begin
theorem
(
(AffineMap ((1 : ( ( ) ( non empty V21() V22() V23() V27() V28() V29() V30() ext-real non negative V50() V51() V52() V53() V54() V55() V56() ) Element of NAT : ( ( ) ( non empty V21() V22() V23() V51() V52() V53() V54() V55() V56() V57() ) Element of K19(REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) : ( ( ) ( ) set ) ) ) / 2 : ( ( ) ( non empty V21() V22() V23() V27() V28() V29() V30() ext-real non negative V50() V51() V52() V53() V54() V55() V56() ) Element of NAT : ( ( ) ( non empty V21() V22() V23() V51() V52() V53() V54() V55() V56() V57() ) Element of K19(REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( ) ( V28() V29() ext-real ) Element of REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) ,0 : ( ( ) ( V21() V22() V23() V27() V28() V29() V30() ext-real non negative V50() V51() V52() V53() V54() V55() V56() ) Element of NAT : ( ( ) ( non empty V21() V22() V23() V51() V52() V53() V54() V55() V56() V57() ) Element of K19(REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) : ( ( ) ( ) set ) ) ) )) : ( (
V6()
V18(
REAL : ( ( ) ( non
empty V51()
V52()
V53()
V57()
V62() )
set ) ,
REAL : ( ( ) ( non
empty V51()
V52()
V53()
V57()
V62() )
set ) ) ) (
Relation-like V6() non
empty total V18(
REAL : ( ( ) ( non
empty V51()
V52()
V53()
V57()
V62() )
set ) ,
REAL : ( ( ) ( non
empty V51()
V52()
V53()
V57()
V62() )
set ) )
V34()
V35()
V36()
continuous )
Element of
K19(
K20(
REAL : ( ( ) ( non
empty V51()
V52()
V53()
V57()
V62() )
set ) ,
REAL : ( ( ) ( non
empty V51()
V52()
V53()
V57()
V62() )
set ) ) : ( ( ) (
Relation-like V34()
V35()
V36() )
set ) ) : ( ( ) ( )
set ) )
- ((1 : ( ( ) ( non empty V21() V22() V23() V27() V28() V29() V30() ext-real non negative V50() V51() V52() V53() V54() V55() V56() ) Element of NAT : ( ( ) ( non empty V21() V22() V23() V51() V52() V53() V54() V55() V56() V57() ) Element of K19(REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) : ( ( ) ( ) set ) ) ) / 4 : ( ( ) ( non empty V21() V22() V23() V27() V28() V29() V30() ext-real non negative V50() V51() V52() V53() V54() V55() V56() ) Element of NAT : ( ( ) ( non empty V21() V22() V23() V51() V52() V53() V54() V55() V56() V57() ) Element of K19(REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( ) ( V28() V29() ext-real ) Element of REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) (#) (sin : ( ( V6() V18( REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) , REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) ) ( Relation-like V6() non empty total V18( REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) , REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) V34() V35() V36() continuous ) Element of K19(K20(REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ,REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) : ( ( ) ( Relation-like V34() V35() V36() ) set ) ) : ( ( ) ( ) set ) ) * (AffineMap (2 : ( ( ) ( non empty V21() V22() V23() V27() V28() V29() V30() ext-real non negative V50() V51() V52() V53() V54() V55() V56() ) Element of NAT : ( ( ) ( non empty V21() V22() V23() V51() V52() V53() V54() V55() V56() V57() ) Element of K19(REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) : ( ( ) ( ) set ) ) ) ,0 : ( ( ) ( V21() V22() V23() V27() V28() V29() V30() ext-real non negative V50() V51() V52() V53() V54() V55() V56() ) Element of NAT : ( ( ) ( non empty V21() V22() V23() V51() V52() V53() V54() V55() V56() V57() ) Element of K19(REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) : ( ( ) ( ) set ) ) ) )) : ( ( V6() V18( REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) , REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) ) ( Relation-like V6() V7() non empty total V18( REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) , REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) V19( REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) V20( REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) , REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) V34() V35() V36() continuous ) Element of K19(K20(REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ,REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) : ( ( ) ( Relation-like V34() V35() V36() ) set ) ) : ( ( ) ( ) set ) ) ) : ( ( V6() ) ( Relation-like V6() non empty total V18( REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) , REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) V34() V35() V36() continuous ) Element of K19(K20(REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ,REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) : ( ( ) ( Relation-like V34() V35() V36() ) set ) ) : ( ( ) ( ) set ) ) ) : ( (
V6() ) (
Relation-like V6() non
empty total V18(
REAL : ( ( ) ( non
empty V51()
V52()
V53()
V57()
V62() )
set ) ,
REAL : ( ( ) ( non
empty V51()
V52()
V53()
V57()
V62() )
set ) )
V34()
V35()
V36()
continuous )
Element of
K19(
K20(
REAL : ( ( ) ( non
empty V51()
V52()
V53()
V57()
V62() )
set ) ,
REAL : ( ( ) ( non
empty V51()
V52()
V53()
V57()
V62() )
set ) ) : ( ( ) (
Relation-like V34()
V35()
V36() )
set ) ) : ( ( ) ( )
set ) ) : ( (
V6() ) (
Relation-like V6() non
empty total V18(
REAL : ( ( ) ( non
empty V51()
V52()
V53()
V57()
V62() )
set ) ,
REAL : ( ( ) ( non
empty V51()
V52()
V53()
V57()
V62() )
set ) )
V34()
V35()
V36()
continuous )
Element of
K19(
K20(
REAL : ( ( ) ( non
empty V51()
V52()
V53()
V57()
V62() )
set ) ,
REAL : ( ( ) ( non
empty V51()
V52()
V53()
V57()
V62() )
set ) ) : ( ( ) (
Relation-like V34()
V35()
V36() )
set ) ) : ( ( ) ( )
set ) )
is_differentiable_on REAL : ( ( ) ( non
empty V51()
V52()
V53()
V57()
V62() )
set ) & ( for
x being ( ( ) (
V28()
V29()
ext-real )
Real) holds
(((AffineMap ((1 : ( ( ) ( non empty V21() V22() V23() V27() V28() V29() V30() ext-real non negative V50() V51() V52() V53() V54() V55() V56() ) Element of NAT : ( ( ) ( non empty V21() V22() V23() V51() V52() V53() V54() V55() V56() V57() ) Element of K19(REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) : ( ( ) ( ) set ) ) ) / 2 : ( ( ) ( non empty V21() V22() V23() V27() V28() V29() V30() ext-real non negative V50() V51() V52() V53() V54() V55() V56() ) Element of NAT : ( ( ) ( non empty V21() V22() V23() V51() V52() V53() V54() V55() V56() V57() ) Element of K19(REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( ) ( V28() V29() ext-real ) Element of REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) ,0 : ( ( ) ( V21() V22() V23() V27() V28() V29() V30() ext-real non negative V50() V51() V52() V53() V54() V55() V56() ) Element of NAT : ( ( ) ( non empty V21() V22() V23() V51() V52() V53() V54() V55() V56() V57() ) Element of K19(REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) : ( ( ) ( ) set ) ) ) )) : ( ( V6() V18( REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) , REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) ) ( Relation-like V6() non empty total V18( REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) , REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) V34() V35() V36() continuous ) Element of K19(K20(REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ,REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) : ( ( ) ( Relation-like V34() V35() V36() ) set ) ) : ( ( ) ( ) set ) ) - ((1 : ( ( ) ( non empty V21() V22() V23() V27() V28() V29() V30() ext-real non negative V50() V51() V52() V53() V54() V55() V56() ) Element of NAT : ( ( ) ( non empty V21() V22() V23() V51() V52() V53() V54() V55() V56() V57() ) Element of K19(REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) : ( ( ) ( ) set ) ) ) / 4 : ( ( ) ( non empty V21() V22() V23() V27() V28() V29() V30() ext-real non negative V50() V51() V52() V53() V54() V55() V56() ) Element of NAT : ( ( ) ( non empty V21() V22() V23() V51() V52() V53() V54() V55() V56() V57() ) Element of K19(REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( ) ( V28() V29() ext-real ) Element of REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) (#) (sin : ( ( V6() V18( REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) , REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) ) ( Relation-like V6() non empty total V18( REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) , REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) V34() V35() V36() continuous ) Element of K19(K20(REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ,REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) : ( ( ) ( Relation-like V34() V35() V36() ) set ) ) : ( ( ) ( ) set ) ) * (AffineMap (2 : ( ( ) ( non empty V21() V22() V23() V27() V28() V29() V30() ext-real non negative V50() V51() V52() V53() V54() V55() V56() ) Element of NAT : ( ( ) ( non empty V21() V22() V23() V51() V52() V53() V54() V55() V56() V57() ) Element of K19(REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) : ( ( ) ( ) set ) ) ) ,0 : ( ( ) ( V21() V22() V23() V27() V28() V29() V30() ext-real non negative V50() V51() V52() V53() V54() V55() V56() ) Element of NAT : ( ( ) ( non empty V21() V22() V23() V51() V52() V53() V54() V55() V56() V57() ) Element of K19(REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) : ( ( ) ( ) set ) ) ) )) : ( ( V6() V18( REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) , REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) ) ( Relation-like V6() V7() non empty total V18( REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) , REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) V19( REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) V20( REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) , REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) V34() V35() V36() continuous ) Element of K19(K20(REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ,REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) : ( ( ) ( Relation-like V34() V35() V36() ) set ) ) : ( ( ) ( ) set ) ) ) : ( ( V6() ) ( Relation-like V6() non empty total V18( REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) , REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) V34() V35() V36() continuous ) Element of K19(K20(REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ,REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) : ( ( ) ( Relation-like V34() V35() V36() ) set ) ) : ( ( ) ( ) set ) ) ) : ( ( V6() ) ( Relation-like V6() non empty total V18( REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) , REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) V34() V35() V36() continuous ) Element of K19(K20(REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ,REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) : ( ( ) ( Relation-like V34() V35() V36() ) set ) ) : ( ( ) ( ) set ) ) ) : ( ( V6() ) ( Relation-like V6() non empty total V18( REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) , REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) V34() V35() V36() continuous ) Element of K19(K20(REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ,REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) : ( ( ) ( Relation-like V34() V35() V36() ) set ) ) : ( ( ) ( ) set ) ) `| REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) : ( (
V6() ) (
Relation-like V6()
V34()
V35()
V36() )
Element of
K19(
K20(
REAL : ( ( ) ( non
empty V51()
V52()
V53()
V57()
V62() )
set ) ,
REAL : ( ( ) ( non
empty V51()
V52()
V53()
V57()
V62() )
set ) ) : ( ( ) (
Relation-like V34()
V35()
V36() )
set ) ) : ( ( ) ( )
set ) )
. x : ( ( ) (
V28()
V29()
ext-real )
Real) : ( ( ) (
V28()
V29()
ext-real )
Element of
REAL : ( ( ) ( non
empty V51()
V52()
V53()
V57()
V62() )
set ) )
= (sin : ( ( V6() V18( REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) , REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) ) ( Relation-like V6() non empty total V18( REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) , REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) V34() V35() V36() continuous ) Element of K19(K20(REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ,REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) : ( ( ) ( Relation-like V34() V35() V36() ) set ) ) : ( ( ) ( ) set ) ) . x : ( ( ) ( V28() V29() ext-real ) Real) ) : ( ( ) (
V28()
V29()
ext-real )
Element of
REAL : ( ( ) ( non
empty V51()
V52()
V53()
V57()
V62() )
set ) )
^2 : ( ( ) (
V28()
V29()
ext-real )
Element of
REAL : ( ( ) ( non
empty V51()
V52()
V53()
V57()
V62() )
set ) ) ) ) ;
theorem
(
(AffineMap ((1 : ( ( ) ( non empty V21() V22() V23() V27() V28() V29() V30() ext-real non negative V50() V51() V52() V53() V54() V55() V56() ) Element of NAT : ( ( ) ( non empty V21() V22() V23() V51() V52() V53() V54() V55() V56() V57() ) Element of K19(REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) : ( ( ) ( ) set ) ) ) / 2 : ( ( ) ( non empty V21() V22() V23() V27() V28() V29() V30() ext-real non negative V50() V51() V52() V53() V54() V55() V56() ) Element of NAT : ( ( ) ( non empty V21() V22() V23() V51() V52() V53() V54() V55() V56() V57() ) Element of K19(REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( ) ( V28() V29() ext-real ) Element of REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) ,0 : ( ( ) ( V21() V22() V23() V27() V28() V29() V30() ext-real non negative V50() V51() V52() V53() V54() V55() V56() ) Element of NAT : ( ( ) ( non empty V21() V22() V23() V51() V52() V53() V54() V55() V56() V57() ) Element of K19(REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) : ( ( ) ( ) set ) ) ) )) : ( (
V6()
V18(
REAL : ( ( ) ( non
empty V51()
V52()
V53()
V57()
V62() )
set ) ,
REAL : ( ( ) ( non
empty V51()
V52()
V53()
V57()
V62() )
set ) ) ) (
Relation-like V6() non
empty total V18(
REAL : ( ( ) ( non
empty V51()
V52()
V53()
V57()
V62() )
set ) ,
REAL : ( ( ) ( non
empty V51()
V52()
V53()
V57()
V62() )
set ) )
V34()
V35()
V36()
continuous )
Element of
K19(
K20(
REAL : ( ( ) ( non
empty V51()
V52()
V53()
V57()
V62() )
set ) ,
REAL : ( ( ) ( non
empty V51()
V52()
V53()
V57()
V62() )
set ) ) : ( ( ) (
Relation-like V34()
V35()
V36() )
set ) ) : ( ( ) ( )
set ) )
+ ((1 : ( ( ) ( non empty V21() V22() V23() V27() V28() V29() V30() ext-real non negative V50() V51() V52() V53() V54() V55() V56() ) Element of NAT : ( ( ) ( non empty V21() V22() V23() V51() V52() V53() V54() V55() V56() V57() ) Element of K19(REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) : ( ( ) ( ) set ) ) ) / 4 : ( ( ) ( non empty V21() V22() V23() V27() V28() V29() V30() ext-real non negative V50() V51() V52() V53() V54() V55() V56() ) Element of NAT : ( ( ) ( non empty V21() V22() V23() V51() V52() V53() V54() V55() V56() V57() ) Element of K19(REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( ) ( V28() V29() ext-real ) Element of REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) (#) (sin : ( ( V6() V18( REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) , REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) ) ( Relation-like V6() non empty total V18( REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) , REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) V34() V35() V36() continuous ) Element of K19(K20(REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ,REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) : ( ( ) ( Relation-like V34() V35() V36() ) set ) ) : ( ( ) ( ) set ) ) * (AffineMap (2 : ( ( ) ( non empty V21() V22() V23() V27() V28() V29() V30() ext-real non negative V50() V51() V52() V53() V54() V55() V56() ) Element of NAT : ( ( ) ( non empty V21() V22() V23() V51() V52() V53() V54() V55() V56() V57() ) Element of K19(REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) : ( ( ) ( ) set ) ) ) ,0 : ( ( ) ( V21() V22() V23() V27() V28() V29() V30() ext-real non negative V50() V51() V52() V53() V54() V55() V56() ) Element of NAT : ( ( ) ( non empty V21() V22() V23() V51() V52() V53() V54() V55() V56() V57() ) Element of K19(REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) : ( ( ) ( ) set ) ) ) )) : ( ( V6() V18( REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) , REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) ) ( Relation-like V6() V7() non empty total V18( REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) , REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) V19( REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) V20( REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) , REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) V34() V35() V36() continuous ) Element of K19(K20(REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ,REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) : ( ( ) ( Relation-like V34() V35() V36() ) set ) ) : ( ( ) ( ) set ) ) ) : ( ( V6() ) ( Relation-like V6() non empty total V18( REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) , REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) V34() V35() V36() continuous ) Element of K19(K20(REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ,REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) : ( ( ) ( Relation-like V34() V35() V36() ) set ) ) : ( ( ) ( ) set ) ) ) : ( (
V6() ) (
Relation-like V6() non
empty total V18(
REAL : ( ( ) ( non
empty V51()
V52()
V53()
V57()
V62() )
set ) ,
REAL : ( ( ) ( non
empty V51()
V52()
V53()
V57()
V62() )
set ) )
V34()
V35()
V36()
continuous )
Element of
K19(
K20(
REAL : ( ( ) ( non
empty V51()
V52()
V53()
V57()
V62() )
set ) ,
REAL : ( ( ) ( non
empty V51()
V52()
V53()
V57()
V62() )
set ) ) : ( ( ) (
Relation-like V34()
V35()
V36() )
set ) ) : ( ( ) ( )
set ) ) : ( (
V6() ) (
Relation-like V6() non
empty total V18(
REAL : ( ( ) ( non
empty V51()
V52()
V53()
V57()
V62() )
set ) ,
REAL : ( ( ) ( non
empty V51()
V52()
V53()
V57()
V62() )
set ) )
V34()
V35()
V36()
continuous )
Element of
K19(
K20(
REAL : ( ( ) ( non
empty V51()
V52()
V53()
V57()
V62() )
set ) ,
REAL : ( ( ) ( non
empty V51()
V52()
V53()
V57()
V62() )
set ) ) : ( ( ) (
Relation-like V34()
V35()
V36() )
set ) ) : ( ( ) ( )
set ) )
is_differentiable_on REAL : ( ( ) ( non
empty V51()
V52()
V53()
V57()
V62() )
set ) & ( for
x being ( ( ) (
V28()
V29()
ext-real )
Real) holds
(((AffineMap ((1 : ( ( ) ( non empty V21() V22() V23() V27() V28() V29() V30() ext-real non negative V50() V51() V52() V53() V54() V55() V56() ) Element of NAT : ( ( ) ( non empty V21() V22() V23() V51() V52() V53() V54() V55() V56() V57() ) Element of K19(REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) : ( ( ) ( ) set ) ) ) / 2 : ( ( ) ( non empty V21() V22() V23() V27() V28() V29() V30() ext-real non negative V50() V51() V52() V53() V54() V55() V56() ) Element of NAT : ( ( ) ( non empty V21() V22() V23() V51() V52() V53() V54() V55() V56() V57() ) Element of K19(REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( ) ( V28() V29() ext-real ) Element of REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) ,0 : ( ( ) ( V21() V22() V23() V27() V28() V29() V30() ext-real non negative V50() V51() V52() V53() V54() V55() V56() ) Element of NAT : ( ( ) ( non empty V21() V22() V23() V51() V52() V53() V54() V55() V56() V57() ) Element of K19(REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) : ( ( ) ( ) set ) ) ) )) : ( ( V6() V18( REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) , REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) ) ( Relation-like V6() non empty total V18( REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) , REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) V34() V35() V36() continuous ) Element of K19(K20(REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ,REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) : ( ( ) ( Relation-like V34() V35() V36() ) set ) ) : ( ( ) ( ) set ) ) + ((1 : ( ( ) ( non empty V21() V22() V23() V27() V28() V29() V30() ext-real non negative V50() V51() V52() V53() V54() V55() V56() ) Element of NAT : ( ( ) ( non empty V21() V22() V23() V51() V52() V53() V54() V55() V56() V57() ) Element of K19(REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) : ( ( ) ( ) set ) ) ) / 4 : ( ( ) ( non empty V21() V22() V23() V27() V28() V29() V30() ext-real non negative V50() V51() V52() V53() V54() V55() V56() ) Element of NAT : ( ( ) ( non empty V21() V22() V23() V51() V52() V53() V54() V55() V56() V57() ) Element of K19(REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( ) ( V28() V29() ext-real ) Element of REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) (#) (sin : ( ( V6() V18( REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) , REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) ) ( Relation-like V6() non empty total V18( REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) , REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) V34() V35() V36() continuous ) Element of K19(K20(REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ,REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) : ( ( ) ( Relation-like V34() V35() V36() ) set ) ) : ( ( ) ( ) set ) ) * (AffineMap (2 : ( ( ) ( non empty V21() V22() V23() V27() V28() V29() V30() ext-real non negative V50() V51() V52() V53() V54() V55() V56() ) Element of NAT : ( ( ) ( non empty V21() V22() V23() V51() V52() V53() V54() V55() V56() V57() ) Element of K19(REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) : ( ( ) ( ) set ) ) ) ,0 : ( ( ) ( V21() V22() V23() V27() V28() V29() V30() ext-real non negative V50() V51() V52() V53() V54() V55() V56() ) Element of NAT : ( ( ) ( non empty V21() V22() V23() V51() V52() V53() V54() V55() V56() V57() ) Element of K19(REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) : ( ( ) ( ) set ) ) ) )) : ( ( V6() V18( REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) , REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) ) ( Relation-like V6() V7() non empty total V18( REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) , REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) V19( REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) V20( REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) , REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) V34() V35() V36() continuous ) Element of K19(K20(REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ,REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) : ( ( ) ( Relation-like V34() V35() V36() ) set ) ) : ( ( ) ( ) set ) ) ) : ( ( V6() ) ( Relation-like V6() non empty total V18( REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) , REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) V34() V35() V36() continuous ) Element of K19(K20(REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ,REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) : ( ( ) ( Relation-like V34() V35() V36() ) set ) ) : ( ( ) ( ) set ) ) ) : ( ( V6() ) ( Relation-like V6() non empty total V18( REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) , REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) V34() V35() V36() continuous ) Element of K19(K20(REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ,REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) : ( ( ) ( Relation-like V34() V35() V36() ) set ) ) : ( ( ) ( ) set ) ) ) : ( ( V6() ) ( Relation-like V6() non empty total V18( REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) , REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) V34() V35() V36() continuous ) Element of K19(K20(REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ,REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) : ( ( ) ( Relation-like V34() V35() V36() ) set ) ) : ( ( ) ( ) set ) ) `| REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) : ( (
V6() ) (
Relation-like V6()
V34()
V35()
V36() )
Element of
K19(
K20(
REAL : ( ( ) ( non
empty V51()
V52()
V53()
V57()
V62() )
set ) ,
REAL : ( ( ) ( non
empty V51()
V52()
V53()
V57()
V62() )
set ) ) : ( ( ) (
Relation-like V34()
V35()
V36() )
set ) ) : ( ( ) ( )
set ) )
. x : ( ( ) (
V28()
V29()
ext-real )
Real) : ( ( ) (
V28()
V29()
ext-real )
Element of
REAL : ( ( ) ( non
empty V51()
V52()
V53()
V57()
V62() )
set ) )
= (cos : ( ( V6() V18( REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) , REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) ) ( Relation-like V6() non empty total V18( REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) , REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) V34() V35() V36() continuous ) Element of K19(K20(REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ,REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) : ( ( ) ( Relation-like V34() V35() V36() ) set ) ) : ( ( ) ( ) set ) ) . x : ( ( ) ( V28() V29() ext-real ) Real) ) : ( ( ) (
V28()
V29()
ext-real )
Element of
REAL : ( ( ) ( non
empty V51()
V52()
V53()
V57()
V62() )
set ) )
^2 : ( ( ) (
V28()
V29()
ext-real )
Element of
REAL : ( ( ) ( non
empty V51()
V52()
V53()
V57()
V62() )
set ) ) ) ) ;
theorem
for
n being ( ( ) (
V21()
V22()
V23()
V27()
V28()
V29()
V30()
ext-real non
negative V50()
V51()
V52()
V53()
V54()
V55()
V56() )
Element of
NAT : ( ( ) ( non
empty V21()
V22()
V23()
V51()
V52()
V53()
V54()
V55()
V56()
V57() )
Element of
K19(
REAL : ( ( ) ( non
empty V51()
V52()
V53()
V57()
V62() )
set ) ) : ( ( ) ( )
set ) ) ) holds
(
(1 : ( ( ) ( non empty V21() V22() V23() V27() V28() V29() V30() ext-real non negative V50() V51() V52() V53() V54() V55() V56() ) Element of NAT : ( ( ) ( non empty V21() V22() V23() V51() V52() V53() V54() V55() V56() V57() ) Element of K19(REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) : ( ( ) ( ) set ) ) ) / (n : ( ( ) ( V21() V22() V23() V27() V28() V29() V30() ext-real non negative V50() V51() V52() V53() V54() V55() V56() ) Element of NAT : ( ( ) ( non empty V21() V22() V23() V51() V52() V53() V54() V55() V56() V57() ) Element of K19(REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) : ( ( ) ( ) set ) ) ) + 1 : ( ( ) ( non empty V21() V22() V23() V27() V28() V29() V30() ext-real non negative V50() V51() V52() V53() V54() V55() V56() ) Element of NAT : ( ( ) ( non empty V21() V22() V23() V51() V52() V53() V54() V55() V56() V57() ) Element of K19(REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( ) ( non empty V21() V22() V23() V27() V28() V29() V30() ext-real non negative ) Element of REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) ) : ( ( ) (
V28()
V29()
ext-real )
Element of
REAL : ( ( ) ( non
empty V51()
V52()
V53()
V57()
V62() )
set ) )
(#) ((#Z (n : ( ( ) ( V21() V22() V23() V27() V28() V29() V30() ext-real non negative V50() V51() V52() V53() V54() V55() V56() ) Element of NAT : ( ( ) ( non empty V21() V22() V23() V51() V52() V53() V54() V55() V56() V57() ) Element of K19(REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) : ( ( ) ( ) set ) ) ) + 1 : ( ( ) ( non empty V21() V22() V23() V27() V28() V29() V30() ext-real non negative V50() V51() V52() V53() V54() V55() V56() ) Element of NAT : ( ( ) ( non empty V21() V22() V23() V51() V52() V53() V54() V55() V56() V57() ) Element of K19(REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( ) ( non empty V21() V22() V23() V27() V28() V29() V30() ext-real non negative ) Element of REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) ) : ( ( V6() V18( REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) , REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) ) ( Relation-like V6() non empty total V18( REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) , REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) V34() V35() V36() ) Element of K19(K20(REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ,REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) : ( ( ) ( Relation-like V34() V35() V36() ) set ) ) : ( ( ) ( ) set ) ) * sin : ( ( V6() V18( REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) , REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) ) ( Relation-like V6() non empty total V18( REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) , REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) V34() V35() V36() continuous ) Element of K19(K20(REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ,REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) : ( ( ) ( Relation-like V34() V35() V36() ) set ) ) : ( ( ) ( ) set ) ) ) : ( (
V6() ) (
Relation-like V6() non
empty total V18(
REAL : ( ( ) ( non
empty V51()
V52()
V53()
V57()
V62() )
set ) ,
REAL : ( ( ) ( non
empty V51()
V52()
V53()
V57()
V62() )
set ) )
V34()
V35()
V36() )
Element of
K19(
K20(
REAL : ( ( ) ( non
empty V51()
V52()
V53()
V57()
V62() )
set ) ,
REAL : ( ( ) ( non
empty V51()
V52()
V53()
V57()
V62() )
set ) ) : ( ( ) (
Relation-like V34()
V35()
V36() )
set ) ) : ( ( ) ( )
set ) ) : ( (
V6() ) (
Relation-like V6() non
empty total V18(
REAL : ( ( ) ( non
empty V51()
V52()
V53()
V57()
V62() )
set ) ,
REAL : ( ( ) ( non
empty V51()
V52()
V53()
V57()
V62() )
set ) )
V34()
V35()
V36() )
Element of
K19(
K20(
REAL : ( ( ) ( non
empty V51()
V52()
V53()
V57()
V62() )
set ) ,
REAL : ( ( ) ( non
empty V51()
V52()
V53()
V57()
V62() )
set ) ) : ( ( ) (
Relation-like V34()
V35()
V36() )
set ) ) : ( ( ) ( )
set ) )
is_differentiable_on REAL : ( ( ) ( non
empty V51()
V52()
V53()
V57()
V62() )
set ) & ( for
x being ( ( ) (
V28()
V29()
ext-real )
Real) holds
(((1 : ( ( ) ( non empty V21() V22() V23() V27() V28() V29() V30() ext-real non negative V50() V51() V52() V53() V54() V55() V56() ) Element of NAT : ( ( ) ( non empty V21() V22() V23() V51() V52() V53() V54() V55() V56() V57() ) Element of K19(REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) : ( ( ) ( ) set ) ) ) / (n : ( ( ) ( V21() V22() V23() V27() V28() V29() V30() ext-real non negative V50() V51() V52() V53() V54() V55() V56() ) Element of NAT : ( ( ) ( non empty V21() V22() V23() V51() V52() V53() V54() V55() V56() V57() ) Element of K19(REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) : ( ( ) ( ) set ) ) ) + 1 : ( ( ) ( non empty V21() V22() V23() V27() V28() V29() V30() ext-real non negative V50() V51() V52() V53() V54() V55() V56() ) Element of NAT : ( ( ) ( non empty V21() V22() V23() V51() V52() V53() V54() V55() V56() V57() ) Element of K19(REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( ) ( non empty V21() V22() V23() V27() V28() V29() V30() ext-real non negative ) Element of REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) ) : ( ( ) ( V28() V29() ext-real ) Element of REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) (#) ((#Z (n : ( ( ) ( V21() V22() V23() V27() V28() V29() V30() ext-real non negative V50() V51() V52() V53() V54() V55() V56() ) Element of NAT : ( ( ) ( non empty V21() V22() V23() V51() V52() V53() V54() V55() V56() V57() ) Element of K19(REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) : ( ( ) ( ) set ) ) ) + 1 : ( ( ) ( non empty V21() V22() V23() V27() V28() V29() V30() ext-real non negative V50() V51() V52() V53() V54() V55() V56() ) Element of NAT : ( ( ) ( non empty V21() V22() V23() V51() V52() V53() V54() V55() V56() V57() ) Element of K19(REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( ) ( non empty V21() V22() V23() V27() V28() V29() V30() ext-real non negative ) Element of REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) ) : ( ( V6() V18( REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) , REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) ) ( Relation-like V6() non empty total V18( REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) , REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) V34() V35() V36() ) Element of K19(K20(REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ,REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) : ( ( ) ( Relation-like V34() V35() V36() ) set ) ) : ( ( ) ( ) set ) ) * sin : ( ( V6() V18( REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) , REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) ) ( Relation-like V6() non empty total V18( REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) , REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) V34() V35() V36() continuous ) Element of K19(K20(REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ,REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) : ( ( ) ( Relation-like V34() V35() V36() ) set ) ) : ( ( ) ( ) set ) ) ) : ( ( V6() ) ( Relation-like V6() non empty total V18( REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) , REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) V34() V35() V36() ) Element of K19(K20(REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ,REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) : ( ( ) ( Relation-like V34() V35() V36() ) set ) ) : ( ( ) ( ) set ) ) ) : ( ( V6() ) ( Relation-like V6() non empty total V18( REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) , REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) V34() V35() V36() ) Element of K19(K20(REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ,REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) : ( ( ) ( Relation-like V34() V35() V36() ) set ) ) : ( ( ) ( ) set ) ) `| REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) : ( (
V6() ) (
Relation-like V6()
V34()
V35()
V36() )
Element of
K19(
K20(
REAL : ( ( ) ( non
empty V51()
V52()
V53()
V57()
V62() )
set ) ,
REAL : ( ( ) ( non
empty V51()
V52()
V53()
V57()
V62() )
set ) ) : ( ( ) (
Relation-like V34()
V35()
V36() )
set ) ) : ( ( ) ( )
set ) )
. x : ( ( ) (
V28()
V29()
ext-real )
Real) : ( ( ) (
V28()
V29()
ext-real )
Element of
REAL : ( ( ) ( non
empty V51()
V52()
V53()
V57()
V62() )
set ) )
