empty   set 
 
[: the carrier of (TOP-REAL p), the carrier of (TOP-REAL p):] is   non  empty   Relation-like   set 
 
 bool [: the carrier of (TOP-REAL p), the carrier of (TOP-REAL p):] is   non  empty   set 
 
TR is   Relation-like   Function-like   set 
 
 dom (Mx2Tran (p,n)) is   non  empty   set 
 
(Mx2Tran (p,n)) . TR is   Relation-like   NAT  -defined   Function-like  V36()  FinSequence-like   FinSubsequence-like   complex-yielding   ext-real-valued   real-valued   finite-support   set 
 
n1 is    set 
 
((Mx2Tran (p,n)) . TR) . n1 is  V11()  real   ext-real   set 
 
TR . n1 is    set 
 
((Mx2Tran (p,n)) . TR) . n1 is  V11()  real   ext-real   Element of  REAL 
 
f is   Relation-like   NAT  -defined   Function-like  V36() p -element   FinSequence-like   FinSubsequence-like   complex-yielding   ext-real-valued   real-valued   finite-support   Element of  the carrier of (TOP-REAL p)
 
(Mx2Tran (p,n)) . f is   Relation-like   NAT  -defined   Function-like  V36() p -element   FinSequence-like   FinSubsequence-like   complex-yielding   ext-real-valued   real-valued   finite-support   Element of  the carrier of (TOP-REAL p)
 
 len ((Mx2Tran (p,n)) . f) is   ordinal   natural  V11()  real   ext-real   non  negative  V36()  cardinal  V85() V86() V155() V156() V157() V158() V159() V160()  Element of  NAT 
 
 dom ((Mx2Tran (p,n)) . f) is  V36() p -element  V155() V156() V157() V158() V159() V160()  Element of  bool NAT
 
 len f is   ordinal   natural  V11()  real   ext-real   non  negative  V36()  cardinal  V85() V86() V155() V156() V157() V158() V159() V160()  Element of  NAT 
 
 dom f is  V36() p -element  V155() V156() V157() V158() V159() V160()  Element of  bool NAT
 
((Mx2Tran (p,n)) . f) . n1 is  V11()  real   ext-real   Element of  REAL 
 
f . n1 is  V11()  real   ext-real   Element of  REAL 
 
n is  V11()  real   ext-real   set 
 
 cos n is  V11()  real   ext-real   set 
 
 sin n is  V11()  real   ext-real   set 
 
p is   ordinal   natural  V11()  real   ext-real   non  negative  V36()  cardinal  V85()  set 
 
 1. (F_Real,p) is   Relation-like   NAT  -defined   the carrier of F_Real *  -valued   Function-like  V36()  FinSequence-like   FinSubsequence-like   FinSequence-yielding   finite-support   Function-yielding  V235()  tabular   Matrix of p,p, the carrier of F_Real
 
q is  V11()  real   ext-real   Element of  the carrier of F_Real
 
TR is  V11()  real   ext-real   Element of  the carrier of F_Real
 
 - TR is  V11()  real   ext-real   Element of  the carrier of F_Real
 
K534(TR) is  V11()  real   ext-real   Element of  REAL 
 
(q,TR) ][ ((- TR),q) is   Relation-like   NAT  -defined   the carrier of F_Real *  -valued   Function-like  V36()  FinSequence-like   FinSubsequence-like   FinSequence-yielding   finite-support   Function-yielding  V235()  tabular   Matrix of 2,2, the carrier of F_Real
 
<*((q,TR) ][ ((- TR),q)),(1. (F_Real,p))*> is   non  empty   Relation-like   NAT  -defined  ( the carrier of F_Real *) *  -valued   Function-like  V36() 2 -element   FinSequence-like   FinSubsequence-like   FinSequence-yielding   finite-support   Function-yielding  V235()  Matrix-yielding   Square-Matrix-yielding   FinSequence of ( the carrier of F_Real *) * 
 
( the carrier of F_Real *) *  is   non  empty   functional   FinSequence-membered   FinSequenceSet of  the carrier of F_Real * 
 
<*((q,TR) ][ ((- TR),q))*> is   non  empty   trivial   Relation-like   NAT  -defined   Function-like   constant  V36() 1 -element   FinSequence-like   FinSubsequence-like   FinSequence-yielding   finite-support   Function-yielding  V235() V282()  set 
 
[1,((q,TR) ][ ((- TR),q))] is    set 
 
{1,((q,TR) ][ ((- TR),q))} is   non  empty  V36() V40()  set 
 
{{1,((q,TR) ][ ((- TR),q))},{1}} is   non  empty  V36() V40()  set 
 
{[1,((q,TR) ][ ((- TR),q))]} is   non  empty   trivial   Relation-like   Function-like   constant  V36() 1 -element   finite-support   set 
 
<*(1. (F_Real,p))*> is   non  empty   trivial   Relation-like   NAT  -defined   Function-like   constant  V36() 1 -element   FinSequence-like   FinSubsequence-like   FinSequence-yielding   finite-support   Function-yielding  V235() V282()  set 
 
[1,(1. (F_Real,p))] is    set 
 
{1,(1. (F_Real,p))} is   non  empty  V36() V40()  set 
 
{{1,(1. (F_Real,p))},{1}} is   non  empty  V36() V40()  set 
 
{[1,(1. (F_Real,p))]} is   non  empty   trivial   Relation-like   Function-like   constant  V36() 1 -element   finite-support   set 
 
<*((q,TR) ][ ((- TR),q))*> ^ <*(1. (F_Real,p))*> is   non  empty   Relation-like   NAT  -defined   Function-like  V36() 1 + 1 -element   FinSequence-like   FinSubsequence-like   FinSequence-yielding   finite-support   Function-yielding  V235()  set 
 
1 + 1 is   non  empty   ordinal   natural  V11()  real   ext-real   positive   non  negative  V36()  cardinal  V85() V86() V155() V156() V157() V158() V159() V160()  Element of  NAT 
 
 Len <*((q,TR) ][ ((- TR),q)),(1. (F_Real,p))*> is   Relation-like   NAT  -defined   NAT  -valued   Function-like  V36()  FinSequence-like   FinSubsequence-like   complex-yielding   ext-real-valued   real-valued   natural-valued  V198()  finite-support   Element of (len <*((q,TR) ][ ((- TR),q)),(1. (F_Real,p))*>) -tuples_on NAT
 
 len <*((q,TR) ][ ((- TR),q)),(1. (F_Real,p))*> is   non  empty   ordinal   natural  V11()  real   ext-real   positive   non  negative  V36()  cardinal  V85() V86() V155() V156() V157() V158() V159() V160()  Element of  NAT 
 
(len <*((q,TR) ][ ((- TR),q)),(1. (F_Real,p))*>) -tuples_on NAT is   functional   FinSequence-membered   FinSequenceSet of  NAT 
 
K910((Len <*((q,TR) ][ ((- TR),q)),(1. (F_Real,p))*>)) is   ordinal   natural  V11()  real   ext-real   non  negative  V36()  cardinal  V85() V86() V155() V156() V157() V158() V159() V160()  Element of  NAT 
 
 block_diagonal (<*((q,TR) ][ ((- TR),q)),(1. (F_Real,p))*>,(0. F_Real)) is   Relation-like   NAT  -defined   the carrier of F_Real *  -valued   Function-like  V36()  FinSequence-like   FinSubsequence-like   FinSequence-yielding   finite-support   Function-yielding  V235()  tabular   Matrix of K910((Len <*((q,TR) ][ ((- TR),q)),(1. (F_Real,p))*>)),K910((Len <*((q,TR) ][ ((- TR),q)),(1. (F_Real,p))*>)), the carrier of F_Real
 
 Det (block_diagonal (<*((q,TR) ][ ((- TR),q)),(1. (F_Real,p))*>,(0. F_Real))) is  V11()  real   ext-real   Element of  the carrier of F_Real
 
 Det (1. (F_Real,p)) is  V11()  real   ext-real   Element of  the carrier of F_Real
 
 1_ F_Real is  V11()  real   ext-real   Element of  the carrier of F_Real
 
(cos n) * (cos n) is  V11()  real   ext-real   set 
 
(sin n) * (sin n) is  V11()  real   ext-real   set 
 
((cos n) * (cos n)) + ((sin n) * (sin n)) is  V11()  real   ext-real   set 
 
q * q is  V11()  real   ext-real   Element of  the carrier of F_Real
 
 the multF of F_Real is   non  empty   Relation-like  [: the carrier of F_Real, the carrier of F_Real:] -defined   the carrier of F_Real -valued   Function-like   total   quasi_total   complex-yielding   ext-real-valued   real-valued   associative  V287( the carrier of F_Real)  Element of  bool [:[: the carrier of F_Real, the carrier of F_Real:], the carrier of F_Real:]
 
[: the carrier of F_Real, the carrier of F_Real:] is   non  empty   Relation-like   complex-yielding   ext-real-valued   real-valued   set 
 
[:[: the carrier of F_Real, the carrier of F_Real:], the carrier of F_Real:] is   non  empty   Relation-like   complex-yielding   ext-real-valued   real-valued   set 
 
 bool [:[: the carrier of F_Real, the carrier of F_Real:], the carrier of F_Real:] is   non  empty   set 
 
 the multF of F_Real . (q,q) is  V11()  real   ext-real   Element of  the carrier of F_Real
 
K538(q,q) is  V11()  real   ext-real   Element of  REAL 
 
TR * (- TR) is  V11()  real   ext-real   Element of  the carrier of F_Real
 
 the multF of F_Real . (TR,(- TR)) is  V11()  real   ext-real   Element of  the carrier of F_Real
 
K538(TR,(- TR)) is  V11()  real   ext-real   Element of  REAL 
 
(q * q) - (TR * (- TR)) is  V11()  real   ext-real   Element of  the carrier of F_Real
 
 - (TR * (- TR)) is  V11()  real   ext-real   Element of  the carrier of F_Real
 
K534((TR * (- TR))) is  V11()  real   ext-real   Element of  REAL 
 
(q * q) + (- (TR * (- TR))) is  V11()  real   ext-real   Element of  the carrier of F_Real
 
 the addF of F_Real is   non  empty   Relation-like  [: the carrier of F_Real, the carrier of F_Real:] -defined   the carrier of F_Real -valued   Function-like   total   quasi_total   complex-yielding   ext-real-valued   real-valued   Element of  bool [:[: the carrier of F_Real, the carrier of F_Real:], the carrier of F_Real:]
 
 the addF of F_Real . ((q * q),(- (TR * (- TR)))) is  V11()  real   ext-real   Element of  the carrier of F_Real
 
K536((q * q),(- (TR * (- TR)))) is  V11()  real   ext-real   Element of  REAL 
 
 Det ((q,TR) ][ ((- TR),q)) is  V11()  real   ext-real   Element of  the carrier of F_Real
 
cos . n is  V11()  real   ext-real   Element of  REAL 
 
sin . n is  V11()  real   ext-real   Element of  REAL 
 
(Det ((q,TR) ][ ((- TR),q))) * (Det (1. (F_Real,p))) is  V11()  real   ext-real   Element of  the carrier of F_Real
 
 the multF of F_Real . ((Det ((q,TR) ][ ((- TR),q))),(Det (1. (F_Real,p)))) is  V11()  real   ext-real   Element of  the carrier of F_Real
 
K538((Det ((q,TR) ][ ((- TR),q))),(Det (1. (F_Real,p)))) is  V11()  real   ext-real   Element of  REAL 
 
n is   ordinal   natural  V11()  real   ext-real   non  negative  V36()  cardinal  V85()  set 
 
n + 1 is   non  empty   ordinal   natural  V11()  real   ext-real   positive   non  negative  V36()  cardinal  V85() V86() V155() V156() V157() V158() V159() V160()  Element of  NAT 
 
p is   ordinal   natural  V11()  real   ext-real   non  negative  V36()  cardinal  V85()  set 
 
q is   ordinal   natural  V11()  real   ext-real   non  negative  V36()  cardinal  V85()  set 
 
 Seg q is  V16() V36() q -element  V155() V156() V157() V158() V159() V160()  Element of  bool NAT
 
 {  b1 where b1 is   ordinal   natural  V11()  real   ext-real   non  negative  V36()  cardinal  V85() V86() V155() V156() V157() V158() V159() V160()  Element of  NAT  : ( 1 <= b1 & b1 <= q )  }   is    set 
 
[:(Seg q),(Seg q):] is   Relation-like   RAT  -valued   INT  -valued  V36()  complex-yielding   ext-real-valued   real-valued   natural-valued   set 
 
 bool [:(Seg q),(Seg q):] is   non  empty  V36() V40()  set 
 
p + 1 is   non  empty   ordinal   natural  V11()  real   ext-real   positive   non  negative  V36()  cardinal  V85() V86() V155() V156() V157() V158() V159() V160()  Element of  NAT 
 
TR is   non  empty  V155() V156() V157() V158() V159() V160()  Element of  bool NAT
 
n1 is   ordinal   natural  V11()  real   ext-real   non  negative  V36()  cardinal  V85()  set 
 
n1 - 2 is  V11()  real   ext-real  V85()  Element of  REAL 
 
 - 2 is   non  empty  V11()  real   ext-real   non  positive   negative  V85()  set 
 
n1 + (- 2) is  V11()  real   ext-real  V85()  set 
 
n1 - 1 is  V11()  real   ext-real  V85()  Element of  REAL 
 
n1 + (- 1) is  V11()  real   ext-real  V85()  set 
 
f is   ordinal   natural  V11()  real   ext-real   non  negative  V36()  cardinal  V85()  set 
 
2 - 2 is  V11()  real   ext-real  V85()  Element of  REAL 
 
2 + (- 2) is  V11()  real   ext-real  V85()  set 
 
n1 - {} is  V11()  real   ext-real   non  negative  V85()  set 
 
 - {} is   empty   ordinal   natural  V11()  real   ext-real   non  positive   non  negative   Relation-like   non-empty   empty-yielding   NAT  -defined   RAT  -valued   Function-like   one-to-one   constant   functional  V36() V37() V40()  cardinal   {}  -element  V85()  FinSequence-like   FinSubsequence-like   FinSequence-membered   complex-yielding   ext-real-valued   real-valued   natural-valued  V155() V156() V157() V158() V159() V160() V161()  FinSequence-yielding   finite-support   Function-yielding  V235() V282()  set 
 
n1 + (- {}) is   ordinal   natural  V11()  real   ext-real   non  negative  V36()  cardinal  V85()  set 
 
f + 1 is   non  empty   ordinal   natural  V11()  real   ext-real   positive   non  negative  V36()  cardinal  V85() V86() V155() V156() V157() V158() V159() V160()  Element of  NAT 
 
(f + 1) + 1 is   non  empty   ordinal   natural  V11()  real   ext-real   positive   non  negative  V36()  cardinal  V85() V86() V155() V156() V157() V158() V159() V160()  Element of  NAT 
 
n1 is   Relation-like   NAT  -defined  TR -valued   Function-like  V36()  FinSequence-like   FinSubsequence-like   complex-yielding   ext-real-valued   real-valued   natural-valued   finite-support   FinSequence of TR
 
 len n1 is   ordinal   natural  V11()  real   ext-real   non  negative  V36()  cardinal  V85() V86() V155() V156() V157() V158() V159() V160()  Element of  NAT 
 
n1 /. 1 is   ordinal   natural  V11()  real   ext-real   non  negative  V36()  cardinal  V85() V86()  Element of TR
 
1 - 2 is  V11()  real   ext-real  V85()  Element of  REAL 
 
 - 2 is   non  empty  V11()  real   ext-real   non  positive   negative  V85()  set 
 
1 + (- 2) is  V11()  real   ext-real  V85()  set 
 
1 - 1 is  V11()  real   ext-real  V85()  Element of  REAL 
 
1 + (- 1) is  V11()  real   ext-real  V85()  set 
 
1 + 1 is   non  empty   ordinal   natural  V11()  real   ext-real   positive   non  negative  V36()  cardinal  V85() V86() V155() V156() V157() V158() V159() V160()  Element of  NAT 
 
n1 /. 2 is   ordinal   natural  V11()  real   ext-real   non  negative  V36()  cardinal  V85() V86()  Element of TR
 
2 - 2 is  V11()  real   ext-real  V85()  Element of  REAL 
 
2 + (- 2) is  V11()  real   ext-real  V85()  set 
 
2 - 1 is  V11()  real   ext-real  V85()  Element of  REAL 
 
2 + (- 1) is  V11()  real   ext-real  V85()  set 
 
 dom n1 is  V36() V155() V156() V157() V158() V159() V160()  Element of  bool NAT
 
n1 . 1 is   ordinal   natural  V11()  real   ext-real   non  negative  V36()  cardinal  V85()  Element of  REAL 
 
 rng n1 is  V36() V155() V156() V157() V158() V159() V160()  Element of  bool REAL
 
[:TR,TR:] is   non  empty   Relation-like   RAT  -valued   INT  -valued   complex-yielding   ext-real-valued   real-valued   natural-valued   set 
 
 bool [:TR,TR:] is   non  empty   set 
 
n1 . 2 is   ordinal   natural  V11()  real   ext-real   non  negative  V36()  cardinal  V85()  Element of  REAL 
 
X is    set 
 
z is   ordinal   natural  V11()  real   ext-real   non  negative  V36()  cardinal  V85()  set 
 
z + 1 is   non  empty   ordinal   natural  V11()  real   ext-real   positive   non  negative  V36()  cardinal  V85() V86() V155() V156() V157() V158() V159() V160()  Element of  NAT 
 
(z + 1) + 1 is   non  empty   ordinal   natural  V11()  real   ext-real   positive   non  negative  V36()  cardinal  V85() V86() V155() V156() V157() V158() V159() V160()  Element of  NAT 
 
z + 2 is   non  empty   ordinal   natural  V11()  real   ext-real   positive   non  negative  V36()  cardinal  V85() V86() V155() V156() V157() V158() V159() V160()  Element of  NAT 
 
{} + 2 is   non  empty   ordinal   natural  V11()  real   ext-real   positive   non  negative  V36()  cardinal  V85() V86() V155() V156() V157() V158() V159() V160()  Element of  NAT 
 
n1 /. ((z + 1) + 1) is   ordinal   natural  V11()  real   ext-real   non  negative  V36()  cardinal  V85() V86()  Element of TR
 
((z + 1) + 1) - 2 is  V11()  real   ext-real  V85()  Element of  REAL 
 
((z + 1) + 1) + (- 2) is  V11()  real   ext-real  V85()  set 
 
((z + 1) + 1) - 1 is  V11()  real   ext-real  V85()  Element of  REAL 
 
((z + 1) + 1) + (- 1) is  V11()  real   ext-real  V85()  set 
 
n1 . ((z + 1) + 1) is   ordinal   natural  V11()  real   ext-real   non  negative  V36()  cardinal  V85()  Element of  REAL 
 
n1 /. (z + 1) is   ordinal   natural  V11()  real   ext-real   non  negative  V36()  cardinal  V85() V86()  Element of TR
 
(z + 1) - 2 is  V11()  real   ext-real  V85()  Element of  REAL 
 
(z + 1) + (- 2) is  V11()  real   ext-real  V85()  set 
 
(z + 1) - 1 is  V11()  real   ext-real  V85()  Element of  REAL 
 
(z + 1) + (- 1) is  V11()  real   ext-real  V85()  set 
 
n1 . (z + 1) is   ordinal   natural  V11()  real   ext-real   non  negative  V36()  cardinal  V85()  Element of  REAL 
 
n1 /. z is   ordinal   natural  V11()  real   ext-real   non  negative  V36()  cardinal  V85() V86()  Element of TR
 
z - 2 is  V11()  real   ext-real  V85()  Element of  REAL 
 
z + (- 2) is  V11()  real   ext-real  V85()  set 
 
z - 1 is  V11()  real   ext-real  V85()  Element of  REAL 
 
z + (- 1) is  V11()  real   ext-real  V85()  set 
 
n1 . z is   ordinal   natural  V11()  real   ext-real   non  negative  V36()  cardinal  V85()  Element of  REAL 
 
f is   non  empty   Relation-like  TR -defined  TR -valued   Function-like   total   quasi_total   complex-yielding   ext-real-valued   real-valued   natural-valued   Element of  bool [:TR,TR:]
 
 rng f is   non  empty  V155() V156() V157() V158() V159() V160()  Element of  bool REAL
 
 len TR is   non  empty   ordinal   cardinal   set 
 
X is   Relation-like   Seg q -defined   Seg q -valued   Function-like   one-to-one   total   quasi_total   onto   bijective  V36()  complex-yielding   ext-real-valued   real-valued   natural-valued   finite-support   Element of  bool [:(Seg q),(Seg q):]
 
X . 1 is   ordinal   natural  V11()  real   ext-real   non  negative  V36()  cardinal  V85()  Element of  REAL 
 
X . 2 is   ordinal   natural  V11()  real   ext-real   non  negative  V36()  cardinal  V85()  Element of  REAL 
 
z is   ordinal   natural  V11()  real   ext-real   non  negative  V36()  cardinal  V85()  set 
 
X . z is   ordinal   natural  V11()  real   ext-real   non  negative  V36()  cardinal  V85()  Element of  REAL 
 
z - 2 is  V11()  real   ext-real  V85()  Element of  REAL 
 
z + (- 2) is  V11()  real   ext-real  V85()  set 
 
z - 1 is  V11()  real   ext-real  V85()  Element of  REAL 
 
z + (- 1) is  V11()  real   ext-real  V85()  set 
 
n1 /. z is   ordinal   natural  V11()  real   ext-real   non  negative  V36()  cardinal  V85() V86()  Element of TR
 
n1 . z is   ordinal   natural  V11()  real   ext-real   non  negative  V36()  cardinal  V85()  Element of  REAL 
 
n is  V11()  real   ext-real   set 
 
 cos n is  V11()  real   ext-real   set 
 
 sin n is  V11()  real   ext-real   set 
 
 - (sin n) is  V11()  real   ext-real   set 
 
p is   ordinal   natural  V11()  real   ext-real   non  negative  V36()  cardinal  V85()  set 
 
q is   ordinal   natural  V11()  real   ext-real   non  negative  V36()  cardinal  V85()  set 
 
{p,q} is   non  empty  V36() V40() V155() V156() V157() V158() V159() V160()  Element of  bool NAT
 
TR is   ordinal   natural  V11()  real   ext-real   non  negative  V36()  cardinal  V85()  set 
 
n1 is   ordinal   natural  V11()  real   ext-real   non  negative  V36()  cardinal  V85()  set 
 
1 + 1 is   non  empty   ordinal   natural  V11()  real   ext-real   positive   non  negative  V36()  cardinal  V85() V86() V155() V156() V157() V158() V159() V160()  Element of  NAT 
 
 Seg TR is  V16() V36() TR -element  V155() V156() V157() V158() V159() V160()  Element of  bool NAT
 
 {  b1 where b1 is   ordinal   natural  V11()  real   ext-real   non  negative  V36()  cardinal  V85() V86() V155() V156() V157() V158() V159() V160()  Element of  NAT  : ( 1 <= b1 & b1 <= TR )  }   is    set 
 
TR - 2 is  V11()  real   ext-real  V85()  Element of  REAL 
 
 - 2 is   non  empty  V11()  real   ext-real   non  positive   negative  V85()  set 
 
TR + (- 2) is  V11()  real   ext-real  V85()  set 
 
[:(Seg TR),(Seg TR):] is   Relation-like   RAT  -valued   INT  -valued  V36()  complex-yielding   ext-real-valued   real-valued   natural-valued   set 
 
 bool [:(Seg TR),(Seg TR):] is   non  empty  V36() V40()  set 
 
p + 1 is   non  empty   ordinal   natural  V11()  real   ext-real   positive   non  negative  V36()  cardinal  V85() V86() V155() V156() V157() V158() V159() V160()  Element of  NAT 
 
fp is   Relation-like   Seg TR -defined   Seg TR -valued   Function-like   one-to-one   total   quasi_total   onto   bijective  V36()  complex-yielding   ext-real-valued   real-valued   natural-valued   finite-support   Element of  bool [:(Seg TR),(Seg TR):]
 
fp . 1 is   ordinal   natural  V11()  real   ext-real   non  negative  V36()  cardinal  V85()  Element of  REAL 
 
fp . 2 is   ordinal   natural  V11()  real   ext-real   non  negative  V36()  cardinal  V85()  Element of  REAL 
 
 dom fp is  V36()  set 
 
z is   Relation-like   Function-like   one-to-one   set 
 
z "  is   Relation-like   Function-like   one-to-one   set 
 
 rng (z ") is    set 
 
 rng fp is  V36() V155() V156() V157() V158() V159() V160()  Element of  bool REAL
 
 dom (z ") is    set 
 
fpz is   Relation-like   Seg TR -defined   Seg TR -valued   Function-like   one-to-one   total   quasi_total  V36()  complex-yielding   ext-real-valued   real-valued   natural-valued   finite-support   Element of  bool [:(Seg TR),(Seg TR):]
 
h is   Relation-like   Seg TR -defined   Seg TR -valued   Function-like   one-to-one   total   quasi_total   onto   bijective  V36()  complex-yielding   ext-real-valued   real-valued   natural-valued   finite-support   Element of  bool [:(Seg TR),(Seg TR):]
 
h . (fp . 1) is   ordinal   natural  V11()  real   ext-real   non  negative  V36()  cardinal  V85()  Element of  REAL 
 
f is  V11()  real   ext-real   Element of  the carrier of F_Real
 
n1 is  V11()  real   ext-real   Element of  the carrier of F_Real
 
 - n1 is  V11()  real   ext-real   Element of  the carrier of F_Real
 
K534(n1) is  V11()  real   ext-real   Element of  REAL 
 
(f,n1) ][ ((- n1),f) is   Relation-like   NAT  -defined   the carrier of F_Real *  -valued   Function-like  V36()  FinSequence-like   FinSubsequence-like   FinSequence-yielding   finite-support   Function-yielding  V235()  tabular   Matrix of 2,2, the carrier of F_Real
 
z is   ordinal   natural  V11()  real   ext-real   non  negative  V36()  cardinal  V85()  set 
 
 1. (F_Real,z) is   Relation-like   NAT  -defined   the carrier of F_Real *  -valued   Function-like  V36()  FinSequence-like   FinSubsequence-like   FinSequence-yielding   finite-support   Function-yielding  V235()  tabular   Matrix of z,z, the carrier of F_Real
 
<*((f,n1) ][ ((- n1),f)),(1. (F_Real,z))*> is   non  empty   Relation-like   NAT  -defined  ( the carrier of F_Real *) *  -valued   Function-like  V36() 2 -element   FinSequence-like   FinSubsequence-like   FinSequence-yielding   finite-support   Function-yielding  V235()  Matrix-yielding   Square-Matrix-yielding   FinSequence of ( the carrier of F_Real *) * 
 
( the carrier of F_Real *) *  is   non  empty   functional   FinSequence-membered   FinSequenceSet of  the carrier of F_Real * 
 
<*((f,n1) ][ ((- n1),f))*> is   non  empty   trivial   Relation-like   NAT  -defined   Function-like   constant  V36() 1 -element   FinSequence-like   FinSubsequence-like   FinSequence-yielding   finite-support   Function-yielding  V235() V282()  set 
 
[1,((f,n1) ][ ((- n1),f))] is    set 
 
{1,((f,n1) ][ ((- n1),f))} is   non  empty  V36() V40()  set 
 
{{1,((f,n1) ][ ((- n1),f))},{1}} is   non  empty  V36() V40()  set 
 
{[1,((f,n1) ][ ((- n1),f))]} is   non  empty   trivial   Relation-like   Function-like   constant  V36() 1 -element   finite-support   set 
 
<*(1. (F_Real,z))*> is   non  empty   trivial   Relation-like   NAT  -defined   Function-like   constant  V36() 1 -element   FinSequence-like   FinSubsequence-like   FinSequence-yielding   finite-support   Function-yielding  V235() V282()  set 
 
[1,(1. (F_Real,z))] is    set 
 
{1,(1. (F_Real,z))} is   non  empty  V36() V40()  set 
 
{{1,(1. (F_Real,z))},{1}} is   non  empty  V36() V40()  set 
 
{[1,(1. (F_Real,z))]} is   non  empty   trivial   Relation-like   Function-like   constant  V36() 1 -element   finite-support   set 
 
<*((f,n1) ][ ((- n1),f))*> ^ <*(1. (F_Real,z))*> is   non  empty   Relation-like   NAT  -defined   Function-like  V36() 1 + 1 -element   FinSequence-like   FinSubsequence-like   FinSequence-yielding   finite-support   Function-yielding  V235()  set 
 
1 + 1 is   non  empty   ordinal   natural  V11()  real   ext-real   positive   non  negative  V36()  cardinal  V85() V86() V155() V156() V157() V158() V159() V160()  Element of  NAT 
 
 block_diagonal (<*((f,n1) ][ ((- n1),f)),(1. (F_Real,z))*>,(0. F_Real)) is   Relation-like   NAT  -defined   the carrier of F_Real *  -valued   Function-like  V36()  FinSequence-like   FinSubsequence-like   FinSequence-yielding   finite-support   Function-yielding  V235()  tabular   Matrix of K910((Len <*((f,n1) ][ ((- n1),f)),(1. (F_Real,z))*>)),K910((Len <*((f,n1) ][ ((- n1),f)),(1. (F_Real,z))*>)), the carrier of F_Real
 
 Len <*((f,n1) ][ ((- n1),f)),(1. (F_Real,z))*> is   Relation-like   NAT  -defined   NAT  -valued   Function-like  V36()  FinSequence-like   FinSubsequence-like   complex-yielding   ext-real-valued   real-valued   natural-valued  V198()  finite-support   Element of (len <*((f,n1) ][ ((- n1),f)),(1. (F_Real,z))*>) -tuples_on NAT
 
 len <*((f,n1) ][ ((- n1),f)),(1. (F_Real,z))*> is   non  empty   ordinal   natural  V11()  real   ext-real   positive   non  negative  V36()  cardinal  V85() V86() V155() V156() V157() V158() V159() V160()  Element of  NAT 
 
(len <*((f,n1) ][ ((- n1),f)),(1. (F_Real,z))*>) -tuples_on NAT is   functional   FinSequence-membered   FinSequenceSet of  NAT 
 
K910((Len <*((f,n1) ][ ((- n1),f)),(1. (F_Real,z))*>)) is   ordinal   natural  V11()  real   ext-real   non  negative  V36()  cardinal  V85() V86() V155() V156() V157() V158() V159() V160()  Element of  NAT 
 
 len ((f,n1) ][ ((- n1),f)) is   ordinal   natural  V11()  real   ext-real   non  negative  V36()  cardinal  V85() V86() V155() V156() V157() V158() V159() V160()  Element of  NAT 
 
<*((f,n1) ][ ((- n1),f))*> is   non  empty   trivial   Relation-like   NAT  -defined  ( the carrier of F_Real *) *  -valued   Function-like   constant  V36() 1 -element   FinSequence-like   FinSubsequence-like   FinSequence-yielding   finite-support   Function-yielding  V235()  Matrix-yielding   Square-Matrix-yielding  V282()  FinSequence of ( the carrier of F_Real *) * 
 
 Len <*((f,n1) ][ ((- n1),f))*> is   Relation-like   NAT  -defined   NAT  -valued   Function-like  V36()  FinSequence-like   FinSubsequence-like   complex-yielding   ext-real-valued   real-valued   natural-valued  V198()  finite-support   Element of (len <*((f,n1) ][ ((- n1),f))*>) -tuples_on NAT
 
 len <*((f,n1) ][ ((- n1),f))*> is   non  empty   ordinal   natural  V11()  real   ext-real   positive   non  negative  V36()  cardinal  V85() V86() V155() V156() V157() V158() V159() V160()  Element of  NAT 
 
(len <*((f,n1) ][ ((- n1),f))*>) -tuples_on NAT is   functional   FinSequence-membered   FinSequenceSet of  NAT 
 
<*2*> is   non  empty   trivial   Relation-like   NAT  -defined   REAL  -valued   Function-like   one-to-one   constant  V36() 1 -element   FinSequence-like   FinSubsequence-like   complex-yielding   ext-real-valued   real-valued  V149()  decreasing   non-decreasing   non-increasing   finite-support   Element of 1 -tuples_on REAL
 
1 -tuples_on REAL is   non  empty   functional   FinSequence-membered   FinSequenceSet of  REAL 
 
{[1,2]} is   non  empty   trivial   Relation-like   Function-like   constant  V36() 1 -element   finite-support   set 
 
 Sum (Len <*((f,n1) ][ ((- n1),f))*>) is  V11()  set 
 
 len (1. (F_Real,z)) is   ordinal   natural  V11()  real   ext-real   non  negative  V36()  cardinal  V85() V86() V155() V156() V157() V158() V159() V160()  Element of  NAT 
 
 Sum (Len <*((f,n1) ][ ((- n1),f)),(1. (F_Real,z))*>) is  V11()  set 
 
2 + z is   non  empty   ordinal   natural  V11()  real   ext-real   positive   non  negative  V36()  cardinal  V85() V86() V155() V156() V157() V158() V159() V160()  Element of  NAT 
 
gf is   Relation-like   NAT  -defined   the carrier of F_Real *  -valued   Function-like  V36()  FinSequence-like   FinSubsequence-like   FinSequence-yielding   finite-support   Function-yielding  V235()  tabular   Matrix of TR,TR, the carrier of F_Real
 
 Indices gf is    set 
 
h . (fp . 2) is   ordinal   natural  V11()  real   ext-real   non  negative  V36()  cardinal  V85()  Element of  REAL 
 
gf * h is   Relation-like   NAT  -defined   Seg TR -defined   the carrier of F_Real *  -valued   the carrier of F_Real *  -valued   Function-like  V36()  FinSequence-like   FinSubsequence-like   FinSequence-yielding   finite-support   Function-yielding  V235()  tabular   Matrix of TR,TR, the carrier of F_Real
 
(gf * h) @  is   Relation-like   NAT  -defined   the carrier of F_Real *  -valued   Function-like  V36()  FinSequence-like   FinSubsequence-like   FinSequence-yielding   finite-support   Function-yielding  V235()  tabular   Matrix of TR,TR, the carrier of F_Real
 
((gf * h) @) * h is   Relation-like   NAT  -defined   Seg TR -defined   the carrier of F_Real *  -valued   the carrier of F_Real *  -valued   Function-like  V36()  FinSequence-like   FinSubsequence-like   FinSequence-yielding   finite-support   Function-yielding  V235()  tabular   Matrix of TR,TR, the carrier of F_Real
 
(((gf * h) @) * h) @  is   Relation-like   NAT  -defined   the carrier of F_Real *  -valued   Function-like  V36()  FinSequence-like   FinSubsequence-like   FinSequence-yielding   finite-support   Function-yielding  V235()  tabular   Matrix of TR,TR, the carrier of F_Real
 
 dom h is  V36()  set 
 
[p,p] is    set 
 
{p,p} is   non  empty  V36() V40() V155() V156() V157() V158() V159() V160()  set 
 
{p} is   non  empty   trivial  V36() V40() 1 -element  V155() V156() V157() V158() V159() V160()  set 
 
{{p,p},{p}} is   non  empty  V36() V40()  set 
 
((((gf * h) @) * h) @) * (p,p) is  V11()  real   ext-real   Element of  the carrier of F_Real
 
gf * (1,1) is  V11()  real   ext-real   Element of  the carrier of F_Real
 
 Det ((((gf * h) @) * h) @) is  V11()  real   ext-real   Element of  the carrier of F_Real
 
((((gf * h) @) * h) @) * (q,q) is  V11()  real   ext-real   Element of  the carrier of F_Real
 
((((gf * h) @) * h) @) * (p,q) is  V11()  real   ext-real   Element of  the carrier of F_Real
 
((((gf * h) @) * h) @) * (q,p) is  V11()  real   ext-real   Element of  the carrier of F_Real
 
 Indices ((((gf * h) @) * h) @) is    set 
 
 Det gf is  V11()  real   ext-real   Element of  the carrier of F_Real
 
 block_diagonal (<*((f,n1) ][ ((- n1),f))*>,(0. F_Real)) is   Relation-like   NAT  -defined   the carrier of F_Real *  -valued   Function-like  V36()  FinSequence-like   FinSubsequence-like   FinSequence-yielding   finite-support   Function-yielding  V235()  tabular   Matrix of K910((Len <*((f,n1) ][ ((- n1),f))*>)),K910((Len <*((f,n1) ][ ((- n1),f))*>)), the carrier of F_Real
 
K910((Len <*((f,n1) ][ ((- n1),f))*>)) is   ordinal   natural  V11()  real   ext-real   non  negative  V36()  cardinal  V85() V86() V155() V156() V157() V158() V159() V160()  Element of  NAT 
 
 width ((f,n1) ][ ((- n1),f)) is   ordinal   natural  V11()  real   ext-real   non  negative  V36()  cardinal  V85() V86() V155() V156() V157() V158() V159() V160()  Element of  NAT 
 
 Width <*((f,n1) ][ ((- n1),f))*> is   Relation-like   NAT  -defined   NAT  -valued   Function-like  V36()  FinSequence-like   FinSubsequence-like   complex-yielding   ext-real-valued   real-valued   natural-valued  V198()  finite-support   Element of (len <*((f,n1) ][ ((- n1),f))*>) -tuples_on NAT
 
 Sum (Width <*((f,n1) ][ ((- n1),f))*>) is  V11()  set 
 
[q,q] is    set 
 
{q,q} is   non  empty  V36() V40() V155() V156() V157() V158() V159() V160()  set 
 
{q} is   non  empty   trivial  V36() V40() 1 -element  V155() V156() V157() V158() V159() V160()  set 
 
{{q,q},{q}} is   non  empty  V36() V40()  set 
 
gf * (2,2) is  V11()  real   ext-real   Element of  the carrier of F_Real
 
<*(1. (F_Real,z))*> is   non  empty   trivial   Relation-like   NAT  -defined  ( the carrier of F_Real *) *  -valued   Function-like   constant  V36() 1 -element   FinSequence-like   FinSubsequence-like   FinSequence-yielding   finite-support   Function-yielding  V235()  Matrix-yielding   Square-Matrix-yielding  V282()  FinSequence of ( the carrier of F_Real *) * 
 
 block_diagonal (<*(1. (F_Real,z))*>,(0. F_Real)) is   Relation-like   NAT  -defined   the carrier of F_Real *  -valued   Function-like  V36()  FinSequence-like   FinSubsequence-like   FinSequence-yielding   finite-support   Function-yielding  V235()  tabular   Matrix of K910((Len <*(1. (F_Real,z))*>)),K910((Len <*(1. (F_Real,z))*>)), the carrier of F_Real
 
 Len <*(1. (F_Real,z))*> is   Relation-like   NAT  -defined   NAT  -valued   Function-like  V36()  FinSequence-like   FinSubsequence-like   complex-yielding   ext-real-valued   real-valued   natural-valued  V198()  finite-support   Element of (len <*(1. (F_Real,z))*>) -tuples_on NAT
 
 len <*(1. (F_Real,z))*> is   non  empty   ordinal   natural  V11()  real   ext-real   positive   non  negative  V36()  cardinal  V85() V86() V155() V156() V157() V158() V159() V160()  Element of  NAT 
 
(len <*(1. (F_Real,z))*>) -tuples_on NAT is   functional   FinSequence-membered   FinSequenceSet of  NAT 
 
K910((Len <*(1. (F_Real,z))*>)) is   ordinal   natural  V11()  real   ext-real   non  negative  V36()  cardinal  V85() V86() V155() V156() V157() V158() V159() V160()  Element of  NAT 
 
 Indices ((f,n1) ][ ((- n1),f)) is    set 
 
((f,n1) ][ ((- n1),f)) * (1,1) is  V11()  real   ext-real   Element of  the carrier of F_Real
 
gf * (2,1) is  V11()  real   ext-real   Element of  the carrier of F_Real
 
((f,n1) ][ ((- n1),f)) * (2,1) is  V11()  real   ext-real   Element of  the carrier of F_Real
 
gf * (1,2) is  V11()  real   ext-real   Element of  the carrier of F_Real
 
((f,n1) ][ ((- n1),f)) * (1,2) is  V11()  real   ext-real   Element of  the carrier of F_Real
 
((f,n1) ][ ((- n1),f)) * (2,2) is  V11()  real   ext-real   Element of  the carrier of F_Real
 
<*((f,n1) ][ ((- n1),f))*> ^ <*(1. (F_Real,z))*> is   non  empty   Relation-like   NAT  -defined  ( the carrier of F_Real *) *  -valued   Function-like  V36() 1 + 1 -element   FinSequence-like   FinSubsequence-like   FinSequence-yielding   finite-support   Function-yielding  V235()  Matrix-yielding   Square-Matrix-yielding   FinSequence of ( the carrier of F_Real *) * 
 
[p,q] is    set 
 
{p,q} is   non  empty  V36() V40() V155() V156() V157() V158() V159() V160()  set 
 
{{p,q},{p}} is   non  empty  V36() V40()  set 
 
[q,p] is    set 
 
{q,p} is   non  empty  V36() V40() V155() V156() V157() V158() V159() V160()  set 
 
{{q,p},{q}} is   non  empty  V36() V40()  set 
 
gfB is   ordinal   natural  V11()  real   ext-real   non  negative  V36()  cardinal  V85()  set 
 
((((gf * h) @) * h) @) * (gfB,gfB) is  V11()  real   ext-real   Element of  the carrier of F_Real
 
h is   ordinal   natural  V11()  real   ext-real   non  negative  V36()  cardinal  V85()  set 
 
[gfB,h] is    set 
 
{gfB,h} is   non  empty  V36() V40() V155() V156() V157() V158() V159() V160()  set 
 
{gfB} is   non  empty   trivial  V36() V40() 1 -element  V155() V156() V157() V158() V159() V160()  set 
 
{{gfB,h},{gfB}} is   non  empty  V36() V40()  set 
 
{gfB,h} is   non  empty  V36() V40() V155() V156() V157() V158() V159() V160()  Element of  bool NAT
 
((((gf * h) @) * h) @) * (gfB,h) is  V11()  real   ext-real   Element of  the carrier of F_Real
 
h . gfB is   ordinal   natural  V11()  real   ext-real   non  negative  V36()  cardinal  V85()  Element of  REAL 
 
h . h is   ordinal   natural  V11()  real   ext-real   non  negative  V36()  cardinal  V85()  Element of  REAL 
 
 rng h is  V36() V155() V156() V157() V158() V159() V160()  Element of  bool REAL
 
[(h . gfB),(h . h)] is    set 
 
{(h . gfB),(h . h)} is   non  empty  V36() V40() V155() V156() V157() V158() V159() V160()  set 
 
{(h . gfB)} is   non  empty   trivial  V36() V40() 1 -element  V155() V156() V157() V158() V159() V160()  set 
 
{{(h . gfB),(h . h)},{(h . gfB)}} is   non  empty  V36() V40()  set 
 
gf * ((h . gfB),(h . h)) is  V11()  real   ext-real   Element of  the carrier of F_Real
 
(h . gfB) - 2 is  V11()  real   ext-real  V85()  Element of  REAL 
 
(h . gfB) + (- 2) is  V11()  real   ext-real  V85()  set 
 
i is   ordinal   natural  V11()  real   ext-real   non  negative  V36()  cardinal  V85()  set 
 
i + 2 is   non  empty   ordinal   natural  V11()  real   ext-real   positive   non  negative  V36()  cardinal  V85() V86() V155() V156() V157() V158() V159() V160()  Element of  NAT 
 
2 - 2 is  V11()  real   ext-real  V85()  Element of  REAL 
 
2 + (- 2) is  V11()  real   ext-real  V85()  set 
 
[i,i] is    set 
 
{i,i} is   non  empty  V36() V40() V155() V156() V157() V158() V159() V160()  set 
 
{i} is   non  empty   trivial  V36() V40() 1 -element  V155() V156() V157() V158() V159() V160()  set 
 
{{i,i},{i}} is   non  empty  V36() V40()  set 
 
 Indices (1. (F_Real,z)) is    set 
 
(1. (F_Real,z)) * (i,i) is  V11()  real   ext-real   Element of  the carrier of F_Real
 
gf * ((i + 2),(i + 2)) is  V11()  real   ext-real   Element of  the carrier of F_Real
 
(h . gfB) - 2 is  V11()  real   ext-real  V85()  Element of  REAL 
 
(h . gfB) + (- 2) is  V11()  real   ext-real  V85()  set 
 
(h . h) - 2 is  V11()  real   ext-real  V85()  Element of  REAL 
 
(h . h) + (- 2) is  V11()  real   ext-real  V85()  set 
 
i is   ordinal   natural  V11()  real   ext-real   non  negative  V36()  cardinal  V85()  set 
 
2 - 2 is  V11()  real   ext-real  V85()  Element of  REAL 
 
2 + (- 2) is  V11()  real   ext-real  V85()  set 
 
i + 2 is   non  empty   ordinal   natural  V11()  real   ext-real   positive   non  negative  V36()  cardinal  V85() V86() V155() V156() V157() V158() V159() V160()  Element of  NAT 
 
H is   ordinal   natural  V11()  real   ext-real   non  negative  V36()  cardinal  V85()  set 
 
H + 2 is   non  empty   ordinal   natural  V11()  real   ext-real   positive   non  negative  V36()  cardinal  V85() V86() V155() V156() V157() V158() V159() V160()  Element of  NAT 
 
[i,H] is    set 
 
{i,H} is   non  empty  V36() V40() V155() V156() V157() V158() V159() V160()  set 
 
{i} is   non  empty   trivial  V36() V40() 1 -element  V155() V156() V157() V158() V159() V160()  set 
 
{{i,H},{i}} is   non  empty  V36() V40()  set 
 
 Indices (1. (F_Real,z)) is    set 
 
(1. (F_Real,z)) * (i,H) is  V11()  real   ext-real   Element of  the carrier of F_Real
 
gf * ((i + 2),(H + 2)) is  V11()  real   ext-real   Element of  the carrier of F_Real
 
q is   ordinal   natural  V11()  real   ext-real   non  negative  V36()  cardinal  V85()  set 
 
TR is   ordinal   natural  V11()  real   ext-real   non  negative  V36()  cardinal  V85()  set 
 
n is   ordinal   natural  V11()  real   ext-real   non  negative  V36()  cardinal  V85()  set 
 
p is  V11()  real   ext-real   set 
 
 cos p is  V11()  real   ext-real   set 
 
 sin p is  V11()  real   ext-real   set 
 
 - (sin p) is  V11()  real   ext-real   set 
 
{q,TR} is   non  empty  V36() V40() V155() V156() V157() V158() V159() V160()  Element of  bool NAT
 
n1 is   Relation-like   NAT  -defined   the carrier of F_Real *  -valued   Function-like  V36()  FinSequence-like   FinSubsequence-like   FinSequence-yielding   finite-support   Function-yielding  V235()  tabular   Matrix of n,n, the carrier of F_Real
 
 Det n1 is  V11()  real   ext-real   Element of  the carrier of F_Real
 
n1 * (q,q) is  V11()  real   ext-real   Element of  the carrier of F_Real
 
n1 * (TR,TR) is  V11()  real   ext-real   Element of  the carrier of F_Real
 
n1 * (q,TR) is  V11()  real   ext-real   Element of  the carrier of F_Real
 
n1 * (TR,q) is  V11()  real   ext-real   Element of  the carrier of F_Real
 
 Indices n1 is    set 
 
n1 is   Relation-like   NAT  -defined   the carrier of F_Real *  -valued   Function-like  V36()  FinSequence-like   FinSubsequence-like   FinSequence-yielding   finite-support   Function-yielding  V235()  tabular   invertible   Matrix of n,n, the carrier of F_Real
 
n1 * (q,q) is  V11()  real   ext-real   Element of  the carrier of F_Real
 
n1 * (TR,TR) is  V11()  real   ext-real   Element of  the carrier of F_Real
 
n1 * (q,TR) is  V11()  real   ext-real   Element of  the carrier of F_Real
 
n1 * (TR,q) is  V11()  real   ext-real   Element of  the carrier of F_Real
 
 Indices n1 is    set 
 
f is   Relation-like   NAT  -defined   the carrier of F_Real *  -valued   Function-like  V36()  FinSequence-like   FinSubsequence-like   FinSequence-yielding   finite-support   Function-yielding  V235()  tabular   invertible   Matrix of n,n, the carrier of F_Real
 
f * (q,q) is  V11()  real   ext-real   Element of  the carrier of F_Real
 
f * (TR,TR) is  V11()  real   ext-real   Element of  the carrier of F_Real
 
f * (q,TR) is  V11()  real   ext-real   Element of  the carrier of F_Real
 
f * (TR,q) is  V11()  real   ext-real   Element of  the carrier of F_Real
 
 Indices f is    set 
 
X is   ordinal   natural  V11()  real   ext-real   non  negative  V36()  cardinal  V85()  set 
 
z is   ordinal   natural  V11()  real   ext-real   non  negative  V36()  cardinal  V85()  set 
 
[X,z] is    set 
 
{X,z} is   non  empty  V36() V40() V155() V156() V157() V158() V159() V160()  set 
 
{X} is   non  empty   trivial  V36() V40() 1 -element  V155() V156() V157() V158() V159() V160()  set 
 
{{X,z},{X}} is   non  empty  V36() V40()  set 
 
n1 * (X,z) is  V11()  real   ext-real   Element of  the carrier of F_Real
 
f * (X,z) is  V11()  real   ext-real   Element of  the carrier of F_Real
 
{X,z} is   non  empty  V36() V40() V155() V156() V157() V158() V159() V160()  Element of  bool NAT
 
n is  V11()  real   ext-real   set 
 
p is   ordinal   natural  V11()  real   ext-real   non  negative  V36()  cardinal  V85()  set 
 
q is   ordinal   natural  V11()  real   ext-real   non  negative  V36()  cardinal  V85()  set 
 
TR is   ordinal   natural  V11()  real   ext-real   non  negative  V36()  cardinal  V85()  set 
 
(TR,n,p,q) is   Relation-like   NAT  -defined   the carrier of F_Real *  -valued   Function-like  V36()  FinSequence-like   FinSubsequence-like   FinSequence-yielding   finite-support   Function-yielding  V235()  tabular   invertible   Matrix of TR,TR, the carrier of F_Real
 
 Det (TR,n,p,q) is  V11()  real   ext-real   Element of  the carrier of F_Real
 
 cos n is  V11()  real   ext-real   set 
 
 sin n is  V11()  real   ext-real   set 
 
 - (sin n) is  V11()  real   ext-real   set 
 
{p,q} is   non  empty  V36() V40() V155() V156() V157() V158() V159() V160()  Element of  bool NAT
 
n1 is   Relation-like   NAT  -defined   the carrier of F_Real *  -valued   Function-like  V36()  FinSequence-like   FinSubsequence-like   FinSequence-yielding   finite-support   Function-yielding  V235()  tabular   Matrix of TR,TR, the carrier of F_Real
 
 Det n1 is  V11()  real   ext-real   Element of  the carrier of F_Real
 
n1 * (p,p) is  V11()  real   ext-real   Element of  the carrier of F_Real
 
n1 * (q,q) is  V11()  real   ext-real   Element of  the carrier of F_Real
 
n1 * (p,q) is  V11()  real   ext-real   Element of  the carrier of F_Real
 
n1 * (q,p) is  V11()  real   ext-real   Element of  the carrier of F_Real
 
 Indices n1 is    set 
 
n is  V11()  real   ext-real   set 
 
p is   ordinal   natural  V11()  real   ext-real   non  negative  V36()  cardinal  V85()  set 
 
q is   ordinal   natural  V11()  real   ext-real   non  negative  V36()  cardinal  V85()  set 
 
TR is   ordinal   natural  V11()  real   ext-real   non  negative  V36()  cardinal  V85()  set 
 
 TOP-REAL TR is   non  empty   TopSpace-like   right_complementable   constituted-Functions   constituted-FinSeqs  V189() V190() V191() V192() V193() V194() V195() V228() L16()
 
 the carrier of (TOP-REAL TR) is   non  empty   set 
 
 Seg TR is  V16() V36() TR -element  V155() V156() V157() V158() V159() V160()  Element of  bool NAT
 
 {  b1 where b1 is   ordinal   natural  V11()  real   ext-real   non  negative  V36()  cardinal  V85() V86() V155() V156() V157() V158() V159() V160()  Element of  NAT  : ( 1 <= b1 & b1 <= TR )  }   is    set 
 
(TR,n,p,q) is   Relation-like   NAT  -defined   the carrier of F_Real *  -valued   Function-like  V36()  FinSequence-like   FinSubsequence-like   FinSequence-yielding   finite-support   Function-yielding  V235()  tabular   invertible   Matrix of TR,TR, the carrier of F_Real
 
n1 is   ordinal   natural  V11()  real   ext-real   non  negative  V36()  cardinal  V85()  set 
 
 Col ((TR,n,p,q),n1) is   Relation-like   NAT  -defined   the carrier of F_Real -valued   Function-like  V36()  len (TR,n,p,q) -element   FinSequence-like   FinSubsequence-like   finite-support   Element of (len (TR,n,p,q)) -tuples_on  the carrier of F_Real
 
 len (TR,n,p,q) is   ordinal   natural  V11()  real   ext-real   non  negative  V36()  cardinal  V85() V86() V155() V156() V157() V158() V159() V160()  Element of  NAT 
 
(len (TR,n,p,q)) -tuples_on  the carrier of F_Real is   non  empty   functional   FinSequence-membered   FinSequenceSet of  the carrier of F_Real
 
f is   Relation-like   NAT  -defined   Function-like  V36() TR -element   FinSequence-like   FinSubsequence-like   complex-yielding   ext-real-valued   real-valued   finite-support   Element of  the carrier of (TOP-REAL TR)
 
 @ f is   Relation-like   NAT  -defined   the carrier of F_Real -valued   Function-like  V36()  FinSequence-like   FinSubsequence-like   complex-yielding   ext-real-valued   real-valued   finite-support   FinSequence of  the carrier of F_Real
 
(@ f) "*" (Col ((TR,n,p,q),n1)) is  V11()  real   ext-real   Element of  the carrier of F_Real
 
 mlt ((@ f),(Col ((TR,n,p,q),n1))) is   Relation-like   NAT  -defined   the carrier of F_Real -valued   Function-like  V36()  FinSequence-like   FinSubsequence-like   complex-yielding   ext-real-valued   real-valued   finite-support   FinSequence of  the carrier of F_Real
 
 the multF of F_Real is   non  empty   Relation-like  [: the carrier of F_Real, the carrier of F_Real:] -defined   the carrier of F_Real -valued   Function-like   total   quasi_total   complex-yielding   ext-real-valued   real-valued   associative  V287( the carrier of F_Real)  Element of  bool [:[: the carrier of F_Real, the carrier of F_Real:], the carrier of F_Real:]
 
[: the carrier of F_Real, the carrier of F_Real:] is   non  empty   Relation-like   complex-yielding   ext-real-valued   real-valued   set 
 
[:[: the carrier of F_Real, the carrier of F_Real:], the carrier of F_Real:] is   non  empty   Relation-like   complex-yielding   ext-real-valued   real-valued   set 
 
 bool [:[: the carrier of F_Real, the carrier of F_Real:], the carrier of F_Real:] is   non  empty   set 
 
K721( the carrier of F_Real, the carrier of F_Real, the carrier of F_Real, the multF of F_Real,(@ f),(Col ((TR,n,p,q),n1))) is   Relation-like   NAT  -defined   the carrier of F_Real -valued   Function-like  V36()  FinSequence-like   FinSubsequence-like   complex-yielding   ext-real-valued   real-valued   finite-support   FinSequence of  the carrier of F_Real
 
 Sum (mlt ((@ f),(Col ((TR,n,p,q),n1)))) is  V11()  real   ext-real   Element of  the carrier of F_Real
 
 the addF of F_Real is   non  empty   Relation-like  [: the carrier of F_Real, the carrier of F_Real:] -defined   the carrier of F_Real -valued   Function-like   total   quasi_total   complex-yielding   ext-real-valued   real-valued   Element of  bool [:[: the carrier of F_Real, the carrier of F_Real:], the carrier of F_Real:]
 
 the addF of F_Real "**" (mlt ((@ f),(Col ((TR,n,p,q),n1)))) is  V11()  real   ext-real   Element of  the carrier of F_Real
 
f . n1 is  V11()  real   ext-real   Element of  REAL 
 
 Indices (TR,n,p,q) is    set 
 
[:(Seg TR),(Seg TR):] is   Relation-like   RAT  -valued   INT  -valued  V36()  complex-yielding   ext-real-valued   real-valued   natural-valued   set 
 
[n1,n1] is    set 
 
{n1,n1} is   non  empty  V36() V40() V155() V156() V157() V158() V159() V160()  set 
 
{n1} is   non  empty   trivial  V36() V40() 1 -element  V155() V156() V157() V158() V159() V160()  set 
 
{{n1,n1},{n1}} is   non  empty  V36() V40()  set 
 
 dom (TR,n,p,q) is  V36() V155() V156() V157() V158() V159() V160()  Element of  bool NAT
 
 len (Col ((TR,n,p,q),n1)) is   ordinal   natural  V11()  real   ext-real   non  negative  V36()  cardinal  V85() V86() V155() V156() V157() V158() V159() V160()  Element of  NAT 
 
 dom (Col ((TR,n,p,q),n1)) is  V36()  len (TR,n,p,q) -element  V155() V156() V157() V158() V159() V160()  Element of  bool NAT
 
z is   ordinal   natural  V11()  real   ext-real   non  negative  V36()  cardinal  V85()  set 
 
[z,n1] is    set 
 
{z,n1} is   non  empty  V36() V40() V155() V156() V157() V158() V159() V160()  set 
 
{z} is   non  empty   trivial  V36() V40() 1 -element  V155() V156() V157() V158() V159() V160()  set 
 
{{z,n1},{z}} is   non  empty  V36() V40()  set 
 
{p,q} is   non  empty  V36() V40() V155() V156() V157() V158() V159() V160()  Element of  bool NAT
 
{z,n1} is   non  empty  V36() V40() V155() V156() V157() V158() V159() V160()  Element of  bool NAT
 
(Col ((TR,n,p,q),n1)) . z is    set 
 
(TR,n,p,q) * (z,n1) is  V11()  real   ext-real   Element of  the carrier of F_Real
 
 len f is   ordinal   natural  V11()  real   ext-real   non  negative  V36()  cardinal  V85() V86() V155() V156() V157() V158() V159() V160()  Element of  NAT 
 
 dom f is  V36() TR -element  V155() V156() V157() V158() V159() V160()  Element of  bool NAT
 
(Col ((TR,n,p,q),n1)) . n1 is    set 
 
(TR,n,p,q) * (n1,n1) is  V11()  real   ext-real   Element of  the carrier of F_Real
 
 mlt ((Col ((TR,n,p,q),n1)),(@ f)) is   Relation-like   NAT  -defined   the carrier of F_Real -valued   Function-like  V36()  FinSequence-like   FinSubsequence-like   complex-yielding   ext-real-valued   real-valued   finite-support   FinSequence of  the carrier of F_Real
 
K721( the carrier of F_Real, the carrier of F_Real, the carrier of F_Real, the multF of F_Real,(Col ((TR,n,p,q),n1)),(@ f)) is   Relation-like   NAT  -defined   the carrier of F_Real -valued   Function-like  V36()  FinSequence-like   FinSubsequence-like   complex-yielding   ext-real-valued   real-valued   finite-support   FinSequence of  the carrier of F_Real
 
 Sum (mlt ((Col ((TR,n,p,q),n1)),(@ f))) is  V11()  real   ext-real   Element of  the carrier of F_Real
 
 the addF of F_Real "**" (mlt ((Col ((TR,n,p,q),n1)),(@ f))) is  V11()  real   ext-real   Element of  the carrier of F_Real
 
n is  V11()  real   ext-real   set 
 
 cos n is  V11()  real   ext-real   set 
 
 sin n is  V11()  real   ext-real   set 
 
 - (sin n) is  V11()  real   ext-real   set 
 
p is   ordinal   natural  V11()  real   ext-real   non  negative  V36()  cardinal  V85()  set 
 
q is   ordinal   natural  V11()  real   ext-real   non  negative  V36()  cardinal  V85()  set 
 
TR is   ordinal   natural  V11()  real   ext-real   non  negative  V36()  cardinal  V85()  set 
 
 TOP-REAL TR is   non  empty   TopSpace-like   right_complementable   constituted-Functions   constituted-FinSeqs  V189() V190() V191() V192() V193() V194() V195() V228() L16()
 
 the carrier of (TOP-REAL TR) is   non  empty   set 
 
(TR,n,p,q) is   Relation-like   NAT  -defined   the carrier of F_Real *  -valued   Function-like  V36()  FinSequence-like   FinSubsequence-like   FinSequence-yielding   finite-support   Function-yielding  V235()  tabular   invertible   Matrix of TR,TR, the carrier of F_Real
 
 Col ((TR,n,p,q),p) is   Relation-like   NAT  -defined   the carrier of F_Real -valued   Function-like  V36()  len (TR,n,p,q) -element   FinSequence-like   FinSubsequence-like   finite-support   Element of (len (TR,n,p,q)) -tuples_on  the carrier of F_Real
 
 len (TR,n,p,q) is   ordinal   natural  V11()  real   ext-real   non  negative  V36()  cardinal  V85() V86() V155() V156() V157() V158() V159() V160()  Element of  NAT 
 
(len (TR,n,p,q)) -tuples_on  the carrier of F_Real is   non  empty   functional   FinSequence-membered   FinSequenceSet of  the carrier of F_Real
 
n1 is   Relation-like   NAT  -defined   Function-like  V36() TR -element   FinSequence-like   FinSubsequence-like   complex-yielding   ext-real-valued   real-valued   finite-support   Element of  the carrier of (TOP-REAL TR)
 
 @ n1 is   Relation-like   NAT  -defined   the carrier of F_Real -valued   Function-like  V36()  FinSequence-like   FinSubsequence-like   complex-yielding   ext-real-valued   real-valued   finite-support   FinSequence of  the carrier of F_Real
 
(@ n1) "*" (Col ((TR,n,p,q),p)) is  V11()  real   ext-real   Element of  the carrier of F_Real
 
 mlt ((@ n1),(Col ((TR,n,p,q),p))) is   Relation-like   NAT  -defined   the carrier of F_Real -valued   Function-like  V36()  FinSequence-like   FinSubsequence-like   complex-yielding   ext-real-valued   real-valued   finite-support   FinSequence of  the carrier of F_Real
 
 the multF of F_Real is   non  empty   Relation-like  [: the carrier of F_Real, the carrier of F_Real:] -defined   the carrier of F_Real -valued   Function-like   total   quasi_total   complex-yielding   ext-real-valued   real-valued   associative  V287( the carrier of F_Real)  Element of  bool [:[: the carrier of F_Real, the carrier of F_Real:], the carrier of F_Real:]
 
[: the carrier of F_Real, the carrier of F_Real:] is   non  empty   Relation-like   complex-yielding   ext-real-valued   real-valued   set 
 
[:[: the carrier of F_Real, the carrier of F_Real:], the carrier of F_Real:] is   non  empty   Relation-like   complex-yielding   ext-real-valued   real-valued   set 
 
 bool [:[: the carrier of F_Real, the carrier of F_Real:], the carrier of F_Real:] is   non  empty   set 
 
K721( the carrier of F_Real, the carrier of F_Real, the carrier of F_Real, the multF of F_Real,(@ n1),(Col ((TR,n,p,q),p))) is   Relation-like   NAT  -defined   the carrier of F_Real -valued   Function-like  V36()  FinSequence-like   FinSubsequence-like   complex-yielding   ext-real-valued   real-valued   finite-support   FinSequence of  the carrier of F_Real
 
 Sum (mlt ((@ n1),(Col ((TR,n,p,q),p)))) is  V11()  real   ext-real   Element of  the carrier of F_Real
 
 the addF of F_Real is   non  empty   Relation-like  [: the carrier of F_Real, the carrier of F_Real:] -defined   the carrier of F_Real -valued   Function-like   total   quasi_total   complex-yielding   ext-real-valued   real-valued   Element of  bool [:[: the carrier of F_Real, the carrier of F_Real:], the carrier of F_Real:]
 
 the addF of F_Real "**" (mlt ((@ n1),(Col ((TR,n,p,q),p)))) is  V11()  real   ext-real   Element of  the carrier of F_Real
 
n1 . p is  V11()  real   ext-real   Element of  REAL 
 
(n1 . p) * (cos n) is  V11()  real   ext-real   Element of  REAL 
 
n1 . q is  V11()  real   ext-real   Element of  REAL 
 
(n1 . q) * (- (sin n)) is  V11()  real   ext-real   Element of  REAL 
 
((n1 . p) * (cos n)) + ((n1 . q) * (- (sin n))) is  V11()  real   ext-real   Element of  REAL 
 
 Seg TR is  V16() V36() TR -element  V155() V156() V157() V158() V159() V160()  Element of  bool NAT
 
 {  b1 where b1 is   ordinal   natural  V11()  real   ext-real   non  negative  V36()  cardinal  V85() V86() V155() V156() V157() V158() V159() V160()  Element of  NAT  : ( 1 <= b1 & b1 <= TR )  }   is    set 
 
 dom (TR,n,p,q) is  V36() V155() V156() V157() V158() V159() V160()  Element of  bool NAT
 
(Col ((TR,n,p,q),p)) . q is    set 
 
(TR,n,p,q) * (q,p) is  V11()  real   ext-real   Element of  the carrier of F_Real
 
(Col ((TR,n,p,q),p)) . p is    set 
 
(TR,n,p,q) * (p,p) is  V11()  real   ext-real   Element of  the carrier of F_Real
 
 len n1 is   ordinal   natural  V11()  real   ext-real   non  negative  V36()  cardinal  V85() V86() V155() V156() V157() V158() V159() V160()  Element of  NAT 
 
 len (Col ((TR,n,p,q),p)) is   ordinal   natural  V11()  real   ext-real   non  negative  V36()  cardinal  V85() V86() V155() V156() V157() V158() V159() V160()  Element of  NAT 
 
 len (mlt ((@ n1),(Col ((TR,n,p,q),p)))) is   ordinal   natural  V11()  real   ext-real   non  negative  V36()  cardinal  V85() V86() V155() V156() V157() V158() V159() V160()  Element of  NAT 
 
 dom (mlt ((@ n1),(Col ((TR,n,p,q),p)))) is  V36() V155() V156() V157() V158() V159() V160()  Element of  bool NAT
 
 Indices (TR,n,p,q) is    set 
 
[:(Seg TR),(Seg TR):] is   Relation-like   RAT  -valued   INT  -valued  V36()  complex-yielding   ext-real-valued   real-valued   natural-valued   set 
 
fp is   ordinal   natural  V11()  real   ext-real   non  negative  V36()  cardinal  V85()  set 
 
(mlt ((@ n1),(Col ((TR,n,p,q),p)))) . fp is  V11()  real   ext-real   Element of  REAL 
 
{p,q} is   non  empty  V36() V40() V155() V156() V157() V158() V159() V160()  Element of  bool NAT
 
{fp,p} is   non  empty  V36() V40() V155() V156() V157() V158() V159() V160()  Element of  bool NAT
 
(@ n1) . fp is  V11()  real   ext-real   Element of  REAL 
 
[fp,p] is    set 
 
{fp,p} is   non  empty  V36() V40() V155() V156() V157() V158() V159() V160()  set 
 
{fp} is   non  empty   trivial  V36() V40() 1 -element  V155() V156() V157() V158() V159() V160()  set 
 
{{fp,p},{fp}} is   non  empty  V36() V40()  set 
 
(Col ((TR,n,p,q),p)) . fp is    set 
 
(TR,n,p,q) * (fp,p) is  V11()  real   ext-real   Element of  the carrier of F_Real
 
z is  V11()  real   ext-real   Element of  the carrier of F_Real
 
z * ((TR,n,p,q) * (fp,p)) is  V11()  real   ext-real   Element of  the carrier of F_Real
 
 the multF of F_Real . (z,((TR,n,p,q) * (fp,p))) is  V11()  real   ext-real   Element of  the carrier of F_Real
 
K538(z,((TR,n,p,q) * (fp,p))) is  V11()  real   ext-real   Element of  REAL 
 
z * (0. F_Real) is  V11()  real   ext-real   Element of  the carrier of F_Real
 
 the multF of F_Real . (z,(0. F_Real)) is  V11()  real   ext-real   Element of  the carrier of F_Real
 
K538(z,(0. F_Real)) is  V11()  real   ext-real   Element of  REAL 
 
(mlt ((@ n1),(Col ((TR,n,p,q),p)))) /. p is  V11()  real   ext-real   Element of  the carrier of F_Real
 
(mlt ((@ n1),(Col ((TR,n,p,q),p)))) /. q is  V11()  real   ext-real   Element of  the carrier of F_Real
 
((mlt ((@ n1),(Col ((TR,n,p,q),p)))) /. p) + ((mlt ((@ n1),(Col ((TR,n,p,q),p)))) /. q) is  V11()  real   ext-real   Element of  the carrier of F_Real
 
 the addF of F_Real . (((mlt ((@ n1),(Col ((TR,n,p,q),p)))) /. p),((mlt ((@ n1),(Col ((TR,n,p,q),p)))) /. q)) is  V11()  real   ext-real   Element of  the carrier of F_Real
 
K536(((mlt ((@ n1),(Col ((TR,n,p,q),p)))) /. p),((mlt ((@ n1),(Col ((TR,n,p,q),p)))) /. q)) is  V11()  real   ext-real   Element of  REAL 
 
(@ n1) . p is  V11()  real   ext-real   Element of  REAL 
 
(@ n1) . q is  V11()  real   ext-real   Element of  REAL 
 
(mlt ((@ n1),(Col ((TR,n,p,q),p)))) . p is  V11()  real   ext-real   Element of  REAL 
 
fp is  V11()  real   ext-real   Element of  the carrier of F_Real
 
fp * ((TR,n,p,q) * (p,p)) is  V11()  real   ext-real   Element of  the carrier of F_Real
 
 the multF of F_Real . (fp,((TR,n,p,q) * (p,p))) is  V11()  real   ext-real   Element of  the carrier of F_Real
 
K538(fp,((TR,n,p,q) * (p,p))) is  V11()  real   ext-real   Element of  REAL 
 
(mlt ((@ n1),(Col ((TR,n,p,q),p)))) . q is  V11()  real   ext-real   Element of  REAL 
 
z is  V11()  real   ext-real   Element of  the carrier of F_Real
 
z * ((TR,n,p,q) * (q,p)) is  V11()  real   ext-real   Element of  the carrier of F_Real
 
 the multF of F_Real . (z,((TR,n,p,q) * (q,p))) is  V11()  real   ext-real   Element of  the carrier of F_Real
 
K538(z,((TR,n,p,q) * (q,p))) is  V11()  real   ext-real   Element of  REAL 
 
n is  V11()  real   ext-real   set 
 
 sin n is  V11()  real   ext-real   set 
 
 cos n is  V11()  real   ext-real   set 
 
p is   ordinal   natural  V11()  real   ext-real   non  negative  V36()  cardinal  V85()  set 
 
q is   ordinal   natural  V11()  real   ext-real   non  negative  V36()  cardinal  V85()  set 
 
TR is   ordinal   natural  V11()  real   ext-real   non  negative  V36()  cardinal  V85()  set 
 
 TOP-REAL TR is   non  empty   TopSpace-like   right_complementable   constituted-Functions   constituted-FinSeqs  V189() V190() V191() V192() V193() V194() V195() V228() L16()
 
 the carrier of (TOP-REAL TR) is   non  empty   set 
 
(TR,n,p,q) is   Relation-like   NAT  -defined   the carrier of F_Real *  -valued   Function-like  V36()  FinSequence-like   FinSubsequence-like   FinSequence-yielding   finite-support   Function-yielding  V235()  tabular   invertible   Matrix of TR,TR, the carrier of F_Real
 
 Col ((TR,n,p,q),q) is   Relation-like   NAT  -defined   the carrier of F_Real -valued   Function-like  V36()  len (TR,n,p,q) -element   FinSequence-like   FinSubsequence-like   finite-support   Element of (len (TR,n,p,q)) -tuples_on  the carrier of F_Real
 
 len (TR,n,p,q) is   ordinal   natural  V11()  real   ext-real   non  negative  V36()  cardinal  V85() V86() V155() V156() V157() V158() V159() V160()  Element of  NAT 
 
(len (TR,n,p,q)) -tuples_on  the carrier of F_Real is   non  empty   functional   FinSequence-membered   FinSequenceSet of  the carrier of F_Real
 
n1 is   Relation-like   NAT  -defined   Function-like  V36() TR -element   FinSequence-like   FinSubsequence-like   complex-yielding   ext-real-valued   real-valued   finite-support   Element of  the carrier of (TOP-REAL TR)
 
 @ n1 is   Relation-like   NAT  -defined   the carrier of F_Real -valued   Function-like  V36()  FinSequence-like   FinSubsequence-like   complex-yielding   ext-real-valued   real-valued   finite-support   FinSequence of  the carrier of F_Real
 
(@ n1) "*" (Col ((TR,n,p,q),q)) is  V11()  real   ext-real   Element of  the carrier of F_Real
 
 mlt ((@ n1),(Col ((TR,n,p,q),q))) is   Relation-like   NAT  -defined   the carrier of F_Real -valued   Function-like  V36()  FinSequence-like   FinSubsequence-like   complex-yielding   ext-real-valued   real-valued   finite-support   FinSequence of  the carrier of F_Real
 
 the multF of F_Real is   non  empty   Relation-like  [: the carrier of F_Real, the carrier of F_Real:] -defined   the carrier of F_Real -valued   Function-like   total   quasi_total   complex-yielding   ext-real-valued   real-valued   associative  V287( the carrier of F_Real)  Element of  bool [:[: the carrier of F_Real, the carrier of F_Real:], the carrier of F_Real:]
 
[: the carrier of F_Real, the carrier of F_Real:] is   non  empty   Relation-like   complex-yielding   ext-real-valued   real-valued   set 
 
[:[: the carrier of F_Real, the carrier of F_Real:], the carrier of F_Real:] is   non  empty   Relation-like   complex-yielding   ext-real-valued   real-valued   set 
 
 bool [:[: the carrier of F_Real, the carrier of F_Real:], the carrier of F_Real:] is   non  empty   set 
 
K721( the carrier of F_Real, the carrier of F_Real, the carrier of F_Real, the multF of F_Real,(@ n1),(Col ((TR,n,p,q),q))) is   Relation-like   NAT  -defined   the carrier of F_Real -valued   Function-like  V36()  FinSequence-like   FinSubsequence-like   complex-yielding   ext-real-valued   real-valued   finite-support   FinSequence of  the carrier of F_Real
 
 Sum (mlt ((@ n1),(Col ((TR,n,p,q),q)))) is  V11()  real   ext-real   Element of  the carrier of F_Real
 
 the addF of F_Real is   non  empty   Relation-like  [: the carrier of F_Real, the carrier of F_Real:] -defined   the carrier of F_Real -valued   Function-like   total   quasi_total   complex-yielding   ext-real-valued   real-valued   Element of  bool [:[: the carrier of F_Real, the carrier of F_Real:], the carrier of F_Real:]
 
 the addF of F_Real "**" (mlt ((@ n1),(Col ((TR,n,p,q),q)))) is  V11()  real   ext-real   Element of  the carrier of F_Real
 
n1 . p is  V11()  real   ext-real   Element of  REAL 
 
(n1 . p) * (sin n) is  V11()  real   ext-real   Element of  REAL 
 
n1 . q is  V11()  real   ext-real   Element of  REAL 
 
(n1 . q) * (cos n) is  V11()  real   ext-real   Element of  REAL 
 
((n1 . p) * (sin n)) + ((n1 . q) * (cos n)) is  V11()  real   ext-real   Element of  REAL 
 
 Seg TR is  V16() V36() TR -element  V155() V156() V157() V158() V159() V160()  Element of  bool NAT
 
 {  b1 where b1 is   ordinal   natural  V11()  real   ext-real   non  negative  V36()  cardinal  V85() V86() V155() V156() V157() V158() V159() V160()  Element of  NAT  : ( 1 <= b1 & b1 <= TR )  }   is    set 
 
 dom (TR,n,p,q) is  V36() V155() V156() V157() V158() V159() V160()  Element of  bool NAT
 
(Col ((TR,n,p,q),q)) . q is    set 
 
(TR,n,p,q) * (q,q) is  V11()  real   ext-real   Element of  the carrier of F_Real
 
(Col ((TR,n,p,q),q)) . p is    set 
 
(TR,n,p,q) * (p,q) is  V11()  real   ext-real   Element of  the carrier of F_Real
 
 len n1 is   ordinal   natural  V11()  real   ext-real   non  negative  V36()  cardinal  V85() V86() V155() V156() V157() V158() V159() V160()  Element of  NAT 
 
 len (Col ((TR,n,p,q),q)) is   ordinal   natural  V11()  real   ext-real   non  negative  V36()  cardinal  V85() V86() V155() V156() V157() V158() V159() V160()  Element of  NAT 
 
 len (mlt ((@ n1),(Col ((TR,n,p,q),q)))) is   ordinal   natural  V11()  real   ext-real   non  negative  V36()  cardinal  V85() V86() V155() V156() V157() V158() V159() V160()  Element of  NAT 
 
 dom (mlt ((@ n1),(Col ((TR,n,p,q),q)))) is  V36() V155() V156() V157() V158() V159() V160()  Element of  bool NAT
 
 Indices (TR,n,p,q) is    set 
 
[:(Seg TR),(Seg TR):] is   Relation-like   RAT  -valued   INT  -valued  V36()  complex-yielding   ext-real-valued   real-valued   natural-valued   set 
 
fp is   ordinal   natural  V11()  real   ext-real   non  negative  V36()  cardinal  V85()  set 
 
(mlt ((@ n1),(Col ((TR,n,p,q),q)))) . fp is  V11()  real   ext-real   Element of  REAL 
 
{p,q} is   non  empty  V36() V40() V155() V156() V157() V158() V159() V160()  Element of  bool NAT
 
{fp,q} is   non  empty  V36() V40() V155() V156() V157() V158() V159() V160()  Element of  bool NAT
 
(@ n1) . fp is  V11()  real   ext-real   Element of  REAL 
 
[fp,q] is    set 
 
{fp,q} is   non  empty  V36() V40() V155() V156() V157() V158() V159() V160()  set 
 
{fp} is   non  empty   trivial  V36() V40() 1 -element  V155() V156() V157() V158() V159() V160()  set 
 
{{fp,q},{fp}} is   non  empty  V36() V40()  set 
 
(Col ((TR,n,p,q),q)) . fp is    set 
 
(TR,n,p,q) * (fp,q) is  V11()  real   ext-real   Element of  the carrier of F_Real
 
z is  V11()  real   ext-real   Element of  the carrier of F_Real
 
z * ((TR,n,p,q) * (fp,q)) is  V11()  real   ext-real   Element of  the carrier of F_Real
 
 the multF of F_Real . (z,((TR,n,p,q) * (fp,q))) is  V11()  real   ext-real   Element of  the carrier of F_Real
 
K538(z,((TR,n,p,q) * (fp,q))) is  V11()  real   ext-real   Element of  REAL 
 
z * (0. F_Real) is  V11()  real   ext-real   Element of  the carrier of F_Real
 
 the multF of F_Real . (z,(0. F_Real)) is  V11()  real   ext-real   Element of  the carrier of F_Real
 
K538(z,(0. F_Real)) is  V11()  real   ext-real   Element of  REAL 
 
(mlt ((@ n1),(Col ((TR,n,p,q),q)))) /. p is  V11()  real   ext-real   Element of  the carrier of F_Real
 
(mlt ((@ n1),(Col ((TR,n,p,q),q)))) /. q is  V11()  real   ext-real   Element of  the carrier of F_Real
 
((mlt ((@ n1),(Col ((TR,n,p,q),q)))) /. p) + ((mlt ((@ n1),(Col ((TR,n,p,q),q)))) /. q) is  V11()  real   ext-real   Element of  the carrier of F_Real
 
 the addF of F_Real . (((mlt ((@ n1),(Col ((TR,n,p,q),q)))) /. p),((mlt ((@ n1),(Col ((TR,n,p,q),q)))) /. q)) is  V11()  real   ext-real   Element of  the carrier of F_Real
 
K536(((mlt ((@ n1),(Col ((TR,n,p,q),q)))) /. p),((mlt ((@ n1),(Col ((TR,n,p,q),q)))) /. q)) is  V11()  real   ext-real   Element of  REAL 
 
(@ n1) . p is  V11()  real   ext-real   Element of  REAL 
 
(@ n1) . q is  V11()  real   ext-real   Element of  REAL 
 
(mlt ((@ n1),(Col ((TR,n,p,q),q)))) . p is  V11()  real   ext-real   Element of  REAL 
 
fp is  V11()  real   ext-real   Element of  the carrier of F_Real
 
fp * ((TR,n,p,q) * (p,q)) is  V11()  real   ext-real   Element of  the carrier of F_Real
 
 the multF of F_Real . (fp,((TR,n,p,q) * (p,q))) is  V11()  real   ext-real   Element of  the carrier of F_Real
 
K538(fp,((TR,n,p,q) * (p,q))) is  V11()  real   ext-real   Element of  REAL 
 
(mlt ((@ n1),(Col ((TR,n,p,q),q)))) . q is  V11()  real   ext-real   Element of  REAL 
 
z is  V11()  real   ext-real   Element of  the carrier of F_Real
 
z * ((TR,n,p,q) * (q,q)) is  V11()  real   ext-real   Element of  the carrier of F_Real
 
 the multF of F_Real . (z,((TR,n,p,q) * (q,q))) is  V11()  real   ext-real   Element of  the carrier of F_Real
 
K538(z,((TR,n,p,q) * (q,q))) is  V11()  real   ext-real   Element of  REAL 
 
n is  V11()  real   ext-real   set 
 
p is  V11()  real   ext-real   set 
 
n + p is  V11()  real   ext-real   set 
 
q is   ordinal   natural  V11()  real   ext-real   non  negative  V36()  cardinal  V85()  set 
 
TR is   ordinal   natural  V11()  real   ext-real   non  negative  V36()  cardinal  V85()  set 
 
n1 is   ordinal   natural  V11()  real   ext-real   non  negative  V36()  cardinal  V85()  set 
 
(n1,n,q,TR) is   Relation-like   NAT  -defined   the carrier of F_Real *  -valued   Function-like  V36()  FinSequence-like   FinSubsequence-like   FinSequence-yielding   finite-support   Function-yielding  V235()  tabular   invertible   Matrix of n1,n1, the carrier of F_Real
 
(n1,p,q,TR) is   Relation-like   NAT  -defined   the carrier of F_Real *  -valued   Function-like  V36()  FinSequence-like   FinSubsequence-like   FinSequence-yielding   finite-support   Function-yielding  V235()  tabular   invertible   Matrix of n1,n1, the carrier of F_Real
 
(n1,n,q,TR) * (n1,p,q,TR) is   Relation-like   NAT  -defined   the carrier of F_Real *  -valued   Function-like  V36()  FinSequence-like   FinSubsequence-like   FinSequence-yielding   finite-support   Function-yielding  V235()  tabular   Matrix of n1,n1, the carrier of F_Real
 
(n1,(n + p),q,TR) is   Relation-like   NAT  -defined   the carrier of F_Real *  -valued   Function-like  V36()  FinSequence-like   FinSubsequence-like   FinSequence-yielding   finite-support   Function-yielding  V235()  tabular   invertible   Matrix of n1,n1, the carrier of F_Real
 
 Seg n1 is  V16() V36() n1 -element  V155() V156() V157() V158() V159() V160()  Element of  bool NAT
 
 {  b1 where b1 is   ordinal   natural  V11()  real   ext-real   non  negative  V36()  cardinal  V85() V86() V155() V156() V157() V158() V159() V160()  Element of  NAT  : ( 1 <= b1 & b1 <= n1 )  }   is    set 
 
 width (n1,n,q,TR) is   ordinal   natural  V11()  real   ext-real   non  negative  V36()  cardinal  V85() V86() V155() V156() V157() V158() V159() V160()  Element of  NAT 
 
 Indices (n1,n,q,TR) is    set 
 
[:(Seg n1),(Seg n1):] is   Relation-like   RAT  -valued   INT  -valued  V36()  complex-yielding   ext-real-valued   real-valued   natural-valued   set 
 
 Indices ((n1,n,q,TR) * (n1,p,q,TR)) is    set 
 
 Indices (n1,(n + p),q,TR) is    set 
 
 len (n1,p,q,TR) is   ordinal   natural  V11()  real   ext-real   non  negative  V36()  cardinal  V85() V86() V155() V156() V157() V158() V159() V160()  Element of  NAT 
 
fpz is   ordinal   natural  V11()  real   ext-real   non  negative  V36()  cardinal  V85()  set 
 
h is   ordinal   natural  V11()  real   ext-real   non  negative  V36()  cardinal  V85()  set 
 
[fpz,h] is    set 
 
{fpz,h} is   non  empty  V36() V40() V155() V156() V157() V158() V159() V160()  set 
 
{fpz} is   non  empty   trivial  V36() V40() 1 -element  V155() V156() V157() V158() V159() V160()  set 
 
{{fpz,h},{fpz}} is   non  empty  V36() V40()  set 
 
((n1,n,q,TR) * (n1,p,q,TR)) * (fpz,h) is  V11()  real   ext-real   Element of  the carrier of F_Real
 
(n1,(n + p),q,TR) * (fpz,h) is  V11()  real   ext-real   Element of  the carrier of F_Real
 
 Line ((n1,n,q,TR),fpz) is   Relation-like   NAT  -defined   the carrier of F_Real -valued   Function-like  V36()  width (n1,n,q,TR) -element   FinSequence-like   FinSubsequence-like   finite-support   Element of (width (n1,n,q,TR)) -tuples_on  the carrier of F_Real
 
(width (n1,n,q,TR)) -tuples_on  the carrier of F_Real is   non  empty   functional   FinSequence-membered   FinSequenceSet of  the carrier of F_Real
 
 Col ((n1,p,q,TR),h) is   Relation-like   NAT  -defined   the carrier of F_Real -valued   Function-like  V36()  len (n1,p,q,TR) -element   FinSequence-like   FinSubsequence-like   finite-support   Element of (len (n1,p,q,TR)) -tuples_on  the carrier of F_Real
 
(len (n1,p,q,TR)) -tuples_on  the carrier of F_Real is   non  empty   functional   FinSequence-membered   FinSequenceSet of  the carrier of F_Real
 
(Line ((n1,n,q,TR),fpz)) "*" (Col ((n1,p,q,TR),h)) is  V11()  real   ext-real   Element of  the carrier of F_Real
 
 mlt ((Line ((n1,n,q,TR),fpz)),(Col ((n1,p,q,TR),h))) is   Relation-like   NAT  -defined   the carrier of F_Real -valued   Function-like  V36()  FinSequence-like   FinSubsequence-like   complex-yielding   ext-real-valued   real-valued   finite-support   FinSequence of  the carrier of F_Real
 
 the multF of F_Real is   non  empty   Relation-like  [: the carrier of F_Real, the carrier of F_Real:] -defined   the carrier of F_Real -valued   Function-like   total   quasi_total   complex-yielding   ext-real-valued   real-valued   associative  V287( the carrier of F_Real)  Element of  bool [:[: the carrier of F_Real, the carrier of F_Real:], the carrier of F_Real:]
 
[: the carrier of F_Real, the carrier of F_Real:] is   non  empty   Relation-like   complex-yielding   ext-real-valued   real-valued   set 
 
[:[: the carrier of F_Real, the carrier of F_Real:], the carrier of F_Real:] is   non  empty   Relation-like   complex-yielding   ext-real-valued   real-valued   set 
 
 bool [:[: the carrier of F_Real, the carrier of F_Real:], the carrier of F_Real:] is   non  empty   set 
 
K721( the carrier of F_Real, the carrier of F_Real, the carrier of F_Real, the multF of F_Real,(Line ((n1,n,q,TR),fpz)),(Col ((n1,p,q,TR),h))) is   Relation-like   NAT  -defined   the carrier of F_Real -valued   Function-like  V36()  FinSequence-like   FinSubsequence-like   complex-yielding   ext-real-valued   real-valued   finite-support   FinSequence of  the carrier of F_Real
 
 Sum (mlt ((Line ((n1,n,q,TR),fpz)),(Col ((n1,p,q,TR),h)))) is  V11()  real   ext-real   Element of  the carrier of F_Real
 
 the addF of F_Real is   non  empty   Relation-like  [: the carrier of F_Real, the carrier of F_Real:] -defined   the carrier of F_Real -valued   Function-like   total   quasi_total   complex-yielding   ext-real-valued   real-valued   Element of  bool [:[: the carrier of F_Real, the carrier of F_Real:], the carrier of F_Real:]
 
 the addF of F_Real "**" (mlt ((Line ((n1,n,q,TR),fpz)),(Col ((n1,p,q,TR),h)))) is  V11()  real   ext-real   Element of  the carrier of F_Real
 
 @ (Line ((n1,n,q,TR),fpz)) is   Relation-like   NAT  -defined   REAL  -valued   Function-like  V36()  FinSequence-like   FinSubsequence-like   complex-yielding   ext-real-valued   real-valued   finite-support   FinSequence of  REAL 
 
 len (@ (Line ((n1,n,q,TR),fpz))) is   ordinal   natural  V11()  real   ext-real   non  negative  V36()  cardinal  V85() V86() V155() V156() V157() V158() V159() V160()  Element of  NAT 
 
 TOP-REAL n1 is   non  empty   TopSpace-like   right_complementable   constituted-Functions   constituted-FinSeqs  V189() V190() V191() V192() V193() V194() V195() V228() L16()
 
 the carrier of (TOP-REAL n1) is   non  empty   set 
 
sq is   Relation-like   NAT  -defined   Function-like  V36() n1 -element   FinSequence-like   FinSubsequence-like   complex-yielding   ext-real-valued   real-valued   finite-support   Element of  the carrier of (TOP-REAL n1)
 
sq . h is  V11()  real   ext-real   Element of  REAL 
 
(n1,n,q,TR) * (fpz,h) is  V11()  real   ext-real   Element of  the carrier of F_Real
 
 @ sq is   Relation-like   NAT  -defined   the carrier of F_Real -valued   Function-like  V36()  FinSequence-like   FinSubsequence-like   complex-yielding   ext-real-valued   real-valued   finite-support   FinSequence of  the carrier of F_Real
 
sq . q is  V11()  real   ext-real   Element of  REAL 
 
(n1,n,q,TR) * (fpz,q) is  V11()  real   ext-real   Element of  the carrier of F_Real
 
sq . TR is  V11()  real   ext-real   Element of  REAL 
 
(n1,n,q,TR) * (fpz,TR) is  V11()  real   ext-real   Element of  the carrier of F_Real
 
 cos p is  V11()  real   ext-real   set 
 
(sq . q) * (cos p) is  V11()  real   ext-real   Element of  REAL 
 
 sin p is  V11()  real   ext-real   set 
 
 - (sin p) is  V11()  real   ext-real   set 
 
(sq . TR) * (- (sin p)) is  V11()  real   ext-real   Element of  REAL 
 
((sq . q) * (cos p)) + ((sq . TR) * (- (sin p))) is  V11()  real   ext-real   Element of  REAL 
 
 cos n is  V11()  real   ext-real   set 
 
(cos n) * (cos p) is  V11()  real   ext-real   set 
 
((cos n) * (cos p)) + ((sq . TR) * (- (sin p))) is  V11()  real   ext-real   Element of  REAL 
 
 sin n is  V11()  real   ext-real   set 
 
(sin n) * (- (sin p)) is  V11()  real   ext-real   set 
 
((cos n) * (cos p)) + ((sin n) * (- (sin p))) is  V11()  real   ext-real   set 
 
(sin n) * (sin p) is  V11()  real   ext-real   set 
 
((cos n) * (cos p)) - ((sin n) * (sin p)) is  V11()  real   ext-real   set 
 
 - ((sin n) * (sin p)) is  V11()  real   ext-real   set 
 
((cos n) * (cos p)) + (- ((sin n) * (sin p))) is  V11()  real   ext-real   set 
 
 cos (n + p) is  V11()  real   ext-real   set 
 
 sin n is  V11()  real   ext-real   set 
 
 - (sin n) is  V11()  real   ext-real   set 
 
(- (sin n)) * (cos p) is  V11()  real   ext-real   set 
 
((- (sin n)) * (cos p)) + ((sq . TR) * (- (sin p))) is  V11()  real   ext-real   Element of  REAL 
 
 cos n is  V11()  real   ext-real   set 
 
(cos n) * (- (sin p)) is  V11()  real   ext-real   set 
 
((- (sin n)) * (cos p)) + ((cos n) * (- (sin p))) is  V11()  real   ext-real   set 
 
(sin n) * (cos p) is  V11()  real   ext-real   set 
 
(cos n) * (sin p) is  V11()  real   ext-real   set 
 
((sin n) * (cos p)) + ((cos n) * (sin p)) is  V11()  real   ext-real   set 
 
 - (((sin n) * (cos p)) + ((cos n) * (sin p))) is  V11()  real   ext-real   set 
 
 sin (n + p) is  V11()  real   ext-real   set 
 
 - (sin (n + p)) is  V11()  real   ext-real   set 
 
{q,TR} is   non  empty  V36() V40() V155() V156() V157() V158() V159() V160()  Element of  bool NAT
 
{fpz,q} is   non  empty  V36() V40() V155() V156() V157() V158() V159() V160()  Element of  bool NAT
 
{fpz,TR} is   non  empty  V36() V40() V155() V156() V157() V158() V159() V160()  Element of  bool NAT
 
[fpz,TR] is    set 
 
{fpz,TR} is   non  empty  V36() V40() V155() V156() V157() V158() V159() V160()  set 
 
{{fpz,TR},{fpz}} is   non  empty  V36() V40()  set 
 
[fpz,q] is    set 
 
{fpz,q} is   non  empty  V36() V40() V155() V156() V157() V158() V159() V160()  set 
 
{{fpz,q},{fpz}} is   non  empty  V36() V40()  set 
 
{} * (cos p) is  V11()  real   ext-real   set 
 
{} * (- (sin p)) is  V11()  real   ext-real   set 
 
({} * (cos p)) + ({} * (- (sin p))) is  V11()  real   ext-real   set 
 
 sin p is  V11()  real   ext-real   set 
 
(sq . q) * (sin p) is  V11()  real   ext-real   Element of  REAL 
 
 cos p is  V11()  real   ext-real   set 
 
(sq . TR) * (cos p) is  V11()  real   ext-real   Element of  REAL 
 
((sq . q) * (sin p)) + ((sq . TR) * (cos p)) is  V11()  real   ext-real   Element of  REAL 
 
 cos n is  V11()  real   ext-real   set 
 
(cos n) * (sin p) is  V11()  real   ext-real   set 
 
((cos n) * (sin p)) + ((sq . TR) * (cos p)) is  V11()  real   ext-real   Element of  REAL 
 
 sin n is  V11()  real   ext-real   set 
 
(sin n) * (cos p) is  V11()  real   ext-real   set 
 
((cos n) * (sin p)) + ((sin n) * (cos p)) is  V11()  real   ext-real   set 
 
 sin (n + p) is  V11()  real   ext-real   set 
 
 sin n is  V11()  real   ext-real   set 
 
 - (sin n) is  V11()  real   ext-real   set 
 
(- (sin n)) * (sin p) is  V11()  real   ext-real   set 
 
((- (sin n)) * (sin p)) + ((sq . TR) * (cos p)) is  V11()  real   ext-real   Element of  REAL 
 
 cos n is  V11()  real   ext-real   set 
 
(cos n) * (cos p) is  V11()  real   ext-real   set 
 
(sin n) * (sin p) is  V11()  real   ext-real   set 
 
((cos n) * (cos p)) - ((sin n) * (sin p)) is  V11()  real   ext-real   set 
 
 - ((sin n) * (sin p)) is  V11()  real   ext-real   set 
 
((cos n) * (cos p)) + (- ((sin n) * (sin p))) is  V11()  real   ext-real   set 
 
 cos (n + p) is  V11()  real   ext-real   set 
 
{q,TR} is   non  empty  V36() V40() V155() V156() V157() V158() V159() V160()  Element of  bool NAT
 
{fpz,q} is   non  empty  V36() V40() V155() V156() V157() V158() V159() V160()  Element of  bool NAT
 
{fpz,TR} is   non  empty  V36() V40() V155() V156() V157() V158() V159() V160()  Element of  bool NAT
 
[fpz,TR] is    set 
 
{fpz,TR} is   non  empty  V36() V40() V155() V156() V157() V158() V159() V160()  set 
 
{{fpz,TR},{fpz}} is   non  empty  V36() V40()  set 
 
[fpz,q] is    set 
 
{fpz,q} is   non  empty  V36() V40() V155() V156() V157() V158() V159() V160()  set 
 
{{fpz,q},{fpz}} is   non  empty  V36() V40()  set 
 
{} * (sin p) is  V11()  real   ext-real   set 
 
{} * (cos p) is  V11()  real   ext-real   set 
 
({} * (sin p)) + ({} * (cos p)) is  V11()  real   ext-real   set 
 
{q,TR} is   non  empty  V36() V40() V155() V156() V157() V158() V159() V160()  Element of  bool NAT
 
{fpz,h} is   non  empty  V36() V40() V155() V156() V157() V158() V159() V160()  Element of  bool NAT
 
n is  V11()  real   ext-real   set 
 
 - n is  V11()  real   ext-real   set 
 
p is   ordinal   natural  V11()  real   ext-real   non  negative  V36()  cardinal  V85()  set 
 
q is   ordinal   natural  V11()  real   ext-real   non  negative  V36()  cardinal  V85()  set 
 
TR is   ordinal   natural  V11()  real   ext-real   non  negative  V36()  cardinal  V85()  set 
 
(TR,n,p,q) is   Relation-like   NAT  -defined   the carrier of F_Real *  -valued   Function-like  V36()  FinSequence-like   FinSubsequence-like   FinSequence-yielding   finite-support   Function-yielding  V235()  tabular   invertible   Matrix of TR,TR, the carrier of F_Real
 
(TR,n,p,q) @  is   Relation-like   NAT  -defined   the carrier of F_Real *  -valued   Function-like  V36()  FinSequence-like   FinSubsequence-like   FinSequence-yielding   finite-support   Function-yielding  V235()  tabular   Matrix of TR,TR, the carrier of F_Real
 
(TR,(- n),p,q) is   Relation-like   NAT  -defined   the carrier of F_Real *  -valued   Function-like  V36()  FinSequence-like   FinSubsequence-like   FinSequence-yielding   finite-support   Function-yielding  V235()  tabular   invertible   Matrix of TR,TR, the carrier of F_Real
 
 Seg TR is  V16() V36() TR -element  V155() V156() V157() V158() V159() V160()  Element of  bool NAT
 
 {  b1 where b1 is   ordinal   natural  V11()  real   ext-real   non  negative  V36()  cardinal  V85() V86() V155() V156() V157() V158() V159() V160()  Element of  NAT  : ( 1 <= b1 & b1 <= TR )  }   is    set 
 
 Indices (TR,(- n),p,q) is    set 
 
[:(Seg TR),(Seg TR):] is   Relation-like   RAT  -valued   INT  -valued  V36()  complex-yielding   ext-real-valued   real-valued   natural-valued   set 
 
 Indices (TR,n,p,q) is    set 
 
 Indices ((TR,n,p,q) @) is    set 
 
 cos n is  V11()  real   ext-real   set 
 
 cos (- n) is  V11()  real   ext-real   set 
 
z is   ordinal   natural  V11()  real   ext-real   non  negative  V36()  cardinal  V85()  set 
 
fp is   ordinal   natural  V11()  real   ext-real   non  negative  V36()  cardinal  V85()  set 
 
[z,fp] is    set 
 
{z,fp} is   non  empty  V36() V40() V155() V156() V157() V158() V159() V160()  set 
 
{z} is   non  empty   trivial  V36() V40() 1 -element  V155() V156() V157() V158() V159() V160()  set 
 
{{z,fp},{z}} is   non  empty  V36() V40()  set 
 
((TR,n,p,q) @) * (z,fp) is  V11()  real   ext-real   Element of  the carrier of F_Real
 
(TR,(- n),p,q) * (z,fp) is  V11()  real   ext-real   Element of  the carrier of F_Real
 
 sin n is  V11()  real   ext-real   set 
 
 - (sin n) is  V11()  real   ext-real   set 
 
 sin (- n) is  V11()  real   ext-real   set 
 
[fp,z] is    set 
 
{fp,z} is   non  empty  V36() V40() V155() V156() V157() V158() V159() V160()  set 
 
{fp} is   non  empty   trivial  V36() V40() 1 -element  V155() V156() V157() V158() V159() V160()  set 
 
{{fp,z},{fp}} is   non  empty  V36() V40()  set 
 
(TR,n,p,q) * (fp,z) is  V11()  real   ext-real   Element of  the carrier of F_Real
 
{p,q} is   non  empty  V36() V40() V155() V156() V157() V158() V159() V160()  Element of  bool NAT
 
{fp,z} is   non  empty  V36() V40() V155() V156() V157() V158() V159() V160()  Element of  bool NAT
 
 - (sin (- n)) is  V11()  real   ext-real   set 
 
{p,q} is   non  empty  V36() V40() V155() V156() V157() V158() V159() V160()  Element of  bool NAT
 
{fp,z} is   non  empty  V36() V40() V155() V156() V157() V158() V159() V160()  Element of  bool NAT
 
{p,q} is   non  empty  V36() V40() V155() V156() V157() V158() V159() V160()  Element of  bool NAT
 
{fp,z} is   non  empty  V36() V40() V155() V156() V157() V158() V159() V160()  Element of  bool NAT
 
{p,q} is   non  empty  V36() V40() V155() V156() V157() V158() V159() V160()  Element of  bool NAT
 
{fp,z} is   non  empty  V36() V40() V155() V156() V157() V158() V159() V160()  Element of  bool NAT
 
n is   ordinal   natural  V11()  real   ext-real   non  negative  V36()  cardinal  V85()  set 
 
p is   ordinal   natural  V11()  real   ext-real   non  negative  V36()  cardinal  V85()  set 
 
q is   ordinal   natural  V11()  real   ext-real   non  negative  V36()  cardinal  V85()  set 
 
(q,{},n,p) is   Relation-like   NAT  -defined   the carrier of F_Real *  -valued   Function-like  V36()  FinSequence-like   FinSubsequence-like   FinSequence-yielding   finite-support   Function-yielding  V235()  tabular   invertible   Matrix of q,q, the carrier of F_Real
 
 1. (F_Real,q) is   Relation-like   NAT  -defined   the carrier of F_Real *  -valued   Function-like  V36()  FinSequence-like   FinSubsequence-like   FinSequence-yielding   finite-support   Function-yielding  V235()  tabular   Matrix of q,q, the carrier of F_Real
 
 Indices (q,{},n,p) is    set 
 
n1 is   ordinal   natural  V11()  real   ext-real   non  negative  V36()  cardinal  V85()  set 
 
f is   ordinal   natural  V11()  real   ext-real   non  negative  V36()  cardinal  V85()  set 
 
[n1,f] is    set 
 
{n1,f} is   non  empty  V36() V40() V155() V156() V157() V158() V159() V160()  set 
 
{n1} is   non  empty   trivial  V36() V40() 1 -element  V155() V156() V157() V158() V159() V160()  set 
 
{{n1,f},{n1}} is   non  empty  V36() V40()  set 
 
(q,{},n,p) * (n1,f) is  V11()  real   ext-real   Element of  the carrier of F_Real
 
 sin {} is  V11()  real   ext-real   set 
 
 - (sin {}) is  V11()  real   ext-real   set 
 
{n,p} is   non  empty  V36() V40() V155() V156() V157() V158() V159() V160()  Element of  bool NAT
 
{n1,f} is   non  empty  V36() V40() V155() V156() V157() V158() V159() V160()  Element of  bool NAT
 
{n,p} is   non  empty  V36() V40() V155() V156() V157() V158() V159() V160()  Element of  bool NAT
 
{n1,f} is   non  empty  V36() V40() V155() V156() V157() V158() V159() V160()  Element of  bool NAT
 
{n,p} is   non  empty  V36() V40() V155() V156() V157() V158() V159() V160()  Element of  bool NAT
 
{n1,f} is   non  empty  V36() V40() V155() V156() V157() V158() V159() V160()  Element of  bool NAT
 
{n,p} is   non  empty  V36() V40() V155() V156() V157() V158() V159() V160()  Element of  bool NAT
 
{n1,f} is   non  empty  V36() V40() V155() V156() V157() V158() V159() V160()  Element of  bool NAT
 
{n,p} is   non  empty  V36() V40() V155() V156() V157() V158() V159() V160()  Element of  bool NAT
 
{n1,f} is   non  empty  V36() V40() V155() V156() V157() V158() V159() V160()  Element of  bool NAT
 
n1 is   ordinal   natural  V11()  real   ext-real   non  negative  V36()  cardinal  V85()  set 
 
[n1,n1] is    set 
 
{n1,n1} is   non  empty  V36() V40() V155() V156() V157() V158() V159() V160()  set 
 
{n1} is   non  empty   trivial  V36() V40() 1 -element  V155() V156() V157() V158() V159() V160()  set 
 
{{n1,n1},{n1}} is   non  empty  V36() V40()  set 
 
(q,{},n,p) * (n1,n1) is  V11()  real   ext-real   Element of  the carrier of F_Real
 
n is  V11()  real   ext-real   set 
 
 - n is  V11()  real   ext-real   set 
 
p is   ordinal   natural  V11()  real   ext-real   non  negative  V36()  cardinal  V85()  set 
 
q is   ordinal   natural  V11()  real   ext-real   non  negative  V36()  cardinal  V85()  set 
 
TR is   ordinal   natural  V11()  real   ext-real   non  negative  V36()  cardinal  V85()  set 
 
(TR,n,p,q) is   Relation-like   NAT  -defined   the carrier of F_Real *  -valued   Function-like  V36()  FinSequence-like   FinSubsequence-like   FinSequence-yielding   finite-support   Function-yielding  V235()  tabular   invertible   Matrix of TR,TR, the carrier of F_Real
 
(TR,n,p,q) ~  is   Relation-like   NAT  -defined   the carrier of F_Real *  -valued   Function-like  V36()  FinSequence-like   FinSubsequence-like   FinSequence-yielding   finite-support   Function-yielding  V235()  tabular   Matrix of TR,TR, the carrier of F_Real
 
(TR,(- n),p,q) is   Relation-like   NAT  -defined   the carrier of F_Real *  -valued   Function-like  V36()  FinSequence-like   FinSubsequence-like   FinSequence-yielding   finite-support   Function-yielding  V235()  tabular   invertible   Matrix of TR,TR, the carrier of F_Real
 
(TR,n,p,q) * (TR,(- n),p,q) is   Relation-like   NAT  -defined   the carrier of F_Real *  -valued   Function-like  V36()  FinSequence-like   FinSubsequence-like   FinSequence-yielding   finite-support   Function-yielding  V235()  tabular   Matrix of TR,TR, the carrier of F_Real
 
n + (- n) is  V11()  real   ext-real   set 
 
(TR,(n + (- n)),p,q) is   Relation-like   NAT  -defined   the carrier of F_Real *  -valued   Function-like  V36()  FinSequence-like   FinSubsequence-like   FinSequence-yielding   finite-support   Function-yielding  V235()  tabular   invertible   Matrix of TR,TR, the carrier of F_Real
 
 1. (F_Real,TR) is   Relation-like   NAT  -defined   the carrier of F_Real *  -valued   Function-like  V36()  FinSequence-like   FinSubsequence-like   FinSequence-yielding   finite-support   Function-yielding  V235()  tabular   Matrix of TR,TR, the carrier of F_Real
 
(TR,(- n),p,q) * (TR,n,p,q) is   Relation-like   NAT  -defined   the carrier of F_Real *  -valued   Function-like  V36()  FinSequence-like   FinSubsequence-like   FinSequence-yielding   finite-support   Function-yielding  V235()  tabular   Matrix of TR,TR, the carrier of F_Real
 
(- n) + n is  V11()  real   ext-real   set 
 
(TR,((- n) + n),p,q) is   Relation-like   NAT  -defined   the carrier of F_Real *  -valued   Function-like  V36()  FinSequence-like   FinSubsequence-like   FinSequence-yielding   finite-support   Function-yielding  V235()  tabular   invertible   Matrix of TR,TR, the carrier of F_Real
 
n is  V11()  real   ext-real   set 
 
 - n is  V11()  real   ext-real   set 
 
p is   ordinal   natural  V11()  real   ext-real   non  negative  V36()  cardinal  V85()  set 
 
q is   ordinal   natural  V11()  real   ext-real   non  negative  V36()  cardinal  V85()  set 
 
TR is   ordinal   natural  V11()  real   ext-real   non  negative  V36()  cardinal  V85()  set 
 
(TR,n,p,q) is   Relation-like   NAT  -defined   the carrier of F_Real *  -valued   Function-like  V36()  FinSequence-like   FinSubsequence-like   FinSequence-yielding   finite-support   Function-yielding  V235()  tabular   invertible   Matrix of TR,TR, the carrier of F_Real
 
(TR,n,p,q) ~  is   Relation-like   NAT  -defined   the carrier of F_Real *  -valued   Function-like  V36()  FinSequence-like   FinSubsequence-like   FinSequence-yielding   finite-support   Function-yielding  V235()  tabular   Matrix of TR,TR, the carrier of F_Real
 
(TR,(- n),p,q) is   Relation-like   NAT  -defined   the carrier of F_Real *  -valued   Function-like  V36()  FinSequence-like   FinSubsequence-like   FinSequence-yielding   finite-support   Function-yielding  V235()  tabular   invertible   Matrix of TR,TR, the carrier of F_Real
 
(TR,n,p,q) @  is   Relation-like   NAT  -defined   the carrier of F_Real *  -valued   Function-like  V36()  FinSequence-like   FinSubsequence-like   FinSequence-yielding   finite-support   Function-yielding  V235()  tabular   Matrix of TR,TR, the carrier of F_Real
 
n is  V11()  real   ext-real   set 
 
p is   ordinal   natural  V11()  real   ext-real   non  negative  V36()  cardinal  V85()  set 
 
q is   ordinal   natural  V11()  real   ext-real   non  negative  V36()  cardinal  V85()  set 
 
TR is   ordinal   natural  V11()  real   ext-real   non  negative  V36()  cardinal  V85()  set 
 
 TOP-REAL TR is   non  empty   TopSpace-like   right_complementable   constituted-Functions   constituted-FinSeqs  V189() V190() V191() V192() V193() V194() V195() V228() L16()
 
 the carrier of (TOP-REAL TR) is   non  empty   set 
 
(TR,n,p,q) is   Relation-like   NAT  -defined   the carrier of F_Real *  -valued   Function-like  V36()  FinSequence-like   FinSubsequence-like   FinSequence-yielding   finite-support   Function-yielding  V235()  tabular   invertible   Matrix of TR,TR, the carrier of F_Real
 
 Mx2Tran (TR,n,p,q) is   non  empty   Relation-like   the carrier of (TOP-REAL TR) -defined   the carrier of (TOP-REAL TR) -valued   Function-like   total   quasi_total   additive   FinSequence-yielding   homogeneous   Function-yielding  V235()  being_homeomorphism   Element of  bool [: the carrier of (TOP-REAL TR), the carrier of (TOP-REAL TR):]
 
[: the carrier of (TOP-REAL TR), the carrier of (TOP-REAL TR):] is   non  empty   Relation-like   set 
 
 bool [: the carrier of (TOP-REAL TR), the carrier of (TOP-REAL TR):] is   non  empty   set 
 
n1 is   ordinal   natural  V11()  real   ext-real   non  negative  V36()  cardinal  V85()  set 
 
f is   Relation-like   NAT  -defined   Function-like  V36() TR -element   FinSequence-like   FinSubsequence-like   complex-yielding   ext-real-valued   real-valued   finite-support   Element of  the carrier of (TOP-REAL TR)
 
(Mx2Tran (TR,n,p,q)) . f is   Relation-like   NAT  -defined   Function-like  V36() TR -element   FinSequence-like   FinSubsequence-like   complex-yielding   ext-real-valued   real-valued   finite-support   Element of  the carrier of (TOP-REAL TR)
 
((Mx2Tran (TR,n,p,q)) . f) . n1 is  V11()  real   ext-real   Element of  REAL 
 
f . n1 is  V11()  real   ext-real   Element of  REAL 
 
 Seg TR is  V16() V36() TR -element  V155() V156() V157() V158() V159() V160()  Element of  bool NAT
 
 {  b1 where b1 is   ordinal   natural  V11()  real   ext-real   non  negative  V36()  cardinal  V85() V86() V155() V156() V157() V158() V159() V160()  Element of  NAT  : ( 1 <= b1 & b1 <= TR )  }   is    set 
 
 len ((Mx2Tran (TR,n,p,q)) . f) is   ordinal   natural  V11()  real   ext-real   non  negative  V36()  cardinal  V85() V86() V155() V156() V157() V158() V159() V160()  Element of  NAT 
 
 dom ((Mx2Tran (TR,n,p,q)) . f) is  V36() TR -element  V155() V156() V157() V158() V159() V160()  Element of  bool NAT
 
 len f is   ordinal   natural  V11()  real   ext-real   non  negative  V36()  cardinal  V85() V86() V155() V156() V157() V158() V159() V160()  Element of  NAT 
 
 dom f is  V36() TR -element  V155() V156() V157() V158() V159() V160()  Element of  bool NAT
 
 @ f is   Relation-like   NAT  -defined   the carrier of F_Real -valued   Function-like  V36()  FinSequence-like   FinSubsequence-like   complex-yielding   ext-real-valued   real-valued   finite-support   FinSequence of  the carrier of F_Real
 
 Col ((TR,n,p,q),n1) is   Relation-like   NAT  -defined   the carrier of F_Real -valued   Function-like  V36()  len (TR,n,p,q) -element   FinSequence-like   FinSubsequence-like   finite-support   Element of (len (TR,n,p,q)) -tuples_on  the carrier of F_Real
 
 len (TR,n,p,q) is   ordinal   natural  V11()  real   ext-real   non  negative  V36()  cardinal  V85() V86() V155() V156() V157() V158() V159() V160()  Element of  NAT 
 
(len (TR,n,p,q)) -tuples_on  the carrier of F_Real is   non  empty   functional   FinSequence-membered   FinSequenceSet of  the carrier of F_Real
 
(@ f) "*" (Col ((TR,n,p,q),n1)) is  V11()  real   ext-real   Element of  the carrier of F_Real
 
 mlt ((@ f),(Col ((TR,n,p,q),n1))) is   Relation-like   NAT  -defined   the carrier of F_Real -valued   Function-like  V36()  FinSequence-like   FinSubsequence-like   complex-yielding   ext-real-valued   real-valued   finite-support   FinSequence of  the carrier of F_Real
 
 the multF of F_Real is   non  empty   Relation-like  [: the carrier of F_Real, the carrier of F_Real:] -defined   the carrier of F_Real -valued   Function-like   total   quasi_total   complex-yielding   ext-real-valued   real-valued   associative  V287( the carrier of F_Real)  Element of  bool [:[: the carrier of F_Real, the carrier of F_Real:], the carrier of F_Real:]
 
[: the carrier of F_Real, the carrier of F_Real:] is   non  empty   Relation-like   complex-yielding   ext-real-valued   real-valued   set 
 
[:[: the carrier of F_Real, the carrier of F_Real:], the carrier of F_Real:] is   non  empty   Relation-like   complex-yielding   ext-real-valued   real-valued   set 
 
 bool [:[: the carrier of F_Real, the carrier of F_Real:], the carrier of F_Real:] is   non  empty   set 
 
K721( the carrier of F_Real, the carrier of F_Real, the carrier of F_Real, the multF of F_Real,(@ f),(Col ((TR,n,p,q),n1))) is   Relation-like   NAT  -defined   the carrier of F_Real -valued   Function-like  V36()  FinSequence-like   FinSubsequence-like   complex-yielding   ext-real-valued   real-valued   finite-support   FinSequence of  the carrier of F_Real
 
 Sum (mlt ((@ f),(Col ((TR,n,p,q),n1)))) is  V11()  real   ext-real   Element of  the carrier of F_Real
 
 the addF of F_Real is   non  empty   Relation-like  [: the carrier of F_Real, the carrier of F_Real:] -defined   the carrier of F_Real -valued   Function-like   total   quasi_total   complex-yielding   ext-real-valued   real-valued   Element of  bool [:[: the carrier of F_Real, the carrier of F_Real:], the carrier of F_Real:]
 
 the addF of F_Real "**" (mlt ((@ f),(Col ((TR,n,p,q),n1)))) is  V11()  real   ext-real   Element of  the carrier of F_Real
 
n is  V11()  real   ext-real   set 
 
 cos n is  V11()  real   ext-real   set 
 
 sin n is  V11()  real   ext-real   set 
 
 - (sin n) is  V11()  real   ext-real   set 
 
p is   ordinal   natural  V11()  real   ext-real   non  negative  V36()  cardinal  V85()  set 
 
q is   ordinal   natural  V11()  real   ext-real   non  negative  V36()  cardinal  V85()  set 
 
TR is   ordinal   natural  V11()  real   ext-real   non  negative  V36()  cardinal  V85()  set 
 
 TOP-REAL TR is   non  empty   TopSpace-like   right_complementable   constituted-Functions   constituted-FinSeqs  V189() V190() V191() V192() V193() V194() V195() V228() L16()
 
 the carrier of (TOP-REAL TR) is   non  empty   set 
 
(TR,n,p,q) is   Relation-like   NAT  -defined   the carrier of F_Real *  -valued   Function-like  V36()  FinSequence-like   FinSubsequence-like   FinSequence-yielding   finite-support   Function-yielding  V235()  tabular   invertible   Matrix of TR,TR, the carrier of F_Real
 
 Mx2Tran (TR,n,p,q) is   non  empty   Relation-like   the carrier of (TOP-REAL TR) -defined   the carrier of (TOP-REAL TR) -valued   Function-like   total   quasi_total   additive   FinSequence-yielding   homogeneous   Function-yielding  V235()  being_homeomorphism   Element of  bool [: the carrier of (TOP-REAL TR), the carrier of (TOP-REAL TR):]
 
[: the carrier of (TOP-REAL TR), the carrier of (TOP-REAL TR):] is   non  empty   Relation-like   set 
 
 bool [: the carrier of (TOP-REAL TR), the carrier of (TOP-REAL TR):] is   non  empty   set 
 
n1 is   Relation-like   NAT  -defined   Function-like  V36() TR -element   FinSequence-like   FinSubsequence-like   complex-yielding   ext-real-valued   real-valued   finite-support   Element of  the carrier of (TOP-REAL TR)
 
(Mx2Tran (TR,n,p,q)) . n1 is   Relation-like   NAT  -defined   Function-like  V36() TR -element   FinSequence-like   FinSubsequence-like   complex-yielding   ext-real-valued   real-valued   finite-support   Element of  the carrier of (TOP-REAL TR)
 
((Mx2Tran (TR,n,p,q)) . n1) . p is  V11()  real   ext-real   Element of  REAL 
 
n1 . p is  V11()  real   ext-real   Element of  REAL 
 
(n1 . p) * (cos n) is  V11()  real   ext-real   Element of  REAL 
 
n1 . q is  V11()  real   ext-real   Element of  REAL 
 
(n1 . q) * (- (sin n)) is  V11()  real   ext-real   Element of  REAL 
 
((n1 . p) * (cos n)) + ((n1 . q) * (- (sin n))) is  V11()  real   ext-real   Element of  REAL 
 
 Seg TR is  V16() V36() TR -element  V155() V156() V157() V158() V159() V160()  Element of  bool NAT
 
 {  b1 where b1 is   ordinal   natural  V11()  real   ext-real   non  negative  V36()  cardinal  V85() V86() V155() V156() V157() V158() V159() V160()  Element of  NAT  : ( 1 <= b1 & b1 <= TR )  }   is    set 
 
 @ n1 is   Relation-like   NAT  -defined   the carrier of F_Real -valued   Function-like  V36()  FinSequence-like   FinSubsequence-like   complex-yielding   ext-real-valued   real-valued   finite-support   FinSequence of  the carrier of F_Real
 
 Col ((TR,n,p,q),p) is   Relation-like   NAT  -defined   the carrier of F_Real -valued   Function-like  V36()  len (TR,n,p,q) -element   FinSequence-like   FinSubsequence-like   finite-support   Element of (len (TR,n,p,q)) -tuples_on  the carrier of F_Real
 
 len (TR,n,p,q) is   ordinal   natural  V11()  real   ext-real   non  negative  V36()  cardinal  V85() V86() V155() V156() V157() V158() V159() V160()  Element of  NAT 
 
(len (TR,n,p,q)) -tuples_on  the carrier of F_Real is   non  empty   functional   FinSequence-membered   FinSequenceSet of  the carrier of F_Real
 
(@ n1) "*" (Col ((TR,n,p,q),p)) is  V11()  real   ext-real   Element of  the carrier of F_Real
 
 mlt ((@ n1),(Col ((TR,n,p,q),p))) is   Relation-like   NAT  -defined   the carrier of F_Real -valued   Function-like  V36()  FinSequence-like   FinSubsequence-like   complex-yielding   ext-real-valued   real-valued   finite-support   FinSequence of  the carrier of F_Real
 
 the multF of F_Real is   non  empty   Relation-like  [: the carrier of F_Real, the carrier of F_Real:] -defined   the carrier of F_Real -valued   Function-like   total   quasi_total   complex-yielding   ext-real-valued   real-valued   associative  V287( the carrier of F_Real)  Element of  bool [:[: the carrier of F_Real, the carrier of F_Real:], the carrier of F_Real:]
 
[: the carrier of F_Real, the carrier of F_Real:] is   non  empty   Relation-like   complex-yielding   ext-real-valued   real-valued   set 
 
[:[: the carrier of F_Real, the carrier of F_Real:], the carrier of F_Real:] is   non  empty   Relation-like   complex-yielding   ext-real-valued   real-valued   set 
 
 bool [:[: the carrier of F_Real, the carrier of F_Real:], the carrier of F_Real:] is   non  empty   set 
 
K721( the carrier of F_Real, the carrier of F_Real, the carrier of F_Real, the multF of F_Real,(@ n1),(Col ((TR,n,p,q),p))) is   Relation-like   NAT  -defined   the carrier of F_Real -valued   Function-like  V36()  FinSequence-like   FinSubsequence-like   complex-yielding   ext-real-valued   real-valued   finite-support   FinSequence of  the carrier of F_Real
 
 Sum (mlt ((@ n1),(Col ((TR,n,p,q),p)))) is  V11()  real   ext-real   Element of  the carrier of F_Real
 
 the addF of F_Real is   non  empty   Relation-like  [: the carrier of F_Real, the carrier of F_Real:] -defined   the carrier of F_Real -valued   Function-like   total   quasi_total   complex-yielding   ext-real-valued   real-valued   Element of  bool [:[: the carrier of F_Real, the carrier of F_Real:], the carrier of F_Real:]
 
 the addF of F_Real "**" (mlt ((@ n1),(Col ((TR,n,p,q),p)))) is  V11()  real   ext-real   Element of  the carrier of F_Real
 
n is  V11()  real   ext-real   set 
 
 sin n is  V11()  real   ext-real   set 
 
 cos n is  V11()  real   ext-real   set 
 
p is   ordinal   natural  V11()  real   ext-real   non  negative  V36()  cardinal  V85()  set 
 
q is   ordinal   natural  V11()  real   ext-real   non  negative  V36()  cardinal  V85()  set 
 
TR is   ordinal   natural  V11()  real   ext-real   non  negative  V36()  cardinal  V85()  set 
 
 TOP-REAL TR is   non  empty   TopSpace-like   right_complementable   constituted-Functions   constituted-FinSeqs  V189() V190() V191() V192() V193() V194() V195() V228() L16()
 
 the carrier of (TOP-REAL TR) is   non  empty   set 
 
(TR,n,p,q) is   Relation-like   NAT  -defined   the carrier of F_Real *  -valued   Function-like  V36()  FinSequence-like   FinSubsequence-like   FinSequence-yielding   finite-support   Function-yielding  V235()  tabular   invertible   Matrix of TR,TR, the carrier of F_Real
 
 Mx2Tran (TR,n,p,q) is   non  empty   Relation-like   the carrier of (TOP-REAL TR) -defined   the carrier of (TOP-REAL TR) -valued   Function-like   total   quasi_total   additive   FinSequence-yielding   homogeneous   Function-yielding  V235()  being_homeomorphism   Element of  bool [: the carrier of (TOP-REAL TR), the carrier of (TOP-REAL TR):]
 
[: the carrier of (TOP-REAL TR), the carrier of (TOP-REAL TR):] is   non  empty   Relation-like   set 
 
 bool [: the carrier of (TOP-REAL TR), the carrier of (TOP-REAL TR):] is   non  empty   set 
 
n1 is   Relation-like   NAT  -defined   Function-like  V36() TR -element   FinSequence-like   FinSubsequence-like   complex-yielding   ext-real-valued   real-valued   finite-support   Element of  the carrier of (TOP-REAL TR)
 
(Mx2Tran (TR,n,p,q)) . n1 is   Relation-like   NAT  -defined   Function-like  V36() TR -element   FinSequence-like   FinSubsequence-like   complex-yielding   ext-real-valued   real-valued   finite-support   Element of  the carrier of (TOP-REAL TR)
 
((Mx2Tran (TR,n,p,q)) . n1) . q is  V11()  real   ext-real   Element of  REAL 
 
n1 . p is  V11()  real   ext-real   Element of  REAL 
 
(n1 . p) * (sin n) is  V11()  real   ext-real   Element of  REAL 
 
n1 . q is  V11()  real   ext-real   Element of  REAL 
 
(n1 . q) * (cos n) is  V11()  real   ext-real   Element of  REAL 
 
((n1 . p) * (sin n)) + ((n1 . q) * (cos n)) is  V11()  real   ext-real   Element of  REAL 
 
 Seg TR is  V16() V36() TR -element  V155() V156() V157() V158() V159() V160()  Element of  bool NAT
 
 {  b1 where b1 is   ordinal   natural  V11()  real   ext-real   non  negative  V36()  cardinal  V85() V86() V155() V156() V157() V158() V159() V160()  Element of  NAT  : ( 1 <= b1 & b1 <= TR )  }   is    set 
 
 @ n1 is   Relation-like   NAT  -defined   the carrier of F_Real -valued   Function-like  V36()  FinSequence-like   FinSubsequence-like   complex-yielding   ext-real-valued   real-valued   finite-support   FinSequence of  the carrier of F_Real
 
 Col ((TR,n,p,q),q) is   Relation-like   NAT  -defined   the carrier of F_Real -valued   Function-like  V36()  len (TR,n,p,q) -element   FinSequence-like   FinSubsequence-like   finite-support   Element of (len (TR,n,p,q)) -tuples_on  the carrier of F_Real
 
 len (TR,n,p,q) is   ordinal   natural  V11()  real   ext-real   non  negative  V36()  cardinal  V85() V86() V155() V156() V157() V158() V159() V160()  Element of  NAT 
 
(len (TR,n,p,q)) -tuples_on  the carrier of F_Real is   non  empty   functional   FinSequence-membered   FinSequenceSet of  the carrier of F_Real
 
(@ n1) "*" (Col ((TR,n,p,q),q)) is  V11()  real   ext-real   Element of  the carrier of F_Real
 
 mlt ((@ n1),(Col ((TR,n,p,q),q))) is   Relation-like   NAT  -defined   the carrier of F_Real -valued   Function-like  V36()  FinSequence-like   FinSubsequence-like   complex-yielding   ext-real-valued   real-valued   finite-support   FinSequence of  the carrier of F_Real
 
 the multF of F_Real is   non  empty   Relation-like  [: the carrier of F_Real, the carrier of F_Real:] -defined   the carrier of F_Real -valued   Function-like   total   quasi_total   complex-yielding   ext-real-valued   real-valued   associative  V287( the carrier of F_Real)  Element of  bool [:[: the carrier of F_Real, the carrier of F_Real:], the carrier of F_Real:]
 
[: the carrier of F_Real, the carrier of F_Real:] is   non  empty   Relation-like   complex-yielding   ext-real-valued   real-valued   set 
 
[:[: the carrier of F_Real, the carrier of F_Real:], the carrier of F_Real:] is   non  empty   Relation-like   complex-yielding   ext-real-valued   real-valued   set 
 
 bool [:[: the carrier of F_Real, the carrier of F_Real:], the carrier of F_Real:] is   non  empty   set 
 
K721( the carrier of F_Real, the carrier of F_Real, the carrier of F_Real, the multF of F_Real,(@ n1),(Col ((TR,n,p,q),q))) is   Relation-like   NAT  -defined   the carrier of F_Real -valued   Function-like  V36()  FinSequence-like   FinSubsequence-like   complex-yielding   ext-real-valued   real-valued   finite-support   FinSequence of  the carrier of F_Real
 
 Sum (mlt ((@ n1),(Col ((TR,n,p,q),q)))) is  V11()  real   ext-real   Element of  the carrier of F_Real
 
 the addF of F_Real is   non  empty   Relation-like  [: the carrier of F_Real, the carrier of F_Real:] -defined   the carrier of F_Real -valued   Function-like   total   quasi_total   complex-yielding   ext-real-valued   real-valued   Element of  bool [:[: the carrier of F_Real, the carrier of F_Real:], the carrier of F_Real:]
 
 the addF of F_Real "**" (mlt ((@ n1),(Col ((TR,n,p,q),q)))) is  V11()  real   ext-real   Element of  the carrier of F_Real
 
n is  V11()  real   ext-real   set 
 
 cos n is  V11()  real   ext-real   set 
 
 sin n is  V11()  real   ext-real   set 
 
 - (sin n) is  V11()  real   ext-real   set 
 
p is   ordinal   natural  V11()  real   ext-real   non  negative  V36()  cardinal  V85()  set 
 
p -' 1 is   ordinal   natural  V11()  real   ext-real   non  negative  V36()  cardinal  V85() V86() V155() V156() V157() V158() V159() V160()  Element of  NAT 
 
q is   ordinal   natural  V11()  real   ext-real   non  negative  V36()  cardinal  V85()  set 
 
q -' p is   ordinal   natural  V11()  real   ext-real   non  negative  V36()  cardinal  V85() V86() V155() V156() V157() V158() V159() V160()  Element of  NAT 
 
(q -' p) -' 1 is   ordinal   natural  V11()  real   ext-real   non  negative  V36()  cardinal  V85() V86() V155() V156() V157() V158() V159() V160()  Element of  NAT 
 
TR is   ordinal   natural  V11()  real   ext-real   non  negative  V36()  cardinal  V85()  set 
 
 TOP-REAL TR is   non  empty   TopSpace-like   right_complementable   constituted-Functions   constituted-FinSeqs  V189() V190() V191() V192() V193() V194() V195() V228() L16()
 
 the carrier of (TOP-REAL TR) is   non  empty   set 
 
(TR,n,p,q) is   Relation-like   NAT  -defined   the carrier of F_Real *  -valued   Function-like  V36()  FinSequence-like   FinSubsequence-like   FinSequence-yielding   finite-support   Function-yielding  V235()  tabular   invertible   Matrix of TR,TR, the carrier of F_Real
 
 Mx2Tran (TR,n,p,q) is   non  empty   Relation-like   the carrier of (TOP-REAL TR) -defined   the carrier of (TOP-REAL TR) -valued   Function-like   total   quasi_total   additive   FinSequence-yielding   homogeneous   Function-yielding  V235()  being_homeomorphism   Element of  bool [: the carrier of (TOP-REAL TR), the carrier of (TOP-REAL TR):]
 
[: the carrier of (TOP-REAL TR), the carrier of (TOP-REAL TR):] is   non  empty   Relation-like   set 
 
 bool [: the carrier of (TOP-REAL TR), the carrier of (TOP-REAL TR):] is   non  empty   set 
 
n1 is   Relation-like   NAT  -defined   Function-like  V36() TR -element   FinSequence-like   FinSubsequence-like   complex-yielding   ext-real-valued   real-valued   finite-support   Element of  the carrier of (TOP-REAL TR)
 
(Mx2Tran (TR,n,p,q)) . n1 is   Relation-like   NAT  -defined   Function-like  V36() TR -element   FinSequence-like   FinSubsequence-like   complex-yielding   ext-real-valued   real-valued   finite-support   Element of  the carrier of (TOP-REAL TR)
 
n1 | (p -' 1) is   Relation-like   NAT  -defined   Function-like  V36()  FinSequence-like   FinSubsequence-like   finite-support   set 
 
 Seg (p -' 1) is  V16() V36() p -' 1 -element  V155() V156() V157() V158() V159() V160()  Element of  bool NAT
 
 {  b1 where b1 is   ordinal   natural  V11()  real   ext-real   non  negative  V36()  cardinal  V85() V86() V155() V156() V157() V158() V159() V160()  Element of  NAT  : ( 1 <= b1 & b1 <= p -' 1 )  }   is    set 
 
n1 | (Seg (p -' 1)) is   Relation-like   NAT  -defined   Seg (p -' 1) -defined   NAT  -defined   Function-like  V36()  FinSubsequence-like   complex-yielding   ext-real-valued   real-valued   finite-support   set 
 
n1 . p is  V11()  real   ext-real   Element of  REAL 
 
(n1 . p) * (cos n) is  V11()  real   ext-real   Element of  REAL 
 
n1 . q is  V11()  real   ext-real   Element of  REAL 
 
(n1 . q) * (- (sin n)) is  V11()  real   ext-real   Element of  REAL 
 
((n1 . p) * (cos n)) + ((n1 . q) * (- (sin n))) is  V11()  real   ext-real   Element of  REAL 
 
<*(((n1 . p) * (cos n)) + ((n1 . q) * (- (sin n))))*> is   non  empty   trivial   Relation-like   NAT  -defined   REAL  -valued   Function-like   one-to-one   constant  V36() 1 -element   FinSequence-like   FinSubsequence-like   complex-yielding   ext-real-valued   real-valued  V149()  decreasing   non-decreasing   non-increasing   finite-support   Element of 1 -tuples_on REAL
 
1 -tuples_on REAL is   non  empty   functional   FinSequence-membered   FinSequenceSet of  REAL 
 
[1,(((n1 . p) * (cos n)) + ((n1 . q) * (- (sin n))))] is    set 
 
{1,(((n1 . p) * (cos n)) + ((n1 . q) * (- (sin n))))} is   non  empty  V36() V155() V156() V157()  set 
 
{{1,(((n1 . p) * (cos n)) + ((n1 . q) * (- (sin n))))},{1}} is   non  empty  V36() V40()  set 
 
{[1,(((n1 . p) * (cos n)) + ((n1 . q) * (- (sin n))))]} is   non  empty   trivial   Relation-like   Function-like   constant  V36() 1 -element   finite-support   set 
 
(n1 | (p -' 1)) ^ <*(((n1 . p) * (cos n)) + ((n1 . q) * (- (sin n))))*> is   non  empty   Relation-like   NAT  -defined   Function-like  V36()  FinSequence-like   FinSubsequence-like   finite-support   set 
 
n1 /^ p is   Relation-like   NAT  -defined   Function-like  V36()  FinSequence-like   FinSubsequence-like   finite-support   set 
 
(n1 /^ p) | ((q -' p) -' 1) is   Relation-like   NAT  -defined   Function-like  V36()  FinSequence-like   FinSubsequence-like   finite-support   set 
 
 Seg ((q -' p) -' 1) is  V16() V36() (q -' p) -' 1 -element  V155() V156() V157() V158() V159() V160()  Element of  bool NAT
 
 {  b1 where b1 is   ordinal   natural  V11()  real   ext-real   non  negative  V36()  cardinal  V85() V86() V155() V156() V157() V158() V159() V160()  Element of  NAT  : ( 1 <= b1 & b1 <= (q -' p) -' 1 )  }   is    set 
 
(n1 /^ p) | (Seg ((q -' p) -' 1)) is   Relation-like   NAT  -defined   Seg ((q -' p) -' 1) -defined   NAT  -defined   Function-like  V36()  FinSubsequence-like   finite-support   set 
 
((n1 | (p -' 1)) ^ <*(((n1 . p) * (cos n)) + ((n1 . q) * (- (sin n))))*>) ^ ((n1 /^ p) | ((q -' p) -' 1)) is   non  empty   Relation-like   NAT  -defined   Function-like  V36()  FinSequence-like   FinSubsequence-like   finite-support   set 
 
(n1 . p) * (sin n) is  V11()  real   ext-real   Element of  REAL 
 
(n1 . q) * (cos n) is  V11()  real   ext-real   Element of  REAL 
 
((n1 . p) * (sin n)) + ((n1 . q) * (cos n)) is  V11()  real   ext-real   Element of  REAL 
 
<*(((n1 . p) * (sin n)) + ((n1 . q) * (cos n)))*> is   non  empty   trivial   Relation-like   NAT  -defined   REAL  -valued   Function-like   one-to-one   constant  V36() 1 -element   FinSequence-like   FinSubsequence-like   complex-yielding   ext-real-valued   real-valued  V149()  decreasing   non-decreasing   non-increasing   finite-support   Element of 1 -tuples_on REAL
 
[1,(((n1 . p) * (sin n)) + ((n1 . q) * (cos n)))] is    set 
 
{1,(((n1 . p) * (sin n)) + ((n1 . q) * (cos n)))} is   non  empty  V36() V155() V156() V157()  set 
 
{{1,(((n1 . p) * (sin n)) + ((n1 . q) * (cos n)))},{1}} is   non  empty  V36() V40()  set 
 
{[1,(((n1 . p) * (sin n)) + ((n1 . q) * (cos n)))]} is   non  empty   trivial   Relation-like   Function-like   constant  V36() 1 -element   finite-support   set 
 
(((n1 | (p -' 1)) ^ <*(((n1 . p) * (cos n)) + ((n1 . q) * (- (sin n))))*>) ^ ((n1 /^ p) | ((q -' p) -' 1))) ^ <*(((n1 . p) * (sin n)) + ((n1 . q) * (cos n)))*> is   non  empty   Relation-like   NAT  -defined   Function-like  V36()  FinSequence-like   FinSubsequence-like   finite-support   set 
 
n1 /^ q is   Relation-like   NAT  -defined   Function-like  V36()  FinSequence-like   FinSubsequence-like   finite-support   set 
 
((((n1 | (p -' 1)) ^ <*(((n1 . p) * (cos n)) + ((n1 . q) * (- (sin n))))*>) ^ ((n1 /^ p) | ((q -' p) -' 1))) ^ <*(((n1 . p) * (sin n)) + ((n1 . q) * (cos n)))*>) ^ (n1 /^ q) is   non  empty   Relation-like   NAT  -defined   Function-like  V36()  FinSequence-like   FinSubsequence-like   finite-support   set 
 
(p -' 1) + 1 is   non  empty   ordinal   natural  V11()  real   ext-real   positive   non  negative  V36()  cardinal  V85() V86() V155() V156() V157() V158() V159() V160()  Element of  NAT 
 
p - 1 is  V11()  real   ext-real  V85()  Element of  REAL 
 
p + (- 1) is  V11()  real   ext-real  V85()  set 
 
z is   ordinal   natural  V11()  real   ext-real   non  negative  V36()  cardinal  V85()  set 
 
((Mx2Tran (TR,n,p,q)) . n1) | (p -' 1) is   Relation-like   NAT  -defined   Function-like  V36()  FinSequence-like   FinSubsequence-like   finite-support   set 
 
((Mx2Tran (TR,n,p,q)) . n1) | (Seg (p -' 1)) is   Relation-like   NAT  -defined   Seg (p -' 1) -defined   NAT  -defined   Function-like  V36()  FinSubsequence-like   complex-yielding   ext-real-valued   real-valued   finite-support   set 
 
(((Mx2Tran (TR,n,p,q)) . n1) | (p -' 1)) . z is    set 
 
((Mx2Tran (TR,n,p,q)) . n1) . z is  V11()  real   ext-real   Element of  REAL 
 
(n1 | (p -' 1)) . z is    set 
 
n1 . z is  V11()  real   ext-real   Element of  REAL 
 
 len ((Mx2Tran (TR,n,p,q)) . n1) is   ordinal   natural  V11()  real   ext-real   non  negative  V36()  cardinal  V85() V86() V155() V156() V157() V158() V159() V160()  Element of  NAT 
 
 len (((Mx2Tran (TR,n,p,q)) . n1) | (p -' 1)) is   ordinal   natural  V11()  real   ext-real   non  negative  V36()  cardinal  V85() V86() V155() V156() V157() V158() V159() V160()  Element of  NAT 
 
 len n1 is   ordinal   natural  V11()  real   ext-real   non  negative  V36()  cardinal  V85() V86() V155() V156() V157() V158() V159() V160()  Element of  NAT 
 
 len (n1 /^ p) is   ordinal   natural  V11()  real   ext-real   non  negative  V36()  cardinal  V85() V86() V155() V156() V157() V158() V159() V160()  Element of  NAT 
 
TR - p is  V11()  real   ext-real  V85()  set 
 
 - p is  V11()  real   ext-real   non  positive  V85()  set 
 
TR + (- p) is  V11()  real   ext-real  V85()  set 
 
q - p is  V11()  real   ext-real  V85()  set 
 
q + (- p) is  V11()  real   ext-real  V85()  set 
 
((q -' p) -' 1) + 1 is   non  empty   ordinal   natural  V11()  real   ext-real   positive   non  negative  V36()  cardinal  V85() V86() V155() V156() V157() V158() V159() V160()  Element of  NAT 
 
p - p is  V11()  real   ext-real  V85()  set 
 
p + (- p) is  V11()  real   ext-real  V85()  set 
 
(q -' p) - 1 is  V11()  real   ext-real  V85()  Element of  REAL 
 
(q -' p) + (- 1) is  V11()  real   ext-real  V85()  set 
 
 len (n1 /^ q) is   ordinal   natural  V11()  real   ext-real   non  negative  V36()  cardinal  V85() V86() V155() V156() V157() V158() V159() V160()  Element of  NAT 
 
TR - q is  V11()  real   ext-real  V85()  set 
 
 - q is  V11()  real   ext-real   non  positive  V85()  set 
 
TR + (- q) is  V11()  real   ext-real  V85()  set 
 
((Mx2Tran (TR,n,p,q)) . n1) /^ p is   Relation-like   NAT  -defined   Function-like  V36()  FinSequence-like   FinSubsequence-like   finite-support   set 
 
 len (((Mx2Tran (TR,n,p,q)) . n1) /^ p) is   ordinal   natural  V11()  real   ext-real   non  negative  V36()  cardinal  V85() V86() V155() V156() V157() V158() V159() V160()  Element of  NAT 
 
(((Mx2Tran (TR,n,p,q)) . n1) /^ p) | ((q -' p) -' 1) is   Relation-like   NAT  -defined   Function-like  V36()  FinSequence-like   FinSubsequence-like   finite-support   set 
 
(((Mx2Tran (TR,n,p,q)) . n1) /^ p) | (Seg ((q -' p) -' 1)) is   Relation-like   NAT  -defined   Seg ((q -' p) -' 1) -defined   NAT  -defined   Function-like  V36()  FinSubsequence-like   finite-support   set 
 
 len ((((Mx2Tran (TR,n,p,q)) . n1) /^ p) | ((q -' p) -' 1)) is   ordinal   natural  V11()  real   ext-real   non  negative  V36()  cardinal  V85() V86() V155() V156() V157() V158() V159() V160()  Element of  NAT 
 
z is   ordinal   natural  V11()  real   ext-real   non  negative  V36()  cardinal  V85()  set 
 
((n1 /^ p) | ((q -' p) -' 1)) . z is    set 
 
(n1 /^ p) . z is    set 
 
 dom (((Mx2Tran (TR,n,p,q)) . n1) /^ p) is  V36() V155() V156() V157() V158() V159() V160()  Element of  bool NAT
 
(((Mx2Tran (TR,n,p,q)) . n1) /^ p) . z is    set 
 
p + z is   ordinal   natural  V11()  real   ext-real   non  negative  V36()  cardinal  V85()  set 
 
((Mx2Tran (TR,n,p,q)) . n1) . (p + z) is  V11()  real   ext-real   Element of  REAL 
 
p + (q -' p) is   ordinal   natural  V11()  real   ext-real   non  negative  V36()  cardinal  V85() V86() V155() V156() V157() V158() V159() V160()  Element of  NAT 
 
 dom (n1 /^ p) is  V36() V155() V156() V157() V158() V159() V160()  Element of  bool NAT
 
n1 . (p + z) is  V11()  real   ext-real   Element of  REAL 
 
z + p is   ordinal   natural  V11()  real   ext-real   non  negative  V36()  cardinal  V85()  set 
 
((((Mx2Tran (TR,n,p,q)) . n1) /^ p) | ((q -' p) -' 1)) . z is    set 
 
 len ((n1 /^ p) | ((q -' p) -' 1)) is   ordinal   natural  V11()  real   ext-real   non  negative  V36()  cardinal  V85() V86() V155() V156() V157() V158() V159() V160()  Element of  NAT 
 
((Mx2Tran (TR,n,p,q)) . n1) /^ q is   Relation-like   NAT  -defined   Function-like  V36()  FinSequence-like   FinSubsequence-like   finite-support   set 
 
 len (((Mx2Tran (TR,n,p,q)) . n1) /^ q) is   ordinal   natural  V11()  real   ext-real   non  negative  V36()  cardinal  V85() V86() V155() V156() V157() V158() V159() V160()  Element of  NAT 
 
z is   ordinal   natural  V11()  real   ext-real   non  negative  V36()  cardinal  V85()  set 
 
 dom (((Mx2Tran (TR,n,p,q)) . n1) /^ q) is  V36() V155() V156() V157() V158() V159() V160()  Element of  bool NAT
 
(((Mx2Tran (TR,n,p,q)) . n1) /^ q) . z is    set 
 
q + z is   ordinal   natural  V11()  real   ext-real   non  negative  V36()  cardinal  V85()  set 
 
((Mx2Tran (TR,n,p,q)) . n1) . (q + z) is  V11()  real   ext-real   Element of  REAL 
 
 dom (n1 /^ q) is  V36() V155() V156() V157() V158() V159() V160()  Element of  bool NAT
 
(n1 /^ q) . z is    set 
 
n1 . (q + z) is  V11()  real   ext-real   Element of  REAL 
 
 len (n1 | (p -' 1)) is   ordinal   natural  V11()  real   ext-real   non  negative  V36()  cardinal  V85() V86() V155() V156() V157() V158() V159() V160()  Element of  NAT 
 
((Mx2Tran (TR,n,p,q)) . n1) . p is  V11()  real   ext-real   Element of  REAL 
 
 @ ((Mx2Tran (TR,n,p,q)) . n1) is   Relation-like   NAT  -defined   the carrier of F_Real -valued   Function-like  V36()  FinSequence-like   FinSubsequence-like   complex-yielding   ext-real-valued   real-valued   finite-support   FinSequence of  the carrier of F_Real
 
 @ (@ ((Mx2Tran (TR,n,p,q)) . n1)) is   Relation-like   NAT  -defined   REAL  -valued   Function-like  V36()  FinSequence-like   FinSubsequence-like   complex-yielding   ext-real-valued   real-valued   finite-support   FinSequence of  REAL 
 
<*(((Mx2Tran (TR,n,p,q)) . n1) . p)*> is   non  empty   trivial   Relation-like   NAT  -defined   REAL  -valued   Function-like   one-to-one   constant  V36() 1 -element   FinSequence-like   FinSubsequence-like   complex-yielding   ext-real-valued   real-valued  V149()  decreasing   non-decreasing   non-increasing   finite-support   Element of 1 -tuples_on REAL
 
[1,(((Mx2Tran (TR,n,p,q)) . n1) . p)] is    set 
 
{1,(((Mx2Tran (TR,n,p,q)) . n1) . p)} is   non  empty  V36() V155() V156() V157()  set 
 
{{1,(((Mx2Tran (TR,n,p,q)) . n1) . p)},{1}} is   non  empty  V36() V40()  set 
 
{[1,(((Mx2Tran (TR,n,p,q)) . n1) . p)]} is   non  empty   trivial   Relation-like   Function-like   constant  V36() 1 -element   finite-support   set 
 
(((Mx2Tran (TR,n,p,q)) . n1) | (p -' 1)) ^ <*(((Mx2Tran (TR,n,p,q)) . n1) . p)*> is   non  empty   Relation-like   NAT  -defined   Function-like  V36()  FinSequence-like   FinSubsequence-like   finite-support   set 
 
((((Mx2Tran (TR,n,p,q)) . n1) | (p -' 1)) ^ <*(((Mx2Tran (TR,n,p,q)) . n1) . p)*>) ^ ((((Mx2Tran (TR,n,p,q)) . n1) /^ p) | ((q -' p) -' 1)) is   non  empty   Relation-like   NAT  -defined   Function-like  V36()  FinSequence-like   FinSubsequence-like   finite-support   set 
 
((Mx2Tran (TR,n,p,q)) . n1) . q is  V11()  real   ext-real   Element of  REAL 
 
<*(((Mx2Tran (TR,n,p,q)) . n1) . q)*> is   non  empty   trivial   Relation-like   NAT  -defined   REAL  -valued   Function-like   one-to-one   constant  V36() 1 -element   FinSequence-like   FinSubsequence-like   complex-yielding   ext-real-valued   real-valued  V149()  decreasing   non-decreasing   non-increasing   finite-support   Element of 1 -tuples_on REAL
 
[1,(((Mx2Tran (TR,n,p,q)) . n1) . q)] is    set 
 
{1,(((Mx2Tran (TR,n,p,q)) . n1) . q)} is   non  empty  V36() V155() V156() V157()  set 
 
{{1,(((Mx2Tran (TR,n,p,q)) . n1) . q)},{1}} is   non  empty  V36() V40()  set 
 
{[1,(((Mx2Tran (TR,n,p,q)) . n1) . q)]} is   non  empty   trivial   Relation-like   Function-like   constant  V36() 1 -element   finite-support   set 
 
(((((Mx2Tran (TR,n,p,q)) . n1) | (p -' 1)) ^ <*(((Mx2Tran (TR,n,p,q)) . n1) . p)*>) ^ ((((Mx2Tran (TR,n,p,q)) . n1) /^ p) | ((q -' p) -' 1))) ^ <*(((Mx2Tran (TR,n,p,q)) . n1) . q)*> is   non  empty   Relation-like   NAT  -defined   Function-like  V36()  FinSequence-like   FinSubsequence-like   finite-support   set 
 
((((((Mx2Tran (TR,n,p,q)) . n1) | (p -' 1)) ^ <*(((Mx2Tran (TR,n,p,q)) . n1) . p)*>) ^ ((((Mx2Tran (TR,n,p,q)) . n1) /^ p) | ((q -' p) -' 1))) ^ <*(((Mx2Tran (TR,n,p,q)) . n1) . q)*>) ^ (((Mx2Tran (TR,n,p,q)) . n1) /^ q) is   non  empty   Relation-like   NAT  -defined   Function-like  V36()  FinSequence-like   FinSubsequence-like   finite-support   set 
 
n is  V11()  real   ext-real   set 
 
n ^2  is  V11()  real   ext-real   set 
 
n * n is  V11()  real   ext-real   set 
 
p is   ordinal   natural  V11()  real   ext-real   non  negative  V36()  cardinal  V85()  set 
 
q is   ordinal   natural  V11()  real   ext-real   non  negative  V36()  cardinal  V85()  set 
 
TR is   ordinal   natural  V11()  real   ext-real   non  negative  V36()  cardinal  V85()  set 
 
 TOP-REAL TR is   non  empty   TopSpace-like   right_complementable   constituted-Functions   constituted-FinSeqs  V189() V190() V191() V192() V193() V194() V195() V228() L16()
 
 the carrier of (TOP-REAL TR) is   non  empty   set 
 
n1 is   Relation-like   NAT  -defined   Function-like  V36() TR -element   FinSequence-like   FinSubsequence-like   complex-yielding   ext-real-valued   real-valued   finite-support   Element of  the carrier of (TOP-REAL TR)
 
n1 . p is  V11()  real   ext-real   Element of  REAL 
 
(n1 . p) ^2  is  V11()  real   ext-real   Element of  REAL 
 
(n1 . p) * (n1 . p) is  V11()  real   ext-real   set 
 
n1 . q is  V11()  real   ext-real   Element of  REAL 
 
(n1 . q) ^2  is  V11()  real   ext-real   Element of  REAL 
 
(n1 . q) * (n1 . q) is  V11()  real   ext-real   set 
 
((n1 . p) ^2) + ((n1 . q) ^2) is  V11()  real   ext-real   Element of  REAL 
 
 sqrt (((n1 . p) ^2) + ((n1 . q) ^2)) is  V11()  real   ext-real   Element of  REAL 
 
(n1 . p) * (n1 . p) is  V11()  real   ext-real   Element of  REAL 
 
(n1 . q) * (n1 . q) is  V11()  real   ext-real   Element of  REAL 
 
n / (sqrt (((n1 . p) ^2) + ((n1 . q) ^2))) is  V11()  real   ext-real   Element of  REAL 
 
(sqrt (((n1 . p) ^2) + ((n1 . q) ^2))) "  is  V11()  real   ext-real   set 
 
n * ((sqrt (((n1 . p) ^2) + ((n1 . q) ^2))) ") is  V11()  real   ext-real   set 
 
(n / (sqrt (((n1 . p) ^2) + ((n1 . q) ^2)))) * (sqrt (((n1 . p) ^2) + ((n1 . q) ^2))) is  V11()  real   ext-real   Element of  REAL 
 
((n1 . p) ^2) + {} is  V11()  real   ext-real   Element of  REAL 
 
 sqrt ((n1 . p) ^2) is  V11()  real   ext-real   Element of  REAL 
 
(n1 . p) / (sqrt (((n1 . p) ^2) + ((n1 . q) ^2))) is  V11()  real   ext-real   Element of  REAL 
 
(n1 . p) * ((sqrt (((n1 . p) ^2) + ((n1 . q) ^2))) ") is  V11()  real   ext-real   set 
 
 - (n1 . p) is  V11()  real   ext-real   Element of  REAL 
 
(n1 . p) / (sqrt (((n1 . p) ^2) + ((n1 . q) ^2))) is  V11()  real   ext-real   Element of  REAL 
 
(n1 . p) * ((sqrt (((n1 . p) ^2) + ((n1 . q) ^2))) ") is  V11()  real   ext-real   set 
 
(n1 . p) / (sqrt (((n1 . p) ^2) + ((n1 . q) ^2))) is  V11()  real   ext-real   Element of  REAL 
 
(n1 . p) * ((sqrt (((n1 . p) ^2) + ((n1 . q) ^2))) ") is  V11()  real   ext-real   set 
 
(n1 . p) / (sqrt (((n1 . p) ^2) + ((n1 . q) ^2))) is  V11()  real   ext-real   Element of  REAL 
 
(n1 . p) * ((sqrt (((n1 . p) ^2) + ((n1 . q) ^2))) ") is  V11()  real   ext-real   set 
 
 dom sin is   non  empty   set 
 
z is    set 
 
sin . z is  V11()  real   ext-real   Element of  REAL 
 
(sqrt (((n1 . p) ^2) + ((n1 . q) ^2))) * (sqrt (((n1 . p) ^2) + ((n1 . q) ^2))) is  V11()  real   ext-real   Element of  REAL 
 
(sqrt (((n1 . p) ^2) + ((n1 . q) ^2))) ^2  is  V11()  real   ext-real   Element of  REAL 
 
(sqrt (((n1 . p) ^2) + ((n1 . q) ^2))) * (sqrt (((n1 . p) ^2) + ((n1 . q) ^2))) is  V11()  real   ext-real   set 
 
 sqrt (n ^2) is  V11()  real   ext-real   set 
 
 - n is  V11()  real   ext-real   set 
 
fpz is    set 
 
sin . fpz is  V11()  real   ext-real   Element of  REAL 
 
(sqrt (((n1 . p) ^2) + ((n1 . q) ^2))) * (n1 . p) is  V11()  real   ext-real   Element of  REAL 
 
((sqrt (((n1 . p) ^2) + ((n1 . q) ^2))) * (n1 . p)) / (sqrt (((n1 . p) ^2) + ((n1 . q) ^2))) is  V11()  real   ext-real   Element of  REAL 
 
((sqrt (((n1 . p) ^2) + ((n1 . q) ^2))) * (n1 . p)) * ((sqrt (((n1 . p) ^2) + ((n1 . q) ^2))) ") is  V11()  real   ext-real   set 
 
sq is  V11()  real   ext-real   Element of  REAL 
 
sin . sq is  V11()  real   ext-real   Element of  REAL 
 
 sin sq is  V11()  real   ext-real   Element of  REAL 
 
((n1 . p) / (sqrt (((n1 . p) ^2) + ((n1 . q) ^2)))) * ((n1 . p) / (sqrt (((n1 . p) ^2) + ((n1 . q) ^2)))) is  V11()  real   ext-real   Element of  REAL 
 
((n1 . p) * (n1 . p)) / (((n1 . p) ^2) + ((n1 . q) ^2)) is  V11()  real   ext-real   Element of  REAL 
 
(((n1 . p) ^2) + ((n1 . q) ^2)) "  is  V11()  real   ext-real   set 
 
((n1 . p) * (n1 . p)) * ((((n1 . p) ^2) + ((n1 . q) ^2)) ") is  V11()  real   ext-real   set 
 
 cos sq is  V11()  real   ext-real   Element of  REAL 
 
(cos sq) * (cos sq) is  V11()  real   ext-real   Element of  REAL 
 
((cos sq) * (cos sq)) + (((n1 . p) * (n1 . p)) / (((n1 . p) ^2) + ((n1 . q) ^2))) is  V11()  real   ext-real   Element of  REAL 
 
1 - (((n1 . p) * (n1 . p)) / (((n1 . p) ^2) + ((n1 . q) ^2))) is  V11()  real   ext-real   Element of  REAL 
 
 - (((n1 . p) * (n1 . p)) / (((n1 . p) ^2) + ((n1 . q) ^2))) is  V11()  real   ext-real   set 
 
1 + (- (((n1 . p) * (n1 . p)) / (((n1 . p) ^2) + ((n1 . q) ^2)))) is  V11()  real   ext-real   set 
 
(((n1 . p) ^2) + ((n1 . q) ^2)) / (((n1 . p) ^2) + ((n1 . q) ^2)) is  V11()  real   ext-real   Element of  REAL 
 
(((n1 . p) ^2) + ((n1 . q) ^2)) * ((((n1 . p) ^2) + ((n1 . q) ^2)) ") is  V11()  real   ext-real   set 
 
((((n1 . p) ^2) + ((n1 . q) ^2)) / (((n1 . p) ^2) + ((n1 . q) ^2))) - (((n1 . p) * (n1 . p)) / (((n1 . p) ^2) + ((n1 . q) ^2))) is  V11()  real   ext-real   Element of  REAL 
 
((((n1 . p) ^2) + ((n1 . q) ^2)) / (((n1 . p) ^2) + ((n1 . q) ^2))) + (- (((n1 . p) * (n1 . p)) / (((n1 . p) ^2) + ((n1 . q) ^2)))) is  V11()  real   ext-real   set 
 
((n1 . q) * (n1 . q)) / (((n1 . p) ^2) + ((n1 . q) ^2)) is  V11()  real   ext-real   Element of  REAL 
 
((n1 . q) * (n1 . q)) * ((((n1 . p) ^2) + ((n1 . q) ^2)) ") is  V11()  real   ext-real   set 
 
(n1 . q) / (sqrt (((n1 . p) ^2) + ((n1 . q) ^2))) is  V11()  real   ext-real   Element of  REAL 
 
(n1 . q) * ((sqrt (((n1 . p) ^2) + ((n1 . q) ^2))) ") is  V11()  real   ext-real   set 
 
((n1 . q) / (sqrt (((n1 . p) ^2) + ((n1 . q) ^2)))) ^2  is  V11()  real   ext-real   Element of  REAL 
 
((n1 . q) / (sqrt (((n1 . p) ^2) + ((n1 . q) ^2)))) * ((n1 . q) / (sqrt (((n1 . p) ^2) + ((n1 . q) ^2)))) is  V11()  real   ext-real   set 
 
(cos sq) ^2  is  V11()  real   ext-real   Element of  REAL 
 
(cos sq) * (cos sq) is  V11()  real   ext-real   set 
 
h is  V11()  real   ext-real   Element of  REAL 
 
sq - h is  V11()  real   ext-real   Element of  REAL 
 
 - h is  V11()  real   ext-real   set 
 
sq + (- h) is  V11()  real   ext-real   set 
 
z is  V11()  real   ext-real   Element of  REAL 
 
(TR,z,p,q) is   Relation-like   NAT  -defined   the carrier of F_Real *  -valued   Function-like  V36()  FinSequence-like   FinSubsequence-like   FinSequence-yielding   finite-support   Function-yielding  V235()  tabular   invertible   Matrix of TR,TR, the carrier of F_Real
 
 Mx2Tran (TR,z,p,q) is   non  empty   Relation-like   the carrier of (TOP-REAL TR) -defined   the carrier of (TOP-REAL TR) -valued   Function-like   total   quasi_total   additive   FinSequence-yielding   homogeneous   Function-yielding  V235()  being_homeomorphism   Element of  bool [: the carrier of (TOP-REAL TR), the carrier of (TOP-REAL TR):]
 
[: the carrier of (TOP-REAL TR), the carrier of (TOP-REAL TR):] is   non  empty   Relation-like   set 
 
 bool [: the carrier of (TOP-REAL TR), the carrier of (TOP-REAL TR):] is   non  empty   set 
 
(Mx2Tran (TR,z,p,q)) . n1 is   Relation-like   NAT  -defined   Function-like  V36() TR -element   FinSequence-like   FinSubsequence-like   complex-yielding   ext-real-valued   real-valued   finite-support   Element of  the carrier of (TOP-REAL TR)
 
((Mx2Tran (TR,z,p,q)) . n1) . p is  V11()  real   ext-real   Element of  REAL 
 
 sin h is  V11()  real   ext-real   Element of  REAL 
 
 - (sin h) is  V11()  real   ext-real   Element of  REAL 
 
 - sq is  V11()  real   ext-real   Element of  REAL 
 
(- sq) + z is  V11()  real   ext-real   Element of  REAL 
 
 sin ((- sq) + z) is  V11()  real   ext-real   Element of  REAL 
 
 sin (- sq) is  V11()  real   ext-real   Element of  REAL 
 
 cos z is  V11()  real   ext-real   Element of  REAL 
 
(sin (- sq)) * (cos z) is  V11()  real   ext-real   Element of  REAL 
 
 cos (- sq) is  V11()  real   ext-real   Element of  REAL 
 
 sin z is  V11()  real   ext-real   Element of  REAL 
 
(cos (- sq)) * (sin z) is  V11()  real   ext-real   Element of  REAL 
 
((sin (- sq)) * (cos z)) + ((cos (- sq)) * (sin z)) is  V11()  real   ext-real   Element of  REAL 
 