= ((sin : ( ( V6() V18( REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) , REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) ) ( Relation-like V6() non empty total V18( REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) , REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) V34() V35() V36() continuous ) Element of K19(K20(REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ,REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) : ( ( ) ( Relation-like V34() V35() V36() ) set ) ) : ( ( ) ( ) set ) ) . x : ( ( ) ( V28() V29() ext-real ) Real) ) : ( ( ) ( V28() V29() ext-real ) Element of REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) #Z n : ( ( ) ( V21() V22() V23() V27() V28() V29() V30() ext-real non negative V50() V51() V52() V53() V54() V55() V56() ) Element of NAT : ( ( ) ( non empty V21() V22() V23() V51() V52() V53() V54() V55() V56() V57() ) Element of K19(REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( ) (
V28()
V29()
ext-real )
Element of
REAL : ( ( ) ( non
empty V51()
V52()
V53()
V57()
V62() )
set ) )
* (cos : ( ( V6() V18( REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) , REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) ) ( Relation-like V6() non empty total V18( REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) , REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) V34() V35() V36() continuous ) Element of K19(K20(REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ,REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) : ( ( ) ( Relation-like V34() V35() V36() ) set ) ) : ( ( ) ( ) set ) ) . x : ( ( ) ( V28() V29() ext-real ) Real) ) : ( ( ) (
V28()
V29()
ext-real )
Element of
REAL : ( ( ) ( non
empty V51()
V52()
V53()
V57()
V62() )
set ) ) : ( ( ) (
V28()
V29()
ext-real )
Element of
REAL : ( ( ) ( non
empty V51()
V52()
V53()
V57()
V62() )
set ) ) ) ) ;
theorem
for
n being ( ( ) (
V21()
V22()
V23()
V27()
V28()
V29()
V30()
ext-real non
negative V50()
V51()
V52()
V53()
V54()
V55()
V56() )
Element of
NAT : ( ( ) ( non
empty V21()
V22()
V23()
V51()
V52()
V53()
V54()
V55()
V56()
V57() )
Element of
K19(
REAL : ( ( ) ( non
empty V51()
V52()
V53()
V57()
V62() )
set ) ) : ( ( ) ( )
set ) ) ) holds
(
(- (1 : ( ( ) ( non empty V21() V22() V23() V27() V28() V29() V30() ext-real non negative V50() V51() V52() V53() V54() V55() V56() ) Element of NAT : ( ( ) ( non empty V21() V22() V23() V51() V52() V53() V54() V55() V56() V57() ) Element of K19(REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) : ( ( ) ( ) set ) ) ) / (n : ( ( ) ( V21() V22() V23() V27() V28() V29() V30() ext-real non negative V50() V51() V52() V53() V54() V55() V56() ) Element of NAT : ( ( ) ( non empty V21() V22() V23() V51() V52() V53() V54() V55() V56() V57() ) Element of K19(REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) : ( ( ) ( ) set ) ) ) + 1 : ( ( ) ( non empty V21() V22() V23() V27() V28() V29() V30() ext-real non negative V50() V51() V52() V53() V54() V55() V56() ) Element of NAT : ( ( ) ( non empty V21() V22() V23() V51() V52() V53() V54() V55() V56() V57() ) Element of K19(REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( ) ( non empty V21() V22() V23() V27() V28() V29() V30() ext-real non negative ) Element of REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) ) : ( ( ) ( V28() V29() ext-real ) Element of REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) ) : ( ( ) (
V28()
V29()
ext-real )
Element of
REAL : ( ( ) ( non
empty V51()
V52()
V53()
V57()
V62() )
set ) )
(#) ((#Z (n : ( ( ) ( V21() V22() V23() V27() V28() V29() V30() ext-real non negative V50() V51() V52() V53() V54() V55() V56() ) Element of NAT : ( ( ) ( non empty V21() V22() V23() V51() V52() V53() V54() V55() V56() V57() ) Element of K19(REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) : ( ( ) ( ) set ) ) ) + 1 : ( ( ) ( non empty V21() V22() V23() V27() V28() V29() V30() ext-real non negative V50() V51() V52() V53() V54() V55() V56() ) Element of NAT : ( ( ) ( non empty V21() V22() V23() V51() V52() V53() V54() V55() V56() V57() ) Element of K19(REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( ) ( non empty V21() V22() V23() V27() V28() V29() V30() ext-real non negative ) Element of REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) ) : ( ( V6() V18( REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) , REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) ) ( Relation-like V6() non empty total V18( REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) , REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) V34() V35() V36() ) Element of K19(K20(REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ,REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) : ( ( ) ( Relation-like V34() V35() V36() ) set ) ) : ( ( ) ( ) set ) ) * cos : ( ( V6() V18( REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) , REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) ) ( Relation-like V6() non empty total V18( REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) , REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) V34() V35() V36() continuous ) Element of K19(K20(REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ,REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) : ( ( ) ( Relation-like V34() V35() V36() ) set ) ) : ( ( ) ( ) set ) ) ) : ( (
V6() ) (
Relation-like V6() non
empty total V18(
REAL : ( ( ) ( non
empty V51()
V52()
V53()
V57()
V62() )
set ) ,
REAL : ( ( ) ( non
empty V51()
V52()
V53()
V57()
V62() )
set ) )
V34()
V35()
V36() )
Element of
K19(
K20(
REAL : ( ( ) ( non
empty V51()
V52()
V53()
V57()
V62() )
set ) ,
REAL : ( ( ) ( non
empty V51()
V52()
V53()
V57()
V62() )
set ) ) : ( ( ) (
Relation-like V34()
V35()
V36() )
set ) ) : ( ( ) ( )
set ) ) : ( (
V6() ) (
Relation-like V6() non
empty total V18(
REAL : ( ( ) ( non
empty V51()
V52()
V53()
V57()
V62() )
set ) ,
REAL : ( ( ) ( non
empty V51()
V52()
V53()
V57()
V62() )
set ) )
V34()
V35()
V36() )
Element of
K19(
K20(
REAL : ( ( ) ( non
empty V51()
V52()
V53()
V57()
V62() )
set ) ,
REAL : ( ( ) ( non
empty V51()
V52()
V53()
V57()
V62() )
set ) ) : ( ( ) (
Relation-like V34()
V35()
V36() )
set ) ) : ( ( ) ( )
set ) )
is_differentiable_on REAL : ( ( ) ( non
empty V51()
V52()
V53()
V57()
V62() )
set ) & ( for
x being ( ( ) (
V28()
V29()
ext-real )
Real) holds
(((- (1 : ( ( ) ( non empty V21() V22() V23() V27() V28() V29() V30() ext-real non negative V50() V51() V52() V53() V54() V55() V56() ) Element of NAT : ( ( ) ( non empty V21() V22() V23() V51() V52() V53() V54() V55() V56() V57() ) Element of K19(REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) : ( ( ) ( ) set ) ) ) / (n : ( ( ) ( V21() V22() V23() V27() V28() V29() V30() ext-real non negative V50() V51() V52() V53() V54() V55() V56() ) Element of NAT : ( ( ) ( non empty V21() V22() V23() V51() V52() V53() V54() V55() V56() V57() ) Element of K19(REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) : ( ( ) ( ) set ) ) ) + 1 : ( ( ) ( non empty V21() V22() V23() V27() V28() V29() V30() ext-real non negative V50() V51() V52() V53() V54() V55() V56() ) Element of NAT : ( ( ) ( non empty V21() V22() V23() V51() V52() V53() V54() V55() V56() V57() ) Element of K19(REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( ) ( non empty V21() V22() V23() V27() V28() V29() V30() ext-real non negative ) Element of REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) ) : ( ( ) ( V28() V29() ext-real ) Element of REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) ) : ( ( ) ( V28() V29() ext-real ) Element of REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) (#) ((#Z (n : ( ( ) ( V21() V22() V23() V27() V28() V29() V30() ext-real non negative V50() V51() V52() V53() V54() V55() V56() ) Element of NAT : ( ( ) ( non empty V21() V22() V23() V51() V52() V53() V54() V55() V56() V57() ) Element of K19(REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) : ( ( ) ( ) set ) ) ) + 1 : ( ( ) ( non empty V21() V22() V23() V27() V28() V29() V30() ext-real non negative V50() V51() V52() V53() V54() V55() V56() ) Element of NAT : ( ( ) ( non empty V21() V22() V23() V51() V52() V53() V54() V55() V56() V57() ) Element of K19(REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( ) ( non empty V21() V22() V23() V27() V28() V29() V30() ext-real non negative ) Element of REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) ) : ( ( V6() V18( REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) , REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) ) ( Relation-like V6() non empty total V18( REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) , REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) V34() V35() V36() ) Element of K19(K20(REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ,REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) : ( ( ) ( Relation-like V34() V35() V36() ) set ) ) : ( ( ) ( ) set ) ) * cos : ( ( V6() V18( REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) , REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) ) ( Relation-like V6() non empty total V18( REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) , REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) V34() V35() V36() continuous ) Element of K19(K20(REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ,REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) : ( ( ) ( Relation-like V34() V35() V36() ) set ) ) : ( ( ) ( ) set ) ) ) : ( ( V6() ) ( Relation-like V6() non empty total V18( REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) , REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) V34() V35() V36() ) Element of K19(K20(REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ,REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) : ( ( ) ( Relation-like V34() V35() V36() ) set ) ) : ( ( ) ( ) set ) ) ) : ( ( V6() ) ( Relation-like V6() non empty total V18( REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) , REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) V34() V35() V36() ) Element of K19(K20(REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ,REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) : ( ( ) ( Relation-like V34() V35() V36() ) set ) ) : ( ( ) ( ) set ) ) `| REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) : ( (
V6() ) (
Relation-like V6()
V34()
V35()
V36() )
Element of
K19(
K20(
REAL : ( ( ) ( non
empty V51()
V52()
V53()
V57()
V62() )
set ) ,
REAL : ( ( ) ( non
empty V51()
V52()
V53()
V57()
V62() )
set ) ) : ( ( ) (
Relation-like V34()
V35()
V36() )
set ) ) : ( ( ) ( )
set ) )
. x : ( ( ) (
V28()
V29()
ext-real )
Real) : ( ( ) (
V28()
V29()
ext-real )
Element of
REAL : ( ( ) ( non
empty V51()
V52()
V53()
V57()
V62() )
set ) )
= ((cos : ( ( V6() V18( REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) , REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) ) ( Relation-like V6() non empty total V18( REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) , REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) V34() V35() V36() continuous ) Element of K19(K20(REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ,REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) : ( ( ) ( Relation-like V34() V35() V36() ) set ) ) : ( ( ) ( ) set ) ) . x : ( ( ) ( V28() V29() ext-real ) Real) ) : ( ( ) ( V28() V29() ext-real ) Element of REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) #Z n : ( ( ) ( V21() V22() V23() V27() V28() V29() V30() ext-real non negative V50() V51() V52() V53() V54() V55() V56() ) Element of NAT : ( ( ) ( non empty V21() V22() V23() V51() V52() V53() V54() V55() V56() V57() ) Element of K19(REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( ) (
V28()
V29()
ext-real )
Element of
REAL : ( ( ) ( non
empty V51()
V52()
V53()
V57()
V62() )
set ) )
* (sin : ( ( V6() V18( REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) , REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) ) ( Relation-like V6() non empty total V18( REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) , REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) V34() V35() V36() continuous ) Element of K19(K20(REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ,REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) : ( ( ) ( Relation-like V34() V35() V36() ) set ) ) : ( ( ) ( ) set ) ) . x : ( ( ) ( V28() V29() ext-real ) Real) ) : ( ( ) (
V28()
V29()
ext-real )
Element of
REAL : ( ( ) ( non
empty V51()
V52()
V53()
V57()
V62() )
set ) ) : ( ( ) (
V28()
V29()
ext-real )
Element of
REAL : ( ( ) ( non
empty V51()
V52()
V53()
V57()
V62() )
set ) ) ) ) ;
theorem
for
m,
n being ( ( ) (
V21()
V22()
V23()
V27()
V28()
V29()
V30()
ext-real non
negative V50()
V51()
V52()
V53()
V54()
V55()
V56() )
Element of
NAT : ( ( ) ( non
empty V21()
V22()
V23()
V51()
V52()
V53()
V54()
V55()
V56()
V57() )
Element of
K19(
REAL : ( ( ) ( non
empty V51()
V52()
V53()
V57()
V62() )
set ) ) : ( ( ) ( )
set ) ) ) st
m : ( ( ) (
V21()
V22()
V23()
V27()
V28()
V29()
V30()
ext-real non
negative V50()
V51()
V52()
V53()
V54()
V55()
V56() )
Element of
NAT : ( ( ) ( non
empty V21()
V22()
V23()
V51()
V52()
V53()
V54()
V55()
V56()
V57() )
Element of
K19(
REAL : ( ( ) ( non
empty V51()
V52()
V53()
V57()
V62() )
set ) ) : ( ( ) ( )
set ) ) )
+ n : ( ( ) (
V21()
V22()
V23()
V27()
V28()
V29()
V30()
ext-real non
negative V50()
V51()
V52()
V53()
V54()
V55()
V56() )
Element of
NAT : ( ( ) ( non
empty V21()
V22()
V23()
V51()
V52()
V53()
V54()
V55()
V56()
V57() )
Element of
K19(
REAL : ( ( ) ( non
empty V51()
V52()
V53()
V57()
V62() )
set ) ) : ( ( ) ( )
set ) ) ) : ( ( ) (
V21()
V22()
V23()
V27()
V28()
V29()
V30()
ext-real non
negative )
Element of
REAL : ( ( ) ( non
empty V51()
V52()
V53()
V57()
V62() )
set ) )
<> 0 : ( ( ) (
V21()
V22()
V23()
V27()
V28()
V29()
V30()
ext-real non
negative V50()
V51()
V52()
V53()
V54()
V55()
V56() )
Element of
NAT : ( ( ) ( non
empty V21()
V22()
V23()
V51()
V52()
V53()
V54()
V55()
V56()
V57() )
Element of
K19(
REAL : ( ( ) ( non
empty V51()
V52()
V53()
V57()
V62() )
set ) ) : ( ( ) ( )
set ) ) ) &
m : ( ( ) (
V21()
V22()
V23()
V27()
V28()
V29()
V30()
ext-real non
negative V50()
V51()
V52()
V53()
V54()
V55()
V56() )
Element of
NAT : ( ( ) ( non
empty V21()
V22()
V23()
V51()
V52()
V53()
V54()
V55()
V56()
V57() )
Element of
K19(
REAL : ( ( ) ( non
empty V51()
V52()
V53()
V57()
V62() )
set ) ) : ( ( ) ( )
set ) ) )
- n : ( ( ) (
V21()
V22()
V23()
V27()
V28()
V29()
V30()
ext-real non
negative V50()
V51()
V52()
V53()
V54()
V55()
V56() )
Element of
NAT : ( ( ) ( non
empty V21()
V22()
V23()
V51()
V52()
V53()
V54()
V55()
V56()
V57() )
Element of
K19(
REAL : ( ( ) ( non
empty V51()
V52()
V53()
V57()
V62() )
set ) ) : ( ( ) ( )
set ) ) ) : ( ( ) (
V28()
V29()
V30()
ext-real )
Element of
REAL : ( ( ) ( non
empty V51()
V52()
V53()
V57()
V62() )
set ) )
<> 0 : ( ( ) (
V21()
V22()
V23()
V27()
V28()
V29()
V30()
ext-real non
negative V50()
V51()
V52()
V53()
V54()
V55()
V56() )
Element of
NAT : ( ( ) ( non
empty V21()
V22()
V23()
V51()
V52()
V53()
V54()
V55()
V56()
V57() )
Element of
K19(
REAL : ( ( ) ( non
empty V51()
V52()
V53()
V57()
V62() )
set ) ) : ( ( ) ( )
set ) ) ) holds
(
((1 : ( ( ) ( non empty V21() V22() V23() V27() V28() V29() V30() ext-real non negative V50() V51() V52() V53() V54() V55() V56() ) Element of NAT : ( ( ) ( non empty V21() V22() V23() V51() V52() V53() V54() V55() V56() V57() ) Element of K19(REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) : ( ( ) ( ) set ) ) ) / (2 : ( ( ) ( non empty V21() V22() V23() V27() V28() V29() V30() ext-real non negative V50() V51() V52() V53() V54() V55() V56() ) Element of NAT : ( ( ) ( non empty V21() V22() V23() V51() V52() V53() V54() V55() V56() V57() ) Element of K19(REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) : ( ( ) ( ) set ) ) ) * (m : ( ( ) ( V21() V22() V23() V27() V28() V29() V30() ext-real non negative V50() V51() V52() V53() V54() V55() V56() ) Element of NAT : ( ( ) ( non empty V21() V22() V23() V51() V52() V53() V54() V55() V56() V57() ) Element of K19(REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) : ( ( ) ( ) set ) ) ) + n : ( ( ) ( V21() V22() V23() V27() V28() V29() V30() ext-real non negative V50() V51() V52() V53() V54() V55() V56() ) Element of NAT : ( ( ) ( non empty V21() V22() V23() V51() V52() V53() V54() V55() V56() V57() ) Element of K19(REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( ) ( V21() V22() V23() V27() V28() V29() V30() ext-real non negative ) Element of REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) ) : ( ( ) ( V21() V22() V23() V27() V28() V29() V30() ext-real non negative ) Element of REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) ) : ( ( ) ( V28() V29() ext-real ) Element of REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) (#) (sin : ( ( V6() V18( REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) , REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) ) ( Relation-like V6() non empty total V18( REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) , REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) V34() V35() V36() continuous ) Element of K19(K20(REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ,REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) : ( ( ) ( Relation-like V34() V35() V36() ) set ) ) : ( ( ) ( ) set ) ) * (AffineMap ((m : ( ( ) ( V21() V22() V23() V27() V28() V29() V30() ext-real non negative V50() V51() V52() V53() V54() V55() V56() ) Element of NAT : ( ( ) ( non empty V21() V22() V23() V51() V52() V53() V54() V55() V56() V57() ) Element of K19(REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) : ( ( ) ( ) set ) ) ) + n : ( ( ) ( V21() V22() V23() V27() V28() V29() V30() ext-real non negative V50() V51() V52() V53() V54() V55() V56() ) Element of NAT : ( ( ) ( non empty V21() V22() V23() V51() V52() V53() V54() V55() V56() V57() ) Element of K19(REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( ) ( V21() V22() V23() V27() V28() V29() V30() ext-real non negative ) Element of REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) ,0 : ( ( ) ( V21() V22() V23() V27() V28() V29() V30() ext-real non negative V50() V51() V52() V53() V54() V55() V56() ) Element of NAT : ( ( ) ( non empty V21() V22() V23() V51() V52() V53() V54() V55() V56() V57() ) Element of K19(REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) : ( ( ) ( ) set ) ) ) )) : ( ( V6() V18( REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) , REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) ) ( Relation-like V6() non empty total V18( REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) , REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) V34() V35() V36() continuous ) Element of K19(K20(REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ,REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) : ( ( ) ( Relation-like V34() V35() V36() ) set ) ) : ( ( ) ( ) set ) ) ) : ( ( V6() ) ( Relation-like V6() non empty total V18( REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) , REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) V34() V35() V36() continuous ) Element of K19(K20(REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ,REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) : ( ( ) ( Relation-like V34() V35() V36() ) set ) ) : ( ( ) ( ) set ) ) ) : ( (
V6() ) (
Relation-like V6() non
empty total V18(
REAL : ( ( ) ( non
empty V51()
V52()
V53()
V57()
V62() )
set ) ,
REAL : ( ( ) ( non
empty V51()
V52()
V53()
V57()
V62() )
set ) )
V34()
V35()
V36()
continuous )
Element of
K19(
K20(
REAL : ( ( ) ( non
empty V51()
V52()
V53()
V57()
V62() )
set ) ,
REAL : ( ( ) ( non
empty V51()
V52()
V53()
V57()
V62() )
set ) ) : ( ( ) (
Relation-like V34()
V35()
V36() )
set ) ) : ( ( ) ( )
set ) )
+ ((1 : ( ( ) ( non empty V21() V22() V23() V27() V28() V29() V30() ext-real non negative V50() V51() V52() V53() V54() V55() V56() ) Element of NAT : ( ( ) ( non empty V21() V22() V23() V51() V52() V53() V54() V55() V56() V57() ) Element of K19(REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) : ( ( ) ( ) set ) ) ) / (2 : ( ( ) ( non empty V21() V22() V23() V27() V28() V29() V30() ext-real non negative V50() V51() V52() V53() V54() V55() V56() ) Element of NAT : ( ( ) ( non empty V21() V22() V23() V51() V52() V53() V54() V55() V56() V57() ) Element of K19(REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) : ( ( ) ( ) set ) ) ) * (m : ( ( ) ( V21() V22() V23() V27() V28() V29() V30() ext-real non negative V50() V51() V52() V53() V54() V55() V56() ) Element of NAT : ( ( ) ( non empty V21() V22() V23() V51() V52() V53() V54() V55() V56() V57() ) Element of K19(REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) : ( ( ) ( ) set ) ) ) - n : ( ( ) ( V21() V22() V23() V27() V28() V29() V30() ext-real non negative V50() V51() V52() V53() V54() V55() V56() ) Element of NAT : ( ( ) ( non empty V21() V22() V23() V51() V52() V53() V54() V55() V56() V57() ) Element of K19(REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( ) ( V28() V29() V30() ext-real ) Element of REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) ) : ( ( ) ( V28() V29() V30() ext-real ) Element of REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) ) : ( ( ) ( V28() V29() ext-real ) Element of REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) (#) (sin : ( ( V6() V18( REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) , REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) ) ( Relation-like V6() non empty total V18( REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) , REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) V34() V35() V36() continuous ) Element of K19(K20(REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ,REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) : ( ( ) ( Relation-like V34() V35() V36() ) set ) ) : ( ( ) ( ) set ) ) * (AffineMap ((m : ( ( ) ( V21() V22() V23() V27() V28() V29() V30() ext-real non negative V50() V51() V52() V53() V54() V55() V56() ) Element of NAT : ( ( ) ( non empty V21() V22() V23() V51() V52() V53() V54() V55() V56() V57() ) Element of K19(REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) : ( ( ) ( ) set ) ) ) - n : ( ( ) ( V21() V22() V23() V27() V28() V29() V30() ext-real non negative V50() V51() V52() V53() V54() V55() V56() ) Element of NAT : ( ( ) ( non empty V21() V22() V23() V51() V52() V53() V54() V55() V56() V57() ) Element of K19(REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( ) ( V28() V29() V30() ext-real ) Element of REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) ,0 : ( ( ) ( V21() V22() V23() V27() V28() V29() V30() ext-real non negative V50() V51() V52() V53() V54() V55() V56() ) Element of NAT : ( ( ) ( non empty V21() V22() V23() V51() V52() V53() V54() V55() V56() V57() ) Element of K19(REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) : ( ( ) ( ) set ) ) ) )) : ( ( V6() V18( REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) , REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) ) ( Relation-like V6() non empty total V18( REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) , REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) V34() V35() V36() continuous ) Element of K19(K20(REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ,REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) : ( ( ) ( Relation-like V34() V35() V36() ) set ) ) : ( ( ) ( ) set ) ) ) : ( ( V6() ) ( Relation-like V6() non empty total V18( REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) , REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) V34() V35() V36() continuous ) Element of K19(K20(REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ,REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) : ( ( ) ( Relation-like V34() V35() V36() ) set ) ) : ( ( ) ( ) set ) ) ) : ( (
V6() ) (
Relation-like V6() non
empty total V18(
REAL : ( ( ) ( non
empty V51()
V52()
V53()
V57()
V62() )
set ) ,
REAL : ( ( ) ( non
empty V51()
V52()
V53()
V57()
V62() )
set ) )
V34()
V35()
V36()
continuous )
Element of
K19(
K20(
REAL : ( ( ) ( non
empty V51()
V52()
V53()
V57()
V62() )
set ) ,
REAL : ( ( ) ( non
empty V51()
V52()
V53()
V57()
V62() )
set ) ) : ( ( ) (
Relation-like V34()
V35()
V36() )
set ) ) : ( ( ) ( )
set ) ) : ( (
V6() ) (
Relation-like V6() non
empty total V18(
REAL : ( ( ) ( non
empty V51()
V52()
V53()
V57()
V62() )
set ) ,
REAL : ( ( ) ( non
empty V51()
V52()
V53()
V57()
V62() )
set ) )
V34()
V35()
V36()
continuous )
Element of
K19(
K20(
REAL : ( ( ) ( non
empty V51()
V52()
V53()
V57()
V62() )
set ) ,
REAL : ( ( ) ( non
empty V51()
V52()
V53()
V57()
V62() )
set ) ) : ( ( ) (
Relation-like V34()
V35()
V36() )
set ) ) : ( ( ) ( )
set ) )
is_differentiable_on REAL : ( ( ) ( non
empty V51()
V52()
V53()
V57()
V62() )
set ) & ( for
x being ( ( ) (
V28()
V29()
ext-real )
Real) holds
((((1 : ( ( ) ( non empty V21() V22() V23() V27() V28() V29() V30() ext-real non negative V50() V51() V52() V53() V54() V55() V56() ) Element of NAT : ( ( ) ( non empty V21() V22() V23() V51() V52() V53() V54() V55() V56() V57() ) Element of K19(REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) : ( ( ) ( ) set ) ) ) / (2 : ( ( ) ( non empty V21() V22() V23() V27() V28() V29() V30() ext-real non negative V50() V51() V52() V53() V54() V55() V56() ) Element of NAT : ( ( ) ( non empty V21() V22() V23() V51() V52() V53() V54() V55() V56() V57() ) Element of K19(REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) : ( ( ) ( ) set ) ) ) * (m : ( ( ) ( V21() V22() V23() V27() V28() V29() V30() ext-real non negative V50() V51() V52() V53() V54() V55() V56() ) Element of NAT : ( ( ) ( non empty V21() V22() V23() V51() V52() V53() V54() V55() V56() V57() ) Element of K19(REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) : ( ( ) ( ) set ) ) ) + n : ( ( ) ( V21() V22() V23() V27() V28() V29() V30() ext-real non negative V50() V51() V52() V53() V54() V55() V56() ) Element of NAT : ( ( ) ( non empty V21() V22() V23() V51() V52() V53() V54() V55() V56() V57() ) Element of K19(REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( ) ( V21() V22() V23() V27() V28() V29() V30() ext-real non negative ) Element of REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) ) : ( ( ) ( V21() V22() V23() V27() V28() V29() V30() ext-real non negative ) Element of REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) ) : ( ( ) ( V28() V29() ext-real ) Element of REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) (#) (sin : ( ( V6() V18( REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) , REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) ) ( Relation-like V6() non empty total V18( REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) , REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) V34() V35() V36() continuous ) Element of K19(K20(REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ,REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) : ( ( ) ( Relation-like V34() V35() V36() ) set ) ) : ( ( ) ( ) set ) ) * (AffineMap ((m : ( ( ) ( V21() V22() V23() V27() V28() V29() V30() ext-real non negative V50() V51() V52() V53() V54() V55() V56() ) Element of NAT : ( ( ) ( non empty V21() V22() V23() V51() V52() V53() V54() V55() V56() V57() ) Element of K19(REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) : ( ( ) ( ) set ) ) ) + n : ( ( ) ( V21() V22() V23() V27() V28() V29() V30() ext-real non negative V50() V51() V52() V53() V54() V55() V56() ) Element of NAT : ( ( ) ( non empty V21() V22() V23() V51() V52() V53() V54() V55() V56() V57() ) Element of K19(REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( ) ( V21() V22() V23() V27() V28() V29() V30() ext-real non negative ) Element of REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) ,0 : ( ( ) ( V21() V22() V23() V27() V28() V29() V30() ext-real non negative V50() V51() V52() V53() V54() V55() V56() ) Element of NAT : ( ( ) ( non empty V21() V22() V23() V51() V52() V53() V54() V55() V56() V57() ) Element of K19(REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) : ( ( ) ( ) set ) ) ) )) : ( ( V6() V18( REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) , REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) ) ( Relation-like V6() non empty total V18( REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) , REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) V34() V35() V36() continuous ) Element of K19(K20(REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ,REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) : ( ( ) ( Relation-like V34() V35() V36() ) set ) ) : ( ( ) ( ) set ) ) ) : ( ( V6() ) ( Relation-like V6() non empty total V18( REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) , REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) V34() V35() V36() continuous ) Element of K19(K20(REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ,REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) : ( ( ) ( Relation-like V34() V35() V36() ) set ) ) : ( ( ) ( ) set ) ) ) : ( ( V6() ) ( Relation-like V6() non empty total V18( REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) , REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) V34() V35() V36() continuous ) Element of K19(K20(REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ,REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) : ( ( ) ( Relation-like V34() V35() V36() ) set ) ) : ( ( ) ( ) set ) ) + ((1 : ( ( ) ( non empty V21() V22() V23() V27() V28() V29() V30() ext-real non negative V50() V51() V52() V53() V54() V55() V56() ) Element of NAT : ( ( ) ( non empty V21() V22() V23() V51() V52() V53() V54() V55() V56() V57() ) Element of K19(REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) : ( ( ) ( ) set ) ) ) / (2 : ( ( ) ( non empty V21() V22() V23() V27() V28() V29() V30() ext-real non negative V50() V51() V52() V53() V54() V55() V56() ) Element of NAT : ( ( ) ( non empty V21() V22() V23() V51() V52() V53() V54() V55() V56() V57() ) Element of K19(REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) : ( ( ) ( ) set ) ) ) * (m : ( ( ) ( V21() V22() V23() V27() V28() V29() V30() ext-real non negative V50() V51() V52() V53() V54() V55() V56() ) Element of NAT : ( ( ) ( non empty V21() V22() V23() V51() V52() V53() V54() V55() V56() V57() ) Element of K19(REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) : ( ( ) ( ) set ) ) ) - n : ( ( ) ( V21() V22() V23() V27() V28() V29() V30() ext-real non negative V50() V51() V52() V53() V54() V55() V56() ) Element of NAT : ( ( ) ( non empty V21() V22() V23() V51() V52() V53() V54() V55() V56() V57() ) Element of K19(REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( ) ( V28() V29() V30() ext-real ) Element of REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) ) : ( ( ) ( V28() V29() V30() ext-real ) Element of REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) ) : ( ( ) ( V28() V29() ext-real ) Element of REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) (#) (sin : ( ( V6() V18( REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) , REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) ) ( Relation-like V6() non empty total V18( REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) , REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) V34() V35() V36() continuous ) Element of K19(K20(REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ,REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) : ( ( ) ( Relation-like V34() V35() V36() ) set ) ) : ( ( ) ( ) set ) ) * (AffineMap ((m : ( ( ) ( V21() V22() V23() V27() V28() V29() V30() ext-real non negative V50() V51() V52() V53() V54() V55() V56() ) Element of NAT : ( ( ) ( non empty V21() V22() V23() V51() V52() V53() V54() V55() V56() V57() ) Element of K19(REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) : ( ( ) ( ) set ) ) ) - n : ( ( ) ( V21() V22() V23() V27() V28() V29() V30() ext-real non negative V50() V51() V52() V53() V54() V55() V56() ) Element of NAT : ( ( ) ( non empty V21() V22() V23() V51() V52() V53() V54() V55() V56() V57() ) Element of K19(REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( ) ( V28() V29() V30() ext-real ) Element of REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) ,0 : ( ( ) ( V21() V22() V23() V27() V28() V29() V30() ext-real non negative V50() V51() V52() V53() V54() V55() V56() ) Element of NAT : ( ( ) ( non empty V21() V22() V23() V51() V52() V53() V54() V55() V56() V57() ) Element of K19(REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) : ( ( ) ( ) set ) ) ) )) : ( ( V6() V18( REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) , REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) ) ( Relation-like V6() non empty total V18( REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) , REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) V34() V35() V36() continuous ) Element of K19(K20(REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ,REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) : ( ( ) ( Relation-like V34() V35() V36() ) set ) ) : ( ( ) ( ) set ) ) ) : ( ( V6() ) ( Relation-like V6() non empty total V18( REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) , REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) V34() V35() V36() continuous ) Element of K19(K20(REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ,REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) : ( ( ) ( Relation-like V34() V35() V36() ) set ) ) : ( ( ) ( ) set ) ) ) : ( ( V6() ) ( Relation-like V6() non empty total V18( REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) , REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) V34() V35() V36() continuous ) Element of K19(K20(REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ,REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) : ( ( ) ( Relation-like V34() V35() V36() ) set ) ) : ( ( ) ( ) set ) ) ) : ( ( V6() ) ( Relation-like V6() non empty total V18( REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) , REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) V34() V35() V36() continuous ) Element of K19(K20(REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ,REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) : ( ( ) ( Relation-like V34() V35() V36() ) set ) ) : ( ( ) ( ) set ) ) `| REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) : ( (