 - (sin sq) is  V11()  real   ext-real   Element of  REAL 
 
(- (sin sq)) * (cos z) is  V11()  real   ext-real   Element of  REAL 
 
((- (sin sq)) * (cos z)) + ((cos (- sq)) * (sin z)) is  V11()  real   ext-real   Element of  REAL 
 
(sin sq) * (cos z) is  V11()  real   ext-real   Element of  REAL 
 
 - ((sin sq) * (cos z)) is  V11()  real   ext-real   Element of  REAL 
 
(cos sq) * (sin z) is  V11()  real   ext-real   Element of  REAL 
 
(- ((sin sq) * (cos z))) + ((cos sq) * (sin z)) is  V11()  real   ext-real   Element of  REAL 
 
 - (sin z) is  V11()  real   ext-real   Element of  REAL 
 
(cos sq) * (- (sin z)) is  V11()  real   ext-real   Element of  REAL 
 
 - ((cos sq) * (- (sin z))) is  V11()  real   ext-real   Element of  REAL 
 
(- ((sin sq) * (cos z))) + (- ((cos sq) * (- (sin z)))) is  V11()  real   ext-real   Element of  REAL 
 
((sin sq) * (cos z)) + ((cos sq) * (- (sin z))) is  V11()  real   ext-real   Element of  REAL 
 
((n1 . p) / (sqrt (((n1 . p) ^2) + ((n1 . q) ^2)))) * (cos z) is  V11()  real   ext-real   Element of  REAL 
 
((n1 . q) / (sqrt (((n1 . p) ^2) + ((n1 . q) ^2)))) * (- (sin z)) is  V11()  real   ext-real   Element of  REAL 
 
(((n1 . p) / (sqrt (((n1 . p) ^2) + ((n1 . q) ^2)))) * (cos z)) + (((n1 . q) / (sqrt (((n1 . p) ^2) + ((n1 . q) ^2)))) * (- (sin z))) is  V11()  real   ext-real   Element of  REAL 
 
(sqrt (((n1 . p) ^2) + ((n1 . q) ^2))) * ((((n1 . p) / (sqrt (((n1 . p) ^2) + ((n1 . q) ^2)))) * (cos z)) + (((n1 . q) / (sqrt (((n1 . p) ^2) + ((n1 . q) ^2)))) * (- (sin z)))) is  V11()  real   ext-real   Element of  REAL 
 
(((sqrt (((n1 . p) ^2) + ((n1 . q) ^2))) * (n1 . p)) / (sqrt (((n1 . p) ^2) + ((n1 . q) ^2)))) * (cos z) is  V11()  real   ext-real   Element of  REAL 
 
(sqrt (((n1 . p) ^2) + ((n1 . q) ^2))) * (n1 . q) is  V11()  real   ext-real   Element of  REAL 
 
((sqrt (((n1 . p) ^2) + ((n1 . q) ^2))) * (n1 . q)) / (sqrt (((n1 . p) ^2) + ((n1 . q) ^2))) is  V11()  real   ext-real   Element of  REAL 
 
((sqrt (((n1 . p) ^2) + ((n1 . q) ^2))) * (n1 . q)) * ((sqrt (((n1 . p) ^2) + ((n1 . q) ^2))) ") is  V11()  real   ext-real   set 
 
(((sqrt (((n1 . p) ^2) + ((n1 . q) ^2))) * (n1 . q)) / (sqrt (((n1 . p) ^2) + ((n1 . q) ^2)))) * (- (sin z)) is  V11()  real   ext-real   Element of  REAL 
 
((((sqrt (((n1 . p) ^2) + ((n1 . q) ^2))) * (n1 . p)) / (sqrt (((n1 . p) ^2) + ((n1 . q) ^2)))) * (cos z)) + ((((sqrt (((n1 . p) ^2) + ((n1 . q) ^2))) * (n1 . q)) / (sqrt (((n1 . p) ^2) + ((n1 . q) ^2)))) * (- (sin z))) is  V11()  real   ext-real   Element of  REAL 
 
(n1 . p) * (cos z) is  V11()  real   ext-real   Element of  REAL 
 
(n1 . q) * (- (sin z)) is  V11()  real   ext-real   Element of  REAL 
 
((n1 . p) * (cos z)) + ((n1 . q) * (- (sin z))) is  V11()  real   ext-real   Element of  REAL 
 
 - ((n1 . q) / (sqrt (((n1 . p) ^2) + ((n1 . q) ^2)))) is  V11()  real   ext-real   Element of  REAL 
 
h is  V11()  real   ext-real   Element of  REAL 
 
h - sq is  V11()  real   ext-real   Element of  REAL 
 
 - sq is  V11()  real   ext-real   set 
 
h + (- sq) is  V11()  real   ext-real   set 
 
z is  V11()  real   ext-real   Element of  REAL 
 
(TR,z,p,q) is   Relation-like   NAT  -defined   the carrier of F_Real *  -valued   Function-like  V36()  FinSequence-like   FinSubsequence-like   FinSequence-yielding   finite-support   Function-yielding  V235()  tabular   invertible   Matrix of TR,TR, the carrier of F_Real
 
 Mx2Tran (TR,z,p,q) is   non  empty   Relation-like   the carrier of (TOP-REAL TR) -defined   the carrier of (TOP-REAL TR) -valued   Function-like   total   quasi_total   additive   FinSequence-yielding   homogeneous   Function-yielding  V235()  being_homeomorphism   Element of  bool [: the carrier of (TOP-REAL TR), the carrier of (TOP-REAL TR):]
 
[: the carrier of (TOP-REAL TR), the carrier of (TOP-REAL TR):] is   non  empty   Relation-like   set 
 
 bool [: the carrier of (TOP-REAL TR), the carrier of (TOP-REAL TR):] is   non  empty   set 
 
(Mx2Tran (TR,z,p,q)) . n1 is   Relation-like   NAT  -defined   Function-like  V36() TR -element   FinSequence-like   FinSubsequence-like   complex-yielding   ext-real-valued   real-valued   finite-support   Element of  the carrier of (TOP-REAL TR)
 
((Mx2Tran (TR,z,p,q)) . n1) . p is  V11()  real   ext-real   Element of  REAL 
 
 sin h is  V11()  real   ext-real   Element of  REAL 
 
sq + z is  V11()  real   ext-real   Element of  REAL 
 
 sin (sq + z) is  V11()  real   ext-real   Element of  REAL 
 
 cos z is  V11()  real   ext-real   Element of  REAL 
 
(sin sq) * (cos z) is  V11()  real   ext-real   Element of  REAL 
 
 sin z is  V11()  real   ext-real   Element of  REAL 
 
(cos sq) * (sin z) is  V11()  real   ext-real   Element of  REAL 
 
((sin sq) * (cos z)) + ((cos sq) * (sin z)) is  V11()  real   ext-real   Element of  REAL 
 
((n1 . p) / (sqrt (((n1 . p) ^2) + ((n1 . q) ^2)))) * (cos z) is  V11()  real   ext-real   Element of  REAL 
 
 - (sin z) is  V11()  real   ext-real   Element of  REAL 
 
((n1 . q) / (sqrt (((n1 . p) ^2) + ((n1 . q) ^2)))) * (- (sin z)) is  V11()  real   ext-real   Element of  REAL 
 
(((n1 . p) / (sqrt (((n1 . p) ^2) + ((n1 . q) ^2)))) * (cos z)) + (((n1 . q) / (sqrt (((n1 . p) ^2) + ((n1 . q) ^2)))) * (- (sin z))) is  V11()  real   ext-real   Element of  REAL 
 
(sqrt (((n1 . p) ^2) + ((n1 . q) ^2))) * ((((n1 . p) / (sqrt (((n1 . p) ^2) + ((n1 . q) ^2)))) * (cos z)) + (((n1 . q) / (sqrt (((n1 . p) ^2) + ((n1 . q) ^2)))) * (- (sin z)))) is  V11()  real   ext-real   Element of  REAL 
 
(((sqrt (((n1 . p) ^2) + ((n1 . q) ^2))) * (n1 . p)) / (sqrt (((n1 . p) ^2) + ((n1 . q) ^2)))) * (cos z) is  V11()  real   ext-real   Element of  REAL 
 
(sqrt (((n1 . p) ^2) + ((n1 . q) ^2))) * (n1 . q) is  V11()  real   ext-real   Element of  REAL 
 
((sqrt (((n1 . p) ^2) + ((n1 . q) ^2))) * (n1 . q)) / (sqrt (((n1 . p) ^2) + ((n1 . q) ^2))) is  V11()  real   ext-real   Element of  REAL 
 
((sqrt (((n1 . p) ^2) + ((n1 . q) ^2))) * (n1 . q)) * ((sqrt (((n1 . p) ^2) + ((n1 . q) ^2))) ") is  V11()  real   ext-real   set 
 
(((sqrt (((n1 . p) ^2) + ((n1 . q) ^2))) * (n1 . q)) / (sqrt (((n1 . p) ^2) + ((n1 . q) ^2)))) * (- (sin z)) is  V11()  real   ext-real   Element of  REAL 
 
((((sqrt (((n1 . p) ^2) + ((n1 . q) ^2))) * (n1 . p)) / (sqrt (((n1 . p) ^2) + ((n1 . q) ^2)))) * (cos z)) + ((((sqrt (((n1 . p) ^2) + ((n1 . q) ^2))) * (n1 . q)) / (sqrt (((n1 . p) ^2) + ((n1 . q) ^2)))) * (- (sin z))) is  V11()  real   ext-real   Element of  REAL 
 
(n1 . p) * (cos z) is  V11()  real   ext-real   Element of  REAL 
 
(n1 . q) * (- (sin z)) is  V11()  real   ext-real   Element of  REAL 
 
((n1 . p) * (cos z)) + ((n1 . q) * (- (sin z))) is  V11()  real   ext-real   Element of  REAL 
 
 - ((n1 . q) / (sqrt (((n1 . p) ^2) + ((n1 . q) ^2)))) is  V11()  real   ext-real   Element of  REAL 
 
z is   empty   ordinal   natural  V11()  real   ext-real   non  positive   non  negative   Relation-like   non-empty   empty-yielding   NAT  -defined   RAT  -valued   Function-like   one-to-one   constant   functional  V36() V37() V40()  cardinal   {}  -element  V85()  FinSequence-like   FinSubsequence-like   FinSequence-membered   complex-yielding   ext-real-valued   real-valued   natural-valued  V155() V156() V157() V158() V159() V160() V161()  FinSequence-yielding   finite-support   Function-yielding  V235() V282()  set 
 
(TR,z,p,q) is   Relation-like   NAT  -defined   the carrier of F_Real *  -valued   Function-like  V36()  FinSequence-like   FinSubsequence-like   FinSequence-yielding   finite-support   Function-yielding  V235()  tabular   invertible   Matrix of TR,TR, the carrier of F_Real
 
 Mx2Tran (TR,z,p,q) is   non  empty   Relation-like   the carrier of (TOP-REAL TR) -defined   the carrier of (TOP-REAL TR) -valued   Function-like   total   quasi_total   additive   FinSequence-yielding   homogeneous   Function-yielding  V235()  being_homeomorphism   Element of  bool [: the carrier of (TOP-REAL TR), the carrier of (TOP-REAL TR):]
 
[: the carrier of (TOP-REAL TR), the carrier of (TOP-REAL TR):] is   non  empty   Relation-like   set 
 
 bool [: the carrier of (TOP-REAL TR), the carrier of (TOP-REAL TR):] is   non  empty   set 
 
(Mx2Tran (TR,z,p,q)) . n1 is   Relation-like   NAT  -defined   Function-like  V36() TR -element   FinSequence-like   FinSubsequence-like   complex-yielding   ext-real-valued   real-valued   finite-support   Element of  the carrier of (TOP-REAL TR)
 
((Mx2Tran (TR,z,p,q)) . n1) . p is  V11()  real   ext-real   Element of  REAL 
 
 1. (F_Real,TR) is   Relation-like   NAT  -defined   the carrier of F_Real *  -valued   Function-like  V36()  FinSequence-like   FinSubsequence-like   FinSequence-yielding   finite-support   Function-yielding  V235()  tabular   Matrix of TR,TR, the carrier of F_Real
 
 Mx2Tran (1. (F_Real,TR)) is   non  empty   Relation-like   the carrier of (TOP-REAL TR) -defined   the carrier of (TOP-REAL TR) -valued   Function-like   total   quasi_total   additive   FinSequence-yielding   homogeneous   Function-yielding  V235()  Element of  bool [: the carrier of (TOP-REAL TR), the carrier of (TOP-REAL TR):]
 
 id (TOP-REAL TR) is   non  empty   Relation-like   the carrier of (TOP-REAL TR) -defined   the carrier of (TOP-REAL TR) -valued   Function-like   total   quasi_total   quasi_total   additive   FinSequence-yielding   Function-yielding  V235()  being_homeomorphism   Element of  bool [: the carrier of (TOP-REAL TR), the carrier of (TOP-REAL TR):]
 
 id  the carrier of (TOP-REAL TR) is   non  empty   Relation-like   the carrier of (TOP-REAL TR) -defined   the carrier of (TOP-REAL TR) -valued   Function-like   one-to-one   total   quasi_total   quasi_total   FinSequence-yielding   Function-yielding  V235()  Element of  bool [: the carrier of (TOP-REAL TR), the carrier of (TOP-REAL TR):]
 
n is  V11()  real   ext-real   set 
 
p is   ordinal   natural  V11()  real   ext-real   non  negative  V36()  cardinal  V85()  set 
 
q is   ordinal   natural  V11()  real   ext-real   non  negative  V36()  cardinal  V85()  set 
 
TR is   ordinal   natural  V11()  real   ext-real   non  negative  V36()  cardinal  V85()  set 
 
 TOP-REAL TR is   non  empty   TopSpace-like   right_complementable   constituted-Functions   constituted-FinSeqs  V189() V190() V191() V192() V193() V194() V195() V228() L16()
 
 the carrier of (TOP-REAL TR) is   non  empty   set 
 
(TR,n,p,q) is   Relation-like   NAT  -defined   the carrier of F_Real *  -valued   Function-like  V36()  FinSequence-like   FinSubsequence-like   FinSequence-yielding   finite-support   Function-yielding  V235()  tabular   invertible   Matrix of TR,TR, the carrier of F_Real
 
 Mx2Tran (TR,n,p,q) is   non  empty   Relation-like   the carrier of (TOP-REAL TR) -defined   the carrier of (TOP-REAL TR) -valued   Function-like   total   quasi_total   additive   FinSequence-yielding   homogeneous   Function-yielding  V235()  being_homeomorphism   Element of  bool [: the carrier of (TOP-REAL TR), the carrier of (TOP-REAL TR):]
 
[: the carrier of (TOP-REAL TR), the carrier of (TOP-REAL TR):] is   non  empty   Relation-like   set 
 
 bool [: the carrier of (TOP-REAL TR), the carrier of (TOP-REAL TR):] is   non  empty   set 
 
n1 is   Relation-like   NAT  -defined   Function-like  V36() TR -element   FinSequence-like   FinSubsequence-like   complex-yielding   ext-real-valued   real-valued   finite-support   Element of  the carrier of (TOP-REAL TR)
 
(Mx2Tran (TR,n,p,q)) . n1 is   Relation-like   NAT  -defined   Function-like  V36() TR -element   FinSequence-like   FinSubsequence-like   complex-yielding   ext-real-valued   real-valued   finite-support   Element of  the carrier of (TOP-REAL TR)
 
((Mx2Tran (TR,n,p,q)) . n1) . p is  V11()  real   ext-real   Element of  REAL 
 
(((Mx2Tran (TR,n,p,q)) . n1) . p) * (((Mx2Tran (TR,n,p,q)) . n1) . p) is  V11()  real   ext-real   Element of  REAL 
 
((Mx2Tran (TR,n,p,q)) . n1) . q is  V11()  real   ext-real   Element of  REAL 
 
(((Mx2Tran (TR,n,p,q)) . n1) . q) * (((Mx2Tran (TR,n,p,q)) . n1) . q) is  V11()  real   ext-real   Element of  REAL 
 
((((Mx2Tran (TR,n,p,q)) . n1) . p) * (((Mx2Tran (TR,n,p,q)) . n1) . p)) + ((((Mx2Tran (TR,n,p,q)) . n1) . q) * (((Mx2Tran (TR,n,p,q)) . n1) . q)) is  V11()  real   ext-real   Element of  REAL 
 
n1 . p is  V11()  real   ext-real   Element of  REAL 
 
(n1 . p) * (n1 . p) is  V11()  real   ext-real   Element of  REAL 
 
n1 . q is  V11()  real   ext-real   Element of  REAL 
 
(n1 . q) * (n1 . q) is  V11()  real   ext-real   Element of  REAL 
 
((n1 . p) * (n1 . p)) + ((n1 . q) * (n1 . q)) is  V11()  real   ext-real   Element of  REAL 
 
(n1 . p) ^2  is  V11()  real   ext-real   Element of  REAL 
 
(n1 . p) * (n1 . p) is  V11()  real   ext-real   set 
 
(n1 . q) ^2  is  V11()  real   ext-real   Element of  REAL 
 
(n1 . q) * (n1 . q) is  V11()  real   ext-real   set 
 
((n1 . p) ^2) + ((n1 . q) ^2) is  V11()  real   ext-real   Element of  REAL 
 
 sin n is  V11()  real   ext-real   set 
 
 cos n is  V11()  real   ext-real   set 
 
(cos n) * (cos n) is  V11()  real   ext-real   set 
 
(sin n) * (sin n) is  V11()  real   ext-real   set 
 
((cos n) * (cos n)) + ((sin n) * (sin n)) is  V11()  real   ext-real   set 
 
(n1 . p) * (cos n) is  V11()  real   ext-real   Element of  REAL 
 
 - (sin n) is  V11()  real   ext-real   set 
 
(n1 . q) * (- (sin n)) is  V11()  real   ext-real   Element of  REAL 
 
((n1 . p) * (cos n)) + ((n1 . q) * (- (sin n))) is  V11()  real   ext-real   Element of  REAL 
 
((n1 . p) * (n1 . p)) * (cos n) is  V11()  real   ext-real   Element of  REAL 
 
(((n1 . p) * (n1 . p)) * (cos n)) * (cos n) is  V11()  real   ext-real   Element of  REAL 
 
2 * (n1 . p) is  V11()  real   ext-real   Element of  REAL 
 
(2 * (n1 . p)) * (n1 . q) is  V11()  real   ext-real   Element of  REAL 
 
((2 * (n1 . p)) * (n1 . q)) * (cos n) is  V11()  real   ext-real   Element of  REAL 
 
(((2 * (n1 . p)) * (n1 . q)) * (cos n)) * (sin n) is  V11()  real   ext-real   Element of  REAL 
 
((((n1 . p) * (n1 . p)) * (cos n)) * (cos n)) - ((((2 * (n1 . p)) * (n1 . q)) * (cos n)) * (sin n)) is  V11()  real   ext-real   Element of  REAL 
 
 - ((((2 * (n1 . p)) * (n1 . q)) * (cos n)) * (sin n)) is  V11()  real   ext-real   set 
 
((((n1 . p) * (n1 . p)) * (cos n)) * (cos n)) + (- ((((2 * (n1 . p)) * (n1 . q)) * (cos n)) * (sin n))) is  V11()  real   ext-real   set 
 
((n1 . q) * (n1 . q)) * (sin n) is  V11()  real   ext-real   Element of  REAL 
 
(((n1 . q) * (n1 . q)) * (sin n)) * (sin n) is  V11()  real   ext-real   Element of  REAL 
 
(((((n1 . p) * (n1 . p)) * (cos n)) * (cos n)) - ((((2 * (n1 . p)) * (n1 . q)) * (cos n)) * (sin n))) + ((((n1 . q) * (n1 . q)) * (sin n)) * (sin n)) is  V11()  real   ext-real   Element of  REAL 
 
(n1 . p) * (sin n) is  V11()  real   ext-real   Element of  REAL 
 
(n1 . q) * (cos n) is  V11()  real   ext-real   Element of  REAL 
 
((n1 . p) * (sin n)) + ((n1 . q) * (cos n)) is  V11()  real   ext-real   Element of  REAL 
 
((n1 . p) * (n1 . p)) * (sin n) is  V11()  real   ext-real   Element of  REAL 
 
(((n1 . p) * (n1 . p)) * (sin n)) * (sin n) is  V11()  real   ext-real   Element of  REAL 
 
(n1 . p) * (n1 . q) is  V11()  real   ext-real   Element of  REAL 
 
2 * ((n1 . p) * (n1 . q)) is  V11()  real   ext-real   Element of  REAL 
 
(cos n) * (sin n) is  V11()  real   ext-real   set 
 
(2 * ((n1 . p) * (n1 . q))) * ((cos n) * (sin n)) is  V11()  real   ext-real   Element of  REAL 
 
((((n1 . p) * (n1 . p)) * (sin n)) * (sin n)) + ((2 * ((n1 . p) * (n1 . q))) * ((cos n) * (sin n))) is  V11()  real   ext-real   Element of  REAL 
 
((n1 . q) * (n1 . q)) * ((cos n) * (cos n)) is  V11()  real   ext-real   Element of  REAL 
 
(((((n1 . p) * (n1 . p)) * (sin n)) * (sin n)) + ((2 * ((n1 . p) * (n1 . q))) * ((cos n) * (sin n)))) + (((n1 . q) * (n1 . q)) * ((cos n) * (cos n))) is  V11()  real   ext-real   Element of  REAL 
 
((n1 . p) * (n1 . p)) * (((cos n) * (cos n)) + ((sin n) * (sin n))) is  V11()  real   ext-real   Element of  REAL 
 
((n1 . q) * (n1 . q)) * (((cos n) * (cos n)) + ((sin n) * (sin n))) is  V11()  real   ext-real   Element of  REAL 
 
(((n1 . p) * (n1 . p)) * (((cos n) * (cos n)) + ((sin n) * (sin n)))) + (((n1 . q) * (n1 . q)) * (((cos n) * (cos n)) + ((sin n) * (sin n)))) is  V11()  real   ext-real   Element of  REAL 
 
n is  V11()  real   ext-real   set 
 
n ^2  is  V11()  real   ext-real   set 
 
n * n is  V11()  real   ext-real   set 
 
p is   ordinal   natural  V11()  real   ext-real   non  negative  V36()  cardinal  V85()  set 
 
q is   ordinal   natural  V11()  real   ext-real   non  negative  V36()  cardinal  V85()  set 
 
TR is   ordinal   natural  V11()  real   ext-real   non  negative  V36()  cardinal  V85()  set 
 
 TOP-REAL TR is   non  empty   TopSpace-like   right_complementable   constituted-Functions   constituted-FinSeqs  V189() V190() V191() V192() V193() V194() V195() V228() L16()
 
 the carrier of (TOP-REAL TR) is   non  empty   set 
 
n1 is   Relation-like   NAT  -defined   Function-like  V36() TR -element   FinSequence-like   FinSubsequence-like   complex-yielding   ext-real-valued   real-valued   finite-support   Element of  the carrier of (TOP-REAL TR)
 
n1 . p is  V11()  real   ext-real   Element of  REAL 
 
(n1 . p) ^2  is  V11()  real   ext-real   Element of  REAL 
 
(n1 . p) * (n1 . p) is  V11()  real   ext-real   set 
 
n1 . q is  V11()  real   ext-real   Element of  REAL 
 
(n1 . q) ^2  is  V11()  real   ext-real   Element of  REAL 
 
(n1 . q) * (n1 . q) is  V11()  real   ext-real   set 
 
((n1 . p) ^2) + ((n1 . q) ^2) is  V11()  real   ext-real   Element of  REAL 
 
(((n1 . p) ^2) + ((n1 . q) ^2)) - (n ^2) is  V11()  real   ext-real   Element of  REAL 
 
 - (n ^2) is  V11()  real   ext-real   set 
 
(((n1 . p) ^2) + ((n1 . q) ^2)) + (- (n ^2)) is  V11()  real   ext-real   set 
 
(((n1 . p) ^2) + ((n1 . q) ^2)) - {} is  V11()  real   ext-real   Element of  REAL 
 
 - {} is   empty   ordinal   natural  V11()  real   ext-real   non  positive   non  negative   Relation-like   non-empty   empty-yielding   NAT  -defined   RAT  -valued   Function-like   one-to-one   constant   functional  V36() V37() V40()  cardinal   {}  -element  V85()  FinSequence-like   FinSubsequence-like   FinSequence-membered   complex-yielding   ext-real-valued   real-valued   natural-valued  V155() V156() V157() V158() V159() V160() V161()  FinSequence-yielding   finite-support   Function-yielding  V235() V282()  set 
 
(((n1 . p) ^2) + ((n1 . q) ^2)) + (- {}) is  V11()  real   ext-real   set 
 
(n ^2) - (n ^2) is  V11()  real   ext-real   set 
 
(n ^2) + (- (n ^2)) is  V11()  real   ext-real   set 
 
 sqrt ((((n1 . p) ^2) + ((n1 . q) ^2)) - (n ^2)) is  V11()  real   ext-real   Element of  REAL 
 
(sqrt ((((n1 . p) ^2) + ((n1 . q) ^2)) - (n ^2))) ^2  is  V11()  real   ext-real   Element of  REAL 
 
(sqrt ((((n1 . p) ^2) + ((n1 . q) ^2)) - (n ^2))) * (sqrt ((((n1 . p) ^2) + ((n1 . q) ^2)) - (n ^2))) is  V11()  real   ext-real   set 
 
z is  V11()  real   ext-real   set 
 
(TR,z,p,q) is   Relation-like   NAT  -defined   the carrier of F_Real *  -valued   Function-like  V36()  FinSequence-like   FinSubsequence-like   FinSequence-yielding   finite-support   Function-yielding  V235()  tabular   invertible   Matrix of TR,TR, the carrier of F_Real
 
 Mx2Tran (TR,z,p,q) is   non  empty   Relation-like   the carrier of (TOP-REAL TR) -defined   the carrier of (TOP-REAL TR) -valued   Function-like   total   quasi_total   additive   FinSequence-yielding   homogeneous   Function-yielding  V235()  being_homeomorphism   Element of  bool [: the carrier of (TOP-REAL TR), the carrier of (TOP-REAL TR):]
 
[: the carrier of (TOP-REAL TR), the carrier of (TOP-REAL TR):] is   non  empty   Relation-like   set 
 
 bool [: the carrier of (TOP-REAL TR), the carrier of (TOP-REAL TR):] is   non  empty   set 
 
(Mx2Tran (TR,z,p,q)) . n1 is   Relation-like   NAT  -defined   Function-like  V36() TR -element   FinSequence-like   FinSubsequence-like   complex-yielding   ext-real-valued   real-valued   finite-support   Element of  the carrier of (TOP-REAL TR)
 
((Mx2Tran (TR,z,p,q)) . n1) . p is  V11()  real   ext-real   Element of  REAL 
 
((Mx2Tran (TR,z,p,q)) . n1) . q is  V11()  real   ext-real   Element of  REAL 
 
(((Mx2Tran (TR,z,p,q)) . n1) . q) * (((Mx2Tran (TR,z,p,q)) . n1) . q) is  V11()  real   ext-real   Element of  REAL 
 
((sqrt ((((n1 . p) ^2) + ((n1 . q) ^2)) - (n ^2))) ^2) + ((((Mx2Tran (TR,z,p,q)) . n1) . q) * (((Mx2Tran (TR,z,p,q)) . n1) . q)) is  V11()  real   ext-real   Element of  REAL 
 
((((n1 . p) ^2) + ((n1 . q) ^2)) - (n ^2)) + ((((Mx2Tran (TR,z,p,q)) . n1) . q) * (((Mx2Tran (TR,z,p,q)) . n1) . q)) is  V11()  real   ext-real   Element of  REAL 
 
(((Mx2Tran (TR,z,p,q)) . n1) . q) ^2  is  V11()  real   ext-real   Element of  REAL 
 
(((Mx2Tran (TR,z,p,q)) . n1) . q) * (((Mx2Tran (TR,z,p,q)) . n1) . q) is  V11()  real   ext-real   set 
 
 - n is  V11()  real   ext-real   set 
 
z + PI is  V11()  real   ext-real   Element of  REAL 
 
sq is  V11()  real   ext-real   Element of  REAL 
 
(TR,sq,p,q) is   Relation-like   NAT  -defined   the carrier of F_Real *  -valued   Function-like  V36()  FinSequence-like   FinSubsequence-like   FinSequence-yielding   finite-support   Function-yielding  V235()  tabular   invertible   Matrix of TR,TR, the carrier of F_Real
 
 Mx2Tran (TR,sq,p,q) is   non  empty   Relation-like   the carrier of (TOP-REAL TR) -defined   the carrier of (TOP-REAL TR) -valued   Function-like   total   quasi_total   additive   FinSequence-yielding   homogeneous   Function-yielding  V235()  being_homeomorphism   Element of  bool [: the carrier of (TOP-REAL TR), the carrier of (TOP-REAL TR):]
 
(Mx2Tran (TR,sq,p,q)) . n1 is   Relation-like   NAT  -defined   Function-like  V36() TR -element   FinSequence-like   FinSubsequence-like   complex-yielding   ext-real-valued   real-valued   finite-support   Element of  the carrier of (TOP-REAL TR)
 
((Mx2Tran (TR,sq,p,q)) . n1) . q is  V11()  real   ext-real   Element of  REAL 
 
 sin sq is  V11()  real   ext-real   Element of  REAL 
 
(n1 . p) * (sin sq) is  V11()  real   ext-real   Element of  REAL 
 
 cos sq is  V11()  real   ext-real   Element of  REAL 
 
(n1 . q) * (cos sq) is  V11()  real   ext-real   Element of  REAL 
 
((n1 . p) * (sin sq)) + ((n1 . q) * (cos sq)) is  V11()  real   ext-real   Element of  REAL 
 
 sin z is  V11()  real   ext-real   set 
 
 - (sin z) is  V11()  real   ext-real   set 
 
(n1 . p) * (- (sin z)) is  V11()  real   ext-real   Element of  REAL 
 
((n1 . p) * (- (sin z))) + ((n1 . q) * (cos sq)) is  V11()  real   ext-real   Element of  REAL 
 
 cos z is  V11()  real   ext-real   set 
 
 - (cos z) is  V11()  real   ext-real   set 
 
(n1 . q) * (- (cos z)) is  V11()  real   ext-real   Element of  REAL 
 
((n1 . p) * (- (sin z))) + ((n1 . q) * (- (cos z))) is  V11()  real   ext-real   Element of  REAL 
 
(n1 . p) * (sin z) is  V11()  real   ext-real   Element of  REAL 
 
(n1 . q) * (cos z) is  V11()  real   ext-real   Element of  REAL 
 
((n1 . p) * (sin z)) + ((n1 . q) * (cos z)) is  V11()  real   ext-real   Element of  REAL 
 
 - (((n1 . p) * (sin z)) + ((n1 . q) * (cos z))) is  V11()  real   ext-real   Element of  REAL 
 
 - (((Mx2Tran (TR,z,p,q)) . n1) . q) is  V11()  real   ext-real   Element of  REAL 
 
 - n is  V11()  real   ext-real   set 
 
n is  V11()  real   ext-real   set 
 
p is   ordinal   natural  V11()  real   ext-real   non  negative  V36()  cardinal  V85()  set 
 
q is   ordinal   natural  V11()  real   ext-real   non  negative  V36()  cardinal  V85()  set 
 
{p,q} is   non  empty  V36() V40() V155() V156() V157() V158() V159() V160()  Element of  bool NAT
 
TR is   ordinal   natural  V11()  real   ext-real   non  negative  V36()  cardinal  V85()  set 
 
(TR,n,p,q) is   Relation-like   NAT  -defined   the carrier of F_Real *  -valued   Function-like  V36()  FinSequence-like   FinSubsequence-like   FinSequence-yielding   finite-support   Function-yielding  V235()  tabular   invertible   Matrix of TR,TR, the carrier of F_Real
 
 Mx2Tran (TR,n,p,q) is   non  empty   Relation-like   the carrier of (TOP-REAL TR) -defined   the carrier of (TOP-REAL TR) -valued   Function-like   total   quasi_total   additive   FinSequence-yielding   homogeneous   Function-yielding  V235()  being_homeomorphism   Element of  bool [: the carrier of (TOP-REAL TR), the carrier of (TOP-REAL TR):]
 
 TOP-REAL TR is   non  empty   TopSpace-like   right_complementable   constituted-Functions   constituted-FinSeqs  V189() V190() V191() V192() V193() V194() V195() V228() L16()
 
 the carrier of (TOP-REAL TR) is   non  empty   set 
 
[: the carrier of (TOP-REAL TR), the carrier of (TOP-REAL TR):] is   non  empty   Relation-like   set 
 
 bool [: the carrier of (TOP-REAL TR), the carrier of (TOP-REAL TR):] is   non  empty   set 
 
f is   Relation-like   Function-like   set 
 
 dom (Mx2Tran (TR,n,p,q)) is   non  empty   set 
 
(Mx2Tran (TR,n,p,q)) . f is   Relation-like   NAT  -defined   Function-like  V36()  FinSequence-like   FinSubsequence-like   complex-yielding   ext-real-valued   real-valued   finite-support   set 
 
X is    set 
 
((Mx2Tran (TR,n,p,q)) . f) . X is  V11()  real   ext-real   set 
 
f . X is    set 
 
((Mx2Tran (TR,n,p,q)) . f) . X is  V11()  real   ext-real   Element of  REAL 
 
z is   Relation-like   NAT  -defined   Function-like  V36() TR -element   FinSequence-like   FinSubsequence-like   complex-yielding   ext-real-valued   real-valued   finite-support   Element of  the carrier of (TOP-REAL TR)
 
 len z is   ordinal   natural  V11()  real   ext-real   non  negative  V36()  cardinal  V85() V86() V155() V156() V157() V158() V159() V160()  Element of  NAT 
 
 dom z is  V36() TR -element  V155() V156() V157() V158() V159() V160()  Element of  bool NAT
 
 Seg TR is  V16() V36() TR -element  V155() V156() V157() V158() V159() V160()  Element of  bool NAT
 
 {  b1 where b1 is   ordinal   natural  V11()  real   ext-real   non  negative  V36()  cardinal  V85() V86() V155() V156() V157() V158() V159() V160()  Element of  NAT  : ( 1 <= b1 & b1 <= TR )  }   is    set 
 
(Mx2Tran (TR,n,p,q)) . z is   Relation-like   NAT  -defined   Function-like  V36() TR -element   FinSequence-like   FinSubsequence-like   complex-yielding   ext-real-valued   real-valued   finite-support   Element of  the carrier of (TOP-REAL TR)
 
 len ((Mx2Tran (TR,n,p,q)) . z) is   ordinal   natural  V11()  real   ext-real   non  negative  V36()  cardinal  V85() V86() V155() V156() V157() V158() V159() V160()  Element of  NAT 
 
 dom ((Mx2Tran (TR,n,p,q)) . z) is  V36() TR -element  V155() V156() V157() V158() V159() V160()  Element of  bool NAT
 
((Mx2Tran (TR,n,p,q)) . z) . X is  V11()  real   ext-real   Element of  REAL 
 
((Mx2Tran (TR,n,p,q)) . z) . X is  V11()  real   ext-real   Element of  REAL 
 
z . X is  V11()  real   ext-real   Element of  REAL 
 
n is   ordinal   natural  V11()  real   ext-real   non  negative  V36()  cardinal  V85()  set 
 
 TOP-REAL n is   non  empty   TopSpace-like   right_complementable   constituted-Functions   constituted-FinSeqs  V189() V190() V191() V192() V193() V194() V195() V228() L16()
 
 the carrier of (TOP-REAL n) is   non  empty   set 
 
[: the carrier of (TOP-REAL n), the carrier of (TOP-REAL n):] is   non  empty   Relation-like   set 
 
 bool [: the carrier of (TOP-REAL n), the carrier of (TOP-REAL n):] is   non  empty   set 
 
n is   ordinal   natural  V11()  real   ext-real   non  negative  V36()  cardinal  V85()  set 
 
p is   ordinal   natural  V11()  real   ext-real   non  negative  V36()  cardinal  V85()  set 
 
 Seg p is  V16() V36() p -element  V155() V156() V157() V158() V159() V160()  Element of  bool NAT
 
 {  b1 where b1 is   ordinal   natural  V11()  real   ext-real   non  negative  V36()  cardinal  V85() V86() V155() V156() V157() V158() V159() V160()  Element of  NAT  : ( 1 <= b1 & b1 <= p )  }   is    set 
 
(p,n) is   Relation-like   NAT  -defined   the carrier of F_Real *  -valued   Function-like  V36()  FinSequence-like   FinSubsequence-like   FinSequence-yielding   finite-support   Function-yielding  V235()  tabular   invertible   Matrix of p,p, the carrier of F_Real
 
 Mx2Tran (p,n) is   non  empty   Relation-like   the carrier of (TOP-REAL p) -defined   the carrier of (TOP-REAL p) -valued   Function-like   total   quasi_total   additive   FinSequence-yielding   homogeneous   Function-yielding  V235()  being_homeomorphism   Element of  bool [: the carrier of (TOP-REAL p), the carrier of (TOP-REAL p):]
 
 TOP-REAL p is   non  empty   TopSpace-like   right_complementable   constituted-Functions   constituted-FinSeqs  V189() V190() V191() V192() V193() V194() V195() V228() L16()
 
 the carrier of (TOP-REAL p) is   non  empty   set 
 
[: the carrier of (TOP-REAL p), the carrier of (TOP-REAL p):] is   non  empty   Relation-like   set 
 
 bool [: the carrier of (TOP-REAL p), the carrier of (TOP-REAL p):] is   non  empty   set 
 
n1 is   Relation-like   NAT  -defined   Function-like  V36() p -element   FinSequence-like   FinSubsequence-like   complex-yielding   ext-real-valued   real-valued   finite-support   Element of  the carrier of (TOP-REAL p)
 
|.n1.| is  V11()  real   ext-real   non  negative   Element of  REAL 
 
 sqr n1 is   Relation-like   NAT  -defined   REAL  -valued   Function-like  V36()  FinSequence-like   FinSubsequence-like   complex-yielding   ext-real-valued   real-valued   finite-support   FinSequence of  REAL 
 
 Sum (sqr n1) is  V11()  real   ext-real   Element of  REAL 
 
 sqrt (Sum (sqr n1)) is  V11()  real   ext-real   Element of  REAL 
 
(Mx2Tran (p,n)) . n1 is   Relation-like   NAT  -defined   Function-like  V36() p -element   FinSequence-like   FinSubsequence-like   complex-yielding   ext-real-valued   real-valued   finite-support   Element of  the carrier of (TOP-REAL p)
 
|.((Mx2Tran (p,n)) . n1).| is  V11()  real   ext-real   non  negative   Element of  REAL 
 
 sqr ((Mx2Tran (p,n)) . n1) is   Relation-like   NAT  -defined   REAL  -valued   Function-like  V36()  FinSequence-like   FinSubsequence-like   complex-yielding   ext-real-valued   real-valued   finite-support   FinSequence of  REAL 
 
 Sum (sqr ((Mx2Tran (p,n)) . n1)) is  V11()  real   ext-real   Element of  REAL 
 
 sqrt (Sum (sqr ((Mx2Tran (p,n)) . n1))) is  V11()  real   ext-real   Element of  REAL 
 
 len n1 is   ordinal   natural  V11()  real   ext-real   non  negative  V36()  cardinal  V85() V86() V155() V156() V157() V158() V159() V160()  Element of  NAT 
 
 dom n1 is  V36() p -element  V155() V156() V157() V158() V159() V160()  Element of  bool NAT
 
n1 . n is  V11()  real   ext-real   Element of  REAL 
 
 - (n1 . n) is  V11()  real   ext-real   Element of  REAL 
 
n1 +* (n,(- (n1 . n))) is   Relation-like   NAT  -defined   Function-like  V36()  FinSequence-like   FinSubsequence-like   complex-yielding   ext-real-valued   real-valued   finite-support   set 
 
 sqr (n1 +* (n,(- (n1 . n)))) is   Relation-like   NAT  -defined   REAL  -valued   Function-like  V36()  FinSequence-like   FinSubsequence-like   complex-yielding   ext-real-valued   real-valued   finite-support   FinSequence of  REAL 
 
 Sum (sqr (n1 +* (n,(- (n1 . n))))) is  V11()  real   ext-real   Element of  REAL 
 
 sqrt (Sum (sqr (n1 +* (n,(- (n1 . n)))))) is  V11()  real   ext-real   Element of  REAL 
 
(n1 . n) ^2  is  V11()  real   ext-real   Element of  REAL 
 
(n1 . n) * (n1 . n) is  V11()  real   ext-real   set 
 
(Sum (sqr n1)) - ((n1 . n) ^2) is  V11()  real   ext-real   Element of  REAL 
 
 - ((n1 . n) ^2) is  V11()  real   ext-real   set 
 
(Sum (sqr n1)) + (- ((n1 . n) ^2)) is  V11()  real   ext-real   set 
 
(- (n1 . n)) ^2  is  V11()  real   ext-real   Element of  REAL 
 
(- (n1 . n)) * (- (n1 . n)) is  V11()  real   ext-real   set 
 
((Sum (sqr n1)) - ((n1 . n) ^2)) + ((- (n1 . n)) ^2) is  V11()  real   ext-real   Element of  REAL 
 
 sqrt (((Sum (sqr n1)) - ((n1 . n) ^2)) + ((- (n1 . n)) ^2)) is  V11()  real   ext-real   Element of  REAL 
 
n is   ordinal   natural  V11()  real   ext-real   non  negative  V36()  cardinal  V85()  set 
 
 TOP-REAL n is   non  empty   TopSpace-like   right_complementable   constituted-Functions   constituted-FinSeqs  V189() V190() V191() V192() V193() V194() V195() V228() L16()
 
 the carrier of (TOP-REAL n) is   non  empty   set 
 
[: the carrier of (TOP-REAL n), the carrier of (TOP-REAL n):] is   non  empty   Relation-like   set 
 
 bool [: the carrier of (TOP-REAL n), the carrier of (TOP-REAL n):] is   non  empty   set 
 
n is   ordinal   natural  V11()  real   ext-real   non  negative  V36()  cardinal  V85()  set 
 
 TOP-REAL n is   non  empty   TopSpace-like   right_complementable   constituted-Functions   constituted-FinSeqs  V189() V190() V191() V192() V193() V194() V195() V228() L16()
 
 id (TOP-REAL n) is   non  empty   Relation-like   the carrier of (TOP-REAL n) -defined   the carrier of (TOP-REAL n) -valued   Function-like   total   quasi_total   quasi_total   additive   FinSequence-yielding   Function-yielding  V235()  being_homeomorphism   Element of  bool [: the carrier of (TOP-REAL n), the carrier of (TOP-REAL n):]
 
 the carrier of (TOP-REAL n) is   non  empty   set 
 
[: the carrier of (TOP-REAL n), the carrier of (TOP-REAL n):] is   non  empty   Relation-like   set 
 
 bool [: the carrier of (TOP-REAL n), the carrier of (TOP-REAL n):] is   non  empty   set 
 
 id  the carrier of (TOP-REAL n) is   non  empty   Relation-like   the carrier of (TOP-REAL n) -defined   the carrier of (TOP-REAL n) -valued   Function-like   one-to-one   total   quasi_total   quasi_total   FinSequence-yielding   Function-yielding  V235()  Element of  bool [: the carrier of (TOP-REAL n), the carrier of (TOP-REAL n):]
 
 GFuncs  the carrier of (TOP-REAL n) is   non  empty   strict   unital   associative   constituted-Functions   SubStr of  GPFuncs  the carrier of (TOP-REAL n)
 
 GPFuncs  the carrier of (TOP-REAL n) is   non  empty   strict   unital   associative   constituted-Functions   multMagma 
 
 the carrier of (GFuncs  the carrier of (TOP-REAL n)) is   non  empty   set 
 
 the carrier of (GFuncs  the carrier of (TOP-REAL n)) *  is   non  empty   functional   FinSequence-membered   FinSequenceSet of  the carrier of (GFuncs  the carrier of (TOP-REAL n))
 
 <*>  the carrier of (GFuncs  the carrier of (TOP-REAL n)) is   empty   ordinal   natural  V11()  real   ext-real   non  positive   non  negative   Relation-like   non-empty   empty-yielding   NAT  -defined   the carrier of (GFuncs  the carrier of (TOP-REAL n)) -valued   Function-like   one-to-one   constant   functional  V36() V37() V40()  cardinal   {}  -element  V85()  FinSequence-like   FinSubsequence-like   FinSequence-membered   complex-yielding   ext-real-valued   real-valued   natural-valued  V155() V156() V157() V158() V159() V160() V161()  FinSequence-yielding   finite-support   Function-yielding  V235() V282()  Element of  the carrier of (GFuncs  the carrier of (TOP-REAL n)) * 
 
TR is   empty   ordinal   natural  V11()  real   ext-real   non  positive   non  negative   Relation-like   non-empty   empty-yielding   NAT  -defined   the carrier of (GFuncs  the carrier of (TOP-REAL n)) -valued   Function-like   one-to-one   constant   functional  V36() V37() V40()  cardinal   {}  -element  V85()  FinSequence-like   FinSubsequence-like   FinSequence-membered   complex-yielding   ext-real-valued   real-valued   natural-valued  V155() V156() V157() V158() V159() V160() V161()  FinSequence-yielding   finite-support   Function-yielding  V235() V282()  Element of  the carrier of (GFuncs  the carrier of (TOP-REAL n)) * 
 
 Product TR is   Relation-like   Function-like   Element of  the carrier of (GFuncs  the carrier of (TOP-REAL n))
 
 dom TR is   empty   ordinal   natural  V11()  real   ext-real   non  positive   non  negative   Relation-like   non-empty   empty-yielding   NAT  -defined   RAT  -valued   Function-like   one-to-one   constant   functional  V36() V37() V40()  cardinal   {}  -element  V85()  FinSequence-like   FinSubsequence-like   FinSequence-membered   complex-yielding   ext-real-valued   real-valued   natural-valued  V155() V156() V157() V158() V159() V160() V161()  FinSequence-yielding   finite-support   Function-yielding  V235() V282()  Element of  bool NAT
 
 1_ (GFuncs  the carrier of (TOP-REAL n)) is   Relation-like   Function-like   Element of  the carrier of (GFuncs  the carrier of (TOP-REAL n))
 
 the multF of (GFuncs  the carrier of (TOP-REAL n)) is   non  empty   Relation-like  [: the carrier of (GFuncs  the carrier of (TOP-REAL n)), the carrier of (GFuncs  the carrier of (TOP-REAL n)):] -defined   the carrier of (GFuncs  the carrier of (TOP-REAL n)) -valued   Function-like   total   quasi_total   Element of  bool [:[: the carrier of (GFuncs  the carrier of (TOP-REAL n)), the carrier of (GFuncs  the carrier of (TOP-REAL n)):], the carrier of (GFuncs  the carrier of (TOP-REAL n)):]
 
[: the carrier of (GFuncs  the carrier of (TOP-REAL n)), the carrier of (GFuncs  the carrier of (TOP-REAL n)):] is   non  empty   Relation-like   set 
 
[:[: the carrier of (GFuncs  the carrier of (TOP-REAL n)), the carrier of (GFuncs  the carrier of (TOP-REAL n)):], the carrier of (GFuncs  the carrier of (TOP-REAL n)):] is   non  empty   Relation-like   set 
 
 bool [:[: the carrier of (GFuncs  the carrier of (TOP-REAL n)), the carrier of (GFuncs  the carrier of (TOP-REAL n)):], the carrier of (GFuncs  the carrier of (TOP-REAL n)):] is   non  empty   set 
 
 the_unity_wrt  the multF of (GFuncs  the carrier of (TOP-REAL n)) is   Relation-like   Function-like   Element of  the carrier of (GFuncs  the carrier of (TOP-REAL n))
 
n1 is   ordinal   natural  V11()  real   ext-real   non  negative  V36()  cardinal  V85()  set 
 
TR . n1 is   empty   ordinal   natural  V11()  real   ext-real   non  positive   non  negative   Relation-like   non-empty   empty-yielding   NAT  -defined   RAT  -valued   Function-like   one-to-one   constant   functional  V36() V37() V40()  cardinal   {}  -element  V85()  FinSequence-like   FinSubsequence-like   FinSequence-membered   complex-yielding   ext-real-valued   real-valued   natural-valued  V155() V156() V157() V158() V159() V160() V161()  FinSequence-yielding   finite-support   Function-yielding  V235() V282()  set 
 
n is   ordinal   natural  V11()  real   ext-real   non  negative  V36()  cardinal  V85()  set 
 
 TOP-REAL n is   non  empty   TopSpace-like   right_complementable   constituted-Functions   constituted-FinSeqs  V189() V190() V191() V192() V193() V194() V195() V228() L16()
 
 the carrier of (TOP-REAL n) is   non  empty   set 
 
[: the carrier of (TOP-REAL n), the carrier of (TOP-REAL n):] is   non  empty   Relation-like   set 
 
 bool [: the carrier of (TOP-REAL n), the carrier of (TOP-REAL n):] is   non  empty   set 
 
 id (TOP-REAL n) is   non  empty   Relation-like   the carrier of (TOP-REAL n) -defined   the carrier of (TOP-REAL n) -defined   the carrier of (TOP-REAL n) -valued   the carrier of (TOP-REAL n) -valued   Function-like   total   total   quasi_total   quasi_total   additive   additive   FinSequence-yielding   Function-yielding  V235()  being_homeomorphism   being_homeomorphism  (n)  Element of  bool [: the carrier of (TOP-REAL n), the carrier of (TOP-REAL n):]
 
 id  the carrier of (TOP-REAL n) is   non  empty   Relation-like   the carrier of (TOP-REAL n) -defined   the carrier of (TOP-REAL n) -valued   Function-like   one-to-one   total   quasi_total   quasi_total   FinSequence-yielding   Function-yielding  V235()  Element of  bool [: the carrier of (TOP-REAL n), the carrier of (TOP-REAL n):]
 
n is   ordinal   natural  V11()  real   ext-real   non  negative  V36()  cardinal  V85()  set 
 
 TOP-REAL n is   non  empty   TopSpace-like   right_complementable   constituted-Functions   constituted-FinSeqs  V189() V190() V191() V192() V193() V194() V195() V228() L16()
 
 the carrier of (TOP-REAL n) is   non  empty   set 
 
[: the carrier of (TOP-REAL n), the carrier of (TOP-REAL n):] is   non  empty   Relation-like   set 
 
 bool [: the carrier of (TOP-REAL n), the carrier of (TOP-REAL n):] is   non  empty   set 
 
q is   non  empty   Relation-like   the carrier of (TOP-REAL n) -defined   the carrier of (TOP-REAL n) -valued   Function-like   total   quasi_total   FinSequence-yielding   Function-yielding  V235() (n)  Element of  bool [: the carrier of (TOP-REAL n), the carrier of (TOP-REAL n):]
 
p is   non  empty   Relation-like   the carrier of (TOP-REAL n) -defined   the carrier of (TOP-REAL n) -valued   Function-like   total   quasi_total   FinSequence-yielding   Function-yielding  V235() (n)  Element of  bool [: the carrier of (TOP-REAL n), the carrier of (TOP-REAL n):]
 
p * q is   non  empty   Relation-like   the carrier of (TOP-REAL n) -defined   the carrier of (TOP-REAL n) -valued   Function-like   total   quasi_total   quasi_total   FinSequence-yielding   Function-yielding  V235()  Element of  bool [: the carrier of (TOP-REAL n), the carrier of (TOP-REAL n):]
 
 GFuncs  the carrier of (TOP-REAL n) is   non  empty   strict   unital   associative   constituted-Functions   SubStr of  GPFuncs  the carrier of (TOP-REAL n)
 
 GPFuncs  the carrier of (TOP-REAL n) is   non  empty   strict   unital   associative   constituted-Functions   multMagma 
 
 the carrier of (GFuncs  the carrier of (TOP-REAL n)) is   non  empty   set 
 
TR is   Relation-like   NAT  -defined   the carrier of (GFuncs  the carrier of (TOP-REAL n)) -valued   Function-like  V36()  FinSequence-like   FinSubsequence-like   finite-support   FinSequence of  the carrier of (GFuncs  the carrier of (TOP-REAL n))
 
 Product TR is   Relation-like   Function-like   Element of  the carrier of (GFuncs  the carrier of (TOP-REAL n))
 
 dom TR is  V36() V155() V156() V157() V158() V159() V160()  Element of  bool NAT
 
n1 is   Relation-like   NAT  -defined   the carrier of (GFuncs  the carrier of (TOP-REAL n)) -valued   Function-like  V36()  FinSequence-like   FinSubsequence-like   finite-support   FinSequence of  the carrier of (GFuncs  the carrier of (TOP-REAL n))
 
 Product n1 is   Relation-like   Function-like   Element of  the carrier of (GFuncs  the carrier of (TOP-REAL n))
 
 dom n1 is  V36() V155() V156() V157() V158() V159() V160()  Element of  bool NAT
 
 the carrier of (GFuncs  the carrier of (TOP-REAL n)) *  is   non  empty   functional   FinSequence-membered   FinSequenceSet of  the carrier of (GFuncs  the carrier of (TOP-REAL n))
 
n1 ^ TR is   Relation-like   NAT  -defined   the carrier of (GFuncs  the carrier of (TOP-REAL n)) -valued   Function-like  V36()  FinSequence-like   FinSubsequence-like   finite-support   Element of  the carrier of (GFuncs  the carrier of (TOP-REAL n)) * 
 
f is   Relation-like   NAT  -defined   the carrier of (GFuncs  the carrier of (TOP-REAL n)) -valued   Function-like  V36()  FinSequence-like   FinSubsequence-like   finite-support   Element of  the carrier of (GFuncs  the carrier of (TOP-REAL n)) * 
 
 Product f is   Relation-like   Function-like   Element of  the carrier of (GFuncs  the carrier of (TOP-REAL n))
 
 dom f is  V36() V155() V156() V157() V158() V159() V160()  Element of  bool NAT
 
(Product n1) * (Product TR) is   Relation-like   Function-like   Element of  the carrier of (GFuncs  the carrier of (TOP-REAL n))
 
 the multF of (GFuncs  the carrier of (TOP-REAL n)) is   non  empty   Relation-like  [: the carrier of (GFuncs  the carrier of (TOP-REAL n)), the carrier of (GFuncs  the carrier of (TOP-REAL n)):] -defined   the carrier of (GFuncs  the carrier of (TOP-REAL n)) -valued   Function-like   total   quasi_total   Element of  bool [:[: the carrier of (GFuncs  the carrier of (TOP-REAL n)), the carrier of (GFuncs  the carrier of (TOP-REAL n)):], the carrier of (GFuncs  the carrier of (TOP-REAL n)):]
 
[: the carrier of (GFuncs  the carrier of (TOP-REAL n)), the carrier of (GFuncs  the carrier of (TOP-REAL n)):] is   non  empty   Relation-like   set 
 
[:[: the carrier of (GFuncs  the carrier of (TOP-REAL n)), the carrier of (GFuncs  the carrier of (TOP-REAL n)):], the carrier of (GFuncs  the carrier of (TOP-REAL n)):] is   non  empty   Relation-like   set 
 
 bool [:[: the carrier of (GFuncs  the carrier of (TOP-REAL n)), the carrier of (GFuncs  the carrier of (TOP-REAL n)):], the carrier of (GFuncs  the carrier of (TOP-REAL n)):] is   non  empty   set 
 
 the multF of (GFuncs  the carrier of (TOP-REAL n)) . ((Product n1),(Product TR)) is   Relation-like   Function-like   Element of  the carrier of (GFuncs  the carrier of (TOP-REAL n))
 
X is   ordinal   natural  V11()  real   ext-real   non  negative  V36()  cardinal  V85()  set 
 
f . X is    set 
 
n1 . X is    set 
 
 len n1 is   ordinal   natural  V11()  real   ext-real   non  negative  V36()  cardinal  V85() V86() V155() V156() V157() V158() V159() V160()  Element of  NAT 
 
z is   ordinal   natural  V11()  real   ext-real   non  negative  V36()  cardinal  V85()  set 
 
(len n1) + z is   ordinal   natural  V11()  real   ext-real   non  negative  V36()  cardinal  V85() V86() V155() V156() V157() V158() V159() V160()  Element of  NAT 
 
z is   ordinal   natural  V11()  real   ext-real   non  negative  V36()  cardinal  V85()  set 
 
(len n1) + z is   ordinal   natural  V11()  real   ext-real   non  negative  V36()  cardinal  V85() V86() V155() V156() V157() V158() V159() V160()  Element of  NAT 
 
TR . z is    set 
 
 len n1 is   ordinal   natural  V11()  real   ext-real   non  negative  V36()  cardinal  V85() V86() V155() V156() V157() V158() V159() V160()  Element of  NAT 
 
f is   non  empty   Relation-like   the carrier of (TOP-REAL n) -defined   the carrier of (TOP-REAL n) -valued   Function-like   total   quasi_total   FinSequence-yielding   Function-yielding  V235()  Element of  bool [: the carrier of (TOP-REAL n), the carrier of (TOP-REAL n):]
 
n is  V11()  real   ext-real   set 
 
p is   ordinal   natural  V11()  real   ext-real   non  negative  V36()  cardinal  V85()  set 
 
q is   ordinal   natural  V11()  real   ext-real   non  negative  V36()  cardinal  V85()  set 
 
TR is   ordinal   natural  V11()  real   ext-real   non  negative  V36()  cardinal  V85()  set 
 
(TR,n,p,q) is   Relation-like   NAT  -defined   the carrier of F_Real *  -valued   Function-like  V36()  FinSequence-like   FinSubsequence-like   FinSequence-yielding   finite-support   Function-yielding  V235()  tabular   invertible   Matrix of TR,TR, the carrier of F_Real
 
 Mx2Tran (TR,n,p,q) is   non  empty   Relation-like   the carrier of (TOP-REAL TR) -defined   the carrier of (TOP-REAL TR) -valued   Function-like   total   quasi_total   additive   FinSequence-yielding   homogeneous   Function-yielding  V235()  being_homeomorphism   Element of  bool [: the carrier of (TOP-REAL TR), the carrier of (TOP-REAL TR):]
 
 TOP-REAL TR is   non  empty   TopSpace-like   right_complementable   constituted-Functions   constituted-FinSeqs  V189() V190() V191() V192() V193() V194() V195() V228() L16()
 
 the carrier of (TOP-REAL TR) is   non  empty   set 
 
[: the carrier of (TOP-REAL TR), the carrier of (TOP-REAL TR):] is   non  empty   Relation-like   set 
 
 bool [: the carrier of (TOP-REAL TR), the carrier of (TOP-REAL TR):] is   non  empty   set 
 
n1 is   Relation-like   NAT  -defined   Function-like  V36() TR -element   FinSequence-like   FinSubsequence-like   complex-yielding   ext-real-valued   real-valued   finite-support   Element of  the carrier of (TOP-REAL TR)
 
|.n1.| is  V11()  real   ext-real   non  negative   Element of  REAL 
 
 sqr n1 is   Relation-like   NAT  -defined   REAL  -valued   Function-like  V36()  FinSequence-like   FinSubsequence-like   complex-yielding   ext-real-valued   real-valued   finite-support   FinSequence of  REAL 
 
 Sum (sqr n1) is  V11()  real   ext-real   Element of  REAL 
 
 sqrt (Sum (sqr n1)) is  V11()  real   ext-real   Element of  REAL 
 
(Mx2Tran (TR,n,p,q)) . n1 is   Relation-like   NAT  -defined   Function-like  V36() TR -element   FinSequence-like   FinSubsequence-like   complex-yielding   ext-real-valued   real-valued   finite-support   Element of  the carrier of (TOP-REAL TR)
 
|.((Mx2Tran (TR,n,p,q)) . n1).| is  V11()  real   ext-real   non  negative   Element of  REAL 
 
 sqr ((Mx2Tran (TR,n,p,q)) . n1) is   Relation-like   NAT  -defined   REAL  -valued   Function-like  V36()  FinSequence-like   FinSubsequence-like   complex-yielding   ext-real-valued   real-valued   finite-support   FinSequence of  REAL 
 
 Sum (sqr ((Mx2Tran (TR,n,p,q)) . n1)) is  V11()  real   ext-real   Element of  REAL 
 
 sqrt (Sum (sqr ((Mx2Tran (TR,n,p,q)) . n1))) is  V11()  real   ext-real   Element of  REAL 
 
 @ n1 is   Relation-like   NAT  -defined   the carrier of F_Real -valued   Function-like  V36()  FinSequence-like   FinSubsequence-like   complex-yielding   ext-real-valued   real-valued   finite-support   FinSequence of  the carrier of F_Real
 
 @ (@ n1) is   Relation-like   NAT  -defined   REAL  -valued   Function-like  V36()  FinSequence-like   FinSubsequence-like   complex-yielding   ext-real-valued   real-valued   finite-support   FinSequence of  REAL 
 
p -' 1 is   ordinal   natural  V11()  real   ext-real   non  negative  V36()  cardinal  V85() V86() V155() V156() V157() V158() V159() V160()  Element of  NAT 
 
f is   Relation-like   NAT  -defined   REAL  -valued   Function-like  V36()  FinSequence-like   FinSubsequence-like   complex-yielding   ext-real-valued   real-valued   finite-support   FinSequence of  REAL 
 
f | (p -' 1) is   Relation-like   NAT  -defined   REAL  -valued   Function-like  V36()  FinSequence-like   FinSubsequence-like   complex-yielding   ext-real-valued   real-valued   finite-support   FinSequence of  REAL 
 
 Seg (p -' 1) is  V16() V36() p -' 1 -element  V155() V156() V157() V158() V159() V160()  Element of  bool NAT
 
 {  b1 where b1 is   ordinal   natural  V11()  real   ext-real   non  negative  V36()  cardinal  V85() V86() V155() V156() V157() V158() V159() V160()  Element of  NAT  : ( 1 <= b1 & b1 <= p -' 1 )  }   is    set 
 
f | (Seg (p -' 1)) is   Relation-like   NAT  -defined   Seg (p -' 1) -defined   NAT  -defined   REAL  -valued   Function-like  V36()  FinSubsequence-like   complex-yielding   ext-real-valued   real-valued   finite-support   set 
 
q -' p is   ordinal   natural  V11()  real   ext-real   non  negative  V36()  cardinal  V85() V86() V155() V156() V157() V158() V159() V160()  Element of  NAT 
 
(q -' p) -' 1 is   ordinal   natural  V11()  real   ext-real   non  negative  V36()  cardinal  V85() V86() V155() V156() V157() V158() V159() V160()  Element of  NAT 
 
f /^ p is   Relation-like   NAT  -defined   REAL  -valued   Function-like  V36()  FinSequence-like   FinSubsequence-like   complex-yielding   ext-real-valued   real-valued   finite-support   FinSequence of  REAL 
 
(f /^ p) | ((q -' p) -' 1) is   Relation-like   NAT  -defined   REAL  -valued   Function-like  V36()  FinSequence-like   FinSubsequence-like   complex-yielding   ext-real-valued   real-valued   finite-support   FinSequence of  REAL 
 
 Seg ((q -' p) -' 1) is  V16() V36() (q -' p) -' 1 -element  V155() V156() V157() V158() V159() V160()  Element of  bool NAT
 
 {  b1 where b1 is   ordinal   natural  V11()  real   ext-real   non  negative  V36()  cardinal  V85() V86() V155() V156() V157() V158() V159() V160()  Element of  NAT  : ( 1 <= b1 & b1 <= (q -' p) -' 1 )  }   is    set 
 
(f /^ p) | (Seg ((q -' p) -' 1)) is   Relation-like   NAT  -defined   Seg ((q -' p) -' 1) -defined   NAT  -defined   REAL  -valued   Function-like  V36()  FinSubsequence-like   complex-yielding   ext-real-valued   real-valued   finite-support   set 
 
f /^ q is   Relation-like   NAT  -defined   REAL  -valued   Function-like  V36()  FinSequence-like   FinSubsequence-like   complex-yielding   ext-real-valued   real-valued   finite-support   FinSequence of  REAL 
 
 sin n is  V11()  real   ext-real   set 
 
 cos n is  V11()  real   ext-real   set 
 
f . p is  V11()  real   ext-real   Element of  REAL 
 
f . q is  V11()  real   ext-real   Element of  REAL 
 
z is  V11()  real   ext-real   Element of  REAL 
 
<*z*> is   non  empty   trivial   Relation-like   NAT  -defined   REAL  -valued   Function-like   one-to-one   constant  V36() 1 -element   FinSequence-like   FinSubsequence-like   complex-yielding   ext-real-valued   real-valued  V149()  decreasing   non-decreasing   non-increasing   finite-support   Element of 1 -tuples_on REAL
 
1 -tuples_on REAL is   non  empty   functional   FinSequence-membered   FinSequenceSet of  REAL 
 
[1,z] is    set 
 
{1,z} is   non  empty  V36() V155() V156() V157()  set 
 
{{1,z},{1}} is   non  empty  V36() V40()  set 
 
{[1,z]} is   non  empty   trivial   Relation-like   Function-like   constant  V36() 1 -element   finite-support   set 
 
 sqr <*z*> is   non  empty   trivial   Relation-like   NAT  -defined   REAL  -valued   Function-like   one-to-one   constant  V36() 1 -element   FinSequence-like   FinSubsequence-like   complex-yielding   ext-real-valued   real-valued  V149()  decreasing   non-decreasing   non-increasing   finite-support   Element of 1 -tuples_on REAL
 
z ^2  is  V11()  real   ext-real   Element of  REAL 
 
z * z is  V11()  real   ext-real   set 
 
<*(z ^2)*> is   non  empty   trivial   Relation-like   NAT  -defined   REAL  -valued   Function-like   one-to-one   constant  V36() 1 -element   FinSequence-like   FinSubsequence-like   complex-yielding   ext-real-valued   real-valued  V149()  decreasing   non-decreasing   non-increasing   finite-support   Element of 1 -tuples_on REAL
 
[1,(z ^2)] is    set 
 
{1,(z ^2)} is   non  empty  V36() V155() V156() V157()  set 
 
{{1,(z ^2)},{1}} is   non  empty  V36() V40()  set 
 
{[1,(z ^2)]} is   non  empty   trivial   Relation-like   Function-like   constant  V36() 1 -element   finite-support   set 
 
z * (cos n) is  V11()  real   ext-real   Element of  REAL 
 
z is  V11()  real   ext-real   Element of  REAL 
 
 - (sin n) is  V11()  real   ext-real   set 
 
z * (- (sin n)) is  V11()  real   ext-real   Element of  REAL 
 
(z * (cos n)) + (z * (- (sin n))) is  V11()  real   ext-real   Element of  REAL 
 
z * (sin n) is  V11()  real   ext-real   Element of  REAL 
 
z * (cos n) is  V11()  real   ext-real   Element of  REAL 
 
(z * (sin n)) + (z * (cos n)) is  V11()  real   ext-real   Element of  REAL 
 
<*((z * (cos n)) + (z * (- (sin n))))*> is   non  empty   trivial   Relation-like   NAT  -defined   REAL  -valued   Function-like   one-to-one   constant  V36() 1 -element   FinSequence-like   FinSubsequence-like   complex-yielding   ext-real-valued   real-valued  V149()  decreasing   non-decreasing   non-increasing   finite-support   Element of 1 -tuples_on REAL
 
[1,((z * (cos n)) + (z * (- (sin n))))] is    set 
 
{1,((z * (cos n)) + (z * (- (sin n))))} is   non  empty  V36() V155() V156() V157()  set 
 
{{1,((z * (cos n)) + (z * (- (sin n))))},{1}} is   non  empty  V36() V40()  set 
 
{[1,((z * (cos n)) + (z * (- (sin n))))]} is   non  empty   trivial   Relation-like   Function-like   constant  V36() 1 -element   finite-support   set 
 
 sqr <*((z * (cos n)) + (z * (- (sin n))))*> is   non  empty   trivial   Relation-like   NAT  -defined   REAL  -valued   Function-like   one-to-one   constant  V36() 1 -element   FinSequence-like   FinSubsequence-like   complex-yielding   ext-real-valued   real-valued  V149()  decreasing   non-decreasing   non-increasing   finite-support   Element of 1 -tuples_on REAL
 
((z * (cos n)) + (z * (- (sin n)))) ^2  is  V11()  real   ext-real   Element of  REAL 
 
((z * (cos n)) + (z * (- (sin n)))) * ((z * (cos n)) + (z * (- (sin n)))) is  V11()  real   ext-real   set 
 
<*(((z * (cos n)) + (z * (- (sin n)))) ^2)*> is   non  empty   trivial   Relation-like   NAT  -defined   REAL  -valued   Function-like   one-to-one   constant  V36() 1 -element   FinSequence-like   FinSubsequence-like   complex-yielding   ext-real-valued   real-valued  V149()  decreasing   non-decreasing   non-increasing   finite-support   Element of 1 -tuples_on REAL
 
[1,(((z * (cos n)) + (z * (- (sin n)))) ^2)] is    set 
 
{1,(((z * (cos n)) + (z * (- (sin n)))) ^2)} is   non  empty  V36() V155() V156() V157()  set 
 
{{1,(((z * (cos n)) + (z * (- (sin n)))) ^2)},{1}} is   non  empty  V36() V40()  set 
 
{[1,(((z * (cos n)) + (z * (- (sin n)))) ^2)]} is   non  empty   trivial   Relation-like   Function-like   constant  V36() 1 -element   finite-support   set 
 
<*((z * (sin n)) + (z * (cos n)))*> is   non  empty   trivial   Relation-like   NAT  -defined   REAL  -valued   Function-like   one-to-one   constant  V36() 1 -element   FinSequence-like   FinSubsequence-like   complex-yielding   ext-real-valued   real-valued  V149()  decreasing   non-decreasing   non-increasing   finite-support   Element of 1 -tuples_on REAL
 
[1,((z * (sin n)) + (z * (cos n)))] is    set 
 
{1,((z * (sin n)) + (z * (cos n)))} is   non  empty  V36() V155() V156() V157()  set 
 
{{1,((z * (sin n)) + (z * (cos n)))},{1}} is   non  empty  V36() V40()  set 
 
{[1,((z * (sin n)) + (z * (cos n)))]} is   non  empty   trivial   Relation-like   Function-like   constant  V36() 1 -element   finite-support   set 
 
 sqr <*((z * (sin n)) + (z * (cos n)))*> is   non  empty   trivial   Relation-like   NAT  -defined   REAL  -valued   Function-like   one-to-one   constant  V36() 1 -element   FinSequence-like   FinSubsequence-like   complex-yielding   ext-real-valued   real-valued  V149()  decreasing   non-decreasing   non-increasing   finite-support   Element of 1 -tuples_on REAL
 
((z * (sin n)) + (z * (cos n))) ^2  is  V11()  real   ext-real   Element of  REAL 
 
((z * (sin n)) + (z * (cos n))) * ((z * (sin n)) + (z * (cos n))) is  V11()  real   ext-real   set 
 
<*(((z * (sin n)) + (z * (cos n))) ^2)*> is   non  empty   trivial   Relation-like   NAT  -defined   REAL  -valued   Function-like   one-to-one   constant  V36() 1 -element   FinSequence-like   FinSubsequence-like   complex-yielding   ext-real-valued   real-valued  V149()  decreasing   non-decreasing   non-increasing   finite-support   Element of 1 -tuples_on REAL
 
[1,(((z * (sin n)) + (z * (cos n))) ^2)] is    set 
 
{1,(((z * (sin n)) + (z * (cos n))) ^2)} is   non  empty  V36() V155() V156() V157()  set 
 
{{1,(((z * (sin n)) + (z * (cos n))) ^2)},{1}} is   non  empty  V36() V40()  set 
 
{[1,(((z * (sin n)) + (z * (cos n))) ^2)]} is   non  empty   trivial   Relation-like   Function-like   constant  V36() 1 -element   finite-support   set 
 
<*z*> is   non  empty   trivial   Relation-like   NAT  -defined   REAL  -valued   Function-like   one-to-one   constant  V36() 1 -element   FinSequence-like   FinSubsequence-like   complex-yielding   ext-real-valued   real-valued  V149()  decreasing   non-decreasing   non-increasing   finite-support   Element of 1 -tuples_on REAL
 
[1,z] is    set 
 
{1,z} is   non  empty  V36() V155() V156() V157()  set 
 
{{1,z},{1}} is   non  empty  V36() V40()  set 
 
{[1,z]} is   non  empty   trivial   Relation-like   Function-like   constant  V36() 1 -element   finite-support   set 
 
 sqr <*z*> is   non  empty   trivial   Relation-like   NAT  -defined   REAL  -valued   Function-like   one-to-one   constant  V36() 1 -element   FinSequence-like   FinSubsequence-like   complex-yielding   ext-real-valued   real-valued  V149()  decreasing   non-decreasing   non-increasing   finite-support   Element of 1 -tuples_on REAL
 
z ^2  is  V11()  real   ext-real   Element of  REAL 
 
z * z is  V11()  real   ext-real   set 
 
<*(z ^2)*> is   non  empty   trivial   Relation-like   NAT  -defined   REAL  -valued   Function-like   one-to-one   constant  V36() 1 -element   FinSequence-like   FinSubsequence-like   complex-yielding   ext-real-valued   real-valued  V149()  decreasing   non-decreasing   non-increasing   finite-support   Element of 1 -tuples_on REAL
 
[1,(z ^2)] is    set 
 
{1,(z ^2)} is   non  empty  V36() V155() V156() V157()  set 
 
{{1,(z ^2)},{1}} is   non  empty  V36() V40()  set 
 
{[1,(z ^2)]} is   non  empty   trivial   Relation-like   Function-like   constant  V36() 1 -element   finite-support   set 
 
 len n1 is   ordinal   natural  V11()  real   ext-real   non  negative  V36()  cardinal  V85() V86() V155() V156() V157() V158() V159() V160()  Element of  NAT 
 
(f | (p -' 1)) ^ <*z*> is   non  empty   Relation-like   NAT  -defined   REAL  -valued   Function-like  V36()  FinSequence-like   FinSubsequence-like   complex-yielding   ext-real-valued   real-valued   finite-support   Element of REAL * 
 
((f | (p -' 1)) ^ <*z*>) ^ ((f /^ p) | ((q -' p) -' 1)) is   non  empty   Relation-like   NAT  -defined   REAL  -valued   Function-like  V36()  FinSequence-like   FinSubsequence-like   complex-yielding   ext-real-valued   real-valued   finite-support   Element of REAL * 
 
(((f | (p -' 1)) ^ <*z*>) ^ ((f /^ p) | ((q -' p) -' 1))) ^ <*z*> is   non  empty   Relation-like   NAT  -defined   REAL  -valued   Function-like  V36()  FinSequence-like   FinSubsequence-like   complex-yielding   ext-real-valued   real-valued   finite-support   Element of REAL * 
 
((((f | (p -' 1)) ^ <*z*>) ^ ((f /^ p) | ((q -' p) -' 1))) ^ <*z*>) ^ (f /^ q) is   non  empty   Relation-like   NAT  -defined   REAL  -valued   Function-like  V36()  FinSequence-like   FinSubsequence-like   complex-yielding   ext-real-valued   real-valued   finite-support   Element of REAL * 
 
 sqr ((((f | (p -' 1)) ^ <*z*>) ^ ((f /^ p) | ((q -' p) -' 1))) ^ <*z*>) is   Relation-like   NAT  -defined   REAL  -valued   Function-like  V36()  FinSequence-like   FinSubsequence-like   complex-yielding   ext-real-valued   real-valued   finite-support   FinSequence of  REAL 
 
 sqr (f /^ q) is   Relation-like   NAT  -defined   REAL  -valued   Function-like  V36()  FinSequence-like   FinSubsequence-like   complex-yielding   ext-real-valued   real-valued   finite-support   FinSequence of  REAL 
 
(sqr ((((f | (p -' 1)) ^ <*z*>) ^ ((f /^ p) | ((q -' p) -' 1))) ^ <*z*>)) ^ (sqr (f /^ q)) is   Relation-like   NAT  -defined   REAL  -valued   Function-like  V36()  FinSequence-like   FinSubsequence-like   complex-yielding   ext-real-valued   real-valued   finite-support   Element of REAL * 
 
 sqr (((f | (p -' 1)) ^ <*z*>) ^ ((f /^ p) | ((q -' p) -' 1))) is   Relation-like   NAT  -defined   REAL  -valued   Function-like  V36()  FinSequence-like   FinSubsequence-like   complex-yielding   ext-real-valued   real-valued   finite-support   FinSequence of  REAL 
 
(sqr (((f | (p -' 1)) ^ <*z*>) ^ ((f /^ p) | ((q -' p) -' 1)))) ^ (sqr <*z*>) is   non  empty   Relation-like   NAT  -defined   REAL  -valued   Function-like  V36()  FinSequence-like   FinSubsequence-like   complex-yielding   ext-real-valued   real-valued   finite-support   Element of REAL * 
 
((sqr (((f | (p -' 1)) ^ <*z*>) ^ ((f /^ p) | ((q -' p) -' 1)))) ^ (sqr <*z*>)) ^ (sqr (f /^ q)) is   non  empty   Relation-like   NAT  -defined   REAL  -valued   Function-like  V36()  FinSequence-like   FinSubsequence-like   complex-yielding   ext-real-valued   real-valued   finite-support   Element of REAL * 
 
 sqr ((f | (p -' 1)) ^ <*z*>) is   Relation-like   NAT  -defined   REAL  -valued   Function-like  V36()  FinSequence-like   FinSubsequence-like   complex-yielding   ext-real-valued   real-valued   finite-support   FinSequence of  REAL 
 
 sqr ((f /^ p) | ((q -' p) -' 1)) is   Relation-like   NAT  -defined   REAL  -valued   Function-like  V36()  FinSequence-like   FinSubsequence-like   complex-yielding   ext-real-valued   real-valued   finite-support   FinSequence of  REAL 
 
(sqr ((f | (p -' 1)) ^ <*z*>)) ^ (sqr ((f /^ p) | ((q -' p) -' 1))) is   Relation-like   NAT  -defined   REAL  -valued   Function-like  V36()  FinSequence-like   FinSubsequence-like   complex-yielding   ext-real-valued   real-valued   finite-support   Element of REAL * 
 
((sqr ((f | (p -' 1)) ^ <*z*>)) ^ (sqr ((f /^ p) | ((q -' p) -' 1)))) ^ (sqr <*z*>) is   non  empty   Relation-like   NAT  -defined   REAL  -valued   Function-like  V36()  FinSequence-like   FinSubsequence-like   complex-yielding   ext-real-valued   real-valued   finite-support   Element of REAL * 
 
(((sqr ((f | (p -' 1)) ^ <*z*>)) ^ (sqr ((f /^ p) | ((q -' p) -' 1)))) ^ (sqr <*z*>)) ^ (sqr (f /^ q)) is   non  empty   Relation-like   NAT  -defined   REAL  -valued   Function-like  V36()  FinSequence-like   FinSubsequence-like   complex-yielding   ext-real-valued   real-valued   finite-support   Element of REAL * 
 
 sqr (f | (p -' 1)) is   Relation-like   NAT  -defined   REAL  -valued   Function-like  V36()  FinSequence-like   FinSubsequence-like   complex-yielding   ext-real-valued   real-valued   finite-support   FinSequence of  REAL 
 
(sqr (f | (p -' 1))) ^ (sqr <*z*>) is   non  empty   Relation-like   NAT  -defined   REAL  -valued   Function-like  V36()  FinSequence-like   FinSubsequence-like   complex-yielding   ext-real-valued   real-valued   finite-support   Element of REAL * 
 
((sqr (f | (p -' 1))) ^ (sqr <*z*>)) ^ (sqr ((f /^ p) | ((q -' p) -' 1))) is   non  empty   Relation-like   NAT  -defined   REAL  -valued   Function-like  V36()  FinSequence-like   FinSubsequence-like   complex-yielding   ext-real-valued   real-valued   finite-support   Element of REAL * 
 
(((sqr (f | (p -' 1))) ^ (sqr <*z*>)) ^ (sqr ((f /^ p) | ((q -' p) -' 1)))) ^ (sqr <*z*>) is   non  empty   Relation-like   NAT  -defined   REAL  -valued   Function-like  V36()  FinSequence-like   FinSubsequence-like   complex-yielding   ext-real-valued   real-valued   finite-support   Element of REAL * 
 
((((sqr (f | (p -' 1))) ^ (sqr <*z*>)) ^ (sqr ((f /^ p) | ((q -' p) -' 1)))) ^ (sqr <*z*>)) ^ (sqr (f /^ q)) is   non  empty   Relation-like   NAT  -defined   REAL  -valued   Function-like  V36()  FinSequence-like   FinSubsequence-like   complex-yielding   ext-real-valued   real-valued   finite-support   Element of REAL * 
 
 Sum ((((sqr (f | (p -' 1))) ^ (sqr <*z*>)) ^ (sqr ((f /^ p) | ((q -' p) -' 1)))) ^ (sqr <*z*>)) is  V11()  real   ext-real   Element of  REAL 
 
 Sum (sqr (f /^ q)) is  V11()  real   ext-real   Element of  REAL 
 
(Sum ((((sqr (f | (p -' 1))) ^ (sqr <*z*>)) ^ (sqr ((f /^ p) | ((q -' p) -' 1)))) ^ (sqr <*z*>))) + (Sum (sqr (f /^ q))) is  V11()  real   ext-real   Element of  REAL 
 