V6() ) (
Relation-like V6()
V34()
V35()
V36() )
Element of
K19(
K20(
REAL : ( ( ) ( non
empty V51()
V52()
V53()
V57()
V62() )
set ) ,
REAL : ( ( ) ( non
empty V51()
V52()
V53()
V57()
V62() )
set ) ) : ( ( ) (
Relation-like V34()
V35()
V36() )
set ) ) : ( ( ) ( )
set ) )
. x : ( ( ) (
V28()
V29()
ext-real )
Real) : ( ( ) (
V28()
V29()
ext-real )
Element of
REAL : ( ( ) ( non
empty V51()
V52()
V53()
V57()
V62() )
set ) )
= (cos : ( ( V6() V18( REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) , REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) ) ( Relation-like V6() non empty total V18( REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) , REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) V34() V35() V36() continuous ) Element of K19(K20(REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ,REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) : ( ( ) ( Relation-like V34() V35() V36() ) set ) ) : ( ( ) ( ) set ) ) . (m : ( ( ) ( V21() V22() V23() V27() V28() V29() V30() ext-real non negative V50() V51() V52() V53() V54() V55() V56() ) Element of NAT : ( ( ) ( non empty V21() V22() V23() V51() V52() V53() V54() V55() V56() V57() ) Element of K19(REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) : ( ( ) ( ) set ) ) ) * x : ( ( ) ( V28() V29() ext-real ) Real) ) : ( ( ) ( V28() V29() ext-real ) Element of REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) ) : ( ( ) (
V28()
V29()
ext-real )
Element of
REAL : ( ( ) ( non
empty V51()
V52()
V53()
V57()
V62() )
set ) )
* (cos : ( ( V6() V18( REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) , REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) ) ( Relation-like V6() non empty total V18( REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) , REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) V34() V35() V36() continuous ) Element of K19(K20(REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ,REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) : ( ( ) ( Relation-like V34() V35() V36() ) set ) ) : ( ( ) ( ) set ) ) . (n : ( ( ) ( V21() V22() V23() V27() V28() V29() V30() ext-real non negative V50() V51() V52() V53() V54() V55() V56() ) Element of NAT : ( ( ) ( non empty V21() V22() V23() V51() V52() V53() V54() V55() V56() V57() ) Element of K19(REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) : ( ( ) ( ) set ) ) ) * x : ( ( ) ( V28() V29() ext-real ) Real) ) : ( ( ) ( V28() V29() ext-real ) Element of REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) ) : ( ( ) (
V28()
V29()
ext-real )
Element of
REAL : ( ( ) ( non
empty V51()
V52()
V53()
V57()
V62() )
set ) ) : ( ( ) (
V28()
V29()
ext-real )
Element of
REAL : ( ( ) ( non
empty V51()
V52()
V53()
V57()
V62() )
set ) ) ) ) ;
theorem
for
m,
n being ( ( ) (
V21()
V22()
V23()
V27()
V28()
V29()
V30()
ext-real non
negative V50()
V51()
V52()
V53()
V54()
V55()
V56() )
Element of
NAT : ( ( ) ( non
empty V21()
V22()
V23()
V51()
V52()
V53()
V54()
V55()
V56()
V57() )
Element of
K19(
REAL : ( ( ) ( non
empty V51()
V52()
V53()
V57()
V62() )
set ) ) : ( ( ) ( )
set ) ) ) st
m : ( ( ) (
V21()
V22()
V23()
V27()
V28()
V29()
V30()
ext-real non
negative V50()
V51()
V52()
V53()
V54()
V55()
V56() )
Element of
NAT : ( ( ) ( non
empty V21()
V22()
V23()
V51()
V52()
V53()
V54()
V55()
V56()
V57() )
Element of
K19(
REAL : ( ( ) ( non
empty V51()
V52()
V53()
V57()
V62() )
set ) ) : ( ( ) ( )
set ) ) )
+ n : ( ( ) (
V21()
V22()
V23()
V27()
V28()
V29()
V30()
ext-real non
negative V50()
V51()
V52()
V53()
V54()
V55()
V56() )
Element of
NAT : ( ( ) ( non
empty V21()
V22()
V23()
V51()
V52()
V53()
V54()
V55()
V56()
V57() )
Element of
K19(
REAL : ( ( ) ( non
empty V51()
V52()
V53()
V57()
V62() )
set ) ) : ( ( ) ( )
set ) ) ) : ( ( ) (
V21()
V22()
V23()
V27()
V28()
V29()
V30()
ext-real non
negative )
Element of
REAL : ( ( ) ( non
empty V51()
V52()
V53()
V57()
V62() )
set ) )
<> 0 : ( ( ) (
V21()
V22()
V23()
V27()
V28()
V29()
V30()
ext-real non
negative V50()
V51()
V52()
V53()
V54()
V55()
V56() )
Element of
NAT : ( ( ) ( non
empty V21()
V22()
V23()
V51()
V52()
V53()
V54()
V55()
V56()
V57() )
Element of
K19(
REAL : ( ( ) ( non
empty V51()
V52()
V53()
V57()
V62() )
set ) ) : ( ( ) ( )
set ) ) ) &
m : ( ( ) (
V21()
V22()
V23()
V27()
V28()
V29()
V30()
ext-real non
negative V50()
V51()
V52()
V53()
V54()
V55()
V56() )
Element of
NAT : ( ( ) ( non
empty V21()
V22()
V23()
V51()
V52()
V53()
V54()
V55()
V56()
V57() )
Element of
K19(
REAL : ( ( ) ( non
empty V51()
V52()
V53()
V57()
V62() )
set ) ) : ( ( ) ( )
set ) ) )
- n : ( ( ) (
V21()
V22()
V23()
V27()
V28()
V29()
V30()
ext-real non
negative V50()
V51()
V52()
V53()
V54()
V55()
V56() )
Element of
NAT : ( ( ) ( non
empty V21()
V22()
V23()
V51()
V52()
V53()
V54()
V55()
V56()
V57() )
Element of
K19(
REAL : ( ( ) ( non
empty V51()
V52()
V53()
V57()
V62() )
set ) ) : ( ( ) ( )
set ) ) ) : ( ( ) (
V28()
V29()
V30()
ext-real )
Element of
REAL : ( ( ) ( non
empty V51()
V52()
V53()
V57()
V62() )
set ) )
<> 0 : ( ( ) (
V21()
V22()
V23()
V27()
V28()
V29()
V30()
ext-real non
negative V50()
V51()
V52()
V53()
V54()
V55()
V56() )
Element of
NAT : ( ( ) ( non
empty V21()
V22()
V23()
V51()
V52()
V53()
V54()
V55()
V56()
V57() )
Element of
K19(
REAL : ( ( ) ( non
empty V51()
V52()
V53()
V57()
V62() )
set ) ) : ( ( ) ( )
set ) ) ) holds
(
((1 : ( ( ) ( non empty V21() V22() V23() V27() V28() V29() V30() ext-real non negative V50() V51() V52() V53() V54() V55() V56() ) Element of NAT : ( ( ) ( non empty V21() V22() V23() V51() V52() V53() V54() V55() V56() V57() ) Element of K19(REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) : ( ( ) ( ) set ) ) ) / (2 : ( ( ) ( non empty V21() V22() V23() V27() V28() V29() V30() ext-real non negative V50() V51() V52() V53() V54() V55() V56() ) Element of NAT : ( ( ) ( non empty V21() V22() V23() V51() V52() V53() V54() V55() V56() V57() ) Element of K19(REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) : ( ( ) ( ) set ) ) ) * (m : ( ( ) ( V21() V22() V23() V27() V28() V29() V30() ext-real non negative V50() V51() V52() V53() V54() V55() V56() ) Element of NAT : ( ( ) ( non empty V21() V22() V23() V51() V52() V53() V54() V55() V56() V57() ) Element of K19(REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) : ( ( ) ( ) set ) ) ) - n : ( ( ) ( V21() V22() V23() V27() V28() V29() V30() ext-real non negative V50() V51() V52() V53() V54() V55() V56() ) Element of NAT : ( ( ) ( non empty V21() V22() V23() V51() V52() V53() V54() V55() V56() V57() ) Element of K19(REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( ) ( V28() V29() V30() ext-real ) Element of REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) ) : ( ( ) ( V28() V29() V30() ext-real ) Element of REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) ) : ( ( ) ( V28() V29() ext-real ) Element of REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) (#) (sin : ( ( V6() V18( REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) , REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) ) ( Relation-like V6() non empty total V18( REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) , REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) V34() V35() V36() continuous ) Element of K19(K20(REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ,REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) : ( ( ) ( Relation-like V34() V35() V36() ) set ) ) : ( ( ) ( ) set ) ) * (AffineMap ((m : ( ( ) ( V21() V22() V23() V27() V28() V29() V30() ext-real non negative V50() V51() V52() V53() V54() V55() V56() ) Element of NAT : ( ( ) ( non empty V21() V22() V23() V51() V52() V53() V54() V55() V56() V57() ) Element of K19(REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) : ( ( ) ( ) set ) ) ) - n : ( ( ) ( V21() V22() V23() V27() V28() V29() V30() ext-real non negative V50() V51() V52() V53() V54() V55() V56() ) Element of NAT : ( ( ) ( non empty V21() V22() V23() V51() V52() V53() V54() V55() V56() V57() ) Element of K19(REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( ) ( V28() V29() V30() ext-real ) Element of REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) ,0 : ( ( ) ( V21() V22() V23() V27() V28() V29() V30() ext-real non negative V50() V51() V52() V53() V54() V55() V56() ) Element of NAT : ( ( ) ( non empty V21() V22() V23() V51() V52() V53() V54() V55() V56() V57() ) Element of K19(REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) : ( ( ) ( ) set ) ) ) )) : ( ( V6() V18( REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) , REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) ) ( Relation-like V6() non empty total V18( REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) , REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) V34() V35() V36() continuous ) Element of K19(K20(REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ,REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) : ( ( ) ( Relation-like V34() V35() V36() ) set ) ) : ( ( ) ( ) set ) ) ) : ( ( V6() ) ( Relation-like V6() non empty total V18( REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) , REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) V34() V35() V36() continuous ) Element of K19(K20(REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ,REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) : ( ( ) ( Relation-like V34() V35() V36() ) set ) ) : ( ( ) ( ) set ) ) ) : ( (
V6() ) (
Relation-like V6() non
empty total V18(
REAL : ( ( ) ( non
empty V51()
V52()
V53()
V57()
V62() )
set ) ,
REAL : ( ( ) ( non
empty V51()
V52()
V53()
V57()
V62() )
set ) )
V34()
V35()
V36()
continuous )
Element of
K19(
K20(
REAL : ( ( ) ( non
empty V51()
V52()
V53()
V57()
V62() )
set ) ,
REAL : ( ( ) ( non
empty V51()
V52()
V53()
V57()
V62() )
set ) ) : ( ( ) (
Relation-like V34()
V35()
V36() )
set ) ) : ( ( ) ( )
set ) )
- ((1 : ( ( ) ( non empty V21() V22() V23() V27() V28() V29() V30() ext-real non negative V50() V51() V52() V53() V54() V55() V56() ) Element of NAT : ( ( ) ( non empty V21() V22() V23() V51() V52() V53() V54() V55() V56() V57() ) Element of K19(REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) : ( ( ) ( ) set ) ) ) / (2 : ( ( ) ( non empty V21() V22() V23() V27() V28() V29() V30() ext-real non negative V50() V51() V52() V53() V54() V55() V56() ) Element of NAT : ( ( ) ( non empty V21() V22() V23() V51() V52() V53() V54() V55() V56() V57() ) Element of K19(REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) : ( ( ) ( ) set ) ) ) * (m : ( ( ) ( V21() V22() V23() V27() V28() V29() V30() ext-real non negative V50() V51() V52() V53() V54() V55() V56() ) Element of NAT : ( ( ) ( non empty V21() V22() V23() V51() V52() V53() V54() V55() V56() V57() ) Element of K19(REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) : ( ( ) ( ) set ) ) ) + n : ( ( ) ( V21() V22() V23() V27() V28() V29() V30() ext-real non negative V50() V51() V52() V53() V54() V55() V56() ) Element of NAT : ( ( ) ( non empty V21() V22() V23() V51() V52() V53() V54() V55() V56() V57() ) Element of K19(REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( ) ( V21() V22() V23() V27() V28() V29() V30() ext-real non negative ) Element of REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) ) : ( ( ) ( V21() V22() V23() V27() V28() V29() V30() ext-real non negative ) Element of REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) ) : ( ( ) ( V28() V29() ext-real ) Element of REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) (#) (sin : ( ( V6() V18( REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) , REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) ) ( Relation-like V6() non empty total V18( REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) , REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) V34() V35() V36() continuous ) Element of K19(K20(REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ,REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) : ( ( ) ( Relation-like V34() V35() V36() ) set ) ) : ( ( ) ( ) set ) ) * (AffineMap ((m : ( ( ) ( V21() V22() V23() V27() V28() V29() V30() ext-real non negative V50() V51() V52() V53() V54() V55() V56() ) Element of NAT : ( ( ) ( non empty V21() V22() V23() V51() V52() V53() V54() V55() V56() V57() ) Element of K19(REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) : ( ( ) ( ) set ) ) ) + n : ( ( ) ( V21() V22() V23() V27() V28() V29() V30() ext-real non negative V50() V51() V52() V53() V54() V55() V56() ) Element of NAT : ( ( ) ( non empty V21() V22() V23() V51() V52() V53() V54() V55() V56() V57() ) Element of K19(REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( ) ( V21() V22() V23() V27() V28() V29() V30() ext-real non negative ) Element of REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) ,0 : ( ( ) ( V21() V22() V23() V27() V28() V29() V30() ext-real non negative V50() V51() V52() V53() V54() V55() V56() ) Element of NAT : ( ( ) ( non empty V21() V22() V23() V51() V52() V53() V54() V55() V56() V57() ) Element of K19(REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) : ( ( ) ( ) set ) ) ) )) : ( ( V6() V18( REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) , REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) ) ( Relation-like V6() non empty total V18( REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) , REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) V34() V35() V36() continuous ) Element of K19(K20(REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ,REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) : ( ( ) ( Relation-like V34() V35() V36() ) set ) ) : ( ( ) ( ) set ) ) ) : ( ( V6() ) ( Relation-like V6() non empty total V18( REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) , REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) V34() V35() V36() continuous ) Element of K19(K20(REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ,REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) : ( ( ) ( Relation-like V34() V35() V36() ) set ) ) : ( ( ) ( ) set ) ) ) : ( (
V6() ) (
Relation-like V6() non
empty total V18(
REAL : ( ( ) ( non
empty V51()
V52()
V53()
V57()
V62() )
set ) ,
REAL : ( ( ) ( non
empty V51()
V52()
V53()
V57()
V62() )
set ) )
V34()
V35()
V36()
continuous )
Element of
K19(
K20(
REAL : ( ( ) ( non
empty V51()
V52()
V53()
V57()
V62() )
set ) ,
REAL : ( ( ) ( non
empty V51()
V52()
V53()
V57()
V62() )
set ) ) : ( ( ) (
Relation-like V34()
V35()
V36() )
set ) ) : ( ( ) ( )
set ) ) : ( (
V6() ) (
Relation-like V6() non
empty total V18(
REAL : ( ( ) ( non
empty V51()
V52()
V53()
V57()
V62() )
set ) ,
REAL : ( ( ) ( non
empty V51()
V52()
V53()
V57()
V62() )
set ) )
V34()
V35()
V36()
continuous )
Element of
K19(
K20(
REAL : ( ( ) ( non
empty V51()
V52()
V53()
V57()
V62() )
set ) ,
REAL : ( ( ) ( non
empty V51()
V52()
V53()
V57()
V62() )
set ) ) : ( ( ) (
Relation-like V34()
V35()
V36() )
set ) ) : ( ( ) ( )
set ) )
is_differentiable_on REAL : ( ( ) ( non
empty V51()
V52()
V53()
V57()
V62() )
set ) & ( for
x being ( ( ) (
V28()
V29()
ext-real )
Real) holds
((((1 : ( ( ) ( non empty V21() V22() V23() V27() V28() V29() V30() ext-real non negative V50() V51() V52() V53() V54() V55() V56() ) Element of NAT : ( ( ) ( non empty V21() V22() V23() V51() V52() V53() V54() V55() V56() V57() ) Element of K19(REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) : ( ( ) ( ) set ) ) ) / (2 : ( ( ) ( non empty V21() V22() V23() V27() V28() V29() V30() ext-real non negative V50() V51() V52() V53() V54() V55() V56() ) Element of NAT : ( ( ) ( non empty V21() V22() V23() V51() V52() V53() V54() V55() V56() V57() ) Element of K19(REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) : ( ( ) ( ) set ) ) ) * (m : ( ( ) ( V21() V22() V23() V27() V28() V29() V30() ext-real non negative V50() V51() V52() V53() V54() V55() V56() ) Element of NAT : ( ( ) ( non empty V21() V22() V23() V51() V52() V53() V54() V55() V56() V57() ) Element of K19(REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) : ( ( ) ( ) set ) ) ) - n : ( ( ) ( V21() V22() V23() V27() V28() V29() V30() ext-real non negative V50() V51() V52() V53() V54() V55() V56() ) Element of NAT : ( ( ) ( non empty V21() V22() V23() V51() V52() V53() V54() V55() V56() V57() ) Element of K19(REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( ) ( V28() V29() V30() ext-real ) Element of REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) ) : ( ( ) ( V28() V29() V30() ext-real ) Element of REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) ) : ( ( ) ( V28() V29() ext-real ) Element of REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) (#) (sin : ( ( V6() V18( REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) , REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) ) ( Relation-like V6() non empty total V18( REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) , REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) V34() V35() V36() continuous ) Element of K19(K20(REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ,REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) : ( ( ) ( Relation-like V34() V35() V36() ) set ) ) : ( ( ) ( ) set ) ) * (AffineMap ((m : ( ( ) ( V21() V22() V23() V27() V28() V29() V30() ext-real non negative V50() V51() V52() V53() V54() V55() V56() ) Element of NAT : ( ( ) ( non empty V21() V22() V23() V51() V52() V53() V54() V55() V56() V57() ) Element of K19(REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) : ( ( ) ( ) set ) ) ) - n : ( ( ) ( V21() V22() V23() V27() V28() V29() V30() ext-real non negative V50() V51() V52() V53() V54() V55() V56() ) Element of NAT : ( ( ) ( non empty V21() V22() V23() V51() V52() V53() V54() V55() V56() V57() ) Element of K19(REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( ) ( V28() V29() V30() ext-real ) Element of REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) ,0 : ( ( ) ( V21() V22() V23() V27() V28() V29() V30() ext-real non negative V50() V51() V52() V53() V54() V55() V56() ) Element of NAT : ( ( ) ( non empty V21() V22() V23() V51() V52() V53() V54() V55() V56() V57() ) Element of K19(REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) : ( ( ) ( ) set ) ) ) )) : ( ( V6() V18( REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) , REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) ) ( Relation-like V6() non empty total V18( REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) , REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) V34() V35() V36() continuous ) Element of K19(K20(REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ,REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) : ( ( ) ( Relation-like V34() V35() V36() ) set ) ) : ( ( ) ( ) set ) ) ) : ( ( V6() ) ( Relation-like V6() non empty total V18( REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) , REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) V34() V35() V36() continuous ) Element of K19(K20(REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ,REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) : ( ( ) ( Relation-like V34() V35() V36() ) set ) ) : ( ( ) ( ) set ) ) ) : ( ( V6() ) ( Relation-like V6() non empty total V18( REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) , REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) V34() V35() V36() continuous ) Element of K19(K20(REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ,REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) : ( ( ) ( Relation-like V34() V35() V36() ) set ) ) : ( ( ) ( ) set ) ) - ((1 : ( ( ) ( non empty V21() V22() V23() V27() V28() V29() V30() ext-real non negative V50() V51() V52() V53() V54() V55() V56() ) Element of NAT : ( ( ) ( non empty V21() V22() V23() V51() V52() V53() V54() V55() V56() V57() ) Element of K19(REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) : ( ( ) ( ) set ) ) ) / (2 : ( ( ) ( non empty V21() V22() V23() V27() V28() V29() V30() ext-real non negative V50() V51() V52() V53() V54() V55() V56() ) Element of NAT : ( ( ) ( non empty V21() V22() V23() V51() V52() V53() V54() V55() V56() V57() ) Element of K19(REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) : ( ( ) ( ) set ) ) ) * (m : ( ( ) ( V21() V22() V23() V27() V28() V29() V30() ext-real non negative V50() V51() V52() V53() V54() V55() V56() ) Element of NAT : ( ( ) ( non empty V21() V22() V23() V51() V52() V53() V54() V55() V56() V57() ) Element of K19(REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) : ( ( ) ( ) set ) ) ) + n : ( ( ) ( V21() V22() V23() V27() V28() V29() V30() ext-real non negative V50() V51() V52() V53() V54() V55() V56() ) Element of NAT : ( ( ) ( non empty V21() V22() V23() V51() V52() V53() V54() V55() V56() V57() ) Element of K19(REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( ) ( V21() V22() V23() V27() V28() V29() V30() ext-real non negative ) Element of REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) ) : ( ( ) ( V21() V22() V23() V27() V28() V29() V30() ext-real non negative ) Element of REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) ) : ( ( ) ( V28() V29() ext-real ) Element of REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) (#) (sin : ( ( V6() V18( REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) , REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) ) ( Relation-like V6() non empty total V18( REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) , REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) V34() V35() V36() continuous ) Element of K19(K20(REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ,REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) : ( ( ) ( Relation-like V34() V35() V36() ) set ) ) : ( ( ) ( ) set ) ) * (AffineMap ((m : ( ( ) ( V21() V22() V23() V27() V28() V29() V30() ext-real non negative V50() V51() V52() V53() V54() V55() V56() ) Element of NAT : ( ( ) ( non empty V21() V22() V23() V51() V52() V53() V54() V55() V56() V57() ) Element of K19(REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) : ( ( ) ( ) set ) ) ) + n : ( ( ) ( V21() V22() V23() V27() V28() V29() V30() ext-real non negative V50() V51() V52() V53() V54() V55() V56() ) Element of NAT : ( ( ) ( non empty V21() V22() V23() V51() V52() V53() V54() V55() V56() V57() ) Element of K19(REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( ) ( V21() V22() V23() V27() V28() V29() V30() ext-real non negative ) Element of REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) ,0 : ( ( ) ( V21() V22() V23() V27() V28() V29() V30() ext-real non negative V50() V51() V52() V53() V54() V55() V56() ) Element of NAT : ( ( ) ( non empty V21() V22() V23() V51() V52() V53() V54() V55() V56() V57() ) Element of K19(REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) : ( ( ) ( ) set ) ) ) )) : ( ( V6() V18( REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) , REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) ) ( Relation-like V6() non empty total V18( REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) , REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) V34() V35() V36() continuous ) Element of K19(K20(REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ,REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) : ( ( ) ( Relation-like V34() V35() V36() ) set ) ) : ( ( ) ( ) set ) ) ) : ( ( V6() ) ( Relation-like V6() non empty total V18( REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) , REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) V34() V35() V36() continuous ) Element of K19(K20(REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ,REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) : ( ( ) ( Relation-like V34() V35() V36() ) set ) ) : ( ( ) ( ) set ) ) ) : ( ( V6() ) ( Relation-like V6() non empty total V18( REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) , REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) V34() V35() V36() continuous ) Element of K19(K20(REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ,REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) : ( ( ) ( Relation-like V34() V35() V36() ) set ) ) : ( ( ) ( ) set ) ) ) : ( ( V6() ) ( Relation-like V6() non empty total V18( REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) , REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) V34() V35() V36() continuous ) Element of K19(K20(REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ,REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) : ( ( ) ( Relation-like V34() V35() V36() ) set ) ) : ( ( ) ( ) set ) ) `| REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) : ( (
V6() ) (
Relation-like V6()
V34()
V35()
V36() )
Element of
K19(
K20(
REAL : ( ( ) ( non
empty V51()
V52()
V53()
V57()
V62() )
set ) ,
REAL : ( ( ) ( non
empty V51()
V52()
V53()
V57()
V62() )
set ) ) : ( ( ) (
Relation-like V34()
V35()
V36() )
set ) ) : ( ( ) ( )
set ) )
. x : ( ( ) (
V28()
V29()
ext-real )
Real) : ( ( ) (
V28()
V29()
ext-real )
Element of
REAL : ( ( ) ( non
empty V51()
V52()
V53()
V57()
V62() )
set ) )
= (sin : ( ( V6() V18( REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) , REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) ) ( Relation-like V6() non empty total V18( REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) , REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) V34() V35() V36() continuous ) Element of K19(K20(REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ,REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) : ( ( ) ( Relation-like V34() V35() V36() ) set ) ) : ( ( ) ( ) set ) ) . (m : ( ( ) ( V21() V22() V23() V27() V28() V29() V30() ext-real non negative V50() V51() V52() V53() V54() V55() V56() ) Element of NAT : ( ( ) ( non empty V21() V22() V23() V51() V52() V53() V54() V55() V56() V57() ) Element of K19(REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) : ( ( ) ( ) set ) ) ) * x : ( ( ) ( V28() V29() ext-real ) Real) ) : ( ( ) ( V28() V29() ext-real ) Element of REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) ) : ( ( ) (
V28()
V29()
ext-real )
Element of
REAL : ( ( ) ( non
empty V51()
V52()
V53()
V57()
V62() )
set ) )
* (sin : ( ( V6() V18( REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) , REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) ) ( Relation-like V6() non empty total V18( REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) , REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) V34() V35() V36() continuous ) Element of K19(K20(REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ,REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) : ( ( ) ( Relation-like V34() V35() V36() ) set ) ) : ( ( ) ( ) set ) ) . (n : ( ( ) ( V21() V22() V23() V27() V28() V29() V30() ext-real non negative V50() V51() V52() V53() V54() V55() V56() ) Element of NAT : ( ( ) ( non empty V21() V22() V23() V51() V52() V53() V54() V55() V56() V57() ) Element of K19(REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) : ( ( ) ( ) set ) ) ) * x : ( ( ) ( V28() V29() ext-real ) Real) ) : ( ( ) ( V28() V29() ext-real ) Element of REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) ) : ( ( ) (
V28()
V29()
ext-real )
Element of
REAL : ( ( ) ( non
empty V51()
V52()
V53()
V57()
V62() )
set ) ) : ( ( ) (
V28()
V29()
ext-real )
Element of
REAL : ( ( ) ( non
empty V51()
V52()
V53()
V57()
V62() )
set ) ) ) ) ;
theorem
for
m,
n being ( ( ) (
V21()
V22()
V23()
V27()
V28()
V29()
V30()
ext-real non
negative V50()
V51()
V52()
V53()
V54()
V55()
V56() )
Element of
NAT : ( ( ) ( non
empty V21()
V22()
V23()
V51()
V52()
V53()
V54()
V55()
V56()
V57() )
Element of
K19(
REAL : ( ( ) ( non
empty V51()
V52()
V53()
V57()
V62() )
set ) ) : ( ( ) ( )
set ) ) ) st
m : ( ( ) (
V21()
V22()
V23()
V27()
V28()
V29()
V30()
ext-real non
negative V50()
V51()
V52()
V53()
V54()
V55()
V56() )
Element of
NAT : ( ( ) ( non
empty V21()
V22()
V23()
V51()
V52()
V53()
V54()
V55()
V56()
V57() )
Element of
K19(
REAL : ( ( ) ( non
empty V51()
V52()
V53()
V57()
V62() )
set ) ) : ( ( ) ( )
set ) ) )
+ n : ( ( ) (
V21()
V22()
V23()
V27()
V28()
V29()
V30()
ext-real non
negative V50()
V51()
V52()
V53()
V54()
V55()
V56() )
Element of
NAT : ( ( ) ( non
empty V21()
V22()
V23()
V51()
V52()
V53()
V54()
V55()
V56()
V57() )
Element of
K19(
REAL : ( ( ) ( non
empty V51()
V52()
V53()
V57()
V62() )
set ) ) : ( ( ) ( )
set ) ) ) : ( ( ) (
V21()
V22()
V23()
V27()
V28()
V29()
V30()
ext-real non
negative )
Element of
REAL : ( ( ) ( non
empty V51()
V52()
V53()
V57()
V62() )
set ) )
<> 0 : ( ( ) (
V21()
V22()
V23()
V27()
V28()
V29()
V30()
ext-real non
negative V50()
V51()
V52()
V53()
V54()
V55()
V56() )
Element of
NAT : ( ( ) ( non
empty V21()
V22()
V23()
V51()
V52()
V53()
V54()
V55()
V56()
V57() )
Element of
K19(
REAL : ( ( ) ( non
empty V51()
V52()
V53()
V57()
V62() )
set ) ) : ( ( ) ( )
set ) ) ) &
m : ( ( ) (
V21()
V22()
V23()
V27()
V28()
V29()
V30()
ext-real non
negative V50()
V51()
V52()
V53()
V54()
V55()
V56() )
Element of
NAT : ( ( ) ( non
empty V21()
V22()
V23()
V51()
V52()
V53()
V54()
V55()
V56()
V57() )
Element of
K19(
REAL : ( ( ) ( non
empty V51()
V52()
V53()
V57()
V62() )
set ) ) : ( ( ) ( )
set ) ) )
- n : ( ( ) (
V21()
V22()
V23()
V27()
V28()
V29()
V30()
ext-real non
negative V50()
V51()
V52()
V53()
V54()
V55()
V56() )
Element of
NAT : ( ( ) ( non
empty V21()
V22()
V23()
V51()
V52()
V53()
V54()
V55()
V56()
V57() )
Element of
K19(
REAL : ( ( ) ( non
empty V51()
V52()
V53()
V57()
V62() )
set ) ) : ( ( ) ( )
set ) ) ) : ( ( ) (
V28()
V29()
V30()
ext-real )
Element of
REAL : ( ( ) ( non
empty V51()
V52()
V53()
V57()
V62() )
set ) )
<> 0 : ( ( ) (
V21()
V22()
V23()
V27()
V28()
V29()
V30()
ext-real non
negative V50()
V51()
V52()
V53()
V54()
V55()
V56() )
Element of
NAT : ( ( ) ( non
empty V21()
V22()
V23()
V51()
V52()
V53()
V54()
V55()
V56()
V57() )
Element of
K19(
REAL : ( ( ) ( non
empty V51()
V52()
V53()
V57()
V62() )
set ) ) : ( ( ) ( )
set ) ) ) holds
(
(- ((1 : ( ( ) ( non empty V21() V22() V23() V27() V28() V29() V30() ext-real non negative V50() V51() V52() V53() V54() V55() V56() ) Element of NAT : ( ( ) ( non empty V21() V22() V23() V51() V52() V53() V54() V55() V56() V57() ) Element of K19(REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) : ( ( ) ( ) set ) ) ) / (2 : ( ( ) ( non empty V21() V22() V23() V27() V28() V29() V30() ext-real non negative V50() V51() V52() V53() V54() V55() V56() ) Element of NAT : ( ( ) ( non empty V21() V22() V23() V51() V52() V53() V54() V55() V56() V57() ) Element of K19(REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) : ( ( ) ( ) set ) ) ) * (m : ( ( ) ( V21() V22() V23() V27() V28() V29() V30() ext-real non negative V50() V51() V52() V53() V54() V55() V56() ) Element of NAT : ( ( ) ( non empty V21() V22() V23() V51() V52() V53() V54() V55() V56() V57() ) Element of K19(REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) : ( ( ) ( ) set ) ) ) + n : ( ( ) ( V21() V22() V23() V27() V28() V29() V30() ext-real non negative V50() V51() V52() V53() V54() V55() V56() ) Element of NAT : ( ( ) ( non empty V21() V22() V23() V51() V52() V53() V54() V55() V56() V57() ) Element of K19(REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( ) ( V21() V22() V23() V27() V28() V29() V30() ext-real non negative ) Element of REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) ) : ( ( ) ( V21() V22() V23() V27() V28() V29() V30() ext-real non negative ) Element of REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) ) : ( ( ) ( V28() V29() ext-real ) Element of REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) (#) (cos : ( ( V6() V18( REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) , REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) ) ( Relation-like V6() non empty total V18( REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) , REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) V34() V35() V36() continuous ) Element of K19(K20(REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ,REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) : ( ( ) ( Relation-like V34() V35() V36() ) set ) ) : ( ( ) ( ) set ) ) * (AffineMap ((m : ( ( ) ( V21() V22() V23() V27() V28() V29() V30() ext-real non negative V50() V51() V52() V53() V54() V55() V56() ) Element of NAT : ( ( ) ( non empty V21() V22() V23() V51() V52() V53() V54() V55() V56() V57() ) Element of K19(REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) : ( ( ) ( ) set ) ) ) + n : ( ( ) ( V21() V22() V23() V27() V28() V29() V30() ext-real non negative V50() V51() V52() V53() V54() V55() V56() ) Element of NAT : ( ( ) ( non empty V21() V22() V23() V51() V52() V53() V54() V55() V56() V57() ) Element of K19(REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( ) ( V21() V22() V23() V27() V28() V29() V30() ext-real non negative ) Element of REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) ,0 : ( ( ) ( V21() V22() V23() V27() V28() V29() V30() ext-real non negative V50() V51() V52() V53() V54() V55() V56() ) Element of NAT : ( ( ) ( non empty V21() V22() V23() V51() V52() V53() V54() V55() V56() V57() ) Element of K19(REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) : ( ( ) ( ) set ) ) ) )) : ( ( V6() V18( REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) , REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) ) ( Relation-like V6() non empty total V18( REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) , REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) V34() V35() V36() continuous ) Element of K19(K20(REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ,REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) : ( ( ) ( Relation-like V34() V35() V36() ) set ) ) : ( ( ) ( ) set ) ) ) : ( ( V6() ) ( Relation-like V6() non empty total V18( REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) , REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) V34() V35() V36() continuous ) Element of K19(K20(REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ,REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) : ( ( ) ( Relation-like V34() V35() V36() ) set ) ) : ( ( ) ( ) set ) ) ) : ( ( V6() ) ( Relation-like V6() non empty total V18( REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) , REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) V34() V35() V36() continuous ) Element of K19(K20(REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ,REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) : ( ( ) ( Relation-like V34() V35() V36() ) set ) ) : ( ( ) ( ) set ) ) ) : ( (