 Sum (((sqr (f | (p -' 1))) ^ (sqr <*z*>)) ^ (sqr ((f /^ p) | ((q -' p) -' 1)))) is  V11()  real   ext-real   Element of  REAL 
 
(Sum (((sqr (f | (p -' 1))) ^ (sqr <*z*>)) ^ (sqr ((f /^ p) | ((q -' p) -' 1))))) + (z ^2) is  V11()  real   ext-real   Element of  REAL 
 
((Sum (((sqr (f | (p -' 1))) ^ (sqr <*z*>)) ^ (sqr ((f /^ p) | ((q -' p) -' 1))))) + (z ^2)) + (Sum (sqr (f /^ q))) is  V11()  real   ext-real   Element of  REAL 
 
 Sum ((sqr (f | (p -' 1))) ^ (sqr <*z*>)) is  V11()  real   ext-real   Element of  REAL 
 
 Sum (sqr ((f /^ p) | ((q -' p) -' 1))) is  V11()  real   ext-real   Element of  REAL 
 
(Sum ((sqr (f | (p -' 1))) ^ (sqr <*z*>))) + (Sum (sqr ((f /^ p) | ((q -' p) -' 1)))) is  V11()  real   ext-real   Element of  REAL 
 
((Sum ((sqr (f | (p -' 1))) ^ (sqr <*z*>))) + (Sum (sqr ((f /^ p) | ((q -' p) -' 1))))) + (z ^2) is  V11()  real   ext-real   Element of  REAL 
 
(((Sum ((sqr (f | (p -' 1))) ^ (sqr <*z*>))) + (Sum (sqr ((f /^ p) | ((q -' p) -' 1))))) + (z ^2)) + (Sum (sqr (f /^ q))) is  V11()  real   ext-real   Element of  REAL 
 
 Sum (sqr (f | (p -' 1))) is  V11()  real   ext-real   Element of  REAL 
 
(Sum (sqr (f | (p -' 1)))) + (z ^2) is  V11()  real   ext-real   Element of  REAL 
 
((Sum (sqr (f | (p -' 1)))) + (z ^2)) + (Sum (sqr ((f /^ p) | ((q -' p) -' 1)))) is  V11()  real   ext-real   Element of  REAL 
 
(((Sum (sqr (f | (p -' 1)))) + (z ^2)) + (Sum (sqr ((f /^ p) | ((q -' p) -' 1))))) + (z ^2) is  V11()  real   ext-real   Element of  REAL 
 
((((Sum (sqr (f | (p -' 1)))) + (z ^2)) + (Sum (sqr ((f /^ p) | ((q -' p) -' 1))))) + (z ^2)) + (Sum (sqr (f /^ q))) is  V11()  real   ext-real   Element of  REAL 
 
(cos n) * (cos n) is  V11()  real   ext-real   set 
 
(sin n) * (sin n) is  V11()  real   ext-real   set 
 
((cos n) * (cos n)) + ((sin n) * (sin n)) is  V11()  real   ext-real   set 
 
(((z * (cos n)) + (z * (- (sin n)))) ^2) + (((z * (sin n)) + (z * (cos n))) ^2) is  V11()  real   ext-real   Element of  REAL 
 
z * z is  V11()  real   ext-real   Element of  REAL 
 
(z * z) * (((cos n) * (cos n)) + ((sin n) * (sin n))) is  V11()  real   ext-real   Element of  REAL 
 
z * z is  V11()  real   ext-real   Element of  REAL 
 
(z * z) * (((cos n) * (cos n)) + ((sin n) * (sin n))) is  V11()  real   ext-real   Element of  REAL 
 
((z * z) * (((cos n) * (cos n)) + ((sin n) * (sin n)))) + ((z * z) * (((cos n) * (cos n)) + ((sin n) * (sin n)))) is  V11()  real   ext-real   Element of  REAL 
 
(z ^2) + (z ^2) is  V11()  real   ext-real   Element of  REAL 
 
(f | (p -' 1)) ^ <*((z * (cos n)) + (z * (- (sin n))))*> is   non  empty   Relation-like   NAT  -defined   REAL  -valued   Function-like  V36()  FinSequence-like   FinSubsequence-like   complex-yielding   ext-real-valued   real-valued   finite-support   Element of REAL * 
 
((f | (p -' 1)) ^ <*((z * (cos n)) + (z * (- (sin n))))*>) ^ ((f /^ p) | ((q -' p) -' 1)) is   non  empty   Relation-like   NAT  -defined   REAL  -valued   Function-like  V36()  FinSequence-like   FinSubsequence-like   complex-yielding   ext-real-valued   real-valued   finite-support   Element of REAL * 
 
(((f | (p -' 1)) ^ <*((z * (cos n)) + (z * (- (sin n))))*>) ^ ((f /^ p) | ((q -' p) -' 1))) ^ <*((z * (sin n)) + (z * (cos n)))*> is   non  empty   Relation-like   NAT  -defined   REAL  -valued   Function-like  V36()  FinSequence-like   FinSubsequence-like   complex-yielding   ext-real-valued   real-valued   finite-support   Element of REAL * 
 
((((f | (p -' 1)) ^ <*((z * (cos n)) + (z * (- (sin n))))*>) ^ ((f /^ p) | ((q -' p) -' 1))) ^ <*((z * (sin n)) + (z * (cos n)))*>) ^ (f /^ q) is   non  empty   Relation-like   NAT  -defined   REAL  -valued   Function-like  V36()  FinSequence-like   FinSubsequence-like   complex-yielding   ext-real-valued   real-valued   finite-support   Element of REAL * 
 
 sqr ((((f | (p -' 1)) ^ <*((z * (cos n)) + (z * (- (sin n))))*>) ^ ((f /^ p) | ((q -' p) -' 1))) ^ <*((z * (sin n)) + (z * (cos n)))*>) is   Relation-like   NAT  -defined   REAL  -valued   Function-like  V36()  FinSequence-like   FinSubsequence-like   complex-yielding   ext-real-valued   real-valued   finite-support   FinSequence of  REAL 
 
(sqr ((((f | (p -' 1)) ^ <*((z * (cos n)) + (z * (- (sin n))))*>) ^ ((f /^ p) | ((q -' p) -' 1))) ^ <*((z * (sin n)) + (z * (cos n)))*>)) ^ (sqr (f /^ q)) is   Relation-like   NAT  -defined   REAL  -valued   Function-like  V36()  FinSequence-like   FinSubsequence-like   complex-yielding   ext-real-valued   real-valued   finite-support   Element of REAL * 
 
 sqr (((f | (p -' 1)) ^ <*((z * (cos n)) + (z * (- (sin n))))*>) ^ ((f /^ p) | ((q -' p) -' 1))) is   Relation-like   NAT  -defined   REAL  -valued   Function-like  V36()  FinSequence-like   FinSubsequence-like   complex-yielding   ext-real-valued   real-valued   finite-support   FinSequence of  REAL 
 
(sqr (((f | (p -' 1)) ^ <*((z * (cos n)) + (z * (- (sin n))))*>) ^ ((f /^ p) | ((q -' p) -' 1)))) ^ (sqr <*((z * (sin n)) + (z * (cos n)))*>) is   non  empty   Relation-like   NAT  -defined   REAL  -valued   Function-like  V36()  FinSequence-like   FinSubsequence-like   complex-yielding   ext-real-valued   real-valued   finite-support   Element of REAL * 
 
((sqr (((f | (p -' 1)) ^ <*((z * (cos n)) + (z * (- (sin n))))*>) ^ ((f /^ p) | ((q -' p) -' 1)))) ^ (sqr <*((z * (sin n)) + (z * (cos n)))*>)) ^ (sqr (f /^ q)) is   non  empty   Relation-like   NAT  -defined   REAL  -valued   Function-like  V36()  FinSequence-like   FinSubsequence-like   complex-yielding   ext-real-valued   real-valued   finite-support   Element of REAL * 
 
 sqr ((f | (p -' 1)) ^ <*((z * (cos n)) + (z * (- (sin n))))*>) is   Relation-like   NAT  -defined   REAL  -valued   Function-like  V36()  FinSequence-like   FinSubsequence-like   complex-yielding   ext-real-valued   real-valued   finite-support   FinSequence of  REAL 
 
(sqr ((f | (p -' 1)) ^ <*((z * (cos n)) + (z * (- (sin n))))*>)) ^ (sqr ((f /^ p) | ((q -' p) -' 1))) is   Relation-like   NAT  -defined   REAL  -valued   Function-like  V36()  FinSequence-like   FinSubsequence-like   complex-yielding   ext-real-valued   real-valued   finite-support   Element of REAL * 
 
((sqr ((f | (p -' 1)) ^ <*((z * (cos n)) + (z * (- (sin n))))*>)) ^ (sqr ((f /^ p) | ((q -' p) -' 1)))) ^ (sqr <*((z * (sin n)) + (z * (cos n)))*>) is   non  empty   Relation-like   NAT  -defined   REAL  -valued   Function-like  V36()  FinSequence-like   FinSubsequence-like   complex-yielding   ext-real-valued   real-valued   finite-support   Element of REAL * 
 
(((sqr ((f | (p -' 1)) ^ <*((z * (cos n)) + (z * (- (sin n))))*>)) ^ (sqr ((f /^ p) | ((q -' p) -' 1)))) ^ (sqr <*((z * (sin n)) + (z * (cos n)))*>)) ^ (sqr (f /^ q)) is   non  empty   Relation-like   NAT  -defined   REAL  -valued   Function-like  V36()  FinSequence-like   FinSubsequence-like   complex-yielding   ext-real-valued   real-valued   finite-support   Element of REAL * 
 
(sqr (f | (p -' 1))) ^ (sqr <*((z * (cos n)) + (z * (- (sin n))))*>) is   non  empty   Relation-like   NAT  -defined   REAL  -valued   Function-like  V36()  FinSequence-like   FinSubsequence-like   complex-yielding   ext-real-valued   real-valued   finite-support   Element of REAL * 
 
((sqr (f | (p -' 1))) ^ (sqr <*((z * (cos n)) + (z * (- (sin n))))*>)) ^ (sqr ((f /^ p) | ((q -' p) -' 1))) is   non  empty   Relation-like   NAT  -defined   REAL  -valued   Function-like  V36()  FinSequence-like   FinSubsequence-like   complex-yielding   ext-real-valued   real-valued   finite-support   Element of REAL * 
 
(((sqr (f | (p -' 1))) ^ (sqr <*((z * (cos n)) + (z * (- (sin n))))*>)) ^ (sqr ((f /^ p) | ((q -' p) -' 1)))) ^ (sqr <*((z * (sin n)) + (z * (cos n)))*>) is   non  empty   Relation-like   NAT  -defined   REAL  -valued   Function-like  V36()  FinSequence-like   FinSubsequence-like   complex-yielding   ext-real-valued   real-valued   finite-support   Element of REAL * 
 
((((sqr (f | (p -' 1))) ^ (sqr <*((z * (cos n)) + (z * (- (sin n))))*>)) ^ (sqr ((f /^ p) | ((q -' p) -' 1)))) ^ (sqr <*((z * (sin n)) + (z * (cos n)))*>)) ^ (sqr (f /^ q)) is   non  empty   Relation-like   NAT  -defined   REAL  -valued   Function-like  V36()  FinSequence-like   FinSubsequence-like   complex-yielding   ext-real-valued   real-valued   finite-support   Element of REAL * 
 
 Sum ((((sqr (f | (p -' 1))) ^ (sqr <*((z * (cos n)) + (z * (- (sin n))))*>)) ^ (sqr ((f /^ p) | ((q -' p) -' 1)))) ^ (sqr <*((z * (sin n)) + (z * (cos n)))*>)) is  V11()  real   ext-real   Element of  REAL 
 
(Sum ((((sqr (f | (p -' 1))) ^ (sqr <*((z * (cos n)) + (z * (- (sin n))))*>)) ^ (sqr ((f /^ p) | ((q -' p) -' 1)))) ^ (sqr <*((z * (sin n)) + (z * (cos n)))*>))) + (Sum (sqr (f /^ q))) is  V11()  real   ext-real   Element of  REAL 
 
 Sum (((sqr (f | (p -' 1))) ^ (sqr <*((z * (cos n)) + (z * (- (sin n))))*>)) ^ (sqr ((f /^ p) | ((q -' p) -' 1)))) is  V11()  real   ext-real   Element of  REAL 
 
(Sum (((sqr (f | (p -' 1))) ^ (sqr <*((z * (cos n)) + (z * (- (sin n))))*>)) ^ (sqr ((f /^ p) | ((q -' p) -' 1))))) + (((z * (sin n)) + (z * (cos n))) ^2) is  V11()  real   ext-real   Element of  REAL 
 
((Sum (((sqr (f | (p -' 1))) ^ (sqr <*((z * (cos n)) + (z * (- (sin n))))*>)) ^ (sqr ((f /^ p) | ((q -' p) -' 1))))) + (((z * (sin n)) + (z * (cos n))) ^2)) + (Sum (sqr (f /^ q))) is  V11()  real   ext-real   Element of  REAL 
 
 Sum ((sqr (f | (p -' 1))) ^ (sqr <*((z * (cos n)) + (z * (- (sin n))))*>)) is  V11()  real   ext-real   Element of  REAL 
 
(Sum ((sqr (f | (p -' 1))) ^ (sqr <*((z * (cos n)) + (z * (- (sin n))))*>))) + (Sum (sqr ((f /^ p) | ((q -' p) -' 1)))) is  V11()  real   ext-real   Element of  REAL 
 
((Sum ((sqr (f | (p -' 1))) ^ (sqr <*((z * (cos n)) + (z * (- (sin n))))*>))) + (Sum (sqr ((f /^ p) | ((q -' p) -' 1))))) + (((z * (sin n)) + (z * (cos n))) ^2) is  V11()  real   ext-real   Element of  REAL 
 
(((Sum ((sqr (f | (p -' 1))) ^ (sqr <*((z * (cos n)) + (z * (- (sin n))))*>))) + (Sum (sqr ((f /^ p) | ((q -' p) -' 1))))) + (((z * (sin n)) + (z * (cos n))) ^2)) + (Sum (sqr (f /^ q))) is  V11()  real   ext-real   Element of  REAL 
 
(Sum (sqr (f | (p -' 1)))) + (((z * (cos n)) + (z * (- (sin n)))) ^2) is  V11()  real   ext-real   Element of  REAL 
 
((Sum (sqr (f | (p -' 1)))) + (((z * (cos n)) + (z * (- (sin n)))) ^2)) + (Sum (sqr ((f /^ p) | ((q -' p) -' 1)))) is  V11()  real   ext-real   Element of  REAL 
 
(((Sum (sqr (f | (p -' 1)))) + (((z * (cos n)) + (z * (- (sin n)))) ^2)) + (Sum (sqr ((f /^ p) | ((q -' p) -' 1))))) + (((z * (sin n)) + (z * (cos n))) ^2) is  V11()  real   ext-real   Element of  REAL 
 
((((Sum (sqr (f | (p -' 1)))) + (((z * (cos n)) + (z * (- (sin n)))) ^2)) + (Sum (sqr ((f /^ p) | ((q -' p) -' 1))))) + (((z * (sin n)) + (z * (cos n))) ^2)) + (Sum (sqr (f /^ q))) is  V11()  real   ext-real   Element of  REAL 
 
n is  V11()  real   ext-real   set 
 
p is   ordinal   natural  V11()  real   ext-real   non  negative  V36()  cardinal  V85()  set 
 
q is   ordinal   natural  V11()  real   ext-real   non  negative  V36()  cardinal  V85()  set 
 
TR is   ordinal   natural  V11()  real   ext-real   non  negative  V36()  cardinal  V85()  set 
 
(TR,n,p,q) is   Relation-like   NAT  -defined   the carrier of F_Real *  -valued   Function-like  V36()  FinSequence-like   FinSubsequence-like   FinSequence-yielding   finite-support   Function-yielding  V235()  tabular   invertible   Matrix of TR,TR, the carrier of F_Real
 
 Mx2Tran (TR,n,p,q) is   non  empty   Relation-like   the carrier of (TOP-REAL TR) -defined   the carrier of (TOP-REAL TR) -valued   Function-like   total   quasi_total   additive   FinSequence-yielding   homogeneous   Function-yielding  V235()  being_homeomorphism   Element of  bool [: the carrier of (TOP-REAL TR), the carrier of (TOP-REAL TR):]
 
 TOP-REAL TR is   non  empty   TopSpace-like   right_complementable   constituted-Functions   constituted-FinSeqs  V189() V190() V191() V192() V193() V194() V195() V228() L16()
 
 the carrier of (TOP-REAL TR) is   non  empty   set 
 
[: the carrier of (TOP-REAL TR), the carrier of (TOP-REAL TR):] is   non  empty   Relation-like   set 
 
 bool [: the carrier of (TOP-REAL TR), the carrier of (TOP-REAL TR):] is   non  empty   set 
 
 GFuncs  the carrier of (TOP-REAL TR) is   non  empty   strict   unital   associative   constituted-Functions   SubStr of  GPFuncs  the carrier of (TOP-REAL TR)
 
 GPFuncs  the carrier of (TOP-REAL TR) is   non  empty   strict   unital   associative   constituted-Functions   multMagma 
 
 the carrier of (GFuncs  the carrier of (TOP-REAL TR)) is   non  empty   set 
 
1 -tuples_on  the carrier of (GFuncs  the carrier of (TOP-REAL TR)) is   non  empty   functional   FinSequence-membered   FinSequenceSet of  the carrier of (GFuncs  the carrier of (TOP-REAL TR))
 
X is   Relation-like   Function-like   Element of  the carrier of (GFuncs  the carrier of (TOP-REAL TR))
 
<*X*> is   non  empty   trivial   Relation-like   NAT  -defined   the carrier of (GFuncs  the carrier of (TOP-REAL TR)) -valued   Function-like   constant  V36() 1 -element   FinSequence-like   FinSubsequence-like   finite-support   Function-yielding  V235() V282()  Element of 1 -tuples_on  the carrier of (GFuncs  the carrier of (TOP-REAL TR))
 
[1,X] is    set 
 
{1,X} is   non  empty  V36()  set 
 
{{1,X},{1}} is   non  empty  V36() V40()  set 
 
{[1,X]} is   non  empty   trivial   Relation-like   Function-like   constant  V36() 1 -element   finite-support   set 
 
z is   non  empty   trivial   Relation-like   NAT  -defined   the carrier of (GFuncs  the carrier of (TOP-REAL TR)) -valued   Function-like   constant  V36() 1 -element   FinSequence-like   FinSubsequence-like   finite-support   Function-yielding  V235() V282()  Element of 1 -tuples_on  the carrier of (GFuncs  the carrier of (TOP-REAL TR))
 
 Product z is   Relation-like   Function-like   Element of  the carrier of (GFuncs  the carrier of (TOP-REAL TR))
 
 dom z is   non  empty   trivial  V36() 1 -element  V155() V156() V157() V158() V159() V160()  Element of  bool NAT
 
fp is   ordinal   natural  V11()  real   ext-real   non  negative  V36()  cardinal  V85()  set 
 
z . fp is   Relation-like   Function-like   set 
 
{1} is   non  empty   trivial  V36() V40() 1 -element  V155() V156() V157() V158() V159() V160()  Element of  bool NAT
 
z . 1 is   Relation-like   Function-like   set 
 
n is   ordinal   natural  V11()  real   ext-real   non  negative  V36()  cardinal  V85()  set 
 
 TOP-REAL n is   non  empty   TopSpace-like   right_complementable   constituted-Functions   constituted-FinSeqs  V189() V190() V191() V192() V193() V194() V195() V228() L16()
 
 the carrier of (TOP-REAL n) is   non  empty   set 
 
[: the carrier of (TOP-REAL n), the carrier of (TOP-REAL n):] is   non  empty   Relation-like   set 
 
 bool [: the carrier of (TOP-REAL n), the carrier of (TOP-REAL n):] is   non  empty   set 
 
q is   non  empty   Relation-like   the carrier of (TOP-REAL n) -defined   the carrier of (TOP-REAL n) -valued   Function-like   total   quasi_total   FinSequence-yielding   Function-yielding  V235()  Element of  bool [: the carrier of (TOP-REAL n), the carrier of (TOP-REAL n):]
 
TR is   non  empty   Relation-like   the carrier of (TOP-REAL n) -defined   the carrier of (TOP-REAL n) -valued   Function-like   total   quasi_total   FinSequence-yielding   Function-yielding  V235()  Element of  bool [: the carrier of (TOP-REAL n), the carrier of (TOP-REAL n):]
 
q * TR is   non  empty   Relation-like   the carrier of (TOP-REAL n) -defined   the carrier of (TOP-REAL n) -valued   Function-like   total   quasi_total   quasi_total   FinSequence-yielding   Function-yielding  V235()  Element of  bool [: the carrier of (TOP-REAL n), the carrier of (TOP-REAL n):]
 
n1 is   Relation-like   NAT  -defined   Function-like  V36() n -element   FinSequence-like   FinSubsequence-like   complex-yielding   ext-real-valued   real-valued   finite-support   Element of  the carrier of (TOP-REAL n)
 
|.n1.| is  V11()  real   ext-real   non  negative   Element of  REAL 
 
 sqr n1 is   Relation-like   NAT  -defined   REAL  -valued   Function-like  V36()  FinSequence-like   FinSubsequence-like   complex-yielding   ext-real-valued   real-valued   finite-support   FinSequence of  REAL 
 
 Sum (sqr n1) is  V11()  real   ext-real   Element of  REAL 
 
 sqrt (Sum (sqr n1)) is  V11()  real   ext-real   Element of  REAL 
 
(q * TR) . n1 is   Relation-like   NAT  -defined   Function-like  V36() n -element   FinSequence-like   FinSubsequence-like   complex-yielding   ext-real-valued   real-valued   finite-support   Element of  the carrier of (TOP-REAL n)
 
|.((q * TR) . n1).| is  V11()  real   ext-real   non  negative   Element of  REAL 
 
 sqr ((q * TR) . n1) is   Relation-like   NAT  -defined   REAL  -valued   Function-like  V36()  FinSequence-like   FinSubsequence-like   complex-yielding   ext-real-valued   real-valued   finite-support   FinSequence of  REAL 
 
 Sum (sqr ((q * TR) . n1)) is  V11()  real   ext-real   Element of  REAL 
 
 sqrt (Sum (sqr ((q * TR) . n1))) is  V11()  real   ext-real   Element of  REAL 
 
 dom (q * TR) is   non  empty   set 
 
TR . n1 is   Relation-like   NAT  -defined   Function-like  V36() n -element   FinSequence-like   FinSubsequence-like   complex-yielding   ext-real-valued   real-valued   finite-support   Element of  the carrier of (TOP-REAL n)
 
q . (TR . n1) is   Relation-like   NAT  -defined   Function-like  V36() n -element   FinSequence-like   FinSubsequence-like   complex-yielding   ext-real-valued   real-valued   finite-support   Element of  the carrier of (TOP-REAL n)
 
|.(q . (TR . n1)).| is  V11()  real   ext-real   non  negative   Element of  REAL 
 
 sqr (q . (TR . n1)) is   Relation-like   NAT  -defined   REAL  -valued   Function-like  V36()  FinSequence-like   FinSubsequence-like   complex-yielding   ext-real-valued   real-valued   finite-support   FinSequence of  REAL 
 
 Sum (sqr (q . (TR . n1))) is  V11()  real   ext-real   Element of  REAL 
 
 sqrt (Sum (sqr (q . (TR . n1)))) is  V11()  real   ext-real   Element of  REAL 
 
|.(TR . n1).| is  V11()  real   ext-real   non  negative   Element of  REAL 
 
 sqr (TR . n1) is   Relation-like   NAT  -defined   REAL  -valued   Function-like  V36()  FinSequence-like   FinSubsequence-like   complex-yielding   ext-real-valued   real-valued   finite-support   FinSequence of  REAL 
 
 Sum (sqr (TR . n1)) is  V11()  real   ext-real   Element of  REAL 
 
 sqrt (Sum (sqr (TR . n1))) is  V11()  real   ext-real   Element of  REAL 
 
n is   ordinal   natural  V11()  real   ext-real   non  negative  V36()  cardinal  V85()  set 
 
 TOP-REAL n is   non  empty   TopSpace-like   right_complementable   constituted-Functions   constituted-FinSeqs  V189() V190() V191() V192() V193() V194() V195() V228() L16()
 
 the carrier of (TOP-REAL n) is   non  empty   set 
 
[: the carrier of (TOP-REAL n), the carrier of (TOP-REAL n):] is   non  empty   Relation-like   set 
 
 bool [: the carrier of (TOP-REAL n), the carrier of (TOP-REAL n):] is   non  empty   set 
 
 GFuncs  the carrier of (TOP-REAL n) is   non  empty   strict   unital   associative   constituted-Functions   SubStr of  GPFuncs  the carrier of (TOP-REAL n)
 
 GPFuncs  the carrier of (TOP-REAL n) is   non  empty   strict   unital   associative   constituted-Functions   multMagma 
 
TR is   non  empty   Relation-like   the carrier of (TOP-REAL n) -defined   the carrier of (TOP-REAL n) -valued   Function-like   total   quasi_total   FinSequence-yielding   Function-yielding  V235()  Element of  bool [: the carrier of (TOP-REAL n), the carrier of (TOP-REAL n):]
 
 the carrier of (GFuncs  the carrier of (TOP-REAL n)) is   non  empty   set 
 
n1 is   Relation-like   NAT  -defined   the carrier of (GFuncs  the carrier of (TOP-REAL n)) -valued   Function-like  V36()  FinSequence-like   FinSubsequence-like   finite-support   FinSequence of  the carrier of (GFuncs  the carrier of (TOP-REAL n))
 
 Product n1 is   Relation-like   Function-like   Element of  the carrier of (GFuncs  the carrier of (TOP-REAL n))
 
 dom n1 is  V36() V155() V156() V157() V158() V159() V160()  Element of  bool NAT
 
 len n1 is   ordinal   natural  V11()  real   ext-real   non  negative  V36()  cardinal  V85() V86() V155() V156() V157() V158() V159() V160()  Element of  NAT 
 
f is   ordinal   natural  V11()  real   ext-real   non  negative  V36()  cardinal  V85()  set 
 
n1 | f is   Relation-like   NAT  -defined   the carrier of (GFuncs  the carrier of (TOP-REAL n)) -valued   Function-like  V36()  FinSequence-like   FinSubsequence-like   finite-support   FinSequence of  the carrier of (GFuncs  the carrier of (TOP-REAL n))
 
 Seg f is  V16() V36() f -element  V155() V156() V157() V158() V159() V160()  Element of  bool NAT
 
 {  b1 where b1 is   ordinal   natural  V11()  real   ext-real   non  negative  V36()  cardinal  V85() V86() V155() V156() V157() V158() V159() V160()  Element of  NAT  : ( 1 <= b1 & b1 <= f )  }   is    set 
 
n1 | (Seg f) is   Relation-like   NAT  -defined   Seg f -defined   NAT  -defined   the carrier of (GFuncs  the carrier of (TOP-REAL n)) -valued   Function-like  V36()  FinSubsequence-like   finite-support   set 
 
 Product (n1 | f) is   Relation-like   Function-like   Element of  the carrier of (GFuncs  the carrier of (TOP-REAL n))
 
f + 1 is   non  empty   ordinal   natural  V11()  real   ext-real   positive   non  negative  V36()  cardinal  V85() V86() V155() V156() V157() V158() V159() V160()  Element of  NAT 
 
n1 | (f + 1) is   Relation-like   NAT  -defined   the carrier of (GFuncs  the carrier of (TOP-REAL n)) -valued   Function-like  V36()  FinSequence-like   FinSubsequence-like   finite-support   FinSequence of  the carrier of (GFuncs  the carrier of (TOP-REAL n))
 
 Seg (f + 1) is   non  empty  V16() V36() f + 1 -element  f + 1 -element  V155() V156() V157() V158() V159() V160()  Element of  bool NAT
 
 {  b1 where b1 is   ordinal   natural  V11()  real   ext-real   non  negative  V36()  cardinal  V85() V86() V155() V156() V157() V158() V159() V160()  Element of  NAT  : ( 1 <= b1 & b1 <= f + 1 )  }   is    set 
 
n1 | (Seg (f + 1)) is   Relation-like   NAT  -defined   Seg (f + 1) -defined   NAT  -defined   the carrier of (GFuncs  the carrier of (TOP-REAL n)) -valued   Function-like  V36()  FinSubsequence-like   finite-support   set 
 
 Product (n1 | (f + 1)) is   Relation-like   Function-like   Element of  the carrier of (GFuncs  the carrier of (TOP-REAL n))
 
n1 . (f + 1) is    set 
 
fp is   ordinal   natural  V11()  real   ext-real   non  negative  V36()  cardinal  V85()  set 
 
z is   ordinal   natural  V11()  real   ext-real   non  negative  V36()  cardinal  V85()  set 
 
fpz is  V11()  real   ext-real   set 
 
(n,fpz,fp,z) is   Relation-like   NAT  -defined   the carrier of F_Real *  -valued   Function-like  V36()  FinSequence-like   FinSubsequence-like   FinSequence-yielding   finite-support   Function-yielding  V235()  tabular   invertible   Matrix of n,n, the carrier of F_Real
 
 Mx2Tran (n,fpz,fp,z) is   non  empty   Relation-like   the carrier of (TOP-REAL n) -defined   the carrier of (TOP-REAL n) -valued   Function-like   total   quasi_total   additive   FinSequence-yielding   homogeneous   Function-yielding  V235()  being_homeomorphism   Element of  bool [: the carrier of (TOP-REAL n), the carrier of (TOP-REAL n):]
 
h is   Relation-like   Function-like   Element of  the carrier of (GFuncs  the carrier of (TOP-REAL n))
 
<*h*> is   non  empty   trivial   Relation-like   NAT  -defined   the carrier of (GFuncs  the carrier of (TOP-REAL n)) -valued   Function-like   constant  V36() 1 -element   FinSequence-like   FinSubsequence-like   finite-support   Function-yielding  V235() V282()  Element of 1 -tuples_on  the carrier of (GFuncs  the carrier of (TOP-REAL n))
 
1 -tuples_on  the carrier of (GFuncs  the carrier of (TOP-REAL n)) is   non  empty   functional   FinSequence-membered   FinSequenceSet of  the carrier of (GFuncs  the carrier of (TOP-REAL n))
 
[1,h] is    set 
 
{1,h} is   non  empty  V36()  set 
 
{{1,h},{1}} is   non  empty  V36() V40()  set 
 
{[1,h]} is   non  empty   trivial   Relation-like   Function-like   constant  V36() 1 -element   finite-support   set 
 
(n1 | f) ^ <*h*> is   non  empty   Relation-like   NAT  -defined   the carrier of (GFuncs  the carrier of (TOP-REAL n)) -valued   Function-like  V36()  FinSequence-like   FinSubsequence-like   finite-support   Element of  the carrier of (GFuncs  the carrier of (TOP-REAL n)) * 
 
 the carrier of (GFuncs  the carrier of (TOP-REAL n)) *  is   non  empty   functional   FinSequence-membered   FinSequenceSet of  the carrier of (GFuncs  the carrier of (TOP-REAL n))
 
sq is   non  empty   Relation-like   the carrier of (TOP-REAL n) -defined   the carrier of (TOP-REAL n) -valued   Function-like   total   quasi_total   FinSequence-yielding   Function-yielding  V235()  Element of  bool [: the carrier of (TOP-REAL n), the carrier of (TOP-REAL n):]
 
(Product (n1 | f)) * h is   Relation-like   Function-like   Element of  the carrier of (GFuncs  the carrier of (TOP-REAL n))
 
 the multF of (GFuncs  the carrier of (TOP-REAL n)) is   non  empty   Relation-like  [: the carrier of (GFuncs  the carrier of (TOP-REAL n)), the carrier of (GFuncs  the carrier of (TOP-REAL n)):] -defined   the carrier of (GFuncs  the carrier of (TOP-REAL n)) -valued   Function-like   total   quasi_total   Element of  bool [:[: the carrier of (GFuncs  the carrier of (TOP-REAL n)), the carrier of (GFuncs  the carrier of (TOP-REAL n)):], the carrier of (GFuncs  the carrier of (TOP-REAL n)):]
 
[: the carrier of (GFuncs  the carrier of (TOP-REAL n)), the carrier of (GFuncs  the carrier of (TOP-REAL n)):] is   non  empty   Relation-like   set 
 
[:[: the carrier of (GFuncs  the carrier of (TOP-REAL n)), the carrier of (GFuncs  the carrier of (TOP-REAL n)):], the carrier of (GFuncs  the carrier of (TOP-REAL n)):] is   non  empty   Relation-like   set 
 
 bool [:[: the carrier of (GFuncs  the carrier of (TOP-REAL n)), the carrier of (GFuncs  the carrier of (TOP-REAL n)):], the carrier of (GFuncs  the carrier of (TOP-REAL n)):] is   non  empty   set 
 
 the multF of (GFuncs  the carrier of (TOP-REAL n)) . ((Product (n1 | f)),h) is   Relation-like   Function-like   Element of  the carrier of (GFuncs  the carrier of (TOP-REAL n))
 
z is   non  empty   Relation-like   the carrier of (TOP-REAL n) -defined   the carrier of (TOP-REAL n) -valued   Function-like   total   quasi_total   FinSequence-yielding   Function-yielding  V235()  Element of  bool [: the carrier of (TOP-REAL n), the carrier of (TOP-REAL n):]
 
(Mx2Tran (n,fpz,fp,z)) * z is   non  empty   Relation-like   the carrier of (TOP-REAL n) -defined   the carrier of (TOP-REAL n) -valued   Function-like   total   quasi_total   quasi_total   FinSequence-yielding   Function-yielding  V235()  Element of  bool [: the carrier of (TOP-REAL n), the carrier of (TOP-REAL n):]
 
n1 | (len n1) is   Relation-like   NAT  -defined   the carrier of (GFuncs  the carrier of (TOP-REAL n)) -valued   Function-like  V36()  FinSequence-like   FinSubsequence-like   finite-support   FinSequence of  the carrier of (GFuncs  the carrier of (TOP-REAL n))
 
 Seg (len n1) is  V16() V36()  len n1 -element  V155() V156() V157() V158() V159() V160()  Element of  bool NAT
 
 {  b1 where b1 is   ordinal   natural  V11()  real   ext-real   non  negative  V36()  cardinal  V85() V86() V155() V156() V157() V158() V159() V160()  Element of  NAT  : ( 1 <= b1 & b1 <=  len n1 )  }   is    set 
 
n1 | (Seg (len n1)) is   Relation-like   NAT  -defined   Seg (len n1) -defined   NAT  -defined   the carrier of (GFuncs  the carrier of (TOP-REAL n)) -valued   Function-like  V36()  FinSubsequence-like   finite-support   set 
 
n1 | {} is   empty   ordinal   natural  V11()  real   ext-real   non  positive   non  negative   Relation-like   non-empty   empty-yielding   NAT  -defined   RAT  -valued   the carrier of (GFuncs  the carrier of (TOP-REAL n)) -valued   Function-like   one-to-one   constant   functional  V36() V37() V40()  cardinal   {}  -element  V85()  FinSequence-like   FinSubsequence-like   FinSequence-membered   complex-yielding   ext-real-valued   real-valued   natural-valued  V155() V156() V157() V158() V159() V160() V161()  FinSequence-yielding   finite-support   Function-yielding  V235() V282()  FinSequence of  the carrier of (GFuncs  the carrier of (TOP-REAL n))
 
 Seg {} is   empty   ordinal   natural  V11()  real   ext-real   non  positive   non  negative  V16()  Relation-like   non-empty   empty-yielding   NAT  -defined   RAT  -valued   Function-like   one-to-one   constant   functional  V36() V37() V40()  cardinal   {}  -element   {}  -element  V85()  FinSequence-like   FinSubsequence-like   FinSequence-membered   complex-yielding   ext-real-valued   real-valued   natural-valued  V155() V156() V157() V158() V159() V160() V161()  FinSequence-yielding   finite-support   Function-yielding  V235() V282()  Element of  bool NAT
 
 {  b1 where b1 is   ordinal   natural  V11()  real   ext-real   non  negative  V36()  cardinal  V85() V86() V155() V156() V157() V158() V159() V160()  Element of  NAT  : ( 1 <= b1 & b1 <=  {}  )  }   is    set 
 
n1 | (Seg {}) is   empty   ordinal   natural  V11()  real   ext-real   non  positive   non  negative   Relation-like   non-empty   empty-yielding   NAT  -defined   Seg {} -defined   NAT  -defined   RAT  -valued   the carrier of (GFuncs  the carrier of (TOP-REAL n)) -valued   Function-like   one-to-one   constant   functional  V36() V37() V40()  cardinal   {}  -element  V85()  FinSequence-like   FinSubsequence-like   FinSequence-membered   complex-yielding   ext-real-valued   real-valued   natural-valued  V155() V156() V157() V158() V159() V160() V161()  FinSequence-yielding   finite-support   Function-yielding  V235() V282()  set 
 
 Product (n1 | {}) is   Relation-like   Function-like   Element of  the carrier of (GFuncs  the carrier of (TOP-REAL n))
 
 id (TOP-REAL n) is   non  empty   Relation-like   the carrier of (TOP-REAL n) -defined   the carrier of (TOP-REAL n) -defined   the carrier of (TOP-REAL n) -valued   the carrier of (TOP-REAL n) -valued   Function-like   total   total   quasi_total   quasi_total   additive   additive   FinSequence-yielding   Function-yielding  V235()  being_homeomorphism   being_homeomorphism  (n)  Element of  bool [: the carrier of (TOP-REAL n), the carrier of (TOP-REAL n):]
 
 id  the carrier of (TOP-REAL n) is   non  empty   Relation-like   the carrier of (TOP-REAL n) -defined   the carrier of (TOP-REAL n) -valued   Function-like   one-to-one   total   quasi_total   quasi_total   FinSequence-yielding   Function-yielding  V235()  Element of  bool [: the carrier of (TOP-REAL n), the carrier of (TOP-REAL n):]
 
f is   Relation-like   NAT  -defined   Function-like  V36() n -element   FinSequence-like   FinSubsequence-like   complex-yielding   ext-real-valued   real-valued   finite-support   Element of  the carrier of (TOP-REAL n)
 
|.f.| is  V11()  real   ext-real   non  negative   Element of  REAL 
 
 sqr f is   Relation-like   NAT  -defined   REAL  -valued   Function-like  V36()  FinSequence-like   FinSubsequence-like   complex-yielding   ext-real-valued   real-valued   finite-support   FinSequence of  REAL 
 
 Sum (sqr f) is  V11()  real   ext-real   Element of  REAL 
 
 sqrt (Sum (sqr f)) is  V11()  real   ext-real   Element of  REAL 
 
(id (TOP-REAL n)) . f is   Relation-like   NAT  -defined   Function-like  V36() n -element   FinSequence-like   FinSubsequence-like   complex-yielding   ext-real-valued   real-valued   finite-support   Element of  the carrier of (TOP-REAL n)
 
|.((id (TOP-REAL n)) . f).| is  V11()  real   ext-real   non  negative   Element of  REAL 
 
 sqr ((id (TOP-REAL n)) . f) is   Relation-like   NAT  -defined   REAL  -valued   Function-like  V36()  FinSequence-like   FinSubsequence-like   complex-yielding   ext-real-valued   real-valued   finite-support   FinSequence of  REAL 
 
 Sum (sqr ((id (TOP-REAL n)) . f)) is  V11()  real   ext-real   Element of  REAL 
 
 sqrt (Sum (sqr ((id (TOP-REAL n)) . f))) is  V11()  real   ext-real   Element of  REAL 
 
f is   non  empty   Relation-like   the carrier of (TOP-REAL n) -defined   the carrier of (TOP-REAL n) -valued   Function-like   total   quasi_total   FinSequence-yielding   Function-yielding  V235()  Element of  bool [: the carrier of (TOP-REAL n), the carrier of (TOP-REAL n):]
 
X is  V11()  real   ext-real   set 
 
z is   Relation-like   NAT  -defined   Function-like  V36() n -element   FinSequence-like   FinSubsequence-like   complex-yielding   ext-real-valued   real-valued   finite-support   Element of  the carrier of (TOP-REAL n)
 
X * z is   Relation-like   NAT  -defined   Function-like  V36() n -element   FinSequence-like   FinSubsequence-like   complex-yielding   ext-real-valued   real-valued   finite-support   Element of  the carrier of (TOP-REAL n)
 
X * z is   Relation-like   NAT  -defined   REAL  -valued   Function-like  V36()  FinSequence-like   FinSubsequence-like   complex-yielding   ext-real-valued   real-valued   finite-support   FinSequence of  REAL 
 
(id (TOP-REAL n)) . (X * z) is   Relation-like   NAT  -defined   Function-like  V36() n -element   FinSequence-like   FinSubsequence-like   complex-yielding   ext-real-valued   real-valued   finite-support   Element of  the carrier of (TOP-REAL n)
 
(id (TOP-REAL n)) . z is   Relation-like   NAT  -defined   Function-like  V36() n -element   FinSequence-like   FinSubsequence-like   complex-yielding   ext-real-valued   real-valued   finite-support   Element of  the carrier of (TOP-REAL n)
 
X * ((id (TOP-REAL n)) . z) is   Relation-like   NAT  -defined   Function-like  V36() n -element   FinSequence-like   FinSubsequence-like   complex-yielding   ext-real-valued   real-valued   finite-support   Element of  the carrier of (TOP-REAL n)
 
X * ((id (TOP-REAL n)) . z) is   Relation-like   NAT  -defined   REAL  -valued   Function-like  V36()  FinSequence-like   FinSubsequence-like   complex-yielding   ext-real-valued   real-valued   finite-support   FinSequence of  REAL 
 
 <*>  the carrier of (GFuncs  the carrier of (TOP-REAL n)) is   empty   ordinal   natural  V11()  real   ext-real   non  positive   non  negative   Relation-like   non-empty   empty-yielding   NAT  -defined   the carrier of (GFuncs  the carrier of (TOP-REAL n)) -valued   Function-like   one-to-one   constant   functional  V36() V37() V40()  cardinal   {}  -element  V85()  FinSequence-like   FinSubsequence-like   FinSequence-membered   complex-yielding   ext-real-valued   real-valued   natural-valued  V155() V156() V157() V158() V159() V160() V161()  FinSequence-yielding   finite-support   Function-yielding  V235() V282()  Element of  the carrier of (GFuncs  the carrier of (TOP-REAL n)) * 
 
 the carrier of (GFuncs  the carrier of (TOP-REAL n)) *  is   non  empty   functional   FinSequence-membered   FinSequenceSet of  the carrier of (GFuncs  the carrier of (TOP-REAL n))
 
 1_ (GFuncs  the carrier of (TOP-REAL n)) is   Relation-like   Function-like   Element of  the carrier of (GFuncs  the carrier of (TOP-REAL n))
 
 the multF of (GFuncs  the carrier of (TOP-REAL n)) is   non  empty   Relation-like  [: the carrier of (GFuncs  the carrier of (TOP-REAL n)), the carrier of (GFuncs  the carrier of (TOP-REAL n)):] -defined   the carrier of (GFuncs  the carrier of (TOP-REAL n)) -valued   Function-like   total   quasi_total   Element of  bool [:[: the carrier of (GFuncs  the carrier of (TOP-REAL n)), the carrier of (GFuncs  the carrier of (TOP-REAL n)):], the carrier of (GFuncs  the carrier of (TOP-REAL n)):]
 
[: the carrier of (GFuncs  the carrier of (TOP-REAL n)), the carrier of (GFuncs  the carrier of (TOP-REAL n)):] is   non  empty   Relation-like   set 
 
[:[: the carrier of (GFuncs  the carrier of (TOP-REAL n)), the carrier of (GFuncs  the carrier of (TOP-REAL n)):], the carrier of (GFuncs  the carrier of (TOP-REAL n)):] is   non  empty   Relation-like   set 
 
 bool [:[: the carrier of (GFuncs  the carrier of (TOP-REAL n)), the carrier of (GFuncs  the carrier of (TOP-REAL n)):], the carrier of (GFuncs  the carrier of (TOP-REAL n)):] is   non  empty   set 
 
 the_unity_wrt  the multF of (GFuncs  the carrier of (TOP-REAL n)) is   Relation-like   Function-like   Element of  the carrier of (GFuncs  the carrier of (TOP-REAL n))
 
n is   ordinal   natural  V11()  real   ext-real   non  negative  V36()  cardinal  V85()  set 
 
 TOP-REAL n is   non  empty   TopSpace-like   right_complementable   constituted-Functions   constituted-FinSeqs  V189() V190() V191() V192() V193() V194() V195() V228() L16()
 
 the carrier of (TOP-REAL n) is   non  empty   set 
 
[: the carrier of (TOP-REAL n), the carrier of (TOP-REAL n):] is   non  empty   Relation-like   set 
 
 bool [: the carrier of (TOP-REAL n), the carrier of (TOP-REAL n):] is   non  empty   set 
 
p is   non  empty   Relation-like   the carrier of (TOP-REAL n) -defined   the carrier of (TOP-REAL n) -valued   Function-like   total   quasi_total   additive   FinSequence-yielding   homogeneous   Function-yielding  V235()  being_homeomorphism  (n) (n)  Element of  bool [: the carrier of (TOP-REAL n), the carrier of (TOP-REAL n):]
 
p /"  is   non  empty   Relation-like   the carrier of (TOP-REAL n) -defined   the carrier of (TOP-REAL n) -valued   Function-like   total   quasi_total   quasi_total   FinSequence-yielding   Function-yielding  V235()  Element of  bool [: the carrier of (TOP-REAL n), the carrier of (TOP-REAL n):]
 
 GFuncs  the carrier of (TOP-REAL n) is   non  empty   strict   unital   associative   constituted-Functions   SubStr of  GPFuncs  the carrier of (TOP-REAL n)
 
 GPFuncs  the carrier of (TOP-REAL n) is   non  empty   strict   unital   associative   constituted-Functions   multMagma 
 
 the carrier of (GFuncs  the carrier of (TOP-REAL n)) is   non  empty   set 
 
n1 is   Relation-like   NAT  -defined   the carrier of (GFuncs  the carrier of (TOP-REAL n)) -valued   Function-like  V36()  FinSequence-like   FinSubsequence-like   finite-support   FinSequence of  the carrier of (GFuncs  the carrier of (TOP-REAL n))
 
 Product n1 is   Relation-like   Function-like   Element of  the carrier of (GFuncs  the carrier of (TOP-REAL n))
 
 dom n1 is  V36() V155() V156() V157() V158() V159() V160()  Element of  bool NAT
 
f is   ordinal   natural  V11()  real   ext-real   non  negative  V36()  cardinal  V85()  set 
 
f + 1 is   non  empty   ordinal   natural  V11()  real   ext-real   positive   non  negative  V36()  cardinal  V85() V86() V155() V156() V157() V158() V159() V160()  Element of  NAT 
 
z is   Relation-like   NAT  -defined   the carrier of (GFuncs  the carrier of (TOP-REAL n)) -valued   Function-like  V36()  FinSequence-like   FinSubsequence-like   finite-support   FinSequence of  the carrier of (GFuncs  the carrier of (TOP-REAL n))
 
 len z is   ordinal   natural  V11()  real   ext-real   non  negative  V36()  cardinal  V85() V86() V155() V156() V157() V158() V159() V160()  Element of  NAT 
 
 Product z is   Relation-like   Function-like   Element of  the carrier of (GFuncs  the carrier of (TOP-REAL n))
 
 dom z is  V36() V155() V156() V157() V158() V159() V160()  Element of  bool NAT
 
fp is   non  empty   Relation-like   the carrier of (TOP-REAL n) -defined   the carrier of (TOP-REAL n) -valued   Function-like   total   quasi_total   FinSequence-yielding   Function-yielding  V235()  Element of  bool [: the carrier of (TOP-REAL n), the carrier of (TOP-REAL n):]
 
fp /"  is   non  empty   Relation-like   the carrier of (TOP-REAL n) -defined   the carrier of (TOP-REAL n) -valued   Function-like   total   quasi_total   quasi_total   FinSequence-yielding   Function-yielding  V235()  Element of  bool [: the carrier of (TOP-REAL n), the carrier of (TOP-REAL n):]
 
z | f is   Relation-like   NAT  -defined   the carrier of (GFuncs  the carrier of (TOP-REAL n)) -valued   Function-like  V36()  FinSequence-like   FinSubsequence-like   finite-support   FinSequence of  the carrier of (GFuncs  the carrier of (TOP-REAL n))
 
 Seg f is  V16() V36() f -element  V155() V156() V157() V158() V159() V160()  Element of  bool NAT
 
 {  b1 where b1 is   ordinal   natural  V11()  real   ext-real   non  negative  V36()  cardinal  V85() V86() V155() V156() V157() V158() V159() V160()  Element of  NAT  : ( 1 <= b1 & b1 <= f )  }   is    set 
 
z | (Seg f) is   Relation-like   NAT  -defined   Seg f -defined   NAT  -defined   the carrier of (GFuncs  the carrier of (TOP-REAL n)) -valued   Function-like  V36()  FinSubsequence-like   finite-support   set 
 
 Product (z | f) is   Relation-like   Function-like   Element of  the carrier of (GFuncs  the carrier of (TOP-REAL n))
 
z . (f + 1) is    set 
 
h is   ordinal   natural  V11()  real   ext-real   non  negative  V36()  cardinal  V85()  set 
 
sq is   ordinal   natural  V11()  real   ext-real   non  negative  V36()  cardinal  V85()  set 
 
z is  V11()  real   ext-real   set 
 
(n,z,h,sq) is   Relation-like   NAT  -defined   the carrier of F_Real *  -valued   Function-like  V36()  FinSequence-like   FinSubsequence-like   FinSequence-yielding   finite-support   Function-yielding  V235()  tabular   invertible   Matrix of n,n, the carrier of F_Real
 
 Mx2Tran (n,z,h,sq) is   non  empty   Relation-like   the carrier of (TOP-REAL n) -defined   the carrier of (TOP-REAL n) -valued   Function-like   total   quasi_total   additive   FinSequence-yielding   homogeneous   Function-yielding  V235()  being_homeomorphism   Element of  bool [: the carrier of (TOP-REAL n), the carrier of (TOP-REAL n):]
 
k is   Relation-like   Function-like   Element of  the carrier of (GFuncs  the carrier of (TOP-REAL n))
 
<*k*> is   non  empty   trivial   Relation-like   NAT  -defined   the carrier of (GFuncs  the carrier of (TOP-REAL n)) -valued   Function-like   constant  V36() 1 -element   FinSequence-like   FinSubsequence-like   finite-support   Function-yielding  V235() V282()  Element of 1 -tuples_on  the carrier of (GFuncs  the carrier of (TOP-REAL n))
 
1 -tuples_on  the carrier of (GFuncs  the carrier of (TOP-REAL n)) is   non  empty   functional   FinSequence-membered   FinSequenceSet of  the carrier of (GFuncs  the carrier of (TOP-REAL n))
 
[1,k] is    set 
 
{1,k} is   non  empty  V36()  set 
 
{{1,k},{1}} is   non  empty  V36() V40()  set 
 
{[1,k]} is   non  empty   trivial   Relation-like   Function-like   constant  V36() 1 -element   finite-support   set 
 
(z | f) ^ <*k*> is   non  empty   Relation-like   NAT  -defined   the carrier of (GFuncs  the carrier of (TOP-REAL n)) -valued   Function-like  V36()  FinSequence-like   FinSubsequence-like   finite-support   Element of  the carrier of (GFuncs  the carrier of (TOP-REAL n)) * 
 
 the carrier of (GFuncs  the carrier of (TOP-REAL n)) *  is   non  empty   functional   FinSequence-membered   FinSequenceSet of  the carrier of (GFuncs  the carrier of (TOP-REAL n))
 
(Product (z | f)) * k is   Relation-like   Function-like   Element of  the carrier of (GFuncs  the carrier of (TOP-REAL n))
 
 the multF of (GFuncs  the carrier of (TOP-REAL n)) is   non  empty   Relation-like  [: the carrier of (GFuncs  the carrier of (TOP-REAL n)), the carrier of (GFuncs  the carrier of (TOP-REAL n)):] -defined   the carrier of (GFuncs  the carrier of (TOP-REAL n)) -valued   Function-like   total   quasi_total   Element of  bool [:[: the carrier of (GFuncs  the carrier of (TOP-REAL n)), the carrier of (GFuncs  the carrier of (TOP-REAL n)):], the carrier of (GFuncs  the carrier of (TOP-REAL n)):]
 
[: the carrier of (GFuncs  the carrier of (TOP-REAL n)), the carrier of (GFuncs  the carrier of (TOP-REAL n)):] is   non  empty   Relation-like   set 
 
[:[: the carrier of (GFuncs  the carrier of (TOP-REAL n)), the carrier of (GFuncs  the carrier of (TOP-REAL n)):], the carrier of (GFuncs  the carrier of (TOP-REAL n)):] is   non  empty   Relation-like   set 
 
 bool [:[: the carrier of (GFuncs  the carrier of (TOP-REAL n)), the carrier of (GFuncs  the carrier of (TOP-REAL n)):], the carrier of (GFuncs  the carrier of (TOP-REAL n)):] is   non  empty   set 
 
 the multF of (GFuncs  the carrier of (TOP-REAL n)) . ((Product (z | f)),k) is   Relation-like   Function-like   Element of  the carrier of (GFuncs  the carrier of (TOP-REAL n))
 
fpz is   non  empty   Relation-like   the carrier of (TOP-REAL n) -defined   the carrier of (TOP-REAL n) -valued   Function-like   total   quasi_total   FinSequence-yielding   Function-yielding  V235()  Element of  bool [: the carrier of (TOP-REAL n), the carrier of (TOP-REAL n):]
 
(Mx2Tran (n,z,h,sq)) * fpz is   non  empty   Relation-like   the carrier of (TOP-REAL n) -defined   the carrier of (TOP-REAL n) -valued   Function-like   total   quasi_total   quasi_total   FinSequence-yielding   Function-yielding  V235()  Element of  bool [: the carrier of (TOP-REAL n), the carrier of (TOP-REAL n):]
 
 dom (z | f) is  V36() V155() V156() V157() V158() V159() V160()  Element of  bool NAT
 
gf is   ordinal   natural  V11()  real   ext-real   non  negative  V36()  cardinal  V85()  set 
 
(z | f) . gf is    set 
 
z . gf is    set 
 
 Det (n,z,h,sq) is  V11()  real   ext-real   Element of  the carrier of F_Real
 
(n,z,h,sq) ~  is   Relation-like   NAT  -defined   the carrier of F_Real *  -valued   Function-like  V36()  FinSequence-like   FinSubsequence-like   FinSequence-yielding   finite-support   Function-yielding  V235()  tabular   Matrix of n,n, the carrier of F_Real
 
 - z is  V11()  real   ext-real   set 
 
(n,(- z),h,sq) is   Relation-like   NAT  -defined   the carrier of F_Real *  -valued   Function-like  V36()  FinSequence-like   FinSubsequence-like   FinSequence-yielding   finite-support   Function-yielding  V235()  tabular   invertible   Matrix of n,n, the carrier of F_Real
 
(Mx2Tran (n,z,h,sq)) "  is   Relation-like   Function-like   set 
 
 Mx2Tran (n,(- z),h,sq) is   non  empty   Relation-like   the carrier of (TOP-REAL n) -defined   the carrier of (TOP-REAL n) -valued   Function-like   total   quasi_total   additive   FinSequence-yielding   homogeneous   Function-yielding  V235()  being_homeomorphism   Element of  bool [: the carrier of (TOP-REAL n), the carrier of (TOP-REAL n):]
 
 rng (Mx2Tran (n,z,h,sq)) is   non  empty   set 
 
 [#] (TOP-REAL n) is   non  empty   non  proper   Element of  bool  the carrier of (TOP-REAL n)
 
 bool  the carrier of (TOP-REAL n) is   non  empty   set 
 
 dom (Mx2Tran (n,z,h,sq)) is   non  empty   set 
 
(Mx2Tran (n,z,h,sq)) /"  is   non  empty   Relation-like   the carrier of (TOP-REAL n) -defined   the carrier of (TOP-REAL n) -valued   Function-like   total   quasi_total   quasi_total   FinSequence-yielding   Function-yielding  V235()  Element of  bool [: the carrier of (TOP-REAL n), the carrier of (TOP-REAL n):]
 
 len (z | f) is   ordinal   natural  V11()  real   ext-real   non  negative  V36()  cardinal  V85() V86() V155() V156() V157() V158() V159() V160()  Element of  NAT 
 
fpz /"  is   non  empty   Relation-like   the carrier of (TOP-REAL n) -defined   the carrier of (TOP-REAL n) -valued   Function-like   total   quasi_total   quasi_total   FinSequence-yielding   Function-yielding  V235()  Element of  bool [: the carrier of (TOP-REAL n), the carrier of (TOP-REAL n):]
 
 dom fpz is   non  empty   set 
 
 rng fpz is   non  empty   set 
 
(fpz /") * ((Mx2Tran (n,z,h,sq)) /") is   non  empty   Relation-like   the carrier of (TOP-REAL n) -defined   the carrier of (TOP-REAL n) -valued   Function-like   total   quasi_total   quasi_total   FinSequence-yielding   Function-yielding  V235()  Element of  bool [: the carrier of (TOP-REAL n), the carrier of (TOP-REAL n):]
 
f is   Relation-like   NAT  -defined   the carrier of (GFuncs  the carrier of (TOP-REAL n)) -valued   Function-like  V36()  FinSequence-like   FinSubsequence-like   finite-support   FinSequence of  the carrier of (GFuncs  the carrier of (TOP-REAL n))
 
 len f is   ordinal   natural  V11()  real   ext-real   non  negative  V36()  cardinal  V85() V86() V155() V156() V157() V158() V159() V160()  Element of  NAT 
 
 Product f is   Relation-like   Function-like   Element of  the carrier of (GFuncs  the carrier of (TOP-REAL n))
 
 dom f is  V36() V155() V156() V157() V158() V159() V160()  Element of  bool NAT
 
X is   non  empty   Relation-like   the carrier of (TOP-REAL n) -defined   the carrier of (TOP-REAL n) -valued   Function-like   total   quasi_total   FinSequence-yielding   Function-yielding  V235()  Element of  bool [: the carrier of (TOP-REAL n), the carrier of (TOP-REAL n):]
 
X /"  is   non  empty   Relation-like   the carrier of (TOP-REAL n) -defined   the carrier of (TOP-REAL n) -valued   Function-like   total   quasi_total   quasi_total   FinSequence-yielding   Function-yielding  V235()  Element of  bool [: the carrier of (TOP-REAL n), the carrier of (TOP-REAL n):]
 
 <*>  the carrier of (GFuncs  the carrier of (TOP-REAL n)) is   empty   ordinal   natural  V11()  real   ext-real   non  positive   non  negative   Relation-like   non-empty   empty-yielding   NAT  -defined   the carrier of (GFuncs  the carrier of (TOP-REAL n)) -valued   Function-like   one-to-one   constant   functional  V36() V37() V40()  cardinal   {}  -element  V85()  FinSequence-like   FinSubsequence-like   FinSequence-membered   complex-yielding   ext-real-valued   real-valued   natural-valued  V155() V156() V157() V158() V159() V160() V161()  FinSequence-yielding   finite-support   Function-yielding  V235() V282()  Element of  the carrier of (GFuncs  the carrier of (TOP-REAL n)) * 
 
 the carrier of (GFuncs  the carrier of (TOP-REAL n)) *  is   non  empty   functional   FinSequence-membered   FinSequenceSet of  the carrier of (GFuncs  the carrier of (TOP-REAL n))
 
 1_ (GFuncs  the carrier of (TOP-REAL n)) is   Relation-like   Function-like   Element of  the carrier of (GFuncs  the carrier of (TOP-REAL n))
 
 the multF of (GFuncs  the carrier of (TOP-REAL n)) is   non  empty   Relation-like  [: the carrier of (GFuncs  the carrier of (TOP-REAL n)), the carrier of (GFuncs  the carrier of (TOP-REAL n)):] -defined   the carrier of (GFuncs  the carrier of (TOP-REAL n)) -valued   Function-like   total   quasi_total   Element of  bool [:[: the carrier of (GFuncs  the carrier of (TOP-REAL n)), the carrier of (GFuncs  the carrier of (TOP-REAL n)):], the carrier of (GFuncs  the carrier of (TOP-REAL n)):]
 
[: the carrier of (GFuncs  the carrier of (TOP-REAL n)), the carrier of (GFuncs  the carrier of (TOP-REAL n)):] is   non  empty   Relation-like   set 
 
[:[: the carrier of (GFuncs  the carrier of (TOP-REAL n)), the carrier of (GFuncs  the carrier of (TOP-REAL n)):], the carrier of (GFuncs  the carrier of (TOP-REAL n)):] is   non  empty   Relation-like   set 
 
 bool [:[: the carrier of (GFuncs  the carrier of (TOP-REAL n)), the carrier of (GFuncs  the carrier of (TOP-REAL n)):], the carrier of (GFuncs  the carrier of (TOP-REAL n)):] is   non  empty   set 
 
 the_unity_wrt  the multF of (GFuncs  the carrier of (TOP-REAL n)) is   Relation-like   Function-like   Element of  the carrier of (GFuncs  the carrier of (TOP-REAL n))
 
 id (TOP-REAL n) is   non  empty   Relation-like   the carrier of (TOP-REAL n) -defined   the carrier of (TOP-REAL n) -defined   the carrier of (TOP-REAL n) -valued   the carrier of (TOP-REAL n) -valued   Function-like   total   total   quasi_total   quasi_total   additive   additive   FinSequence-yielding   homogeneous   Function-yielding  V235()  being_homeomorphism   being_homeomorphism  (n) (n)  Element of  bool [: the carrier of (TOP-REAL n), the carrier of (TOP-REAL n):]
 
 id  the carrier of (TOP-REAL n) is   non  empty   Relation-like   the carrier of (TOP-REAL n) -defined   the carrier of (TOP-REAL n) -valued   Function-like   one-to-one   total   quasi_total   quasi_total   FinSequence-yielding   Function-yielding  V235()  Element of  bool [: the carrier of (TOP-REAL n), the carrier of (TOP-REAL n):]
 
 rng X is   non  empty   set 
 
 [#] (TOP-REAL n) is   non  empty   non  proper   Element of  bool  the carrier of (TOP-REAL n)
 
 bool  the carrier of (TOP-REAL n) is   non  empty   set 
 
X "  is   Relation-like   Function-like   set 
 
 len n1 is   ordinal   natural  V11()  real   ext-real   non  negative  V36()  cardinal  V85() V86() V155() V156() V157() V158() V159() V160()  Element of  NAT 
 
f is   Relation-like   NAT  -defined   the carrier of (GFuncs  the carrier of (TOP-REAL n)) -valued   Function-like  V36()  FinSequence-like   FinSubsequence-like   finite-support   FinSequence of  the carrier of (GFuncs  the carrier of (TOP-REAL n))
 
 len f is   ordinal   natural  V11()  real   ext-real   non  negative  V36()  cardinal  V85() V86() V155() V156() V157() V158() V159() V160()  Element of  NAT 
 
 Product f is   Relation-like   Function-like   Element of  the carrier of (GFuncs  the carrier of (TOP-REAL n))
 
X is   non  empty   Relation-like   the carrier of (TOP-REAL n) -defined   the carrier of (TOP-REAL n) -valued   Function-like   total   quasi_total   FinSequence-yielding   Function-yielding  V235()  Element of  bool [: the carrier of (TOP-REAL n), the carrier of (TOP-REAL n):]
 
 dom f is  V36() V155() V156() V157() V158() V159() V160()  Element of  bool NAT
 
X /"  is   non  empty   Relation-like   the carrier of (TOP-REAL n) -defined   the carrier of (TOP-REAL n) -valued   Function-like   total   quasi_total   quasi_total   FinSequence-yielding   Function-yielding  V235()  Element of  bool [: the carrier of (TOP-REAL n), the carrier of (TOP-REAL n):]
 
n is   ordinal   natural  V11()  real   ext-real   non  negative  V36()  cardinal  V85()  set 
 
 TOP-REAL n is   non  empty   TopSpace-like   right_complementable   constituted-Functions   constituted-FinSeqs  V189() V190() V191() V192() V193() V194() V195() V228() L16()
 
 the carrier of (TOP-REAL n) is   non  empty   set 
 
[: the carrier of (TOP-REAL n), the carrier of (TOP-REAL n):] is   non  empty   Relation-like   set 
 
 bool [: the carrier of (TOP-REAL n), the carrier of (TOP-REAL n):] is   non  empty   set 
 
q is   non  empty   Relation-like   the carrier of (TOP-REAL n) -defined   the carrier of (TOP-REAL n) -valued   Function-like   total   quasi_total   FinSequence-yielding   Function-yielding  V235() (n)  Element of  bool [: the carrier of (TOP-REAL n), the carrier of (TOP-REAL n):]
 
p is   non  empty   Relation-like   the carrier of (TOP-REAL n) -defined   the carrier of (TOP-REAL n) -valued   Function-like   total   quasi_total   FinSequence-yielding   Function-yielding  V235() (n)  Element of  bool [: the carrier of (TOP-REAL n), the carrier of (TOP-REAL n):]
 
p * q is   non  empty   Relation-like   the carrier of (TOP-REAL n) -defined   the carrier of (TOP-REAL n) -valued   Function-like   total   quasi_total   quasi_total   FinSequence-yielding   Function-yielding  V235()  Element of  bool [: the carrier of (TOP-REAL n), the carrier of (TOP-REAL n):]
 
TR is   non  empty   Relation-like   the carrier of (TOP-REAL n) -defined   the carrier of (TOP-REAL n) -valued   Function-like   total   quasi_total   FinSequence-yielding   Function-yielding  V235()  Element of  bool [: the carrier of (TOP-REAL n), the carrier of (TOP-REAL n):]
 
n is   ordinal   natural  V11()  real   ext-real   non  negative  V36()  cardinal  V85()  set 
 
 TOP-REAL n is   non  empty   TopSpace-like   right_complementable   constituted-Functions   constituted-FinSeqs  V189() V190() V191() V192() V193() V194() V195() V228() L16()
 
 the carrier of (TOP-REAL n) is   non  empty   set 
 
[: the carrier of (TOP-REAL n), the carrier of (TOP-REAL n):] is   non  empty   Relation-like   set 
 
 bool [: the carrier of (TOP-REAL n), the carrier of (TOP-REAL n):] is   non  empty   set 
 
p is   non  empty   Relation-like   the carrier of (TOP-REAL n) -defined   the carrier of (TOP-REAL n) -valued   Function-like   total   quasi_total   additive   FinSequence-yielding   homogeneous   Function-yielding  V235()  Element of  bool [: the carrier of (TOP-REAL n), the carrier of (TOP-REAL n):]
 
n -VectSp_over F_Real is   non  empty   right_complementable   strict  V139( F_Real ) V140( F_Real ) V141( F_Real ) V142( F_Real ) V189() V190() V191() V260( F_Real )  VectSpStr over  F_Real 
 
 the carrier of (n -VectSp_over F_Real) is   non  empty   set 
 
 1. (F_Real,n) is   Relation-like   NAT  -defined   the carrier of F_Real *  -valued   Function-like  V36()  FinSequence-like   FinSubsequence-like   FinSequence-yielding   finite-support   Function-yielding  V235()  tabular   Matrix of n,n, the carrier of F_Real
 
 MX2FinS (1. (F_Real,n)) is   Relation-like   NAT  -defined   the carrier of (n -VectSp_over F_Real) -valued   Function-like  V36()  FinSequence-like   FinSubsequence-like   finite-support   FinSequence of  the carrier of (n -VectSp_over F_Real)
 
 REAL n is   non  empty   functional   FinSequence-membered   FinSequenceSet of  REAL 
 
n -tuples_on REAL is   non  empty   functional   FinSequence-membered   FinSequenceSet of  REAL 
 
[: the carrier of (n -VectSp_over F_Real), the carrier of (n -VectSp_over F_Real):] is   non  empty   Relation-like   set 
 
 bool [: the carrier of (n -VectSp_over F_Real), the carrier of (n -VectSp_over F_Real):] is   non  empty   set 
 
n -tuples_on  the carrier of F_Real is   non  empty   functional   FinSequence-membered   FinSequenceSet of  the carrier of F_Real
 
X is   Relation-like   Function-like   Element of  the carrier of (n -VectSp_over F_Real)
 
z is   Relation-like   Function-like   Element of  the carrier of (n -VectSp_over F_Real)
 
f is   non  empty   Relation-like   the carrier of (n -VectSp_over F_Real) -defined   the carrier of (n -VectSp_over F_Real) -valued   Function-like   total   quasi_total   Element of  bool [: the carrier of (n -VectSp_over F_Real), the carrier of (n -VectSp_over F_Real):]
 
f . X is   Relation-like   Function-like   Element of  the carrier of (n -VectSp_over F_Real)
 
f . z is   Relation-like   Function-like   Element of  the carrier of (n -VectSp_over F_Real)
 
fpz is   Relation-like   NAT  -defined   the carrier of F_Real -valued   Function-like  V36() n -element   FinSequence-like   FinSubsequence-like   finite-support   Element of n -tuples_on  the carrier of F_Real
 
 @ fpz is   Relation-like   NAT  -defined   REAL  -valued   Function-like  V36()  FinSequence-like   FinSubsequence-like   complex-yielding   ext-real-valued   real-valued   finite-support   FinSequence of  REAL 
 
 @ (@ fpz) is   Relation-like   NAT  -defined   the carrier of F_Real -valued   Function-like  V36()  FinSequence-like   FinSubsequence-like   complex-yielding   ext-real-valued   real-valued   finite-support   FinSequence of  the carrier of F_Real
 
h is   Relation-like   NAT  -defined   the carrier of F_Real -valued   Function-like  V36() n -element   FinSequence-like   FinSubsequence-like   finite-support   Element of n -tuples_on  the carrier of F_Real
 
 @ h is   Relation-like   NAT  -defined   REAL  -valued   Function-like  V36()  FinSequence-like   FinSubsequence-like   complex-yielding   ext-real-valued   real-valued   finite-support   FinSequence of  REAL 
 
 @ (@ h) is   Relation-like   NAT  -defined   the carrier of F_Real -valued   Function-like  V36()  FinSequence-like   FinSubsequence-like   complex-yielding   ext-real-valued   real-valued   finite-support   FinSequence of  the carrier of F_Real
 
fp is   Relation-like   NAT  -defined   the carrier of F_Real -valued   Function-like  V36() n -element   FinSequence-like   FinSubsequence-like   finite-support   Element of n -tuples_on  the carrier of F_Real
 
 @ fp is   Relation-like   NAT  -defined   REAL  -valued   Function-like  V36()  FinSequence-like   FinSubsequence-like   complex-yielding   ext-real-valued   real-valued   finite-support   FinSequence of  REAL 
 
 @ (@ fp) is   Relation-like   NAT  -defined   the carrier of F_Real -valued   Function-like  V36()  FinSequence-like   FinSubsequence-like   complex-yielding   ext-real-valued   real-valued   finite-support   FinSequence of  the carrier of F_Real
 
z is   Relation-like   NAT  -defined   the carrier of F_Real -valued   Function-like  V36() n -element   FinSequence-like   FinSubsequence-like   finite-support   Element of n -tuples_on  the carrier of F_Real
 
 @ z is   Relation-like   NAT  -defined   REAL  -valued   Function-like  V36()  FinSequence-like   FinSubsequence-like   complex-yielding   ext-real-valued   real-valued   finite-support   FinSequence of  REAL 
 
 @ (@ z) is   Relation-like   NAT  -defined   the carrier of F_Real -valued   Function-like  V36()  FinSequence-like   FinSubsequence-like   complex-yielding   ext-real-valued   real-valued   finite-support   FinSequence of  the carrier of F_Real
 
X + z is   Relation-like   Function-like   Element of  the carrier of (n -VectSp_over F_Real)
 
 the addF of (n -VectSp_over F_Real) is   non  empty   Relation-like  [: the carrier of (n -VectSp_over F_Real), the carrier of (n -VectSp_over F_Real):] -defined   the carrier of (n -VectSp_over F_Real) -valued   Function-like   total   quasi_total   Element of  bool [:[: the carrier of (n -VectSp_over F_Real), the carrier of (n -VectSp_over F_Real):], the carrier of (n -VectSp_over F_Real):]
 
[:[: the carrier of (n -VectSp_over F_Real), the carrier of (n -VectSp_over F_Real):], the carrier of (n -VectSp_over F_Real):] is   non  empty   Relation-like   set 
 
 bool [:[: the carrier of (n -VectSp_over F_Real), the carrier of (n -VectSp_over F_Real):], the carrier of (n -VectSp_over F_Real):] is   non  empty   set 
 
 the addF of (n -VectSp_over F_Real) . (X,z) is   Relation-like   Function-like   Element of  the carrier of (n -VectSp_over F_Real)
 
fp + z is   Relation-like   NAT  -defined   the carrier of F_Real -valued   Function-like  V36()  FinSequence-like   FinSubsequence-like   complex-yielding   ext-real-valued   real-valued   finite-support   FinSequence of  the carrier of F_Real
 
 the addF of F_Real is   non  empty   Relation-like  [: the carrier of F_Real, the carrier of F_Real:] -defined   the carrier of F_Real -valued   Function-like   total   quasi_total   complex-yielding   ext-real-valued   real-valued   Element of  bool [:[: the carrier of F_Real, the carrier of F_Real:], the carrier of F_Real:]
 
[: the carrier of F_Real, the carrier of F_Real:] is   non  empty   Relation-like   complex-yielding   ext-real-valued   real-valued   set 
 
[:[: the carrier of F_Real, the carrier of F_Real:], the carrier of F_Real:] is   non  empty   Relation-like   complex-yielding   ext-real-valued   real-valued   set 
 
 bool [:[: the carrier of F_Real, the carrier of F_Real:], the carrier of F_Real:] is   non  empty   set 
 
K721( the carrier of F_Real, the carrier of F_Real, the carrier of F_Real, the addF of F_Real,fp,z) is   Relation-like   NAT  -defined   the carrier of F_Real -valued   Function-like  V36()  FinSequence-like   FinSubsequence-like   complex-yielding   ext-real-valued   real-valued   finite-support   FinSequence of  the carrier of F_Real
 
sq is   Relation-like   NAT  -defined   Function-like  V36() n -element   FinSequence-like   FinSubsequence-like   complex-yielding   ext-real-valued   real-valued   finite-support   Element of  the carrier of (TOP-REAL n)
 
z is   Relation-like   NAT  -defined   Function-like  V36() n -element   FinSequence-like   FinSubsequence-like   complex-yielding   ext-real-valued   real-valued   finite-support   Element of  the carrier of (TOP-REAL n)
 
sq + z is   Relation-like   NAT  -defined   Function-like  V36() n -element   FinSequence-like   FinSubsequence-like   complex-yielding   ext-real-valued   real-valued   finite-support   Element of  the carrier of (TOP-REAL n)
 
 the addF of (TOP-REAL n) is   non  empty   Relation-like  [: the carrier of (TOP-REAL n), the carrier of (TOP-REAL n):] -defined   the carrier of (TOP-REAL n) -valued   Function-like   total   quasi_total   Element of  bool [:[: the carrier of (TOP-REAL n), the carrier of (TOP-REAL n):], the carrier of (TOP-REAL n):]
 
[:[: the carrier of (TOP-REAL n), the carrier of (TOP-REAL n):], the carrier of (TOP-REAL n):] is   non  empty   Relation-like   set 
 
 bool [:[: the carrier of (TOP-REAL n), the carrier of (TOP-REAL n):], the carrier of (TOP-REAL n):] is   non  empty   set 
 
 the addF of (TOP-REAL n) . (sq,z) is   Relation-like   NAT  -defined   Function-like  V36() n -element   FinSequence-like   FinSubsequence-like   complex-yielding   ext-real-valued   real-valued   finite-support   Element of  the carrier of (TOP-REAL n)
 
sq + z is   Relation-like   NAT  -defined   REAL  -valued   Function-like  V36()  FinSequence-like   FinSubsequence-like   complex-yielding   ext-real-valued   real-valued   finite-support   FinSequence of  REAL 
 
f . (X + z) is   Relation-like   Function-like   Element of  the carrier of (n -VectSp_over F_Real)
 
p . sq is   Relation-like   NAT  -defined   Function-like  V36() n -element   FinSequence-like   FinSubsequence-like   complex-yielding   ext-real-valued   real-valued   finite-support   Element of  the carrier of (TOP-REAL n)
 
p . z is   Relation-like   NAT  -defined   Function-like  V36() n -element   FinSequence-like   FinSubsequence-like   complex-yielding   ext-real-valued   real-valued   finite-support   Element of  the carrier of (TOP-REAL n)
 
(p . sq) + (p . z) is   Relation-like   NAT  -defined   Function-like  V36() n -element   FinSequence-like   FinSubsequence-like   complex-yielding   ext-real-valued   real-valued   finite-support   Element of  the carrier of (TOP-REAL n)
 
 the addF of (TOP-REAL n) . ((p . sq),(p . z)) is   Relation-like   NAT  -defined   Function-like  V36() n -element   FinSequence-like   FinSubsequence-like   complex-yielding   ext-real-valued   real-valued   finite-support   Element of  the carrier of (TOP-REAL n)
 
(p . sq) + (p . z) is   Relation-like   NAT  -defined   REAL  -valued   Function-like  V36()  FinSequence-like   FinSubsequence-like   complex-yielding   ext-real-valued   real-valued   finite-support   FinSequence of  REAL 
 
fpz + h is   Relation-like   NAT  -defined   the carrier of F_Real -valued   Function-like  V36()  FinSequence-like   FinSubsequence-like   complex-yielding   ext-real-valued   real-valued   finite-support   FinSequence of  the carrier of F_Real
 
K721( the carrier of F_Real, the carrier of F_Real, the carrier of F_Real, the addF of F_Real,fpz,h) is   Relation-like   NAT  -defined   the carrier of F_Real -valued   Function-like  V36()  FinSequence-like   FinSubsequence-like   complex-yielding   ext-real-valued   real-valued   finite-support   FinSequence of  the carrier of F_Real
 
(f . X) + (f . z) is   Relation-like   Function-like   Element of  the carrier of (n -VectSp_over F_Real)
 
 the addF of (n -VectSp_over F_Real) . ((f . X),(f . z)) is   Relation-like   Function-like   Element of  the carrier of (n -VectSp_over F_Real)
 
n1 is   Relation-like   NAT  -defined   the carrier of (n -VectSp_over F_Real) -valued   Function-like  V36()  FinSequence-like   FinSubsequence-like   finite-support   OrdBasis of n -VectSp_over F_Real
 
 len n1 is   ordinal   natural  V11()  real   ext-real   non  negative  V36()  cardinal  V85() V86() V155() V156() V157() V158() V159() V160()  Element of  NAT 
 
 AutMt (f,n1,n1) is   Relation-like   NAT  -defined   the carrier of F_Real *  -valued   Function-like  V36()  FinSequence-like   FinSubsequence-like   FinSequence-yielding   finite-support   Function-yielding  V235()  tabular   Matrix of  len n1, len n1, the carrier of F_Real
 
X is   Relation-like   NAT  -defined   the carrier of F_Real *  -valued   Function-like  V36()  FinSequence-like   FinSubsequence-like   FinSequence-yielding   finite-support   Function-yielding  V235()  tabular   Matrix of n,n, the carrier of F_Real
 
 Mx2Tran X is   non  empty   Relation-like   the carrier of (TOP-REAL n) -defined   the carrier of (TOP-REAL n) -valued   Function-like   total   quasi_total   additive   FinSequence-yielding   homogeneous   Function-yielding  V235()  Element of  bool [: the carrier of (TOP-REAL n), the carrier of (TOP-REAL n):]
 
fp is   Relation-like   Function-like   Element of  the carrier of (n -VectSp_over F_Real)
 
f . fp is   Relation-like   Function-like   Element of  the carrier of (n -VectSp_over F_Real)
 
z is  V11()  real   ext-real   Element of  the carrier of F_Real
 
z * fp is   Relation-like   Function-like   Element of  the carrier of (n -VectSp_over F_Real)
 
 the lmult of (n -VectSp_over F_Real) is   non  empty   Relation-like  [: the carrier of F_Real, the carrier of (n -VectSp_over F_Real):] -defined   the carrier of (n -VectSp_over F_Real) -valued   Function-like   total   quasi_total   Element of  bool [:[: the carrier of F_Real, the carrier of (n -VectSp_over F_Real):], the carrier of (n -VectSp_over F_Real):]
 
[: the carrier of F_Real, the carrier of (n -VectSp_over F_Real):] is   non  empty   Relation-like   set 
 