V6() ) (
Relation-like V6() non
empty total V18(
REAL : ( ( ) ( non
empty V51()
V52()
V53()
V57()
V62() )
set ) ,
REAL : ( ( ) ( non
empty V51()
V52()
V53()
V57()
V62() )
set ) )
V34()
V35()
V36() )
Element of
K19(
K20(
REAL : ( ( ) ( non
empty V51()
V52()
V53()
V57()
V62() )
set ) ,
REAL : ( ( ) ( non
empty V51()
V52()
V53()
V57()
V62() )
set ) ) : ( ( ) (
Relation-like V34()
V35()
V36() )
set ) ) : ( ( ) ( )
set ) )
- ((1 : ( ( ) ( non empty V21() V22() V23() V27() V28() V29() V30() ext-real non negative V50() V51() V52() V53() V54() V55() V56() ) Element of NAT : ( ( ) ( non empty V21() V22() V23() V51() V52() V53() V54() V55() V56() V57() ) Element of K19(REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) : ( ( ) ( ) set ) ) ) / (2 : ( ( ) ( non empty V21() V22() V23() V27() V28() V29() V30() ext-real non negative V50() V51() V52() V53() V54() V55() V56() ) Element of NAT : ( ( ) ( non empty V21() V22() V23() V51() V52() V53() V54() V55() V56() V57() ) Element of K19(REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) : ( ( ) ( ) set ) ) ) * (m : ( ( ) ( V21() V22() V23() V27() V28() V29() V30() ext-real non negative V50() V51() V52() V53() V54() V55() V56() ) Element of NAT : ( ( ) ( non empty V21() V22() V23() V51() V52() V53() V54() V55() V56() V57() ) Element of K19(REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) : ( ( ) ( ) set ) ) ) - n : ( ( ) ( V21() V22() V23() V27() V28() V29() V30() ext-real non negative V50() V51() V52() V53() V54() V55() V56() ) Element of NAT : ( ( ) ( non empty V21() V22() V23() V51() V52() V53() V54() V55() V56() V57() ) Element of K19(REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( ) ( V28() V29() V30() ext-real ) Element of REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) ) : ( ( ) ( V28() V29() V30() ext-real ) Element of REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) ) : ( ( ) ( V28() V29() ext-real ) Element of REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) (#) (cos : ( ( V6() V18( REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) , REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) ) ( Relation-like V6() non empty total V18( REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) , REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) V34() V35() V36() continuous ) Element of K19(K20(REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ,REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) : ( ( ) ( Relation-like V34() V35() V36() ) set ) ) : ( ( ) ( ) set ) ) * (AffineMap ((m : ( ( ) ( V21() V22() V23() V27() V28() V29() V30() ext-real non negative V50() V51() V52() V53() V54() V55() V56() ) Element of NAT : ( ( ) ( non empty V21() V22() V23() V51() V52() V53() V54() V55() V56() V57() ) Element of K19(REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) : ( ( ) ( ) set ) ) ) - n : ( ( ) ( V21() V22() V23() V27() V28() V29() V30() ext-real non negative V50() V51() V52() V53() V54() V55() V56() ) Element of NAT : ( ( ) ( non empty V21() V22() V23() V51() V52() V53() V54() V55() V56() V57() ) Element of K19(REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( ) ( V28() V29() V30() ext-real ) Element of REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) ,0 : ( ( ) ( V21() V22() V23() V27() V28() V29() V30() ext-real non negative V50() V51() V52() V53() V54() V55() V56() ) Element of NAT : ( ( ) ( non empty V21() V22() V23() V51() V52() V53() V54() V55() V56() V57() ) Element of K19(REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) : ( ( ) ( ) set ) ) ) )) : ( ( V6() V18( REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) , REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) ) ( Relation-like V6() non empty total V18( REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) , REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) V34() V35() V36() continuous ) Element of K19(K20(REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ,REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) : ( ( ) ( Relation-like V34() V35() V36() ) set ) ) : ( ( ) ( ) set ) ) ) : ( ( V6() ) ( Relation-like V6() non empty total V18( REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) , REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) V34() V35() V36() continuous ) Element of K19(K20(REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ,REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) : ( ( ) ( Relation-like V34() V35() V36() ) set ) ) : ( ( ) ( ) set ) ) ) : ( (
V6() ) (
Relation-like V6() non
empty total V18(
REAL : ( ( ) ( non
empty V51()
V52()
V53()
V57()
V62() )
set ) ,
REAL : ( ( ) ( non
empty V51()
V52()
V53()
V57()
V62() )
set ) )
V34()
V35()
V36()
continuous )
Element of
K19(
K20(
REAL : ( ( ) ( non
empty V51()
V52()
V53()
V57()
V62() )
set ) ,
REAL : ( ( ) ( non
empty V51()
V52()
V53()
V57()
V62() )
set ) ) : ( ( ) (
Relation-like V34()
V35()
V36() )
set ) ) : ( ( ) ( )
set ) ) : ( (
V6() ) (
Relation-like V6() non
empty total V18(
REAL : ( ( ) ( non
empty V51()
V52()
V53()
V57()
V62() )
set ) ,
REAL : ( ( ) ( non
empty V51()
V52()
V53()
V57()
V62() )
set ) )
V34()
V35()
V36() )
Element of
K19(
K20(
REAL : ( ( ) ( non
empty V51()
V52()
V53()
V57()
V62() )
set ) ,
REAL : ( ( ) ( non
empty V51()
V52()
V53()
V57()
V62() )
set ) ) : ( ( ) (
Relation-like V34()
V35()
V36() )
set ) ) : ( ( ) ( )
set ) )
is_differentiable_on REAL : ( ( ) ( non
empty V51()
V52()
V53()
V57()
V62() )
set ) & ( for
x being ( ( ) (
V28()
V29()
ext-real )
Real) holds
(((- ((1 : ( ( ) ( non empty V21() V22() V23() V27() V28() V29() V30() ext-real non negative V50() V51() V52() V53() V54() V55() V56() ) Element of NAT : ( ( ) ( non empty V21() V22() V23() V51() V52() V53() V54() V55() V56() V57() ) Element of K19(REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) : ( ( ) ( ) set ) ) ) / (2 : ( ( ) ( non empty V21() V22() V23() V27() V28() V29() V30() ext-real non negative V50() V51() V52() V53() V54() V55() V56() ) Element of NAT : ( ( ) ( non empty V21() V22() V23() V51() V52() V53() V54() V55() V56() V57() ) Element of K19(REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) : ( ( ) ( ) set ) ) ) * (m : ( ( ) ( V21() V22() V23() V27() V28() V29() V30() ext-real non negative V50() V51() V52() V53() V54() V55() V56() ) Element of NAT : ( ( ) ( non empty V21() V22() V23() V51() V52() V53() V54() V55() V56() V57() ) Element of K19(REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) : ( ( ) ( ) set ) ) ) + n : ( ( ) ( V21() V22() V23() V27() V28() V29() V30() ext-real non negative V50() V51() V52() V53() V54() V55() V56() ) Element of NAT : ( ( ) ( non empty V21() V22() V23() V51() V52() V53() V54() V55() V56() V57() ) Element of K19(REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( ) ( V21() V22() V23() V27() V28() V29() V30() ext-real non negative ) Element of REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) ) : ( ( ) ( V21() V22() V23() V27() V28() V29() V30() ext-real non negative ) Element of REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) ) : ( ( ) ( V28() V29() ext-real ) Element of REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) (#) (cos : ( ( V6() V18( REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) , REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) ) ( Relation-like V6() non empty total V18( REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) , REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) V34() V35() V36() continuous ) Element of K19(K20(REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ,REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) : ( ( ) ( Relation-like V34() V35() V36() ) set ) ) : ( ( ) ( ) set ) ) * (AffineMap ((m : ( ( ) ( V21() V22() V23() V27() V28() V29() V30() ext-real non negative V50() V51() V52() V53() V54() V55() V56() ) Element of NAT : ( ( ) ( non empty V21() V22() V23() V51() V52() V53() V54() V55() V56() V57() ) Element of K19(REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) : ( ( ) ( ) set ) ) ) + n : ( ( ) ( V21() V22() V23() V27() V28() V29() V30() ext-real non negative V50() V51() V52() V53() V54() V55() V56() ) Element of NAT : ( ( ) ( non empty V21() V22() V23() V51() V52() V53() V54() V55() V56() V57() ) Element of K19(REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( ) ( V21() V22() V23() V27() V28() V29() V30() ext-real non negative ) Element of REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) ,0 : ( ( ) ( V21() V22() V23() V27() V28() V29() V30() ext-real non negative V50() V51() V52() V53() V54() V55() V56() ) Element of NAT : ( ( ) ( non empty V21() V22() V23() V51() V52() V53() V54() V55() V56() V57() ) Element of K19(REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) : ( ( ) ( ) set ) ) ) )) : ( ( V6() V18( REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) , REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) ) ( Relation-like V6() non empty total V18( REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) , REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) V34() V35() V36() continuous ) Element of K19(K20(REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ,REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) : ( ( ) ( Relation-like V34() V35() V36() ) set ) ) : ( ( ) ( ) set ) ) ) : ( ( V6() ) ( Relation-like V6() non empty total V18( REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) , REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) V34() V35() V36() continuous ) Element of K19(K20(REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ,REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) : ( ( ) ( Relation-like V34() V35() V36() ) set ) ) : ( ( ) ( ) set ) ) ) : ( ( V6() ) ( Relation-like V6() non empty total V18( REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) , REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) V34() V35() V36() continuous ) Element of K19(K20(REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ,REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) : ( ( ) ( Relation-like V34() V35() V36() ) set ) ) : ( ( ) ( ) set ) ) ) : ( ( V6() ) ( Relation-like V6() non empty total V18( REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) , REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) V34() V35() V36() ) Element of K19(K20(REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ,REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) : ( ( ) ( Relation-like V34() V35() V36() ) set ) ) : ( ( ) ( ) set ) ) - ((1 : ( ( ) ( non empty V21() V22() V23() V27() V28() V29() V30() ext-real non negative V50() V51() V52() V53() V54() V55() V56() ) Element of NAT : ( ( ) ( non empty V21() V22() V23() V51() V52() V53() V54() V55() V56() V57() ) Element of K19(REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) : ( ( ) ( ) set ) ) ) / (2 : ( ( ) ( non empty V21() V22() V23() V27() V28() V29() V30() ext-real non negative V50() V51() V52() V53() V54() V55() V56() ) Element of NAT : ( ( ) ( non empty V21() V22() V23() V51() V52() V53() V54() V55() V56() V57() ) Element of K19(REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) : ( ( ) ( ) set ) ) ) * (m : ( ( ) ( V21() V22() V23() V27() V28() V29() V30() ext-real non negative V50() V51() V52() V53() V54() V55() V56() ) Element of NAT : ( ( ) ( non empty V21() V22() V23() V51() V52() V53() V54() V55() V56() V57() ) Element of K19(REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) : ( ( ) ( ) set ) ) ) - n : ( ( ) ( V21() V22() V23() V27() V28() V29() V30() ext-real non negative V50() V51() V52() V53() V54() V55() V56() ) Element of NAT : ( ( ) ( non empty V21() V22() V23() V51() V52() V53() V54() V55() V56() V57() ) Element of K19(REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( ) ( V28() V29() V30() ext-real ) Element of REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) ) : ( ( ) ( V28() V29() V30() ext-real ) Element of REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) ) : ( ( ) ( V28() V29() ext-real ) Element of REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) (#) (cos : ( ( V6() V18( REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) , REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) ) ( Relation-like V6() non empty total V18( REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) , REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) V34() V35() V36() continuous ) Element of K19(K20(REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ,REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) : ( ( ) ( Relation-like V34() V35() V36() ) set ) ) : ( ( ) ( ) set ) ) * (AffineMap ((m : ( ( ) ( V21() V22() V23() V27() V28() V29() V30() ext-real non negative V50() V51() V52() V53() V54() V55() V56() ) Element of NAT : ( ( ) ( non empty V21() V22() V23() V51() V52() V53() V54() V55() V56() V57() ) Element of K19(REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) : ( ( ) ( ) set ) ) ) - n : ( ( ) ( V21() V22() V23() V27() V28() V29() V30() ext-real non negative V50() V51() V52() V53() V54() V55() V56() ) Element of NAT : ( ( ) ( non empty V21() V22() V23() V51() V52() V53() V54() V55() V56() V57() ) Element of K19(REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( ) ( V28() V29() V30() ext-real ) Element of REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) ,0 : ( ( ) ( V21() V22() V23() V27() V28() V29() V30() ext-real non negative V50() V51() V52() V53() V54() V55() V56() ) Element of NAT : ( ( ) ( non empty V21() V22() V23() V51() V52() V53() V54() V55() V56() V57() ) Element of K19(REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) : ( ( ) ( ) set ) ) ) )) : ( ( V6() V18( REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) , REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) ) ( Relation-like V6() non empty total V18( REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) , REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) V34() V35() V36() continuous ) Element of K19(K20(REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ,REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) : ( ( ) ( Relation-like V34() V35() V36() ) set ) ) : ( ( ) ( ) set ) ) ) : ( ( V6() ) ( Relation-like V6() non empty total V18( REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) , REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) V34() V35() V36() continuous ) Element of K19(K20(REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ,REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) : ( ( ) ( Relation-like V34() V35() V36() ) set ) ) : ( ( ) ( ) set ) ) ) : ( ( V6() ) ( Relation-like V6() non empty total V18( REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) , REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) V34() V35() V36() continuous ) Element of K19(K20(REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ,REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) : ( ( ) ( Relation-like V34() V35() V36() ) set ) ) : ( ( ) ( ) set ) ) ) : ( ( V6() ) ( Relation-like V6() non empty total V18( REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) , REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) V34() V35() V36() ) Element of K19(K20(REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ,REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) : ( ( ) ( Relation-like V34() V35() V36() ) set ) ) : ( ( ) ( ) set ) ) `| REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) : ( (
V6() ) (
Relation-like V6()
V34()
V35()
V36() )
Element of
K19(
K20(
REAL : ( ( ) ( non
empty V51()
V52()
V53()
V57()
V62() )
set ) ,
REAL : ( ( ) ( non
empty V51()
V52()
V53()
V57()
V62() )
set ) ) : ( ( ) (
Relation-like V34()
V35()
V36() )
set ) ) : ( ( ) ( )
set ) )
. x : ( ( ) (
V28()
V29()
ext-real )
Real) : ( ( ) (
V28()
V29()
ext-real )
Element of
REAL : ( ( ) ( non
empty V51()
V52()
V53()
V57()
V62() )
set ) )
= (sin : ( ( V6() V18( REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) , REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) ) ( Relation-like V6() non empty total V18( REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) , REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) V34() V35() V36() continuous ) Element of K19(K20(REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ,REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) : ( ( ) ( Relation-like V34() V35() V36() ) set ) ) : ( ( ) ( ) set ) ) . (m : ( ( ) ( V21() V22() V23() V27() V28() V29() V30() ext-real non negative V50() V51() V52() V53() V54() V55() V56() ) Element of NAT : ( ( ) ( non empty V21() V22() V23() V51() V52() V53() V54() V55() V56() V57() ) Element of K19(REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) : ( ( ) ( ) set ) ) ) * x : ( ( ) ( V28() V29() ext-real ) Real) ) : ( ( ) ( V28() V29() ext-real ) Element of REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) ) : ( ( ) (
V28()
V29()
ext-real )
Element of
REAL : ( ( ) ( non
empty V51()
V52()
V53()
V57()
V62() )
set ) )
* (cos : ( ( V6() V18( REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) , REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) ) ( Relation-like V6() non empty total V18( REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) , REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) V34() V35() V36() continuous ) Element of K19(K20(REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ,REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) : ( ( ) ( Relation-like V34() V35() V36() ) set ) ) : ( ( ) ( ) set ) ) . (n : ( ( ) ( V21() V22() V23() V27() V28() V29() V30() ext-real non negative V50() V51() V52() V53() V54() V55() V56() ) Element of NAT : ( ( ) ( non empty V21() V22() V23() V51() V52() V53() V54() V55() V56() V57() ) Element of K19(REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) : ( ( ) ( ) set ) ) ) * x : ( ( ) ( V28() V29() ext-real ) Real) ) : ( ( ) ( V28() V29() ext-real ) Element of REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) ) : ( ( ) (
V28()
V29()
ext-real )
Element of
REAL : ( ( ) ( non
empty V51()
V52()
V53()
V57()
V62() )
set ) ) : ( ( ) (
V28()
V29()
ext-real )
Element of
REAL : ( ( ) ( non
empty V51()
V52()
V53()
V57()
V62() )
set ) ) ) ) ;
theorem
for
n being ( ( ) (
V21()
V22()
V23()
V27()
V28()
V29()
V30()
ext-real non
negative V50()
V51()
V52()
V53()
V54()
V55()
V56() )
Element of
NAT : ( ( ) ( non
empty V21()
V22()
V23()
V51()
V52()
V53()
V54()
V55()
V56()
V57() )
Element of
K19(
REAL : ( ( ) ( non
empty V51()
V52()
V53()
V57()
V62() )
set ) ) : ( ( ) ( )
set ) ) ) st
n : ( ( ) (
V21()
V22()
V23()
V27()
V28()
V29()
V30()
ext-real non
negative V50()
V51()
V52()
V53()
V54()
V55()
V56() )
Element of
NAT : ( ( ) ( non
empty V21()
V22()
V23()
V51()
V52()
V53()
V54()
V55()
V56()
V57() )
Element of
K19(
REAL : ( ( ) ( non
empty V51()
V52()
V53()
V57()
V62() )
set ) ) : ( ( ) ( )
set ) ) )
<> 0 : ( ( ) (
V21()
V22()
V23()
V27()
V28()
V29()
V30()
ext-real non
negative V50()
V51()
V52()
V53()
V54()
V55()
V56() )
Element of
NAT : ( ( ) ( non
empty V21()
V22()
V23()
V51()
V52()
V53()
V54()
V55()
V56()
V57() )
Element of
K19(
REAL : ( ( ) ( non
empty V51()
V52()
V53()
V57()
V62() )
set ) ) : ( ( ) ( )
set ) ) ) holds
(
((1 : ( ( ) ( non empty V21() V22() V23() V27() V28() V29() V30() ext-real non negative V50() V51() V52() V53() V54() V55() V56() ) Element of NAT : ( ( ) ( non empty V21() V22() V23() V51() V52() V53() V54() V55() V56() V57() ) Element of K19(REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) : ( ( ) ( ) set ) ) ) / (n : ( ( ) ( V21() V22() V23() V27() V28() V29() V30() ext-real non negative V50() V51() V52() V53() V54() V55() V56() ) Element of NAT : ( ( ) ( non empty V21() V22() V23() V51() V52() V53() V54() V55() V56() V57() ) Element of K19(REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) : ( ( ) ( ) set ) ) ) ^2) : ( ( ) ( V28() V29() ext-real ) Element of REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) ) : ( ( ) ( V28() V29() ext-real ) Element of REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) (#) (sin : ( ( V6() V18( REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) , REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) ) ( Relation-like V6() non empty total V18( REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) , REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) V34() V35() V36() continuous ) Element of K19(K20(REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ,REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) : ( ( ) ( Relation-like V34() V35() V36() ) set ) ) : ( ( ) ( ) set ) ) * (AffineMap (n : ( ( ) ( V21() V22() V23() V27() V28() V29() V30() ext-real non negative V50() V51() V52() V53() V54() V55() V56() ) Element of NAT : ( ( ) ( non empty V21() V22() V23() V51() V52() V53() V54() V55() V56() V57() ) Element of K19(REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) : ( ( ) ( ) set ) ) ) ,0 : ( ( ) ( V21() V22() V23() V27() V28() V29() V30() ext-real non negative V50() V51() V52() V53() V54() V55() V56() ) Element of NAT : ( ( ) ( non empty V21() V22() V23() V51() V52() V53() V54() V55() V56() V57() ) Element of K19(REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) : ( ( ) ( ) set ) ) ) )) : ( ( V6() V18( REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) , REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) ) ( Relation-like V6() non empty total V18( REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) , REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) V34() V35() V36() continuous ) Element of K19(K20(REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ,REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) : ( ( ) ( Relation-like V34() V35() V36() ) set ) ) : ( ( ) ( ) set ) ) ) : ( ( V6() ) ( Relation-like V6() non empty total V18( REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) , REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) V34() V35() V36() continuous ) Element of K19(K20(REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ,REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) : ( ( ) ( Relation-like V34() V35() V36() ) set ) ) : ( ( ) ( ) set ) ) ) : ( (
V6() ) (
Relation-like V6() non
empty total V18(
REAL : ( ( ) ( non
empty V51()
V52()
V53()
V57()
V62() )
set ) ,
REAL : ( ( ) ( non
empty V51()
V52()
V53()
V57()
V62() )
set ) )
V34()
V35()
V36()
continuous )
Element of
K19(
K20(
REAL : ( ( ) ( non
empty V51()
V52()
V53()
V57()
V62() )
set ) ,
REAL : ( ( ) ( non
empty V51()
V52()
V53()
V57()
V62() )
set ) ) : ( ( ) (
Relation-like V34()
V35()
V36() )
set ) ) : ( ( ) ( )
set ) )
- ((AffineMap ((1 : ( ( ) ( non empty V21() V22() V23() V27() V28() V29() V30() ext-real non negative V50() V51() V52() V53() V54() V55() V56() ) Element of NAT : ( ( ) ( non empty V21() V22() V23() V51() V52() V53() V54() V55() V56() V57() ) Element of K19(REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) : ( ( ) ( ) set ) ) ) / n : ( ( ) ( V21() V22() V23() V27() V28() V29() V30() ext-real non negative V50() V51() V52() V53() V54() V55() V56() ) Element of NAT : ( ( ) ( non empty V21() V22() V23() V51() V52() V53() V54() V55() V56() V57() ) Element of K19(REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( ) ( V28() V29() ext-real ) Element of REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) ,0 : ( ( ) ( V21() V22() V23() V27() V28() V29() V30() ext-real non negative V50() V51() V52() V53() V54() V55() V56() ) Element of NAT : ( ( ) ( non empty V21() V22() V23() V51() V52() V53() V54() V55() V56() V57() ) Element of K19(REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) : ( ( ) ( ) set ) ) ) )) : ( ( V6() V18( REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) , REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) ) ( Relation-like V6() non empty total V18( REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) , REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) V34() V35() V36() continuous ) Element of K19(K20(REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ,REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) : ( ( ) ( Relation-like V34() V35() V36() ) set ) ) : ( ( ) ( ) set ) ) (#) (cos : ( ( V6() V18( REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) , REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) ) ( Relation-like V6() non empty total V18( REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) , REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) V34() V35() V36() continuous ) Element of K19(K20(REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ,REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) : ( ( ) ( Relation-like V34() V35() V36() ) set ) ) : ( ( ) ( ) set ) ) * (AffineMap (n : ( ( ) ( V21() V22() V23() V27() V28() V29() V30() ext-real non negative V50() V51() V52() V53() V54() V55() V56() ) Element of NAT : ( ( ) ( non empty V21() V22() V23() V51() V52() V53() V54() V55() V56() V57() ) Element of K19(REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) : ( ( ) ( ) set ) ) ) ,0 : ( ( ) ( V21() V22() V23() V27() V28() V29() V30() ext-real non negative V50() V51() V52() V53() V54() V55() V56() ) Element of NAT : ( ( ) ( non empty V21() V22() V23() V51() V52() V53() V54() V55() V56() V57() ) Element of K19(REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) : ( ( ) ( ) set ) ) ) )) : ( ( V6() V18( REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) , REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) ) ( Relation-like V6() non empty total V18( REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) , REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) V34() V35() V36() continuous ) Element of K19(K20(REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ,REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) : ( ( ) ( Relation-like V34() V35() V36() ) set ) ) : ( ( ) ( ) set ) ) ) : ( ( V6() ) ( Relation-like V6() non empty total V18( REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) , REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) V34() V35() V36() continuous ) Element of K19(K20(REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ,REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) : ( ( ) ( Relation-like V34() V35() V36() ) set ) ) : ( ( ) ( ) set ) ) ) : ( (
V6() ) (
Relation-like V6() non
empty total V18(
REAL : ( ( ) ( non
empty V51()
V52()
V53()
V57()
V62() )
set ) ,
REAL : ( ( ) ( non
empty V51()
V52()
V53()
V57()
V62() )
set ) )
V34()
V35()
V36()
continuous )
Element of
K19(
K20(
REAL : ( ( ) ( non
empty V51()
V52()
V53()
V57()
V62() )
set ) ,
REAL : ( ( ) ( non
empty V51()
V52()
V53()
V57()
V62() )
set ) ) : ( ( ) (
Relation-like V34()
V35()
V36() )
set ) ) : ( ( ) ( )
set ) ) : ( (
V6() ) (
Relation-like V6() non
empty total V18(
REAL : ( ( ) ( non
empty V51()
V52()
V53()
V57()
V62() )
set ) ,
REAL : ( ( ) ( non
empty V51()
V52()
V53()
V57()
V62() )
set ) )
V34()
V35()
V36()
continuous )
Element of
K19(
K20(
REAL : ( ( ) ( non
empty V51()
V52()
V53()
V57()
V62() )
set ) ,
REAL : ( ( ) ( non
empty V51()
V52()
V53()
V57()
V62() )
set ) ) : ( ( ) (
Relation-like V34()
V35()
V36() )
set ) ) : ( ( ) ( )
set ) )
is_differentiable_on REAL : ( ( ) ( non
empty V51()
V52()
V53()
V57()
V62() )
set ) & ( for
x being ( ( ) (
V28()
V29()
ext-real )
Real) holds
((((1 : ( ( ) ( non empty V21() V22() V23() V27() V28() V29() V30() ext-real non negative V50() V51() V52() V53() V54() V55() V56() ) Element of NAT : ( ( ) ( non empty V21() V22() V23() V51() V52() V53() V54() V55() V56() V57() ) Element of K19(REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) : ( ( ) ( ) set ) ) ) / (n : ( ( ) ( V21() V22() V23() V27() V28() V29() V30() ext-real non negative V50() V51() V52() V53() V54() V55() V56() ) Element of NAT : ( ( ) ( non empty V21() V22() V23() V51() V52() V53() V54() V55() V56() V57() ) Element of K19(REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) : ( ( ) ( ) set ) ) ) ^2) : ( ( ) ( V28() V29() ext-real ) Element of REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) ) : ( ( ) ( V28() V29() ext-real ) Element of REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) (#) (sin : ( ( V6() V18( REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) , REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) ) ( Relation-like V6() non empty total V18( REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) , REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) V34() V35() V36() continuous ) Element of K19(K20(REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ,REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) : ( ( ) ( Relation-like V34() V35() V36() ) set ) ) : ( ( ) ( ) set ) ) * (AffineMap (n : ( ( ) ( V21() V22() V23() V27() V28() V29() V30() ext-real non negative V50() V51() V52() V53() V54() V55() V56() ) Element of NAT : ( ( ) ( non empty V21() V22() V23() V51() V52() V53() V54() V55() V56() V57() ) Element of K19(REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) : ( ( ) ( ) set ) ) ) ,0 : ( ( ) ( V21() V22() V23() V27() V28() V29() V30() ext-real non negative V50() V51() V52() V53() V54() V55() V56() ) Element of NAT : ( ( ) ( non empty V21() V22() V23() V51() V52() V53() V54() V55() V56() V57() ) Element of K19(REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) : ( ( ) ( ) set ) ) ) )) : ( ( V6() V18( REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) , REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) ) ( Relation-like V6() non empty total V18( REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) , REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) V34() V35() V36() continuous ) Element of K19(K20(REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ,REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) : ( ( ) ( Relation-like V34() V35() V36() ) set ) ) : ( ( ) ( ) set ) ) ) : ( ( V6() ) ( Relation-like V6() non empty total V18( REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) , REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) V34() V35() V36() continuous ) Element of K19(K20(REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ,REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) : ( ( ) ( Relation-like V34() V35() V36() ) set ) ) : ( ( ) ( ) set ) ) ) : ( ( V6() ) ( Relation-like V6() non empty total V18( REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) , REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) V34() V35() V36() continuous ) Element of K19(K20(REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ,REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) : ( ( ) ( Relation-like V34() V35() V36() ) set ) ) : ( ( ) ( ) set ) ) - ((AffineMap ((1 : ( ( ) ( non empty V21() V22() V23() V27() V28() V29() V30() ext-real non negative V50() V51() V52() V53() V54() V55() V56() ) Element of NAT : ( ( ) ( non empty V21() V22() V23() V51() V52() V53() V54() V55() V56() V57() ) Element of K19(REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) : ( ( ) ( ) set ) ) ) / n : ( ( ) ( V21() V22() V23() V27() V28() V29() V30() ext-real non negative V50() V51() V52() V53() V54() V55() V56() ) Element of NAT : ( ( ) ( non empty V21() V22() V23() V51() V52() V53() V54() V55() V56() V57() ) Element of K19(REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( ) ( V28() V29() ext-real ) Element of REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) ,0 : ( ( ) ( V21() V22() V23() V27() V28() V29() V30() ext-real non negative V50() V51() V52() V53() V54() V55() V56() ) Element of NAT : ( ( ) ( non empty V21() V22() V23() V51() V52() V53() V54() V55() V56() V57() ) Element of K19(REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) : ( ( ) ( ) set ) ) ) )) : ( ( V6() V18( REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) , REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) ) ( Relation-like V6() non empty total V18( REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) , REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) V34() V35() V36() continuous ) Element of K19(K20(REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ,REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) : ( ( ) ( Relation-like V34() V35() V36() ) set ) ) : ( ( ) ( ) set ) ) (#) (cos : ( ( V6() V18( REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) , REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) ) ( Relation-like V6() non empty total V18( REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) , REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) V34() V35() V36() continuous ) Element of K19(K20(REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ,REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) : ( ( ) ( Relation-like V34() V35() V36() ) set ) ) : ( ( ) ( ) set ) ) * (AffineMap (n : ( ( ) ( V21() V22() V23() V27() V28() V29() V30() ext-real non negative V50() V51() V52() V53() V54() V55() V56() ) Element of NAT : ( ( ) ( non empty V21() V22() V23() V51() V52() V53() V54() V55() V56() V57() ) Element of K19(REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) : ( ( ) ( ) set ) ) ) ,0 : ( ( ) ( V21() V22() V23() V27() V28() V29() V30() ext-real non negative V50() V51() V52() V53() V54() V55() V56() ) Element of NAT : ( ( ) ( non empty V21() V22() V23() V51() V52() V53() V54() V55() V56() V57() ) Element of K19(REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) : ( ( ) ( ) set ) ) ) )) : ( ( V6() V18( REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) , REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) ) ( Relation-like V6() non empty total V18( REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) , REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) V34() V35() V36() continuous ) Element of K19(K20(REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ,REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) : ( ( ) ( Relation-like V34() V35() V36() ) set ) ) : ( ( ) ( ) set ) ) ) : ( ( V6() ) ( Relation-like V6() non empty total V18( REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) , REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) V34() V35() V36() continuous ) Element of K19(K20(REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ,REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) : ( ( ) ( Relation-like V34() V35() V36() ) set ) ) : ( ( ) ( ) set ) ) ) : ( ( V6() ) ( Relation-like V6() non empty total V18( REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) , REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) V34() V35() V36() continuous ) Element of K19(K20(REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ,REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) : ( ( ) ( Relation-like V34() V35() V36() ) set ) ) : ( ( ) ( ) set ) ) ) : ( ( V6() ) ( Relation-like V6() non empty total V18( REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) , REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) V34() V35() V36() continuous ) Element of K19(K20(REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ,REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) : ( ( ) ( Relation-like V34() V35() V36() ) set ) ) : ( ( ) ( ) set ) ) `| REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) : ( (
V6() ) (
Relation-like V6()
V34()
V35()
V36() )
Element of
K19(
K20(
REAL : ( ( ) ( non
empty V51()
V52()
V53()
V57()
V62() )
set ) ,
REAL : ( ( ) ( non
empty V51()
V52()
V53()
V57()
V62() )
set ) ) : ( ( ) (
Relation-like V34()
V35()
V36() )
set ) ) : ( ( ) ( )
set ) )
. x : ( ( ) (
V28()
V29()
ext-real )
Real) : ( ( ) (
V28()
V29()
ext-real )
Element of
REAL : ( ( ) ( non
empty V51()
V52()
V53()
V57()
V62() )
set ) )
= x : ( ( ) (
V28()
V29()
ext-real )
Real)
* (sin : ( ( V6() V18( REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) , REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) ) ( Relation-like V6() non empty total V18( REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) , REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) V34() V35() V36() continuous ) Element of K19(K20(REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ,REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) : ( ( ) ( Relation-like V34() V35() V36() ) set ) ) : ( ( ) ( ) set ) ) . (n : ( ( ) ( V21() V22() V23() V27() V28() V29() V30() ext-real non negative V50() V51() V52() V53() V54() V55() V56() ) Element of NAT : ( ( ) ( non empty V21() V22() V23() V51() V52() V53() V54() V55() V56() V57() ) Element of K19(REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) : ( ( ) ( ) set ) ) ) * x : ( ( ) ( V28() V29() ext-real ) Real) ) : ( ( ) ( V28() V29() ext-real ) Element of REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) ) : ( ( ) (
V28()
V29()
ext-real )
Element of
REAL : ( ( ) ( non
empty V51()
V52()
V53()
V57()
V62() )
set ) ) : ( ( ) (
V28()
V29()
ext-real )
Element of
REAL : ( ( ) ( non
empty V51()
V52()
V53()
V57()
V62() )
set ) ) ) ) ;
theorem
for
n being ( ( ) (
V21()
V22()
V23()
V27()
V28()
V29()
V30()
ext-real non
negative V50()
V51()
V52()
V53()
V54()
V55()
V56() )
Element of
NAT : ( ( ) ( non
empty V21()
V22()
V23()
V51()
V52()
V53()
V54()
V55()
V56()
V57() )
Element of
K19(
REAL : ( ( ) ( non
empty V51()
V52()
V53()
V57()
V62() )
set ) ) : ( ( ) ( )
set ) ) ) st
n : ( ( ) (
V21()
V22()
V23()
V27()
V28()
V29()
V30()
ext-real non
negative V50()
V51()
V52()
V53()
V54()
V55()
V56() )
Element of
NAT : ( ( ) ( non
empty V21()
V22()
V23()
V51()
V52()
V53()
V54()
V55()
V56()
V57() )
Element of
K19(
REAL : ( ( ) ( non
empty V51()
V52()
V53()
V57()
V62() )
set ) ) : ( ( ) ( )
set ) ) )
<> 0 : ( ( ) (
V21()
V22()
V23()
V27()
V28()
V29()
V30()
ext-real non
negative V50()
V51()
V52()
V53()
V54()
V55()
V56() )
Element of
NAT : ( ( ) ( non
empty V21()
V22()
V23()
V51()
V52()
V53()
V54()
V55()
V56()
V57() )
Element of
K19(
REAL : ( ( ) ( non
empty V51()
V52()
V53()
V57()
V62() )
set ) ) : ( ( ) ( )
set ) ) ) holds
(
((1 : ( ( ) ( non empty V21() V22() V23() V27() V28() V29() V30() ext-real non negative V50() V51() V52() V53() V54() V55() V56() ) Element of NAT : ( ( ) ( non empty V21() V22() V23() V51() V52() V53() V54() V55() V56() V57() ) Element of K19(REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) : ( ( ) ( ) set ) ) ) / (n : ( ( ) ( V21() V22() V23() V27() V28() V29() V30() ext-real non negative V50() V51() V52() V53() V54() V55() V56() ) Element of NAT : ( ( ) ( non empty V21() V22() V23() V51() V52() V53() V54() V55() V56() V57() ) Element of K19(REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) : ( ( ) ( ) set ) ) ) ^2) : ( ( ) ( V28() V29() ext-real ) Element of REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) ) : ( ( ) ( V28() V29() ext-real ) Element of REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) (#) (cos : ( ( V6() V18( REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) , REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) ) ( Relation-like V6() non empty total V18( REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) , REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) V34() V35() V36() continuous ) Element of K19(K20(REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ,REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) : ( ( ) ( Relation-like V34() V35() V36() ) set ) ) : ( ( ) ( ) set ) ) * (AffineMap (n : ( ( ) ( V21() V22() V23() V27() V28() V29() V30() ext-real non negative V50() V51() V52() V53() V54() V55() V56() ) Element of NAT : ( ( ) ( non empty V21() V22() V23() V51() V52() V53() V54() V55() V56() V57() ) Element of K19(REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) : ( ( ) ( ) set ) ) ) ,0 : ( ( ) ( V21() V22() V23() V27() V28() V29() V30() ext-real non negative V50() V51() V52() V53() V54() V55() V56() ) Element of NAT : ( ( ) ( non empty V21() V22() V23() V51() V52() V53() V54() V55() V56() V57() ) Element of K19(REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) : ( ( ) ( ) set ) ) ) )) : ( ( V6() V18( REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) , REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) ) ( Relation-like V6() non empty total V18( REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) , REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) V34() V35() V36() continuous ) Element of K19(K20(REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ,REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) : ( ( ) ( Relation-like V34() V35() V36() ) set ) ) : ( ( ) ( ) set ) ) ) : ( ( V6() ) ( Relation-like V6() non empty total V18( REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) , REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) V34() V35() V36() continuous ) Element of K19(K20(REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ,REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) : ( ( ) ( Relation-like V34() V35() V36() ) set ) ) : ( ( ) ( ) set ) ) ) : ( (
V6() ) (
Relation-like V6() non
empty total V18(
REAL : ( ( ) ( non
empty V51()
V52()
V53()
V57()
V62() )
set ) ,
REAL : ( ( ) ( non
empty V51()
V52()
V53()
V57()
V62() )
set ) )
V34()
V35()
V36()
continuous )
Element of
K19(
K20(
REAL : ( ( ) ( non
empty V51()
V52()
V53()
V57()
V62() )
set ) ,
REAL : ( ( ) ( non
empty V51()
V52()
V53()
V57()
V62() )
set ) ) : ( ( ) (
Relation-like V34()
V35()
V36() )
set ) ) : ( ( ) ( )
set ) )
+ ((AffineMap ((1 : ( ( ) ( non empty V21() V22() V23() V27() V28() V29() V30() ext-real non negative V50() V51() V52() V53() V54() V55() V56() ) Element of NAT : ( ( ) ( non empty V21() V22() V23() V51() V52() V53() V54() V55() V56() V57() ) Element of K19(REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) : ( ( ) ( ) set ) ) ) / n : ( ( ) ( V21() V22() V23() V27() V28() V29() V30() ext-real non negative V50() V51() V52() V53() V54() V55() V56() ) Element of NAT : ( ( ) ( non empty V21() V22() V23() V51() V52() V53() V54() V55() V56() V57() ) Element of K19(REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( ) ( V28() V29() ext-real ) Element of REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) ,0 : ( ( ) ( V21() V22() V23() V27() V28() V29() V30() ext-real non negative V50() V51() V52() V53() V54() V55() V56() ) Element of NAT : ( ( ) ( non empty V21() V22() V23() V51() V52() V53() V54() V55() V56() V57() ) Element of K19(REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) : ( ( ) ( ) set ) ) ) )) : ( ( V6() V18( REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) , REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) ) ( Relation-like V6() non empty total V18( REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) , REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) V34() V35() V36() continuous ) Element of K19(K20(REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ,REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) : ( ( ) ( Relation-like V34() V35() V36() ) set ) ) : ( ( ) ( ) set ) ) (#) (sin : ( ( V6() V18( REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) , REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) ) ( Relation-like V6() non empty total V18( REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) , REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) V34() V35() V36() continuous ) Element of K19(K20(REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ,REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) : ( ( ) ( Relation-like V34() V35() V36() ) set ) ) : ( ( ) ( ) set ) ) * (AffineMap (n : ( ( ) ( V21() V22() V23() V27() V28() V29() V30() ext-real non negative V50() V51() V52() V53() V54() V55() V56() ) Element of NAT : ( ( ) ( non empty V21() V22() V23() V51() V52() V53() V54() V55() V56() V57() ) Element of K19(REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) : ( ( ) ( ) set ) ) ) ,0 : ( ( ) ( V21() V22() V23() V27() V28() V29() V30() ext-real non negative V50() V51() V52() V53() V54() V55() V56() ) Element of NAT : ( ( ) ( non empty V21() V22() V23() V51() V52() V53() V54() V55() V56() V57() ) Element of K19(REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) : ( ( ) ( ) set ) ) ) )) : ( ( V6() V18( REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) , REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) ) ( Relation-like V6() non empty total V18( REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) , REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) V34() V35() V36() continuous ) Element of K19(K20(REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ,REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) : ( ( ) ( Relation-like V34() V35() V36() ) set ) ) : ( ( ) ( ) set ) ) ) : ( ( V6() ) ( Relation-like V6() non empty total V18( REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) , REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) V34() V35() V36() continuous ) Element of K19(K20(REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ,REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) : ( ( ) ( Relation-like V34() V35() V36() ) set ) ) : ( ( ) ( ) set ) ) ) : ( (
V6() ) (
Relation-like V6() non
empty total V18(
REAL : ( ( ) ( non
empty V51()
V52()
V53()
V57()
V62() )
set ) ,
REAL : ( ( ) ( non
empty V51()
V52()
V53()
V57()
V62() )
set ) )
V34()
V35()
V36()
continuous )
Element of
K19(
K20(
REAL : ( ( ) ( non
empty V51()
V52()
V53()
V57()
V62() )
set ) ,
REAL : ( ( ) ( non
empty V51()
V52()
V53()
V57()
V62() )
set ) ) : ( ( ) (
Relation-like V34()
V35()
V36() )
set ) ) : ( ( ) ( )
set ) ) : ( (
V6() ) (
Relation-like V6() non
empty total V18(
REAL : ( ( ) ( non
empty V51()
V52()
V53()
V57()
V62() )
set ) ,
REAL : ( ( ) ( non
empty V51()
V52()
V53()
V57()
V62() )
set ) )
V34()
V35()
V36()
continuous )
Element of
K19(
K20(
REAL : ( ( ) ( non
empty V51()
V52()
V53()
V57()
V62() )
set ) ,
REAL : ( ( ) ( non
empty V51()
V52()
V53()
V57()
V62() )
set ) ) : ( ( ) (
Relation-like V34()
V35()
V36() )
set ) ) : ( ( ) ( )
set ) )
is_differentiable_on REAL : ( ( ) ( non
empty V51()
V52()
V53()
V57()
V62() )
set ) & ( for
x being ( ( ) (
V28()
V29()
ext-real )
Real) holds
((((1 : ( ( ) ( non empty V21() V22() V23() V27() V28() V29() V30() ext-real non negative V50() V51() V52() V53() V54() V55() V56() ) Element of NAT : ( ( ) ( non empty V21() V22() V23() V51() V52() V53() V54() V55() V56() V57() ) Element of K19(REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) : ( ( ) ( ) set ) ) ) / (n : ( ( ) ( V21() V22() V23() V27() V28() V29() V30() ext-real non negative V50() V51() V52() V53() V54() V55() V56() ) Element of NAT : ( ( ) ( non empty V21() V22() V23() V51() V52() V53() V54() V55() V56() V57() ) Element of K19(REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) : ( ( ) ( ) set ) ) ) ^2) : ( ( ) ( V28() V29() ext-real ) Element of REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) ) : ( ( ) ( V28() V29() ext-real ) Element of REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) (#) (cos : ( ( V6() V18( REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) , REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) ) ( Relation-like V6() non empty total V18( REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) , REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) V34() V35() V36() continuous ) Element of K19(K20(REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ,REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) : ( ( ) ( Relation-like V34() V35() V36() ) set ) ) : ( ( ) ( ) set ) ) * (AffineMap (n : ( ( ) ( V21() V22() V23() V27() V28() V29() V30() ext-real non negative V50() V51() V52() V53() V54() V55() V56() ) Element of NAT : ( ( ) ( non empty V21() V22() V23() V51() V52() V53() V54() V55() V56() V57() ) Element of K19(REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) : ( ( ) ( ) set ) ) ) ,0 : ( ( ) ( V21() V22() V23() V27() V28() V29() V30() ext-real non negative V50() V51() V52() V53() V54() V55() V56() ) Element of NAT : ( ( ) ( non empty V21() V22() V23() V51() V52() V53() V54() V55() V56() V57() ) Element of K19(REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) : ( ( ) ( ) set ) ) ) )) : ( ( V6() V18( REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) , REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) ) ( Relation-like V6() non empty total V18( REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) , REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) V34() V35() V36() continuous ) Element of K19(K20(REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ,REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) : ( ( ) ( Relation-like V34() V35() V36() ) set ) ) : ( ( ) ( ) set ) ) ) : ( ( V6() ) ( Relation-like V6() non empty total V18( REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) , REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) V34() V35() V36() continuous ) Element of K19(K20(REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ,REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) : ( ( ) ( Relation-like V34() V35() V36() ) set ) ) : ( ( ) ( ) set ) ) ) : ( ( V6() ) ( Relation-like V6() non empty total V18( REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) , REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) V34() V35() V36() continuous ) Element of K19(K20(REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ,REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) : ( ( ) ( Relation-like V34() V35() V36() ) set ) ) : ( ( ) ( ) set ) ) + ((AffineMap ((1 : ( ( ) ( non empty V21() V22() V23() V27() V28() V29() V30() ext-real non negative V50() V51() V52() V53() V54() V55() V56() ) Element of NAT : ( ( ) ( non empty V21() V22() V23() V51() V52() V53() V54() V55() V56() V57() ) Element of K19(REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) : ( ( ) ( ) set ) ) ) / n : ( ( ) ( V21() V22() V23() V27() V28() V29() V30() ext-real non negative V50() V51() V52() V53() V54() V55() V56() ) Element of NAT : ( ( ) ( non empty V21() V22() V23() V51() V52() V53() V54() V55() V56() V57() ) Element of K19(REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( ) ( V28() V29() ext-real ) Element of REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) ,0 : ( ( ) ( V21() V22() V23() V27() V28() V29() V30() ext-real non negative V50() V51() V52() V53() V54() V55() V56() ) Element of NAT : ( ( ) ( non empty V21() V22() V23() V51() V52() V53() V54() V55() V56() V57() ) Element of K19(REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) : ( ( ) ( ) set ) ) ) )) : ( ( V6() V18( REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) , REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) ) ( Relation-like V6() non empty total V18( REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) , REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) V34() V35() V36() continuous ) Element of K19(K20(REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ,REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) : ( ( ) ( Relation-like V34() V35() V36() ) set ) ) : ( ( ) ( ) set ) ) (#) (sin : ( ( V6() V18( REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) , REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) ) ( Relation-like V6() non empty total V18( REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) , REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) V34() V35() V36() continuous ) Element of K19(K20(REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ,REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) : ( ( ) ( Relation-like V34() V35() V36() ) set ) ) : ( ( ) ( ) set ) ) * (AffineMap (n : ( ( ) ( V21() V22() V23() V27() V28() V29() V30() ext-real non negative V50() V51() V52() V53() V54() V55() V56() ) Element of NAT : ( ( ) ( non empty V21() V22() V23() V51() V52() V53() V54() V55() V56() V57() ) Element of K19(REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) : ( ( ) ( ) set ) ) ) ,0 : ( ( ) ( V21() V22() V23() V27() V28() V29() V30() ext-real non negative V50() V51() V52() V53() V54() V55() V56() ) Element of NAT : ( ( ) ( non empty V21() V22() V23() V51() V52() V53() V54() V55() V56() V57() ) Element of K19(REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) : ( ( ) ( ) set ) ) ) )) : ( ( V6() V18( REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) , REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) ) ( Relation-like V6() non empty total V18( REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) , REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) V34() V35() V36() continuous ) Element of K19(K20(REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ,REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) : ( ( ) ( Relation-like V34() V35() V36() ) set ) ) : ( ( ) ( ) set ) ) ) : ( ( V6() ) ( Relation-like V6() non empty total V18( REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) , REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) V34() V35() V36() continuous ) Element of K19(K20(REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ,REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) : ( ( ) ( Relation-like V34() V35() V36() ) set ) ) : ( ( ) ( ) set ) ) ) : ( ( V6() ) ( Relation-like V6() non empty total V18( REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) , REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) V34() V35() V36() continuous ) Element of K19(K20(REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ,REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) : ( ( ) ( Relation-like V34() V35() V36() ) set ) ) : ( ( ) ( ) set ) ) ) : ( ( V6() ) ( Relation-like V6() non empty total V18( REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) , REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) V34() V35() V36() continuous ) Element of K19(K20(REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ,REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) : ( ( ) ( Relation-like V34() V35() V36() ) set ) ) : ( ( ) ( ) set ) ) `| REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) : ( (
V6() ) (
Relation-like V6()
V34()
V35()
V36() )
Element of
K19(
K20(
REAL : ( ( ) ( non
empty V51()
V52()
V53()
V57()
V62() )
set ) ,
REAL : ( ( ) ( non
empty V51()
V52()
V53()
V57()
V62() )
set ) ) : ( ( ) (
Relation-like V34()
V35()
V36() )
set ) ) : ( ( ) ( )
set ) )
. x : ( ( ) (
V28()
V29()
ext-real )
Real) : ( ( ) (
V28()
V29()
ext-real )
Element of
REAL : ( ( ) ( non
empty V51()
V52()
V53()
V57()
V62() )
set ) )
= x : ( ( ) (
V28()
V29()
ext-real )
Real)
* (cos : ( ( V6() V18( REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) , REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) ) ( Relation-like V6() non empty total V18( REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) , REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) V34() V35() V36() continuous ) Element of K19(K20(REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ,REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) : ( ( ) ( Relation-like V34() V35() V36() ) set ) ) : ( ( ) ( ) set ) ) . (n : ( ( ) ( V21() V22() V23() V27() V28() V29() V30() ext-real non negative V50() V51() V52() V53() V54() V55() V56() ) Element of NAT : ( ( ) ( non empty V21() V22() V23() V51() V52() V53() V54() V55() V56() V57() ) Element of K19(REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) : ( ( ) ( ) set ) ) ) * x : ( ( ) ( V28() V29() ext-real ) Real) ) : ( ( ) ( V28() V29() ext-real ) Element of REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) ) : ( ( ) (
V28()
V29()
ext-real )
Element of
REAL : ( ( ) ( non
empty V51()
V52()
V53()
V57()
V62() )
set ) ) : ( ( ) (
V28()
V29()
ext-real )
Element of
REAL : ( ( ) ( non
empty V51()
V52()
V53()
V57()
V62() )
set ) ) ) ) ;
theorem
(
((AffineMap (1 : ( ( ) ( non empty V21() V22() V23() V27() V28() V29() V30() ext-real non negative V50() V51() V52() V53() V54() V55() V56() ) Element of NAT : ( ( ) ( non empty V21() V22() V23() V51() V52() V53() V54() V55() V56() V57() ) Element of K19(REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) : ( ( ) ( ) set ) ) ) ,0 : ( ( ) ( V21() V22() V23() V27() V28() V29() V30() ext-real non negative V50() V51() V52() V53() V54() V55() V56() ) Element of NAT : ( ( ) ( non empty V21() V22() V23() V51() V52() V53() V54() V55() V56() V57() ) Element of K19(REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) : ( ( ) ( ) set ) ) ) )) : ( ( V6() V18( REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) , REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) ) ( Relation-like V6() V7() non empty total V18( REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) , REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) V19( REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) V20( REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) , REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) V34() V35() V36() continuous ) Element of K19(K20(REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ,REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) : ( ( ) ( Relation-like V34() V35() V36() ) set ) ) : ( ( ) ( ) set ) ) (#) cosh : ( ( V6() V18( REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) , REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) ) ( Relation-like V6() non empty total V18( REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) , REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) V34() V35() V36() ) Element of K19(K20(REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ,REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) : ( ( ) ( Relation-like V34() V35() V36() ) set ) ) : ( ( ) ( ) set ) ) ) : ( (
V6() ) (
Relation-like V6() non
empty total V18(
REAL : ( ( ) ( non
empty V51()
V52()
V53()
V57()
V62() )
set ) ,
REAL : ( ( ) ( non
empty V51()
V52()
V53()
V57()
V62() )
set ) )
V34()
V35()
V36() )
Element of
K19(
K20(
REAL : ( ( ) ( non
empty V51()
V52()
V53()
V57()
V62() )
set ) ,
REAL : ( ( ) ( non
empty V51()
V52()
V53()
V57()
V62() )
set ) ) : ( ( ) (
Relation-like V34()
V35()
V36() )
set ) ) : ( ( ) ( )
set ) )
- sinh : ( (
V6()
V18(
REAL : ( ( ) ( non
empty V51()
V52()
V53()
V57()
V62() )
set ) ,
REAL : ( ( ) ( non
empty V51()
V52()
V53()
V57()
V62() )
set ) ) ) (
Relation-like V6() non
empty total V18(
REAL : ( ( ) ( non
empty V51()
V52()
V53()
V57()
V62() )
set ) ,
REAL : ( ( ) ( non
empty V51()
V52()
V53()
V57()
V62() )
set ) )
V34()
V35()
V36() )
Element of
K19(
K20(
REAL : ( ( ) ( non
empty V51()
V52()
V53()
V57()
V62() )
set ) ,
REAL : ( ( ) ( non
empty V51()
V52()
V53()
V57()
V62() )
set ) ) : ( ( ) (
Relation-like V34()
V35()
V36() )
set ) ) : ( ( ) ( )
set ) ) : ( (
V6() ) (
Relation-like V6() non
empty total V18(
REAL : ( ( ) ( non
empty V51()
V52()
V53()
V57()
V62() )
set ) ,
REAL : ( ( ) ( non
empty V51()
V52()
V53()
V57()
V62() )
set ) )
V34()
V35()
V36() )
Element of
K19(
K20(
REAL : ( ( ) ( non
empty V51()
V52()
V53()
V57()
V62() )
set ) ,
REAL : ( ( ) ( non
empty V51()
V52()
V53()
V57()
V62() )
set ) ) : ( ( ) (
Relation-like V34()
V35()
V36() )
set ) ) : ( ( ) ( )
set ) )
is_differentiable_on REAL : ( ( ) ( non
empty V51()
V52()
V53()
V57()
V62() )
set ) & ( for
x being ( ( ) (
V28()
V29()
ext-real )
Real) holds
((((AffineMap (1 : ( ( ) ( non empty V21() V22() V23() V27() V28() V29() V30() ext-real non negative V50() V51() V52() V53() V54() V55() V56() ) Element of NAT : ( ( ) ( non empty V21() V22() V23() V51() V52() V53() V54() V55() V56() V57() ) Element of K19(REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) : ( ( ) ( ) set ) ) ) ,0 : ( ( ) ( V21() V22() V23() V27() V28() V29() V30() ext-real non negative V50() V51() V52() V53() V54() V55() V56() ) Element of NAT : ( ( ) ( non empty V21() V22() V23() V51() V52() V53() V54() V55() V56() V57() ) Element of K19(REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) : ( ( ) ( ) set ) ) ) )) : ( ( V6() V18( REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) , REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) ) ( Relation-like V6() V7() non empty total V18( REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) , REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) V19( REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) V20( REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) , REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) V34() V35() V36() continuous ) Element of K19(K20(REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ,REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) : ( ( ) ( Relation-like V34() V35() V36() ) set ) ) : ( ( ) ( ) set ) ) (#) cosh : ( ( V6() V18( REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) , REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) ) ( Relation-like V6() non empty total V18( REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) , REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) V34() V35() V36() ) Element of K19(K20(REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ,REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) : ( ( ) ( Relation-like V34() V35() V36() ) set ) ) : ( ( ) ( ) set ) ) ) : ( ( V6() ) ( Relation-like V6() non empty total V18( REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) , REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) V34() V35() V36() ) Element of K19(K20(REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ,REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) : ( ( ) ( Relation-like V34() V35() V36() ) set ) ) : ( ( ) ( ) set ) ) - sinh : ( ( V6() V18( REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) , REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) ) ( Relation-like V6() non empty total V18( REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) , REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) V34() V35() V36() ) Element of K19(K20(REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ,REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) : ( ( ) ( Relation-like V34() V35() V36() ) set ) ) : ( ( ) ( ) set ) ) ) : ( ( V6() ) ( Relation-like V6() non empty total V18( REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) , REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) V34() V35() V36() ) Element of K19(K20(REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ,REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) : ( ( ) ( Relation-like V34() V35() V36() ) set ) ) : ( ( ) ( ) set ) ) `| REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) : ( (
V6() ) (
Relation-like V6()
V34()
V35()
V36() )
Element of
K19(
K20(
REAL : ( ( ) ( non
empty V51()
V52()
V53()
V57()
V62() )
set ) ,
REAL : ( ( ) ( non
empty V51()
V52()
V53()
V57()
V62() )
set ) ) : ( ( ) (
Relation-like V34()
V35()
V36() )
set ) ) : ( ( ) ( )
set ) )
. x : ( ( ) (
V28()
V29()
ext-real )
Real) : ( ( ) (
V28()
V29()
ext-real )
Element of
REAL : ( ( ) ( non
empty V51()
V52()
V53()
V57()
V62() )
set ) )
= x : ( ( ) (
V28()
V29()
ext-real )
Real)
* (sinh : ( ( V6() V18( REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) , REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) ) ( Relation-like V6() non empty total V18( REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) , REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) V34() V35() V36() ) Element of K19(K20(REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ,REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) : ( ( ) ( Relation-like V34() V35() V36() ) set ) ) : ( ( ) ( ) set ) ) . x : ( ( ) ( V28() V29() ext-real ) Real) ) : ( ( ) (
V28()
V29()
ext-real )
Element of
REAL : ( ( ) ( non
empty V51()
V52()
V53()
V57()
V62() )
set ) ) : ( ( ) (
V28()
V29()
ext-real )
Element of
REAL : ( ( ) ( non
empty V51()
V52()
V53()
V57()
V62() )
set ) ) ) ) ;
theorem
(
((AffineMap (1 : ( ( ) ( non empty V21() V22() V23() V27() V28() V29() V30() ext-real non negative V50() V51() V52() V53() V54() V55() V56() ) Element of NAT : ( ( ) ( non empty V21() V22() V23() V51() V52() V53() V54() V55() V56() V57() ) Element of K19(REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) : ( ( ) ( ) set ) ) ) ,0 : ( ( ) ( V21() V22() V23() V27() V28() V29() V30() ext-real non negative V50() V51() V52() V53() V54() V55() V56() ) Element of NAT : ( ( ) ( non empty V21() V22() V23() V51() V52() V53() V54() V55() V56() V57() ) Element of K19(REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) : ( ( ) ( ) set ) ) ) )) : ( ( V6() V18( REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) , REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) ) ( Relation-like V6() V7() non empty total V18( REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) , REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) V19( REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) V20( REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) , REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) V34() V35() V36() continuous ) Element of K19(K20(REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ,REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) : ( ( ) ( Relation-like V34() V35() V36() ) set ) ) : ( ( ) ( ) set ) ) (#) sinh : ( ( V6() V18( REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) , REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) ) ( Relation-like V6() non empty total V18( REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) , REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) V34() V35() V36() ) Element of K19(K20(REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ,REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) : ( ( ) ( Relation-like V34() V35() V36() ) set ) ) : ( ( ) ( ) set ) ) ) : ( (