[:[: the carrier of F_Real, the carrier of (n -VectSp_over F_Real):], the carrier of (n -VectSp_over F_Real):] is   non  empty   Relation-like   set 
 
 bool [:[: the carrier of F_Real, the carrier of (n -VectSp_over F_Real):], the carrier of (n -VectSp_over F_Real):] is   non  empty   set 
 
 the lmult of (n -VectSp_over F_Real) . (z,fp) is   Relation-like   Function-like   Element of  the carrier of (n -VectSp_over F_Real)
 
fpz is   Relation-like   NAT  -defined   the carrier of F_Real -valued   Function-like  V36() n -element   FinSequence-like   FinSubsequence-like   finite-support   Element of n -tuples_on  the carrier of F_Real
 
z * fpz is   Relation-like   NAT  -defined   the carrier of F_Real -valued   Function-like  V36()  FinSequence-like   FinSubsequence-like   complex-yielding   ext-real-valued   real-valued   finite-support   FinSequence of  the carrier of F_Real
 
z multfield  is   non  empty   Relation-like   the carrier of F_Real -defined   the carrier of F_Real -valued   Function-like   total   quasi_total   complex-yielding   ext-real-valued   real-valued   Element of  bool [: the carrier of F_Real, the carrier of F_Real:]
 
 bool [: the carrier of F_Real, the carrier of F_Real:] is   non  empty   set 
 
 the multF of F_Real is   non  empty   Relation-like  [: the carrier of F_Real, the carrier of F_Real:] -defined   the carrier of F_Real -valued   Function-like   total   quasi_total   complex-yielding   ext-real-valued   real-valued   associative  V287( the carrier of F_Real)  Element of  bool [:[: the carrier of F_Real, the carrier of F_Real:], the carrier of F_Real:]
 
 id  the carrier of F_Real is   non  empty   Relation-like   the carrier of F_Real -defined   the carrier of F_Real -valued   Function-like   one-to-one   total   quasi_total   complex-yielding   ext-real-valued   real-valued  V149()  non-decreasing   Element of  bool [: the carrier of F_Real, the carrier of F_Real:]
 
 the multF of F_Real [;] (z,(id  the carrier of F_Real)) is   non  empty   Relation-like   the carrier of F_Real -defined   the carrier of F_Real -valued   Function-like   total   quasi_total   complex-yielding   ext-real-valued   real-valued   Element of  bool [: the carrier of F_Real, the carrier of F_Real:]
 
K724( the carrier of F_Real, the carrier of F_Real,fpz,(z multfield)) is   Relation-like   NAT  -defined   the carrier of F_Real -valued   Function-like  V36()  FinSequence-like   FinSubsequence-like   complex-yielding   ext-real-valued   real-valued   finite-support   FinSequence of  the carrier of F_Real
 
z is   Relation-like   NAT  -defined   Function-like  V36() n -element   FinSequence-like   FinSubsequence-like   complex-yielding   ext-real-valued   real-valued   finite-support   Element of  the carrier of (TOP-REAL n)
 
z * z is   Relation-like   NAT  -defined   Function-like  V36() n -element   FinSequence-like   FinSubsequence-like   complex-yielding   ext-real-valued   real-valued   finite-support   Element of  the carrier of (TOP-REAL n)
 
z * z is   Relation-like   NAT  -defined   REAL  -valued   Function-like  V36()  FinSequence-like   FinSubsequence-like   complex-yielding   ext-real-valued   real-valued   finite-support   FinSequence of  REAL 
 
f . (z * fp) is   Relation-like   Function-like   Element of  the carrier of (n -VectSp_over F_Real)
 
p . z is   Relation-like   NAT  -defined   Function-like  V36() n -element   FinSequence-like   FinSubsequence-like   complex-yielding   ext-real-valued   real-valued   finite-support   Element of  the carrier of (TOP-REAL n)
 
z * (p . z) is   Relation-like   NAT  -defined   Function-like  V36() n -element   FinSequence-like   FinSubsequence-like   complex-yielding   ext-real-valued   real-valued   finite-support   Element of  the carrier of (TOP-REAL n)
 
z * (p . z) is   Relation-like   NAT  -defined   REAL  -valued   Function-like  V36()  FinSequence-like   FinSubsequence-like   complex-yielding   ext-real-valued   real-valued   finite-support   FinSequence of  REAL 
 
h is   Relation-like   NAT  -defined   the carrier of F_Real -valued   Function-like  V36() n -element   FinSequence-like   FinSubsequence-like   finite-support   Element of n -tuples_on  the carrier of F_Real
 
z * h is   Relation-like   NAT  -defined   the carrier of F_Real -valued   Function-like  V36()  FinSequence-like   FinSubsequence-like   complex-yielding   ext-real-valued   real-valued   finite-support   FinSequence of  the carrier of F_Real
 
K724( the carrier of F_Real, the carrier of F_Real,h,(z multfield)) is   Relation-like   NAT  -defined   the carrier of F_Real -valued   Function-like  V36()  FinSequence-like   FinSubsequence-like   complex-yielding   ext-real-valued   real-valued   finite-support   FinSequence of  the carrier of F_Real
 
z * (f . fp) is   Relation-like   Function-like   Element of  the carrier of (n -VectSp_over F_Real)
 
 the lmult of (n -VectSp_over F_Real) . (z,(f . fp)) is   Relation-like   Function-like   Element of  the carrier of (n -VectSp_over F_Real)
 
 Mx2Tran ((AutMt (f,n1,n1)),n1,n1) is   non  empty   Relation-like   the carrier of (n -VectSp_over F_Real) -defined   the carrier of (n -VectSp_over F_Real) -valued   Function-like   total   quasi_total   Element of  bool [: the carrier of (n -VectSp_over F_Real), the carrier of (n -VectSp_over F_Real):]
 
q is   Relation-like   NAT  -defined   the carrier of F_Real *  -valued   Function-like  V36()  FinSequence-like   FinSubsequence-like   FinSequence-yielding   finite-support   Function-yielding  V235()  tabular   Matrix of n,n, the carrier of F_Real
 
 Mx2Tran q is   non  empty   Relation-like   the carrier of (TOP-REAL n) -defined   the carrier of (TOP-REAL n) -valued   Function-like   total   quasi_total   additive   FinSequence-yielding   homogeneous   Function-yielding  V235()  Element of  bool [: the carrier of (TOP-REAL n), the carrier of (TOP-REAL n):]
 
TR is   Relation-like   NAT  -defined   the carrier of F_Real *  -valued   Function-like  V36()  FinSequence-like   FinSubsequence-like   FinSequence-yielding   finite-support   Function-yielding  V235()  tabular   Matrix of n,n, the carrier of F_Real
 
 Mx2Tran TR is   non  empty   Relation-like   the carrier of (TOP-REAL n) -defined   the carrier of (TOP-REAL n) -valued   Function-like   total   quasi_total   additive   FinSequence-yielding   homogeneous   Function-yielding  V235()  Element of  bool [: the carrier of (TOP-REAL n), the carrier of (TOP-REAL n):]
 
n is   ordinal   natural  V11()  real   ext-real   non  negative  V36()  cardinal  V85()  set 
 
 TOP-REAL n is   non  empty   TopSpace-like   right_complementable   constituted-Functions   constituted-FinSeqs  V189() V190() V191() V192() V193() V194() V195() V228() L16()
 
 the carrier of (TOP-REAL n) is   non  empty   set 
 
[: the carrier of (TOP-REAL n), the carrier of (TOP-REAL n):] is   non  empty   Relation-like   set 
 
 bool [: the carrier of (TOP-REAL n), the carrier of (TOP-REAL n):] is   non  empty   set 
 
p is   non  empty   Relation-like   the carrier of (TOP-REAL n) -defined   the carrier of (TOP-REAL n) -valued   Function-like   total   quasi_total   additive   FinSequence-yielding   homogeneous   Function-yielding  V235()  Element of  bool [: the carrier of (TOP-REAL n), the carrier of (TOP-REAL n):]
 
(n,p) is   Relation-like   NAT  -defined   the carrier of F_Real *  -valued   Function-like  V36()  FinSequence-like   FinSubsequence-like   FinSequence-yielding   finite-support   Function-yielding  V235()  tabular   Matrix of n,n, the carrier of F_Real
 
q is   non  empty   Relation-like   the carrier of (TOP-REAL n) -defined   the carrier of (TOP-REAL n) -valued   Function-like   total   quasi_total   additive   FinSequence-yielding   homogeneous   Function-yielding  V235()  Element of  bool [: the carrier of (TOP-REAL n), the carrier of (TOP-REAL n):]
 
p * q is   non  empty   Relation-like   the carrier of (TOP-REAL n) -defined   the carrier of (TOP-REAL n) -defined   the carrier of (TOP-REAL n) -defined   the carrier of (TOP-REAL n) -valued   the carrier of (TOP-REAL n) -valued   the carrier of (TOP-REAL n) -valued   Function-like   total   total   total   quasi_total   quasi_total   quasi_total   additive   FinSequence-yielding   homogeneous   Function-yielding  V235()  Element of  bool [: the carrier of (TOP-REAL n), the carrier of (TOP-REAL n):]
 
(n,(p * q)) is   Relation-like   NAT  -defined   the carrier of F_Real *  -valued   Function-like  V36()  FinSequence-like   FinSubsequence-like   FinSequence-yielding   finite-support   Function-yielding  V235()  tabular   Matrix of n,n, the carrier of F_Real
 
(n,q) is   Relation-like   NAT  -defined   the carrier of F_Real *  -valued   Function-like  V36()  FinSequence-like   FinSubsequence-like   FinSequence-yielding   finite-support   Function-yielding  V235()  tabular   Matrix of n,n, the carrier of F_Real
 
(n,q) * (n,p) is   Relation-like   NAT  -defined   the carrier of F_Real *  -valued   Function-like  V36()  FinSequence-like   FinSubsequence-like   FinSequence-yielding   finite-support   Function-yielding  V235()  tabular   Matrix of n,n, the carrier of F_Real
 
 width (n,p) is   ordinal   natural  V11()  real   ext-real   non  negative  V36()  cardinal  V85() V86() V155() V156() V157() V158() V159() V160()  Element of  NAT 
 
 width (n,q) is   ordinal   natural  V11()  real   ext-real   non  negative  V36()  cardinal  V85() V86() V155() V156() V157() V158() V159() V160()  Element of  NAT 
 
 len (n,q) is   ordinal   natural  V11()  real   ext-real   non  negative  V36()  cardinal  V85() V86() V155() V156() V157() V158() V159() V160()  Element of  NAT 
 
 Mx2Tran ((n,q) * (n,p)) is   non  empty   Relation-like   the carrier of (TOP-REAL n) -defined   the carrier of (TOP-REAL n) -valued   Function-like   total   quasi_total   additive   FinSequence-yielding   homogeneous   Function-yielding  V235()  Element of  bool [: the carrier of (TOP-REAL n), the carrier of (TOP-REAL n):]
 
 Mx2Tran (n,q) is   non  empty   Relation-like   the carrier of (TOP-REAL n) -defined   the carrier of (TOP-REAL n) -valued   Function-like   total   quasi_total   additive   FinSequence-yielding   homogeneous   Function-yielding  V235()  Element of  bool [: the carrier of (TOP-REAL n), the carrier of (TOP-REAL n):]
 
 Mx2Tran (n,p) is   non  empty   Relation-like   the carrier of (TOP-REAL n) -defined   the carrier of (TOP-REAL n) -valued   Function-like   total   quasi_total   additive   FinSequence-yielding   homogeneous   Function-yielding  V235()  Element of  bool [: the carrier of (TOP-REAL n), the carrier of (TOP-REAL n):]
 
(Mx2Tran (n,p)) * (Mx2Tran (n,q)) is   non  empty   Relation-like   the carrier of (TOP-REAL n) -defined   the carrier of (TOP-REAL n) -defined   the carrier of (TOP-REAL n) -defined   the carrier of (TOP-REAL n) -valued   the carrier of (TOP-REAL n) -valued   the carrier of (TOP-REAL n) -valued   Function-like   total   total   total   quasi_total   quasi_total   quasi_total   additive   FinSequence-yielding   homogeneous   Function-yielding  V235()  Element of  bool [: the carrier of (TOP-REAL n), the carrier of (TOP-REAL n):]
 
p * (Mx2Tran (n,q)) is   non  empty   Relation-like   the carrier of (TOP-REAL n) -defined   the carrier of (TOP-REAL n) -defined   the carrier of (TOP-REAL n) -defined   the carrier of (TOP-REAL n) -valued   the carrier of (TOP-REAL n) -valued   the carrier of (TOP-REAL n) -valued   Function-like   total   total   total   quasi_total   quasi_total   quasi_total   additive   FinSequence-yielding   homogeneous   Function-yielding  V235()  Element of  bool [: the carrier of (TOP-REAL n), the carrier of (TOP-REAL n):]
 
n is    set 
 
p is   ordinal   natural  V11()  real   ext-real   non  negative  V36()  cardinal  V85()  set 
 
q is   ordinal   natural  V11()  real   ext-real   non  negative  V36()  cardinal  V85()  set 
 
 TOP-REAL q is   non  empty   TopSpace-like   right_complementable   constituted-Functions   constituted-FinSeqs  V189() V190() V191() V192() V193() V194() V195() V228() L16()
 
 the carrier of (TOP-REAL q) is   non  empty   set 
 
 Seg q is  V16() V36() q -element  V155() V156() V157() V158() V159() V160()  Element of  bool NAT
 
 {  b1 where b1 is   ordinal   natural  V11()  real   ext-real   non  negative  V36()  cardinal  V85() V86() V155() V156() V157() V158() V159() V160()  Element of  NAT  : ( 1 <= b1 & b1 <= q )  }   is    set 
 
[: the carrier of (TOP-REAL q), the carrier of (TOP-REAL q):] is   non  empty   Relation-like   set 
 
 bool [: the carrier of (TOP-REAL q), the carrier of (TOP-REAL q):] is   non  empty   set 
 
n /\ (Seg q) is  V36() V155() V156() V157() V158() V159() V160()  Element of  bool NAT
 
 card (n /\ (Seg q)) is   ordinal   natural  V11()  real   ext-real   non  negative  V36()  cardinal  V85() V86() V155() V156() V157() V158() V159() V160()  Element of  omega 
 
TR is   Relation-like   NAT  -defined   Function-like  V36() q -element   FinSequence-like   FinSubsequence-like   complex-yielding   ext-real-valued   real-valued   finite-support   Element of  the carrier of (TOP-REAL q)
 
{p} is   non  empty   trivial  V36() V40() 1 -element  V155() V156() V157() V158() V159() V160()  Element of  bool NAT
 
f is   ordinal   natural  V11()  real   ext-real   non  negative  V36()  cardinal  V85()  set 
 
 Seg f is  V16() V36() f -element  V155() V156() V157() V158() V159() V160()  Element of  bool NAT
 
 {  b1 where b1 is   ordinal   natural  V11()  real   ext-real   non  negative  V36()  cardinal  V85() V86() V155() V156() V157() V158() V159() V160()  Element of  NAT  : ( 1 <= b1 & b1 <= f )  }   is    set 
 
n /\ (Seg f) is  V36() V155() V156() V157() V158() V159() V160()  Element of  bool NAT
 
(n /\ (Seg f)) \/ {p} is   non  empty  V36() V155() V156() V157() V158() V159() V160()  Element of  bool NAT
 
 card ((n /\ (Seg f)) \/ {p}) is   non  empty   ordinal   natural  V11()  real   ext-real   positive   non  negative  V36()  cardinal  V85() V86() V155() V156() V157() V158() V159() V160()  Element of  omega 
 
f + 1 is   non  empty   ordinal   natural  V11()  real   ext-real   positive   non  negative  V36()  cardinal  V85() V86() V155() V156() V157() V158() V159() V160()  Element of  NAT 
 
 Seg (f + 1) is   non  empty  V16() V36() f + 1 -element  f + 1 -element  V155() V156() V157() V158() V159() V160()  Element of  bool NAT
 
 {  b1 where b1 is   ordinal   natural  V11()  real   ext-real   non  negative  V36()  cardinal  V85() V86() V155() V156() V157() V158() V159() V160()  Element of  NAT  : ( 1 <= b1 & b1 <= f + 1 )  }   is    set 
 
n /\ (Seg (f + 1)) is  V36() V155() V156() V157() V158() V159() V160()  Element of  bool NAT
 
(n /\ (Seg (f + 1))) \/ {p} is   non  empty  V36() V155() V156() V157() V158() V159() V160()  Element of  bool NAT
 
 card ((n /\ (Seg (f + 1))) \/ {p}) is   non  empty   ordinal   natural  V11()  real   ext-real   positive   non  negative  V36()  cardinal  V85() V86() V155() V156() V157() V158() V159() V160()  Element of  omega 
 
{(f + 1)} is   non  empty   trivial  V36() V40() 1 -element  V155() V156() V157() V158() V159() V160()  Element of  bool NAT
 
(Seg f) \/ {(f + 1)} is   non  empty  V36() V155() V156() V157() V158() V159() V160()  Element of  bool NAT
 
{(f + 1),p} is   non  empty  V36() V40() V155() V156() V157() V158() V159() V160()  Element of  bool NAT
 
((n /\ (Seg f)) \/ {p}) \/ {(f + 1),p} is   non  empty  V36() V155() V156() V157() V158() V159() V160()  Element of  bool NAT
 
n \/ {(f + 1)} is   non  empty   set 
 
{(f + 1)} \/ {p} is   non  empty  V36() V40() V155() V156() V157() V158() V159() V160()  Element of  bool NAT
 
{p} \/ {(f + 1)} is   non  empty  V36() V40() V155() V156() V157() V158() V159() V160()  Element of  bool NAT
 
{p} \/ ({p} \/ {(f + 1)}) is   non  empty  V36() V40() V155() V156() V157() V158() V159() V160()  Element of  bool NAT
 
(n /\ (Seg f)) \/ ({p} \/ ({p} \/ {(f + 1)})) is   non  empty  V36() V155() V156() V157() V158() V159() V160()  Element of  bool NAT
 
{p} \/ {p} is   non  empty  V36() V40() V155() V156() V157() V158() V159() V160()  Element of  bool NAT
 
({p} \/ {p}) \/ {(f + 1)} is   non  empty  V36() V40() V155() V156() V157() V158() V159() V160()  Element of  bool NAT
 
(n /\ (Seg f)) \/ (({p} \/ {p}) \/ {(f + 1)}) is   non  empty  V36() V155() V156() V157() V158() V159() V160()  Element of  bool NAT
 
(n /\ (Seg f)) \/ {(f + 1)} is   non  empty  V36() V155() V156() V157() V158() V159() V160()  Element of  bool NAT
 
((n /\ (Seg f)) \/ {(f + 1)}) \/ {p} is   non  empty  V36() V155() V156() V157() V158() V159() V160()  Element of  bool NAT
 
z is   non  empty   Relation-like   the carrier of (TOP-REAL q) -defined   the carrier of (TOP-REAL q) -valued   Function-like   total   quasi_total   additive   FinSequence-yielding   homogeneous   Function-yielding  V235()  being_homeomorphism  (q) (q)  Element of  bool [: the carrier of (TOP-REAL q), the carrier of (TOP-REAL q):]
 
z . TR is   Relation-like   NAT  -defined   Function-like  V36() q -element   FinSequence-like   FinSubsequence-like   complex-yielding   ext-real-valued   real-valued   finite-support   Element of  the carrier of (TOP-REAL q)
 
(z . TR) . p is  V11()  real   ext-real   Element of  REAL 
 
z is   non  empty   Relation-like   the carrier of (TOP-REAL q) -defined   the carrier of (TOP-REAL q) -valued   Function-like   total   quasi_total   additive   FinSequence-yielding   homogeneous   Function-yielding  V235()  being_homeomorphism  (q) (q)  Element of  bool [: the carrier of (TOP-REAL q), the carrier of (TOP-REAL q):]
 
z . TR is   Relation-like   NAT  -defined   Function-like  V36() q -element   FinSequence-like   FinSubsequence-like   complex-yielding   ext-real-valued   real-valued   finite-support   Element of  the carrier of (TOP-REAL q)
 
(z . TR) . p is  V11()  real   ext-real   Element of  REAL 
 
(Seg (f + 1)) \/ {(f + 1)} is   non  empty  V36() V155() V156() V157() V158() V159() V160()  Element of  bool NAT
 
{(f + 1)} \/ {(f + 1)} is   non  empty  V36() V40() V155() V156() V157() V158() V159() V160()  Element of  bool NAT
 
(Seg f) \/ ({(f + 1)} \/ {(f + 1)}) is   non  empty  V36() V155() V156() V157() V158() V159() V160()  Element of  bool NAT
 
n \/ {p} is   non  empty   set 
 
(Seg f) \/ {p} is   non  empty  V36() V155() V156() V157() V158() V159() V160()  Element of  bool NAT
 
(n \/ {p}) /\ ((Seg f) \/ {p}) is  V36() V155() V156() V157() V158() V159() V160()  Element of  bool NAT
 
z is   ordinal   natural  V11()  real   ext-real   non  negative  V36()  cardinal  V85()  set 
 
(z . TR) . z is  V11()  real   ext-real   Element of  REAL 
 
n /\ {(f + 1)} is  V36() V155() V156() V157() V158() V159() V160()  Element of  bool NAT
 
(n /\ (Seg f)) \/ (n /\ {(f + 1)}) is  V36() V155() V156() V157() V158() V159() V160()  Element of  bool NAT
 
(n /\ (Seg f)) \/ {} is  V36() V155() V156() V157() V158() V159() V160()  set 
 
z is   ordinal   natural  V11()  real   ext-real   non  negative  V36()  cardinal  V85()  set 
 
(z . TR) . z is  V11()  real   ext-real   Element of  REAL 
 
(z . TR) . (f + 1) is  V11()  real   ext-real   Element of  REAL 
 
((z . TR) . (f + 1)) ^2  is  V11()  real   ext-real   Element of  REAL 
 
((z . TR) . (f + 1)) * ((z . TR) . (f + 1)) is  V11()  real   ext-real   set 
 
((z . TR) . p) ^2  is  V11()  real   ext-real   Element of  REAL 
 
((z . TR) . p) * ((z . TR) . p) is  V11()  real   ext-real   set 
 
(((z . TR) . (f + 1)) ^2) + (((z . TR) . p) ^2) is  V11()  real   ext-real   Element of  REAL 
 
 sqrt ((((z . TR) . (f + 1)) ^2) + (((z . TR) . p) ^2)) is  V11()  real   ext-real   Element of  REAL 
 
(sqrt ((((z . TR) . (f + 1)) ^2) + (((z . TR) . p) ^2))) ^2  is  V11()  real   ext-real   Element of  REAL 
 
(sqrt ((((z . TR) . (f + 1)) ^2) + (((z . TR) . p) ^2))) * (sqrt ((((z . TR) . (f + 1)) ^2) + (((z . TR) . p) ^2))) is  V11()  real   ext-real   set 
 
h is  V11()  real   ext-real   set 
 
(q,h,(f + 1),p) is   Relation-like   NAT  -defined   the carrier of F_Real *  -valued   Function-like  V36()  FinSequence-like   FinSubsequence-like   FinSequence-yielding   finite-support   Function-yielding  V235()  tabular   invertible   Matrix of q,q, the carrier of F_Real
 
 Mx2Tran (q,h,(f + 1),p) is   non  empty   Relation-like   the carrier of (TOP-REAL q) -defined   the carrier of (TOP-REAL q) -valued   Function-like   total   quasi_total   additive   FinSequence-yielding   homogeneous   Function-yielding  V235()  being_homeomorphism   Element of  bool [: the carrier of (TOP-REAL q), the carrier of (TOP-REAL q):]
 
(Mx2Tran (q,h,(f + 1),p)) . (z . TR) is   Relation-like   NAT  -defined   Function-like  V36() q -element   FinSequence-like   FinSubsequence-like   complex-yielding   ext-real-valued   real-valued   finite-support   Element of  the carrier of (TOP-REAL q)
 
((Mx2Tran (q,h,(f + 1),p)) . (z . TR)) . p is  V11()  real   ext-real   Element of  REAL 
 
sq is   non  empty   Relation-like   the carrier of (TOP-REAL q) -defined   the carrier of (TOP-REAL q) -valued   Function-like   total   quasi_total   additive   FinSequence-yielding   homogeneous   Function-yielding  V235()  being_homeomorphism  (q) (q)  Element of  bool [: the carrier of (TOP-REAL q), the carrier of (TOP-REAL q):]
 
sq * z is   non  empty   Relation-like   the carrier of (TOP-REAL q) -defined   the carrier of (TOP-REAL q) -defined   the carrier of (TOP-REAL q) -defined   the carrier of (TOP-REAL q) -valued   the carrier of (TOP-REAL q) -valued   the carrier of (TOP-REAL q) -valued   Function-like   total   total   total   quasi_total   quasi_total   quasi_total   additive   additive   FinSequence-yielding   homogeneous   Function-yielding  V235()  being_homeomorphism  (q) (q)  Element of  bool [: the carrier of (TOP-REAL q), the carrier of (TOP-REAL q):]
 
z is   non  empty   Relation-like   the carrier of (TOP-REAL q) -defined   the carrier of (TOP-REAL q) -valued   Function-like   total   quasi_total   additive   FinSequence-yielding   homogeneous   Function-yielding  V235()  being_homeomorphism  (q) (q)  Element of  bool [: the carrier of (TOP-REAL q), the carrier of (TOP-REAL q):]
 
z . TR is   Relation-like   NAT  -defined   Function-like  V36() q -element   FinSequence-like   FinSubsequence-like   complex-yielding   ext-real-valued   real-valued   finite-support   Element of  the carrier of (TOP-REAL q)
 
(z . TR) . p is  V11()  real   ext-real   Element of  REAL 
 
 dom z is   non  empty   set 
 
 dom sq is   non  empty   set 
 
sq . (z . TR) is   Relation-like   NAT  -defined   Function-like  V36() q -element   FinSequence-like   FinSubsequence-like   complex-yielding   ext-real-valued   real-valued   finite-support   Element of  the carrier of (TOP-REAL q)
 
z is   ordinal   natural  V11()  real   ext-real   non  negative  V36()  cardinal  V85()  set 
 
(z . TR) . z is  V11()  real   ext-real   Element of  REAL 
 
(z . TR) . z is  V11()  real   ext-real   Element of  REAL 
 
(sq . (z . TR)) . z is  V11()  real   ext-real   Element of  REAL 
 
((sq . (z . TR)) . z) * ((sq . (z . TR)) . z) is  V11()  real   ext-real   Element of  REAL 
 
(((sq . (z . TR)) . z) * ((sq . (z . TR)) . z)) + ((((z . TR) . (f + 1)) ^2) + (((z . TR) . p) ^2)) is  V11()  real   ext-real   Element of  REAL 
 
(z . TR) . (f + 1) is  V11()  real   ext-real   Element of  REAL 
 
((z . TR) . (f + 1)) ^2  is  V11()  real   ext-real   Element of  REAL 
 
((z . TR) . (f + 1)) * ((z . TR) . (f + 1)) is  V11()  real   ext-real   set 
 
((z . TR) . p) ^2  is  V11()  real   ext-real   Element of  REAL 
 
((z . TR) . p) * ((z . TR) . p) is  V11()  real   ext-real   set 
 
(((z . TR) . (f + 1)) ^2) + (((z . TR) . p) ^2) is  V11()  real   ext-real   Element of  REAL 
 
 sqrt ((((z . TR) . (f + 1)) ^2) + (((z . TR) . p) ^2)) is  V11()  real   ext-real   Element of  REAL 
 
(sqrt ((((z . TR) . (f + 1)) ^2) + (((z . TR) . p) ^2))) ^2  is  V11()  real   ext-real   Element of  REAL 
 
(sqrt ((((z . TR) . (f + 1)) ^2) + (((z . TR) . p) ^2))) * (sqrt ((((z . TR) . (f + 1)) ^2) + (((z . TR) . p) ^2))) is  V11()  real   ext-real   set 
 
h is  V11()  real   ext-real   set 
 
(q,h,p,(f + 1)) is   Relation-like   NAT  -defined   the carrier of F_Real *  -valued   Function-like  V36()  FinSequence-like   FinSubsequence-like   FinSequence-yielding   finite-support   Function-yielding  V235()  tabular   invertible   Matrix of q,q, the carrier of F_Real
 
 Mx2Tran (q,h,p,(f + 1)) is   non  empty   Relation-like   the carrier of (TOP-REAL q) -defined   the carrier of (TOP-REAL q) -valued   Function-like   total   quasi_total   additive   FinSequence-yielding   homogeneous   Function-yielding  V235()  being_homeomorphism   Element of  bool [: the carrier of (TOP-REAL q), the carrier of (TOP-REAL q):]
 
(Mx2Tran (q,h,p,(f + 1))) . (z . TR) is   Relation-like   NAT  -defined   Function-like  V36() q -element   FinSequence-like   FinSubsequence-like   complex-yielding   ext-real-valued   real-valued   finite-support   Element of  the carrier of (TOP-REAL q)
 
((Mx2Tran (q,h,p,(f + 1))) . (z . TR)) . p is  V11()  real   ext-real   Element of  REAL 
 
sq is   non  empty   Relation-like   the carrier of (TOP-REAL q) -defined   the carrier of (TOP-REAL q) -valued   Function-like   total   quasi_total   additive   FinSequence-yielding   homogeneous   Function-yielding  V235()  being_homeomorphism  (q) (q)  Element of  bool [: the carrier of (TOP-REAL q), the carrier of (TOP-REAL q):]
 
sq * z is   non  empty   Relation-like   the carrier of (TOP-REAL q) -defined   the carrier of (TOP-REAL q) -defined   the carrier of (TOP-REAL q) -defined   the carrier of (TOP-REAL q) -valued   the carrier of (TOP-REAL q) -valued   the carrier of (TOP-REAL q) -valued   Function-like   total   total   total   quasi_total   quasi_total   quasi_total   additive   additive   FinSequence-yielding   homogeneous   Function-yielding  V235()  being_homeomorphism  (q) (q)  Element of  bool [: the carrier of (TOP-REAL q), the carrier of (TOP-REAL q):]
 
z is   non  empty   Relation-like   the carrier of (TOP-REAL q) -defined   the carrier of (TOP-REAL q) -valued   Function-like   total   quasi_total   additive   FinSequence-yielding   homogeneous   Function-yielding  V235()  being_homeomorphism  (q) (q)  Element of  bool [: the carrier of (TOP-REAL q), the carrier of (TOP-REAL q):]
 
z . TR is   Relation-like   NAT  -defined   Function-like  V36() q -element   FinSequence-like   FinSubsequence-like   complex-yielding   ext-real-valued   real-valued   finite-support   Element of  the carrier of (TOP-REAL q)
 
(z . TR) . p is  V11()  real   ext-real   Element of  REAL 
 
{p,(f + 1)} is   non  empty  V36() V40() V155() V156() V157() V158() V159() V160()  Element of  bool NAT
 
 dom z is   non  empty   set 
 
sq . (z . TR) is   Relation-like   NAT  -defined   Function-like  V36() q -element   FinSequence-like   FinSubsequence-like   complex-yielding   ext-real-valued   real-valued   finite-support   Element of  the carrier of (TOP-REAL q)
 
z is   ordinal   natural  V11()  real   ext-real   non  negative  V36()  cardinal  V85()  set 
 
(z . TR) . z is  V11()  real   ext-real   Element of  REAL 
 
 dom sq is   non  empty   set 
 
(z . TR) . z is  V11()  real   ext-real   Element of  REAL 
 
(sq . (z . TR)) . z is  V11()  real   ext-real   Element of  REAL 
 
((sq . (z . TR)) . z) * ((sq . (z . TR)) . z) is  V11()  real   ext-real   Element of  REAL 
 
(((sq . (z . TR)) . z) * ((sq . (z . TR)) . z)) + ((((z . TR) . (f + 1)) ^2) + (((z . TR) . p) ^2)) is  V11()  real   ext-real   Element of  REAL 
 
 Seg {} is   empty   ordinal   natural  V11()  real   ext-real   non  positive   non  negative  V16()  Relation-like   non-empty   empty-yielding   NAT  -defined   RAT  -valued   Function-like   one-to-one   constant   functional  V36() V37() V40()  cardinal   {}  -element   {}  -element  V85()  FinSequence-like   FinSubsequence-like   FinSequence-membered   complex-yielding   ext-real-valued   real-valued   natural-valued  V155() V156() V157() V158() V159() V160() V161()  FinSequence-yielding   finite-support   Function-yielding  V235() V282()  Element of  bool NAT
 
 {  b1 where b1 is   ordinal   natural  V11()  real   ext-real   non  negative  V36()  cardinal  V85() V86() V155() V156() V157() V158() V159() V160()  Element of  NAT  : ( 1 <= b1 & b1 <=  {}  )  }   is    set 
 
n /\ (Seg {}) is   Relation-like  V36() V155() V156() V157() V158() V159() V160()  Element of  bool NAT
 
(n /\ (Seg {})) \/ {p} is   non  empty  V36() V155() V156() V157() V158() V159() V160()  Element of  bool NAT
 
 card ((n /\ (Seg {})) \/ {p}) is   non  empty   ordinal   natural  V11()  real   ext-real   positive   non  negative  V36()  cardinal  V85() V86() V155() V156() V157() V158() V159() V160()  Element of  omega 
 
 id (TOP-REAL q) is   non  empty   Relation-like   the carrier of (TOP-REAL q) -defined   the carrier of (TOP-REAL q) -defined   the carrier of (TOP-REAL q) -valued   the carrier of (TOP-REAL q) -valued   Function-like   total   total   quasi_total   quasi_total   additive   additive   FinSequence-yielding   homogeneous   Function-yielding  V235()  being_homeomorphism   being_homeomorphism  (q) (q)  Element of  bool [: the carrier of (TOP-REAL q), the carrier of (TOP-REAL q):]
 
 id  the carrier of (TOP-REAL q) is   non  empty   Relation-like   the carrier of (TOP-REAL q) -defined   the carrier of (TOP-REAL q) -valued   Function-like   one-to-one   total   quasi_total   quasi_total   FinSequence-yielding   Function-yielding  V235()  Element of  bool [: the carrier of (TOP-REAL q), the carrier of (TOP-REAL q):]
 
f is   non  empty   Relation-like   the carrier of (TOP-REAL q) -defined   the carrier of (TOP-REAL q) -valued   Function-like   total   quasi_total   additive   FinSequence-yielding   homogeneous   Function-yielding  V235()  being_homeomorphism  (q) (q)  Element of  bool [: the carrier of (TOP-REAL q), the carrier of (TOP-REAL q):]
 
f . TR is   Relation-like   NAT  -defined   Function-like  V36() q -element   FinSequence-like   FinSubsequence-like   complex-yielding   ext-real-valued   real-valued   finite-support   Element of  the carrier of (TOP-REAL q)
 
(f . TR) . p is  V11()  real   ext-real   Element of  REAL 
 
X is   Relation-like   Function-like   set 
 
 dom f is   non  empty   set 
 
f . X is   Relation-like   Function-like   set 
 
z is    set 
 
(f . X) . z is    set 
 
X . z is    set 
 
X is   ordinal   natural  V11()  real   ext-real   non  negative  V36()  cardinal  V85()  set 
 
(f . TR) . X is  V11()  real   ext-real   Element of  REAL 
 
(n /\ (Seg q)) \/ {p} is   non  empty  V36() V155() V156() V157() V158() V159() V160()  Element of  bool NAT
 
 card ((n /\ (Seg q)) \/ {p}) is   non  empty   ordinal   natural  V11()  real   ext-real   positive   non  negative  V36()  cardinal  V85() V86() V155() V156() V157() V158() V159() V160()  Element of  omega 
 
f is   non  empty   Relation-like   the carrier of (TOP-REAL q) -defined   the carrier of (TOP-REAL q) -valued   Function-like   total   quasi_total   additive   FinSequence-yielding   homogeneous   Function-yielding  V235()  being_homeomorphism  (q) (q)  Element of  bool [: the carrier of (TOP-REAL q), the carrier of (TOP-REAL q):]
 
f . TR is   Relation-like   NAT  -defined   Function-like  V36() q -element   FinSequence-like   FinSubsequence-like   complex-yielding   ext-real-valued   real-valued   finite-support   Element of  the carrier of (TOP-REAL q)
 
(f . TR) . p is  V11()  real   ext-real   Element of  REAL 
 
X is   ordinal   natural  V11()  real   ext-real   non  negative  V36()  cardinal  V85()  set 
 
(f . TR) . X is  V11()  real   ext-real   Element of  REAL 
 
n is   ordinal   natural  V11()  real   ext-real   non  negative  V36()  cardinal  V85()  set 
 
 TOP-REAL n is   non  empty   TopSpace-like   right_complementable   constituted-Functions   constituted-FinSeqs  V189() V190() V191() V192() V193() V194() V195() V228() L16()
 
 the carrier of (TOP-REAL n) is   non  empty   set 
 
[: the carrier of (TOP-REAL n), the carrier of (TOP-REAL n):] is   non  empty   Relation-like   set 
 
 bool [: the carrier of (TOP-REAL n), the carrier of (TOP-REAL n):] is   non  empty   set 
 
 bool  the carrier of (TOP-REAL n) is   non  empty   set 
 
p is   non  empty   Relation-like   the carrier of (TOP-REAL n) -defined   the carrier of (TOP-REAL n) -valued   Function-like   total   quasi_total   additive   FinSequence-yielding   homogeneous   Function-yielding  V235()  Element of  bool [: the carrier of (TOP-REAL n), the carrier of (TOP-REAL n):]
 
TR is    Element of  bool  the carrier of (TOP-REAL n)
 
p | TR is   Relation-like   the carrier of (TOP-REAL n) -defined  TR -defined   the carrier of (TOP-REAL n) -defined   the carrier of (TOP-REAL n) -valued   Function-like   Function-yielding  V235()  Element of  bool [: the carrier of (TOP-REAL n), the carrier of (TOP-REAL n):]
 
 id TR is   Relation-like  TR -defined  TR -valued   Function-like   one-to-one   total   quasi_total   Element of  bool [:TR,TR:]
 
[:TR,TR:] is   Relation-like   set 
 
 bool [:TR,TR:] is   non  empty   set 
 
 Lin TR is   non  empty   right_complementable   strict  V189() V190() V191() V192() V193() V194() V195() M25( TOP-REAL n)
 
 the carrier of (Lin TR) is   non  empty   set 
 
p | (Lin TR) is   non  empty   Relation-like   the carrier of (Lin TR) -defined   the carrier of (TOP-REAL n) -valued   Function-like   total   quasi_total   Element of  bool [: the carrier of (Lin TR), the carrier of (TOP-REAL n):]
 
[: the carrier of (Lin TR), the carrier of (TOP-REAL n):] is   non  empty   Relation-like   set 
 
 bool [: the carrier of (Lin TR), the carrier of (TOP-REAL n):] is   non  empty   set 
 
 id (Lin TR) is   non  empty   Relation-like   the carrier of (Lin TR) -defined   the carrier of (Lin TR) -valued   Function-like   total   quasi_total   additive   Element of  bool [: the carrier of (Lin TR), the carrier of (Lin TR):]
 
[: the carrier of (Lin TR), the carrier of (Lin TR):] is   non  empty   Relation-like   set 
 
 bool [: the carrier of (Lin TR), the carrier of (Lin TR):] is   non  empty   set 
 
 id  the carrier of (Lin TR) is   non  empty   Relation-like   the carrier of (Lin TR) -defined   the carrier of (Lin TR) -valued   Function-like   one-to-one   total   quasi_total   Element of  bool [: the carrier of (Lin TR), the carrier of (Lin TR):]
 
n1 is   ordinal   natural  V11()  real   ext-real   non  negative  V36()  cardinal  V85()  set 
 
n1 + 1 is   non  empty   ordinal   natural  V11()  real   ext-real   positive   non  negative  V36()  cardinal  V85() V86() V155() V156() V157() V158() V159() V160()  Element of  NAT 
 
X is   Relation-like   the carrier of (TOP-REAL n) -defined   REAL  -valued   Function-like   total   quasi_total   complex-yielding   ext-real-valued   real-valued   Linear_Combination of TR
 
 Carrier X is  V36()  Element of  bool  the carrier of (TOP-REAL n)
 
 card (Carrier X) is   ordinal   natural  V11()  real   ext-real   non  negative  V36()  cardinal  V85() V86() V155() V156() V157() V158() V159() V160()  Element of  omega 
 
 Sum X is   Relation-like   NAT  -defined   Function-like  V36() n -element   FinSequence-like   FinSubsequence-like   complex-yielding   ext-real-valued   real-valued   finite-support   Element of  the carrier of (TOP-REAL n)
 
p . (Sum X) is   Relation-like   NAT  -defined   Function-like  V36() n -element   FinSequence-like   FinSubsequence-like   complex-yielding   ext-real-valued   real-valued   finite-support   Element of  the carrier of (TOP-REAL n)
 
z is    set 
 
fp is   Relation-like   NAT  -defined   Function-like  V36() n -element   FinSequence-like   FinSubsequence-like   complex-yielding   ext-real-valued   real-valued   finite-support   Element of  the carrier of (TOP-REAL n)
 
{fp} is   non  empty   trivial   functional  V36() V40() 1 -element   set 
 
z is    Element of  bool  the carrier of (TOP-REAL n)
 
X . fp is  V11()  real   ext-real   Element of  REAL 
 
fpz is   Relation-like   the carrier of (TOP-REAL n) -defined   REAL  -valued   Function-like   total   quasi_total   complex-yielding   ext-real-valued   real-valued   Linear_Combination of z
 
fpz . fp is  V11()  real   ext-real   Element of  REAL 
 
 Carrier fpz is  V36()  Element of  bool  the carrier of (TOP-REAL n)
 
{fp} \/ (Carrier X) is   non  empty  V36()  set 
 
X - fpz is   Relation-like   the carrier of (TOP-REAL n) -defined   REAL  -valued   Function-like   total   quasi_total   complex-yielding   ext-real-valued   real-valued   Linear_Combination of  TOP-REAL n
 
 Carrier (X - fpz) is  V36()  Element of  bool  the carrier of (TOP-REAL n)
 
(X - fpz) . fp is  V11()  real   ext-real   Element of  REAL 
 
(X . fp) - (fpz . fp) is  V11()  real   ext-real   Element of  REAL 
 
 - (fpz . fp) is  V11()  real   ext-real   set 
 
(X . fp) + (- (fpz . fp)) is  V11()  real   ext-real   set 
 
 card (Carrier (X - fpz)) is   ordinal   natural  V11()  real   ext-real   non  negative  V36()  cardinal  V85() V86() V155() V156() V157() V158() V159() V160()  Element of  omega 
 
 ZeroLC (TOP-REAL n) is   Relation-like   the carrier of (TOP-REAL n) -defined   REAL  -valued   Function-like   total   quasi_total   complex-yielding   ext-real-valued   real-valued   Linear_Combination of  TOP-REAL n
 
 - fpz is   Relation-like   the carrier of (TOP-REAL n) -defined   REAL  -valued   Function-like   total   quasi_total   complex-yielding   ext-real-valued   real-valued   Linear_Combination of  TOP-REAL n
 
(- fpz) - (- fpz) is   Relation-like   the carrier of (TOP-REAL n) -defined   REAL  -valued   Function-like   total   quasi_total   complex-yielding   ext-real-valued   real-valued   Linear_Combination of  TOP-REAL n
 
 - (- fpz) is   Relation-like   the carrier of (TOP-REAL n) -defined   REAL  -valued   Function-like   total   quasi_total   complex-yielding   ext-real-valued   real-valued   Linear_Combination of  TOP-REAL n
 
(- fpz) + (- (- fpz)) is   Relation-like   the carrier of (TOP-REAL n) -defined   REAL  -valued   Function-like   total   quasi_total   complex-yielding   ext-real-valued   real-valued   Linear_Combination of  TOP-REAL n
 
(- fpz) + fpz is   Relation-like   the carrier of (TOP-REAL n) -defined   REAL  -valued   Function-like   total   quasi_total   complex-yielding   ext-real-valued   real-valued   Linear_Combination of  TOP-REAL n
 
X + ((- fpz) + fpz) is   Relation-like   the carrier of (TOP-REAL n) -defined   REAL  -valued   Function-like   total   quasi_total   complex-yielding   ext-real-valued   real-valued   Linear_Combination of  TOP-REAL n
 
X + (- fpz) is   Relation-like   the carrier of (TOP-REAL n) -defined   REAL  -valued   Function-like   total   quasi_total   complex-yielding   ext-real-valued   real-valued   Linear_Combination of  TOP-REAL n
 
(X + (- fpz)) + fpz is   Relation-like   the carrier of (TOP-REAL n) -defined   REAL  -valued   Function-like   total   quasi_total   complex-yielding   ext-real-valued   real-valued   Linear_Combination of  TOP-REAL n
 
(X - fpz) + fpz is   Relation-like   the carrier of (TOP-REAL n) -defined   REAL  -valued   Function-like   total   quasi_total   complex-yielding   ext-real-valued   real-valued   Linear_Combination of  TOP-REAL n
 
 Sum (X - fpz) is   Relation-like   NAT  -defined   Function-like  V36() n -element   FinSequence-like   FinSubsequence-like   complex-yielding   ext-real-valued   real-valued   finite-support   Element of  the carrier of (TOP-REAL n)
 
 Sum fpz is   Relation-like   NAT  -defined   Function-like  V36() n -element   FinSequence-like   FinSubsequence-like   complex-yielding   ext-real-valued   real-valued   finite-support   Element of  the carrier of (TOP-REAL n)
 
(Sum (X - fpz)) + (Sum fpz) is   Relation-like   NAT  -defined   Function-like  V36() n -element   FinSequence-like   FinSubsequence-like   complex-yielding   ext-real-valued   real-valued   finite-support   Element of  the carrier of (TOP-REAL n)
 
 the addF of (TOP-REAL n) is   non  empty   Relation-like  [: the carrier of (TOP-REAL n), the carrier of (TOP-REAL n):] -defined   the carrier of (TOP-REAL n) -valued   Function-like   total   quasi_total   Element of  bool [:[: the carrier of (TOP-REAL n), the carrier of (TOP-REAL n):], the carrier of (TOP-REAL n):]
 
[:[: the carrier of (TOP-REAL n), the carrier of (TOP-REAL n):], the carrier of (TOP-REAL n):] is   non  empty   Relation-like   set 
 
 bool [:[: the carrier of (TOP-REAL n), the carrier of (TOP-REAL n):], the carrier of (TOP-REAL n):] is   non  empty   set 
 
 the addF of (TOP-REAL n) . ((Sum (X - fpz)),(Sum fpz)) is   Relation-like   NAT  -defined   Function-like  V36() n -element   FinSequence-like   FinSubsequence-like   complex-yielding   ext-real-valued   real-valued   finite-support   Element of  the carrier of (TOP-REAL n)
 
(Sum (X - fpz)) + (Sum fpz) is   Relation-like   NAT  -defined   REAL  -valued   Function-like  V36()  FinSequence-like   FinSubsequence-like   complex-yielding   ext-real-valued   real-valued   finite-support   FinSequence of  REAL 
 
(p | TR) . fp is   Relation-like   Function-like   set 
 
p . fp is   Relation-like   NAT  -defined   Function-like  V36() n -element   FinSequence-like   FinSubsequence-like   complex-yielding   ext-real-valued   real-valued   finite-support   Element of  the carrier of (TOP-REAL n)
 
p . (Sum (X - fpz)) is   Relation-like   NAT  -defined   Function-like  V36() n -element   FinSequence-like   FinSubsequence-like   complex-yielding   ext-real-valued   real-valued   finite-support   Element of  the carrier of (TOP-REAL n)
 
(X . fp) * fp is   Relation-like   NAT  -defined   Function-like  V36() n -element   FinSequence-like   FinSubsequence-like   complex-yielding   ext-real-valued   real-valued   finite-support   Element of  the carrier of (TOP-REAL n)
 
(X . fp) * fp is   Relation-like   NAT  -defined   REAL  -valued   Function-like  V36()  FinSequence-like   FinSubsequence-like   complex-yielding   ext-real-valued   real-valued   finite-support   FinSequence of  REAL 
 
p . (Sum fpz) is   Relation-like   NAT  -defined   Function-like  V36() n -element   FinSequence-like   FinSubsequence-like   complex-yielding   ext-real-valued   real-valued   finite-support   Element of  the carrier of (TOP-REAL n)
 
p |  the carrier of (Lin TR) is   Relation-like   the carrier of (TOP-REAL n) -defined   the carrier of (Lin TR) -defined   the carrier of (TOP-REAL n) -defined   the carrier of (TOP-REAL n) -valued   Function-like   Function-yielding  V235()  Element of  bool [: the carrier of (TOP-REAL n), the carrier of (TOP-REAL n):]
 
X is   Relation-like   the carrier of (TOP-REAL n) -defined   REAL  -valued   Function-like   total   quasi_total   complex-yielding   ext-real-valued   real-valued   Linear_Combination of TR
 
 Carrier X is  V36()  Element of  bool  the carrier of (TOP-REAL n)
 
 card (Carrier X) is   ordinal   natural  V11()  real   ext-real   non  negative  V36()  cardinal  V85() V86() V155() V156() V157() V158() V159() V160()  Element of  omega 
 
 Sum X is   Relation-like   NAT  -defined   Function-like  V36() n -element   FinSequence-like   FinSubsequence-like   complex-yielding   ext-real-valued   real-valued   finite-support   Element of  the carrier of (TOP-REAL n)
 
p . (Sum X) is   Relation-like   NAT  -defined   Function-like  V36() n -element   FinSequence-like   FinSubsequence-like   complex-yielding   ext-real-valued   real-valued   finite-support   Element of  the carrier of (TOP-REAL n)
 
 {}  the carrier of (TOP-REAL n) is   empty   proper   ordinal   natural  V11()  real   ext-real   non  positive   non  negative   Relation-like   non-empty   empty-yielding   NAT  -defined   RAT  -valued   Function-like   one-to-one   constant   functional  V36() V37() V40()  cardinal   {}  -element  V85()  FinSequence-like   FinSubsequence-like   FinSequence-membered   complex-yielding   ext-real-valued   real-valued   natural-valued  V155() V156() V157() V158() V159() V160() V161()  FinSequence-yielding   finite-support   Function-yielding  V235() V282()  Element of  bool  the carrier of (TOP-REAL n)
 
 0. (TOP-REAL n) is   Relation-like   NAT  -defined   Function-like  V36() n -element  V61( TOP-REAL n)  FinSequence-like   FinSubsequence-like   complex-yielding   ext-real-valued   real-valued   finite-support   Element of  the carrier of (TOP-REAL n)
 
 the ZeroF of (TOP-REAL n) is   Relation-like   NAT  -defined   Function-like  V36() n -element   FinSequence-like   FinSubsequence-like   complex-yielding   ext-real-valued   real-valued   finite-support   Element of  the carrier of (TOP-REAL n)
 
p . (0. (TOP-REAL n)) is   Relation-like   NAT  -defined   Function-like  V36() n -element   FinSequence-like   FinSubsequence-like   complex-yielding   ext-real-valued   real-valued   finite-support   Element of  the carrier of (TOP-REAL n)
 
{} * (0. (TOP-REAL n)) is   Relation-like   NAT  -defined   Function-like  V36() n -element   FinSequence-like   FinSubsequence-like   complex-yielding   ext-real-valued   real-valued   finite-support   Element of  the carrier of (TOP-REAL n)
 
{} * (0. (TOP-REAL n)) is   Relation-like   NAT  -defined   REAL  -valued   Function-like  V36()  FinSequence-like   FinSubsequence-like   complex-yielding   ext-real-valued   real-valued   finite-support   FinSequence of  REAL 
 
p . ({} * (0. (TOP-REAL n))) is   Relation-like   NAT  -defined   Function-like  V36() n -element   FinSequence-like   FinSubsequence-like   complex-yielding   ext-real-valued   real-valued   finite-support   Element of  the carrier of (TOP-REAL n)
 
{} * (p . (0. (TOP-REAL n))) is   Relation-like   NAT  -defined   Function-like  V36() n -element   FinSequence-like   FinSubsequence-like   complex-yielding   ext-real-valued   real-valued   finite-support   Element of  the carrier of (TOP-REAL n)
 
{} * (p . (0. (TOP-REAL n))) is   Relation-like   NAT  -defined   REAL  -valued   Function-like  V36()  FinSequence-like   FinSubsequence-like   complex-yielding   ext-real-valued   real-valued   finite-support   FinSequence of  REAL 
 
X is    set 
 
(p | (Lin TR)) . X is    set 
 
(id (Lin TR)) . X is    set 
 
z is   Relation-like   the carrier of (TOP-REAL n) -defined   REAL  -valued   Function-like   total   quasi_total   complex-yielding   ext-real-valued   real-valued   Linear_Combination of TR
 
 Sum z is   Relation-like   NAT  -defined   Function-like  V36() n -element   FinSequence-like   FinSubsequence-like   complex-yielding   ext-real-valued   real-valued   finite-support   Element of  the carrier of (TOP-REAL n)
 
 Carrier z is  V36()  Element of  bool  the carrier of (TOP-REAL n)
 
 card (Carrier z) is   ordinal   natural  V11()  real   ext-real   non  negative  V36()  cardinal  V85() V86() V155() V156() V157() V158() V159() V160()  Element of  omega 
 
fp is   Relation-like   the carrier of (TOP-REAL n) -defined   REAL  -valued   Function-like   total   quasi_total   complex-yielding   ext-real-valued   real-valued   Linear_Combination of TR
 
 Carrier fp is  V36()  Element of  bool  the carrier of (TOP-REAL n)
 
 card (Carrier fp) is   ordinal   natural  V11()  real   ext-real   non  negative  V36()  cardinal  V85() V86() V155() V156() V157() V158() V159() V160()  Element of  omega 
 
 Sum fp is   Relation-like   NAT  -defined   Function-like  V36() n -element   FinSequence-like   FinSubsequence-like   complex-yielding   ext-real-valued   real-valued   finite-support   Element of  the carrier of (TOP-REAL n)
 
p . (Sum fp) is   Relation-like   NAT  -defined   Function-like  V36() n -element   FinSequence-like   FinSubsequence-like   complex-yielding   ext-real-valued   real-valued   finite-support   Element of  the carrier of (TOP-REAL n)
 
p . X is   Relation-like   Function-like   set 
 
 dom (p | (Lin TR)) is   non  empty   set 
 
 dom (id (Lin TR)) is   non  empty   set 
 
n is   ordinal   natural  V11()  real   ext-real   non  negative  V36()  cardinal  V85()  set 
 
 TOP-REAL n is   non  empty   TopSpace-like   right_complementable   constituted-Functions   constituted-FinSeqs  V189() V190() V191() V192() V193() V194() V195() V228() L16()
 
 the carrier of (TOP-REAL n) is   non  empty   set 
 
[: the carrier of (TOP-REAL n), the carrier of (TOP-REAL n):] is   non  empty   Relation-like   set 
 
 bool [: the carrier of (TOP-REAL n), the carrier of (TOP-REAL n):] is   non  empty   set 
 
 bool  the carrier of (TOP-REAL n) is   non  empty   set 
 
 Seg n is  V16() V36() n -element  V155() V156() V157() V158() V159() V160()  Element of  bool NAT
 
 {  b1 where b1 is   ordinal   natural  V11()  real   ext-real   non  negative  V36()  cardinal  V85() V86() V155() V156() V157() V158() V159() V160()  Element of  NAT  : ( 1 <= b1 & b1 <= n )  }   is    set 
 
p is   Relation-like   NAT  -defined   Function-like  V36() n -element   FinSequence-like   FinSubsequence-like   complex-yielding   ext-real-valued   real-valued   finite-support   Element of  the carrier of (TOP-REAL n)
 
q is   non  empty   Relation-like   the carrier of (TOP-REAL n) -defined   the carrier of (TOP-REAL n) -valued   Function-like   total   quasi_total   additive   FinSequence-yielding   homogeneous   Function-yielding  V235()  Element of  bool [: the carrier of (TOP-REAL n), the carrier of (TOP-REAL n):]
 
q . p is   Relation-like   NAT  -defined   Function-like  V36() n -element   FinSequence-like   FinSubsequence-like   complex-yielding   ext-real-valued   real-valued   finite-support   Element of  the carrier of (TOP-REAL n)
 
n1 is    Element of  bool  the carrier of (TOP-REAL n)
 
q | n1 is   Relation-like   the carrier of (TOP-REAL n) -defined  n1 -defined   the carrier of (TOP-REAL n) -defined   the carrier of (TOP-REAL n) -valued   Function-like   Function-yielding  V235()  Element of  bool [: the carrier of (TOP-REAL n), the carrier of (TOP-REAL n):]
 
 id n1 is   Relation-like  n1 -defined  n1 -valued   Function-like   one-to-one   total   quasi_total   Element of  bool [:n1,n1:]
 
[:n1,n1:] is   Relation-like   set 
 
 bool [:n1,n1:] is   non  empty   set 
 
 Lin n1 is   non  empty   right_complementable   strict  V189() V190() V191() V192() V193() V194() V195() M25( TOP-REAL n)
 
 0* n is   Relation-like   NAT  -defined   REAL  -valued   Function-like  V36() n -element   FinSequence-like   FinSubsequence-like   complex-yielding   ext-real-valued   real-valued   finite-support   Element of  REAL n
 
 REAL n is   non  empty   functional   FinSequence-membered   FinSequenceSet of  REAL 
 
n -tuples_on REAL is   non  empty   functional   FinSequence-membered   FinSequenceSet of  REAL 
 
n |-> 0 is   Relation-like   empty-yielding   NAT  -defined   REAL  -valued   Function-like  V36() n -element   FinSequence-like   FinSubsequence-like   complex-yielding   ext-real-valued   real-valued   finite-support   Element of n -tuples_on REAL
 
 the carrier of (Lin n1) is   non  empty   set 
 
q | (Lin n1) is   non  empty   Relation-like   the carrier of (Lin n1) -defined   the carrier of (TOP-REAL n) -valued   Function-like   total   quasi_total   Element of  bool [: the carrier of (Lin n1), the carrier of (TOP-REAL n):]
 
[: the carrier of (Lin n1), the carrier of (TOP-REAL n):] is   non  empty   Relation-like   set 
 
 bool [: the carrier of (Lin n1), the carrier of (TOP-REAL n):] is   non  empty   set 
 
 id (Lin n1) is   non  empty   Relation-like   the carrier of (Lin n1) -defined   the carrier of (Lin n1) -valued   Function-like   total   quasi_total   additive   Element of  bool [: the carrier of (Lin n1), the carrier of (Lin n1):]
 
[: the carrier of (Lin n1), the carrier of (Lin n1):] is   non  empty   Relation-like   set 
 
 bool [: the carrier of (Lin n1), the carrier of (Lin n1):] is   non  empty   set 
 
 id  the carrier of (Lin n1) is   non  empty   Relation-like   the carrier of (Lin n1) -defined   the carrier of (Lin n1) -valued   Function-like   one-to-one   total   quasi_total   Element of  bool [: the carrier of (Lin n1), the carrier of (Lin n1):]
 
 len (0* n) is   ordinal   natural  V11()  real   ext-real   non  negative  V36()  cardinal  V85() V86() V155() V156() V157() V158() V159() V160()  Element of  NAT 
 
 dom (0* n) is  V36() n -element  V155() V156() V157() V158() V159() V160()  Element of  bool NAT
 
z is   ordinal   natural  V11()  real   ext-real   non  negative  V36()  cardinal  V85()  set 
 
 Base_FinSeq (n,z) is   Relation-like   NAT  -defined   REAL  -valued   Function-like  V36()  FinSequence-like   FinSubsequence-like   complex-yielding   ext-real-valued   real-valued   finite-support   FinSequence of  REAL 
 
(q . p) . z is  V11()  real   ext-real   Element of  REAL 
 
p . z is  V11()  real   ext-real   Element of  REAL 
 
(0* n) +* (z,1) is   Relation-like   NAT  -defined   Function-like  V36()  FinSequence-like   FinSubsequence-like   complex-yielding   ext-real-valued   real-valued   finite-support   set 
 
q |  the carrier of (Lin n1) is   Relation-like   the carrier of (TOP-REAL n) -defined   the carrier of (Lin n1) -defined   the carrier of (TOP-REAL n) -defined   the carrier of (TOP-REAL n) -valued   Function-like   Function-yielding  V235()  Element of  bool [: the carrier of (TOP-REAL n), the carrier of (TOP-REAL n):]
 
 dom ((0* n) +* (z,1)) is  V36() V155() V156() V157() V158() V159() V160()  Element of  bool NAT
 
 len ((0* n) +* (z,1)) is   ordinal   natural  V11()  real   ext-real   non  negative  V36()  cardinal  V85() V86() V155() V156() V157() V158() V159() V160()  Element of  NAT 
 
 @ ((0* n) +* (z,1)) is   Relation-like   NAT  -defined   the carrier of F_Real -valued   Function-like  V36()  FinSequence-like   FinSubsequence-like   complex-yielding   ext-real-valued   real-valued   finite-support   FinSequence of  the carrier of F_Real
 
 @ (@ ((0* n) +* (z,1))) is   Relation-like   NAT  -defined   REAL  -valued   Function-like  V36()  FinSequence-like   FinSubsequence-like   complex-yielding   ext-real-valued   real-valued   finite-support   FinSequence of  REAL 
 
h is   Relation-like   NAT  -defined   Function-like  V36() n -element   FinSequence-like   FinSubsequence-like   complex-yielding   ext-real-valued   real-valued   finite-support   Element of  the carrier of (TOP-REAL n)
 
h . z is  V11()  real   ext-real   Element of  REAL 
 
q . h is   Relation-like   NAT  -defined   Function-like  V36() n -element   FinSequence-like   FinSubsequence-like   complex-yielding   ext-real-valued   real-valued   finite-support   Element of  the carrier of (TOP-REAL n)
 
(q . h) . z is  V11()  real   ext-real   Element of  REAL 
 
fpz is   Relation-like   NAT  -defined   Function-like  V36() n -element   FinSequence-like   FinSubsequence-like   complex-yielding   ext-real-valued   real-valued   finite-support   Element of  the carrier of (TOP-REAL n)
 
(h . z) * fpz is   Relation-like   NAT  -defined   Function-like  V36() n -element   FinSequence-like   FinSubsequence-like   complex-yielding   ext-real-valued   real-valued   finite-support   Element of  the carrier of (TOP-REAL n)
 
(h . z) * fpz is   Relation-like   NAT  -defined   REAL  -valued   Function-like  V36()  FinSequence-like   FinSubsequence-like   complex-yielding   ext-real-valued   real-valued   finite-support   FinSequence of  REAL 
 
h - ((h . z) * fpz) is   Relation-like   NAT  -defined   Function-like  V36() n -element   FinSequence-like   FinSubsequence-like   complex-yielding   ext-real-valued   real-valued   finite-support   Element of  the carrier of (TOP-REAL n)
 
 - ((h . z) * fpz) is   Relation-like   NAT  -defined   Function-like  V36() n -element   FinSequence-like   FinSubsequence-like   complex-yielding   ext-real-valued   real-valued   finite-support   Element of  the carrier of (TOP-REAL n)
 
 - ((h . z) * fpz) is   Relation-like   NAT  -defined   REAL  -valued   Function-like  V36()  FinSequence-like   FinSubsequence-like   complex-yielding   ext-real-valued   real-valued   finite-support   FinSequence of  REAL 
 
h + (- ((h . z) * fpz)) is   Relation-like   NAT  -defined   Function-like  V36() n -element   FinSequence-like   FinSubsequence-like   complex-yielding   ext-real-valued   real-valued   finite-support   Element of  the carrier of (TOP-REAL n)
 
 the addF of (TOP-REAL n) is   non  empty   Relation-like  [: the carrier of (TOP-REAL n), the carrier of (TOP-REAL n):] -defined   the carrier of (TOP-REAL n) -valued   Function-like   total   quasi_total   Element of  bool [:[: the carrier of (TOP-REAL n), the carrier of (TOP-REAL n):], the carrier of (TOP-REAL n):]
 
[:[: the carrier of (TOP-REAL n), the carrier of (TOP-REAL n):], the carrier of (TOP-REAL n):] is   non  empty   Relation-like   set 
 
 bool [:[: the carrier of (TOP-REAL n), the carrier of (TOP-REAL n):], the carrier of (TOP-REAL n):] is   non  empty   set 
 
 the addF of (TOP-REAL n) . (h,(- ((h . z) * fpz))) is   Relation-like   NAT  -defined   Function-like  V36() n -element   FinSequence-like   FinSubsequence-like   complex-yielding   ext-real-valued   real-valued   finite-support   Element of  the carrier of (TOP-REAL n)
 
h + (- ((h . z) * fpz)) is   Relation-like   NAT  -defined   REAL  -valued   Function-like  V36()  FinSequence-like   FinSubsequence-like   complex-yielding   ext-real-valued   real-valued   finite-support   FinSequence of  REAL 
 
h - ((h . z) * fpz) is   Relation-like   NAT  -defined   REAL  -valued   Function-like  V36()  FinSequence-like   FinSubsequence-like   complex-yielding   ext-real-valued   real-valued   finite-support   FinSequence of  REAL 
 
q . (h - ((h . z) * fpz)) is   Relation-like   NAT  -defined   Function-like  V36() n -element   FinSequence-like   FinSubsequence-like   complex-yielding   ext-real-valued   real-valued   finite-support   Element of  the carrier of (TOP-REAL n)
 
q . ((h . z) * fpz) is   Relation-like   NAT  -defined   Function-like  V36() n -element   FinSequence-like   FinSubsequence-like   complex-yielding   ext-real-valued   real-valued   finite-support   Element of  the carrier of (TOP-REAL n)
 
(q . (h - ((h . z) * fpz))) + (q . ((h . z) * fpz)) is   Relation-like   NAT  -defined   Function-like  V36() n -element   FinSequence-like   FinSubsequence-like   complex-yielding   ext-real-valued   real-valued   finite-support   Element of  the carrier of (TOP-REAL n)
 
 the addF of (TOP-REAL n) . ((q . (h - ((h . z) * fpz))),(q . ((h . z) * fpz))) is   Relation-like   NAT  -defined   Function-like  V36() n -element   FinSequence-like   FinSubsequence-like   complex-yielding   ext-real-valued   real-valued   finite-support   Element of  the carrier of (TOP-REAL n)
 
(q . (h - ((h . z) * fpz))) + (q . ((h . z) * fpz)) is   Relation-like   NAT  -defined   REAL  -valued   Function-like  V36()  FinSequence-like   FinSubsequence-like   complex-yielding   ext-real-valued   real-valued   finite-support   FinSequence of  REAL 
 
(h - ((h . z) * fpz)) + ((h . z) * fpz) is   Relation-like   NAT  -defined   Function-like  V36() n -element   FinSequence-like   FinSubsequence-like   complex-yielding   ext-real-valued   real-valued   finite-support   Element of  the carrier of (TOP-REAL n)
 
 the addF of (TOP-REAL n) . ((h - ((h . z) * fpz)),((h . z) * fpz)) is   Relation-like   NAT  -defined   Function-like  V36() n -element   FinSequence-like   FinSubsequence-like   complex-yielding   ext-real-valued   real-valued   finite-support   Element of  the carrier of (TOP-REAL n)
 
(h - ((h . z) * fpz)) + ((h . z) * fpz) is   Relation-like   NAT  -defined   REAL  -valued   Function-like  V36()  FinSequence-like   FinSubsequence-like   complex-yielding   ext-real-valued   real-valued   finite-support   FinSequence of  REAL 
 
q . ((h - ((h . z) * fpz)) + ((h . z) * fpz)) is   Relation-like   NAT  -defined   Function-like  V36() n -element   FinSequence-like   FinSubsequence-like   complex-yielding   ext-real-valued   real-valued   finite-support   Element of  the carrier of (TOP-REAL n)
 
 len (q . (h - ((h . z) * fpz))) is   ordinal   natural  V11()  real   ext-real   non  negative  V36()  cardinal  V85() V86() V155() V156() V157() V158() V159() V160()  Element of  NAT 
 
 len (q . ((h . z) * fpz)) is   ordinal   natural  V11()  real   ext-real   non  negative  V36()  cardinal  V85() V86() V155() V156() V157() V158() V159() V160()  Element of  NAT 
 
|.(q . ((h - ((h . z) * fpz)) + ((h . z) * fpz))).| is  V11()  real   ext-real   non  negative   Element of  REAL 
 
 sqr (q . ((h - ((h . z) * fpz)) + ((h . z) * fpz))) is   Relation-like   NAT  -defined   REAL  -valued   Function-like  V36()  FinSequence-like   FinSubsequence-like   complex-yielding   ext-real-valued   real-valued   finite-support   FinSequence of  REAL 
 
 Sum (sqr (q . ((h - ((h . z) * fpz)) + ((h . z) * fpz)))) is  V11()  real   ext-real   Element of  REAL 
 
 sqrt (Sum (sqr (q . ((h - ((h . z) * fpz)) + ((h . z) * fpz))))) is  V11()  real   ext-real   Element of  REAL 
 
|.(q . ((h - ((h . z) * fpz)) + ((h . z) * fpz))).| ^2  is  V11()  real   ext-real   Element of  REAL 
 
|.(q . ((h - ((h . z) * fpz)) + ((h . z) * fpz))).| * |.(q . ((h - ((h . z) * fpz)) + ((h . z) * fpz))).| is  V11()  real   ext-real   non  negative   set 
 
|.(q . (h - ((h . z) * fpz))).| is  V11()  real   ext-real   non  negative   Element of  REAL 
 
 sqr (q . (h - ((h . z) * fpz))) is   Relation-like   NAT  -defined   REAL  -valued   Function-like  V36()  FinSequence-like   FinSubsequence-like   complex-yielding   ext-real-valued   real-valued   finite-support   FinSequence of  REAL 
 
 Sum (sqr (q . (h - ((h . z) * fpz)))) is  V11()  real   ext-real   Element of  REAL 
 
 sqrt (Sum (sqr (q . (h - ((h . z) * fpz))))) is  V11()  real   ext-real   Element of  REAL 
 
|.(q . (h - ((h . z) * fpz))).| ^2  is  V11()  real   ext-real   Element of  REAL 
 
|.(q . (h - ((h . z) * fpz))).| * |.(q . (h - ((h . z) * fpz))).| is  V11()  real   ext-real   non  negative   set 
 
|((q . ((h . z) * fpz)),(q . (h - ((h . z) * fpz))))| is  V11()  real   ext-real   Element of  REAL 
 
2 * |((q . ((h . z) * fpz)),(q . (h - ((h . z) * fpz))))| is  V11()  real   ext-real   Element of  REAL 
 
(|.(q . (h - ((h . z) * fpz))).| ^2) + (2 * |((q . ((h . z) * fpz)),(q . (h - ((h . z) * fpz))))|) is  V11()  real   ext-real   Element of  REAL 
 
|.(q . ((h . z) * fpz)).| is  V11()  real   ext-real   non  negative   Element of  REAL 
 
 sqr (q . ((h . z) * fpz)) is   Relation-like   NAT  -defined   REAL  -valued   Function-like  V36()  FinSequence-like   FinSubsequence-like   complex-yielding   ext-real-valued   real-valued   finite-support   FinSequence of  REAL 
 
 Sum (sqr (q . ((h . z) * fpz))) is  V11()  real   ext-real   Element of  REAL 
 
 sqrt (Sum (sqr (q . ((h . z) * fpz)))) is  V11()  real   ext-real   Element of  REAL 
 
|.(q . ((h . z) * fpz)).| ^2  is  V11()  real   ext-real   Element of  REAL 
 
|.(q . ((h . z) * fpz)).| * |.(q . ((h . z) * fpz)).| is  V11()  real   ext-real   non  negative   set 
 
((|.(q . (h - ((h . z) * fpz))).| ^2) + (2 * |((q . ((h . z) * fpz)),(q . (h - ((h . z) * fpz))))|)) + (|.(q . ((h . z) * fpz)).| ^2) is  V11()  real   ext-real   Element of  REAL 
 
n |-> (h . z) is   Relation-like   NAT  -defined   REAL  -valued   Function-like  V36() n -element   FinSequence-like   FinSubsequence-like   complex-yielding   ext-real-valued   real-valued   finite-support   Element of n -tuples_on REAL
 
(n |-> (h . z)) . z is  V11()  real   ext-real   Element of  REAL 
 
(h . z) * ((0* n) +* (z,1)) is   Relation-like   NAT  -defined   REAL  -valued   Function-like  V36()  FinSequence-like   FinSubsequence-like   complex-yielding   ext-real-valued   real-valued   finite-support   FinSequence of  REAL 
 
 mlt ((n |-> (h . z)),((0* n) +* (z,1))) is   Relation-like   NAT  -defined   REAL  -valued   Function-like  V36()  FinSequence-like   FinSubsequence-like   complex-yielding   ext-real-valued   real-valued   finite-support   FinSequence of  REAL 
 
(h . z) * 1 is  V11()  real   ext-real   Element of  REAL 
 
(0* n) +* (z,((h . z) * 1)) is   Relation-like   NAT  -defined   REAL  -valued   Function-like  V36()  FinSequence-like   FinSubsequence-like   complex-yielding   ext-real-valued   real-valued   finite-support   set 
 
(0* n) +* (z,(h . z)) is   Relation-like   NAT  -defined   REAL  -valued   Function-like  V36()  FinSequence-like   FinSubsequence-like   complex-yielding   ext-real-valued   real-valued   finite-support   set 
 
 len (q . h) is   ordinal   natural  V11()  real   ext-real   non  negative  V36()  cardinal  V85() V86() V155() V156() V157() V158() V159() V160()  Element of  NAT 
 
 dom (q . h) is  V36() n -element  V155() V156() V157() V158() V159() V160()  Element of  bool NAT
 
 len (h - ((h . z) * fpz)) is   ordinal   natural  V11()  real   ext-real   non  negative  V36()  cardinal  V85() V86() V155() V156() V157() V158() V159() V160()  Element of  NAT 
 
 dom (h - ((h . z) * fpz)) is  V36() n -element  V155() V156() V157() V158() V159() V160()  Element of  bool NAT
 
(h - ((h . z) * fpz)) . z is  V11()  real   ext-real   Element of  REAL 
 
((h . z) * fpz) . z is  V11()  real   ext-real   Element of  REAL 
 
(h . z) - (((h . z) * fpz) . z) is  V11()  real   ext-real   Element of  REAL 
 
 - (((h . z) * fpz) . z) is  V11()  real   ext-real   set 
 
(h . z) + (- (((h . z) * fpz) . z)) is  V11()  real   ext-real   set 
 
 len ((h . z) * fpz) is   ordinal   natural  V11()  real   ext-real   non  negative  V36()  cardinal  V85() V86() V155() V156() V157() V158() V159() V160()  Element of  NAT 
 
|.((h - ((h . z) * fpz)) + ((h . z) * fpz)).| is  V11()  real   ext-real   non  negative   Element of  REAL 
 
 sqr ((h - ((h . z) * fpz)) + ((h . z) * fpz)) is   Relation-like   NAT  -defined   REAL  -valued   Function-like  V36()  FinSequence-like   FinSubsequence-like   complex-yielding   ext-real-valued   real-valued   finite-support   FinSequence of  REAL 
 
 Sum (sqr ((h - ((h . z) * fpz)) + ((h . z) * fpz))) is  V11()  real   ext-real   Element of  REAL 
 
 sqrt (Sum (sqr ((h - ((h . z) * fpz)) + ((h . z) * fpz)))) is  V11()  real   ext-real   Element of  REAL 
 
|.((h - ((h . z) * fpz)) + ((h . z) * fpz)).| ^2  is  V11()  real   ext-real   Element of  REAL 
 
|.((h - ((h . z) * fpz)) + ((h . z) * fpz)).| * |.((h - ((h . z) * fpz)) + ((h . z) * fpz)).| is  V11()  real   ext-real   non  negative   set 
 
|.(h - ((h . z) * fpz)).| is  V11()  real   ext-real   non  negative   Element of  REAL 
 
 sqr (h - ((h . z) * fpz)) is   Relation-like   NAT  -defined   REAL  -valued   Function-like  V36()  FinSequence-like   FinSubsequence-like   complex-yielding   ext-real-valued   real-valued   finite-support   FinSequence of  REAL 
 
 Sum (sqr (h - ((h . z) * fpz))) is  V11()  real   ext-real   Element of  REAL 
 
 sqrt (Sum (sqr (h - ((h . z) * fpz)))) is  V11()  real   ext-real   Element of  REAL 
 
|.(h - ((h . z) * fpz)).| ^2  is  V11()  real   ext-real   Element of  REAL 
 
|.(h - ((h . z) * fpz)).| * |.(h - ((h . z) * fpz)).| is  V11()  real   ext-real   non  negative   set 
 
|(((h . z) * fpz),(h - ((h . z) * fpz)))| is  V11()  real   ext-real   Element of  REAL 
 
2 * |(((h . z) * fpz),(h - ((h . z) * fpz)))| is  V11()  real   ext-real   Element of  REAL 
 
(|.(h - ((h . z) * fpz)).| ^2) + (2 * |(((h . z) * fpz),(h - ((h . z) * fpz)))|) is  V11()  real   ext-real   Element of  REAL 
 
|.((h . z) * fpz).| is  V11()  real   ext-real   non  negative   Element of  REAL 
 
 sqr ((h . z) * fpz) is   Relation-like   NAT  -defined   REAL  -valued   Function-like  V36()  FinSequence-like   FinSubsequence-like   complex-yielding   ext-real-valued   real-valued   finite-support   FinSequence of  REAL 
 
 Sum (sqr ((h . z) * fpz)) is  V11()  real   ext-real   Element of  REAL 
 
 sqrt (Sum (sqr ((h . z) * fpz))) is  V11()  real   ext-real   Element of  REAL 
 
|.((h . z) * fpz).| ^2  is  V11()  real   ext-real   Element of  REAL 
 
|.((h . z) * fpz).| * |.((h . z) * fpz).| is  V11()  real   ext-real   non  negative   set 
 
((|.(h - ((h . z) * fpz)).| ^2) + (2 * |(((h . z) * fpz),(h - ((h . z) * fpz)))|)) + (|.((h . z) * fpz).| ^2) is  V11()  real   ext-real   Element of  REAL 
 
(q | (Lin n1)) . ((h . z) * fpz) is    set 
 
(q . (h - ((h . z) * fpz))) . z is  V11()  real   ext-real   Element of  REAL 
 
(h . z) * ((q . (h - ((h . z) * fpz))) . z) is  V11()  real   ext-real   Element of  REAL 
 
(h . z) * ((h - ((h . z) * fpz)) . z) is  V11()  real   ext-real   Element of  REAL 
 
((h . z) * fpz) - ((h . z) * fpz) is   Relation-like   NAT  -defined   Function-like  V36() n -element   FinSequence-like   FinSubsequence-like   complex-yielding   ext-real-valued   real-valued   finite-support   Element of  the carrier of (TOP-REAL n)
 
((h . z) * fpz) + (- ((h . z) * fpz)) is   Relation-like   NAT  -defined   Function-like  V36() n -element   FinSequence-like   FinSubsequence-like   complex-yielding   ext-real-valued   real-valued   finite-support   Element of  the carrier of (TOP-REAL n)
 
 the addF of (TOP-REAL n) . (((h . z) * fpz),(- ((h . z) * fpz))) is   Relation-like   NAT  -defined   Function-like  V36() n -element   FinSequence-like   FinSubsequence-like   complex-yielding   ext-real-valued   real-valued   finite-support   Element of  the carrier of (TOP-REAL n)
 
((h . z) * fpz) + (- ((h . z) * fpz)) is   Relation-like   NAT  -defined   REAL  -valued   Function-like  V36()  FinSequence-like   FinSubsequence-like   complex-yielding   ext-real-valued   real-valued   finite-support   FinSequence of  REAL 
 
((h . z) * fpz) - ((h . z) * fpz) is   Relation-like   NAT  -defined   REAL  -valued   Function-like  V36()  FinSequence-like   FinSubsequence-like   complex-yielding   ext-real-valued   real-valued   finite-support   FinSequence of  REAL 
 
h - (((h . z) * fpz) - ((h . z) * fpz)) is   Relation-like   NAT  -defined   Function-like  V36() n -element   FinSequence-like   FinSubsequence-like   complex-yielding   ext-real-valued   real-valued   finite-support   Element of  the carrier of (TOP-REAL n)
 
 - (((h . z) * fpz) - ((h . z) * fpz)) is   Relation-like   NAT  -defined   Function-like  V36() n -element   FinSequence-like   FinSubsequence-like   complex-yielding   ext-real-valued   real-valued   finite-support   Element of  the carrier of (TOP-REAL n)
 
 - (((h . z) * fpz) - ((h . z) * fpz)) is   Relation-like   NAT  -defined   REAL  -valued   Function-like  V36()  FinSequence-like   FinSubsequence-like   complex-yielding   ext-real-valued   real-valued   finite-support   FinSequence of  REAL 
 
h + (- (((h . z) * fpz) - ((h . z) * fpz))) is   Relation-like   NAT  -defined   Function-like  V36() n -element   FinSequence-like   FinSubsequence-like   complex-yielding   ext-real-valued   real-valued   finite-support   Element of  the carrier of (TOP-REAL n)
 
 the addF of (TOP-REAL n) . (h,(- (((h . z) * fpz) - ((h . z) * fpz)))) is   Relation-like   NAT  -defined   Function-like  V36() n -element   FinSequence-like   FinSubsequence-like   complex-yielding   ext-real-valued   real-valued   finite-support   Element of  the carrier of (TOP-REAL n)
 
h + (- (((h . z) * fpz) - ((h . z) * fpz))) is   Relation-like   NAT  -defined   REAL  -valued   Function-like  V36()  FinSequence-like   FinSubsequence-like   complex-yielding   ext-real-valued   real-valued   finite-support   FinSequence of  REAL 
 
h - (((h . z) * fpz) - ((h . z) * fpz)) is   Relation-like   NAT  -defined   REAL  -valued   Function-like  V36()  FinSequence-like   FinSubsequence-like   complex-yielding   ext-real-valued   real-valued   finite-support   FinSequence of  REAL 
 