V6() ) (
Relation-like V6() non
empty total V18(
REAL : ( ( ) ( non
empty V51()
V52()
V53()
V57()
V62() )
set ) ,
REAL : ( ( ) ( non
empty V51()
V52()
V53()
V57()
V62() )
set ) )
V34()
V35()
V36() )
Element of
K19(
K20(
REAL : ( ( ) ( non
empty V51()
V52()
V53()
V57()
V62() )
set ) ,
REAL : ( ( ) ( non
empty V51()
V52()
V53()
V57()
V62() )
set ) ) : ( ( ) (
Relation-like V34()
V35()
V36() )
set ) ) : ( ( ) ( )
set ) )
- cosh : ( (
V6()
V18(
REAL : ( ( ) ( non
empty V51()
V52()
V53()
V57()
V62() )
set ) ,
REAL : ( ( ) ( non
empty V51()
V52()
V53()
V57()
V62() )
set ) ) ) (
Relation-like V6() non
empty total V18(
REAL : ( ( ) ( non
empty V51()
V52()
V53()
V57()
V62() )
set ) ,
REAL : ( ( ) ( non
empty V51()
V52()
V53()
V57()
V62() )
set ) )
V34()
V35()
V36() )
Element of
K19(
K20(
REAL : ( ( ) ( non
empty V51()
V52()
V53()
V57()
V62() )
set ) ,
REAL : ( ( ) ( non
empty V51()
V52()
V53()
V57()
V62() )
set ) ) : ( ( ) (
Relation-like V34()
V35()
V36() )
set ) ) : ( ( ) ( )
set ) ) : ( (
V6() ) (
Relation-like V6() non
empty total V18(
REAL : ( ( ) ( non
empty V51()
V52()
V53()
V57()
V62() )
set ) ,
REAL : ( ( ) ( non
empty V51()
V52()
V53()
V57()
V62() )
set ) )
V34()
V35()
V36() )
Element of
K19(
K20(
REAL : ( ( ) ( non
empty V51()
V52()
V53()
V57()
V62() )
set ) ,
REAL : ( ( ) ( non
empty V51()
V52()
V53()
V57()
V62() )
set ) ) : ( ( ) (
Relation-like V34()
V35()
V36() )
set ) ) : ( ( ) ( )
set ) )
is_differentiable_on REAL : ( ( ) ( non
empty V51()
V52()
V53()
V57()
V62() )
set ) & ( for
x being ( ( ) (
V28()
V29()
ext-real )
Real) holds
((((AffineMap (1 : ( ( ) ( non empty V21() V22() V23() V27() V28() V29() V30() ext-real non negative V50() V51() V52() V53() V54() V55() V56() ) Element of NAT : ( ( ) ( non empty V21() V22() V23() V51() V52() V53() V54() V55() V56() V57() ) Element of K19(REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) : ( ( ) ( ) set ) ) ) ,0 : ( ( ) ( V21() V22() V23() V27() V28() V29() V30() ext-real non negative V50() V51() V52() V53() V54() V55() V56() ) Element of NAT : ( ( ) ( non empty V21() V22() V23() V51() V52() V53() V54() V55() V56() V57() ) Element of K19(REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) : ( ( ) ( ) set ) ) ) )) : ( ( V6() V18( REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) , REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) ) ( Relation-like V6() V7() non empty total V18( REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) , REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) V19( REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) V20( REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) , REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) V34() V35() V36() continuous ) Element of K19(K20(REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ,REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) : ( ( ) ( Relation-like V34() V35() V36() ) set ) ) : ( ( ) ( ) set ) ) (#) sinh : ( ( V6() V18( REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) , REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) ) ( Relation-like V6() non empty total V18( REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) , REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) V34() V35() V36() ) Element of K19(K20(REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ,REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) : ( ( ) ( Relation-like V34() V35() V36() ) set ) ) : ( ( ) ( ) set ) ) ) : ( ( V6() ) ( Relation-like V6() non empty total V18( REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) , REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) V34() V35() V36() ) Element of K19(K20(REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ,REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) : ( ( ) ( Relation-like V34() V35() V36() ) set ) ) : ( ( ) ( ) set ) ) - cosh : ( ( V6() V18( REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) , REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) ) ( Relation-like V6() non empty total V18( REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) , REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) V34() V35() V36() ) Element of K19(K20(REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ,REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) : ( ( ) ( Relation-like V34() V35() V36() ) set ) ) : ( ( ) ( ) set ) ) ) : ( ( V6() ) ( Relation-like V6() non empty total V18( REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) , REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) V34() V35() V36() ) Element of K19(K20(REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ,REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) : ( ( ) ( Relation-like V34() V35() V36() ) set ) ) : ( ( ) ( ) set ) ) `| REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) : ( (
V6() ) (
Relation-like V6()
V34()
V35()
V36() )
Element of
K19(
K20(
REAL : ( ( ) ( non
empty V51()
V52()
V53()
V57()
V62() )
set ) ,
REAL : ( ( ) ( non
empty V51()
V52()
V53()
V57()
V62() )
set ) ) : ( ( ) (
Relation-like V34()
V35()
V36() )
set ) ) : ( ( ) ( )
set ) )
. x : ( ( ) (
V28()
V29()
ext-real )
Real) : ( ( ) (
V28()
V29()
ext-real )
Element of
REAL : ( ( ) ( non
empty V51()
V52()
V53()
V57()
V62() )
set ) )
= x : ( ( ) (
V28()
V29()
ext-real )
Real)
* (cosh : ( ( V6() V18( REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) , REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) ) ( Relation-like V6() non empty total V18( REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) , REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) V34() V35() V36() ) Element of K19(K20(REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ,REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) : ( ( ) ( Relation-like V34() V35() V36() ) set ) ) : ( ( ) ( ) set ) ) . x : ( ( ) ( V28() V29() ext-real ) Real) ) : ( ( ) (
V28()
V29()
ext-real )
Element of
REAL : ( ( ) ( non
empty V51()
V52()
V53()
V57()
V62() )
set ) ) : ( ( ) (
V28()
V29()
ext-real )
Element of
REAL : ( ( ) ( non
empty V51()
V52()
V53()
V57()
V62() )
set ) ) ) ) ;
theorem
for
a,
b being ( ( ) (
V28()
V29()
ext-real )
Real)
for
n being ( ( ) (
V21()
V22()
V23()
V27()
V28()
V29()
V30()
ext-real non
negative V50()
V51()
V52()
V53()
V54()
V55()
V56() )
Element of
NAT : ( ( ) ( non
empty V21()
V22()
V23()
V51()
V52()
V53()
V54()
V55()
V56()
V57() )
Element of
K19(
REAL : ( ( ) ( non
empty V51()
V52()
V53()
V57()
V62() )
set ) ) : ( ( ) ( )
set ) ) ) st
a : ( ( ) (
V28()
V29()
ext-real )
Real)
* (n : ( ( ) ( V21() V22() V23() V27() V28() V29() V30() ext-real non negative V50() V51() V52() V53() V54() V55() V56() ) Element of NAT : ( ( ) ( non empty V21() V22() V23() V51() V52() V53() V54() V55() V56() V57() ) Element of K19(REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) : ( ( ) ( ) set ) ) ) + 1 : ( ( ) ( non empty V21() V22() V23() V27() V28() V29() V30() ext-real non negative V50() V51() V52() V53() V54() V55() V56() ) Element of NAT : ( ( ) ( non empty V21() V22() V23() V51() V52() V53() V54() V55() V56() V57() ) Element of K19(REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( ) ( non
empty V21()
V22()
V23()
V27()
V28()
V29()
V30()
ext-real non
negative )
Element of
REAL : ( ( ) ( non
empty V51()
V52()
V53()
V57()
V62() )
set ) ) : ( ( ) (
V28()
V29()
ext-real )
Element of
REAL : ( ( ) ( non
empty V51()
V52()
V53()
V57()
V62() )
set ) )
<> 0 : ( ( ) (
V21()
V22()
V23()
V27()
V28()
V29()
V30()
ext-real non
negative V50()
V51()
V52()
V53()
V54()
V55()
V56() )
Element of
NAT : ( ( ) ( non
empty V21()
V22()
V23()
V51()
V52()
V53()
V54()
V55()
V56()
V57() )
Element of
K19(
REAL : ( ( ) ( non
empty V51()
V52()
V53()
V57()
V62() )
set ) ) : ( ( ) ( )
set ) ) ) holds
(
(1 : ( ( ) ( non empty V21() V22() V23() V27() V28() V29() V30() ext-real non negative V50() V51() V52() V53() V54() V55() V56() ) Element of NAT : ( ( ) ( non empty V21() V22() V23() V51() V52() V53() V54() V55() V56() V57() ) Element of K19(REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) : ( ( ) ( ) set ) ) ) / (a : ( ( ) ( V28() V29() ext-real ) Real) * (n : ( ( ) ( V21() V22() V23() V27() V28() V29() V30() ext-real non negative V50() V51() V52() V53() V54() V55() V56() ) Element of NAT : ( ( ) ( non empty V21() V22() V23() V51() V52() V53() V54() V55() V56() V57() ) Element of K19(REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) : ( ( ) ( ) set ) ) ) + 1 : ( ( ) ( non empty V21() V22() V23() V27() V28() V29() V30() ext-real non negative V50() V51() V52() V53() V54() V55() V56() ) Element of NAT : ( ( ) ( non empty V21() V22() V23() V51() V52() V53() V54() V55() V56() V57() ) Element of K19(REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( ) ( non empty V21() V22() V23() V27() V28() V29() V30() ext-real non negative ) Element of REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) ) : ( ( ) ( V28() V29() ext-real ) Element of REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) ) : ( ( ) (
V28()
V29()
ext-real )
Element of
REAL : ( ( ) ( non
empty V51()
V52()
V53()
V57()
V62() )
set ) )
(#) ((#Z (n : ( ( ) ( V21() V22() V23() V27() V28() V29() V30() ext-real non negative V50() V51() V52() V53() V54() V55() V56() ) Element of NAT : ( ( ) ( non empty V21() V22() V23() V51() V52() V53() V54() V55() V56() V57() ) Element of K19(REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) : ( ( ) ( ) set ) ) ) + 1 : ( ( ) ( non empty V21() V22() V23() V27() V28() V29() V30() ext-real non negative V50() V51() V52() V53() V54() V55() V56() ) Element of NAT : ( ( ) ( non empty V21() V22() V23() V51() V52() V53() V54() V55() V56() V57() ) Element of K19(REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( ) ( non empty V21() V22() V23() V27() V28() V29() V30() ext-real non negative ) Element of REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) ) : ( ( V6() V18( REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) , REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) ) ( Relation-like V6() non empty total V18( REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) , REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) V34() V35() V36() ) Element of K19(K20(REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ,REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) : ( ( ) ( Relation-like V34() V35() V36() ) set ) ) : ( ( ) ( ) set ) ) * (AffineMap (a : ( ( ) ( V28() V29() ext-real ) Real) ,b : ( ( ) ( V28() V29() ext-real ) Real) )) : ( ( V6() V18( REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) , REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) ) ( Relation-like V6() non empty total V18( REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) , REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) V34() V35() V36() continuous ) Element of K19(K20(REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ,REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) : ( ( ) ( Relation-like V34() V35() V36() ) set ) ) : ( ( ) ( ) set ) ) ) : ( (
V6() ) (
Relation-like V6() non
empty total V18(
REAL : ( ( ) ( non
empty V51()
V52()
V53()
V57()
V62() )
set ) ,
REAL : ( ( ) ( non
empty V51()
V52()
V53()
V57()
V62() )
set ) )
V34()
V35()
V36() )
Element of
K19(
K20(
REAL : ( ( ) ( non
empty V51()
V52()
V53()
V57()
V62() )
set ) ,
REAL : ( ( ) ( non
empty V51()
V52()
V53()
V57()
V62() )
set ) ) : ( ( ) (
Relation-like V34()
V35()
V36() )
set ) ) : ( ( ) ( )
set ) ) : ( (
V6() ) (
Relation-like V6() non
empty total V18(
REAL : ( ( ) ( non
empty V51()
V52()
V53()
V57()
V62() )
set ) ,
REAL : ( ( ) ( non
empty V51()
V52()
V53()
V57()
V62() )
set ) )
V34()
V35()
V36() )
Element of
K19(
K20(
REAL : ( ( ) ( non
empty V51()
V52()
V53()
V57()
V62() )
set ) ,
REAL : ( ( ) ( non
empty V51()
V52()
V53()
V57()
V62() )
set ) ) : ( ( ) (
Relation-like V34()
V35()
V36() )
set ) ) : ( ( ) ( )
set ) )
is_differentiable_on REAL : ( ( ) ( non
empty V51()
V52()
V53()
V57()
V62() )
set ) & ( for
x being ( ( ) (
V28()
V29()
ext-real )
Real) holds
(((1 : ( ( ) ( non empty V21() V22() V23() V27() V28() V29() V30() ext-real non negative V50() V51() V52() V53() V54() V55() V56() ) Element of NAT : ( ( ) ( non empty V21() V22() V23() V51() V52() V53() V54() V55() V56() V57() ) Element of K19(REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) : ( ( ) ( ) set ) ) ) / (a : ( ( ) ( V28() V29() ext-real ) Real) * (n : ( ( ) ( V21() V22() V23() V27() V28() V29() V30() ext-real non negative V50() V51() V52() V53() V54() V55() V56() ) Element of NAT : ( ( ) ( non empty V21() V22() V23() V51() V52() V53() V54() V55() V56() V57() ) Element of K19(REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) : ( ( ) ( ) set ) ) ) + 1 : ( ( ) ( non empty V21() V22() V23() V27() V28() V29() V30() ext-real non negative V50() V51() V52() V53() V54() V55() V56() ) Element of NAT : ( ( ) ( non empty V21() V22() V23() V51() V52() V53() V54() V55() V56() V57() ) Element of K19(REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( ) ( non empty V21() V22() V23() V27() V28() V29() V30() ext-real non negative ) Element of REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) ) : ( ( ) ( V28() V29() ext-real ) Element of REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) ) : ( ( ) ( V28() V29() ext-real ) Element of REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) (#) ((#Z (n : ( ( ) ( V21() V22() V23() V27() V28() V29() V30() ext-real non negative V50() V51() V52() V53() V54() V55() V56() ) Element of NAT : ( ( ) ( non empty V21() V22() V23() V51() V52() V53() V54() V55() V56() V57() ) Element of K19(REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) : ( ( ) ( ) set ) ) ) + 1 : ( ( ) ( non empty V21() V22() V23() V27() V28() V29() V30() ext-real non negative V50() V51() V52() V53() V54() V55() V56() ) Element of NAT : ( ( ) ( non empty V21() V22() V23() V51() V52() V53() V54() V55() V56() V57() ) Element of K19(REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( ) ( non empty V21() V22() V23() V27() V28() V29() V30() ext-real non negative ) Element of REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) ) : ( ( V6() V18( REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) , REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) ) ( Relation-like V6() non empty total V18( REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) , REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) V34() V35() V36() ) Element of K19(K20(REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ,REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) : ( ( ) ( Relation-like V34() V35() V36() ) set ) ) : ( ( ) ( ) set ) ) * (AffineMap (a : ( ( ) ( V28() V29() ext-real ) Real) ,b : ( ( ) ( V28() V29() ext-real ) Real) )) : ( ( V6() V18( REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) , REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) ) ( Relation-like V6() non empty total V18( REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) , REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) V34() V35() V36() continuous ) Element of K19(K20(REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ,REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) : ( ( ) ( Relation-like V34() V35() V36() ) set ) ) : ( ( ) ( ) set ) ) ) : ( ( V6() ) ( Relation-like V6() non empty total V18( REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) , REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) V34() V35() V36() ) Element of K19(K20(REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ,REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) : ( ( ) ( Relation-like V34() V35() V36() ) set ) ) : ( ( ) ( ) set ) ) ) : ( ( V6() ) ( Relation-like V6() non empty total V18( REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) , REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) V34() V35() V36() ) Element of K19(K20(REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ,REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) : ( ( ) ( Relation-like V34() V35() V36() ) set ) ) : ( ( ) ( ) set ) ) `| REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) : ( (
V6() ) (
Relation-like V6()
V34()
V35()
V36() )
Element of
K19(
K20(
REAL : ( ( ) ( non
empty V51()
V52()
V53()
V57()
V62() )
set ) ,
REAL : ( ( ) ( non
empty V51()
V52()
V53()
V57()
V62() )
set ) ) : ( ( ) (
Relation-like V34()
V35()
V36() )
set ) ) : ( ( ) ( )
set ) )
. x : ( ( ) (
V28()
V29()
ext-real )
Real) : ( ( ) (
V28()
V29()
ext-real )
Element of
REAL : ( ( ) ( non
empty V51()
V52()
V53()
V57()
V62() )
set ) )
= ((a : ( ( ) ( V28() V29() ext-real ) Real) * x : ( ( ) ( V28() V29() ext-real ) Real) ) : ( ( ) ( V28() V29() ext-real ) Element of REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) + b : ( ( ) ( V28() V29() ext-real ) Real) ) : ( ( ) (
V28()
V29()
ext-real )
Element of
REAL : ( ( ) ( non
empty V51()
V52()
V53()
V57()
V62() )
set ) )
#Z n : ( ( ) (
V21()
V22()
V23()
V27()
V28()
V29()
V30()
ext-real non
negative V50()
V51()
V52()
V53()
V54()
V55()
V56() )
Element of
NAT : ( ( ) ( non
empty V21()
V22()
V23()
V51()
V52()
V53()
V54()
V55()
V56()
V57() )
Element of
K19(
REAL : ( ( ) ( non
empty V51()
V52()
V53()
V57()
V62() )
set ) ) : ( ( ) ( )
set ) ) ) : ( ( ) (
V28()
V29()
ext-real )
Element of
REAL : ( ( ) ( non
empty V51()
V52()
V53()
V57()
V62() )
set ) ) ) ) ;
begin
theorem
for
A being ( ( non
empty closed_interval ) ( non
empty V51()
V52()
V53()
closed_interval V76() )
Subset of ( ( ) ( )
set ) ) holds
integral (
(sin : ( ( V6() V18( REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) , REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) ) ( Relation-like V6() non empty total V18( REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) , REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) V34() V35() V36() continuous ) Element of K19(K20(REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ,REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) : ( ( ) ( Relation-like V34() V35() V36() ) set ) ) : ( ( ) ( ) set ) ) ^2) : ( (
V6() ) (
Relation-like V6() non
empty total V18(
REAL : ( ( ) ( non
empty V51()
V52()
V53()
V57()
V62() )
set ) ,
REAL : ( ( ) ( non
empty V51()
V52()
V53()
V57()
V62() )
set ) )
V34()
V35()
V36() )
Element of
K19(
K20(
REAL : ( ( ) ( non
empty V51()
V52()
V53()
V57()
V62() )
set ) ,
REAL : ( ( ) ( non
empty V51()
V52()
V53()
V57()
V62() )
set ) ) : ( ( ) (
Relation-like V34()
V35()
V36() )
set ) ) : ( ( ) ( )
set ) ) ,
A : ( ( non
empty closed_interval ) ( non
empty V51()
V52()
V53()
closed_interval V76() )
Subset of ( ( ) ( )
set ) ) ) : ( ( ) (
V28()
V29()
ext-real )
Element of
REAL : ( ( ) ( non
empty V51()
V52()
V53()
V57()
V62() )
set ) )
= (((AffineMap ((1 : ( ( ) ( non empty V21() V22() V23() V27() V28() V29() V30() ext-real non negative V50() V51() V52() V53() V54() V55() V56() ) Element of NAT : ( ( ) ( non empty V21() V22() V23() V51() V52() V53() V54() V55() V56() V57() ) Element of K19(REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) : ( ( ) ( ) set ) ) ) / 2 : ( ( ) ( non empty V21() V22() V23() V27() V28() V29() V30() ext-real non negative V50() V51() V52() V53() V54() V55() V56() ) Element of NAT : ( ( ) ( non empty V21() V22() V23() V51() V52() V53() V54() V55() V56() V57() ) Element of K19(REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( ) ( V28() V29() ext-real ) Element of REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) ,0 : ( ( ) ( V21() V22() V23() V27() V28() V29() V30() ext-real non negative V50() V51() V52() V53() V54() V55() V56() ) Element of NAT : ( ( ) ( non empty V21() V22() V23() V51() V52() V53() V54() V55() V56() V57() ) Element of K19(REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) : ( ( ) ( ) set ) ) ) )) : ( ( V6() V18( REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) , REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) ) ( Relation-like V6() non empty total V18( REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) , REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) V34() V35() V36() continuous ) Element of K19(K20(REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ,REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) : ( ( ) ( Relation-like V34() V35() V36() ) set ) ) : ( ( ) ( ) set ) ) - ((1 : ( ( ) ( non empty V21() V22() V23() V27() V28() V29() V30() ext-real non negative V50() V51() V52() V53() V54() V55() V56() ) Element of NAT : ( ( ) ( non empty V21() V22() V23() V51() V52() V53() V54() V55() V56() V57() ) Element of K19(REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) : ( ( ) ( ) set ) ) ) / 4 : ( ( ) ( non empty V21() V22() V23() V27() V28() V29() V30() ext-real non negative V50() V51() V52() V53() V54() V55() V56() ) Element of NAT : ( ( ) ( non empty V21() V22() V23() V51() V52() V53() V54() V55() V56() V57() ) Element of K19(REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( ) ( V28() V29() ext-real ) Element of REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) (#) (sin : ( ( V6() V18( REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) , REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) ) ( Relation-like V6() non empty total V18( REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) , REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) V34() V35() V36() continuous ) Element of K19(K20(REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ,REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) : ( ( ) ( Relation-like V34() V35() V36() ) set ) ) : ( ( ) ( ) set ) ) * (AffineMap (2 : ( ( ) ( non empty V21() V22() V23() V27() V28() V29() V30() ext-real non negative V50() V51() V52() V53() V54() V55() V56() ) Element of NAT : ( ( ) ( non empty V21() V22() V23() V51() V52() V53() V54() V55() V56() V57() ) Element of K19(REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) : ( ( ) ( ) set ) ) ) ,0 : ( ( ) ( V21() V22() V23() V27() V28() V29() V30() ext-real non negative V50() V51() V52() V53() V54() V55() V56() ) Element of NAT : ( ( ) ( non empty V21() V22() V23() V51() V52() V53() V54() V55() V56() V57() ) Element of K19(REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) : ( ( ) ( ) set ) ) ) )) : ( ( V6() V18( REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) , REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) ) ( Relation-like V6() V7() non empty total V18( REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) , REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) V19( REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) V20( REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) , REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) V34() V35() V36() continuous ) Element of K19(K20(REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ,REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) : ( ( ) ( Relation-like V34() V35() V36() ) set ) ) : ( ( ) ( ) set ) ) ) : ( ( V6() ) ( Relation-like V6() non empty total V18( REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) , REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) V34() V35() V36() continuous ) Element of K19(K20(REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ,REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) : ( ( ) ( Relation-like V34() V35() V36() ) set ) ) : ( ( ) ( ) set ) ) ) : ( ( V6() ) ( Relation-like V6() non empty total V18( REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) , REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) V34() V35() V36() continuous ) Element of K19(K20(REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ,REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) : ( ( ) ( Relation-like V34() V35() V36() ) set ) ) : ( ( ) ( ) set ) ) ) : ( ( V6() ) ( Relation-like V6() non empty total V18( REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) , REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) V34() V35() V36() continuous ) Element of K19(K20(REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ,REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) : ( ( ) ( Relation-like V34() V35() V36() ) set ) ) : ( ( ) ( ) set ) ) . (upper_bound A : ( ( non empty closed_interval ) ( non empty V51() V52() V53() closed_interval V76() ) Subset of ( ( ) ( ) set ) ) ) : ( ( ) ( V28() V29() ext-real ) Element of REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) ) : ( ( ) (
V28()
V29()
ext-real )
Element of
REAL : ( ( ) ( non
empty V51()
V52()
V53()
V57()
V62() )
set ) )
- (((AffineMap ((1 : ( ( ) ( non empty V21() V22() V23() V27() V28() V29() V30() ext-real non negative V50() V51() V52() V53() V54() V55() V56() ) Element of NAT : ( ( ) ( non empty V21() V22() V23() V51() V52() V53() V54() V55() V56() V57() ) Element of K19(REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) : ( ( ) ( ) set ) ) ) / 2 : ( ( ) ( non empty V21() V22() V23() V27() V28() V29() V30() ext-real non negative V50() V51() V52() V53() V54() V55() V56() ) Element of NAT : ( ( ) ( non empty V21() V22() V23() V51() V52() V53() V54() V55() V56() V57() ) Element of K19(REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( ) ( V28() V29() ext-real ) Element of REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) ,0 : ( ( ) ( V21() V22() V23() V27() V28() V29() V30() ext-real non negative V50() V51() V52() V53() V54() V55() V56() ) Element of NAT : ( ( ) ( non empty V21() V22() V23() V51() V52() V53() V54() V55() V56() V57() ) Element of K19(REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) : ( ( ) ( ) set ) ) ) )) : ( ( V6() V18( REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) , REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) ) ( Relation-like V6() non empty total V18( REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) , REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) V34() V35() V36() continuous ) Element of K19(K20(REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ,REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) : ( ( ) ( Relation-like V34() V35() V36() ) set ) ) : ( ( ) ( ) set ) ) - ((1 : ( ( ) ( non empty V21() V22() V23() V27() V28() V29() V30() ext-real non negative V50() V51() V52() V53() V54() V55() V56() ) Element of NAT : ( ( ) ( non empty V21() V22() V23() V51() V52() V53() V54() V55() V56() V57() ) Element of K19(REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) : ( ( ) ( ) set ) ) ) / 4 : ( ( ) ( non empty V21() V22() V23() V27() V28() V29() V30() ext-real non negative V50() V51() V52() V53() V54() V55() V56() ) Element of NAT : ( ( ) ( non empty V21() V22() V23() V51() V52() V53() V54() V55() V56() V57() ) Element of K19(REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( ) ( V28() V29() ext-real ) Element of REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) (#) (sin : ( ( V6() V18( REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) , REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) ) ( Relation-like V6() non empty total V18( REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) , REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) V34() V35() V36() continuous ) Element of K19(K20(REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ,REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) : ( ( ) ( Relation-like V34() V35() V36() ) set ) ) : ( ( ) ( ) set ) ) * (AffineMap (2 : ( ( ) ( non empty V21() V22() V23() V27() V28() V29() V30() ext-real non negative V50() V51() V52() V53() V54() V55() V56() ) Element of NAT : ( ( ) ( non empty V21() V22() V23() V51() V52() V53() V54() V55() V56() V57() ) Element of K19(REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) : ( ( ) ( ) set ) ) ) ,0 : ( ( ) ( V21() V22() V23() V27() V28() V29() V30() ext-real non negative V50() V51() V52() V53() V54() V55() V56() ) Element of NAT : ( ( ) ( non empty V21() V22() V23() V51() V52() V53() V54() V55() V56() V57() ) Element of K19(REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) : ( ( ) ( ) set ) ) ) )) : ( ( V6() V18( REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) , REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) ) ( Relation-like V6() V7() non empty total V18( REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) , REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) V19( REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) V20( REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) , REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) V34() V35() V36() continuous ) Element of K19(K20(REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ,REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) : ( ( ) ( Relation-like V34() V35() V36() ) set ) ) : ( ( ) ( ) set ) ) ) : ( ( V6() ) ( Relation-like V6() non empty total V18( REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) , REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) V34() V35() V36() continuous ) Element of K19(K20(REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ,REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) : ( ( ) ( Relation-like V34() V35() V36() ) set ) ) : ( ( ) ( ) set ) ) ) : ( ( V6() ) ( Relation-like V6() non empty total V18( REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) , REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) V34() V35() V36() continuous ) Element of K19(K20(REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ,REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) : ( ( ) ( Relation-like V34() V35() V36() ) set ) ) : ( ( ) ( ) set ) ) ) : ( ( V6() ) ( Relation-like V6() non empty total V18( REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) , REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) V34() V35() V36() continuous ) Element of K19(K20(REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ,REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) : ( ( ) ( Relation-like V34() V35() V36() ) set ) ) : ( ( ) ( ) set ) ) . (lower_bound A : ( ( non empty closed_interval ) ( non empty V51() V52() V53() closed_interval V76() ) Subset of ( ( ) ( ) set ) ) ) : ( ( ) ( V28() V29() ext-real ) Element of REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) ) : ( ( ) (
V28()
V29()
ext-real )
Element of
REAL : ( ( ) ( non
empty V51()
V52()
V53()
V57()
V62() )
set ) ) : ( ( ) (
V28()
V29()
ext-real )
Element of
REAL : ( ( ) ( non
empty V51()
V52()
V53()
V57()
V62() )
set ) ) ;
theorem
for
A being ( ( non
empty closed_interval ) ( non
empty V51()
V52()
V53()
closed_interval V76() )
Subset of ( ( ) ( )
set ) ) holds
integral (
(cos : ( ( V6() V18( REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) , REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) ) ( Relation-like V6() non empty total V18( REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) , REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) V34() V35() V36() continuous ) Element of K19(K20(REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ,REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) : ( ( ) ( Relation-like V34() V35() V36() ) set ) ) : ( ( ) ( ) set ) ) ^2) : ( (
V6() ) (
Relation-like V6() non
empty total V18(
REAL : ( ( ) ( non
empty V51()
V52()
V53()
V57()
V62() )
set ) ,
REAL : ( ( ) ( non
empty V51()
V52()
V53()
V57()
V62() )
set ) )
V34()
V35()
V36() )
Element of
K19(
K20(
REAL : ( ( ) ( non
empty V51()
V52()
V53()
V57()
V62() )
set ) ,
REAL : ( ( ) ( non
empty V51()
V52()
V53()
V57()
V62() )
set ) ) : ( ( ) (
Relation-like V34()
V35()
V36() )
set ) ) : ( ( ) ( )
set ) ) ,
A : ( ( non
empty closed_interval ) ( non
empty V51()
V52()
V53()
closed_interval V76() )
Subset of ( ( ) ( )
set ) ) ) : ( ( ) (
V28()
V29()
ext-real )
Element of
REAL : ( ( ) ( non
empty V51()
V52()
V53()
V57()
V62() )
set ) )