 0. (TOP-REAL n) is   Relation-like   NAT  -defined   Function-like  V36() n -element  V61( TOP-REAL n)  FinSequence-like   FinSubsequence-like   complex-yielding   ext-real-valued   real-valued   finite-support   Element of  the carrier of (TOP-REAL n)
 
 the ZeroF of (TOP-REAL n) is   Relation-like   NAT  -defined   Function-like  V36() n -element   FinSequence-like   FinSubsequence-like   complex-yielding   ext-real-valued   real-valued   finite-support   Element of  the carrier of (TOP-REAL n)
 
h - (0. (TOP-REAL n)) is   Relation-like   NAT  -defined   Function-like  V36() n -element   FinSequence-like   FinSubsequence-like   complex-yielding   ext-real-valued   real-valued   finite-support   Element of  the carrier of (TOP-REAL n)
 
 - (0. (TOP-REAL n)) is   Relation-like   NAT  -defined   Function-like  V36() n -element   FinSequence-like   FinSubsequence-like   complex-yielding   ext-real-valued   real-valued   finite-support   Element of  the carrier of (TOP-REAL n)
 
 - (0. (TOP-REAL n)) is   Relation-like   NAT  -defined   REAL  -valued   Function-like  V36()  FinSequence-like   FinSubsequence-like   complex-yielding   ext-real-valued   real-valued   finite-support   FinSequence of  REAL 
 
h + (- (0. (TOP-REAL n))) is   Relation-like   NAT  -defined   Function-like  V36() n -element   FinSequence-like   FinSubsequence-like   complex-yielding   ext-real-valued   real-valued   finite-support   Element of  the carrier of (TOP-REAL n)
 
 the addF of (TOP-REAL n) . (h,(- (0. (TOP-REAL n)))) is   Relation-like   NAT  -defined   Function-like  V36() n -element   FinSequence-like   FinSubsequence-like   complex-yielding   ext-real-valued   real-valued   finite-support   Element of  the carrier of (TOP-REAL n)
 
h + (- (0. (TOP-REAL n))) is   Relation-like   NAT  -defined   REAL  -valued   Function-like  V36()  FinSequence-like   FinSubsequence-like   complex-yielding   ext-real-valued   real-valued   finite-support   FinSequence of  REAL 
 
h - (0. (TOP-REAL n)) is   Relation-like   NAT  -defined   REAL  -valued   Function-like  V36()  FinSequence-like   FinSubsequence-like   complex-yielding   ext-real-valued   real-valued   finite-support   FinSequence of  REAL 
 
(q . ((h . z) * fpz)) . z is  V11()  real   ext-real   Element of  REAL 
 
((q . (h - ((h . z) * fpz))) . z) + ((q . ((h . z) * fpz)) . z) is  V11()  real   ext-real   Element of  REAL 
 
((q . (h - ((h . z) * fpz))) . z) + (h . z) is  V11()  real   ext-real   Element of  REAL 
 
 len (q . p) is   ordinal   natural  V11()  real   ext-real   non  negative  V36()  cardinal  V85() V86() V155() V156() V157() V158() V159() V160()  Element of  NAT 
 
fpz is   Relation-like   NAT  -defined   Function-like  V36() n -element   FinSequence-like   FinSubsequence-like   complex-yielding   ext-real-valued   real-valued   finite-support   Element of  the carrier of (TOP-REAL n)
 
(q . p) + fpz is   Relation-like   NAT  -defined   Function-like  V36() n -element   FinSequence-like   FinSubsequence-like   complex-yielding   ext-real-valued   real-valued   finite-support   Element of  the carrier of (TOP-REAL n)
 
 the addF of (TOP-REAL n) is   non  empty   Relation-like  [: the carrier of (TOP-REAL n), the carrier of (TOP-REAL n):] -defined   the carrier of (TOP-REAL n) -valued   Function-like   total   quasi_total   Element of  bool [:[: the carrier of (TOP-REAL n), the carrier of (TOP-REAL n):], the carrier of (TOP-REAL n):]
 
[:[: the carrier of (TOP-REAL n), the carrier of (TOP-REAL n):], the carrier of (TOP-REAL n):] is   non  empty   Relation-like   set 
 
 bool [:[: the carrier of (TOP-REAL n), the carrier of (TOP-REAL n):], the carrier of (TOP-REAL n):] is   non  empty   set 
 
 the addF of (TOP-REAL n) . ((q . p),fpz) is   Relation-like   NAT  -defined   Function-like  V36() n -element   FinSequence-like   FinSubsequence-like   complex-yielding   ext-real-valued   real-valued   finite-support   Element of  the carrier of (TOP-REAL n)
 
(q . p) + fpz is   Relation-like   NAT  -defined   REAL  -valued   Function-like  V36()  FinSequence-like   FinSubsequence-like   complex-yielding   ext-real-valued   real-valued   finite-support   FinSequence of  REAL 
 
|.((q . p) + fpz).| is  V11()  real   ext-real   non  negative   Element of  REAL 
 
 sqr ((q . p) + fpz) is   Relation-like   NAT  -defined   REAL  -valued   Function-like  V36()  FinSequence-like   FinSubsequence-like   complex-yielding   ext-real-valued   real-valued   finite-support   FinSequence of  REAL 
 
 Sum (sqr ((q . p) + fpz)) is  V11()  real   ext-real   Element of  REAL 
 
 sqrt (Sum (sqr ((q . p) + fpz))) is  V11()  real   ext-real   Element of  REAL 
 
|.((q . p) + fpz).| ^2  is  V11()  real   ext-real   Element of  REAL 
 
|.((q . p) + fpz).| * |.((q . p) + fpz).| is  V11()  real   ext-real   non  negative   set 
 
|.(q . p).| is  V11()  real   ext-real   non  negative   Element of  REAL 
 
 sqr (q . p) is   Relation-like   NAT  -defined   REAL  -valued   Function-like  V36()  FinSequence-like   FinSubsequence-like   complex-yielding   ext-real-valued   real-valued   finite-support   FinSequence of  REAL 
 
 Sum (sqr (q . p)) is  V11()  real   ext-real   Element of  REAL 
 
 sqrt (Sum (sqr (q . p))) is  V11()  real   ext-real   Element of  REAL 
 
|.(q . p).| ^2  is  V11()  real   ext-real   Element of  REAL 
 
|.(q . p).| * |.(q . p).| is  V11()  real   ext-real   non  negative   set 
 
|(fpz,(q . p))| is  V11()  real   ext-real   Element of  REAL 
 
2 * |(fpz,(q . p))| is  V11()  real   ext-real   Element of  REAL 
 
(|.(q . p).| ^2) + (2 * |(fpz,(q . p))|) is  V11()  real   ext-real   Element of  REAL 
 
|.fpz.| is  V11()  real   ext-real   non  negative   Element of  REAL 
 
 sqr fpz is   Relation-like   NAT  -defined   REAL  -valued   Function-like  V36()  FinSequence-like   FinSubsequence-like   complex-yielding   ext-real-valued   real-valued   finite-support   FinSequence of  REAL 
 
 Sum (sqr fpz) is  V11()  real   ext-real   Element of  REAL 
 
 sqrt (Sum (sqr fpz)) is  V11()  real   ext-real   Element of  REAL 
 
|.fpz.| ^2  is  V11()  real   ext-real   Element of  REAL 
 
|.fpz.| * |.fpz.| is  V11()  real   ext-real   non  negative   set 
 
((|.(q . p).| ^2) + (2 * |(fpz,(q . p))|)) + (|.fpz.| ^2) is  V11()  real   ext-real   Element of  REAL 
 
 len p is   ordinal   natural  V11()  real   ext-real   non  negative  V36()  cardinal  V85() V86() V155() V156() V157() V158() V159() V160()  Element of  NAT 
 
p + fpz is   Relation-like   NAT  -defined   Function-like  V36() n -element   FinSequence-like   FinSubsequence-like   complex-yielding   ext-real-valued   real-valued   finite-support   Element of  the carrier of (TOP-REAL n)
 
 the addF of (TOP-REAL n) . (p,fpz) is   Relation-like   NAT  -defined   Function-like  V36() n -element   FinSequence-like   FinSubsequence-like   complex-yielding   ext-real-valued   real-valued   finite-support   Element of  the carrier of (TOP-REAL n)
 
p + fpz is   Relation-like   NAT  -defined   REAL  -valued   Function-like  V36()  FinSequence-like   FinSubsequence-like   complex-yielding   ext-real-valued   real-valued   finite-support   FinSequence of  REAL 
 
|.(p + fpz).| is  V11()  real   ext-real   non  negative   Element of  REAL 
 
 sqr (p + fpz) is   Relation-like   NAT  -defined   REAL  -valued   Function-like  V36()  FinSequence-like   FinSubsequence-like   complex-yielding   ext-real-valued   real-valued   finite-support   FinSequence of  REAL 
 
 Sum (sqr (p + fpz)) is  V11()  real   ext-real   Element of  REAL 
 
 sqrt (Sum (sqr (p + fpz))) is  V11()  real   ext-real   Element of  REAL 
 
|.(p + fpz).| ^2  is  V11()  real   ext-real   Element of  REAL 
 
|.(p + fpz).| * |.(p + fpz).| is  V11()  real   ext-real   non  negative   set 
 
|.p.| is  V11()  real   ext-real   non  negative   Element of  REAL 
 
 sqr p is   Relation-like   NAT  -defined   REAL  -valued   Function-like  V36()  FinSequence-like   FinSubsequence-like   complex-yielding   ext-real-valued   real-valued   finite-support   FinSequence of  REAL 
 
 Sum (sqr p) is  V11()  real   ext-real   Element of  REAL 
 
 sqrt (Sum (sqr p)) is  V11()  real   ext-real   Element of  REAL 
 
|.p.| ^2  is  V11()  real   ext-real   Element of  REAL 
 
|.p.| * |.p.| is  V11()  real   ext-real   non  negative   set 
 
|(fpz,p)| is  V11()  real   ext-real   Element of  REAL 
 
2 * |(fpz,p)| is  V11()  real   ext-real   Element of  REAL 
 
(|.p.| ^2) + (2 * |(fpz,p)|) is  V11()  real   ext-real   Element of  REAL 
 
((|.p.| ^2) + (2 * |(fpz,p)|)) + (|.fpz.| ^2) is  V11()  real   ext-real   Element of  REAL 
 
(q | (Lin n1)) . fpz is    set 
 
q . fpz is   Relation-like   NAT  -defined   Function-like  V36() n -element   FinSequence-like   FinSubsequence-like   complex-yielding   ext-real-valued   real-valued   finite-support   Element of  the carrier of (TOP-REAL n)
 
q . (p + fpz) is   Relation-like   NAT  -defined   Function-like  V36() n -element   FinSequence-like   FinSubsequence-like   complex-yielding   ext-real-valued   real-valued   finite-support   Element of  the carrier of (TOP-REAL n)
 
|.(q . (p + fpz)).| is  V11()  real   ext-real   non  negative   Element of  REAL 
 
 sqr (q . (p + fpz)) is   Relation-like   NAT  -defined   REAL  -valued   Function-like  V36()  FinSequence-like   FinSubsequence-like   complex-yielding   ext-real-valued   real-valued   finite-support   FinSequence of  REAL 
 
 Sum (sqr (q . (p + fpz))) is  V11()  real   ext-real   Element of  REAL 
 
 sqrt (Sum (sqr (q . (p + fpz)))) is  V11()  real   ext-real   Element of  REAL 
 
1 * (p . z) is  V11()  real   ext-real   Element of  REAL 
 
1 * ((q . p) . z) is  V11()  real   ext-real   Element of  REAL 
 
n is    set 
 
p is   ordinal   natural  V11()  real   ext-real   non  negative  V36()  cardinal  V85()  set 
 
 TOP-REAL p is   non  empty   TopSpace-like   right_complementable   constituted-Functions   constituted-FinSeqs  V189() V190() V191() V192() V193() V194() V195() V228() L16()
 
 the carrier of (TOP-REAL p) is   non  empty   set 
 
[: the carrier of (TOP-REAL p), the carrier of (TOP-REAL p):] is   non  empty   Relation-like   set 
 
 bool [: the carrier of (TOP-REAL p), the carrier of (TOP-REAL p):] is   non  empty   set 
 
 Seg p is  V16() V36() p -element  V155() V156() V157() V158() V159() V160()  Element of  bool NAT
 
 {  b1 where b1 is   ordinal   natural  V11()  real   ext-real   non  negative  V36()  cardinal  V85() V86() V155() V156() V157() V158() V159() V160()  Element of  NAT  : ( 1 <= b1 & b1 <= p )  }   is    set 
 
n /\ (Seg p) is  V36() V155() V156() V157() V158() V159() V160()  Element of  bool NAT
 
q is   Relation-like   NAT  -defined   Function-like  V36() p -element   FinSequence-like   FinSubsequence-like   complex-yielding   ext-real-valued   real-valued   finite-support   Element of  the carrier of (TOP-REAL p)
 
n1 is   non  empty   Relation-like   the carrier of (TOP-REAL p) -defined   the carrier of (TOP-REAL p) -valued   Function-like   total   quasi_total   FinSequence-yielding   Function-yielding  V235() (p)  Element of  bool [: the carrier of (TOP-REAL p), the carrier of (TOP-REAL p):]
 
n1 . q is   Relation-like   NAT  -defined   Function-like  V36() p -element   FinSequence-like   FinSubsequence-like   complex-yielding   ext-real-valued   real-valued   finite-support   Element of  the carrier of (TOP-REAL p)
 
 sqr q is   Relation-like   NAT  -defined   REAL  -valued   Function-like  V36()  FinSequence-like   FinSubsequence-like   complex-yielding   ext-real-valued   real-valued   finite-support   FinSequence of  REAL 
 
 sqr (n1 . q) is   Relation-like   NAT  -defined   REAL  -valued   Function-like  V36()  FinSequence-like   FinSubsequence-like   complex-yielding   ext-real-valued   real-valued   finite-support   FinSequence of  REAL 
 
 Sum (sqr q) is  V11()  real   ext-real   Element of  REAL 
 
 Sum (sqr (n1 . q)) is  V11()  real   ext-real   Element of  REAL 
 
|.(n1 . q).| is  V11()  real   ext-real   non  negative   Element of  REAL 
 
 sqrt (Sum (sqr (n1 . q))) is  V11()  real   ext-real   Element of  REAL 
 
|.q.| is  V11()  real   ext-real   non  negative   Element of  REAL 
 
 sqrt (Sum (sqr q)) is  V11()  real   ext-real   Element of  REAL 
 
 len q is   ordinal   natural  V11()  real   ext-real   non  negative  V36()  cardinal  V85() V86() V155() V156() V157() V158() V159() V160()  Element of  NAT 
 
 @ q is   Relation-like   NAT  -defined   the carrier of F_Real -valued   Function-like  V36()  FinSequence-like   FinSubsequence-like   complex-yielding   ext-real-valued   real-valued   finite-support   FinSequence of  the carrier of F_Real
 
 @ (@ q) is   Relation-like   NAT  -defined   REAL  -valued   Function-like  V36()  FinSequence-like   FinSubsequence-like   complex-yielding   ext-real-valued   real-valued   finite-support   FinSequence of  REAL 
 
 len (sqr q) is   ordinal   natural  V11()  real   ext-real   non  negative  V36()  cardinal  V85() V86() V155() V156() V157() V158() V159() V160()  Element of  NAT 
 
 len (n1 . q) is   ordinal   natural  V11()  real   ext-real   non  negative  V36()  cardinal  V85() V86() V155() V156() V157() V158() V159() V160()  Element of  NAT 
 
 @ (n1 . q) is   Relation-like   NAT  -defined   the carrier of F_Real -valued   Function-like  V36()  FinSequence-like   FinSubsequence-like   complex-yielding   ext-real-valued   real-valued   finite-support   FinSequence of  the carrier of F_Real
 
 @ (@ (n1 . q)) is   Relation-like   NAT  -defined   REAL  -valued   Function-like  V36()  FinSequence-like   FinSubsequence-like   complex-yielding   ext-real-valued   real-valued   finite-support   FinSequence of  REAL 
 
 len (sqr (n1 . q)) is   ordinal   natural  V11()  real   ext-real   non  negative  V36()  cardinal  V85() V86() V155() V156() V157() V158() V159() V160()  Element of  NAT 
 
p -tuples_on REAL is   non  empty   functional   FinSequence-membered   FinSequenceSet of  REAL 
 
 dom n1 is   non  empty   set 
 
z is   Relation-like   NAT  -defined   REAL  -valued   Function-like  V36() p -element   FinSequence-like   FinSubsequence-like   complex-yielding   ext-real-valued   real-valued   finite-support   Element of p -tuples_on REAL
 
fp is   Relation-like   NAT  -defined   REAL  -valued   Function-like  V36() p -element   FinSequence-like   FinSubsequence-like   complex-yielding   ext-real-valued   real-valued   finite-support   Element of p -tuples_on REAL
 
z is   ordinal   natural  V11()  real   ext-real   non  negative  V36()  cardinal  V85()  set 
 
z . z is  V11()  real   ext-real   Element of  REAL 
 
fp . z is  V11()  real   ext-real   Element of  REAL 
 
q . z is  V11()  real   ext-real   Element of  REAL 
 
(q . z) ^2  is  V11()  real   ext-real   Element of  REAL 
 
(q . z) * (q . z) is  V11()  real   ext-real   set 
 
(n1 . q) . z is  V11()  real   ext-real   Element of  REAL 
 
((n1 . q) . z) ^2  is  V11()  real   ext-real   Element of  REAL 
 
((n1 . q) . z) * ((n1 . q) . z) is  V11()  real   ext-real   set 
 
z is   ordinal   natural  V11()  real   ext-real   non  negative  V36()  cardinal  V85()  set 
 
q . z is  V11()  real   ext-real   Element of  REAL 
 
(n1 . q) . z is  V11()  real   ext-real   Element of  REAL 
 
z . z is  V11()  real   ext-real   Element of  REAL 
 
(q . z) ^2  is  V11()  real   ext-real   Element of  REAL 
 
(q . z) * (q . z) is  V11()  real   ext-real   set 
 
fp . z is  V11()  real   ext-real   Element of  REAL 
 
((n1 . q) . z) ^2  is  V11()  real   ext-real   Element of  REAL 
 
((n1 . q) . z) * ((n1 . q) . z) is  V11()  real   ext-real   set 
 
n is   ordinal   natural  V11()  real   ext-real   non  negative  V36()  cardinal  V85()  set 
 
p is   ordinal   natural  V11()  real   ext-real   non  negative  V36()  cardinal  V85()  set 
 
 TOP-REAL p is   non  empty   TopSpace-like   right_complementable   constituted-Functions   constituted-FinSeqs  V189() V190() V191() V192() V193() V194() V195() V228() L16()
 
 the carrier of (TOP-REAL p) is   non  empty   set 
 
 Seg p is  V16() V36() p -element  V155() V156() V157() V158() V159() V160()  Element of  bool NAT
 
 {  b1 where b1 is   ordinal   natural  V11()  real   ext-real   non  negative  V36()  cardinal  V85() V86() V155() V156() V157() V158() V159() V160()  Element of  NAT  : ( 1 <= b1 & b1 <= p )  }   is    set 
 
[: the carrier of (TOP-REAL p), the carrier of (TOP-REAL p):] is   non  empty   Relation-like   set 
 
 bool [: the carrier of (TOP-REAL p), the carrier of (TOP-REAL p):] is   non  empty   set 
 
q is   Relation-like   NAT  -defined   Function-like  V36() p -element   FinSequence-like   FinSubsequence-like   complex-yielding   ext-real-valued   real-valued   finite-support   Element of  the carrier of (TOP-REAL p)
 
q . n is  V11()  real   ext-real   Element of  REAL 
 
 - (q . n) is  V11()  real   ext-real   Element of  REAL 
 
q +* (n,(- (q . n))) is   Relation-like   NAT  -defined   Function-like  V36()  FinSequence-like   FinSubsequence-like   complex-yielding   ext-real-valued   real-valued   finite-support   set 
 
{n} is   non  empty   trivial  V36() V40() 1 -element  V155() V156() V157() V158() V159() V160()  Element of  bool NAT
 
 card (Seg p) is   ordinal   natural  V11()  real   ext-real   non  negative  V36()  cardinal  V85() V86() V155() V156() V157() V158() V159() V160()  Element of  omega 
 
 card {n} is   non  empty   ordinal   natural  V11()  real   ext-real   positive   non  negative  V36()  cardinal  V85() V86() V155() V156() V157() V158() V159() V160()  Element of  omega 
 
n1 is    set 
 
f is   ordinal   natural  V11()  real   ext-real   non  negative  V36()  cardinal  V85()  set 
 
 len (q +* (n,(- (q . n)))) is   ordinal   natural  V11()  real   ext-real   non  negative  V36()  cardinal  V85() V86() V155() V156() V157() V158() V159() V160()  Element of  NAT 
 
 len q is   ordinal   natural  V11()  real   ext-real   non  negative  V36()  cardinal  V85() V86() V155() V156() V157() V158() V159() V160()  Element of  NAT 
 
 dom q is  V36() p -element  V155() V156() V157() V158() V159() V160()  Element of  bool NAT
 
(q . n) * (q . n) is  V11()  real   ext-real   Element of  REAL 
 
q . f is  V11()  real   ext-real   Element of  REAL 
 
(q . f) * (q . f) is  V11()  real   ext-real   Element of  REAL 
 
{} ^2  is  V11()  real   ext-real   set 
 
{} * {} is   empty   ordinal   natural  V11()  real   ext-real   non  positive   non  negative   Relation-like   non-empty   empty-yielding   NAT  -defined   RAT  -valued   Function-like   one-to-one   constant   functional  V36() V37() V40()  cardinal   {}  -element  V85()  FinSequence-like   FinSubsequence-like   FinSequence-membered   complex-yielding   ext-real-valued   real-valued   natural-valued  V155() V156() V157() V158() V159() V160() V161()  FinSequence-yielding   finite-support   Function-yielding  V235() V282()  set 
 
 0* {} is   empty   ordinal   natural  V11()  real   ext-real   non  positive   non  negative   Relation-like   non-empty   empty-yielding   NAT  -defined   REAL  -valued   Function-like   one-to-one   constant   functional  V36() V37() V40()  cardinal   {}  -element  V85()  FinSequence-like   FinSubsequence-like   FinSequence-membered   complex-yielding   ext-real-valued   real-valued   natural-valued  V155() V156() V157() V158() V159() V160() V161()  FinSequence-yielding   finite-support   Function-yielding  V235() V282()  Element of  REAL {}
 
 REAL {} is   non  empty   functional   FinSequence-membered   FinSequenceSet of  REAL 
 
{} -tuples_on REAL is   non  empty   functional   FinSequence-membered   FinSequenceSet of  REAL 
 
{} |-> 0 is   empty   ordinal   natural  V11()  real   ext-real   non  positive   non  negative   Relation-like   non-empty   empty-yielding   NAT  -defined   REAL  -valued   Function-like   one-to-one   constant   functional  V36() V37() V40()  cardinal   {}  -element  V85()  FinSequence-like   FinSubsequence-like   FinSequence-membered   complex-yielding   ext-real-valued   real-valued   natural-valued  V155() V156() V157() V158() V159() V160() V161()  FinSequence-yielding   finite-support   Function-yielding  V235() V282()  Element of {} -tuples_on REAL
 
(q . n) ^2  is  V11()  real   ext-real   Element of  REAL 
 
(q . n) * (q . n) is  V11()  real   ext-real   set 
 
(q . f) ^2  is  V11()  real   ext-real   Element of  REAL 
 
(q . f) * (q . f) is  V11()  real   ext-real   set 
 
((q . n) ^2) + ((q . f) ^2) is  V11()  real   ext-real   Element of  REAL 
 
z is  V11()  real   ext-real   set 
 
(p,z,n,f) is   Relation-like   NAT  -defined   the carrier of F_Real *  -valued   Function-like  V36()  FinSequence-like   FinSubsequence-like   FinSequence-yielding   finite-support   Function-yielding  V235()  tabular   invertible   Matrix of p,p, the carrier of F_Real
 
 Mx2Tran (p,z,n,f) is   non  empty   Relation-like   the carrier of (TOP-REAL p) -defined   the carrier of (TOP-REAL p) -valued   Function-like   total   quasi_total   additive   FinSequence-yielding   homogeneous   Function-yielding  V235()  being_homeomorphism   Element of  bool [: the carrier of (TOP-REAL p), the carrier of (TOP-REAL p):]
 
(Mx2Tran (p,z,n,f)) . q is   Relation-like   NAT  -defined   Function-like  V36() p -element   FinSequence-like   FinSubsequence-like   complex-yielding   ext-real-valued   real-valued   finite-support   Element of  the carrier of (TOP-REAL p)
 
((Mx2Tran (p,z,n,f)) . q) . n is  V11()  real   ext-real   Element of  REAL 
 
 sin z is  V11()  real   ext-real   set 
 
 cos z is  V11()  real   ext-real   set 
 
(q . n) * (cos z) is  V11()  real   ext-real   Element of  REAL 
 
 - (sin z) is  V11()  real   ext-real   set 
 
(q . f) * (- (sin z)) is  V11()  real   ext-real   Element of  REAL 
 
((q . n) * (cos z)) + ((q . f) * (- (sin z))) is  V11()  real   ext-real   Element of  REAL 
 
z + z is  V11()  real   ext-real   set 
 
(p,(z + z),n,f) is   Relation-like   NAT  -defined   the carrier of F_Real *  -valued   Function-like  V36()  FinSequence-like   FinSubsequence-like   FinSequence-yielding   finite-support   Function-yielding  V235()  tabular   invertible   Matrix of p,p, the carrier of F_Real
 
 Mx2Tran (p,(z + z),n,f) is   non  empty   Relation-like   the carrier of (TOP-REAL p) -defined   the carrier of (TOP-REAL p) -valued   Function-like   total   quasi_total   additive   FinSequence-yielding   homogeneous   Function-yielding  V235()  being_homeomorphism   Element of  bool [: the carrier of (TOP-REAL p), the carrier of (TOP-REAL p):]
 
fpz is   non  empty   Relation-like   the carrier of (TOP-REAL p) -defined   the carrier of (TOP-REAL p) -valued   Function-like   total   quasi_total   additive   FinSequence-yielding   homogeneous   Function-yielding  V235()  being_homeomorphism  (p) (p)  Element of  bool [: the carrier of (TOP-REAL p), the carrier of (TOP-REAL p):]
 
fpz . q is   Relation-like   NAT  -defined   Function-like  V36() p -element   FinSequence-like   FinSubsequence-like   complex-yielding   ext-real-valued   real-valued   finite-support   Element of  the carrier of (TOP-REAL p)
 
 cos (z + z) is  V11()  real   ext-real   set 
 
(cos z) * (cos z) is  V11()  real   ext-real   set 
 
(sin z) * (sin z) is  V11()  real   ext-real   set 
 
((cos z) * (cos z)) - ((sin z) * (sin z)) is  V11()  real   ext-real   set 
 
 - ((sin z) * (sin z)) is  V11()  real   ext-real   set 
 
((cos z) * (cos z)) + (- ((sin z) * (sin z))) is  V11()  real   ext-real   set 
 
 sin (z + z) is  V11()  real   ext-real   set 
 
(sin z) * (cos z) is  V11()  real   ext-real   set 
 
((sin z) * (cos z)) + ((sin z) * (cos z)) is  V11()  real   ext-real   set 
 
{n,f} is   non  empty  V36() V40() V155() V156() V157() V158() V159() V160()  Element of  bool NAT
 
sq is   ordinal   natural  V11()  real   ext-real   non  negative  V36()  cardinal  V85()  set 
 
(q +* (n,(- (q . n)))) . sq is  V11()  real   ext-real   Element of  REAL 
 
(fpz . q) . sq is  V11()  real   ext-real   Element of  REAL 
 
(q . n) * 1 is  V11()  real   ext-real   Element of  REAL 
 
 - ((q . n) * 1) is  V11()  real   ext-real   Element of  REAL 
 
((sin z) * (sin z)) + ((cos z) * (cos z)) is  V11()  real   ext-real   set 
 
(q . n) * (((sin z) * (sin z)) + ((cos z) * (cos z))) is  V11()  real   ext-real   Element of  REAL 
 
 - ((q . n) * (((sin z) * (sin z)) + ((cos z) * (cos z)))) is  V11()  real   ext-real   Element of  REAL 
 
(q . n) * (((cos z) * (cos z)) - ((sin z) * (sin z))) is  V11()  real   ext-real   Element of  REAL 
 
((q . n) * (cos z)) * (cos z) is  V11()  real   ext-real   Element of  REAL 
 
((q . n) * (((cos z) * (cos z)) - ((sin z) * (sin z)))) - (((q . n) * (cos z)) * (cos z)) is  V11()  real   ext-real   Element of  REAL 
 
 - (((q . n) * (cos z)) * (cos z)) is  V11()  real   ext-real   set 
 
((q . n) * (((cos z) * (cos z)) - ((sin z) * (sin z)))) + (- (((q . n) * (cos z)) * (cos z))) is  V11()  real   ext-real   set 
 
(((q . n) * (((cos z) * (cos z)) - ((sin z) * (sin z)))) - (((q . n) * (cos z)) * (cos z))) - (((q . n) * (cos z)) * (cos z)) is  V11()  real   ext-real   Element of  REAL 
 
(((q . n) * (((cos z) * (cos z)) - ((sin z) * (sin z)))) - (((q . n) * (cos z)) * (cos z))) + (- (((q . n) * (cos z)) * (cos z))) is  V11()  real   ext-real   set 
 
(q . f) * (sin z) is  V11()  real   ext-real   Element of  REAL 
 
((q . f) * (sin z)) * (cos z) is  V11()  real   ext-real   Element of  REAL 
 
((q . n) * (((cos z) * (cos z)) - ((sin z) * (sin z)))) - (((q . f) * (sin z)) * (cos z)) is  V11()  real   ext-real   Element of  REAL 
 
 - (((q . f) * (sin z)) * (cos z)) is  V11()  real   ext-real   set 
 
((q . n) * (((cos z) * (cos z)) - ((sin z) * (sin z)))) + (- (((q . f) * (sin z)) * (cos z))) is  V11()  real   ext-real   set 
 
(((q . n) * (((cos z) * (cos z)) - ((sin z) * (sin z)))) - (((q . f) * (sin z)) * (cos z))) - (((q . f) * (sin z)) * (cos z)) is  V11()  real   ext-real   Element of  REAL 
 
(((q . n) * (((cos z) * (cos z)) - ((sin z) * (sin z)))) - (((q . f) * (sin z)) * (cos z))) + (- (((q . f) * (sin z)) * (cos z))) is  V11()  real   ext-real   set 
 
 - (((sin z) * (cos z)) + ((sin z) * (cos z))) is  V11()  real   ext-real   set 
 
(q . f) * (- (((sin z) * (cos z)) + ((sin z) * (cos z)))) is  V11()  real   ext-real   Element of  REAL 
 
((q . n) * (((cos z) * (cos z)) - ((sin z) * (sin z)))) + ((q . f) * (- (((sin z) * (cos z)) + ((sin z) * (cos z))))) is  V11()  real   ext-real   Element of  REAL 
 
(q . f) * 1 is  V11()  real   ext-real   Element of  REAL 
 
((sin z) * (sin z)) + ((cos z) * (cos z)) is  V11()  real   ext-real   set 
 
(q . f) * (((sin z) * (sin z)) + ((cos z) * (cos z))) is  V11()  real   ext-real   Element of  REAL 
 
(q . f) * (sin z) is  V11()  real   ext-real   Element of  REAL 
 
((q . f) * (sin z)) * (sin z) is  V11()  real   ext-real   Element of  REAL 
 
(((q . f) * (sin z)) * (sin z)) + (((q . f) * (sin z)) * (sin z)) is  V11()  real   ext-real   Element of  REAL 
 
(q . f) * (((cos z) * (cos z)) - ((sin z) * (sin z))) is  V11()  real   ext-real   Element of  REAL 
 
((((q . f) * (sin z)) * (sin z)) + (((q . f) * (sin z)) * (sin z))) + ((q . f) * (((cos z) * (cos z)) - ((sin z) * (sin z)))) is  V11()  real   ext-real   Element of  REAL 
 
((q . n) * (cos z)) * (sin z) is  V11()  real   ext-real   Element of  REAL 
 
(((q . n) * (cos z)) * (sin z)) + (((q . n) * (cos z)) * (sin z)) is  V11()  real   ext-real   Element of  REAL 
 
((((q . n) * (cos z)) * (sin z)) + (((q . n) * (cos z)) * (sin z))) + ((q . f) * (((cos z) * (cos z)) - ((sin z) * (sin z)))) is  V11()  real   ext-real   Element of  REAL 
 
(q . n) * (((sin z) * (cos z)) + ((sin z) * (cos z))) is  V11()  real   ext-real   Element of  REAL 
 
((q . n) * (((sin z) * (cos z)) + ((sin z) * (cos z)))) + ((q . f) * (((cos z) * (cos z)) - ((sin z) * (sin z)))) is  V11()  real   ext-real   Element of  REAL 
 
 dom fpz is   non  empty   set 
 
q . sq is  V11()  real   ext-real   Element of  REAL 
 
 len (fpz . q) is   ordinal   natural  V11()  real   ext-real   non  negative  V36()  cardinal  V85() V86() V155() V156() V157() V158() V159() V160()  Element of  NAT 
 
z is  V11()  real   ext-real   set 
 
(p,z,f,n) is   Relation-like   NAT  -defined   the carrier of F_Real *  -valued   Function-like  V36()  FinSequence-like   FinSubsequence-like   FinSequence-yielding   finite-support   Function-yielding  V235()  tabular   invertible   Matrix of p,p, the carrier of F_Real
 
 Mx2Tran (p,z,f,n) is   non  empty   Relation-like   the carrier of (TOP-REAL p) -defined   the carrier of (TOP-REAL p) -valued   Function-like   total   quasi_total   additive   FinSequence-yielding   homogeneous   Function-yielding  V235()  being_homeomorphism   Element of  bool [: the carrier of (TOP-REAL p), the carrier of (TOP-REAL p):]
 
(Mx2Tran (p,z,f,n)) . q is   Relation-like   NAT  -defined   Function-like  V36() p -element   FinSequence-like   FinSubsequence-like   complex-yielding   ext-real-valued   real-valued   finite-support   Element of  the carrier of (TOP-REAL p)
 
((Mx2Tran (p,z,f,n)) . q) . n is  V11()  real   ext-real   Element of  REAL 
 
 sin z is  V11()  real   ext-real   set 
 
 cos z is  V11()  real   ext-real   set 
 
(q . f) * (sin z) is  V11()  real   ext-real   Element of  REAL 
 
(q . n) * (cos z) is  V11()  real   ext-real   Element of  REAL 
 
((q . f) * (sin z)) + ((q . n) * (cos z)) is  V11()  real   ext-real   Element of  REAL 
 
z + z is  V11()  real   ext-real   set 
 
(p,(z + z),f,n) is   Relation-like   NAT  -defined   the carrier of F_Real *  -valued   Function-like  V36()  FinSequence-like   FinSubsequence-like   FinSequence-yielding   finite-support   Function-yielding  V235()  tabular   invertible   Matrix of p,p, the carrier of F_Real
 
 Mx2Tran (p,(z + z),f,n) is   non  empty   Relation-like   the carrier of (TOP-REAL p) -defined   the carrier of (TOP-REAL p) -valued   Function-like   total   quasi_total   additive   FinSequence-yielding   homogeneous   Function-yielding  V235()  being_homeomorphism   Element of  bool [: the carrier of (TOP-REAL p), the carrier of (TOP-REAL p):]
 
fpz is   non  empty   Relation-like   the carrier of (TOP-REAL p) -defined   the carrier of (TOP-REAL p) -valued   Function-like   total   quasi_total   additive   FinSequence-yielding   homogeneous   Function-yielding  V235()  being_homeomorphism  (p) (p)  Element of  bool [: the carrier of (TOP-REAL p), the carrier of (TOP-REAL p):]
 
fpz . q is   Relation-like   NAT  -defined   Function-like  V36() p -element   FinSequence-like   FinSubsequence-like   complex-yielding   ext-real-valued   real-valued   finite-support   Element of  the carrier of (TOP-REAL p)
 
 cos (z + z) is  V11()  real   ext-real   set 
 
(cos z) * (cos z) is  V11()  real   ext-real   set 
 
(sin z) * (sin z) is  V11()  real   ext-real   set 
 
((cos z) * (cos z)) - ((sin z) * (sin z)) is  V11()  real   ext-real   set 
 
 - ((sin z) * (sin z)) is  V11()  real   ext-real   set 
 
((cos z) * (cos z)) + (- ((sin z) * (sin z))) is  V11()  real   ext-real   set 
 
 sin (z + z) is  V11()  real   ext-real   set 
 
(sin z) * (cos z) is  V11()  real   ext-real   set 
 
((sin z) * (cos z)) + ((sin z) * (cos z)) is  V11()  real   ext-real   set 
 
{n,f} is   non  empty  V36() V40() V155() V156() V157() V158() V159() V160()  Element of  bool NAT
 
sq is   ordinal   natural  V11()  real   ext-real   non  negative  V36()  cardinal  V85()  set 
 
(q +* (n,(- (q . n)))) . sq is  V11()  real   ext-real   Element of  REAL 
 
(fpz . q) . sq is  V11()  real   ext-real   Element of  REAL 
 
(q . n) * 1 is  V11()  real   ext-real   Element of  REAL 
 
 - ((q . n) * 1) is  V11()  real   ext-real   Element of  REAL 
 
((sin z) * (sin z)) + ((cos z) * (cos z)) is  V11()  real   ext-real   set 
 
(q . n) * (((sin z) * (sin z)) + ((cos z) * (cos z))) is  V11()  real   ext-real   Element of  REAL 
 
 - ((q . n) * (((sin z) * (sin z)) + ((cos z) * (cos z)))) is  V11()  real   ext-real   Element of  REAL 
 
((q . n) * (cos z)) * (cos z) is  V11()  real   ext-real   Element of  REAL 
 
 - (((q . n) * (cos z)) * (cos z)) is  V11()  real   ext-real   Element of  REAL 
 
 - ((q . n) * (cos z)) is  V11()  real   ext-real   Element of  REAL 
 
(- ((q . n) * (cos z))) * (cos z) is  V11()  real   ext-real   Element of  REAL 
 
(- (((q . n) * (cos z)) * (cos z))) + ((- ((q . n) * (cos z))) * (cos z)) is  V11()  real   ext-real   Element of  REAL 
 
(q . n) * (((cos z) * (cos z)) - ((sin z) * (sin z))) is  V11()  real   ext-real   Element of  REAL 
 
((- (((q . n) * (cos z)) * (cos z))) + ((- ((q . n) * (cos z))) * (cos z))) + ((q . n) * (((cos z) * (cos z)) - ((sin z) * (sin z)))) is  V11()  real   ext-real   Element of  REAL 
 
((q . f) * (sin z)) * (cos z) is  V11()  real   ext-real   Element of  REAL 
 
(((q . f) * (sin z)) * (cos z)) + (((q . f) * (sin z)) * (cos z)) is  V11()  real   ext-real   Element of  REAL 
 
((((q . f) * (sin z)) * (cos z)) + (((q . f) * (sin z)) * (cos z))) + ((q . n) * (((cos z) * (cos z)) - ((sin z) * (sin z)))) is  V11()  real   ext-real   Element of  REAL 
 
(q . f) * (((sin z) * (cos z)) + ((sin z) * (cos z))) is  V11()  real   ext-real   Element of  REAL 
 
((q . f) * (((sin z) * (cos z)) + ((sin z) * (cos z)))) + ((q . n) * (((cos z) * (cos z)) - ((sin z) * (sin z)))) is  V11()  real   ext-real   Element of  REAL 
 
(q . f) * 1 is  V11()  real   ext-real   Element of  REAL 
 
((sin z) * (sin z)) + ((cos z) * (cos z)) is  V11()  real   ext-real   set 
 
(q . f) * (((sin z) * (sin z)) + ((cos z) * (cos z))) is  V11()  real   ext-real   Element of  REAL 
 
(q . f) * (((cos z) * (cos z)) - ((sin z) * (sin z))) is  V11()  real   ext-real   Element of  REAL 
 
((q . f) * (sin z)) * (sin z) is  V11()  real   ext-real   Element of  REAL 
 
((q . f) * (((cos z) * (cos z)) - ((sin z) * (sin z)))) + (((q . f) * (sin z)) * (sin z)) is  V11()  real   ext-real   Element of  REAL 
 
(((q . f) * (((cos z) * (cos z)) - ((sin z) * (sin z)))) + (((q . f) * (sin z)) * (sin z))) + (((q . f) * (sin z)) * (sin z)) is  V11()  real   ext-real   Element of  REAL 
 
 - ((q . n) * (cos z)) is  V11()  real   ext-real   Element of  REAL 
 
(- ((q . n) * (cos z))) * (sin z) is  V11()  real   ext-real   Element of  REAL 
 
((q . f) * (((cos z) * (cos z)) - ((sin z) * (sin z)))) + ((- ((q . n) * (cos z))) * (sin z)) is  V11()  real   ext-real   Element of  REAL 
 
(((q . f) * (((cos z) * (cos z)) - ((sin z) * (sin z)))) + ((- ((q . n) * (cos z))) * (sin z))) + ((- ((q . n) * (cos z))) * (sin z)) is  V11()  real   ext-real   Element of  REAL 
 
 - (((sin z) * (cos z)) + ((sin z) * (cos z))) is  V11()  real   ext-real   set 
 
(q . n) * (- (((sin z) * (cos z)) + ((sin z) * (cos z)))) is  V11()  real   ext-real   Element of  REAL 
 
((q . f) * (((cos z) * (cos z)) - ((sin z) * (sin z)))) + ((q . n) * (- (((sin z) * (cos z)) + ((sin z) * (cos z))))) is  V11()  real   ext-real   Element of  REAL 
 
 dom fpz is   non  empty   set 
 
q . sq is  V11()  real   ext-real   Element of  REAL 
 
 len (fpz . q) is   ordinal   natural  V11()  real   ext-real   non  negative  V36()  cardinal  V85() V86() V155() V156() V157() V158() V159() V160()  Element of  NAT 
 
n is    set 
 
p is   ordinal   natural  V11()  real   ext-real   non  negative  V36()  cardinal  V85()  set 
 
 TOP-REAL p is   non  empty   TopSpace-like   right_complementable   constituted-Functions   constituted-FinSeqs  V189() V190() V191() V192() V193() V194() V195() V228() L16()
 
 the carrier of (TOP-REAL p) is   non  empty   set 
 
[: the carrier of (TOP-REAL p), the carrier of (TOP-REAL p):] is   non  empty   Relation-like   set 
 
 bool [: the carrier of (TOP-REAL p), the carrier of (TOP-REAL p):] is   non  empty   set 
 
q is   ordinal   natural  V11()  real   ext-real   non  negative  V36()  cardinal  V85()  set 
 
 Base_FinSeq (p,q) is   Relation-like   NAT  -defined   REAL  -valued   Function-like  V36()  FinSequence-like   FinSubsequence-like   complex-yielding   ext-real-valued   real-valued   finite-support   FinSequence of  REAL 
 
TR is   non  empty   Relation-like   the carrier of (TOP-REAL p) -defined   the carrier of (TOP-REAL p) -valued   Function-like   total   quasi_total   additive   FinSequence-yielding   homogeneous   Function-yielding  V235() (p)  Element of  bool [: the carrier of (TOP-REAL p), the carrier of (TOP-REAL p):]
 
TR . (Base_FinSeq (p,q)) is   Relation-like   Function-like   set 
 
f is   ordinal   natural  V11()  real   ext-real   non  negative  V36()  cardinal  V85()  set 
 
 Seg p is  V16() V36() p -element  V155() V156() V157() V158() V159() V160()  Element of  bool NAT
 
 {  b1 where b1 is   ordinal   natural  V11()  real   ext-real   non  negative  V36()  cardinal  V85() V86() V155() V156() V157() V158() V159() V160()  Element of  NAT  : ( 1 <= b1 & b1 <= p )  }   is    set 
 
n /\ (Seg p) is  V36() V155() V156() V157() V158() V159() V160()  Element of  bool NAT
 
(Base_FinSeq (p,q)) . f is  V11()  real   ext-real   Element of  REAL 
 
 len (Base_FinSeq (p,q)) is   ordinal   natural  V11()  real   ext-real   non  negative  V36()  cardinal  V85() V86() V155() V156() V157() V158() V159() V160()  Element of  NAT 
 
n is   ordinal   natural  V11()  real   ext-real   non  negative  V36()  cardinal  V85()  set 
 
{n} is   non  empty   trivial  V36() V40() 1 -element  V155() V156() V157() V158() V159() V160()  Element of  bool NAT
 
p is   ordinal   natural  V11()  real   ext-real   non  negative  V36()  cardinal  V85()  set 
 
 TOP-REAL p is   non  empty   TopSpace-like   right_complementable   constituted-Functions   constituted-FinSeqs  V189() V190() V191() V192() V193() V194() V195() V228() L16()
 
 the carrier of (TOP-REAL p) is   non  empty   set 
 
[: the carrier of (TOP-REAL p), the carrier of (TOP-REAL p):] is   non  empty   Relation-like   set 
 
 bool [: the carrier of (TOP-REAL p), the carrier of (TOP-REAL p):] is   non  empty   set 
 
(p,n) is   Relation-like   NAT  -defined   the carrier of F_Real *  -valued   Function-like  V36()  FinSequence-like   FinSubsequence-like   FinSequence-yielding   finite-support   Function-yielding  V235()  tabular   invertible   Matrix of p,p, the carrier of F_Real
 
 1. (F_Real,p) is   Relation-like   NAT  -defined   the carrier of F_Real *  -valued   Function-like  V36()  FinSequence-like   FinSubsequence-like   FinSequence-yielding   finite-support   Function-yielding  V235()  tabular   Matrix of p,p, the carrier of F_Real
 
q is   non  empty   Relation-like   the carrier of (TOP-REAL p) -defined   the carrier of (TOP-REAL p) -valued   Function-like   total   quasi_total   additive   FinSequence-yielding   homogeneous   Function-yielding  V235()  Element of  bool [: the carrier of (TOP-REAL p), the carrier of (TOP-REAL p):]
 
(p,q) is   Relation-like   NAT  -defined   the carrier of F_Real *  -valued   Function-like  V36()  FinSequence-like   FinSubsequence-like   FinSequence-yielding   finite-support   Function-yielding  V235()  tabular   Matrix of p,p, the carrier of F_Real
 
 {  (Base_FinSeq (p,b1)) where b1 is   ordinal   natural  V11()  real   ext-real   non  negative  V36()  cardinal  V85() V86() V155() V156() V157() V158() V159() V160()  Element of  NAT  : ( 1 <= b1 & b1 <= p )  }   is    set 
 
f is    set 
 
X is   ordinal   natural  V11()  real   ext-real   non  negative  V36()  cardinal  V85() V86() V155() V156() V157() V158() V159() V160()  Element of  NAT 
 
 Base_FinSeq (p,X) is   Relation-like   NAT  -defined   REAL  -valued   Function-like  V36()  FinSequence-like   FinSubsequence-like   complex-yielding   ext-real-valued   real-valued   finite-support   FinSequence of  REAL 
 
 len (Base_FinSeq (p,X)) is   ordinal   natural  V11()  real   ext-real   non  negative  V36()  cardinal  V85() V86() V155() V156() V157() V158() V159() V160()  Element of  NAT 
 
 bool  the carrier of (TOP-REAL p) is   non  empty   set 
 
(n,p) is   Relation-like   NAT  -defined   the carrier of F_Real *  -valued   Function-like  V36()  FinSequence-like   FinSubsequence-like   FinSequence-yielding   finite-support   Function-yielding  V235()  tabular   invertible   Matrix of n,n, the carrier of F_Real
 
 Mx2Tran (n,p) is   non  empty   Relation-like   the carrier of (TOP-REAL n) -defined   the carrier of (TOP-REAL n) -valued   Function-like   total   quasi_total   additive   FinSequence-yielding   homogeneous   Function-yielding  V235()  being_homeomorphism   Element of  bool [: the carrier of (TOP-REAL n), the carrier of (TOP-REAL n):]
 
 TOP-REAL n is   non  empty   TopSpace-like   right_complementable   constituted-Functions   constituted-FinSeqs  V189() V190() V191() V192() V193() V194() V195() V228() L16()
 
 the carrier of (TOP-REAL n) is   non  empty   set 
 
[: the carrier of (TOP-REAL n), the carrier of (TOP-REAL n):] is   non  empty   Relation-like   set 
 
 bool [: the carrier of (TOP-REAL n), the carrier of (TOP-REAL n):] is   non  empty   set 
 
 id (TOP-REAL p) is   non  empty   Relation-like   the carrier of (TOP-REAL p) -defined   the carrier of (TOP-REAL p) -defined   the carrier of (TOP-REAL p) -valued   the carrier of (TOP-REAL p) -valued   Function-like   total   total   quasi_total   quasi_total   additive   additive   FinSequence-yielding   homogeneous   Function-yielding  V235()  being_homeomorphism   being_homeomorphism  (p) (p)  Element of  bool [: the carrier of (TOP-REAL p), the carrier of (TOP-REAL p):]
 
 id  the carrier of (TOP-REAL p) is   non  empty   Relation-like   the carrier of (TOP-REAL p) -defined   the carrier of (TOP-REAL p) -valued   Function-like   one-to-one   total   quasi_total   quasi_total   FinSequence-yielding   Function-yielding  V235()  Element of  bool [: the carrier of (TOP-REAL p), the carrier of (TOP-REAL p):]
 
 Mx2Tran (1. (F_Real,p)) is   non  empty   Relation-like   the carrier of (TOP-REAL p) -defined   the carrier of (TOP-REAL p) -valued   Function-like   total   quasi_total   additive   FinSequence-yielding   homogeneous   Function-yielding  V235()  Element of  bool [: the carrier of (TOP-REAL p), the carrier of (TOP-REAL p):]
 
(p,(id (TOP-REAL p))) is   Relation-like   NAT  -defined   the carrier of F_Real *  -valued   Function-like  V36()  FinSequence-like   FinSubsequence-like   FinSequence-yielding   finite-support   Function-yielding  V235()  tabular   Matrix of p,p, the carrier of F_Real
 
 dom q is   non  empty   set 
 
 Seg p is  V16() V36() p -element  V155() V156() V157() V158() V159() V160()  Element of  bool NAT
 
 {  b1 where b1 is   ordinal   natural  V11()  real   ext-real   non  negative  V36()  cardinal  V85() V86() V155() V156() V157() V158() V159() V160()  Element of  NAT  : ( 1 <= b1 & b1 <= p )  }   is    set 
 
fp is   ordinal   natural  V11()  real   ext-real   non  negative  V36()  cardinal  V85()  set 
 
z is   Relation-like   NAT  -defined   Function-like  V36() p -element   FinSequence-like   FinSubsequence-like   complex-yielding   ext-real-valued   real-valued   finite-support   Element of  the carrier of (TOP-REAL p)
 
q . z is   Relation-like   NAT  -defined   Function-like  V36() p -element   FinSequence-like   FinSubsequence-like   complex-yielding   ext-real-valued   real-valued   finite-support   Element of  the carrier of (TOP-REAL p)
 
(q . z) . fp is  V11()  real   ext-real   Element of  REAL 
 
z . fp is  V11()  real   ext-real   Element of  REAL 
 
 len (q . z) is   ordinal   natural  V11()  real   ext-real   non  negative  V36()  cardinal  V85() V86() V155() V156() V157() V158() V159() V160()  Element of  NAT 
 
 len z is   ordinal   natural  V11()  real   ext-real   non  negative  V36()  cardinal  V85() V86() V155() V156() V157() V158() V159() V160()  Element of  NAT 
 
 Seg p is  V16() V36() p -element  V155() V156() V157() V158() V159() V160()  Element of  bool NAT
 
 {  b1 where b1 is   ordinal   natural  V11()  real   ext-real   non  negative  V36()  cardinal  V85() V86() V155() V156() V157() V158() V159() V160()  Element of  NAT  : ( 1 <= b1 & b1 <= p )  }   is    set 
 
 Base_FinSeq (p,n) is   Relation-like   NAT  -defined   REAL  -valued   Function-like  V36()  FinSequence-like   FinSubsequence-like   complex-yielding   ext-real-valued   real-valued   finite-support   FinSequence of  REAL 
 
f is    Element of  bool  the carrier of (TOP-REAL p)
 
z is   Relation-like   NAT  -defined   Function-like  V36() p -element   FinSequence-like   FinSubsequence-like   complex-yielding   ext-real-valued   real-valued   finite-support   Element of  the carrier of (TOP-REAL p)
 
 0* p is   Relation-like   NAT  -defined   REAL  -valued   Function-like  V36() p -element   FinSequence-like   FinSubsequence-like   complex-yielding   ext-real-valued   real-valued   finite-support   Element of  REAL p
 
 REAL p is   non  empty   functional   FinSequence-membered   FinSequenceSet of  REAL 
 
p -tuples_on REAL is   non  empty   functional   FinSequence-membered   FinSequenceSet of  REAL 
 
p |-> 0 is   Relation-like   empty-yielding   NAT  -defined   REAL  -valued   Function-like  V36() p -element   FinSequence-like   FinSubsequence-like   complex-yielding   ext-real-valued   real-valued   finite-support   Element of p -tuples_on REAL
 
(0* p) +* (n,1) is   Relation-like   NAT  -defined   Function-like  V36()  FinSequence-like   FinSubsequence-like   complex-yielding   ext-real-valued   real-valued   finite-support   set 
 
|.z.| is  V11()  real   ext-real   non  negative   Element of  REAL 
 
 sqr z is   Relation-like   NAT  -defined   REAL  -valued   Function-like  V36()  FinSequence-like   FinSubsequence-like   complex-yielding   ext-real-valued   real-valued   finite-support   FinSequence of  REAL 
 
 Sum (sqr z) is  V11()  real   ext-real   Element of  REAL 
 
 sqrt (Sum (sqr z)) is  V11()  real   ext-real   Element of  REAL 
 
 abs 1 is  V11()  real   ext-real   Element of  REAL 
 
q . z is   Relation-like   NAT  -defined   Function-like  V36() p -element   FinSequence-like   FinSubsequence-like   complex-yielding   ext-real-valued   real-valued   finite-support   Element of  the carrier of (TOP-REAL p)
 
(q . z) . n is  V11()  real   ext-real   Element of  REAL 
 
(0* p) +* (n,((q . z) . n)) is   Relation-like   NAT  -defined   REAL  -valued   Function-like  V36()  FinSequence-like   FinSubsequence-like   complex-yielding   ext-real-valued   real-valued   finite-support   set 
 
 len (0* p) is   ordinal   natural  V11()  real   ext-real   non  negative  V36()  cardinal  V85() V86() V155() V156() V157() V158() V159() V160()  Element of  NAT 
 
z is   ordinal   natural  V11()  real   ext-real   non  negative  V36()  cardinal  V85()  set 
 
(q . z) . z is  V11()  real   ext-real   Element of  REAL 
 
((0* p) +* (n,((q . z) . n))) . z is  V11()  real   ext-real   Element of  REAL 
 
 dom (0* p) is  V36() p -element  V155() V156() V157() V158() V159() V160()  Element of  bool NAT
 
(0* p) . z is  V11()  real   ext-real   Element of  REAL 
 
z . z is  V11()  real   ext-real   Element of  REAL 
 
 len ((0* p) +* (n,((q . z) . n))) is   ordinal   natural  V11()  real   ext-real   non  negative  V36()  cardinal  V85() V86() V155() V156() V157() V158() V159() V160()  Element of  NAT 
 
 len (q . z) is   ordinal   natural  V11()  real   ext-real   non  negative  V36()  cardinal  V85() V86() V155() V156() V157() V158() V159() V160()  Element of  NAT 
 
|.((0* p) +* (n,((q . z) . n))).| is  V11()  real   ext-real   non  negative   Element of  REAL 
 
 sqr ((0* p) +* (n,((q . z) . n))) is   Relation-like   NAT  -defined   REAL  -valued   Function-like  V36()  FinSequence-like   FinSubsequence-like   complex-yielding   ext-real-valued   real-valued   finite-support   FinSequence of  REAL 
 
 Sum (sqr ((0* p) +* (n,((q . z) . n)))) is  V11()  real   ext-real   Element of  REAL 
 
 sqrt (Sum (sqr ((0* p) +* (n,((q . z) . n))))) is  V11()  real   ext-real   Element of  REAL 
 
 abs ((q . z) . n) is  V11()  real   ext-real   Element of  REAL 
 
 id f is   Relation-like  f -defined  f -valued   Function-like   one-to-one   total   quasi_total   Element of  bool [:f,f:]
 
[:f,f:] is   Relation-like   set 
 
 bool [:f,f:] is   non  empty   set 
 
z is   non  empty   Relation-like   the carrier of (TOP-REAL p) -defined   the carrier of (TOP-REAL p) -valued   Function-like   total   quasi_total   additive   FinSequence-yielding   homogeneous   Function-yielding  V235() (p)  Element of  bool [: the carrier of (TOP-REAL p), the carrier of (TOP-REAL p):]
 
z | f is   Relation-like   the carrier of (TOP-REAL p) -defined  f -defined   the carrier of (TOP-REAL p) -defined   the carrier of (TOP-REAL p) -valued   Function-like   Function-yielding  V235()  Element of  bool [: the carrier of (TOP-REAL p), the carrier of (TOP-REAL p):]
 
 dom (id (TOP-REAL p)) is   non  empty   set 
 
fpz is    set 
 
(id (TOP-REAL p)) . fpz is   Relation-like   Function-like   set 
 
z . fpz is   Relation-like   Function-like   set 
 
h is   Relation-like   NAT  -defined   Function-like  V36() p -element   FinSequence-like   FinSubsequence-like   complex-yielding   ext-real-valued   real-valued   finite-support   Element of  the carrier of (TOP-REAL p)
 
z . h is   Relation-like   NAT  -defined   Function-like  V36() p -element   FinSequence-like   FinSubsequence-like   complex-yielding   ext-real-valued   real-valued   finite-support   Element of  the carrier of (TOP-REAL p)
 
 len h is   ordinal   natural  V11()  real   ext-real   non  negative  V36()  cardinal  V85() V86() V155() V156() V157() V158() V159() V160()  Element of  NAT 
 
 len (z . h) is   ordinal   natural  V11()  real   ext-real   non  negative  V36()  cardinal  V85() V86() V155() V156() V157() V158() V159() V160()  Element of  NAT 
 
z is   ordinal   natural  V11()  real   ext-real   non  negative  V36()  cardinal  V85()  set 
 
 Base_FinSeq (p,z) is   Relation-like   NAT  -defined   REAL  -valued   Function-like  V36()  FinSequence-like   FinSubsequence-like   complex-yielding   ext-real-valued   real-valued   finite-support   FinSequence of  REAL 
 
 Lin f is   non  empty   right_complementable   strict  V189() V190() V191() V192() V193() V194() V195() M25( TOP-REAL p)
 
h . z is  V11()  real   ext-real   Element of  REAL 
 
(z . h) . z is  V11()  real   ext-real   Element of  REAL 
 
 dom z is   non  empty   set 
 
q | f is   Relation-like   the carrier of (TOP-REAL p) -defined  f -defined   the carrier of (TOP-REAL p) -defined   the carrier of (TOP-REAL p) -valued   Function-like   Function-yielding  V235()  Element of  bool [: the carrier of (TOP-REAL p), the carrier of (TOP-REAL p):]
 
 dom (q | f) is    set 
 
z is    set 
 
(q | f) . z is   Relation-like   Function-like   set 
 
(id f) . z is    set 
 
fpz is   ordinal   natural  V11()  real   ext-real   non  negative  V36()  cardinal  V85() V86() V155() V156() V157() V158() V159() V160()  Element of  NAT 
 
 Base_FinSeq (p,fpz) is   Relation-like   NAT  -defined   REAL  -valued   Function-like  V36()  FinSequence-like   FinSubsequence-like   complex-yielding   ext-real-valued   real-valued   finite-support   FinSequence of  REAL 
 
q . z is   Relation-like   Function-like   set 
 
 dom (id f) is    set 
 
 Mx2Tran (p,n) is   non  empty   Relation-like   the carrier of (TOP-REAL p) -defined   the carrier of (TOP-REAL p) -valued   Function-like   total   quasi_total   additive   FinSequence-yielding   homogeneous   Function-yielding  V235()  being_homeomorphism   Element of  bool [: the carrier of (TOP-REAL p), the carrier of (TOP-REAL p):]
 
(Mx2Tran (p,n)) * q is   non  empty   Relation-like   the carrier of (TOP-REAL p) -defined   the carrier of (TOP-REAL p) -defined   the carrier of (TOP-REAL p) -defined   the carrier of (TOP-REAL p) -valued   the carrier of (TOP-REAL p) -valued   the carrier of (TOP-REAL p) -valued   Function-like   total   total   total   quasi_total   quasi_total   quasi_total   additive   FinSequence-yielding   homogeneous   Function-yielding  V235()  Element of  bool [: the carrier of (TOP-REAL p), the carrier of (TOP-REAL p):]
 
fpz is   non  empty   Relation-like   the carrier of (TOP-REAL p) -defined   the carrier of (TOP-REAL p) -valued   Function-like   total   quasi_total   additive   FinSequence-yielding   homogeneous   Function-yielding  V235() (p)  Element of  bool [: the carrier of (TOP-REAL p), the carrier of (TOP-REAL p):]
 
 dom fpz is   non  empty   set 
 
fpz | f is   Relation-like   the carrier of (TOP-REAL p) -defined  f -defined   the carrier of (TOP-REAL p) -defined   the carrier of (TOP-REAL p) -valued   Function-like   Function-yielding  V235()  Element of  bool [: the carrier of (TOP-REAL p), the carrier of (TOP-REAL p):]
 
 dom (fpz | f) is    set 
 
{n} \/ {n} is   non  empty  V36() V40() V155() V156() V157() V158() V159() V160()  Element of  bool NAT
 
h is    set 
 
(fpz | f) . h is   Relation-like   Function-like   set 
 
(id f) . h is    set 
 
sq is   ordinal   natural  V11()  real   ext-real   non  negative  V36()  cardinal  V85() V86() V155() V156() V157() V158() V159() V160()  Element of  NAT 
 
 Base_FinSeq (p,sq) is   Relation-like   NAT  -defined   REAL  -valued   Function-like  V36()  FinSequence-like   FinSubsequence-like   complex-yielding   ext-real-valued   real-valued   finite-support   FinSequence of  REAL 
 
fpz . h is   Relation-like   Function-like   set 
 
fpz . z is   Relation-like   NAT  -defined   Function-like  V36() p -element   FinSequence-like   FinSubsequence-like   complex-yielding   ext-real-valued   real-valued   finite-support   Element of  the carrier of (TOP-REAL p)
 
z is   ordinal   natural  V11()  real   ext-real   non  negative  V36()  cardinal  V85()  set 
 
(fpz . z) . z is  V11()  real   ext-real   Element of  REAL 
 
z . z is  V11()  real   ext-real   Element of  REAL 
 
(Mx2Tran (p,n)) . (q . z) is   Relation-like   NAT  -defined   Function-like  V36() p -element   FinSequence-like   FinSubsequence-like   complex-yielding   ext-real-valued   real-valued   finite-support   Element of  the carrier of (TOP-REAL p)
 
((Mx2Tran (p,n)) . (q . z)) . z is  V11()  real   ext-real   Element of  REAL 
 
(q . z) . z is  V11()  real   ext-real   Element of  REAL 
 
 - ((q . z) . z) is  V11()  real   ext-real   Element of  REAL 
 
 - (- 1) is   non  empty  V11()  real   ext-real   positive   non  negative  V85()  Element of  REAL 
 
(Mx2Tran (p,n)) . (q . z) is   Relation-like   NAT  -defined   Function-like  V36() p -element   FinSequence-like   FinSubsequence-like   complex-yielding   ext-real-valued   real-valued   finite-support   Element of  the carrier of (TOP-REAL p)
 
((Mx2Tran (p,n)) . (q . z)) . z is  V11()  real   ext-real   Element of  REAL 
 
(q . z) . z is  V11()  real   ext-real   Element of  REAL 
 
 len (fpz . z) is   ordinal   natural  V11()  real   ext-real   non  negative  V36()  cardinal  V85() V86() V155() V156() V157() V158() V159() V160()  Element of  NAT 
 
 len z is   ordinal   natural  V11()  real   ext-real   non  negative  V36()  cardinal  V85() V86() V155() V156() V157() V158() V159() V160()  Element of  NAT 
 
 dom (id f) is    set 
 
 dom (Mx2Tran (p,n)) is   non  empty   set 
 
 [#] (TOP-REAL p) is   non  empty   non  proper   Element of  bool  the carrier of (TOP-REAL p)
 
 rng (Mx2Tran (p,n)) is   non  empty   set 
 
 rng q is   non  empty   set 
 
sq is    set 
 
(Mx2Tran (p,n)) . sq is   Relation-like   NAT  -defined   Function-like  V36()  FinSequence-like   FinSubsequence-like   complex-yielding   ext-real-valued   real-valued   finite-support   set 
 
fpz . ((Mx2Tran (p,n)) . sq) is   Relation-like   Function-like   set 
 
q . ((Mx2Tran (p,n)) . sq) is   Relation-like   Function-like   set 
 
(Mx2Tran (p,n)) . (q . ((Mx2Tran (p,n)) . sq)) is   Relation-like   NAT  -defined   Function-like  V36()  FinSequence-like   FinSubsequence-like   complex-yielding   ext-real-valued   real-valued   finite-support   set 
 
(Mx2Tran (p,n)) "  is   Relation-like   Function-like   set 
 
 Mx2Tran (p,q) is   non  empty   Relation-like   the carrier of (TOP-REAL p) -defined   the carrier of (TOP-REAL p) -valued   Function-like   total   quasi_total   additive   FinSequence-yielding   homogeneous   Function-yielding  V235()  Element of  bool [: the carrier of (TOP-REAL p), the carrier of (TOP-REAL p):]
 
 Det (p,n) is  V11()  real   ext-real   Element of  the carrier of F_Real
 
(p,n) ~  is   Relation-like   NAT  -defined   the carrier of F_Real *  -valued   Function-like  V36()  FinSequence-like   FinSubsequence-like   FinSequence-yielding   finite-support   Function-yielding  V235()  tabular   Matrix of p,p, the carrier of F_Real
 
 Seg p is  V16() V36() p -element  V155() V156() V157() V158() V159() V160()  Element of  bool NAT
 
 {  b1 where b1 is   ordinal   natural  V11()  real   ext-real   non  negative  V36()  cardinal  V85() V86() V155() V156() V157() V158() V159() V160()  Element of  NAT  : ( 1 <= b1 & b1 <= p )  }   is    set 
 
n is   ordinal   natural  V11()  real   ext-real   non  negative  V36()  cardinal  V85()  set 
 
 TOP-REAL n is   non  empty   TopSpace-like   right_complementable   constituted-Functions   constituted-FinSeqs  V189() V190() V191() V192() V193() V194() V195() V228() L16()
 
 the carrier of (TOP-REAL n) is   non  empty   set 
 
[: the carrier of (TOP-REAL n), the carrier of (TOP-REAL n):] is   non  empty   Relation-like   set 
 
 bool [: the carrier of (TOP-REAL n), the carrier of (TOP-REAL n):] is   non  empty   set 
 
{n} is   non  empty   trivial  V36() V40() 1 -element  V155() V156() V157() V158() V159() V160()  Element of  bool NAT
 
p is   non  empty   Relation-like   the carrier of (TOP-REAL n) -defined   the carrier of (TOP-REAL n) -valued   Function-like   total   quasi_total   additive   FinSequence-yielding   homogeneous   Function-yielding  V235()  Element of  bool [: the carrier of (TOP-REAL n), the carrier of (TOP-REAL n):]
 
 dom p is   non  empty   set 
 
 rng p is   non  empty   set 
 
 id (TOP-REAL n) is   non  empty   Relation-like   the carrier of (TOP-REAL n) -defined   the carrier of (TOP-REAL n) -defined   the carrier of (TOP-REAL n) -valued   the carrier of (TOP-REAL n) -valued   Function-like   total   total   quasi_total   quasi_total   additive   additive   FinSequence-yielding   homogeneous   Function-yielding  V235()  being_homeomorphism   being_homeomorphism  (n) (n)  Element of  bool [: the carrier of (TOP-REAL n), the carrier of (TOP-REAL n):]
 
 id  the carrier of (TOP-REAL n) is   non  empty   Relation-like   the carrier of (TOP-REAL n) -defined   the carrier of (TOP-REAL n) -valued   Function-like   one-to-one   total   quasi_total   quasi_total   FinSequence-yielding   Function-yielding  V235()  Element of  bool [: the carrier of (TOP-REAL n), the carrier of (TOP-REAL n):]
 
f is   non  empty   Relation-like   the carrier of (TOP-REAL n) -defined   the carrier of (TOP-REAL n) -valued   Function-like   total   quasi_total   additive   FinSequence-yielding   homogeneous   Function-yielding  V235()  being_homeomorphism  (n) (n)  Element of  bool [: the carrier of (TOP-REAL n), the carrier of (TOP-REAL n):]
 
f * p is   non  empty   Relation-like   the carrier of (TOP-REAL n) -defined   the carrier of (TOP-REAL n) -defined   the carrier of (TOP-REAL n) -defined   the carrier of (TOP-REAL n) -valued   the carrier of (TOP-REAL n) -valued   the carrier of (TOP-REAL n) -valued   Function-like   total   total   total   quasi_total   quasi_total   quasi_total   additive   FinSequence-yielding   homogeneous   Function-yielding  V235()  Element of  bool [: the carrier of (TOP-REAL n), the carrier of (TOP-REAL n):]
 
 dom (id  the carrier of (TOP-REAL n)) is   non  empty   set 
 
 dom f is   non  empty   set 
 
X is   Relation-like   Function-like   set 
 
f . X is   Relation-like   Function-like   set 
 
z is    set 
 
(f . X) . z is    set 
 
X . z is    set 
 
 0. (TOP-REAL n) is   Relation-like   NAT  -defined   Function-like  V36() n -element  V61( TOP-REAL n)  FinSequence-like   FinSubsequence-like   complex-yielding   ext-real-valued   real-valued   finite-support   Element of  the carrier of (TOP-REAL n)
 
 the ZeroF of (TOP-REAL n) is   Relation-like   NAT  -defined   Function-like  V36() n -element   FinSequence-like   FinSubsequence-like   complex-yielding   ext-real-valued   real-valued   finite-support   Element of  the carrier of (TOP-REAL n)
 
{(0. (TOP-REAL n))} is   non  empty   trivial   functional  V36() V40() 1 -element   set 
 
 rng (id  the carrier of (TOP-REAL n)) is   non  empty   set 
 
n - 1 is  V11()  real   ext-real  V85()  Element of  REAL 
 
n + (- 1) is  V11()  real   ext-real  V85()  set 
 
 bool  the carrier of (TOP-REAL n) is   non  empty   set 
 
 {  (Base_FinSeq (n,b1)) where b1 is   ordinal   natural  V11()  real   ext-real   non  negative  V36()  cardinal  V85() V86() V155() V156() V157() V158() V159() V160()  Element of  NAT  : ( 1 <= b1 & b1 <= a1 )  }   is    set 
 
f is   ordinal   natural  V11()  real   ext-real   non  negative  V36()  cardinal  V85()  set 
 
 {  (Base_FinSeq (n,b1)) where b1 is   ordinal   natural  V11()  real   ext-real   non  negative  V36()  cardinal  V85() V86() V155() V156() V157() V158() V159() V160()  Element of  NAT  : ( 1 <= b1 & b1 <= f )  }   is    set 
 
z is    set 
 
fp is   ordinal   natural  V11()  real   ext-real   non  negative  V36()  cardinal  V85() V86() V155() V156() V157() V158() V159() V160()  Element of  NAT 
 
 Base_FinSeq (n,fp) is   Relation-like   NAT  -defined   REAL  -valued   Function-like  V36()  FinSequence-like   FinSubsequence-like   complex-yielding   ext-real-valued   real-valued   finite-support   FinSequence of  REAL 
 
 len (Base_FinSeq (n,fp)) is   ordinal   natural  V11()  real   ext-real   non  negative  V36()  cardinal  V85() V86() V155() V156() V157() V158() V159() V160()  Element of  NAT 
 
fp is   ordinal   natural  V11()  real   ext-real   non  negative  V36()  cardinal  V85()  set 
 
 {  (Base_FinSeq (n,b1)) where b1 is   ordinal   natural  V11()  real   ext-real   non  negative  V36()  cardinal  V85() V86() V155() V156() V157() V158() V159() V160()  Element of  NAT  : ( 1 <= b1 & b1 <= fp )  }   is    set 
 
fp + 1 is   non  empty   ordinal   natural  V11()  real   ext-real   positive   non  negative  V36()  cardinal  V85() V86() V155() V156() V157() V158() V159() V160()  Element of  NAT 
 
 {  (Base_FinSeq (n,b1)) where b1 is   ordinal   natural  V11()  real   ext-real   non  negative  V36()  cardinal  V85() V86() V155() V156() V157() V158() V159() V160()  Element of  NAT  : ( 1 <= b1 & b1 <= fp + 1 )  }   is    set 
 
h is   ordinal   natural  V11()  real   ext-real   non  negative  V36()  cardinal  V85() V86() V155() V156() V157() V158() V159() V160()  Element of  NAT 
 
h + 1 is   non  empty   ordinal   natural  V11()  real   ext-real   positive   non  negative  V36()  cardinal  V85() V86() V155() V156() V157() V158() V159() V160()  Element of  NAT 
 
 Base_FinSeq (n,(fp + 1)) is   Relation-like   NAT  -defined   REAL  -valued   Function-like  V36()  FinSequence-like   FinSubsequence-like   complex-yielding   ext-real-valued   real-valued   finite-support   FinSequence of  REAL 
 
 {  b1 where b1 is   ordinal   natural  V11()  real   ext-real   non  negative  V36()  cardinal  V85() V86() V155() V156() V157() V158() V159() V160()  Element of  NAT  : ( fp + 1 <= b1 & b1 <= n )  }   is    set 
 
z is    Element of  bool  the carrier of (TOP-REAL n)
 
 id z is   Relation-like  z -defined  z -valued   Function-like   one-to-one   total   quasi_total   Element of  bool [:z,z:]
 
[:z,z:] is   Relation-like   set 
 
 bool [:z,z:] is   non  empty   set 
 
k is    set 
 
gf is   ordinal   natural  V11()  real   ext-real   non  negative  V36()  cardinal  V85() V86() V155() V156() V157() V158() V159() V160()  Element of  NAT 
 
 Base_FinSeq (n,gf) is   Relation-like   NAT  -defined   REAL  -valued   Function-like  V36()  FinSequence-like   FinSubsequence-like   complex-yielding   ext-real-valued   real-valued   finite-support   FinSequence of  REAL 
 
k is    Element of  bool  the carrier of (TOP-REAL n)
 
 id k is   Relation-like  k -defined  k -valued   Function-like   one-to-one   total   quasi_total   Element of  bool [:k,k:]
 
[:k,k:] is   Relation-like   set 
 
 bool [:k,k:] is   non  empty   set 
 
gf is   non  empty   Relation-like   the carrier of (TOP-REAL n) -defined   the carrier of (TOP-REAL n) -valued   Function-like   total   quasi_total   additive   FinSequence-yielding   homogeneous   Function-yielding  V235()  being_homeomorphism  (n) (n)  Element of  bool [: the carrier of (TOP-REAL n), the carrier of (TOP-REAL n):]
 
gf * p is   non  empty   Relation-like   the carrier of (TOP-REAL n) -defined   the carrier of (TOP-REAL n) -defined   the carrier of (TOP-REAL n) -defined   the carrier of (TOP-REAL n) -valued   the carrier of (TOP-REAL n) -valued   the carrier of (TOP-REAL n) -valued   Function-like   total   total   total   quasi_total   quasi_total   quasi_total   additive   FinSequence-yielding   homogeneous   Function-yielding  V235()  Element of  bool [: the carrier of (TOP-REAL n), the carrier of (TOP-REAL n):]
 
(gf * p) | k is   Relation-like   the carrier of (TOP-REAL n) -defined  k -defined   the carrier of (TOP-REAL n) -defined   the carrier of (TOP-REAL n) -valued   Function-like   Function-yielding  V235()  Element of  bool [: the carrier of (TOP-REAL n), the carrier of (TOP-REAL n):]
 
 Seg n is  V16() V36() n -element  V155() V156() V157() V158() V159() V160()  Element of  bool NAT
 
 {  b1 where b1 is   ordinal   natural  V11()  real   ext-real   non  negative  V36()  cardinal  V85() V86() V155() V156() V157() V158() V159() V160()  Element of  NAT  : ( 1 <= b1 & b1 <= n )  }   is    set 
 
 {  b1 where b1 is   ordinal   natural  V11()  real   ext-real   non  negative  V36()  cardinal  V85() V86() V155() V156() V157() V158() V159() V160()  Element of  NAT  : ( fp + 1 <= b1 & b1 <= n )  }   /\ (Seg n) is  V36() V155() V156() V157() V158() V159() V160()  Element of  bool NAT
 
{(fp + 1),n} is   non  empty  V36() V40() V155() V156() V157() V158() V159() V160()  Element of  bool NAT
 
 card {(fp + 1),n} is   non  empty   ordinal   natural  V11()  real   ext-real   positive   non  negative  V36()  cardinal  V85() V86() V155() V156() V157() V158() V159() V160()  Element of  omega 
 
m is   Relation-like   NAT  -defined   Function-like  V36() n -element   FinSequence-like   FinSubsequence-like   complex-yielding   ext-real-valued   real-valued   finite-support   Element of  the carrier of (TOP-REAL n)
 
(gf * p) . m is   Relation-like   NAT  -defined   Function-like  V36() n -element   FinSequence-like   FinSubsequence-like   complex-yielding   ext-real-valued   real-valued   finite-support   Element of  the carrier of (TOP-REAL n)
 
 card ( {  b1 where b1 is   ordinal   natural  V11()  real   ext-real   non  negative  V36()  cardinal  V85() V86() V155() V156() V157() V158() V159() V160()  Element of  NAT  : ( fp + 1 <= b1 & b1 <= n )  }   /\ (Seg n)) is   ordinal   natural  V11()  real   ext-real   non  negative  V36()  cardinal  V85() V86() V155() V156() V157() V158() V159() V160()  Element of  omega 
 
h is   non  empty   Relation-like   the carrier of (TOP-REAL n) -defined   the carrier of (TOP-REAL n) -valued   Function-like   total   quasi_total   additive   FinSequence-yielding   homogeneous   Function-yielding  V235()  Element of  bool [: the carrier of (TOP-REAL n), the carrier of (TOP-REAL n):]
 
h . ((gf * p) . m) is   Relation-like   NAT  -defined   Function-like  V36() n -element   FinSequence-like   FinSubsequence-like   complex-yielding   ext-real-valued   real-valued   finite-support   Element of  the carrier of (TOP-REAL n)
 
(h . ((gf * p) . m)) . (fp + 1) is  V11()  real   ext-real   Element of  REAL 
 
h * gf is   non  empty   Relation-like   the carrier of (TOP-REAL n) -defined   the carrier of (TOP-REAL n) -defined   the carrier of (TOP-REAL n) -defined   the carrier of (TOP-REAL n) -valued   the carrier of (TOP-REAL n) -valued   the carrier of (TOP-REAL n) -valued   Function-like   total   total   total   quasi_total   quasi_total   quasi_total   additive   FinSequence-yielding   homogeneous   Function-yielding  V235()  Element of  bool [: the carrier of (TOP-REAL n), the carrier of (TOP-REAL n):]
 
hg is   non  empty   Relation-like   the carrier of (TOP-REAL n) -defined   the carrier of (TOP-REAL n) -valued   Function-like   total   quasi_total   additive   FinSequence-yielding   homogeneous   Function-yielding  V235()  being_homeomorphism  (n) (n)  Element of  bool [: the carrier of (TOP-REAL n), the carrier of (TOP-REAL n):]
 
hg * p is   non  empty   Relation-like   the carrier of (TOP-REAL n) -defined   the carrier of (TOP-REAL n) -defined   the carrier of (TOP-REAL n) -defined   the carrier of (TOP-REAL n) -valued   the carrier of (TOP-REAL n) -valued   the carrier of (TOP-REAL n) -valued   Function-like   total   total   total   quasi_total   quasi_total   quasi_total   additive   FinSequence-yielding   homogeneous   Function-yielding  V235()  Element of  bool [: the carrier of (TOP-REAL n), the carrier of (TOP-REAL n):]
 
 dom (hg * p) is   non  empty   set 
 
(h * gf) * p is   non  empty   Relation-like   the carrier of (TOP-REAL n) -defined   the carrier of (TOP-REAL n) -defined   the carrier of (TOP-REAL n) -defined   the carrier of (TOP-REAL n) -valued   the carrier of (TOP-REAL n) -valued   the carrier of (TOP-REAL n) -valued   Function-like   total   total   total   quasi_total   quasi_total   quasi_total   additive   FinSequence-yielding   homogeneous   Function-yielding  V235()  Element of  bool [: the carrier of (TOP-REAL n), the carrier of (TOP-REAL n):]
 
c22 is    set 
 
((h * gf) * p) . c22 is   Relation-like   Function-like   set 
 
h . c22 is   Relation-like   Function-like   set 
 
((gf * p) | k) . c22 is   Relation-like   Function-like   set 
 
(gf * p) . c22 is   Relation-like   Function-like   set 
 
i is   Relation-like   NAT  -defined   Function-like  V36() n -element   FinSequence-like   FinSubsequence-like   complex-yielding   ext-real-valued   real-valued   finite-support   Element of  the carrier of (TOP-REAL n)
 
H is   ordinal   natural  V11()  real   ext-real   non  negative  V36()  cardinal  V85()  set 
 
i . H is  V11()  real   ext-real   Element of  REAL 
 
H is   ordinal   natural  V11()  real   ext-real   non  negative  V36()  cardinal  V85() V86() V155() V156() V157() V158() V159() V160()  Element of  NAT 
 
H is   ordinal   natural  V11()  real   ext-real   non  negative  V36()  cardinal  V85() V86() V155() V156() V157() V158() V159() V160()  Element of  NAT 
 
 Base_FinSeq (n,H) is   Relation-like   NAT  -defined   REAL  -valued   Function-like  V36()  FinSequence-like   FinSubsequence-like   complex-yielding   ext-real-valued   real-valued   finite-support   FinSequence of  REAL 
 
h * (gf * p) is   non  empty   Relation-like   the carrier of (TOP-REAL n) -defined   the carrier of (TOP-REAL n) -defined   the carrier of (TOP-REAL n) -defined   the carrier of (TOP-REAL n) -valued   the carrier of (TOP-REAL n) -valued   the carrier of (TOP-REAL n) -valued   Function-like   total   total   total   quasi_total   quasi_total   quasi_total   additive   FinSequence-yielding   homogeneous   Function-yielding  V235()  Element of  bool [: the carrier of (TOP-REAL n), the carrier of (TOP-REAL n):]
 
(h * (gf * p)) . c22 is   Relation-like   Function-like   set 
 
h . ((gf * p) . c22) is   Relation-like   Function-like   set 
 
1 + 1 is   non  empty   ordinal   natural  V11()  real   ext-real   positive   non  negative  V36()  cardinal  V85() V86() V155() V156() V157() V158() V159() V160()  Element of  NAT 
 
(hg * p) | z is   Relation-like   the carrier of (TOP-REAL n) -defined  z -defined   the carrier of (TOP-REAL n) -defined   the carrier of (TOP-REAL n) -valued   Function-like   Function-yielding  V235()  Element of  bool [: the carrier of (TOP-REAL n), the carrier of (TOP-REAL n):]
 
c22 is    set 
 
((hg * p) | z) . c22 is   Relation-like   Function-like   set 
 
(id z) . c22 is    set 
 
h * (gf * p) is   non  empty   Relation-like   the carrier of (TOP-REAL n) -defined   the carrier of (TOP-REAL n) -defined   the carrier of (TOP-REAL n) -defined   the carrier of (TOP-REAL n) -valued   the carrier of (TOP-REAL n) -valued   the carrier of (TOP-REAL n) -valued   Function-like   total   total   total   quasi_total   quasi_total   quasi_total   additive   FinSequence-yielding   homogeneous   Function-yielding  V235()  Element of  bool [: the carrier of (TOP-REAL n), the carrier of (TOP-REAL n):]
 
(hg * p) . c22 is   Relation-like   Function-like   set 
 
i is   ordinal   natural  V11()  real   ext-real   non  negative  V36()  cardinal  V85() V86() V155() V156() V157() V158() V159() V160()  Element of  NAT 
 
 Base_FinSeq (n,i) is   Relation-like   NAT  -defined   REAL  -valued   Function-like  V36()  FinSequence-like   FinSubsequence-like   complex-yielding   ext-real-valued   real-valued   finite-support   FinSequence of  REAL 
 
(h * (gf * p)) . c22 is   Relation-like   Function-like   set 
 
 len (h . ((gf * p) . m)) is   ordinal   natural  V11()  real   ext-real   non  negative  V36()  cardinal  V85() V86() V155() V156() V157() V158() V159() V160()  Element of  NAT 
 
H is   ordinal   natural  V11()  real   ext-real   non  negative  V36()  cardinal  V85()  set 
 
(h . ((gf * p) . m)) . H is  V11()  real   ext-real   Element of  REAL 
 
 Base_FinSeq (n,H) is   Relation-like   NAT  -defined   REAL  -valued   Function-like  V36()  FinSequence-like   FinSubsequence-like   complex-yielding   ext-real-valued   real-valued   finite-support   FinSequence of  REAL 
 
0H is   Relation-like   NAT  -defined   Function-like  V36() n -element   FinSequence-like   FinSubsequence-like   complex-yielding   ext-real-valued   real-valued   finite-support   Element of  the carrier of (TOP-REAL n)
 
((h * gf) * p) . 0H is   Relation-like   NAT  -defined   Function-like  V36() n -element   FinSequence-like   FinSubsequence-like   complex-yielding   ext-real-valued   real-valued   finite-support   Element of  the carrier of (TOP-REAL n)
 
0H + (h . ((gf * p) . m)) is   Relation-like   NAT  -defined   Function-like  V36() n -element   FinSequence-like   FinSubsequence-like   complex-yielding   ext-real-valued   real-valued   finite-support   Element of  the carrier of (TOP-REAL n)
 
 the addF of (TOP-REAL n) is   non  empty   Relation-like  [: the carrier of (TOP-REAL n), the carrier of (TOP-REAL n):] -defined   the carrier of (TOP-REAL n) -valued   Function-like   total   quasi_total   Element of  bool [:[: the carrier of (TOP-REAL n), the carrier of (TOP-REAL n):], the carrier of (TOP-REAL n):]
 
[:[: the carrier of (TOP-REAL n), the carrier of (TOP-REAL n):], the carrier of (TOP-REAL n):] is   non  empty   Relation-like   set 
 
 bool [:[: the carrier of (TOP-REAL n), the carrier of (TOP-REAL n):], the carrier of (TOP-REAL n):] is   non  empty   set 
 
 the addF of (TOP-REAL n) . (0H,(h . ((gf * p) . m))) is   Relation-like   NAT  -defined   Function-like  V36() n -element   FinSequence-like   FinSubsequence-like   complex-yielding   ext-real-valued   real-valued   finite-support   Element of  the carrier of (TOP-REAL n)
 
0H + (h . ((gf * p) . m)) is   Relation-like   NAT  -defined   REAL  -valued   Function-like  V36()  FinSequence-like   FinSubsequence-like   complex-yielding   ext-real-valued   real-valued   finite-support   FinSequence of  REAL 
 
0H + m is   Relation-like   NAT  -defined   Function-like  V36() n -element   FinSequence-like   FinSubsequence-like   complex-yielding   ext-real-valued   real-valued   finite-support   Element of  the carrier of (TOP-REAL n)
 
 the addF of (TOP-REAL n) . (0H,m) is   Relation-like   NAT  -defined   Function-like  V36() n -element   FinSequence-like   FinSubsequence-like   complex-yielding   ext-real-valued   real-valued   finite-support   Element of  the carrier of (TOP-REAL n)
 
0H + m is   Relation-like   NAT  -defined   REAL  -valued   Function-like  V36()  FinSequence-like   FinSubsequence-like   complex-yielding   ext-real-valued   real-valued   finite-support   FinSequence of  REAL 
 
((h * gf) * p) . (0H + m) is   Relation-like   NAT  -defined   Function-like  V36() n -element   FinSequence-like   FinSubsequence-like   complex-yielding   ext-real-valued   real-valued   finite-support   Element of  the carrier of (TOP-REAL n)
 
 len 0H is   ordinal   natural  V11()  real   ext-real   non  negative  V36()  cardinal  V85() V86() V155() V156() V157() V158() V159() V160()  Element of  NAT 
 
|.(((h * gf) * p) . (0H + m)).| is  V11()  real   ext-real   non  negative   Element of  REAL 
 
 sqr (((h * gf) * p) . (0H + m)) is   Relation-like   NAT  -defined   REAL  -valued   Function-like  V36()  FinSequence-like   FinSubsequence-like   complex-yielding   ext-real-valued   real-valued   finite-support   FinSequence of  REAL 
 
 Sum (sqr (((h * gf) * p) . (0H + m))) is  V11()  real   ext-real   Element of  REAL 
 
 sqrt (Sum (sqr (((h * gf) * p) . (0H + m)))) is  V11()  real   ext-real   Element of  REAL 
 
|.(0H + m).| is  V11()  real   ext-real   non  negative   Element of  REAL 
 
 sqr (0H + m) is   Relation-like   NAT  -defined   REAL  -valued   Function-like  V36()  FinSequence-like   FinSubsequence-like   complex-yielding   ext-real-valued   real-valued   finite-support   FinSequence of  REAL 
 
 Sum (sqr (0H + m)) is  V11()  real   ext-real   Element of  REAL 
 
 sqrt (Sum (sqr (0H + m))) is  V11()  real   ext-real   Element of  REAL 
 
|.(0H + m).| ^2  is  V11()  real   ext-real   Element of  REAL 
 
|.(0H + m).| * |.(0H + m).| is  V11()  real   ext-real   non  negative   set 
 
|.0H.| is  V11()  real   ext-real   non  negative   Element of  REAL 
 
 sqr 0H is   Relation-like   NAT  -defined   REAL  -valued   Function-like  V36()  FinSequence-like   FinSubsequence-like   complex-yielding   ext-real-valued   real-valued   finite-support   FinSequence of  REAL 
 
 Sum (sqr 0H) is  V11()  real   ext-real   Element of  REAL 
 
 sqrt (Sum (sqr 0H)) is  V11()  real   ext-real   Element of  REAL 
 
|.0H.| ^2  is  V11()  real   ext-real   Element of  REAL 
 
|.0H.| * |.0H.| is  V11()  real   ext-real   non  negative   set 
 
|((h . ((gf * p) . m)),0H)| is  V11()  real   ext-real   Element of  REAL 
 
2 * |((h . ((gf * p) . m)),0H)| is  V11()  real   ext-real   Element of  REAL 
 
(|.0H.| ^2) + (2 * |((h . ((gf * p) . m)),0H)|) is  V11()  real   ext-real   Element of  REAL 
 
|.(h . ((gf * p) . m)).| is  V11()  real   ext-real   non  negative   Element of  REAL 
 
 sqr (h . ((gf * p) . m)) is   Relation-like   NAT  -defined   REAL  -valued   Function-like  V36()  FinSequence-like   FinSubsequence-like   complex-yielding   ext-real-valued   real-valued   finite-support   FinSequence of  REAL 
 
 Sum (sqr (h . ((gf * p) . m))) is  V11()  real   ext-real   Element of  REAL 
 
 sqrt (Sum (sqr (h . ((gf * p) . m)))) is  V11()  real   ext-real   Element of  REAL 
 
|.(h . ((gf * p) . m)).| ^2  is  V11()  real   ext-real   Element of  REAL 
 
|.(h . ((gf * p) . m)).| * |.(h . ((gf * p) . m)).| is  V11()  real   ext-real   non  negative   set 
 
((|.0H.| ^2) + (2 * |((h . ((gf * p) . m)),0H)|)) + (|.(h . ((gf * p) . m)).| ^2) is  V11()  real   ext-real   Element of  REAL 
 
 0* n is   Relation-like   NAT  -defined   REAL  -valued   Function-like  V36() n -element   FinSequence-like   FinSubsequence-like   complex-yielding   ext-real-valued   real-valued   finite-support   Element of  REAL n
 
 REAL n is   non  empty   functional   FinSequence-membered   FinSequenceSet of  REAL 
 
n -tuples_on REAL is   non  empty   functional   FinSequence-membered   FinSequenceSet of  REAL 
 
n |-> 0 is   Relation-like   empty-yielding   NAT  -defined   REAL  -valued   Function-like  V36() n -element   FinSequence-like   FinSubsequence-like   complex-yielding   ext-real-valued   real-valued   finite-support   Element of n -tuples_on REAL
 
(0* n) +* (H,1) is   Relation-like   NAT  -defined   Function-like  V36()  FinSequence-like   FinSubsequence-like   complex-yielding   ext-real-valued   real-valued   finite-support   set 
 
 len m is   ordinal   natural  V11()  real   ext-real   non  negative  V36()  cardinal  V85() V86() V155() V156() V157() V158() V159() V160()  Element of  NAT 
 
|(m,0H)| is  V11()  real   ext-real   Element of  REAL 
 
2 * |(m,0H)| is  V11()  real   ext-real   Element of  REAL 
 
(|.0H.| ^2) + (2 * |(m,0H)|) is  V11()  real   ext-real   Element of  REAL 
 
|.m.| is  V11()  real   ext-real   non  negative   Element of  REAL 
 
 sqr m is   Relation-like   NAT  -defined   REAL  -valued   Function-like  V36()  FinSequence-like   FinSubsequence-like   complex-yielding   ext-real-valued   real-valued   finite-support   FinSequence of  REAL 
 
 Sum (sqr m) is  V11()  real   ext-real   Element of  REAL 
 
 sqrt (Sum (sqr m)) is  V11()  real   ext-real   Element of  REAL 
 
|.m.| ^2  is  V11()  real   ext-real   Element of  REAL 
 
|.m.| * |.m.| is  V11()  real   ext-real   non  negative   set 
 
((|.0H.| ^2) + (2 * |(m,0H)|)) + (|.m.| ^2) is  V11()  real   ext-real   Element of  REAL 
 
m . H is  V11()  real   ext-real   Element of  REAL 
 
(m . H) * 1 is  V11()  real   ext-real   Element of  REAL 
 
((h . ((gf * p) . m)) . H) * 1 is  V11()  real   ext-real   Element of  REAL 
 
 0* n is   Relation-like   NAT  -defined   REAL  -valued   Function-like  V36() n -element   FinSequence-like   FinSubsequence-like   complex-yielding   ext-real-valued   real-valued   finite-support   Element of  REAL n
 
 REAL n is   non  empty   functional   FinSequence-membered   FinSequenceSet of  REAL 
 
n -tuples_on REAL is   non  empty   functional   FinSequence-membered   FinSequenceSet of  REAL 
 
n |-> 0 is   Relation-like   empty-yielding   NAT  -defined   REAL  -valued   Function-like  V36() n -element   FinSequence-like   FinSubsequence-like   complex-yielding   ext-real-valued   real-valued   finite-support   Element of n -tuples_on REAL
 
(0* n) +* ((fp + 1),((h . ((gf * p) . m)) . (fp + 1))) is   Relation-like   NAT  -defined   REAL  -valued   Function-like  V36()  FinSequence-like   FinSubsequence-like   complex-yielding   ext-real-valued   real-valued   finite-support   FinSequence of  REAL 
 
 len (0* n) is   ordinal   natural  V11()  real   ext-real   non  negative  V36()  cardinal  V85() V86() V155() V156() V157() V158() V159() V160()  Element of  NAT 
 
j is   ordinal   natural  V11()  real   ext-real   non  negative  V36()  cardinal  V85()  set 
 
(h . ((gf * p) . m)) . j is  V11()  real   ext-real   Element of  REAL 
 
j is   ordinal   natural  V11()  real   ext-real   non  negative  V36()  cardinal  V85()  set 
 
(h . ((gf * p) . m)) . j is  V11()  real   ext-real   Element of  REAL 
 
((0* n) +* ((fp + 1),((h . ((gf * p) . m)) . (fp + 1)))) . j is  V11()  real   ext-real   Element of  REAL 
 
 dom (0* n) is  V36() n -element  V155() V156() V157() V158() V159() V160()  Element of  bool NAT
 
(0* n) . j is  V11()  real   ext-real   Element of  REAL 
 
 len ((0* n) +* ((fp + 1),((h . ((gf * p) . m)) . (fp + 1)))) is   ordinal   natural  V11()  real   ext-real   non  negative  V36()  cardinal  V85() V86() V155() V156() V157() V158() V159() V160()  Element of  NAT 
 
|.((gf * p) . m).| is  V11()  real   ext-real   non  negative   Element of  REAL 
 
 sqr ((gf * p) . m) is   Relation-like   NAT  -defined   REAL  -valued   Function-like  V36()  FinSequence-like   FinSubsequence-like   complex-yielding   ext-real-valued   real-valued   finite-support   FinSequence of  REAL 
 
 Sum (sqr ((gf * p) . m)) is  V11()  real   ext-real   Element of  REAL 
 
 sqrt (Sum (sqr ((gf * p) . m))) is  V11()  real   ext-real   Element of  REAL 
 
|.m.| is  V11()  real   ext-real   non  negative   Element of  REAL 
 
 sqr m is   Relation-like   NAT  -defined   REAL  -valued   Function-like  V36()  FinSequence-like   FinSubsequence-like   complex-yielding   ext-real-valued   real-valued   finite-support   FinSequence of  REAL 
 
 Sum (sqr m) is  V11()  real   ext-real   Element of  REAL 
 
 sqrt (Sum (sqr m)) is  V11()  real   ext-real   Element of  REAL 
 
(0* n) +* ((fp + 1),1) is   Relation-like   NAT  -defined   REAL  -valued   Function-like  V36()  FinSequence-like   FinSubsequence-like   complex-yielding   ext-real-valued   real-valued   finite-support   FinSequence of  REAL 
 
 abs 1 is  V11()  real   ext-real   Element of  REAL 
 
|.(h . ((gf * p) . m)).| is  V11()  real   ext-real   non  negative   Element of  REAL 
 
 sqr (h . ((gf * p) . m)) is   Relation-like   NAT  -defined   REAL  -valued   Function-like  V36()  FinSequence-like   FinSubsequence-like   complex-yielding   ext-real-valued   real-valued   finite-support   FinSequence of  REAL 
 
 Sum (sqr (h . ((gf * p) . m))) is  V11()  real   ext-real   Element of  REAL 
 
 sqrt (Sum (sqr (h . ((gf * p) . m)))) is  V11()  real   ext-real   Element of  REAL 
 
 abs ((h . ((gf * p) . m)) . (fp + 1)) is  V11()  real   ext-real   Element of  REAL 
 
 dom (id z) is    set 
 
 dom ((hg * p) | z) is    set 
 
 {  (Base_FinSeq (n,b1)) where b1 is   ordinal   natural  V11()  real   ext-real   non  negative  V36()  cardinal  V85() V86() V155() V156() V157() V158() V159() V160()  Element of  NAT  : ( 1 <= b1 & b1 <=  {}  )  }   is    set 
 
fp is    Element of  bool  the carrier of (TOP-REAL n)
 
 id fp is   Relation-like  fp -defined  fp -valued   Function-like   one-to-one   total   quasi_total   Element of  bool [:fp,fp:]
 
[:fp,fp:] is   Relation-like   set 
 
 bool [:fp,fp:] is   non  empty   set 
 
z is    set 
 
fpz is   ordinal   natural  V11()  real   ext-real   non  negative  V36()  cardinal  V85() V86() V155() V156() V157() V158() V159() V160()  Element of  NAT 
 
 Base_FinSeq (n,fpz) is   Relation-like   NAT  -defined   REAL  -valued   Function-like  V36()  FinSequence-like   FinSubsequence-like   complex-yielding   ext-real-valued   real-valued   finite-support   FinSequence of  REAL 
 
 id (TOP-REAL n) is   non  empty   Relation-like   the carrier of (TOP-REAL n) -defined   the carrier of (TOP-REAL n) -defined   the carrier of (TOP-REAL n) -valued   the carrier of (TOP-REAL n) -valued   Function-like   total   total   quasi_total   quasi_total   additive   additive   FinSequence-yielding   homogeneous   Function-yielding  V235()  being_homeomorphism   being_homeomorphism  (n) (n)  Element of  bool [: the carrier of (TOP-REAL n), the carrier of (TOP-REAL n):]
 
 id  the carrier of (TOP-REAL n) is   non  empty   Relation-like   the carrier of (TOP-REAL n) -defined   the carrier of (TOP-REAL n) -valued   Function-like   one-to-one   total   quasi_total   quasi_total   FinSequence-yielding   Function-yielding  V235()  Element of  bool [: the carrier of (TOP-REAL n), the carrier of (TOP-REAL n):]
 
z is   non  empty   Relation-like   the carrier of (TOP-REAL n) -defined   the carrier of (TOP-REAL n) -valued   Function-like   total   quasi_total   additive   FinSequence-yielding   homogeneous   Function-yielding  V235()  being_homeomorphism  (n) (n)  Element of  bool [: the carrier of (TOP-REAL n), the carrier of (TOP-REAL n):]
 
z * p is   non  empty   Relation-like   the carrier of (TOP-REAL n) -defined   the carrier of (TOP-REAL n) -defined   the carrier of (TOP-REAL n) -defined   the carrier of (TOP-REAL n) -valued   the carrier of (TOP-REAL n) -valued   the carrier of (TOP-REAL n) -valued   Function-like   total   total   total   quasi_total   quasi_total   quasi_total   additive   FinSequence-yielding   homogeneous   Function-yielding  V235()  Element of  bool [: the carrier of (TOP-REAL n), the carrier of (TOP-REAL n):]
 
(z * p) | fp is   Relation-like   the carrier of (TOP-REAL n) -defined  fp -defined   the carrier of (TOP-REAL n) -defined   the carrier of (TOP-REAL n) -valued   Function-like   Function-yielding  V235()  Element of  bool [: the carrier of (TOP-REAL n), the carrier of (TOP-REAL n):]
 
z is    Element of  bool  the carrier of (TOP-REAL n)
 
 id z is   Relation-like  z -defined  z -valued   Function-like   one-to-one   total   quasi_total   Element of  bool [:z,z:]
 
[:z,z:] is   Relation-like   set 
 
 bool [:z,z:] is   non  empty   set 
 
fp is   non  empty   Relation-like   the carrier of (TOP-REAL n) -defined   the carrier of (TOP-REAL n) -valued   Function-like   total   quasi_total   additive   FinSequence-yielding   homogeneous   Function-yielding  V235()  being_homeomorphism  (n) (n)  Element of  bool [: the carrier of (TOP-REAL n), the carrier of (TOP-REAL n):]
 
fp * p is   non  empty   Relation-like   the carrier of (TOP-REAL n) -defined   the carrier of (TOP-REAL n) -defined   the carrier of (TOP-REAL n) -defined   the carrier of (TOP-REAL n) -valued   the carrier of (TOP-REAL n) -valued   the carrier of (TOP-REAL n) -valued   Function-like   total   total   total   quasi_total   quasi_total   quasi_total   additive   FinSequence-yielding   homogeneous   Function-yielding  V235()  Element of  bool [: the carrier of (TOP-REAL n), the carrier of (TOP-REAL n):]
 
(fp * p) | z is   Relation-like   the carrier of (TOP-REAL n) -defined  z -defined   the carrier of (TOP-REAL n) -defined   the carrier of (TOP-REAL n) -valued   Function-like   Function-yielding  V235()  Element of  bool [: the carrier of (TOP-REAL n), the carrier of (TOP-REAL n):]
 
fpz is   Relation-like   Function-like   set 
 
 dom (fp * p) is   non  empty   set 
 
(fp * p) . fpz is   Relation-like   Function-like   set 
 
h is    set 
 
((fp * p) . fpz) . h is    set 
 
fpz . h is    set 
 
sq is   Relation-like   NAT  -defined   Function-like  V36() n -element   FinSequence-like   FinSubsequence-like   complex-yielding   ext-real-valued   real-valued   finite-support   Element of  the carrier of (TOP-REAL n)
 
(fp * p) . sq is   Relation-like   NAT  -defined   Function-like  V36() n -element   FinSequence-like   FinSubsequence-like   complex-yielding   ext-real-valued   real-valued   finite-support   Element of  the carrier of (TOP-REAL n)
 
 len ((fp * p) . sq) is   ordinal   natural  V11()  real   ext-real   non  negative  V36()  cardinal  V85() V86() V155() V156() V157() V158() V159() V160()  Element of  NAT 
 
 dom ((fp * p) . sq) is  V36() n -element  V155() V156() V157() V158() V159() V160()  Element of  bool NAT
 
 Seg n is  V16() V36() n -element  V155() V156() V157() V158() V159() V160()  Element of  bool NAT
 
 {  b1 where b1 is   ordinal   natural  V11()  real   ext-real   non  negative  V36()  cardinal  V85() V86() V155() V156() V157() V158() V159() V160()  Element of  NAT  : ( 1 <= b1 & b1 <= n )  }   is    set 
 
((fp * p) . sq) . h is  V11()  real   ext-real   Element of  REAL 
 
 len sq is   ordinal   natural  V11()  real   ext-real   non  negative  V36()  cardinal  V85() V86() V155() V156() V157() V158() V159() V160()  Element of  NAT 
 
 dom sq is  V36() n -element  V155() V156() V157() V158() V159() V160()  Element of  bool NAT
 
z is   ordinal   natural  V11()  real   ext-real   non  negative  V36()  cardinal  V85()  set 
 
f + 1 is   non  empty   ordinal   natural  V11()  real   ext-real   positive   non  negative  V36()  cardinal  V85() V86() V155() V156() V157() V158() V159() V160()  Element of  NAT 
 
 Base_FinSeq (n,z) is   Relation-like   NAT  -defined   REAL  -valued   Function-like  V36()  FinSequence-like   FinSubsequence-like   complex-yielding   ext-real-valued   real-valued   finite-support   FinSequence of  REAL 
 
 Lin z is   non  empty   right_complementable   strict  V189() V190() V191() V192() V193() V194() V195() M25( TOP-REAL n)
 
((fp * p) . sq) . z is  V11()  real   ext-real   Element of  REAL 
 
sq . z is  V11()  real   ext-real   Element of  REAL 
 
n is   ordinal   natural  V11()  real   ext-real   non  negative  V36()  cardinal  V85()  set 
 
p is   Relation-like   NAT  -defined   the carrier of F_Real *  -valued   Function-like  V36()  FinSequence-like   FinSubsequence-like   FinSequence-yielding   finite-support   Function-yielding  V235()  tabular   Matrix of n,n, the carrier of F_Real
 
 Mx2Tran p is   non  empty   Relation-like   the carrier of (TOP-REAL n) -defined   the carrier of (TOP-REAL n) -valued   Function-like   total   quasi_total   additive   FinSequence-yielding   homogeneous   Function-yielding  V235()  Element of  bool [: the carrier of (TOP-REAL n), the carrier of (TOP-REAL n):]
 
 TOP-REAL n is   non  empty   TopSpace-like   right_complementable   constituted-Functions   constituted-FinSeqs  V189() V190() V191() V192() V193() V194() V195() V228() L16()
 
 the carrier of (TOP-REAL n) is   non  empty   set 
 
[: the carrier of (TOP-REAL n), the carrier of (TOP-REAL n):] is   non  empty   Relation-like   set 
 
 bool [: the carrier of (TOP-REAL n), the carrier of (TOP-REAL n):] is   non  empty   set 
 
 Det p is  V11()  real   ext-real   Element of  the carrier of F_Real
 
 GFuncs  the carrier of (TOP-REAL n) is   non  empty   strict   unital   associative   constituted-Functions   SubStr of  GPFuncs  the carrier of (TOP-REAL n)
 
 GPFuncs  the carrier of (TOP-REAL n) is   non  empty   strict   unital   associative   constituted-Functions   multMagma 
 
 the carrier of (GFuncs  the carrier of (TOP-REAL n)) is   non  empty   set 
 
n1 is   Relation-like   NAT  -defined   the carrier of (GFuncs  the carrier of (TOP-REAL n)) -valued   Function-like  V36()  FinSequence-like   FinSubsequence-like   finite-support   FinSequence of  the carrier of (GFuncs  the carrier of (TOP-REAL n))
 
 Product n1 is   Relation-like   Function-like   Element of  the carrier of (GFuncs  the carrier of (TOP-REAL n))
 
 dom n1 is  V36() V155() V156() V157() V158() V159() V160()  Element of  bool NAT
 
 len n1 is   ordinal   natural  V11()  real   ext-real   non  negative  V36()  cardinal  V85() V86() V155() V156() V157() V158() V159() V160()  Element of  NAT 
 
f is   ordinal   natural  V11()  real   ext-real   non  negative  V36()  cardinal  V85()  set 
 
n1 | f is   Relation-like   NAT  -defined   the carrier of (GFuncs  the carrier of (TOP-REAL n)) -valued   Function-like  V36()  FinSequence-like   FinSubsequence-like   finite-support   FinSequence of  the carrier of (GFuncs  the carrier of (TOP-REAL n))
 
 Seg f is  V16() V36() f -element  V155() V156() V157() V158() V159() V160()  Element of  bool NAT
 
 {  b1 where b1 is   ordinal   natural  V11()  real   ext-real   non  negative  V36()  cardinal  V85() V86() V155() V156() V157() V158() V159() V160()  Element of  NAT  : ( 1 <= b1 & b1 <= f )  }   is    set 
 
n1 | (Seg f) is   Relation-like   NAT  -defined   Seg f -defined   NAT  -defined   the carrier of (GFuncs  the carrier of (TOP-REAL n)) -valued   Function-like  V36()  FinSubsequence-like   finite-support   set 
 
 Product (n1 | f) is   Relation-like   Function-like   Element of  the carrier of (GFuncs  the carrier of (TOP-REAL n))
 
f + 1 is   non  empty   ordinal   natural  V11()  real   ext-real   positive   non  negative  V36()  cardinal  V85() V86() V155() V156() V157() V158() V159() V160()  Element of  NAT 
 
n1 | (f + 1) is   Relation-like   NAT  -defined   the carrier of (GFuncs  the carrier of (TOP-REAL n)) -valued   Function-like  V36()  FinSequence-like   FinSubsequence-like   finite-support   FinSequence of  the carrier of (GFuncs  the carrier of (TOP-REAL n))
 
 Seg (f + 1) is   non  empty  V16() V36() f + 1 -element  f + 1 -element  V155() V156() V157() V158() V159() V160()  Element of  bool NAT
 
 {  b1 where b1 is   ordinal   natural  V11()  real   ext-real   non  negative  V36()  cardinal  V85() V86() V155() V156() V157() V158() V159() V160()  Element of  NAT  : ( 1 <= b1 & b1 <= f + 1 )  }   is    set 
 
n1 | (Seg (f + 1)) is   Relation-like   NAT  -defined   Seg (f + 1) -defined   NAT  -defined   the carrier of (GFuncs  the carrier of (TOP-REAL n)) -valued   Function-like  V36()  FinSubsequence-like   finite-support   set 
 
 Product (n1 | (f + 1)) is   Relation-like   Function-like   Element of  the carrier of (GFuncs  the carrier of (TOP-REAL n))
 
z is   non  empty   Relation-like   the carrier of (TOP-REAL n) -defined   the carrier of (TOP-REAL n) -valued   Function-like   total   quasi_total   additive   FinSequence-yielding   homogeneous   Function-yielding  V235()  being_homeomorphism  (n) (n)  Element of  bool [: the carrier of (TOP-REAL n), the carrier of (TOP-REAL n):]
 
(n,z) is   Relation-like   NAT  -defined   the carrier of F_Real *  -valued   Function-like  V36()  FinSequence-like   FinSubsequence-like   FinSequence-yielding   finite-support   Function-yielding  V235()  tabular   Matrix of n,n, the carrier of F_Real
 
 width (n,z) is   ordinal   natural  V11()  real   ext-real   non  negative  V36()  cardinal  V85() V86() V155() V156() V157() V158() V159() V160()  Element of  NAT 
 
 len (n,z) is   ordinal   natural  V11()  real   ext-real   non  negative  V36()  cardinal  V85() V86() V155() V156() V157() V158() V159() V160()  Element of  NAT 
 
n1 . (f + 1) is    set 
 
z is   ordinal   natural  V11()  real   ext-real   non  negative  V36()  cardinal  V85()  set 
 
fpz is   ordinal   natural  V11()  real   ext-real   non  negative  V36()  cardinal  V85()  set 
 
h is  V11()  real   ext-real   set 
 
(n,h,z,fpz) is   Relation-like   NAT  -defined   the carrier of F_Real *  -valued   Function-like  V36()  FinSequence-like   FinSubsequence-like   FinSequence-yielding   finite-support   Function-yielding  V235()  tabular   invertible   Matrix of n,n, the carrier of F_Real
 
 Mx2Tran (n,h,z,fpz) is   non  empty   Relation-like   the carrier of (TOP-REAL n) -defined   the carrier of (TOP-REAL n) -valued   Function-like   total   quasi_total   additive   FinSequence-yielding   homogeneous   Function-yielding  V235()  being_homeomorphism   Element of  bool [: the carrier of (TOP-REAL n), the carrier of (TOP-REAL n):]
 
z is   Relation-like   Function-like   Element of  the carrier of (GFuncs  the carrier of (TOP-REAL n))
 
<*z*> is   non  empty   trivial   Relation-like   NAT  -defined   the carrier of (GFuncs  the carrier of (TOP-REAL n)) -valued   Function-like   constant  V36() 1 -element   FinSequence-like   FinSubsequence-like   finite-support   Function-yielding  V235() V282()  Element of 1 -tuples_on  the carrier of (GFuncs  the carrier of (TOP-REAL n))
 
1 -tuples_on  the carrier of (GFuncs  the carrier of (TOP-REAL n)) is   non  empty   functional   FinSequence-membered   FinSequenceSet of  the carrier of (GFuncs  the carrier of (TOP-REAL n))
 
[1,z] is    set 
 
{1,z} is   non  empty  V36()  set 
 
{{1,z},{1}} is   non  empty  V36() V40()  set 
 
{[1,z]} is   non  empty   trivial   Relation-like   Function-like   constant  V36() 1 -element   finite-support   set 
 
(n1 | f) ^ <*z*> is   non  empty   Relation-like   NAT  -defined   the carrier of (GFuncs  the carrier of (TOP-REAL n)) -valued   Function-like  V36()  FinSequence-like   FinSubsequence-like   finite-support   Element of  the carrier of (GFuncs  the carrier of (TOP-REAL n)) * 
 
 the carrier of (GFuncs  the carrier of (TOP-REAL n)) *  is   non  empty   functional   FinSequence-membered   FinSequenceSet of  the carrier of (GFuncs  the carrier of (TOP-REAL n))
 
(Product (n1 | f)) * z is   Relation-like   Function-like   Element of  the carrier of (GFuncs  the carrier of (TOP-REAL n))
 
 the multF of (GFuncs  the carrier of (TOP-REAL n)) is   non  empty   Relation-like  [: the carrier of (GFuncs  the carrier of (TOP-REAL n)), the carrier of (GFuncs  the carrier of (TOP-REAL n)):] -defined   the carrier of (GFuncs  the carrier of (TOP-REAL n)) -valued   Function-like   total   quasi_total   Element of  bool [:[: the carrier of (GFuncs  the carrier of (TOP-REAL n)), the carrier of (GFuncs  the carrier of (TOP-REAL n)):], the carrier of (GFuncs  the carrier of (TOP-REAL n)):]
 
[: the carrier of (GFuncs  the carrier of (TOP-REAL n)), the carrier of (GFuncs  the carrier of (TOP-REAL n)):] is   non  empty   Relation-like   set 
 
[:[: the carrier of (GFuncs  the carrier of (TOP-REAL n)), the carrier of (GFuncs  the carrier of (TOP-REAL n)):], the carrier of (GFuncs  the carrier of (TOP-REAL n)):] is   non  empty   Relation-like   set 
 
 bool [:[: the carrier of (GFuncs  the carrier of (TOP-REAL n)), the carrier of (GFuncs  the carrier of (TOP-REAL n)):], the carrier of (GFuncs  the carrier of (TOP-REAL n)):] is   non  empty   set 
 
 the multF of (GFuncs  the carrier of (TOP-REAL n)) . ((Product (n1 | f)),z) is   Relation-like   Function-like   Element of  the carrier of (GFuncs  the carrier of (TOP-REAL n))
 
(Mx2Tran (n,h,z,fpz)) * z is   non  empty   Relation-like   the carrier of (TOP-REAL n) -defined   the carrier of (TOP-REAL n) -defined   the carrier of (TOP-REAL n) -defined   the carrier of (TOP-REAL n) -valued   the carrier of (TOP-REAL n) -valued   the carrier of (TOP-REAL n) -valued   Function-like   total   total   total   quasi_total   quasi_total   quasi_total   additive   FinSequence-yielding   homogeneous   Function-yielding  V235()  Element of  bool [: the carrier of (TOP-REAL n), the carrier of (TOP-REAL n):]
 
 width (n,h,z,fpz) is   ordinal   natural  V11()  real   ext-real   non  negative  V36()  cardinal  V85() V86() V155() V156() V157() V158() V159() V160()  Element of  NAT 
 
 len (n,h,z,fpz) is   ordinal   natural  V11()  real   ext-real   non  negative  V36()  cardinal  V85() V86() V155() V156() V157() V158() V159() V160()  Element of  NAT 
 
z is   Relation-like   NAT  -defined   the carrier of F_Real *  -valued   Function-like  V36()  FinSequence-like   FinSubsequence-like   FinSequence-yielding   finite-support   Function-yielding  V235()  tabular   Matrix of n,n, the carrier of F_Real
 
 Mx2Tran z is   non  empty   Relation-like   the carrier of (TOP-REAL n) -defined   the carrier of (TOP-REAL n) -valued   Function-like   total   quasi_total   additive   FinSequence-yielding   homogeneous   Function-yielding  V235()  Element of  bool [: the carrier of (TOP-REAL n), the carrier of (TOP-REAL n):]
 
 Det z is  V11()  real   ext-real   Element of  the carrier of F_Real
 
 Mx2Tran (n,z) is   non  empty   Relation-like   the carrier of (TOP-REAL n) -defined   the carrier of (TOP-REAL n) -valued   Function-like   total   quasi_total   additive   FinSequence-yielding   homogeneous   Function-yielding  V235()  Element of  bool [: the carrier of (TOP-REAL n), the carrier of (TOP-REAL n):]
 
(Mx2Tran (n,h,z,fpz)) * (Mx2Tran (n,z)) is   non  empty   Relation-like   the carrier of (TOP-REAL n) -defined   the carrier of (TOP-REAL n) -defined   the carrier of (TOP-REAL n) -defined   the carrier of (TOP-REAL n) -valued   the carrier of (TOP-REAL n) -valued   the carrier of (TOP-REAL n) -valued   Function-like   total   total   total   quasi_total   quasi_total   quasi_total   additive   FinSequence-yielding   homogeneous   Function-yielding  V235()  Element of  bool [: the carrier of (TOP-REAL n), the carrier of (TOP-REAL n):]
 
(n,z) * (n,h,z,fpz) is   Relation-like   NAT  -defined   the carrier of F_Real *  -valued   Function-like  V36()  FinSequence-like   FinSubsequence-like   FinSequence-yielding   finite-support   Function-yielding  V235()  tabular   Matrix of n,n, the carrier of F_Real
 
 Mx2Tran ((n,z) * (n,h,z,fpz)) is   non  empty   Relation-like   the carrier of (TOP-REAL n) -defined   the carrier of (TOP-REAL n) -valued   Function-like   total   quasi_total   additive   FinSequence-yielding   homogeneous   Function-yielding  V235()  Element of  bool [: the carrier of (TOP-REAL n), the carrier of (TOP-REAL n):]
 
 Det (n,z) is  V11()  real   ext-real   Element of  the carrier of F_Real
 
 Det (n,h,z,fpz) is  V11()  real   ext-real   Element of  the carrier of F_Real
 
(1. F_Real) * (1. F_Real) is  V11()  real   ext-real   Element of  the carrier of F_Real
 
 the multF of F_Real is   non  empty   Relation-like  [: the carrier of F_Real, the carrier of F_Real:] -defined   the carrier of F_Real -valued   Function-like   total   quasi_total   complex-yielding   ext-real-valued   real-valued   associative  V287( the carrier of F_Real)  Element of  bool [:[: the carrier of F_Real, the carrier of F_Real:], the carrier of F_Real:]
 
[: the carrier of F_Real, the carrier of F_Real:] is   non  empty   Relation-like   complex-yielding   ext-real-valued   real-valued   set 
 
[:[: the carrier of F_Real, the carrier of F_Real:], the carrier of F_Real:] is   non  empty   Relation-like   complex-yielding   ext-real-valued   real-valued   set 
 
 bool [:[: the carrier of F_Real, the carrier of F_Real:], the carrier of F_Real:] is   non  empty   set 
 
 the multF of F_Real . ((1. F_Real),(1. F_Real)) is  V11()  real   ext-real   Element of  the carrier of F_Real
 
K538((1. F_Real),(1. F_Real)) is  V11()  real   ext-real   Element of  REAL 
 
n1 | (len n1) is   Relation-like   NAT  -defined   the carrier of (GFuncs  the carrier of (TOP-REAL n)) -valued   Function-like  V36()  FinSequence-like   FinSubsequence-like   finite-support   FinSequence of  the carrier of (GFuncs  the carrier of (TOP-REAL n))
 
 Seg (len n1) is  V16() V36()  len n1 -element  V155() V156() V157() V158() V159() V160()  Element of  bool NAT
 
 {  b1 where b1 is   ordinal   natural  V11()  real   ext-real   non  negative  V36()  cardinal  V85() V86() V155() V156() V157() V158() V159() V160()  Element of  NAT  : ( 1 <= b1 & b1 <=  len n1 )  }   is    set 
 
n1 | (Seg (len n1)) is   Relation-like   NAT  -defined   Seg (len n1) -defined   NAT  -defined   the carrier of (GFuncs  the carrier of (TOP-REAL n)) -valued   Function-like  V36()  FinSubsequence-like   finite-support   set 
 
n1 | {} is   empty   ordinal   natural  V11()  real   ext-real   non  positive   non  negative   Relation-like   non-empty   empty-yielding   NAT  -defined   RAT  -valued   the carrier of (GFuncs  the carrier of (TOP-REAL n)) -valued   Function-like   one-to-one   constant   functional  V36() V37() V40()  cardinal   {}  -element  V85()  FinSequence-like   FinSubsequence-like   FinSequence-membered   complex-yielding   ext-real-valued   real-valued   natural-valued  V155() V156() V157() V158() V159() V160() V161()  FinSequence-yielding   finite-support   Function-yielding  V235() V282()  FinSequence of  the carrier of (GFuncs  the carrier of (TOP-REAL n))
 
 Seg {} is   empty   ordinal   natural  V11()  real   ext-real   non  positive   non  negative  V16()  Relation-like   non-empty   empty-yielding   NAT  -defined   RAT  -valued   Function-like   one-to-one   constant   functional  V36() V37() V40()  cardinal   {}  -element   {}  -element  V85()  FinSequence-like   FinSubsequence-like   FinSequence-membered   complex-yielding   ext-real-valued   real-valued   natural-valued  V155() V156() V157() V158() V159() V160() V161()  FinSequence-yielding   finite-support   Function-yielding  V235() V282()  Element of  bool NAT
 
 {  b1 where b1 is   ordinal   natural  V11()  real   ext-real   non  negative  V36()  cardinal  V85() V86() V155() V156() V157() V158() V159() V160()  Element of  NAT  : ( 1 <= b1 & b1 <=  {}  )  }   is    set 
 
n1 | (Seg {}) is   empty   ordinal   natural  V11()  real   ext-real   non  positive   non  negative   Relation-like   non-empty   empty-yielding   NAT  -defined   Seg {} -defined   NAT  -defined   RAT  -valued   the carrier of (GFuncs  the carrier of (TOP-REAL n)) -valued   Function-like   one-to-one   constant   functional  V36() V37() V40()  cardinal   {}  -element  V85()  FinSequence-like   FinSubsequence-like   FinSequence-membered   complex-yielding   ext-real-valued   real-valued   natural-valued  V155() V156() V157() V158() V159() V160() V161()  FinSequence-yielding   finite-support   Function-yielding  V235() V282()  set 
 
 Product (n1 | {}) is   Relation-like   Function-like   Element of  the carrier of (GFuncs  the carrier of (TOP-REAL n))
 
 1. (F_Real,n) is   Relation-like   NAT  -defined   the carrier of F_Real *  -valued   Function-like  V36()  FinSequence-like   FinSubsequence-like   FinSequence-yielding   finite-support   Function-yielding  V235()  tabular   Matrix of n,n, the carrier of F_Real
 
 Mx2Tran (1. (F_Real,n)) is   non  empty   Relation-like   the carrier of (TOP-REAL n) -defined   the carrier of (TOP-REAL n) -valued   Function-like   total   quasi_total   additive   FinSequence-yielding   homogeneous   Function-yielding  V235()  Element of  bool [: the carrier of (TOP-REAL n), the carrier of (TOP-REAL n):]
 
 id (TOP-REAL n) is   non  empty   Relation-like   the carrier of (TOP-REAL n) -defined   the carrier of (TOP-REAL n) -defined   the carrier of (TOP-REAL n) -valued   the carrier of (TOP-REAL n) -valued   Function-like   total   total   quasi_total   quasi_total   additive   additive   FinSequence-yielding   homogeneous   Function-yielding  V235()  being_homeomorphism   being_homeomorphism  (n) (n)  Element of  bool [: the carrier of (TOP-REAL n), the carrier of (TOP-REAL n):]
 
 id  the carrier of (TOP-REAL n) is   non  empty   Relation-like   the carrier of (TOP-REAL n) -defined   the carrier of (TOP-REAL n) -valued   Function-like   one-to-one   total   quasi_total   quasi_total   FinSequence-yielding   Function-yielding  V235()  Element of  bool [: the carrier of (TOP-REAL n), the carrier of (TOP-REAL n):]
 
 <*>  the carrier of (GFuncs  the carrier of (TOP-REAL n)) is   empty   ordinal   natural  V11()  real   ext-real   non  positive   non  negative   Relation-like   non-empty   empty-yielding   NAT  -defined   the carrier of (GFuncs  the carrier of (TOP-REAL n)) -valued   Function-like   one-to-one   constant   functional  V36() V37() V40()  cardinal   {}  -element  V85()  FinSequence-like   FinSubsequence-like   FinSequence-membered   complex-yielding   ext-real-valued   real-valued   natural-valued  V155() V156() V157() V158() V159() V160() V161()  FinSequence-yielding   finite-support   Function-yielding  V235() V282()  Element of  the carrier of (GFuncs  the carrier of (TOP-REAL n)) * 
 
 the carrier of (GFuncs  the carrier of (TOP-REAL n)) *  is   non  empty   functional   FinSequence-membered   FinSequenceSet of  the carrier of (GFuncs  the carrier of (TOP-REAL n))
 
 1_ (GFuncs  the carrier of (TOP-REAL n)) is   Relation-like   Function-like   Element of  the carrier of (GFuncs  the carrier of (TOP-REAL n))
 
 the multF of (GFuncs  the carrier of (TOP-REAL n)) is   non  empty   Relation-like  [: the carrier of (GFuncs  the carrier of (TOP-REAL n)), the carrier of (GFuncs  the carrier of (TOP-REAL n)):] -defined   the carrier of (GFuncs  the carrier of (TOP-REAL n)) -valued   Function-like   total   quasi_total   Element of  bool [:[: the carrier of (GFuncs  the carrier of (TOP-REAL n)), the carrier of (GFuncs  the carrier of (TOP-REAL n)):], the carrier of (GFuncs  the carrier of (TOP-REAL n)):]
 
[: the carrier of (GFuncs  the carrier of (TOP-REAL n)), the carrier of (GFuncs  the carrier of (TOP-REAL n)):] is   non  empty   Relation-like   set 
 
[:[: the carrier of (GFuncs  the carrier of (TOP-REAL n)), the carrier of (GFuncs  the carrier of (TOP-REAL n)):], the carrier of (GFuncs  the carrier of (TOP-REAL n)):] is   non  empty   Relation-like   set 
 
 bool [:[: the carrier of (GFuncs  the carrier of (TOP-REAL n)), the carrier of (GFuncs  the carrier of (TOP-REAL n)):], the carrier of (GFuncs  the carrier of (TOP-REAL n)):] is   non  empty   set 
 
 the_unity_wrt  the multF of (GFuncs  the carrier of (TOP-REAL n)) is   Relation-like   Function-like   Element of  the carrier of (GFuncs  the carrier of (TOP-REAL n))
 
 Det (1. (F_Real,n)) is  V11()  real   ext-real   Element of  the carrier of F_Real
 
 1_ F_Real is  V11()  real   ext-real   Element of  the carrier of F_Real
 
f is   Relation-like   NAT  -defined   the carrier of F_Real *  -valued   Function-like  V36()  FinSequence-like   FinSubsequence-like   FinSequence-yielding   finite-support   Function-yielding  V235()  tabular   Matrix of n,n, the carrier of F_Real
 
 Mx2Tran f is   non  empty   Relation-like   the carrier of (TOP-REAL n) -defined   the carrier of (TOP-REAL n) -valued   Function-like   total   quasi_total   additive   FinSequence-yielding   homogeneous   Function-yielding  V235()  Element of  bool [: the carrier of (TOP-REAL n), the carrier of (TOP-REAL n):]
 
 Det f is  V11()  real   ext-real   Element of  the carrier of F_Real
 
n is   ordinal   natural  V11()  real   ext-real   non  negative  V36()  cardinal  V85()  set 
 
 TOP-REAL n is   non  empty   TopSpace-like   right_complementable   constituted-Functions   constituted-FinSeqs  V189() V190() V191() V192() V193() V194() V195() V228() L16()
 
 the carrier of (TOP-REAL n) is   non  empty   set 
 
[: the carrier of (TOP-REAL n), the carrier of (TOP-REAL n):] is   non  empty   Relation-like   set 
 
 bool [: the carrier of (TOP-REAL n), the carrier of (TOP-REAL n):] is   non  empty   set 
 
p is   non  empty   Relation-like   the carrier of (TOP-REAL n) -defined   the carrier of (TOP-REAL n) -valued   Function-like   total   quasi_total   additive   FinSequence-yielding   homogeneous   Function-yielding  V235()  Element of  bool [: the carrier of (TOP-REAL n), the carrier of (TOP-REAL n):]
 
(n,p) is   Relation-like   NAT  -defined   the carrier of F_Real *  -valued   Function-like  V36()  FinSequence-like   FinSubsequence-like   FinSequence-yielding   finite-support   Function-yielding  V235()  tabular   Matrix of n,n, the carrier of F_Real
 
 Det (n,p) is  V11()  real   ext-real   Element of  the carrier of F_Real
 
 Mx2Tran (n,p) is   non  empty   Relation-like   the carrier of (TOP-REAL n) -defined   the carrier of (TOP-REAL n) -valued   Function-like   total   quasi_total   additive   FinSequence-yielding   homogeneous   Function-yielding  V235()  Element of  bool [: the carrier of (TOP-REAL n), the carrier of (TOP-REAL n):]
 
 len (n,p) is   ordinal   natural  V11()  real   ext-real   non  negative  V36()  cardinal  V85() V86() V155() V156() V157() V158() V159() V160()  Element of  NAT 
 
 width (n,p) is   ordinal   natural  V11()  real   ext-real   non  negative  V36()  cardinal  V85() V86() V155() V156() V157() V158() V159() V160()  Element of  NAT 
 
{n} is   non  empty   trivial  V36() V40() 1 -element  V155() V156() V157() V158() V159() V160()  Element of  bool NAT
 
X is   non  empty   Relation-like   the carrier of (TOP-REAL n) -defined   the carrier of (TOP-REAL n) -valued   Function-like   total   quasi_total   additive   FinSequence-yielding   homogeneous   Function-yielding  V235()  Element of  bool [: the carrier of (TOP-REAL n), the carrier of (TOP-REAL n):]
 
X * (Mx2Tran (n,p)) is   non  empty   Relation-like   the carrier of (TOP-REAL n) -defined   the carrier of (TOP-REAL n) -defined   the carrier of (TOP-REAL n) -defined   the carrier of (TOP-REAL n) -valued   the carrier of (TOP-REAL n) -valued   the carrier of (TOP-REAL n) -valued   Function-like   total   total   total   quasi_total   quasi_total   quasi_total   additive   FinSequence-yielding   homogeneous   Function-yielding  V235()  Element of  bool [: the carrier of (TOP-REAL n), the carrier of (TOP-REAL n):]
 
(n,X) is   Relation-like   NAT  -defined   the carrier of F_Real *  -valued   Function-like  V36()  FinSequence-like   FinSubsequence-like   FinSequence-yielding   finite-support   Function-yielding  V235()  tabular   Matrix of n,n, the carrier of F_Real
 
 width (n,X) is   ordinal   natural  V11()  real   ext-real   non  negative  V36()  cardinal  V85() V86() V155() V156() V157() V158() V159() V160()  Element of  NAT 
 
 Mx2Tran (n,X) is   non  empty   Relation-like   the carrier of (TOP-REAL n) -defined   the carrier of (TOP-REAL n) -valued   Function-like   total   quasi_total   additive   FinSequence-yielding   homogeneous   Function-yielding  V235()  Element of  bool [: the carrier of (TOP-REAL n), the carrier of (TOP-REAL n):]
 
(n,(X * (Mx2Tran (n,p)))) is   Relation-like   NAT  -defined   the carrier of F_Real *  -valued   Function-like  V36()  FinSequence-like   FinSubsequence-like   FinSequence-yielding   finite-support   Function-yielding  V235()  tabular   Matrix of n,n, the carrier of F_Real
 
 1. (F_Real,n) is   Relation-like   NAT  -defined   the carrier of F_Real *  -valued   Function-like  V36()  FinSequence-like   FinSubsequence-like   FinSequence-yielding   finite-support   Function-yielding  V235()  tabular   Matrix of n,n, the carrier of F_Real
 
(n,n) is   Relation-like   NAT  -defined   the carrier of F_Real *  -valued   Function-like  V36()  FinSequence-like   FinSubsequence-like   FinSequence-yielding   finite-support   Function-yielding  V235()  tabular   invertible   Matrix of n,n, the carrier of F_Real
 
 Det (n,X) is  V11()  real   ext-real   Element of  the carrier of F_Real
 
(n,p) * (n,X) is   Relation-like   NAT  -defined   the carrier of F_Real *  -valued   Function-like  V36()  FinSequence-like   FinSubsequence-like   FinSequence-yielding   finite-support   Function-yielding  V235()  tabular   Matrix of n,n, the carrier of F_Real
 
 Det ((n,p) * (n,X)) is  V11()  real   ext-real   Element of  the carrier of F_Real
 
(1. F_Real) * (1. F_Real) is  V11()  real   ext-real   Element of  the carrier of F_Real
 
 the multF of F_Real is   non  empty   Relation-like  [: the carrier of F_Real, the carrier of F_Real:] -defined   the carrier of F_Real -valued   Function-like   total   quasi_total   complex-yielding   ext-real-valued   real-valued   associative  V287( the carrier of F_Real)  Element of  bool [:[: the carrier of F_Real, the carrier of F_Real:], the carrier of F_Real:]
 
[: the carrier of F_Real, the carrier of F_Real:] is   non  empty   Relation-like   complex-yielding   ext-real-valued   real-valued   set 
 
[:[: the carrier of F_Real, the carrier of F_Real:], the carrier of F_Real:] is   non  empty   Relation-like   complex-yielding   ext-real-valued   real-valued   set 
 
 bool [:[: the carrier of F_Real, the carrier of F_Real:], the carrier of F_Real:] is   non  empty   set 
 
 the multF of F_Real . ((1. F_Real),(1. F_Real)) is  V11()  real   ext-real   Element of  the carrier of F_Real
 
K538((1. F_Real),(1. F_Real)) is  V11()  real   ext-real   Element of  REAL 
 
 rng (Mx2Tran (n,p)) is   non  empty   set 
 
 rng X is   non  empty   set 
 
 [#] (TOP-REAL n) is   non  empty   non  proper   Element of  bool  the carrier of (TOP-REAL n)
 
 bool  the carrier of (TOP-REAL n) is   non  empty   set 
 
 dom X is   non  empty   set 
 
X /"  is   non  empty   Relation-like   the carrier of (TOP-REAL n) -defined   the carrier of (TOP-REAL n) -valued   Function-like   total   quasi_total   quasi_total   FinSequence-yielding   Function-yielding  V235()  Element of  bool [: the carrier of (TOP-REAL n), the carrier of (TOP-REAL n):]
 
 dom (X /") is   non  empty   set 
 
 id (TOP-REAL n) is   non  empty   Relation-like   the carrier of (TOP-REAL n) -defined   the carrier of (TOP-REAL n) -defined   the carrier of (TOP-REAL n) -valued   the carrier of (TOP-REAL n) -valued   Function-like   total   total   quasi_total   quasi_total   additive   additive   FinSequence-yielding   homogeneous   Function-yielding  V235()  being_homeomorphism   being_homeomorphism  (n) (n)  Element of  bool [: the carrier of (TOP-REAL n), the carrier of (TOP-REAL n):]
 
 id  the carrier of (TOP-REAL n) is   non  empty   Relation-like   the carrier of (TOP-REAL n) -defined   the carrier of (TOP-REAL n) -valued   Function-like   one-to-one   total   quasi_total   quasi_total   FinSequence-yielding   Function-yielding  V235()  Element of  bool [: the carrier of (TOP-REAL n), the carrier of (TOP-REAL n):]
 
 Mx2Tran (1. (F_Real,n)) is   non  empty   Relation-like   the carrier of (TOP-REAL n) -defined   the carrier of (TOP-REAL n) -valued   Function-like   total   quasi_total   additive   FinSequence-yielding   homogeneous   Function-yielding  V235()  Element of  bool [: the carrier of (TOP-REAL n), the carrier of (TOP-REAL n):]
 
 dom (X * (Mx2Tran (n,p))) is   non  empty   set 
 
 dom (id  the carrier of (TOP-REAL n)) is   non  empty   set 
 
 0. (TOP-REAL n) is   Relation-like   NAT  -defined   Function-like  V36() n -element  V61( TOP-REAL n)  FinSequence-like   FinSubsequence-like   complex-yielding   ext-real-valued   real-valued   finite-support   Element of  the carrier of (TOP-REAL n)
 
 the ZeroF of (TOP-REAL n) is   Relation-like   NAT  -defined   Function-like  V36() n -element   FinSequence-like   FinSubsequence-like   complex-yielding   ext-real-valued   real-valued   finite-support   Element of  the carrier of (TOP-REAL n)
 
{(0. (TOP-REAL n))} is   non  empty   trivial   functional  V36() V40() 1 -element   set 
 
 rng (X * (Mx2Tran (n,p))) is   non  empty   set 
 
 rng (id  the carrier of (TOP-REAL n)) is   non  empty   set 
 
 Seg n is  V16() V36() n -element  V155() V156() V157() V158() V159() V160()  Element of  bool NAT
 
 {  b1 where b1 is   ordinal   natural  V11()  real   ext-real   non  negative  V36()  cardinal  V85() V86() V155() V156() V157() V158() V159() V160()  Element of  NAT  : ( 1 <= b1 & b1 <= n )  }   is    set 
 
 Mx2Tran (n,(X * (Mx2Tran (n,p)))) is   non  empty   Relation-like   the carrier of (TOP-REAL n) -defined   the carrier of (TOP-REAL n) -valued   Function-like   total   quasi_total   additive   FinSequence-yielding   homogeneous   Function-yielding  V235()  Element of  bool [: the carrier of (TOP-REAL n), the carrier of (TOP-REAL n):]
 
 Mx2Tran (n,n) is   non  empty   Relation-like   the carrier of (TOP-REAL n) -defined   the carrier of (TOP-REAL n) -valued   Function-like   total   quasi_total   additive   FinSequence-yielding   homogeneous   Function-yielding  V235()  being_homeomorphism   Element of  bool [: the carrier of (TOP-REAL n), the carrier of (TOP-REAL n):]
 
 Mx2Tran ((n,p) * (n,X)) is   non  empty   Relation-like   the carrier of (TOP-REAL n) -defined   the carrier of (TOP-REAL n) -valued   Function-like   total   quasi_total   additive   FinSequence-yielding   homogeneous   Function-yielding  V235()  Element of  bool [: the carrier of (TOP-REAL n), the carrier of (TOP-REAL n):]
 
(X /") * (X * (Mx2Tran (n,p))) is   non  empty   Relation-like   the carrier of (TOP-REAL n) -defined   the carrier of (TOP-REAL n) -valued   Function-like   total   quasi_total   quasi_total   FinSequence-yielding   Function-yielding  V235()  Element of  bool [: the carrier of (TOP-REAL n), the carrier of (TOP-REAL n):]
 
(X /") * X is   non  empty   Relation-like   the carrier of (TOP-REAL n) -defined   the carrier of (TOP-REAL n) -valued   Function-like   total   quasi_total   quasi_total   FinSequence-yielding   Function-yielding  V235()  Element of  bool [: the carrier of (TOP-REAL n), the carrier of (TOP-REAL n):]
 
((X /") * X) * (Mx2Tran (n,p)) is   non  empty   Relation-like   the carrier of (TOP-REAL n) -defined   the carrier of (TOP-REAL n) -valued   Function-like   total   quasi_total   quasi_total   FinSequence-yielding   Function-yielding  V235()  Element of  bool [: the carrier of (TOP-REAL n), the carrier of (TOP-REAL n):]
 
(id  the carrier of (TOP-REAL n)) * (Mx2Tran (n,p)) is   non  empty   Relation-like   the carrier of (TOP-REAL n) -defined   the carrier of (TOP-REAL n) -valued   Function-like   total   quasi_total   quasi_total   FinSequence-yielding   Function-yielding  V235()  Element of  bool [: the carrier of (TOP-REAL n), the carrier of (TOP-REAL n):]
 
n is   ordinal   natural  V11()  real   ext-real   non  negative  V36()  cardinal  V85()  set 
 
 TOP-REAL n is   non  empty   TopSpace-like   right_complementable   constituted-Functions   constituted-FinSeqs  V189() V190() V191() V192() V193() V194() V195() V228() L16()
 
 the carrier of (TOP-REAL n) is   non  empty   set 
 
[: the carrier of (TOP-REAL n), the carrier of (TOP-REAL n):] is   non  empty   Relation-like   set 
 
 bool [: the carrier of (TOP-REAL n), the carrier of (TOP-REAL n):] is   non  empty   set 
 
p is   non  empty   Relation-like   the carrier of (TOP-REAL n) -defined   the carrier of (TOP-REAL n) -valued   Function-like   total   quasi_total   additive   FinSequence-yielding   homogeneous   Function-yielding  V235()  Element of  bool [: the carrier of (TOP-REAL n), the carrier of (TOP-REAL n):]
 
(n,p) is   Relation-like   NAT  -defined   the carrier of F_Real *  -valued   Function-like  V36()  FinSequence-like   FinSubsequence-like   FinSequence-yielding   finite-support   Function-yielding  V235()  tabular   Matrix of n,n, the carrier of F_Real
 
 Det (n,p) is  V11()  real   ext-real   Element of  the carrier of F_Real
 
 Mx2Tran (n,p) is   non  empty   Relation-like   the carrier of (TOP-REAL n) -defined   the carrier of (TOP-REAL n) -valued   Function-like   total   quasi_total   additive   FinSequence-yielding   homogeneous   Function-yielding  V235()  Element of  bool [: the carrier of (TOP-REAL n), the carrier of (TOP-REAL n):]
 
 len (n,p) is   ordinal   natural  V11()  real   ext-real   non  negative  V36()  cardinal  V85() V86() V155() V156() V157() V158() V159() V160()  Element of  NAT 
 
 width (n,p) is   ordinal   natural  V11()  real   ext-real   non  negative  V36()  cardinal  V85() V86() V155() V156() V157() V158() V159() V160()  Element of  NAT 
 
 1. (F_Real,n) is   Relation-like   NAT  -defined   the carrier of F_Real *  -valued   Function-like  V36()  FinSequence-like   FinSubsequence-like   FinSequence-yielding   finite-support   Function-yielding  V235()  tabular   Matrix of n,n, the carrier of F_Real
 
 Det (1. (F_Real,n)) is  V11()  real   ext-real   Element of  the carrier of F_Real
 
 1_ F_Real is  V11()  real   ext-real   Element of  the carrier of F_Real
 
{n} is   non  empty   trivial  V36() V40() 1 -element  V155() V156() V157() V158() V159() V160()  Element of  bool NAT
 
f is   non  empty   Relation-like   the carrier of (TOP-REAL n) -defined   the carrier of (TOP-REAL n) -valued   Function-like   total   quasi_total   additive   FinSequence-yielding   homogeneous   Function-yielding  V235()  Element of  bool [: the carrier of (TOP-REAL n), the carrier of (TOP-REAL n):]
 
f * (Mx2Tran (n,p)) is   non  empty   Relation-like   the carrier of (TOP-REAL n) -defined   the carrier of (TOP-REAL n) -defined   the carrier of (TOP-REAL n) -defined   the carrier of (TOP-REAL n) -valued   the carrier of (TOP-REAL n) -valued   the carrier of (TOP-REAL n) -valued   Function-like   total   total   total   quasi_total   quasi_total   quasi_total   additive   FinSequence-yielding   homogeneous   Function-yielding  V235()  Element of  bool [: the carrier of (TOP-REAL n), the carrier of (TOP-REAL n):]
 
(n,f) is   Relation-like   NAT  -defined   the carrier of F_Real *  -valued   Function-like  V36()  FinSequence-like   FinSubsequence-like   FinSequence-yielding   finite-support   Function-yielding  V235()  tabular   Matrix of n,n, the carrier of F_Real
 
 Mx2Tran (n,f) is   non  empty   Relation-like   the carrier of (TOP-REAL n) -defined   the carrier of (TOP-REAL n) -valued   Function-like   total   quasi_total   additive   FinSequence-yielding   homogeneous   Function-yielding  V235()  Element of  bool [: the carrier of (TOP-REAL n), the carrier of (TOP-REAL n):]
 
 Det (n,f) is  V11()  real   ext-real   Element of  the carrier of F_Real
 
(n,p) * (n,f) is   Relation-like   NAT  -defined   the carrier of F_Real *  -valued   Function-like  V36()  FinSequence-like   FinSubsequence-like   FinSequence-yielding   finite-support   Function-yielding  V235()  tabular   Matrix of n,n, the carrier of F_Real
 
 Det ((n,p) * (n,f)) is  V11()  real   ext-real   Element of  the carrier of F_Real
 
(Det (n,p)) * (1. F_Real) is  V11()  real   ext-real   Element of  the carrier of F_Real
 
 the multF of F_Real is   non  empty   Relation-like  [: the carrier of F_Real, the carrier of F_Real:] -defined   the carrier of F_Real -valued   Function-like   total   quasi_total   complex-yielding   ext-real-valued   real-valued   associative  V287( the carrier of F_Real)  Element of  bool [:[: the carrier of F_Real, the carrier of F_Real:], the carrier of F_Real:]
 
[: the carrier of F_Real, the carrier of F_Real:] is   non  empty   Relation-like   complex-yielding   ext-real-valued   real-valued   set 
 
[:[: the carrier of F_Real, the carrier of F_Real:], the carrier of F_Real:] is   non  empty   Relation-like   complex-yielding   ext-real-valued   real-valued   set 
 
 bool [:[: the carrier of F_Real, the carrier of F_Real:], the carrier of F_Real:] is   non  empty   set 
 
 the multF of F_Real . ((Det (n,p)),(1. F_Real)) is  V11()  real   ext-real   Element of  the carrier of F_Real
 
K538((Det (n,p)),(1. F_Real)) is  V11()  real   ext-real   Element of  REAL 
 
 width (n,f) is   ordinal   natural  V11()  real   ext-real   non  negative  V36()  cardinal  V85() V86() V155() V156() V157() V158() V159() V160()  Element of  NAT 
 
 Mx2Tran ((n,p) * (n,f)) is   non  empty   Relation-like   the carrier of (TOP-REAL n) -defined   the carrier of (TOP-REAL n) -valued   Function-like   total   quasi_total   additive   FinSequence-yielding   homogeneous   Function-yielding  V235()  Element of  bool [: the carrier of (TOP-REAL n), the carrier of (TOP-REAL n):]
 
(n,(f * (Mx2Tran (n,p)))) is   Relation-like   NAT  -defined   the carrier of F_Real *  -valued   Function-like  V36()  FinSequence-like   FinSubsequence-like   FinSequence-yielding   finite-support   Function-yielding  V235()  tabular   Matrix of n,n, the carrier of F_Real
 
(n,(f * (Mx2Tran (n,p)))) is   Relation-like   NAT  -defined   the carrier of F_Real *  -valued   Function-like  V36()  FinSequence-like   FinSubsequence-like   FinSequence-yielding   finite-support   Function-yielding  V235()  tabular   Matrix of n,n, the carrier of F_Real
 
(n,n) is   Relation-like   NAT  -defined   the carrier of F_Real *  -valued   Function-like  V36()  FinSequence-like   FinSubsequence-like   FinSequence-yielding   finite-support   Function-yielding  V235()  tabular   invertible   Matrix of n,n, the carrier of F_Real
 
 dom (f * (Mx2Tran (n,p))) is   non  empty   set 
 
 id  the carrier of (TOP-REAL n) is   non  empty   Relation-like   the carrier of (TOP-REAL n) -defined   the carrier of (TOP-REAL n) -valued   Function-like   one-to-one   total   quasi_total   quasi_total   FinSequence-yielding   Function-yielding  V235()  Element of  bool [: the carrier of (TOP-REAL n), the carrier of (TOP-REAL n):]
 
 dom (id  the carrier of (TOP-REAL n)) is   non  empty   set 
 
 0. (TOP-REAL n) is   Relation-like   NAT  -defined   Function-like  V36() n -element  V61( TOP-REAL n)  FinSequence-like   FinSubsequence-like   complex-yielding   ext-real-valued   real-valued   finite-support   Element of  the carrier of (TOP-REAL n)
 
 the ZeroF of (TOP-REAL n) is   Relation-like   NAT  -defined   Function-like  V36() n -element   FinSequence-like   FinSubsequence-like   complex-yielding   ext-real-valued   real-valued   finite-support   Element of  the carrier of (TOP-REAL n)
 
{(0. (TOP-REAL n))} is   non  empty   trivial   functional  V36() V40() 1 -element   set 
 
 rng (f * (Mx2Tran (n,p))) is   non  empty   set 
 
 rng (id  the carrier of (TOP-REAL n)) is   non  empty   set 
 
 id (TOP-REAL n) is   non  empty   Relation-like   the carrier of (TOP-REAL n) -defined   the carrier of (TOP-REAL n) -defined   the carrier of (TOP-REAL n) -valued   the carrier of (TOP-REAL n) -valued   Function-like   total   total   quasi_total   quasi_total   additive   additive   FinSequence-yielding   homogeneous   Function-yielding  V235()  being_homeomorphism   being_homeomorphism  (n) (n)  Element of  bool [: the carrier of (TOP-REAL n), the carrier of (TOP-REAL n):]
 
 Mx2Tran (1. (F_Real,n)) is   non  empty   Relation-like   the carrier of (TOP-REAL n) -defined   the carrier of (TOP-REAL n) -valued   Function-like   total   quasi_total   additive   FinSequence-yielding   homogeneous   Function-yielding  V235()  Element of  bool [: the carrier of (TOP-REAL n), the carrier of (TOP-REAL n):]
 
 Seg n is  V16() V36() n -element  V155() V156() V157() V158() V159() V160()  Element of  bool NAT
 
 {  b1 where b1 is   ordinal   natural  V11()  real   ext-real   non  negative  V36()  cardinal  V85() V86() V155() V156() V157() V158() V159() V160()  Element of  NAT  : ( 1 <= b1 & b1 <= n )  }   is    set 
 
 Det (n,n) is  V11()  real   ext-real   Element of  the carrier of F_Real
 
(n,(f * (Mx2Tran (n,p)))) is   Relation-like   NAT  -defined   the carrier of F_Real *  -valued   Function-like  V36()  FinSequence-like   FinSubsequence-like   FinSequence-yielding   finite-support   Function-yielding  V235()  tabular   Matrix of n,n, the carrier of F_Real
 
(n,n) is   Relation-like   NAT  -defined   the carrier of F_Real *  -valued   Function-like  V36()  FinSequence-like   FinSubsequence-like   FinSequence-yielding   finite-support   Function-yielding  V235()  tabular   invertible   Matrix of n,n, the carrier of F_Real
 
n is   ordinal   natural  V11()  real   ext-real   non  negative  V36()  cardinal  V85()  set 
 
p is   ordinal   natural  V11()  real   ext-real   non  negative  V36()  cardinal  V85()  set 
 
 TOP-REAL p is   non  empty   TopSpace-like   right_complementable   constituted-Functions   constituted-FinSeqs  V189() V190() V191() V192() V193() V194() V195() V228() L16()
 
 the carrier of (TOP-REAL p) is   non  empty   set 
 
[: the carrier of (TOP-REAL p), the carrier of (TOP-REAL p):] is   non  empty   Relation-like   set 
 
 bool [: the carrier of (TOP-REAL p), the carrier of (TOP-REAL p):] is   non  empty   set 
 
 Seg p is  V16() V36() p -element  V155() V156() V157() V158() V159() V160()  Element of  bool NAT
 
 {  b1 where b1 is   ordinal   natural  V11()  real   ext-real   non  negative  V36()  cardinal  V85() V86() V155() V156() V157() V158() V159() V160()  Element of  NAT  : ( 1 <= b1 & b1 <= p )  }   is    set 
 
(p,n) is   Relation-like   NAT  -defined   the carrier of F_Real *  -valued   Function-like  V36()  FinSequence-like   FinSubsequence-like   FinSequence-yielding   finite-support   Function-yielding  V235()  tabular   invertible   Matrix of p,p, the carrier of F_Real
 
q is   non  empty   Relation-like   the carrier of (TOP-REAL p) -defined   the carrier of (TOP-REAL p) -valued   Function-like   total   quasi_total   additive   FinSequence-yielding   homogeneous   Function-yielding  V235()  Element of  bool [: the carrier of (TOP-REAL p), the carrier of (TOP-REAL p):]
 
(p,q) is   Relation-like   NAT  -defined   the carrier of F_Real *  -valued   Function-like  V36()  FinSequence-like   FinSubsequence-like   FinSequence-yielding   finite-support   Function-yielding  V235()  tabular   Matrix of p,p, the carrier of F_Real
 
 Det (p,q) is  V11()  real   ext-real   Element of  the carrier of F_Real
 
TR is   non  empty   Relation-like   the carrier of (TOP-REAL p) -defined   the carrier of (TOP-REAL p) -valued   Function-like   total   quasi_total   additive   FinSequence-yielding   homogeneous   Function-yielding  V235()  Element of  bool [: the carrier of (TOP-REAL p), the carrier of (TOP-REAL p):]
 
(p,TR) is   Relation-like   NAT  -defined   the carrier of F_Real *  -valued   Function-like  V36()  FinSequence-like   FinSubsequence-like   FinSequence-yielding   finite-support   Function-yielding  V235()  tabular   Matrix of p,p, the carrier of F_Real
 
q * TR is   non  empty   Relation-like   the carrier of (TOP-REAL p) -defined   the carrier of (TOP-REAL p) -defined   the carrier of (TOP-REAL p) -defined   the carrier of (TOP-REAL p) -valued   the carrier of (TOP-REAL p) -valued   the carrier of (TOP-REAL p) -valued   Function-like   total   total   total   quasi_total   quasi_total   quasi_total   additive   FinSequence-yielding   homogeneous   Function-yielding  V235()  Element of  bool [: the carrier of (TOP-REAL p), the carrier of (TOP-REAL p):]
 
 Mx2Tran (p,n) is   non  empty   Relation-like   the carrier of (TOP-REAL p) -defined   the carrier of (TOP-REAL p) -valued   Function-like   total   quasi_total   additive   FinSequence-yielding   homogeneous   Function-yielding  V235()  being_homeomorphism   Element of  bool [: the carrier of (TOP-REAL p), the carrier of (TOP-REAL p):]
 
 Mx2Tran (p,q) is   non  empty   Relation-like   the carrier of (TOP-REAL p) -defined   the carrier of (TOP-REAL p) -valued   Function-like   total   quasi_total   additive   FinSequence-yielding   homogeneous   Function-yielding  V235()  Element of  bool [: the carrier of (TOP-REAL p), the carrier of (TOP-REAL p):]
 
(Mx2Tran (p,q)) * TR is   non  empty   Relation-like   the carrier of (TOP-REAL p) -defined   the carrier of (TOP-REAL p) -defined   the carrier of (TOP-REAL p) -defined   the carrier of (TOP-REAL p) -valued   the carrier of (TOP-REAL p) -valued   the carrier of (TOP-REAL p) -valued   Function-like   total   total   total   quasi_total   quasi_total   quasi_total   additive   FinSequence-yielding   homogeneous   Function-yielding  V235()  Element of  bool [: the carrier of (TOP-REAL p), the carrier of (TOP-REAL p):]
 
X is   non  empty   Relation-like   the carrier of (TOP-REAL p) -defined   the carrier of (TOP-REAL p) -valued   Function-like   total   quasi_total   additive   FinSequence-yielding   homogeneous   Function-yielding  V235()  Element of  bool [: the carrier of (TOP-REAL p), the carrier of (TOP-REAL p):]
 
(p,X) is   Relation-like   NAT  -defined   the carrier of F_Real *  -valued   Function-like  V36()  FinSequence-like   FinSubsequence-like   FinSequence-yielding   finite-support   Function-yielding  V235()  tabular   Matrix of p,p, the carrier of F_Real
 
 Mx2Tran (p,X) is   non  empty   Relation-like   the carrier of (TOP-REAL p) -defined   the carrier of (TOP-REAL p) -valued   Function-like   total   quasi_total   additive   FinSequence-yielding   homogeneous   Function-yielding  V235()  Element of  bool [: the carrier of (TOP-REAL p), the carrier of (TOP-REAL p):]
 
 width (p,q) is   ordinal   natural  V11()  real   ext-real   non  negative  V36()  cardinal  V85() V86() V155() V156() V157() V158() V159() V160()  Element of  NAT 
 
 len (p,n) is   ordinal   natural  V11()  real   ext-real   non  negative  V36()  cardinal  V85() V86() V155() V156() V157() V158() V159() V160()  Element of  NAT 
 
 width (p,n) is   ordinal   natural  V11()  real   ext-real   non  negative  V36()  cardinal  V85() V86() V155() V156() V157() V158() V159() V160()  Element of  NAT 
 
(p,n) * (p,q) is   Relation-like   NAT  -defined   the carrier of F_Real *  -valued   Function-like  V36()  FinSequence-like   FinSubsequence-like   FinSequence-yielding   finite-support   Function-yielding  V235()  tabular   Matrix of p,p, the carrier of F_Real
 
 Mx2Tran ((p,n) * (p,q)) is   non  empty   Relation-like   the carrier of (TOP-REAL p) -defined   the carrier of (TOP-REAL p) -valued   Function-like   total   quasi_total   additive   FinSequence-yielding   homogeneous   Function-yielding  V235()  Element of  bool [: the carrier of (TOP-REAL p), the carrier of (TOP-REAL p):]
 
 Det (p,n) is  V11()  real   ext-real   Element of  the carrier of F_Real
 
 Det (p,X) is  V11()  real   ext-real   Element of  the carrier of F_Real
 
(- (1. F_Real)) * (- (1. F_Real)) is  V11()  real   ext-real   Element of  the carrier of F_Real
 
 the multF of F_Real is   non  empty   Relation-like  [: the carrier of F_Real, the carrier of F_Real:] -defined   the carrier of F_Real -valued   Function-like   total   quasi_total   complex-yielding   ext-real-valued   real-valued   associative  V287( the carrier of F_Real)  Element of  bool [:[: the carrier of F_Real, the carrier of F_Real:], the carrier of F_Real:]
 
[: the carrier of F_Real, the carrier of F_Real:] is   non  empty   Relation-like   complex-yielding   ext-real-valued   real-valued   set 
 
[:[: the carrier of F_Real, the carrier of F_Real:], the carrier of F_Real:] is   non  empty   Relation-like   complex-yielding   ext-real-valued   real-valued   set 
 
 bool [:[: the carrier of F_Real, the carrier of F_Real:], the carrier of F_Real:] is   non  empty   set 
 
 the multF of F_Real . ((- (1. F_Real)),(- (1. F_Real))) is  V11()  real   ext-real   Element of  the carrier of F_Real
 
K538((- (1. F_Real)),(- (1. F_Real))) is  V11()  real   ext-real   Element of  REAL 
 
n is   ordinal   natural  V11()  real   ext-real   non  negative  V36()  cardinal  V85()  set 
 
 TOP-REAL n is   non  empty   TopSpace-like   right_complementable   constituted-Functions   constituted-FinSeqs  V189() V190() V191() V192() V193() V194() V195() V228() L16()
 
 the carrier of (TOP-REAL n) is   non  empty   set 
 
[: the carrier of (TOP-REAL n), the carrier of (TOP-REAL n):] is   non  empty   Relation-like   set 
 
 bool [: the carrier of (TOP-REAL n), the carrier of (TOP-REAL n):] is   non  empty   set 
 
p is   non  empty   Relation-like   the carrier of (TOP-REAL n) -defined   the carrier of (TOP-REAL n) -valued   Function-like   total   quasi_total   additive   FinSequence-yielding   homogeneous   Function-yielding  V235()  Element of  bool [: the carrier of (TOP-REAL n), the carrier of (TOP-REAL n):]
 
(n,p) is   Relation-like   NAT  -defined   the carrier of F_Real *  -valued   Function-like  V36()  FinSequence-like   FinSubsequence-like   FinSequence-yielding   finite-support   Function-yielding  V235()  tabular   Matrix of n,n, the carrier of F_Real
 
 GFuncs  the carrier of (TOP-REAL n) is   non  empty   strict   unital   associative   constituted-Functions   SubStr of  GPFuncs  the carrier of (TOP-REAL n)
 