= (((AffineMap ((1 : ( ( ) ( non empty V21() V22() V23() V27() V28() V29() V30() ext-real non negative V50() V51() V52() V53() V54() V55() V56() ) Element of NAT : ( ( ) ( non empty V21() V22() V23() V51() V52() V53() V54() V55() V56() V57() ) Element of K19(REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) : ( ( ) ( ) set ) ) ) / 2 : ( ( ) ( non empty V21() V22() V23() V27() V28() V29() V30() ext-real non negative V50() V51() V52() V53() V54() V55() V56() ) Element of NAT : ( ( ) ( non empty V21() V22() V23() V51() V52() V53() V54() V55() V56() V57() ) Element of K19(REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( ) ( V28() V29() ext-real ) Element of REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) ,0 : ( ( ) ( V21() V22() V23() V27() V28() V29() V30() ext-real non negative V50() V51() V52() V53() V54() V55() V56() ) Element of NAT : ( ( ) ( non empty V21() V22() V23() V51() V52() V53() V54() V55() V56() V57() ) Element of K19(REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) : ( ( ) ( ) set ) ) ) )) : ( ( V6() V18( REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) , REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) ) ( Relation-like V6() non empty total V18( REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) , REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) V34() V35() V36() continuous ) Element of K19(K20(REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ,REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) : ( ( ) ( Relation-like V34() V35() V36() ) set ) ) : ( ( ) ( ) set ) ) + ((1 : ( ( ) ( non empty V21() V22() V23() V27() V28() V29() V30() ext-real non negative V50() V51() V52() V53() V54() V55() V56() ) Element of NAT : ( ( ) ( non empty V21() V22() V23() V51() V52() V53() V54() V55() V56() V57() ) Element of K19(REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) : ( ( ) ( ) set ) ) ) / 4 : ( ( ) ( non empty V21() V22() V23() V27() V28() V29() V30() ext-real non negative V50() V51() V52() V53() V54() V55() V56() ) Element of NAT : ( ( ) ( non empty V21() V22() V23() V51() V52() V53() V54() V55() V56() V57() ) Element of K19(REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( ) ( V28() V29() ext-real ) Element of REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) (#) (sin : ( ( V6() V18( REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) , REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) ) ( Relation-like V6() non empty total V18( REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) , REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) V34() V35() V36() continuous ) Element of K19(K20(REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ,REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) : ( ( ) ( Relation-like V34() V35() V36() ) set ) ) : ( ( ) ( ) set ) ) * (AffineMap (2 : ( ( ) ( non empty V21() V22() V23() V27() V28() V29() V30() ext-real non negative V50() V51() V52() V53() V54() V55() V56() ) Element of NAT : ( ( ) ( non empty V21() V22() V23() V51() V52() V53() V54() V55() V56() V57() ) Element of K19(REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) : ( ( ) ( ) set ) ) ) ,0 : ( ( ) ( V21() V22() V23() V27() V28() V29() V30() ext-real non negative V50() V51() V52() V53() V54() V55() V56() ) Element of NAT : ( ( ) ( non empty V21() V22() V23() V51() V52() V53() V54() V55() V56() V57() ) Element of K19(REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) : ( ( ) ( ) set ) ) ) )) : ( ( V6() V18( REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) , REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) ) ( Relation-like V6() V7() non empty total V18( REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) , REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) V19( REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) V20( REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) , REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) V34() V35() V36() continuous ) Element of K19(K20(REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ,REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) : ( ( ) ( Relation-like V34() V35() V36() ) set ) ) : ( ( ) ( ) set ) ) ) : ( ( V6() ) ( Relation-like V6() non empty total V18( REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) , REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) V34() V35() V36() continuous ) Element of K19(K20(REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ,REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) : ( ( ) ( Relation-like V34() V35() V36() ) set ) ) : ( ( ) ( ) set ) ) ) : ( ( V6() ) ( Relation-like V6() non empty total V18( REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) , REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) V34() V35() V36() continuous ) Element of K19(K20(REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ,REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) : ( ( ) ( Relation-like V34() V35() V36() ) set ) ) : ( ( ) ( ) set ) ) ) : ( ( V6() ) ( Relation-like V6() non empty total V18( REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) , REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) V34() V35() V36() continuous ) Element of K19(K20(REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ,REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) : ( ( ) ( Relation-like V34() V35() V36() ) set ) ) : ( ( ) ( ) set ) ) . (upper_bound A : ( ( non empty closed_interval ) ( non empty V51() V52() V53() closed_interval V76() ) Subset of ( ( ) ( ) set ) ) ) : ( ( ) ( V28() V29() ext-real ) Element of REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) ) : ( ( ) (
V28()
V29()
ext-real )
Element of
REAL : ( ( ) ( non
empty V51()
V52()
V53()
V57()
V62() )
set ) )
- (((AffineMap ((1 : ( ( ) ( non empty V21() V22() V23() V27() V28() V29() V30() ext-real non negative V50() V51() V52() V53() V54() V55() V56() ) Element of NAT : ( ( ) ( non empty V21() V22() V23() V51() V52() V53() V54() V55() V56() V57() ) Element of K19(REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) : ( ( ) ( ) set ) ) ) / 2 : ( ( ) ( non empty V21() V22() V23() V27() V28() V29() V30() ext-real non negative V50() V51() V52() V53() V54() V55() V56() ) Element of NAT : ( ( ) ( non empty V21() V22() V23() V51() V52() V53() V54() V55() V56() V57() ) Element of K19(REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( ) ( V28() V29() ext-real ) Element of REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) ,0 : ( ( ) ( V21() V22() V23() V27() V28() V29() V30() ext-real non negative V50() V51() V52() V53() V54() V55() V56() ) Element of NAT : ( ( ) ( non empty V21() V22() V23() V51() V52() V53() V54() V55() V56() V57() ) Element of K19(REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) : ( ( ) ( ) set ) ) ) )) : ( ( V6() V18( REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) , REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) ) ( Relation-like V6() non empty total V18( REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) , REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) V34() V35() V36() continuous ) Element of K19(K20(REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ,REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) : ( ( ) ( Relation-like V34() V35() V36() ) set ) ) : ( ( ) ( ) set ) ) + ((1 : ( ( ) ( non empty V21() V22() V23() V27() V28() V29() V30() ext-real non negative V50() V51() V52() V53() V54() V55() V56() ) Element of NAT : ( ( ) ( non empty V21() V22() V23() V51() V52() V53() V54() V55() V56() V57() ) Element of K19(REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) : ( ( ) ( ) set ) ) ) / 4 : ( ( ) ( non empty V21() V22() V23() V27() V28() V29() V30() ext-real non negative V50() V51() V52() V53() V54() V55() V56() ) Element of NAT : ( ( ) ( non empty V21() V22() V23() V51() V52() V53() V54() V55() V56() V57() ) Element of K19(REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( ) ( V28() V29() ext-real ) Element of REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) (#) (sin : ( ( V6() V18( REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) , REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) ) ( Relation-like V6() non empty total V18( REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) , REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) V34() V35() V36() continuous ) Element of K19(K20(REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ,REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) : ( ( ) ( Relation-like V34() V35() V36() ) set ) ) : ( ( ) ( ) set ) ) * (AffineMap (2 : ( ( ) ( non empty V21() V22() V23() V27() V28() V29() V30() ext-real non negative V50() V51() V52() V53() V54() V55() V56() ) Element of NAT : ( ( ) ( non empty V21() V22() V23() V51() V52() V53() V54() V55() V56() V57() ) Element of K19(REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) : ( ( ) ( ) set ) ) ) ,0 : ( ( ) ( V21() V22() V23() V27() V28() V29() V30() ext-real non negative V50() V51() V52() V53() V54() V55() V56() ) Element of NAT : ( ( ) ( non empty V21() V22() V23() V51() V52() V53() V54() V55() V56() V57() ) Element of K19(REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) : ( ( ) ( ) set ) ) ) )) : ( ( V6() V18( REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) , REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) ) ( Relation-like V6() V7() non empty total V18( REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) , REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) V19( REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) V20( REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) , REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) V34() V35() V36() continuous ) Element of K19(K20(REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ,REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) : ( ( ) ( Relation-like V34() V35() V36() ) set ) ) : ( ( ) ( ) set ) ) ) : ( ( V6() ) ( Relation-like V6() non empty total V18( REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) , REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) V34() V35() V36() continuous ) Element of K19(K20(REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ,REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) : ( ( ) ( Relation-like V34() V35() V36() ) set ) ) : ( ( ) ( ) set ) ) ) : ( ( V6() ) ( Relation-like V6() non empty total V18( REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) , REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) V34() V35() V36() continuous ) Element of K19(K20(REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ,REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) : ( ( ) ( Relation-like V34() V35() V36() ) set ) ) : ( ( ) ( ) set ) ) ) : ( ( V6() ) ( Relation-like V6() non empty total V18( REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) , REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) V34() V35() V36() continuous ) Element of K19(K20(REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ,REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) : ( ( ) ( Relation-like V34() V35() V36() ) set ) ) : ( ( ) ( ) set ) ) . (lower_bound A : ( ( non empty closed_interval ) ( non empty V51() V52() V53() closed_interval V76() ) Subset of ( ( ) ( ) set ) ) ) : ( ( ) ( V28() V29() ext-real ) Element of REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) ) : ( ( ) (
V28()
V29()
ext-real )
Element of
REAL : ( ( ) ( non
empty V51()
V52()
V53()
V57()
V62() )
set ) ) : ( ( ) (
V28()
V29()
ext-real )
Element of
REAL : ( ( ) ( non
empty V51()
V52()
V53()
V57()
V62() )
set ) ) ;
theorem
for
n being ( ( ) (
V21()
V22()
V23()
V27()
V28()
V29()
V30()
ext-real non
negative V50()
V51()
V52()
V53()
V54()
V55()
V56() )
Element of
NAT : ( ( ) ( non
empty V21()
V22()
V23()
V51()
V52()
V53()
V54()
V55()
V56()
V57() )
Element of
K19(
REAL : ( ( ) ( non
empty V51()
V52()
V53()
V57()
V62() )
set ) ) : ( ( ) ( )
set ) ) )
for
A being ( ( non
empty closed_interval ) ( non
empty V51()
V52()
V53()
closed_interval V76() )
Subset of ( ( ) ( )
set ) ) holds
integral (
(((#Z n : ( ( ) ( V21() V22() V23() V27() V28() V29() V30() ext-real non negative V50() V51() V52() V53() V54() V55() V56() ) Element of NAT : ( ( ) ( non empty V21() V22() V23() V51() V52() V53() V54() V55() V56() V57() ) Element of K19(REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( V6() V18( REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) , REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) ) ( Relation-like V6() non empty total V18( REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) , REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) V34() V35() V36() ) Element of K19(K20(REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ,REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) : ( ( ) ( Relation-like V34() V35() V36() ) set ) ) : ( ( ) ( ) set ) ) * sin : ( ( V6() V18( REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) , REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) ) ( Relation-like V6() non empty total V18( REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) , REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) V34() V35() V36() continuous ) Element of K19(K20(REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ,REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) : ( ( ) ( Relation-like V34() V35() V36() ) set ) ) : ( ( ) ( ) set ) ) ) : ( ( V6() ) ( Relation-like V6() non empty total V18( REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) , REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) V34() V35() V36() ) Element of K19(K20(REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ,REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) : ( ( ) ( Relation-like V34() V35() V36() ) set ) ) : ( ( ) ( ) set ) ) (#) cos : ( ( V6() V18( REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) , REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) ) ( Relation-like V6() non empty total V18( REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) , REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) V34() V35() V36() continuous ) Element of K19(K20(REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ,REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) : ( ( ) ( Relation-like V34() V35() V36() ) set ) ) : ( ( ) ( ) set ) ) ) : ( (
V6() ) (
Relation-like V6() non
empty total V18(
REAL : ( ( ) ( non
empty V51()
V52()
V53()
V57()
V62() )
set ) ,
REAL : ( ( ) ( non
empty V51()
V52()
V53()
V57()
V62() )
set ) )
V34()
V35()
V36() )
Element of
K19(
K20(
REAL : ( ( ) ( non
empty V51()
V52()
V53()
V57()
V62() )
set ) ,
REAL : ( ( ) ( non
empty V51()
V52()
V53()
V57()
V62() )
set ) ) : ( ( ) (
Relation-like V34()
V35()
V36() )
set ) ) : ( ( ) ( )
set ) ) ,
A : ( ( non
empty closed_interval ) ( non
empty V51()
V52()
V53()
closed_interval V76() )
Subset of ( ( ) ( )
set ) ) ) : ( ( ) (
V28()
V29()
ext-real )
Element of
REAL : ( ( ) ( non
empty V51()
V52()
V53()
V57()
V62() )
set ) )
= (((1 : ( ( ) ( non empty V21() V22() V23() V27() V28() V29() V30() ext-real non negative V50() V51() V52() V53() V54() V55() V56() ) Element of NAT : ( ( ) ( non empty V21() V22() V23() V51() V52() V53() V54() V55() V56() V57() ) Element of K19(REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) : ( ( ) ( ) set ) ) ) / (n : ( ( ) ( V21() V22() V23() V27() V28() V29() V30() ext-real non negative V50() V51() V52() V53() V54() V55() V56() ) Element of NAT : ( ( ) ( non empty V21() V22() V23() V51() V52() V53() V54() V55() V56() V57() ) Element of K19(REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) : ( ( ) ( ) set ) ) ) + 1 : ( ( ) ( non empty V21() V22() V23() V27() V28() V29() V30() ext-real non negative V50() V51() V52() V53() V54() V55() V56() ) Element of NAT : ( ( ) ( non empty V21() V22() V23() V51() V52() V53() V54() V55() V56() V57() ) Element of K19(REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( ) ( non empty V21() V22() V23() V27() V28() V29() V30() ext-real non negative ) Element of REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) ) : ( ( ) ( V28() V29() ext-real ) Element of REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) (#) ((#Z (n : ( ( ) ( V21() V22() V23() V27() V28() V29() V30() ext-real non negative V50() V51() V52() V53() V54() V55() V56() ) Element of NAT : ( ( ) ( non empty V21() V22() V23() V51() V52() V53() V54() V55() V56() V57() ) Element of K19(REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) : ( ( ) ( ) set ) ) ) + 1 : ( ( ) ( non empty V21() V22() V23() V27() V28() V29() V30() ext-real non negative V50() V51() V52() V53() V54() V55() V56() ) Element of NAT : ( ( ) ( non empty V21() V22() V23() V51() V52() V53() V54() V55() V56() V57() ) Element of K19(REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( ) ( non empty V21() V22() V23() V27() V28() V29() V30() ext-real non negative ) Element of REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) ) : ( ( V6() V18( REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) , REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) ) ( Relation-like V6() non empty total V18( REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) , REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) V34() V35() V36() ) Element of K19(K20(REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ,REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) : ( ( ) ( Relation-like V34() V35() V36() ) set ) ) : ( ( ) ( ) set ) ) * sin : ( ( V6() V18( REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) , REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) ) ( Relation-like V6() non empty total V18( REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) , REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) V34() V35() V36() continuous ) Element of K19(K20(REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ,REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) : ( ( ) ( Relation-like V34() V35() V36() ) set ) ) : ( ( ) ( ) set ) ) ) : ( ( V6() ) ( Relation-like V6() non empty total V18( REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) , REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) V34() V35() V36() ) Element of K19(K20(REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ,REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) : ( ( ) ( Relation-like V34() V35() V36() ) set ) ) : ( ( ) ( ) set ) ) ) : ( ( V6() ) ( Relation-like V6() non empty total V18( REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) , REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) V34() V35() V36() ) Element of K19(K20(REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ,REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) : ( ( ) ( Relation-like V34() V35() V36() ) set ) ) : ( ( ) ( ) set ) ) . (upper_bound A : ( ( non empty closed_interval ) ( non empty V51() V52() V53() closed_interval V76() ) Subset of ( ( ) ( ) set ) ) ) : ( ( ) ( V28() V29() ext-real ) Element of REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) ) : ( ( ) (
V28()
V29()
ext-real )
Element of
REAL : ( ( ) ( non
empty V51()
V52()
V53()
V57()
V62() )
set ) )
- (((1 : ( ( ) ( non empty V21() V22() V23() V27() V28() V29() V30() ext-real non negative V50() V51() V52() V53() V54() V55() V56() ) Element of NAT : ( ( ) ( non empty V21() V22() V23() V51() V52() V53() V54() V55() V56() V57() ) Element of K19(REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) : ( ( ) ( ) set ) ) ) / (n : ( ( ) ( V21() V22() V23() V27() V28() V29() V30() ext-real non negative V50() V51() V52() V53() V54() V55() V56() ) Element of NAT : ( ( ) ( non empty V21() V22() V23() V51() V52() V53() V54() V55() V56() V57() ) Element of K19(REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) : ( ( ) ( ) set ) ) ) + 1 : ( ( ) ( non empty V21() V22() V23() V27() V28() V29() V30() ext-real non negative V50() V51() V52() V53() V54() V55() V56() ) Element of NAT : ( ( ) ( non empty V21() V22() V23() V51() V52() V53() V54() V55() V56() V57() ) Element of K19(REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( ) ( non empty V21() V22() V23() V27() V28() V29() V30() ext-real non negative ) Element of REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) ) : ( ( ) ( V28() V29() ext-real ) Element of REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) (#) ((#Z (n : ( ( ) ( V21() V22() V23() V27() V28() V29() V30() ext-real non negative V50() V51() V52() V53() V54() V55() V56() ) Element of NAT : ( ( ) ( non empty V21() V22() V23() V51() V52() V53() V54() V55() V56() V57() ) Element of K19(REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) : ( ( ) ( ) set ) ) ) + 1 : ( ( ) ( non empty V21() V22() V23() V27() V28() V29() V30() ext-real non negative V50() V51() V52() V53() V54() V55() V56() ) Element of NAT : ( ( ) ( non empty V21() V22() V23() V51() V52() V53() V54() V55() V56() V57() ) Element of K19(REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( ) ( non empty V21() V22() V23() V27() V28() V29() V30() ext-real non negative ) Element of REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) ) : ( ( V6() V18( REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) , REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) ) ( Relation-like V6() non empty total V18( REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) , REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) V34() V35() V36() ) Element of K19(K20(REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ,REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) : ( ( ) ( Relation-like V34() V35() V36() ) set ) ) : ( ( ) ( ) set ) ) * sin : ( ( V6() V18( REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) , REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) ) ( Relation-like V6() non empty total V18( REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) , REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) V34() V35() V36() continuous ) Element of K19(K20(REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ,REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) : ( ( ) ( Relation-like V34() V35() V36() ) set ) ) : ( ( ) ( ) set ) ) ) : ( ( V6() ) ( Relation-like V6() non empty total V18( REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) , REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) V34() V35() V36() ) Element of K19(K20(REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ,REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) : ( ( ) ( Relation-like V34() V35() V36() ) set ) ) : ( ( ) ( ) set ) ) ) : ( ( V6() ) ( Relation-like V6() non empty total V18( REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) , REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) V34() V35() V36() ) Element of K19(K20(REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ,REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) : ( ( ) ( Relation-like V34() V35() V36() ) set ) ) : ( ( ) ( ) set ) ) . (lower_bound A : ( ( non empty closed_interval ) ( non empty V51() V52() V53() closed_interval V76() ) Subset of ( ( ) ( ) set ) ) ) : ( ( ) ( V28() V29() ext-real ) Element of REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) ) : ( ( ) (
V28()
V29()
ext-real )
Element of
REAL : ( ( ) ( non
empty V51()
V52()
V53()
V57()
V62() )
set ) ) : ( ( ) (
V28()
V29()
ext-real )
Element of
REAL : ( ( ) ( non
empty V51()
V52()
V53()
V57()
V62() )
set ) ) ;
theorem
for
n being ( ( ) (
V21()
V22()
V23()
V27()
V28()
V29()
V30()
ext-real non
negative V50()
V51()
V52()
V53()
V54()
V55()
V56() )
Element of
NAT : ( ( ) ( non
empty V21()
V22()
V23()
V51()
V52()
V53()
V54()
V55()
V56()
V57() )
Element of
K19(
REAL : ( ( ) ( non
empty V51()
V52()
V53()
V57()
V62() )
set ) ) : ( ( ) ( )
set ) ) )
for
A being ( ( non
empty closed_interval ) ( non
empty V51()
V52()
V53()
closed_interval V76() )
Subset of ( ( ) ( )
set ) ) st
A : ( ( non
empty closed_interval ) ( non
empty V51()
V52()
V53()
closed_interval V76() )
Subset of ( ( ) ( )
set ) )
= [.0 : ( ( ) ( V21() V22() V23() V27() V28() V29() V30() ext-real non negative V50() V51() V52() V53() V54() V55() V56() ) Element of NAT : ( ( ) ( non empty V21() V22() V23() V51() V52() V53() V54() V55() V56() V57() ) Element of K19(REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) : ( ( ) ( ) set ) ) ) ,PI : ( ( ) ( V28() V29() ext-real ) Element of REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) .] : ( ( ) (
V51()
V52()
V53()
closed )
Element of
K19(
REAL : ( ( ) ( non
empty V51()
V52()
V53()
V57()
V62() )
set ) ) : ( ( ) ( )
set ) ) holds
integral (
(((#Z n : ( ( ) ( V21() V22() V23() V27() V28() V29() V30() ext-real non negative V50() V51() V52() V53() V54() V55() V56() ) Element of NAT : ( ( ) ( non empty V21() V22() V23() V51() V52() V53() V54() V55() V56() V57() ) Element of K19(REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( V6() V18( REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) , REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) ) ( Relation-like V6() non empty total V18( REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) , REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) V34() V35() V36() ) Element of K19(K20(REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ,REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) : ( ( ) ( Relation-like V34() V35() V36() ) set ) ) : ( ( ) ( ) set ) ) * sin : ( ( V6() V18( REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) , REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) ) ( Relation-like V6() non empty total V18( REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) , REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) V34() V35() V36() continuous ) Element of K19(K20(REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ,REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) : ( ( ) ( Relation-like V34() V35() V36() ) set ) ) : ( ( ) ( ) set ) ) ) : ( ( V6() ) ( Relation-like V6() non empty total V18( REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) , REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) V34() V35() V36() ) Element of K19(K20(REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ,REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) : ( ( ) ( Relation-like V34() V35() V36() ) set ) ) : ( ( ) ( ) set ) ) (#) cos : ( ( V6() V18( REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) , REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) ) ( Relation-like V6() non empty total V18( REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) , REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) V34() V35() V36() continuous ) Element of K19(K20(REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ,REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) : ( ( ) ( Relation-like V34() V35() V36() ) set ) ) : ( ( ) ( ) set ) ) ) : ( (
V6() ) (
Relation-like V6() non
empty total V18(
REAL : ( ( ) ( non
empty V51()
V52()
V53()
V57()
V62() )
set ) ,
REAL : ( ( ) ( non
empty V51()
V52()
V53()
V57()
V62() )
set ) )
V34()
V35()
V36() )
Element of
K19(
K20(
REAL : ( ( ) ( non
empty V51()
V52()
V53()
V57()
V62() )
set ) ,
REAL : ( ( ) ( non
empty V51()
V52()
V53()
V57()
V62() )
set ) ) : ( ( ) (
Relation-like V34()
V35()
V36() )
set ) ) : ( ( ) ( )
set ) ) ,
A : ( ( non
empty closed_interval ) ( non
empty V51()
V52()
V53()
closed_interval V76() )
Subset of ( ( ) ( )
set ) ) ) : ( ( ) (
V28()
V29()
ext-real )
Element of
REAL : ( ( ) ( non
empty V51()
V52()
V53()
V57()
V62() )
set ) )
= 0 : ( ( ) (
V21()
V22()
V23()
V27()
V28()
V29()
V30()
ext-real non
negative V50()
V51()
V52()
V53()
V54()
V55()
V56() )
Element of
NAT : ( ( ) ( non
empty V21()
V22()
V23()
V51()
V52()
V53()
V54()
V55()
V56()
V57() )
Element of
K19(
REAL : ( ( ) ( non
empty V51()
V52()
V53()
V57()
V62() )
set ) ) : ( ( ) ( )
set ) ) ) ;
theorem
for
n being ( ( ) (
V21()
V22()
V23()
V27()
V28()
V29()
V30()
ext-real non
negative V50()
V51()
V52()
V53()
V54()
V55()
V56() )
Element of
NAT : ( ( ) ( non
empty V21()
V22()
V23()
V51()
V52()
V53()
V54()
V55()
V56()
V57() )
Element of
K19(
REAL : ( ( ) ( non
empty V51()
V52()
V53()
V57()
V62() )
set ) ) : ( ( ) ( )
set ) ) )
for
A being ( ( non
empty closed_interval ) ( non
empty V51()
V52()
V53()
closed_interval V76() )
Subset of ( ( ) ( )
set ) ) st
A : ( ( non
empty closed_interval ) ( non
empty V51()
V52()
V53()
closed_interval V76() )
Subset of ( ( ) ( )
set ) )
= [.0 : ( ( ) ( V21() V22() V23() V27() V28() V29() V30() ext-real non negative V50() V51() V52() V53() V54() V55() V56() ) Element of NAT : ( ( ) ( non empty V21() V22() V23() V51() V52() V53() V54() V55() V56() V57() ) Element of K19(REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) : ( ( ) ( ) set ) ) ) ,(2 : ( ( ) ( non empty V21() V22() V23() V27() V28() V29() V30() ext-real non negative V50() V51() V52() V53() V54() V55() V56() ) Element of NAT : ( ( ) ( non empty V21() V22() V23() V51() V52() V53() V54() V55() V56() V57() ) Element of K19(REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) : ( ( ) ( ) set ) ) ) * PI : ( ( ) ( V28() V29() ext-real ) Element of REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) ) : ( ( ) ( V28() V29() ext-real ) Element of REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) .] : ( ( ) (
V51()
V52()
V53()
closed )
Element of
K19(
REAL : ( ( ) ( non
empty V51()
V52()
V53()
V57()
V62() )
set ) ) : ( ( ) ( )
set ) ) holds
integral (
(((#Z n : ( ( ) ( V21() V22() V23() V27() V28() V29() V30() ext-real non negative V50() V51() V52() V53() V54() V55() V56() ) Element of NAT : ( ( ) ( non empty V21() V22() V23() V51() V52() V53() V54() V55() V56() V57() ) Element of K19(REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( V6() V18( REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) , REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) ) ( Relation-like V6() non empty total V18( REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) , REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) V34() V35() V36() ) Element of K19(K20(REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ,REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) : ( ( ) ( Relation-like V34() V35() V36() ) set ) ) : ( ( ) ( ) set ) ) * sin : ( ( V6() V18( REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) , REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) ) ( Relation-like V6() non empty total V18( REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) , REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) V34() V35() V36() continuous ) Element of K19(K20(REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ,REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) : ( ( ) ( Relation-like V34() V35() V36() ) set ) ) : ( ( ) ( ) set ) ) ) : ( ( V6() ) ( Relation-like V6() non empty total V18( REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) , REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) V34() V35() V36() ) Element of K19(K20(REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ,REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) : ( ( ) ( Relation-like V34() V35() V36() ) set ) ) : ( ( ) ( ) set ) ) (#) cos : ( ( V6() V18( REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) , REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) ) ( Relation-like V6() non empty total V18( REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) , REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) V34() V35() V36() continuous ) Element of K19(K20(REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ,REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) : ( ( ) ( Relation-like V34() V35() V36() ) set ) ) : ( ( ) ( ) set ) ) ) : ( (
V6() ) (
Relation-like V6() non
empty total V18(
REAL : ( ( ) ( non
empty V51()
V52()
V53()
V57()
V62() )
set ) ,
REAL : ( ( ) ( non
empty V51()
V52()
V53()
V57()
V62() )
set ) )
V34()
V35()
V36() )
Element of
K19(
K20(
REAL : ( ( ) ( non
empty V51()
V52()
V53()
V57()
V62() )
set ) ,
REAL : ( ( ) ( non
empty V51()
V52()
V53()
V57()
V62() )
set ) ) : ( ( ) (
Relation-like V34()
V35()
V36() )
set ) ) : ( ( ) ( )
set ) ) ,
A : ( ( non
empty closed_interval ) ( non
empty V51()
V52()
V53()
closed_interval V76() )
Subset of ( ( ) ( )
set ) ) ) : ( ( ) (
V28()
V29()
ext-real )
Element of
REAL : ( ( ) ( non
empty V51()
V52()
V53()
V57()
V62() )
set ) )
= 0 : ( ( ) (
V21()
V22()
V23()
V27()
V28()
V29()
V30()
ext-real non
negative V50()
V51()
V52()
V53()
V54()
V55()
V56() )
Element of
NAT : ( ( ) ( non
empty V21()
V22()
V23()
V51()
V52()
V53()
V54()
V55()
V56()
V57() )
Element of
K19(
REAL : ( ( ) ( non
empty V51()
V52()
V53()
V57()
V62() )
set ) ) : ( ( ) ( )
set ) ) ) ;
theorem
for
n being ( ( ) (
V21()
V22()
V23()
V27()
V28()
V29()
V30()
ext-real non
negative V50()
V51()
V52()
V53()
V54()
V55()
V56() )
Element of
NAT : ( ( ) ( non
empty V21()
V22()
V23()
V51()
V52()
V53()
V54()
V55()
V56()
V57() )
Element of
K19(
REAL : ( ( ) ( non
empty V51()
V52()
V53()
V57()
V62() )
set ) ) : ( ( ) ( )
set ) ) )
for
A being ( ( non
empty closed_interval ) ( non
empty V51()
V52()
V53()
closed_interval V76() )
Subset of ( ( ) ( )
set ) ) holds
integral (
(((#Z n : ( ( ) ( V21() V22() V23() V27() V28() V29() V30() ext-real non negative V50() V51() V52() V53() V54() V55() V56() ) Element of NAT : ( ( ) ( non empty V21() V22() V23() V51() V52() V53() V54() V55() V56() V57() ) Element of K19(REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( V6() V18( REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) , REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) ) ( Relation-like V6() non empty total V18( REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) , REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) V34() V35() V36() ) Element of K19(K20(REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ,REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) : ( ( ) ( Relation-like V34() V35() V36() ) set ) ) : ( ( ) ( ) set ) ) * cos : ( ( V6() V18( REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) , REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) ) ( Relation-like V6() non empty total V18( REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) , REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) V34() V35() V36() continuous ) Element of K19(K20(REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ,REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) : ( ( ) ( Relation-like V34() V35() V36() ) set ) ) : ( ( ) ( ) set ) ) ) : ( ( V6() ) ( Relation-like V6() non empty total V18( REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) , REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) V34() V35() V36() ) Element of K19(K20(REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ,REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) : ( ( ) ( Relation-like V34() V35() V36() ) set ) ) : ( ( ) ( ) set ) ) (#) sin : ( ( V6() V18( REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) , REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) ) ( Relation-like V6() non empty total V18( REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) , REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) V34() V35() V36() continuous ) Element of K19(K20(REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ,REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) : ( ( ) ( Relation-like V34() V35() V36() ) set ) ) : ( ( ) ( ) set ) ) ) : ( (