 GPFuncs  the carrier of (TOP-REAL n) is   non  empty   strict   unital   associative   constituted-Functions   multMagma 
 
 the carrier of (GFuncs  the carrier of (TOP-REAL n)) is   non  empty   set 
 
n1 is   Relation-like   NAT  -defined   the carrier of (GFuncs  the carrier of (TOP-REAL n)) -valued   Function-like  V36()  FinSequence-like   FinSubsequence-like   finite-support   FinSequence of  the carrier of (GFuncs  the carrier of (TOP-REAL n))
 
 Product n1 is   Relation-like   Function-like   Element of  the carrier of (GFuncs  the carrier of (TOP-REAL n))
 
 dom n1 is  V36() V155() V156() V157() V158() V159() V160()  Element of  bool NAT
 
 Mx2Tran (n,p) is   non  empty   Relation-like   the carrier of (TOP-REAL n) -defined   the carrier of (TOP-REAL n) -valued   Function-like   total   quasi_total   additive   FinSequence-yielding   homogeneous   Function-yielding  V235()  Element of  bool [: the carrier of (TOP-REAL n), the carrier of (TOP-REAL n):]
 
 len n1 is   ordinal   natural  V11()  real   ext-real   non  negative  V36()  cardinal  V85() V86() V155() V156() V157() V158() V159() V160()  Element of  NAT 
 
f is   ordinal   natural  V11()  real   ext-real   non  negative  V36()  cardinal  V85()  set 
 
n1 | f is   Relation-like   NAT  -defined   the carrier of (GFuncs  the carrier of (TOP-REAL n)) -valued   Function-like  V36()  FinSequence-like   FinSubsequence-like   finite-support   FinSequence of  the carrier of (GFuncs  the carrier of (TOP-REAL n))
 
 Seg f is  V16() V36() f -element  V155() V156() V157() V158() V159() V160()  Element of  bool NAT
 
 {  b1 where b1 is   ordinal   natural  V11()  real   ext-real   non  negative  V36()  cardinal  V85() V86() V155() V156() V157() V158() V159() V160()  Element of  NAT  : ( 1 <= b1 & b1 <= f )  }   is    set 
 
n1 | (Seg f) is   Relation-like   NAT  -defined   Seg f -defined   NAT  -defined   the carrier of (GFuncs  the carrier of (TOP-REAL n)) -valued   Function-like  V36()  FinSubsequence-like   finite-support   set 
 
 Product (n1 | f) is   Relation-like   Function-like   Element of  the carrier of (GFuncs  the carrier of (TOP-REAL n))
 
f + 1 is   non  empty   ordinal   natural  V11()  real   ext-real   positive   non  negative  V36()  cardinal  V85() V86() V155() V156() V157() V158() V159() V160()  Element of  NAT 
 
n1 | (f + 1) is   Relation-like   NAT  -defined   the carrier of (GFuncs  the carrier of (TOP-REAL n)) -valued   Function-like  V36()  FinSequence-like   FinSubsequence-like   finite-support   FinSequence of  the carrier of (GFuncs  the carrier of (TOP-REAL n))
 
 Seg (f + 1) is   non  empty  V16() V36() f + 1 -element  f + 1 -element  V155() V156() V157() V158() V159() V160()  Element of  bool NAT
 
 {  b1 where b1 is   ordinal   natural  V11()  real   ext-real   non  negative  V36()  cardinal  V85() V86() V155() V156() V157() V158() V159() V160()  Element of  NAT  : ( 1 <= b1 & b1 <= f + 1 )  }   is    set 
 
n1 | (Seg (f + 1)) is   Relation-like   NAT  -defined   Seg (f + 1) -defined   NAT  -defined   the carrier of (GFuncs  the carrier of (TOP-REAL n)) -valued   Function-like  V36()  FinSubsequence-like   finite-support   set 
 
 Product (n1 | (f + 1)) is   Relation-like   Function-like   Element of  the carrier of (GFuncs  the carrier of (TOP-REAL n))
 
z is   non  empty   Relation-like   the carrier of (TOP-REAL n) -defined   the carrier of (TOP-REAL n) -valued   Function-like   total   quasi_total   additive   FinSequence-yielding   homogeneous   Function-yielding  V235()  being_homeomorphism  (n) (n)  Element of  bool [: the carrier of (TOP-REAL n), the carrier of (TOP-REAL n):]
 
(n,z) is   Relation-like   NAT  -defined   the carrier of F_Real *  -valued   Function-like  V36()  FinSequence-like   FinSubsequence-like   FinSequence-yielding   finite-support   Function-yielding  V235()  tabular   Matrix of n,n, the carrier of F_Real
 
 width (n,z) is   ordinal   natural  V11()  real   ext-real   non  negative  V36()  cardinal  V85() V86() V155() V156() V157() V158() V159() V160()  Element of  NAT 
 
 len (n,z) is   ordinal   natural  V11()  real   ext-real   non  negative  V36()  cardinal  V85() V86() V155() V156() V157() V158() V159() V160()  Element of  NAT 
 
n1 . (f + 1) is    set 
 
z is   ordinal   natural  V11()  real   ext-real   non  negative  V36()  cardinal  V85()  set 
 
fpz is   ordinal   natural  V11()  real   ext-real   non  negative  V36()  cardinal  V85()  set 
 
h is  V11()  real   ext-real   set 
 
(n,h,z,fpz) is   Relation-like   NAT  -defined   the carrier of F_Real *  -valued   Function-like  V36()  FinSequence-like   FinSubsequence-like   FinSequence-yielding   finite-support   Function-yielding  V235()  tabular   invertible   Matrix of n,n, the carrier of F_Real
 
 Mx2Tran (n,h,z,fpz) is   non  empty   Relation-like   the carrier of (TOP-REAL n) -defined   the carrier of (TOP-REAL n) -valued   Function-like   total   quasi_total   additive   FinSequence-yielding   homogeneous   Function-yielding  V235()  being_homeomorphism   Element of  bool [: the carrier of (TOP-REAL n), the carrier of (TOP-REAL n):]
 
z is   Relation-like   Function-like   Element of  the carrier of (GFuncs  the carrier of (TOP-REAL n))
 
<*z*> is   non  empty   trivial   Relation-like   NAT  -defined   the carrier of (GFuncs  the carrier of (TOP-REAL n)) -valued   Function-like   constant  V36() 1 -element   FinSequence-like   FinSubsequence-like   finite-support   Function-yielding  V235() V282()  Element of 1 -tuples_on  the carrier of (GFuncs  the carrier of (TOP-REAL n))
 
1 -tuples_on  the carrier of (GFuncs  the carrier of (TOP-REAL n)) is   non  empty   functional   FinSequence-membered   FinSequenceSet of  the carrier of (GFuncs  the carrier of (TOP-REAL n))
 
[1,z] is    set 
 
{1,z} is   non  empty  V36()  set 
 
{{1,z},{1}} is   non  empty  V36() V40()  set 
 
{[1,z]} is   non  empty   trivial   Relation-like   Function-like   constant  V36() 1 -element   finite-support   set 
 
(n1 | f) ^ <*z*> is   non  empty   Relation-like   NAT  -defined   the carrier of (GFuncs  the carrier of (TOP-REAL n)) -valued   Function-like  V36()  FinSequence-like   FinSubsequence-like   finite-support   Element of  the carrier of (GFuncs  the carrier of (TOP-REAL n)) * 
 
 the carrier of (GFuncs  the carrier of (TOP-REAL n)) *  is   non  empty   functional   FinSequence-membered   FinSequenceSet of  the carrier of (GFuncs  the carrier of (TOP-REAL n))
 
(Product (n1 | f)) * z is   Relation-like   Function-like   Element of  the carrier of (GFuncs  the carrier of (TOP-REAL n))
 
 the multF of (GFuncs  the carrier of (TOP-REAL n)) is   non  empty   Relation-like  [: the carrier of (GFuncs  the carrier of (TOP-REAL n)), the carrier of (GFuncs  the carrier of (TOP-REAL n)):] -defined   the carrier of (GFuncs  the carrier of (TOP-REAL n)) -valued   Function-like   total   quasi_total   Element of  bool [:[: the carrier of (GFuncs  the carrier of (TOP-REAL n)), the carrier of (GFuncs  the carrier of (TOP-REAL n)):], the carrier of (GFuncs  the carrier of (TOP-REAL n)):]
 
[: the carrier of (GFuncs  the carrier of (TOP-REAL n)), the carrier of (GFuncs  the carrier of (TOP-REAL n)):] is   non  empty   Relation-like   set 
 
[:[: the carrier of (GFuncs  the carrier of (TOP-REAL n)), the carrier of (GFuncs  the carrier of (TOP-REAL n)):], the carrier of (GFuncs  the carrier of (TOP-REAL n)):] is   non  empty   Relation-like   set 
 
 bool [:[: the carrier of (GFuncs  the carrier of (TOP-REAL n)), the carrier of (GFuncs  the carrier of (TOP-REAL n)):], the carrier of (GFuncs  the carrier of (TOP-REAL n)):] is   non  empty   set 
 
 the multF of (GFuncs  the carrier of (TOP-REAL n)) . ((Product (n1 | f)),z) is   Relation-like   Function-like   Element of  the carrier of (GFuncs  the carrier of (TOP-REAL n))
 
(Mx2Tran (n,h,z,fpz)) * z is   non  empty   Relation-like   the carrier of (TOP-REAL n) -defined   the carrier of (TOP-REAL n) -defined   the carrier of (TOP-REAL n) -defined   the carrier of (TOP-REAL n) -valued   the carrier of (TOP-REAL n) -valued   the carrier of (TOP-REAL n) -valued   Function-like   total   total   total   quasi_total   quasi_total   quasi_total   additive   FinSequence-yielding   homogeneous   Function-yielding  V235()  Element of  bool [: the carrier of (TOP-REAL n), the carrier of (TOP-REAL n):]
 
 width (n,h,z,fpz) is   ordinal   natural  V11()  real   ext-real   non  negative  V36()  cardinal  V85() V86() V155() V156() V157() V158() V159() V160()  Element of  NAT 
 
 len (n,h,z,fpz) is   ordinal   natural  V11()  real   ext-real   non  negative  V36()  cardinal  V85() V86() V155() V156() V157() V158() V159() V160()  Element of  NAT 
 
z is   Relation-like   NAT  -defined   the carrier of F_Real *  -valued   Function-like  V36()  FinSequence-like   FinSubsequence-like   FinSequence-yielding   finite-support   Function-yielding  V235()  tabular   Matrix of n,n, the carrier of F_Real
 
 Mx2Tran z is   non  empty   Relation-like   the carrier of (TOP-REAL n) -defined   the carrier of (TOP-REAL n) -valued   Function-like   total   quasi_total   additive   FinSequence-yielding   homogeneous   Function-yielding  V235()  Element of  bool [: the carrier of (TOP-REAL n), the carrier of (TOP-REAL n):]
 
 Mx2Tran (n,z) is   non  empty   Relation-like   the carrier of (TOP-REAL n) -defined   the carrier of (TOP-REAL n) -valued   Function-like   total   quasi_total   additive   FinSequence-yielding   homogeneous   Function-yielding  V235()  Element of  bool [: the carrier of (TOP-REAL n), the carrier of (TOP-REAL n):]
 
(Mx2Tran (n,h,z,fpz)) * (Mx2Tran (n,z)) is   non  empty   Relation-like   the carrier of (TOP-REAL n) -defined   the carrier of (TOP-REAL n) -defined   the carrier of (TOP-REAL n) -defined   the carrier of (TOP-REAL n) -valued   the carrier of (TOP-REAL n) -valued   the carrier of (TOP-REAL n) -valued   Function-like   total   total   total   quasi_total   quasi_total   quasi_total   additive   FinSequence-yielding   homogeneous   Function-yielding  V235()  Element of  bool [: the carrier of (TOP-REAL n), the carrier of (TOP-REAL n):]
 
(n,z) * (n,h,z,fpz) is   Relation-like   NAT  -defined   the carrier of F_Real *  -valued   Function-like  V36()  FinSequence-like   FinSubsequence-like   FinSequence-yielding   finite-support   Function-yielding  V235()  tabular   Matrix of n,n, the carrier of F_Real
 
 Mx2Tran ((n,z) * (n,h,z,fpz)) is   non  empty   Relation-like   the carrier of (TOP-REAL n) -defined   the carrier of (TOP-REAL n) -valued   Function-like   total   quasi_total   additive   FinSequence-yielding   homogeneous   Function-yielding  V235()  Element of  bool [: the carrier of (TOP-REAL n), the carrier of (TOP-REAL n):]
 
n1 | (len n1) is   Relation-like   NAT  -defined   the carrier of (GFuncs  the carrier of (TOP-REAL n)) -valued   Function-like  V36()  FinSequence-like   FinSubsequence-like   finite-support   FinSequence of  the carrier of (GFuncs  the carrier of (TOP-REAL n))
 
 Seg (len n1) is  V16() V36()  len n1 -element  V155() V156() V157() V158() V159() V160()  Element of  bool NAT
 
 {  b1 where b1 is   ordinal   natural  V11()  real   ext-real   non  negative  V36()  cardinal  V85() V86() V155() V156() V157() V158() V159() V160()  Element of  NAT  : ( 1 <= b1 & b1 <=  len n1 )  }   is    set 
 
n1 | (Seg (len n1)) is   Relation-like   NAT  -defined   Seg (len n1) -defined   NAT  -defined   the carrier of (GFuncs  the carrier of (TOP-REAL n)) -valued   Function-like  V36()  FinSubsequence-like   finite-support   set 
 
n1 | {} is   empty   ordinal   natural  V11()  real   ext-real   non  positive   non  negative   Relation-like   non-empty   empty-yielding   NAT  -defined   RAT  -valued   the carrier of (GFuncs  the carrier of (TOP-REAL n)) -valued   Function-like   one-to-one   constant   functional  V36() V37() V40()  cardinal   {}  -element  V85()  FinSequence-like   FinSubsequence-like   FinSequence-membered   complex-yielding   ext-real-valued   real-valued   natural-valued  V155() V156() V157() V158() V159() V160() V161()  FinSequence-yielding   finite-support   Function-yielding  V235() V282()  FinSequence of  the carrier of (GFuncs  the carrier of (TOP-REAL n))
 
 Seg {} is   empty   ordinal   natural  V11()  real   ext-real   non  positive   non  negative  V16()  Relation-like   non-empty   empty-yielding   NAT  -defined   RAT  -valued   Function-like   one-to-one   constant   functional  V36() V37() V40()  cardinal   {}  -element   {}  -element  V85()  FinSequence-like   FinSubsequence-like   FinSequence-membered   complex-yielding   ext-real-valued   real-valued   natural-valued  V155() V156() V157() V158() V159() V160() V161()  FinSequence-yielding   finite-support   Function-yielding  V235() V282()  Element of  bool NAT
 
 {  b1 where b1 is   ordinal   natural  V11()  real   ext-real   non  negative  V36()  cardinal  V85() V86() V155() V156() V157() V158() V159() V160()  Element of  NAT  : ( 1 <= b1 & b1 <=  {}  )  }   is    set 
 
n1 | (Seg {}) is   empty   ordinal   natural  V11()  real   ext-real   non  positive   non  negative   Relation-like   non-empty   empty-yielding   NAT  -defined   Seg {} -defined   NAT  -defined   RAT  -valued   the carrier of (GFuncs  the carrier of (TOP-REAL n)) -valued   Function-like   one-to-one   constant   functional  V36() V37() V40()  cardinal   {}  -element  V85()  FinSequence-like   FinSubsequence-like   FinSequence-membered   complex-yielding   ext-real-valued   real-valued   natural-valued  V155() V156() V157() V158() V159() V160() V161()  FinSequence-yielding   finite-support   Function-yielding  V235() V282()  set 
 
 Product (n1 | {}) is   Relation-like   Function-like   Element of  the carrier of (GFuncs  the carrier of (TOP-REAL n))
 
 1. (F_Real,n) is   Relation-like   NAT  -defined   the carrier of F_Real *  -valued   Function-like  V36()  FinSequence-like   FinSubsequence-like   FinSequence-yielding   finite-support   Function-yielding  V235()  tabular   Matrix of n,n, the carrier of F_Real
 
 Mx2Tran (1. (F_Real,n)) is   non  empty   Relation-like   the carrier of (TOP-REAL n) -defined   the carrier of (TOP-REAL n) -valued   Function-like   total   quasi_total   additive   FinSequence-yielding   homogeneous   Function-yielding  V235()  Element of  bool [: the carrier of (TOP-REAL n), the carrier of (TOP-REAL n):]
 
 id (TOP-REAL n) is   non  empty   Relation-like   the carrier of (TOP-REAL n) -defined   the carrier of (TOP-REAL n) -defined   the carrier of (TOP-REAL n) -valued   the carrier of (TOP-REAL n) -valued   Function-like   total   total   quasi_total   quasi_total   additive   additive   FinSequence-yielding   homogeneous   Function-yielding  V235()  being_homeomorphism   being_homeomorphism  (n) (n)  Element of  bool [: the carrier of (TOP-REAL n), the carrier of (TOP-REAL n):]
 
 id  the carrier of (TOP-REAL n) is   non  empty   Relation-like   the carrier of (TOP-REAL n) -defined   the carrier of (TOP-REAL n) -valued   Function-like   one-to-one   total   quasi_total   quasi_total   FinSequence-yielding   Function-yielding  V235()  Element of  bool [: the carrier of (TOP-REAL n), the carrier of (TOP-REAL n):]
 
 <*>  the carrier of (GFuncs  the carrier of (TOP-REAL n)) is   empty   ordinal   natural  V11()  real   ext-real   non  positive   non  negative   Relation-like   non-empty   empty-yielding   NAT  -defined   the carrier of (GFuncs  the carrier of (TOP-REAL n)) -valued   Function-like   one-to-one   constant   functional  V36() V37() V40()  cardinal   {}  -element  V85()  FinSequence-like   FinSubsequence-like   FinSequence-membered   complex-yielding   ext-real-valued   real-valued   natural-valued  V155() V156() V157() V158() V159() V160() V161()  FinSequence-yielding   finite-support   Function-yielding  V235() V282()  Element of  the carrier of (GFuncs  the carrier of (TOP-REAL n)) * 
 
 the carrier of (GFuncs  the carrier of (TOP-REAL n)) *  is   non  empty   functional   FinSequence-membered   FinSequenceSet of  the carrier of (GFuncs  the carrier of (TOP-REAL n))
 
 1_ (GFuncs  the carrier of (TOP-REAL n)) is   Relation-like   Function-like   Element of  the carrier of (GFuncs  the carrier of (TOP-REAL n))
 
 the multF of (GFuncs  the carrier of (TOP-REAL n)) is   non  empty   Relation-like  [: the carrier of (GFuncs  the carrier of (TOP-REAL n)), the carrier of (GFuncs  the carrier of (TOP-REAL n)):] -defined   the carrier of (GFuncs  the carrier of (TOP-REAL n)) -valued   Function-like   total   quasi_total   Element of  bool [:[: the carrier of (GFuncs  the carrier of (TOP-REAL n)), the carrier of (GFuncs  the carrier of (TOP-REAL n)):], the carrier of (GFuncs  the carrier of (TOP-REAL n)):]
 
[: the carrier of (GFuncs  the carrier of (TOP-REAL n)), the carrier of (GFuncs  the carrier of (TOP-REAL n)):] is   non  empty   Relation-like   set 
 
[:[: the carrier of (GFuncs  the carrier of (TOP-REAL n)), the carrier of (GFuncs  the carrier of (TOP-REAL n)):], the carrier of (GFuncs  the carrier of (TOP-REAL n)):] is   non  empty   Relation-like   set 
 
 bool [:[: the carrier of (GFuncs  the carrier of (TOP-REAL n)), the carrier of (GFuncs  the carrier of (TOP-REAL n)):], the carrier of (GFuncs  the carrier of (TOP-REAL n)):] is   non  empty   set 
 
 the_unity_wrt  the multF of (GFuncs  the carrier of (TOP-REAL n)) is   Relation-like   Function-like   Element of  the carrier of (GFuncs  the carrier of (TOP-REAL n))
 
f is   Relation-like   NAT  -defined   the carrier of F_Real *  -valued   Function-like  V36()  FinSequence-like   FinSubsequence-like   FinSequence-yielding   finite-support   Function-yielding  V235()  tabular   Matrix of n,n, the carrier of F_Real
 
 Mx2Tran f is   non  empty   Relation-like   the carrier of (TOP-REAL n) -defined   the carrier of (TOP-REAL n) -valued   Function-like   total   quasi_total   additive   FinSequence-yielding   homogeneous   Function-yielding  V235()  Element of  bool [: the carrier of (TOP-REAL n), the carrier of (TOP-REAL n):]
 
n is   ordinal   natural  V11()  real   ext-real   non  negative  V36()  cardinal  V85()  set 
 
 TOP-REAL n is   non  empty   TopSpace-like   right_complementable   constituted-Functions   constituted-FinSeqs  V189() V190() V191() V192() V193() V194() V195() V228() L16()
 
 the carrier of (TOP-REAL n) is   non  empty   set 
 
[: the carrier of (TOP-REAL n), the carrier of (TOP-REAL n):] is   non  empty   Relation-like   set 
 
 bool [: the carrier of (TOP-REAL n), the carrier of (TOP-REAL n):] is   non  empty   set 
 
p is   non  empty   Relation-like   the carrier of (TOP-REAL n) -defined   the carrier of (TOP-REAL n) -valued   Function-like   total   quasi_total   additive   FinSequence-yielding   homogeneous   Function-yielding  V235() (n)  Element of  bool [: the carrier of (TOP-REAL n), the carrier of (TOP-REAL n):]
 
(n,p) is   Relation-like   NAT  -defined   the carrier of F_Real *  -valued   Function-like  V36()  FinSequence-like   FinSubsequence-like   FinSequence-yielding   finite-support   Function-yielding  V235()  tabular   Matrix of n,n, the carrier of F_Real
 
 Det (n,p) is  V11()  real   ext-real   Element of  the carrier of F_Real
 
 Det (n,p) is  V11()  real   ext-real   Element of  the carrier of F_Real
 
 dom p is   non  empty   set 
 
 id  the carrier of (TOP-REAL n) is   non  empty   Relation-like   the carrier of (TOP-REAL n) -defined   the carrier of (TOP-REAL n) -valued   Function-like   one-to-one   total   quasi_total   quasi_total   FinSequence-yielding   Function-yielding  V235()  Element of  bool [: the carrier of (TOP-REAL n), the carrier of (TOP-REAL n):]
 
 dom (id  the carrier of (TOP-REAL n)) is   non  empty   set 
 
 0. (TOP-REAL n) is   Relation-like   NAT  -defined   Function-like  V36() n -element  V61( TOP-REAL n)  FinSequence-like   FinSubsequence-like   complex-yielding   ext-real-valued   real-valued   finite-support   Element of  the carrier of (TOP-REAL n)
 
 the ZeroF of (TOP-REAL n) is   Relation-like   NAT  -defined   Function-like  V36() n -element   FinSequence-like   FinSubsequence-like   complex-yielding   ext-real-valued   real-valued   finite-support   Element of  the carrier of (TOP-REAL n)
 
{(0. (TOP-REAL n))} is   non  empty   trivial   functional  V36() V40() 1 -element   set 
 
 rng p is   non  empty   set 
 
 rng (id  the carrier of (TOP-REAL n)) is   non  empty   set 
 
 id (TOP-REAL n) is   non  empty   Relation-like   the carrier of (TOP-REAL n) -defined   the carrier of (TOP-REAL n) -defined   the carrier of (TOP-REAL n) -valued   the carrier of (TOP-REAL n) -valued   Function-like   total   total   quasi_total   quasi_total   additive   additive   FinSequence-yielding   homogeneous   Function-yielding  V235()  being_homeomorphism   being_homeomorphism  (n) (n)  Element of  bool [: the carrier of (TOP-REAL n), the carrier of (TOP-REAL n):]
 
 Seg n is  V16() V36() n -element  V155() V156() V157() V158() V159() V160()  Element of  bool NAT
 
 {  b1 where b1 is   ordinal   natural  V11()  real   ext-real   non  negative  V36()  cardinal  V85() V86() V155() V156() V157() V158() V159() V160()  Element of  NAT  : ( 1 <= b1 & b1 <= n )  }   is    set 
 
(n,n) is   Relation-like   NAT  -defined   the carrier of F_Real *  -valued   Function-like  V36()  FinSequence-like   FinSubsequence-like   FinSequence-yielding   finite-support   Function-yielding  V235()  tabular   invertible   Matrix of n,n, the carrier of F_Real
 
 Mx2Tran (n,n) is   non  empty   Relation-like   the carrier of (TOP-REAL n) -defined   the carrier of (TOP-REAL n) -valued   Function-like   total   quasi_total   additive   FinSequence-yielding   homogeneous   Function-yielding  V235()  being_homeomorphism   Element of  bool [: the carrier of (TOP-REAL n), the carrier of (TOP-REAL n):]
 
(n,(Mx2Tran (n,n))) is   Relation-like   NAT  -defined   the carrier of F_Real *  -valued   Function-like  V36()  FinSequence-like   FinSubsequence-like   FinSequence-yielding   finite-support   Function-yielding  V235()  tabular   Matrix of n,n, the carrier of F_Real
 
p * (Mx2Tran (n,n)) is   non  empty   Relation-like   the carrier of (TOP-REAL n) -defined   the carrier of (TOP-REAL n) -defined   the carrier of (TOP-REAL n) -defined   the carrier of (TOP-REAL n) -valued   the carrier of (TOP-REAL n) -valued   the carrier of (TOP-REAL n) -valued   Function-like   total   total   total   quasi_total   quasi_total   quasi_total   additive   FinSequence-yielding   homogeneous   Function-yielding  V235()  Element of  bool [: the carrier of (TOP-REAL n), the carrier of (TOP-REAL n):]
 
(n,n) ~  is   Relation-like   NAT  -defined   the carrier of F_Real *  -valued   Function-like  V36()  FinSequence-like   FinSubsequence-like   FinSequence-yielding   finite-support   Function-yielding  V235()  tabular   Matrix of n,n, the carrier of F_Real
 
(n,n) @  is   Relation-like   NAT  -defined   the carrier of F_Real *  -valued   Function-like  V36()  FinSequence-like   FinSubsequence-like   FinSequence-yielding   finite-support   Function-yielding  V235()  tabular   Matrix of n,n, the carrier of F_Real
 
(n,(p * (Mx2Tran (n,n)))) is   Relation-like   NAT  -defined   the carrier of F_Real *  -valued   Function-like  V36()  FinSequence-like   FinSubsequence-like   FinSequence-yielding   finite-support   Function-yielding  V235()  tabular   Matrix of n,n, the carrier of F_Real
 
(n,(Mx2Tran (n,n))) * (n,p) is   Relation-like   NAT  -defined   the carrier of F_Real *  -valued   Function-like  V36()  FinSequence-like   FinSubsequence-like   FinSequence-yielding   finite-support   Function-yielding  V235()  tabular   Matrix of n,n, the carrier of F_Real
 
(n,n) * (n,p) is   Relation-like   NAT  -defined   the carrier of F_Real *  -valued   Function-like  V36()  FinSequence-like   FinSubsequence-like   FinSequence-yielding   finite-support   Function-yielding  V235()  tabular   Matrix of n,n, the carrier of F_Real
 
((n,n) ~) * (n,n) is   Relation-like   NAT  -defined   the carrier of F_Real *  -valued   Function-like  V36()  FinSequence-like   FinSubsequence-like   FinSequence-yielding   finite-support   Function-yielding  V235()  tabular   Matrix of n,n, the carrier of F_Real
 
 1. (F_Real,n) is   Relation-like   NAT  -defined   the carrier of F_Real *  -valued   Function-like  V36()  FinSequence-like   FinSubsequence-like   FinSequence-yielding   finite-support   Function-yielding  V235()  tabular   Matrix of n,n, the carrier of F_Real
 
 width ((n,n) ~) is   ordinal   natural  V11()  real   ext-real   non  negative  V36()  cardinal  V85() V86() V155() V156() V157() V158() V159() V160()  Element of  NAT 
 
 len (n,n) is   ordinal   natural  V11()  real   ext-real   non  negative  V36()  cardinal  V85() V86() V155() V156() V157() V158() V159() V160()  Element of  NAT 
 
 width (n,n) is   ordinal   natural  V11()  real   ext-real   non  negative  V36()  cardinal  V85() V86() V155() V156() V157() V158() V159() V160()  Element of  NAT 
 
 len (n,p) is   ordinal   natural  V11()  real   ext-real   non  negative  V36()  cardinal  V85() V86() V155() V156() V157() V158() V159() V160()  Element of  NAT 
 
((n,n) ~) * ((n,n) * (n,p)) is   Relation-like   NAT  -defined   the carrier of F_Real *  -valued   Function-like  V36()  FinSequence-like   FinSubsequence-like   FinSequence-yielding   finite-support   Function-yielding  V235()  tabular   Matrix of n,n, the carrier of F_Real
 
(((n,n) ~) * (n,n)) * (n,p) is   Relation-like   NAT  -defined   the carrier of F_Real *  -valued   Function-like  V36()  FinSequence-like   FinSubsequence-like   FinSequence-yielding   finite-support   Function-yielding  V235()  tabular   Matrix of n,n, the carrier of F_Real
 
 Det (n,p) is  V11()  real   ext-real   Element of  the carrier of F_Real
 
n is   ordinal   natural  V11()  real   ext-real   non  negative  V36()  cardinal  V85()  set 
 
 TOP-REAL n is   non  empty   TopSpace-like   right_complementable   constituted-Functions   constituted-FinSeqs  V189() V190() V191() V192() V193() V194() V195() V228() L16()
 
 the carrier of (TOP-REAL n) is   non  empty   set 
 
[: the carrier of (TOP-REAL n), the carrier of (TOP-REAL n):] is   non  empty   Relation-like   set 
 
 bool [: the carrier of (TOP-REAL n), the carrier of (TOP-REAL n):] is   non  empty   set 
 
TR is   non  empty   Relation-like   the carrier of (TOP-REAL n) -defined   the carrier of (TOP-REAL n) -valued   Function-like   total   quasi_total   FinSequence-yielding   Function-yielding  V235()  Element of  bool [: the carrier of (TOP-REAL n), the carrier of (TOP-REAL n):]
 
n1 is   non  empty   Relation-like   the carrier of (TOP-REAL n) -defined   the carrier of (TOP-REAL n) -valued   Function-like   total   quasi_total   additive   FinSequence-yielding   homogeneous   Function-yielding  V235()  Element of  bool [: the carrier of (TOP-REAL n), the carrier of (TOP-REAL n):]
 
(n,n1) is   Relation-like   NAT  -defined   the carrier of F_Real *  -valued   Function-like  V36()  FinSequence-like   FinSubsequence-like   FinSequence-yielding   finite-support   Function-yielding  V235()  tabular   Matrix of n,n, the carrier of F_Real
 
 Det (n,n1) is  V11()  real   ext-real   Element of  the carrier of F_Real
 
 Det (n,n1) is  V11()  real   ext-real   Element of  the carrier of F_Real
 
 dom TR is   non  empty   set 
 
 id  the carrier of (TOP-REAL n) is   non  empty   Relation-like   the carrier of (TOP-REAL n) -defined   the carrier of (TOP-REAL n) -valued   Function-like   one-to-one   total   quasi_total   quasi_total   FinSequence-yielding   Function-yielding  V235()  Element of  bool [: the carrier of (TOP-REAL n), the carrier of (TOP-REAL n):]
 
 dom (id  the carrier of (TOP-REAL n)) is   non  empty   set 
 
 0. (TOP-REAL n) is   Relation-like   NAT  -defined   Function-like  V36() n -element  V61( TOP-REAL n)  FinSequence-like   FinSubsequence-like   complex-yielding   ext-real-valued   real-valued   finite-support   Element of  the carrier of (TOP-REAL n)
 
 the ZeroF of (TOP-REAL n) is   Relation-like   NAT  -defined   Function-like  V36() n -element   FinSequence-like   FinSubsequence-like   complex-yielding   ext-real-valued   real-valued   finite-support   Element of  the carrier of (TOP-REAL n)
 
{(0. (TOP-REAL n))} is   non  empty   trivial   functional  V36() V40() 1 -element   set 
 
 rng TR is   non  empty   set 
 
 rng (id  the carrier of (TOP-REAL n)) is   non  empty   set 
 
 id (TOP-REAL n) is   non  empty   Relation-like   the carrier of (TOP-REAL n) -defined   the carrier of (TOP-REAL n) -defined   the carrier of (TOP-REAL n) -valued   the carrier of (TOP-REAL n) -valued   Function-like   total   total   quasi_total   quasi_total   additive   additive   FinSequence-yielding   homogeneous   Function-yielding  V235()  being_homeomorphism   being_homeomorphism  (n) (n)  Element of  bool [: the carrier of (TOP-REAL n), the carrier of (TOP-REAL n):]
 
 Seg n is  V16() V36() n -element  V155() V156() V157() V158() V159() V160()  Element of  bool NAT
 
 {  b1 where b1 is   ordinal   natural  V11()  real   ext-real   non  negative  V36()  cardinal  V85() V86() V155() V156() V157() V158() V159() V160()  Element of  NAT  : ( 1 <= b1 & b1 <= n )  }   is    set 
 
 dom TR is   non  empty   set 
 
(n,n) is   Relation-like   NAT  -defined   the carrier of F_Real *  -valued   Function-like  V36()  FinSequence-like   FinSubsequence-like   FinSequence-yielding   finite-support   Function-yielding  V235()  tabular   invertible   Matrix of n,n, the carrier of F_Real
 
 Mx2Tran (n,n) is   non  empty   Relation-like   the carrier of (TOP-REAL n) -defined   the carrier of (TOP-REAL n) -valued   Function-like   total   quasi_total   additive   FinSequence-yielding   homogeneous   Function-yielding  V235()  being_homeomorphism   Element of  bool [: the carrier of (TOP-REAL n), the carrier of (TOP-REAL n):]
 
(Mx2Tran (n,n)) /"  is   non  empty   Relation-like   the carrier of (TOP-REAL n) -defined   the carrier of (TOP-REAL n) -valued   Function-like   total   quasi_total   quasi_total   FinSequence-yielding   Function-yielding  V235()  Element of  bool [: the carrier of (TOP-REAL n), the carrier of (TOP-REAL n):]
 
 rng (Mx2Tran (n,n)) is   non  empty   set 
 
 [#] (TOP-REAL n) is   non  empty   non  proper   Element of  bool  the carrier of (TOP-REAL n)
 
 bool  the carrier of (TOP-REAL n) is   non  empty   set 
 
(n,(Mx2Tran (n,n))) is   Relation-like   NAT  -defined   the carrier of F_Real *  -valued   Function-like  V36()  FinSequence-like   FinSubsequence-like   FinSequence-yielding   finite-support   Function-yielding  V235()  tabular   Matrix of n,n, the carrier of F_Real
 
TR * (Mx2Tran (n,n)) is   non  empty   Relation-like   the carrier of (TOP-REAL n) -defined   the carrier of (TOP-REAL n) -valued   Function-like   total   quasi_total   quasi_total   FinSequence-yielding   Function-yielding  V235()  Element of  bool [: the carrier of (TOP-REAL n), the carrier of (TOP-REAL n):]
 
(TR * (Mx2Tran (n,n))) * ((Mx2Tran (n,n)) /") is   non  empty   Relation-like   the carrier of (TOP-REAL n) -defined   the carrier of (TOP-REAL n) -valued   Function-like   total   quasi_total   quasi_total   FinSequence-yielding   Function-yielding  V235()  Element of  bool [: the carrier of (TOP-REAL n), the carrier of (TOP-REAL n):]
 
(Mx2Tran (n,n)) * ((Mx2Tran (n,n)) /") is   non  empty   Relation-like   the carrier of (TOP-REAL n) -defined   the carrier of (TOP-REAL n) -valued   Function-like   total   quasi_total   quasi_total   FinSequence-yielding   Function-yielding  V235()  Element of  bool [: the carrier of (TOP-REAL n), the carrier of (TOP-REAL n):]
 
TR * ((Mx2Tran (n,n)) * ((Mx2Tran (n,n)) /")) is   non  empty   Relation-like   the carrier of (TOP-REAL n) -defined   the carrier of (TOP-REAL n) -valued   Function-like   total   quasi_total   quasi_total   FinSequence-yielding   Function-yielding  V235()  Element of  bool [: the carrier of (TOP-REAL n), the carrier of (TOP-REAL n):]
 
 id  the carrier of (TOP-REAL n) is   non  empty   Relation-like   the carrier of (TOP-REAL n) -defined   the carrier of (TOP-REAL n) -valued   Function-like   one-to-one   total   quasi_total   quasi_total   FinSequence-yielding   Function-yielding  V235()  Element of  bool [: the carrier of (TOP-REAL n), the carrier of (TOP-REAL n):]
 
TR * (id  the carrier of (TOP-REAL n)) is   non  empty   Relation-like   the carrier of (TOP-REAL n) -defined   the carrier of (TOP-REAL n) -valued   Function-like   total   quasi_total   quasi_total   FinSequence-yielding   Function-yielding  V235()  Element of  bool [: the carrier of (TOP-REAL n), the carrier of (TOP-REAL n):]
 
 Det (n,n1) is  V11()  real   ext-real   Element of  the carrier of F_Real
 
n is   ordinal   natural  V11()  real   ext-real   non  negative  V36()  cardinal  V85()  set 
 
 TOP-REAL n is   non  empty   TopSpace-like   right_complementable   constituted-Functions   constituted-FinSeqs  V189() V190() V191() V192() V193() V194() V195() V228() L16()
 
 the carrier of (TOP-REAL n) is   non  empty   set 
 
[: the carrier of (TOP-REAL n), the carrier of (TOP-REAL n):] is   non  empty   Relation-like   set 
 
 bool [: the carrier of (TOP-REAL n), the carrier of (TOP-REAL n):] is   non  empty   set 
 
(n,n) is   Relation-like   NAT  -defined   the carrier of F_Real *  -valued   Function-like  V36()  FinSequence-like   FinSubsequence-like   FinSequence-yielding   finite-support   Function-yielding  V235()  tabular   invertible   Matrix of n,n, the carrier of F_Real
 
 1. (F_Real,n) is   Relation-like   NAT  -defined   the carrier of F_Real *  -valued   Function-like  V36()  FinSequence-like   FinSubsequence-like   FinSequence-yielding   finite-support   Function-yielding  V235()  tabular   Matrix of n,n, the carrier of F_Real
 
p is   Relation-like   NAT  -defined   Function-like  V36() n -element   FinSequence-like   FinSubsequence-like   complex-yielding   ext-real-valued   real-valued   finite-support   Element of  the carrier of (TOP-REAL n)
 
|.p.| is  V11()  real   ext-real   non  negative   Element of  REAL 
 
 sqr p is   Relation-like   NAT  -defined   REAL  -valued   Function-like  V36()  FinSequence-like   FinSubsequence-like   complex-yielding   ext-real-valued   real-valued   finite-support   FinSequence of  REAL 
 
 Sum (sqr p) is  V11()  real   ext-real   Element of  REAL 
 
 sqrt (Sum (sqr p)) is  V11()  real   ext-real   Element of  REAL 
 
q is   Relation-like   NAT  -defined   Function-like  V36() n -element   FinSequence-like   FinSubsequence-like   complex-yielding   ext-real-valued   real-valued   finite-support   Element of  the carrier of (TOP-REAL n)
 
|.q.| is  V11()  real   ext-real   non  negative   Element of  REAL 
 
 sqr q is   Relation-like   NAT  -defined   REAL  -valued   Function-like  V36()  FinSequence-like   FinSubsequence-like   complex-yielding   ext-real-valued   real-valued   finite-support   FinSequence of  REAL 
 
 Sum (sqr q) is  V11()  real   ext-real   Element of  REAL 
 
 sqrt (Sum (sqr q)) is  V11()  real   ext-real   Element of  REAL 
 
 id (TOP-REAL n) is   non  empty   Relation-like   the carrier of (TOP-REAL n) -defined   the carrier of (TOP-REAL n) -defined   the carrier of (TOP-REAL n) -valued   the carrier of (TOP-REAL n) -valued   Function-like   total   total   quasi_total   quasi_total   additive   additive   FinSequence-yielding   homogeneous   Function-yielding  V235()  being_homeomorphism   being_homeomorphism  (n) (n)  Element of  bool [: the carrier of (TOP-REAL n), the carrier of (TOP-REAL n):]
 
 id  the carrier of (TOP-REAL n) is   non  empty   Relation-like   the carrier of (TOP-REAL n) -defined   the carrier of (TOP-REAL n) -valued   Function-like   one-to-one   total   quasi_total   quasi_total   FinSequence-yielding   Function-yielding  V235()  Element of  bool [: the carrier of (TOP-REAL n), the carrier of (TOP-REAL n):]
 
n1 is   non  empty   Relation-like   the carrier of (TOP-REAL n) -defined   the carrier of (TOP-REAL n) -valued   Function-like   total   quasi_total   additive   FinSequence-yielding   homogeneous   Function-yielding  V235()  being_homeomorphism  (n) (n)  Element of  bool [: the carrier of (TOP-REAL n), the carrier of (TOP-REAL n):]
 
n1 . p is   Relation-like   NAT  -defined   Function-like  V36() n -element   FinSequence-like   FinSubsequence-like   complex-yielding   ext-real-valued   real-valued   finite-support   Element of  the carrier of (TOP-REAL n)
 
(n,n1) is   Relation-like   NAT  -defined   the carrier of F_Real *  -valued   Function-like  V36()  FinSequence-like   FinSubsequence-like   FinSequence-yielding   finite-support   Function-yielding  V235()  tabular   Orthogonal   Matrix of n,n, the carrier of F_Real
 
 TOP-REAL 1 is   non  empty   TopSpace-like   right_complementable   constituted-Functions   constituted-FinSeqs  V189() V190() V191() V192() V193() V194() V195() V228() L16()
 
 the carrier of (TOP-REAL 1) is   non  empty   set 
 
 1. (F_Real,1) is   Relation-like   NAT  -defined   the carrier of F_Real *  -valued   Function-like  V36()  FinSequence-like   FinSubsequence-like   FinSequence-yielding   finite-support   Function-yielding  V235()  tabular   Matrix of 1,1, the carrier of F_Real
 
 Mx2Tran (1. (F_Real,1)) is   non  empty   Relation-like   the carrier of (TOP-REAL 1) -defined   the carrier of (TOP-REAL 1) -valued   Function-like   total   quasi_total   additive   FinSequence-yielding   homogeneous   Function-yielding  V235()  Element of  bool [: the carrier of (TOP-REAL 1), the carrier of (TOP-REAL 1):]
 
[: the carrier of (TOP-REAL 1), the carrier of (TOP-REAL 1):] is   non  empty   Relation-like   set 
 
 bool [: the carrier of (TOP-REAL 1), the carrier of (TOP-REAL 1):] is   non  empty   set 
 
 len p is   ordinal   natural  V11()  real   ext-real   non  negative  V36()  cardinal  V85() V86() V155() V156() V157() V158() V159() V160()  Element of  NAT 
 
p . 1 is  V11()  real   ext-real   Element of  REAL 
 
<*(p . 1)*> is   non  empty   trivial   Relation-like   NAT  -defined   REAL  -valued   Function-like   one-to-one   constant  V36() 1 -element   FinSequence-like   FinSubsequence-like   complex-yielding   ext-real-valued   real-valued  V149()  decreasing   non-decreasing   non-increasing   finite-support   Element of 1 -tuples_on REAL
 
1 -tuples_on REAL is   non  empty   functional   FinSequence-membered   FinSequenceSet of  REAL 
 
[1,(p . 1)] is    set 
 
{1,(p . 1)} is   non  empty  V36() V155() V156() V157()  set 
 
{{1,(p . 1)},{1}} is   non  empty  V36() V40()  set 
 
{[1,(p . 1)]} is   non  empty   trivial   Relation-like   Function-like   constant  V36() 1 -element   finite-support   set 
 
(1,1) is   Relation-like   NAT  -defined   the carrier of F_Real *  -valued   Function-like  V36()  FinSequence-like   FinSubsequence-like   FinSequence-yielding   finite-support   Function-yielding  V235()  tabular   invertible   Matrix of 1,1, the carrier of F_Real
 
 Mx2Tran (1,1) is   non  empty   Relation-like   the carrier of (TOP-REAL 1) -defined   the carrier of (TOP-REAL 1) -valued   Function-like   total   quasi_total   additive   FinSequence-yielding   homogeneous   Function-yielding  V235()  being_homeomorphism   Element of  bool [: the carrier of (TOP-REAL 1), the carrier of (TOP-REAL 1):]
 
 TOP-REAL 1 is   non  empty   TopSpace-like   right_complementable   constituted-Functions   constituted-FinSeqs  V189() V190() V191() V192() V193() V194() V195() V228() L16()
 
 the carrier of (TOP-REAL 1) is   non  empty   set 
 
[: the carrier of (TOP-REAL 1), the carrier of (TOP-REAL 1):] is   non  empty   Relation-like   set 
 
 bool [: the carrier of (TOP-REAL 1), the carrier of (TOP-REAL 1):] is   non  empty   set 
 
n1 is   non  empty   Relation-like   the carrier of (TOP-REAL n) -defined   the carrier of (TOP-REAL n) -valued   Function-like   total   quasi_total   additive   FinSequence-yielding   homogeneous   Function-yielding  V235()  being_homeomorphism  (n)  Element of  bool [: the carrier of (TOP-REAL n), the carrier of (TOP-REAL n):]
 
n1 . p is   Relation-like   NAT  -defined   Function-like  V36() n -element   FinSequence-like   FinSubsequence-like   complex-yielding   ext-real-valued   real-valued   finite-support   Element of  the carrier of (TOP-REAL n)
 
(n,n1) is   Relation-like   NAT  -defined   the carrier of F_Real *  -valued   Function-like  V36()  FinSequence-like   FinSubsequence-like   FinSequence-yielding   finite-support   Function-yielding  V235()  tabular   Orthogonal   Matrix of n,n, the carrier of F_Real
 
q . 1 is  V11()  real   ext-real   Element of  REAL 
 
(q . 1) ^2  is  V11()  real   ext-real   Element of  REAL 
 
(q . 1) * (q . 1) is  V11()  real   ext-real   set 
 
(p . 1) ^2  is  V11()  real   ext-real   Element of  REAL 
 
(p . 1) * (p . 1) is  V11()  real   ext-real   set 
 
 sqr <*(p . 1)*> is   non  empty   trivial   Relation-like   NAT  -defined   REAL  -valued   Function-like   one-to-one   constant  V36() 1 -element   FinSequence-like   FinSubsequence-like   complex-yielding   ext-real-valued   real-valued  V149()  decreasing   non-decreasing   non-increasing   finite-support   Element of 1 -tuples_on REAL
 
 Sum (sqr <*(p . 1)*>) is  V11()  real   ext-real   Element of  REAL 
 
 sqrt (Sum (sqr <*(p . 1)*>)) is  V11()  real   ext-real   Element of  REAL 
 
<*((p . 1) ^2)*> is   non  empty   trivial   Relation-like   NAT  -defined   REAL  -valued   Function-like   one-to-one   constant  V36() 1 -element   FinSequence-like   FinSubsequence-like   complex-yielding   ext-real-valued   real-valued  V149()  decreasing   non-decreasing   non-increasing   finite-support   Element of 1 -tuples_on REAL
 
[1,((p . 1) ^2)] is    set 
 
{1,((p . 1) ^2)} is   non  empty  V36() V155() V156() V157()  set 
 
{{1,((p . 1) ^2)},{1}} is   non  empty  V36() V40()  set 
 
{[1,((p . 1) ^2)]} is   non  empty   trivial   Relation-like   Function-like   constant  V36() 1 -element   finite-support   set 
 
 Sum <*((p . 1) ^2)*> is  V11()  real   ext-real   Element of  REAL 
 
 sqrt (Sum <*((p . 1) ^2)*>) is  V11()  real   ext-real   Element of  REAL 
 
 sqrt ((p . 1) ^2) is  V11()  real   ext-real   Element of  REAL 
 
 len q is   ordinal   natural  V11()  real   ext-real   non  negative  V36()  cardinal  V85() V86() V155() V156() V157() V158() V159() V160()  Element of  NAT 
 
<*(q . 1)*> is   non  empty   trivial   Relation-like   NAT  -defined   REAL  -valued   Function-like   one-to-one   constant  V36() 1 -element   FinSequence-like   FinSubsequence-like   complex-yielding   ext-real-valued   real-valued  V149()  decreasing   non-decreasing   non-increasing   finite-support   Element of 1 -tuples_on REAL
 
[1,(q . 1)] is    set 
 
{1,(q . 1)} is   non  empty  V36() V155() V156() V157()  set 
 
{{1,(q . 1)},{1}} is   non  empty  V36() V40()  set 
 
{[1,(q . 1)]} is   non  empty   trivial   Relation-like   Function-like   constant  V36() 1 -element   finite-support   set 
 
 sqr <*(q . 1)*> is   non  empty   trivial   Relation-like   NAT  -defined   REAL  -valued   Function-like   one-to-one   constant  V36() 1 -element   FinSequence-like   FinSubsequence-like   complex-yielding   ext-real-valued   real-valued  V149()  decreasing   non-decreasing   non-increasing   finite-support   Element of 1 -tuples_on REAL
 
 Sum (sqr <*(q . 1)*>) is  V11()  real   ext-real   Element of  REAL 
 
 sqrt (Sum (sqr <*(q . 1)*>)) is  V11()  real   ext-real   Element of  REAL 
 
<*((q . 1) ^2)*> is   non  empty   trivial   Relation-like   NAT  -defined   REAL  -valued   Function-like   one-to-one   constant  V36() 1 -element   FinSequence-like   FinSubsequence-like   complex-yielding   ext-real-valued   real-valued  V149()  decreasing   non-decreasing   non-increasing   finite-support   Element of 1 -tuples_on REAL
 
[1,((q . 1) ^2)] is    set 
 
{1,((q . 1) ^2)} is   non  empty  V36() V155() V156() V157()  set 
 
{{1,((q . 1) ^2)},{1}} is   non  empty  V36() V40()  set 
 
{[1,((q . 1) ^2)]} is   non  empty   trivial   Relation-like   Function-like   constant  V36() 1 -element   finite-support   set 
 
 Sum <*((q . 1) ^2)*> is  V11()  real   ext-real   Element of  REAL 
 
 sqrt (Sum <*((q . 1) ^2)*>) is  V11()  real   ext-real   Element of  REAL 
 
 sqrt ((q . 1) ^2) is  V11()  real   ext-real   Element of  REAL 
 
 len (n1 . p) is   ordinal   natural  V11()  real   ext-real   non  negative  V36()  cardinal  V85() V86() V155() V156() V157() V158() V159() V160()  Element of  NAT 
 
(n1 . p) . 1 is  V11()  real   ext-real   Element of  REAL 
 
<*((n1 . p) . 1)*> is   non  empty   trivial   Relation-like   NAT  -defined   REAL  -valued   Function-like   one-to-one   constant  V36() 1 -element   FinSequence-like   FinSubsequence-like   complex-yielding   ext-real-valued   real-valued  V149()  decreasing   non-decreasing   non-increasing   finite-support   Element of 1 -tuples_on REAL
 
[1,((n1 . p) . 1)] is    set 
 
{1,((n1 . p) . 1)} is   non  empty  V36() V155() V156() V157()  set 
 
{{1,((n1 . p) . 1)},{1}} is   non  empty  V36() V40()  set 
 
{[1,((n1 . p) . 1)]} is   non  empty   trivial   Relation-like   Function-like   constant  V36() 1 -element   finite-support   set 
 
 - (p . 1) is  V11()  real   ext-real   Element of  REAL 
 
<*(- (p . 1))*> is   non  empty   trivial   Relation-like   NAT  -defined   REAL  -valued   Function-like   one-to-one   constant  V36() 1 -element   FinSequence-like   FinSubsequence-like   complex-yielding   ext-real-valued   real-valued  V149()  decreasing   non-decreasing   non-increasing   finite-support   Element of 1 -tuples_on REAL
 
[1,(- (p . 1))] is    set 
 
{1,(- (p . 1))} is   non  empty  V36() V155() V156() V157()  set 
 
{{1,(- (p . 1))},{1}} is   non  empty  V36() V40()  set 
 
{[1,(- (p . 1))]} is   non  empty   trivial   Relation-like   Function-like   constant  V36() 1 -element   finite-support   set 
 
n is   ordinal   natural  V11()  real   ext-real   non  negative  V36()  cardinal  V85()  set 
 
 TOP-REAL n is   non  empty   TopSpace-like   right_complementable   constituted-Functions   constituted-FinSeqs  V189() V190() V191() V192() V193() V194() V195() V228() L16()
 
 the carrier of (TOP-REAL n) is   non  empty   set 
 
[: the carrier of (TOP-REAL n), the carrier of (TOP-REAL n):] is   non  empty   Relation-like   set 
 
 bool [: the carrier of (TOP-REAL n), the carrier of (TOP-REAL n):] is   non  empty   set 
 
p is   Relation-like   NAT  -defined   Function-like  V36() n -element   FinSequence-like   FinSubsequence-like   complex-yielding   ext-real-valued   real-valued   finite-support   Element of  the carrier of (TOP-REAL n)
 
|.p.| is  V11()  real   ext-real   non  negative   Element of  REAL 
 
 sqr p is   Relation-like   NAT  -defined   REAL  -valued   Function-like  V36()  FinSequence-like   FinSubsequence-like   complex-yielding   ext-real-valued   real-valued   finite-support   FinSequence of  REAL 
 
 Sum (sqr p) is  V11()  real   ext-real   Element of  REAL 
 
 sqrt (Sum (sqr p)) is  V11()  real   ext-real   Element of  REAL 
 
q is   Relation-like   NAT  -defined   Function-like  V36() n -element   FinSequence-like   FinSubsequence-like   complex-yielding   ext-real-valued   real-valued   finite-support   Element of  the carrier of (TOP-REAL n)
 
|.q.| is  V11()  real   ext-real   non  negative   Element of  REAL 
 
 sqr q is   Relation-like   NAT  -defined   REAL  -valued   Function-like  V36()  FinSequence-like   FinSubsequence-like   complex-yielding   ext-real-valued   real-valued   finite-support   FinSequence of  REAL 
 
 Sum (sqr q) is  V11()  real   ext-real   Element of  REAL 
 
 sqrt (Sum (sqr q)) is  V11()  real   ext-real   Element of  REAL 
 
 id (TOP-REAL n) is   non  empty   Relation-like   the carrier of (TOP-REAL n) -defined   the carrier of (TOP-REAL n) -defined   the carrier of (TOP-REAL n) -valued   the carrier of (TOP-REAL n) -valued   Function-like   total   total   quasi_total   quasi_total   additive   additive   FinSequence-yielding   homogeneous   Function-yielding  V235()  being_homeomorphism   being_homeomorphism  (n) (n)  Element of  bool [: the carrier of (TOP-REAL n), the carrier of (TOP-REAL n):]
 
 id  the carrier of (TOP-REAL n) is   non  empty   Relation-like   the carrier of (TOP-REAL n) -defined   the carrier of (TOP-REAL n) -valued   Function-like   one-to-one   total   quasi_total   quasi_total   FinSequence-yielding   Function-yielding  V235()  Element of  bool [: the carrier of (TOP-REAL n), the carrier of (TOP-REAL n):]
 
n1 is   non  empty   Relation-like   the carrier of (TOP-REAL n) -defined   the carrier of (TOP-REAL n) -valued   Function-like   total   quasi_total   additive   FinSequence-yielding   homogeneous   Function-yielding  V235()  being_homeomorphism  (n) (n)  Element of  bool [: the carrier of (TOP-REAL n), the carrier of (TOP-REAL n):]
 
n1 . p is   Relation-like   NAT  -defined   Function-like  V36() n -element   FinSequence-like   FinSubsequence-like   complex-yielding   ext-real-valued   real-valued   finite-support   Element of  the carrier of (TOP-REAL n)
 
 0. (TOP-REAL n) is   Relation-like   NAT  -defined   Function-like  V36() n -element  V61( TOP-REAL n)  FinSequence-like   FinSubsequence-like   complex-yielding   ext-real-valued   real-valued   finite-support   Element of  the carrier of (TOP-REAL n)
 
 the ZeroF of (TOP-REAL n) is   Relation-like   NAT  -defined   Function-like  V36() n -element   FinSequence-like   FinSubsequence-like   complex-yielding   ext-real-valued   real-valued   finite-support   Element of  the carrier of (TOP-REAL n)
 
 Seg n is  V16() V36() n -element  V155() V156() V157() V158() V159() V160()  Element of  bool NAT
 
 {  b1 where b1 is   ordinal   natural  V11()  real   ext-real   non  negative  V36()  cardinal  V85() V86() V155() V156() V157() V158() V159() V160()  Element of  NAT  : ( 1 <= b1 & b1 <= n )  }   is    set 
 
 card (Seg n) is   ordinal   natural  V11()  real   ext-real   non  negative  V36()  cardinal  V85() V86() V155() V156() V157() V158() V159() V160()  Element of  omega 
 
n1 is   ordinal   natural  V11()  real   ext-real   non  negative  V36()  cardinal  V85()  set 
 
n1 + 1 is   non  empty   ordinal   natural  V11()  real   ext-real   positive   non  negative  V36()  cardinal  V85() V86() V155() V156() V157() V158() V159() V160()  Element of  NAT 
 
(n1 + 1) + 1 is   non  empty   ordinal   natural  V11()  real   ext-real   positive   non  negative  V36()  cardinal  V85() V86() V155() V156() V157() V158() V159() V160()  Element of  NAT 
 
(n1 + 1) + 1 is   non  empty   ordinal   natural  V11()  real   ext-real   positive   non  negative  V36()  cardinal  V85() V86() V155() V156() V157() V158() V159() V160()  Element of  NAT 
 
z is    set 
 
 len z is   ordinal   cardinal   set 
 
X is   non  empty   Relation-like   the carrier of (TOP-REAL n) -defined   the carrier of (TOP-REAL n) -valued   Function-like   total   quasi_total   additive   FinSequence-yielding   homogeneous   Function-yielding  V235()  being_homeomorphism  (n) (n)  Element of  bool [: the carrier of (TOP-REAL n), the carrier of (TOP-REAL n):]
 
X . p is   Relation-like   NAT  -defined   Function-like  V36() n -element   FinSequence-like   FinSubsequence-like   complex-yielding   ext-real-valued   real-valued   finite-support   Element of  the carrier of (TOP-REAL n)
 
z is    set 
 
 len z is   ordinal   cardinal   set 
 
X is   non  empty   Relation-like   the carrier of (TOP-REAL n) -defined   the carrier of (TOP-REAL n) -valued   Function-like   total   quasi_total   additive   FinSequence-yielding   homogeneous   Function-yielding  V235()  being_homeomorphism  (n) (n)  Element of  bool [: the carrier of (TOP-REAL n), the carrier of (TOP-REAL n):]
 
X . p is   Relation-like   NAT  -defined   Function-like  V36() n -element   FinSequence-like   FinSubsequence-like   complex-yielding   ext-real-valued   real-valued   finite-support   Element of  the carrier of (TOP-REAL n)
 
 sqr (X . p) is   Relation-like   NAT  -defined   REAL  -valued   Function-like  V36()  FinSequence-like   FinSubsequence-like   complex-yielding   ext-real-valued   real-valued   finite-support   FinSequence of  REAL 
 
(Seg n) \ z is  V16() V36() V155() V156() V157() V158() V159() V160()  Element of  bool NAT
 
h is   ordinal   natural  V11()  real   ext-real   non  negative  V36()  cardinal  V85()  set 
 
(sqr q) . h is  V11()  real   ext-real   Element of  REAL 
 
(sqr (X . p)) . h is  V11()  real   ext-real   Element of  REAL 
 
h is   ordinal   natural  V11()  real   ext-real   non  negative  V36()  cardinal  V85()  set 
 
(sqr q) . h is  V11()  real   ext-real   Element of  REAL 
 
(sqr (X . p)) . h is  V11()  real   ext-real   Element of  REAL 
 
{h} is   non  empty   trivial  V36() V40() 1 -element  V155() V156() V157() V158() V159() V160()  Element of  bool NAT
 
z \/ {h} is   non  empty   set 
 
(X . p) . h is  V11()  real   ext-real   Element of  REAL 
 
((X . p) . h) ^2  is  V11()  real   ext-real   Element of  REAL 
 
((X . p) . h) * ((X . p) . h) is  V11()  real   ext-real   set 
 
q . h is  V11()  real   ext-real   Element of  REAL 
 
(q . h) ^2  is  V11()  real   ext-real   Element of  REAL 
 
(q . h) * (q . h) is  V11()  real   ext-real   set 
 
 len (z \/ {h}) is   non  empty   ordinal   cardinal   set 
 
z is    set 
 
z is   ordinal   natural  V11()  real   ext-real   non  negative  V36()  cardinal  V85()  set 
 
(X . p) . z is  V11()  real   ext-real   Element of  REAL 
 
((X . p) . z) ^2  is  V11()  real   ext-real   Element of  REAL 
 
((X . p) . z) * ((X . p) . z) is  V11()  real   ext-real   set 
 
{} + ((q . h) ^2) is  V11()  real   ext-real   Element of  REAL 
 
(((X . p) . z) ^2) + (((X . p) . h) ^2) is  V11()  real   ext-real   Element of  REAL 
 
k is  V11()  real   ext-real   set 
 
(n,k,z,h) is   Relation-like   NAT  -defined   the carrier of F_Real *  -valued   Function-like  V36()  FinSequence-like   FinSubsequence-like   FinSequence-yielding   finite-support   Function-yielding  V235()  tabular   invertible   Matrix of n,n, the carrier of F_Real
 
 Mx2Tran (n,k,z,h) is   non  empty   Relation-like   the carrier of (TOP-REAL n) -defined   the carrier of (TOP-REAL n) -valued   Function-like   total   quasi_total   additive   FinSequence-yielding   homogeneous   Function-yielding  V235()  being_homeomorphism   Element of  bool [: the carrier of (TOP-REAL n), the carrier of (TOP-REAL n):]
 
(Mx2Tran (n,k,z,h)) . (X . p) is   Relation-like   NAT  -defined   Function-like  V36() n -element   FinSequence-like   FinSubsequence-like   complex-yielding   ext-real-valued   real-valued   finite-support   Element of  the carrier of (TOP-REAL n)
 
((Mx2Tran (n,k,z,h)) . (X . p)) . h is  V11()  real   ext-real   Element of  REAL 
 
{h,z} is   non  empty  V36() V40() V155() V156() V157() V158() V159() V160()  Element of  bool NAT
 
k is  V11()  real   ext-real   set 
 
(n,k,h,z) is   Relation-like   NAT  -defined   the carrier of F_Real *  -valued   Function-like  V36()  FinSequence-like   FinSubsequence-like   FinSequence-yielding   finite-support   Function-yielding  V235()  tabular   invertible   Matrix of n,n, the carrier of F_Real
 
 Mx2Tran (n,k,h,z) is   non  empty   Relation-like   the carrier of (TOP-REAL n) -defined   the carrier of (TOP-REAL n) -valued   Function-like   total   quasi_total   additive   FinSequence-yielding   homogeneous   Function-yielding  V235()  being_homeomorphism   Element of  bool [: the carrier of (TOP-REAL n), the carrier of (TOP-REAL n):]
 
(Mx2Tran (n,k,h,z)) . (X . p) is   Relation-like   NAT  -defined   Function-like  V36() n -element   FinSequence-like   FinSubsequence-like   complex-yielding   ext-real-valued   real-valued   finite-support   Element of  the carrier of (TOP-REAL n)
 
((Mx2Tran (n,k,h,z)) . (X . p)) . h is  V11()  real   ext-real   Element of  REAL 
 
{z,h} is   non  empty  V36() V40() V155() V156() V157() V158() V159() V160()  Element of  bool NAT
 
{h,z} is   non  empty  V36() V40() V155() V156() V157() V158() V159() V160()  Element of  bool NAT
 
{h,z} is   non  empty  V36() V40() V155() V156() V157() V158() V159() V160()  Element of  bool NAT
 
{h,z} is   non  empty  V36() V40() V155() V156() V157() V158() V159() V160()  Element of  bool NAT
 
k is   non  empty   Relation-like   the carrier of (TOP-REAL n) -defined   the carrier of (TOP-REAL n) -valued   Function-like   total   quasi_total   additive   FinSequence-yielding   homogeneous   Function-yielding  V235()  being_homeomorphism  (n) (n)  Element of  bool [: the carrier of (TOP-REAL n), the carrier of (TOP-REAL n):]
 
k . (X . p) is   Relation-like   NAT  -defined   Function-like  V36() n -element   FinSequence-like   FinSubsequence-like   complex-yielding   ext-real-valued   real-valued   finite-support   Element of  the carrier of (TOP-REAL n)
 
(k . (X . p)) . h is  V11()  real   ext-real   Element of  REAL 
 
k is   non  empty   Relation-like   the carrier of (TOP-REAL n) -defined   the carrier of (TOP-REAL n) -valued   Function-like   total   quasi_total   additive   FinSequence-yielding   homogeneous   Function-yielding  V235()  being_homeomorphism  (n) (n)  Element of  bool [: the carrier of (TOP-REAL n), the carrier of (TOP-REAL n):]
 
k . (X . p) is   Relation-like   NAT  -defined   Function-like  V36() n -element   FinSequence-like   FinSubsequence-like   complex-yielding   ext-real-valued   real-valued   finite-support   Element of  the carrier of (TOP-REAL n)
 
(k . (X . p)) . h is  V11()  real   ext-real   Element of  REAL 
 
k * X is   non  empty   Relation-like   the carrier of (TOP-REAL n) -defined   the carrier of (TOP-REAL n) -defined   the carrier of (TOP-REAL n) -defined   the carrier of (TOP-REAL n) -valued   the carrier of (TOP-REAL n) -valued   the carrier of (TOP-REAL n) -valued   Function-like   total   total   total   quasi_total   quasi_total   quasi_total   additive   additive   FinSequence-yielding   homogeneous   Function-yielding  V235()  being_homeomorphism  (n) (n)  Element of  bool [: the carrier of (TOP-REAL n), the carrier of (TOP-REAL n):]
 
gf is   non  empty   Relation-like   the carrier of (TOP-REAL n) -defined   the carrier of (TOP-REAL n) -valued   Function-like   total   quasi_total   additive   FinSequence-yielding   homogeneous   Function-yielding  V235()  being_homeomorphism  (n) (n)  Element of  bool [: the carrier of (TOP-REAL n), the carrier of (TOP-REAL n):]
 
gf . p is   Relation-like   NAT  -defined   Function-like  V36() n -element   FinSequence-like   FinSubsequence-like   complex-yielding   ext-real-valued   real-valued   finite-support   Element of  the carrier of (TOP-REAL n)
 
m is   ordinal   natural  V11()  real   ext-real   non  negative  V36()  cardinal  V85()  set 
 
(gf . p) . m is  V11()  real   ext-real   Element of  REAL 
 
q . m is  V11()  real   ext-real   Element of  REAL 
 
 dom gf is   non  empty   set 
 
 dom k is   non  empty   set 
 
(k . (X . p)) . m is  V11()  real   ext-real   Element of  REAL 
 
(X . p) . m is  V11()  real   ext-real   Element of  REAL 
 
(Seg n) \ z is  V16() V36() V155() V156() V157() V158() V159() V160()  Element of  bool NAT
 
 Sum (sqr (X . p)) is  V11()  real   ext-real   Element of  REAL 
 
|.(X . p).| is  V11()  real   ext-real   non  negative   Element of  REAL 
 
 sqrt (Sum (sqr (X . p))) is  V11()  real   ext-real   Element of  REAL 
 
 @ (X . p) is   Relation-like   NAT  -defined   the carrier of F_Real -valued   Function-like  V36()  FinSequence-like   FinSubsequence-like   complex-yielding   ext-real-valued   real-valued   finite-support   FinSequence of  the carrier of F_Real
 
 @ (@ (X . p)) is   Relation-like   NAT  -defined   REAL  -valued   Function-like  V36()  FinSequence-like   FinSubsequence-like   complex-yielding   ext-real-valued   real-valued   finite-support   FinSequence of  REAL 
 
 len (sqr (X . p)) is   ordinal   natural  V11()  real   ext-real   non  negative  V36()  cardinal  V85() V86() V155() V156() V157() V158() V159() V160()  Element of  NAT 
 
 len (X . p) is   ordinal   natural  V11()  real   ext-real   non  negative  V36()  cardinal  V85() V86() V155() V156() V157() V158() V159() V160()  Element of  NAT 
 
 @ q is   Relation-like   NAT  -defined   the carrier of F_Real -valued   Function-like  V36()  FinSequence-like   FinSubsequence-like   complex-yielding   ext-real-valued   real-valued   finite-support   FinSequence of  the carrier of F_Real
 
 @ (@ q) is   Relation-like   NAT  -defined   REAL  -valued   Function-like  V36()  FinSequence-like   FinSubsequence-like   complex-yielding   ext-real-valued   real-valued   finite-support   FinSequence of  REAL 
 
 len (sqr q) is   ordinal   natural  V11()  real   ext-real   non  negative  V36()  cardinal  V85() V86() V155() V156() V157() V158() V159() V160()  Element of  NAT 
 
 len q is   ordinal   natural  V11()  real   ext-real   non  negative  V36()  cardinal  V85() V86() V155() V156() V157() V158() V159() V160()  Element of  NAT 
 
n -tuples_on REAL is   non  empty   functional   FinSequence-membered   FinSequenceSet of  REAL 
 
z is    set 
 
z is   ordinal   natural  V11()  real   ext-real   non  negative  V36()  cardinal  V85()  set 
 
h is   Relation-like   NAT  -defined   REAL  -valued   Function-like  V36() n -element   FinSequence-like   FinSubsequence-like   complex-yielding   ext-real-valued   real-valued   finite-support   Element of n -tuples_on REAL
 
sq is   Relation-like   NAT  -defined   REAL  -valued   Function-like  V36() n -element   FinSequence-like   FinSubsequence-like   complex-yielding   ext-real-valued   real-valued   finite-support   Element of n -tuples_on REAL
 
k is   ordinal   natural  V11()  real   ext-real   non  negative  V36()  cardinal  V85()  set 
 
h . k is  V11()  real   ext-real   Element of  REAL 
 
sq . k is  V11()  real   ext-real   Element of  REAL 
 
(X . p) . k is  V11()  real   ext-real   Element of  REAL 
 
q . k is  V11()  real   ext-real   Element of  REAL 
 
(q . k) ^2  is  V11()  real   ext-real   Element of  REAL 
 
(q . k) * (q . k) is  V11()  real   ext-real   set 
 
sq . z is  V11()  real   ext-real   Element of  REAL 
 
h . z is  V11()  real   ext-real   Element of  REAL 
 
(Seg n) \ z is  V16() V36() V155() V156() V157() V158() V159() V160()  Element of  bool NAT
 
h is   ordinal   natural  V11()  real   ext-real   non  negative  V36()  cardinal  V85()  set 
 
(sqr q) . h is  V11()  real   ext-real   Element of  REAL 
 
(sqr (X . p)) . h is  V11()  real   ext-real   Element of  REAL 
 
n - 1 is  V11()  real   ext-real  V85()  Element of  REAL 
 
n + (- 1) is  V11()  real   ext-real  V85()  set 
 
n1 is   ordinal   natural  V11()  real   ext-real   non  negative  V36()  cardinal  V85()  set 
 
n1 + 1 is   non  empty   ordinal   natural  V11()  real   ext-real   positive   non  negative  V36()  cardinal  V85() V86() V155() V156() V157() V158() V159() V160()  Element of  NAT 
 
{} + 1 is   non  empty   ordinal   natural  V11()  real   ext-real   positive   non  negative  V36()  cardinal  V85() V86() V155() V156() V157() V158() V159() V160()  Element of  NAT 
 
 id (TOP-REAL n) is   non  empty   Relation-like   the carrier of (TOP-REAL n) -defined   the carrier of (TOP-REAL n) -defined   the carrier of (TOP-REAL n) -valued   the carrier of (TOP-REAL n) -valued   Function-like   total   total   quasi_total   quasi_total   additive   additive   FinSequence-yielding   homogeneous   Function-yielding  V235()  being_homeomorphism   being_homeomorphism  (n) (n)  Element of  bool [: the carrier of (TOP-REAL n), the carrier of (TOP-REAL n):]
 
 id  the carrier of (TOP-REAL n) is   non  empty   Relation-like   the carrier of (TOP-REAL n) -defined   the carrier of (TOP-REAL n) -valued   Function-like   one-to-one   total   quasi_total   quasi_total   FinSequence-yielding   Function-yielding  V235()  Element of  bool [: the carrier of (TOP-REAL n), the carrier of (TOP-REAL n):]
 
f is   non  empty   Relation-like   the carrier of (TOP-REAL n) -defined   the carrier of (TOP-REAL n) -valued   Function-like   total   quasi_total   additive   FinSequence-yielding   homogeneous   Function-yielding  V235()  being_homeomorphism  (n) (n)  Element of  bool [: the carrier of (TOP-REAL n), the carrier of (TOP-REAL n):]
 
f . p is   Relation-like   NAT  -defined   Function-like  V36() n -element   FinSequence-like   FinSubsequence-like   complex-yielding   ext-real-valued   real-valued   finite-support   Element of  the carrier of (TOP-REAL n)
 
X is   empty   ordinal   natural  V11()  real   ext-real   non  positive   non  negative   Relation-like   non-empty   empty-yielding   NAT  -defined   RAT  -valued   Function-like   one-to-one   constant   functional  V36() V37() V40()  cardinal   {}  -element  V85()  FinSequence-like   FinSubsequence-like   FinSequence-membered   complex-yielding   ext-real-valued   real-valued   natural-valued  V155() V156() V157() V158() V159() V160() V161()  FinSequence-yielding   finite-support   Function-yielding  V235() V282()  set 
 
 len X is   empty   ordinal   natural  V11()  real   ext-real   non  positive   non  negative   Relation-like   non-empty   empty-yielding   NAT  -defined   RAT  -valued   Function-like   one-to-one   constant   functional  V36() V37() V40()  cardinal   {}  -element  V85()  FinSequence-like   FinSubsequence-like   FinSequence-membered   complex-yielding   ext-real-valued   real-valued   natural-valued  V155() V156() V157() V158() V159() V160() V161()  FinSequence-yielding   finite-support   Function-yielding  V235() V282()  set 
 
 card X is   empty   ordinal   natural  V11()  real   ext-real   non  positive   non  negative   Relation-like   non-empty   empty-yielding   NAT  -defined   RAT  -valued   Function-like   one-to-one   constant   functional  V36() V37() V40()  cardinal   {}  -element  V85() V86()  FinSequence-like   FinSubsequence-like   FinSequence-membered   complex-yielding   ext-real-valued   real-valued   natural-valued  V155() V156() V157() V158() V159() V160() V161()  FinSequence-yielding   finite-support   Function-yielding  V235() V282()  Element of  omega 
 
z is   ordinal   natural  V11()  real   ext-real   non  negative  V36()  cardinal  V85()  set 
 
(f . p) . z is  V11()  real   ext-real   Element of  REAL 
 
q . z is  V11()  real   ext-real   Element of  REAL 
 
X is    set 
 
 len X is   ordinal   cardinal   set 
 
f is   non  empty   Relation-like   the carrier of (TOP-REAL n) -defined   the carrier of (TOP-REAL n) -valued   Function-like   total   quasi_total   additive   FinSequence-yielding   homogeneous   Function-yielding  V235()  being_homeomorphism  (n) (n)  Element of  bool [: the carrier of (TOP-REAL n), the carrier of (TOP-REAL n):]
 
f . p is   Relation-like   NAT  -defined   Function-like  V36() n -element   FinSequence-like   FinSubsequence-like   complex-yielding   ext-real-valued   real-valued   finite-support   Element of  the carrier of (TOP-REAL n)
 
(Seg n) \ X is  V16() V36() V155() V156() V157() V158() V159() V160()  Element of  bool NAT
 
 card ((Seg n) \ X) is   ordinal   natural  V11()  real   ext-real   non  negative  V36()  cardinal  V85() V86() V155() V156() V157() V158() V159() V160()  Element of  omega 
 
n - n1 is  V11()  real   ext-real  V85()  set 
 
 - n1 is  V11()  real   ext-real   non  positive  V85()  set 
 
n + (- n1) is  V11()  real   ext-real  V85()  set 
 
z is    set 
 
{z} is   non  empty   trivial  V36() 1 -element   set 
 
 sqr (f . p) is   Relation-like   NAT  -defined   REAL  -valued   Function-like  V36()  FinSequence-like   FinSubsequence-like   complex-yielding   ext-real-valued   real-valued   finite-support   FinSequence of  REAL 
 
 Sum (sqr (f . p)) is  V11()  real   ext-real   Element of  REAL 
 
|.(f . p).| is  V11()  real   ext-real   non  negative   Element of  REAL 
 
 sqrt (Sum (sqr (f . p))) is  V11()  real   ext-real   Element of  REAL 
 
z is   ordinal   natural  V11()  real   ext-real   non  negative  V36()  cardinal  V85()  set 
 
q . z is  V11()  real   ext-real   Element of  REAL 
 
(f . p) +* (z,(q . z)) is   Relation-like   NAT  -defined   Function-like  V36()  FinSequence-like   FinSubsequence-like   complex-yielding   ext-real-valued   real-valued   finite-support   set 
 
 len (f . p) is   ordinal   natural  V11()  real   ext-real   non  negative  V36()  cardinal  V85() V86() V155() V156() V157() V158() V159() V160()  Element of  NAT 
 
 dom (f . p) is  V36() n -element  V155() V156() V157() V158() V159() V160()  Element of  bool NAT
 
h is   ordinal   natural  V11()  real   ext-real   non  negative  V36()  cardinal  V85()  set 
 
((f . p) +* (z,(q . z))) . h is  V11()  real   ext-real   Element of  REAL 
 
q . h is  V11()  real   ext-real   Element of  REAL 
 
(f . p) . h is  V11()  real   ext-real   Element of  REAL 
 
 len ((f . p) +* (z,(q . z))) is   ordinal   natural  V11()  real   ext-real   non  negative  V36()  cardinal  V85() V86() V155() V156() V157() V158() V159() V160()  Element of  NAT 
 
 len q is   ordinal   natural  V11()  real   ext-real   non  negative  V36()  cardinal  V85() V86() V155() V156() V157() V158() V159() V160()  Element of  NAT 
 
(f . p) . z is  V11()  real   ext-real   Element of  REAL 
 
((f . p) . z) ^2  is  V11()  real   ext-real   Element of  REAL 
 
((f . p) . z) * ((f . p) . z) is  V11()  real   ext-real   set 
 
(Sum (sqr (f . p))) - (((f . p) . z) ^2) is  V11()  real   ext-real   Element of  REAL 
 
 - (((f . p) . z) ^2) is  V11()  real   ext-real   set 
 
(Sum (sqr (f . p))) + (- (((f . p) . z) ^2)) is  V11()  real   ext-real   set 
 
(q . z) ^2  is  V11()  real   ext-real   Element of  REAL 
 
(q . z) * (q . z) is  V11()  real   ext-real   set 
 
((Sum (sqr (f . p))) - (((f . p) . z) ^2)) + ((q . z) ^2) is  V11()  real   ext-real   Element of  REAL 
 
 - (q . z) is  V11()  real   ext-real   Element of  REAL 
 
1 + 1 is   non  empty   ordinal   natural  V11()  real   ext-real   positive   non  negative  V36()  cardinal  V85() V86() V155() V156() V157() V158() V159() V160()  Element of  NAT 
 
 - ((f . p) . z) is  V11()  real   ext-real   Element of  REAL 
 
(f . p) +* (z,(- ((f . p) . z))) is   Relation-like   NAT  -defined   Function-like  V36()  FinSequence-like   FinSubsequence-like   complex-yielding   ext-real-valued   real-valued   finite-support   set 
 
h is   non  empty   Relation-like   the carrier of (TOP-REAL n) -defined   the carrier of (TOP-REAL n) -valued   Function-like   total   quasi_total   additive   FinSequence-yielding   homogeneous   Function-yielding  V235()  Element of  bool [: the carrier of (TOP-REAL n), the carrier of (TOP-REAL n):]
 
h . (f . p) is   Relation-like   NAT  -defined   Function-like  V36() n -element   FinSequence-like   FinSubsequence-like   complex-yielding   ext-real-valued   real-valued   finite-support   Element of  the carrier of (TOP-REAL n)
 
h * f is   non  empty   Relation-like   the carrier of (TOP-REAL n) -defined   the carrier of (TOP-REAL n) -defined   the carrier of (TOP-REAL n) -defined   the carrier of (TOP-REAL n) -valued   the carrier of (TOP-REAL n) -valued   the carrier of (TOP-REAL n) -valued   Function-like   total   total   total   quasi_total   quasi_total   quasi_total   additive   FinSequence-yielding   homogeneous   Function-yielding  V235()  Element of  bool [: the carrier of (TOP-REAL n), the carrier of (TOP-REAL n):]
 
 dom (h * f) is   non  empty   set 
 
(h * f) . p is   Relation-like   NAT  -defined   Function-like  V36() n -element   FinSequence-like   FinSubsequence-like   complex-yielding   ext-real-valued   real-valued   finite-support   Element of  the carrier of (TOP-REAL n)
 
 - (q . z) is  V11()  real   ext-real   Element of  REAL