V6() ) (
Relation-like V6() non
empty total V18(
REAL : ( ( ) ( non
empty V51()
V52()
V53()
V57()
V62() )
set ) ,
REAL : ( ( ) ( non
empty V51()
V52()
V53()
V57()
V62() )
set ) )
V34()
V35()
V36() )
Element of
K19(
K20(
REAL : ( ( ) ( non
empty V51()
V52()
V53()
V57()
V62() )
set ) ,
REAL : ( ( ) ( non
empty V51()
V52()
V53()
V57()
V62() )
set ) ) : ( ( ) (
Relation-like V34()
V35()
V36() )
set ) ) : ( ( ) ( )
set ) ) ,
A : ( ( non
empty closed_interval ) ( non
empty V51()
V52()
V53()
closed_interval V76() )
Subset of ( ( ) ( )
set ) ) ) : ( ( ) (
V28()
V29()
ext-real )
Element of
REAL : ( ( ) ( non
empty V51()
V52()
V53()
V57()
V62() )
set ) )
= (((- (1 : ( ( ) ( non empty V21() V22() V23() V27() V28() V29() V30() ext-real non negative V50() V51() V52() V53() V54() V55() V56() ) Element of NAT : ( ( ) ( non empty V21() V22() V23() V51() V52() V53() V54() V55() V56() V57() ) Element of K19(REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) : ( ( ) ( ) set ) ) ) / (n : ( ( ) ( V21() V22() V23() V27() V28() V29() V30() ext-real non negative V50() V51() V52() V53() V54() V55() V56() ) Element of NAT : ( ( ) ( non empty V21() V22() V23() V51() V52() V53() V54() V55() V56() V57() ) Element of K19(REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) : ( ( ) ( ) set ) ) ) + 1 : ( ( ) ( non empty V21() V22() V23() V27() V28() V29() V30() ext-real non negative V50() V51() V52() V53() V54() V55() V56() ) Element of NAT : ( ( ) ( non empty V21() V22() V23() V51() V52() V53() V54() V55() V56() V57() ) Element of K19(REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( ) ( non empty V21() V22() V23() V27() V28() V29() V30() ext-real non negative ) Element of REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) ) : ( ( ) ( V28() V29() ext-real ) Element of REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) ) : ( ( ) ( V28() V29() ext-real ) Element of REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) (#) ((#Z (n : ( ( ) ( V21() V22() V23() V27() V28() V29() V30() ext-real non negative V50() V51() V52() V53() V54() V55() V56() ) Element of NAT : ( ( ) ( non empty V21() V22() V23() V51() V52() V53() V54() V55() V56() V57() ) Element of K19(REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) : ( ( ) ( ) set ) ) ) + 1 : ( ( ) ( non empty V21() V22() V23() V27() V28() V29() V30() ext-real non negative V50() V51() V52() V53() V54() V55() V56() ) Element of NAT : ( ( ) ( non empty V21() V22() V23() V51() V52() V53() V54() V55() V56() V57() ) Element of K19(REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( ) ( non empty V21() V22() V23() V27() V28() V29() V30() ext-real non negative ) Element of REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) ) : ( ( V6() V18( REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) , REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) ) ( Relation-like V6() non empty total V18( REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) , REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) V34() V35() V36() ) Element of K19(K20(REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ,REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) : ( ( ) ( Relation-like V34() V35() V36() ) set ) ) : ( ( ) ( ) set ) ) * cos : ( ( V6() V18( REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) , REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) ) ( Relation-like V6() non empty total V18( REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) , REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) V34() V35() V36() continuous ) Element of K19(K20(REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ,REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) : ( ( ) ( Relation-like V34() V35() V36() ) set ) ) : ( ( ) ( ) set ) ) ) : ( ( V6() ) ( Relation-like V6() non empty total V18( REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) , REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) V34() V35() V36() ) Element of K19(K20(REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ,REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) : ( ( ) ( Relation-like V34() V35() V36() ) set ) ) : ( ( ) ( ) set ) ) ) : ( ( V6() ) ( Relation-like V6() non empty total V18( REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) , REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) V34() V35() V36() ) Element of K19(K20(REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ,REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) : ( ( ) ( Relation-like V34() V35() V36() ) set ) ) : ( ( ) ( ) set ) ) . (upper_bound A : ( ( non empty closed_interval ) ( non empty V51() V52() V53() closed_interval V76() ) Subset of ( ( ) ( ) set ) ) ) : ( ( ) ( V28() V29() ext-real ) Element of REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) ) : ( ( ) (
V28()
V29()
ext-real )
Element of
REAL : ( ( ) ( non
empty V51()
V52()
V53()
V57()
V62() )
set ) )
- (((- (1 : ( ( ) ( non empty V21() V22() V23() V27() V28() V29() V30() ext-real non negative V50() V51() V52() V53() V54() V55() V56() ) Element of NAT : ( ( ) ( non empty V21() V22() V23() V51() V52() V53() V54() V55() V56() V57() ) Element of K19(REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) : ( ( ) ( ) set ) ) ) / (n : ( ( ) ( V21() V22() V23() V27() V28() V29() V30() ext-real non negative V50() V51() V52() V53() V54() V55() V56() ) Element of NAT : ( ( ) ( non empty V21() V22() V23() V51() V52() V53() V54() V55() V56() V57() ) Element of K19(REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) : ( ( ) ( ) set ) ) ) + 1 : ( ( ) ( non empty V21() V22() V23() V27() V28() V29() V30() ext-real non negative V50() V51() V52() V53() V54() V55() V56() ) Element of NAT : ( ( ) ( non empty V21() V22() V23() V51() V52() V53() V54() V55() V56() V57() ) Element of K19(REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( ) ( non empty V21() V22() V23() V27() V28() V29() V30() ext-real non negative ) Element of REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) ) : ( ( ) ( V28() V29() ext-real ) Element of REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) ) : ( ( ) ( V28() V29() ext-real ) Element of REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) (#) ((#Z (n : ( ( ) ( V21() V22() V23() V27() V28() V29() V30() ext-real non negative V50() V51() V52() V53() V54() V55() V56() ) Element of NAT : ( ( ) ( non empty V21() V22() V23() V51() V52() V53() V54() V55() V56() V57() ) Element of K19(REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) : ( ( ) ( ) set ) ) ) + 1 : ( ( ) ( non empty V21() V22() V23() V27() V28() V29() V30() ext-real non negative V50() V51() V52() V53() V54() V55() V56() ) Element of NAT : ( ( ) ( non empty V21() V22() V23() V51() V52() V53() V54() V55() V56() V57() ) Element of K19(REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( ) ( non empty V21() V22() V23() V27() V28() V29() V30() ext-real non negative ) Element of REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) ) : ( ( V6() V18( REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) , REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) ) ( Relation-like V6() non empty total V18( REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) , REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) V34() V35() V36() ) Element of K19(K20(REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ,REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) : ( ( ) ( Relation-like V34() V35() V36() ) set ) ) : ( ( ) ( ) set ) ) * cos : ( ( V6() V18( REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) , REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) ) ( Relation-like V6() non empty total V18( REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) , REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) V34() V35() V36() continuous ) Element of K19(K20(REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ,REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) : ( ( ) ( Relation-like V34() V35() V36() ) set ) ) : ( ( ) ( ) set ) ) ) : ( ( V6() ) ( Relation-like V6() non empty total V18( REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) , REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) V34() V35() V36() ) Element of K19(K20(REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ,REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) : ( ( ) ( Relation-like V34() V35() V36() ) set ) ) : ( ( ) ( ) set ) ) ) : ( ( V6() ) ( Relation-like V6() non empty total V18( REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) , REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) V34() V35() V36() ) Element of K19(K20(REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ,REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) : ( ( ) ( Relation-like V34() V35() V36() ) set ) ) : ( ( ) ( ) set ) ) . (lower_bound A : ( ( non empty closed_interval ) ( non empty V51() V52() V53() closed_interval V76() ) Subset of ( ( ) ( ) set ) ) ) : ( ( ) ( V28() V29() ext-real ) Element of REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) ) : ( ( ) (
V28()
V29()
ext-real )
Element of
REAL : ( ( ) ( non
empty V51()
V52()
V53()
V57()
V62() )
set ) ) : ( ( ) (
V28()
V29()
ext-real )
Element of
REAL : ( ( ) ( non
empty V51()
V52()
V53()
V57()
V62() )
set ) ) ;
theorem
for
n being ( ( ) (
V21()
V22()
V23()
V27()
V28()
V29()
V30()
ext-real non
negative V50()
V51()
V52()
V53()
V54()
V55()
V56() )
Element of
NAT : ( ( ) ( non
empty V21()
V22()
V23()
V51()
V52()
V53()
V54()
V55()
V56()
V57() )
Element of
K19(
REAL : ( ( ) ( non
empty V51()
V52()
V53()
V57()
V62() )
set ) ) : ( ( ) ( )
set ) ) )
for
A being ( ( non
empty closed_interval ) ( non
empty V51()
V52()
V53()
closed_interval V76() )
Subset of ( ( ) ( )
set ) ) st
A : ( ( non
empty closed_interval ) ( non
empty V51()
V52()
V53()
closed_interval V76() )
Subset of ( ( ) ( )
set ) )
= [.0 : ( ( ) ( V21() V22() V23() V27() V28() V29() V30() ext-real non negative V50() V51() V52() V53() V54() V55() V56() ) Element of NAT : ( ( ) ( non empty V21() V22() V23() V51() V52() V53() V54() V55() V56() V57() ) Element of K19(REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) : ( ( ) ( ) set ) ) ) ,(2 : ( ( ) ( non empty V21() V22() V23() V27() V28() V29() V30() ext-real non negative V50() V51() V52() V53() V54() V55() V56() ) Element of NAT : ( ( ) ( non empty V21() V22() V23() V51() V52() V53() V54() V55() V56() V57() ) Element of K19(REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) : ( ( ) ( ) set ) ) ) * PI : ( ( ) ( V28() V29() ext-real ) Element of REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) ) : ( ( ) ( V28() V29() ext-real ) Element of REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) .] : ( ( ) (
V51()
V52()
V53()
closed )
Element of
K19(
REAL : ( ( ) ( non
empty V51()
V52()
V53()
V57()
V62() )
set ) ) : ( ( ) ( )
set ) ) holds
integral (
(((#Z n : ( ( ) ( V21() V22() V23() V27() V28() V29() V30() ext-real non negative V50() V51() V52() V53() V54() V55() V56() ) Element of NAT : ( ( ) ( non empty V21() V22() V23() V51() V52() V53() V54() V55() V56() V57() ) Element of K19(REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( V6() V18( REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) , REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) ) ( Relation-like V6() non empty total V18( REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) , REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) V34() V35() V36() ) Element of K19(K20(REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ,REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) : ( ( ) ( Relation-like V34() V35() V36() ) set ) ) : ( ( ) ( ) set ) ) * cos : ( ( V6() V18( REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) , REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) ) ( Relation-like V6() non empty total V18( REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) , REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) V34() V35() V36() continuous ) Element of K19(K20(REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ,REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) : ( ( ) ( Relation-like V34() V35() V36() ) set ) ) : ( ( ) ( ) set ) ) ) : ( ( V6() ) ( Relation-like V6() non empty total V18( REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) , REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) V34() V35() V36() ) Element of K19(K20(REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ,REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) : ( ( ) ( Relation-like V34() V35() V36() ) set ) ) : ( ( ) ( ) set ) ) (#) sin : ( ( V6() V18( REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) , REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) ) ( Relation-like V6() non empty total V18( REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) , REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) V34() V35() V36() continuous ) Element of K19(K20(REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ,REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) : ( ( ) ( Relation-like V34() V35() V36() ) set ) ) : ( ( ) ( ) set ) ) ) : ( (
V6() ) (
Relation-like V6() non
empty total V18(
REAL : ( ( ) ( non
empty V51()
V52()
V53()
V57()
V62() )
set ) ,
REAL : ( ( ) ( non
empty V51()
V52()
V53()
V57()
V62() )
set ) )
V34()
V35()
V36() )
Element of
K19(
K20(
REAL : ( ( ) ( non
empty V51()
V52()
V53()
V57()
V62() )
set ) ,
REAL : ( ( ) ( non
empty V51()
V52()
V53()
V57()
V62() )
set ) ) : ( ( ) (
Relation-like V34()
V35()
V36() )
set ) ) : ( ( ) ( )
set ) ) ,
A : ( ( non
empty closed_interval ) ( non
empty V51()
V52()
V53()
closed_interval V76() )
Subset of ( ( ) ( )
set ) ) ) : ( ( ) (
V28()
V29()
ext-real )
Element of
REAL : ( ( ) ( non
empty V51()
V52()
V53()
V57()
V62() )
set ) )
= 0 : ( ( ) (
V21()
V22()
V23()
V27()
V28()
V29()
V30()
ext-real non
negative V50()
V51()
V52()
V53()
V54()
V55()
V56() )
Element of
NAT : ( ( ) ( non
empty V21()
V22()
V23()
V51()
V52()
V53()
V54()
V55()
V56()
V57() )
Element of
K19(
REAL : ( ( ) ( non
empty V51()
V52()
V53()
V57()
V62() )
set ) ) : ( ( ) ( )
set ) ) ) ;
theorem
for
n being ( ( ) (
V21()
V22()
V23()
V27()
V28()
V29()
V30()
ext-real non
negative V50()
V51()
V52()
V53()
V54()
V55()
V56() )
Element of
NAT : ( ( ) ( non
empty V21()
V22()
V23()
V51()
V52()
V53()
V54()
V55()
V56()
V57() )
Element of
K19(
REAL : ( ( ) ( non
empty V51()
V52()
V53()
V57()
V62() )
set ) ) : ( ( ) ( )
set ) ) )
for
A being ( ( non
empty closed_interval ) ( non
empty V51()
V52()
V53()
closed_interval V76() )
Subset of ( ( ) ( )
set ) ) st
A : ( ( non
empty closed_interval ) ( non
empty V51()
V52()
V53()
closed_interval V76() )
Subset of ( ( ) ( )
set ) )
= [.(- (PI : ( ( ) ( V28() V29() ext-real ) Element of REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) / 2 : ( ( ) ( non empty V21() V22() V23() V27() V28() V29() V30() ext-real non negative V50() V51() V52() V53() V54() V55() V56() ) Element of NAT : ( ( ) ( non empty V21() V22() V23() V51() V52() V53() V54() V55() V56() V57() ) Element of K19(REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( ) ( V28() V29() ext-real ) Element of REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) ) : ( ( ) ( V28() V29() ext-real ) Element of REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) ,(PI : ( ( ) ( V28() V29() ext-real ) Element of REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) / 2 : ( ( ) ( non empty V21() V22() V23() V27() V28() V29() V30() ext-real non negative V50() V51() V52() V53() V54() V55() V56() ) Element of NAT : ( ( ) ( non empty V21() V22() V23() V51() V52() V53() V54() V55() V56() V57() ) Element of K19(REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( ) ( V28() V29() ext-real ) Element of REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) .] : ( ( ) (
V51()
V52()
V53()
closed )
Element of
K19(
REAL : ( ( ) ( non
empty V51()
V52()
V53()
V57()
V62() )
set ) ) : ( ( ) ( )
set ) ) holds
integral (
(((#Z n : ( ( ) ( V21() V22() V23() V27() V28() V29() V30() ext-real non negative V50() V51() V52() V53() V54() V55() V56() ) Element of NAT : ( ( ) ( non empty V21() V22() V23() V51() V52() V53() V54() V55() V56() V57() ) Element of K19(REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( V6() V18( REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) , REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) ) ( Relation-like V6() non empty total V18( REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) , REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) V34() V35() V36() ) Element of K19(K20(REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ,REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) : ( ( ) ( Relation-like V34() V35() V36() ) set ) ) : ( ( ) ( ) set ) ) * cos : ( ( V6() V18( REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) , REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) ) ( Relation-like V6() non empty total V18( REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) , REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) V34() V35() V36() continuous ) Element of K19(K20(REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ,REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) : ( ( ) ( Relation-like V34() V35() V36() ) set ) ) : ( ( ) ( ) set ) ) ) : ( ( V6() ) ( Relation-like V6() non empty total V18( REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) , REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) V34() V35() V36() ) Element of K19(K20(REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ,REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) : ( ( ) ( Relation-like V34() V35() V36() ) set ) ) : ( ( ) ( ) set ) ) (#) sin : ( ( V6() V18( REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) , REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) ) ( Relation-like V6() non empty total V18( REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) , REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) V34() V35() V36() continuous ) Element of K19(K20(REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ,REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) : ( ( ) ( Relation-like V34() V35() V36() ) set ) ) : ( ( ) ( ) set ) ) ) : ( (
V6() ) (
Relation-like V6() non
empty total V18(
REAL : ( ( ) ( non
empty V51()
V52()
V53()
V57()
V62() )
set ) ,
REAL : ( ( ) ( non
empty V51()
V52()
V53()
V57()
V62() )
set ) )
V34()
V35()
V36() )
Element of
K19(
K20(
REAL : ( ( ) ( non
empty V51()
V52()
V53()
V57()
V62() )
set ) ,
REAL : ( ( ) ( non
empty V51()
V52()
V53()
V57()
V62() )
set ) ) : ( ( ) (
Relation-like V34()
V35()
V36() )
set ) ) : ( ( ) ( )
set ) ) ,
A : ( ( non
empty closed_interval ) ( non
empty V51()
V52()
V53()
closed_interval V76() )
Subset of ( ( ) ( )
set ) ) ) : ( ( ) (
V28()
V29()
ext-real )
Element of
REAL : ( ( ) ( non
empty V51()
V52()
V53()
V57()
V62() )
set ) )
= 0 : ( ( ) (
V21()
V22()
V23()
V27()
V28()
V29()
V30()
ext-real non
negative V50()
V51()
V52()
V53()
V54()
V55()
V56() )
Element of
NAT : ( ( ) ( non
empty V21()
V22()
V23()
V51()
V52()
V53()
V54()
V55()
V56()
V57() )
Element of
K19(
REAL : ( ( ) ( non
empty V51()
V52()
V53()
V57()
V62() )
set ) ) : ( ( ) ( )
set ) ) ) ;
theorem
for
m,
n being ( ( ) (
V21()
V22()
V23()
V27()
V28()
V29()
V30()
ext-real non
negative V50()
V51()
V52()
V53()
V54()
V55()
V56() )
Element of
NAT : ( ( ) ( non
empty V21()
V22()
V23()
V51()
V52()
V53()
V54()
V55()
V56()
V57() )
Element of
K19(
REAL : ( ( ) ( non
empty V51()
V52()
V53()
V57()
V62() )
set ) ) : ( ( ) ( )
set ) ) )
for
A being ( ( non
empty closed_interval ) ( non
empty V51()
V52()
V53()
closed_interval V76() )
Subset of ( ( ) ( )
set ) ) st
m : ( ( ) (
V21()
V22()
V23()
V27()
V28()
V29()
V30()
ext-real non
negative V50()
V51()
V52()
V53()
V54()
V55()
V56() )
Element of
NAT : ( ( ) ( non
empty V21()
V22()
V23()
V51()
V52()
V53()
V54()
V55()
V56()
V57() )
Element of
K19(
REAL : ( ( ) ( non
empty V51()
V52()
V53()
V57()
V62() )
set ) ) : ( ( ) ( )
set ) ) )
+ n : ( ( ) (
V21()
V22()
V23()
V27()
V28()
V29()
V30()
ext-real non
negative V50()
V51()
V52()
V53()
V54()
V55()
V56() )
Element of
NAT : ( ( ) ( non
empty V21()
V22()
V23()
V51()
V52()
V53()
V54()
V55()
V56()
V57() )
Element of
K19(
REAL : ( ( ) ( non
empty V51()
V52()
V53()
V57()
V62() )
set ) ) : ( ( ) ( )
set ) ) ) : ( ( ) (
V21()
V22()
V23()
V27()
V28()
V29()
V30()
ext-real non
negative )
Element of
REAL : ( ( ) ( non
empty V51()
V52()
V53()
V57()
V62() )
set ) )
<> 0 : ( ( ) (
V21()
V22()
V23()
V27()
V28()
V29()
V30()
ext-real non
negative V50()
V51()
V52()
V53()
V54()
V55()
V56() )
Element of
NAT : ( ( ) ( non
empty V21()
V22()
V23()
V51()
V52()
V53()
V54()
V55()
V56()
V57() )
Element of
K19(
REAL : ( ( ) ( non
empty V51()
V52()
V53()
V57()
V62() )
set ) ) : ( ( ) ( )
set ) ) ) &
m : ( ( ) (
V21()
V22()
V23()
V27()
V28()
V29()
V30()
ext-real non
negative V50()
V51()
V52()
V53()
V54()
V55()
V56() )
Element of
NAT : ( ( ) ( non
empty V21()
V22()
V23()
V51()
V52()
V53()
V54()
V55()
V56()
V57() )
Element of
K19(
REAL : ( ( ) ( non
empty V51()
V52()
V53()
V57()
V62() )
set ) ) : ( ( ) ( )
set ) ) )
- n : ( ( ) (
V21()
V22()
V23()
V27()
V28()
V29()
V30()
ext-real non
negative V50()
V51()
V52()
V53()
V54()
V55()
V56() )
Element of
NAT : ( ( ) ( non
empty V21()
V22()
V23()
V51()
V52()
V53()
V54()
V55()
V56()
V57() )
Element of
K19(
REAL : ( ( ) ( non
empty V51()
V52()
V53()
V57()
V62() )
set ) ) : ( ( ) ( )
set ) ) ) : ( ( ) (
V28()
V29()
V30()
ext-real )
Element of
REAL : ( ( ) ( non
empty V51()
V52()
V53()
V57()
V62() )
set ) )
<> 0 : ( ( ) (
V21()
V22()
V23()
V27()
V28()
V29()
V30()
ext-real non
negative V50()
V51()
V52()
V53()
V54()
V55()
V56() )
Element of
NAT : ( ( ) ( non
empty V21()
V22()
V23()
V51()
V52()
V53()
V54()
V55()
V56()
V57() )
Element of
K19(
REAL : ( ( ) ( non
empty V51()
V52()
V53()
V57()
V62() )
set ) ) : ( ( ) ( )
set ) ) ) holds
integral (
((cos : ( ( V6() V18( REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) , REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) ) ( Relation-like V6() non empty total V18( REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) , REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) V34() V35() V36() continuous ) Element of K19(K20(REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ,REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) : ( ( ) ( Relation-like V34() V35() V36() ) set ) ) : ( ( ) ( ) set ) ) * (AffineMap (m : ( ( ) ( V21() V22() V23() V27() V28() V29() V30() ext-real non negative V50() V51() V52() V53() V54() V55() V56() ) Element of NAT : ( ( ) ( non empty V21() V22() V23() V51() V52() V53() V54() V55() V56() V57() ) Element of K19(REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) : ( ( ) ( ) set ) ) ) ,0 : ( ( ) ( V21() V22() V23() V27() V28() V29() V30() ext-real non negative V50() V51() V52() V53() V54() V55() V56() ) Element of NAT : ( ( ) ( non empty V21() V22() V23() V51() V52() V53() V54() V55() V56() V57() ) Element of K19(REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) : ( ( ) ( ) set ) ) ) )) : ( ( V6() V18( REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) , REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) ) ( Relation-like V6() non empty total V18( REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) , REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) V34() V35() V36() continuous ) Element of K19(K20(REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ,REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) : ( ( ) ( Relation-like V34() V35() V36() ) set ) ) : ( ( ) ( ) set ) ) ) : ( ( V6() ) ( Relation-like V6() non empty total V18( REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) , REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) V34() V35() V36() continuous ) Element of K19(K20(REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ,REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) : ( ( ) ( Relation-like V34() V35() V36() ) set ) ) : ( ( ) ( ) set ) ) (#) (cos : ( ( V6() V18( REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) , REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) ) ( Relation-like V6() non empty total V18( REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) , REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) V34() V35() V36() continuous ) Element of K19(K20(REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ,REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) : ( ( ) ( Relation-like V34() V35() V36() ) set ) ) : ( ( ) ( ) set ) ) * (AffineMap (n : ( ( ) ( V21() V22() V23() V27() V28() V29() V30() ext-real non negative V50() V51() V52() V53() V54() V55() V56() ) Element of NAT : ( ( ) ( non empty V21() V22() V23() V51() V52() V53() V54() V55() V56() V57() ) Element of K19(REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) : ( ( ) ( ) set ) ) ) ,0 : ( ( ) ( V21() V22() V23() V27() V28() V29() V30() ext-real non negative V50() V51() V52() V53() V54() V55() V56() ) Element of NAT : ( ( ) ( non empty V21() V22() V23() V51() V52() V53() V54() V55() V56() V57() ) Element of K19(REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) : ( ( ) ( ) set ) ) ) )) : ( ( V6() V18( REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) , REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) ) ( Relation-like V6() non empty total V18( REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) , REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) V34() V35() V36() continuous ) Element of K19(K20(REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ,REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) : ( ( ) ( Relation-like V34() V35() V36() ) set ) ) : ( ( ) ( ) set ) ) ) : ( ( V6() ) ( Relation-like V6() non empty total V18( REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) , REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) V34() V35() V36() continuous ) Element of K19(K20(REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ,REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) : ( ( ) ( Relation-like V34() V35() V36() ) set ) ) : ( ( ) ( ) set ) ) ) : ( (
V6() ) (
Relation-like V6() non
empty total V18(
REAL : ( ( ) ( non
empty V51()
V52()
V53()
V57()
V62() )
set ) ,
REAL : ( ( ) ( non
empty V51()
V52()
V53()
V57()
V62() )
set ) )
V34()
V35()
V36()
continuous )
Element of
K19(
K20(
REAL : ( ( ) ( non
empty V51()
V52()
V53()
V57()
V62() )
set ) ,
REAL : ( ( ) ( non
empty V51()
V52()
V53()
V57()
V62() )
set ) ) : ( ( ) (
Relation-like V34()
V35()
V36() )
set ) ) : ( ( ) ( )
set ) ) ,
A : ( ( non
empty closed_interval ) ( non
empty V51()
V52()
V53()
closed_interval V76() )
Subset of ( ( ) ( )
set ) ) ) : ( ( ) (
V28()
V29()
ext-real )
Element of
REAL : ( ( ) ( non
empty V51()
V52()
V53()
V57()
V62() )
set ) )
= ((((1 : ( ( ) ( non empty V21() V22() V23() V27() V28() V29() V30() ext-real non negative V50() V51() V52() V53() V54() V55() V56() ) Element of NAT : ( ( ) ( non empty V21() V22() V23() V51() V52() V53() V54() V55() V56() V57() ) Element of K19(REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) : ( ( ) ( ) set ) ) ) / (2 : ( ( ) ( non empty V21() V22() V23() V27() V28() V29() V30() ext-real non negative V50() V51() V52() V53() V54() V55() V56() ) Element of NAT : ( ( ) ( non empty V21() V22() V23() V51() V52() V53() V54() V55() V56() V57() ) Element of K19(REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) : ( ( ) ( ) set ) ) ) * (m : ( ( ) ( V21() V22() V23() V27() V28() V29() V30() ext-real non negative V50() V51() V52() V53() V54() V55() V56() ) Element of NAT : ( ( ) ( non empty V21() V22() V23() V51() V52() V53() V54() V55() V56() V57() ) Element of K19(REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) : ( ( ) ( ) set ) ) ) + n : ( ( ) ( V21() V22() V23() V27() V28() V29() V30() ext-real non negative V50() V51() V52() V53() V54() V55() V56() ) Element of NAT : ( ( ) ( non empty V21() V22() V23() V51() V52() V53() V54() V55() V56() V57() ) Element of K19(REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( ) ( V21() V22() V23() V27() V28() V29() V30() ext-real non negative ) Element of REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) ) : ( ( ) ( V21() V22() V23() V27() V28() V29() V30() ext-real non negative ) Element of REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) ) : ( ( ) ( V28() V29() ext-real ) Element of REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) (#) (sin : ( ( V6() V18( REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) , REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) ) ( Relation-like V6() non empty total V18( REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) , REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) V34() V35() V36() continuous ) Element of K19(K20(REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ,REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) : ( ( ) ( Relation-like V34() V35() V36() ) set ) ) : ( ( ) ( ) set ) ) * (AffineMap ((m : ( ( ) ( V21() V22() V23() V27() V28() V29() V30() ext-real non negative V50() V51() V52() V53() V54() V55() V56() ) Element of NAT : ( ( ) ( non empty V21() V22() V23() V51() V52() V53() V54() V55() V56() V57() ) Element of K19(REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) : ( ( ) ( ) set ) ) ) + n : ( ( ) ( V21() V22() V23() V27() V28() V29() V30() ext-real non negative V50() V51() V52() V53() V54() V55() V56() ) Element of NAT : ( ( ) ( non empty V21() V22() V23() V51() V52() V53() V54() V55() V56() V57() ) Element of K19(REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( ) ( V21() V22() V23() V27() V28() V29() V30() ext-real non negative ) Element of REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) ,0 : ( ( ) ( V21() V22() V23() V27() V28() V29() V30() ext-real non negative V50() V51() V52() V53() V54() V55() V56() ) Element of NAT : ( ( ) ( non empty V21() V22() V23() V51() V52() V53() V54() V55() V56() V57() ) Element of K19(REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) : ( ( ) ( ) set ) ) ) )) : ( ( V6() V18( REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) , REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) ) ( Relation-like V6() non empty total V18( REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) , REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) V34() V35() V36() continuous ) Element of K19(K20(REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ,REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) : ( ( ) ( Relation-like V34() V35() V36() ) set ) ) : ( ( ) ( ) set ) ) ) : ( ( V6() ) ( Relation-like V6() non empty total V18( REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) , REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) V34() V35() V36() continuous ) Element of K19(K20(REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ,REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) : ( ( ) ( Relation-like V34() V35() V36() ) set ) ) : ( ( ) ( ) set ) ) ) : ( ( V6() ) ( Relation-like V6() non empty total V18( REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) , REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) V34() V35() V36() continuous ) Element of K19(K20(REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ,REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) : ( ( ) ( Relation-like V34() V35() V36() ) set ) ) : ( ( ) ( ) set ) ) + ((1 : ( ( ) ( non empty V21() V22() V23() V27() V28() V29() V30() ext-real non negative V50() V51() V52() V53() V54() V55() V56() ) Element of NAT : ( ( ) ( non empty V21() V22() V23() V51() V52() V53() V54() V55() V56() V57() ) Element of K19(REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) : ( ( ) ( ) set ) ) ) / (2 : ( ( ) ( non empty V21() V22() V23() V27() V28() V29() V30() ext-real non negative V50() V51() V52() V53() V54() V55() V56() ) Element of NAT : ( ( ) ( non empty V21() V22() V23() V51() V52() V53() V54() V55() V56() V57() ) Element of K19(REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) : ( ( ) ( ) set ) ) ) * (m : ( ( ) ( V21() V22() V23() V27() V28() V29() V30() ext-real non negative V50() V51() V52() V53() V54() V55() V56() ) Element of NAT : ( ( ) ( non empty V21() V22() V23() V51() V52() V53() V54() V55() V56() V57() ) Element of K19(REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) : ( ( ) ( ) set ) ) ) - n : ( ( ) ( V21() V22() V23() V27() V28() V29() V30() ext-real non negative V50() V51() V52() V53() V54() V55() V56() ) Element of NAT : ( ( ) ( non empty V21() V22() V23() V51() V52() V53() V54() V55() V56() V57() ) Element of K19(REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( ) ( V28() V29() V30() ext-real ) Element of REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) ) : ( ( ) ( V28() V29() V30() ext-real ) Element of REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) ) : ( ( ) ( V28() V29() ext-real ) Element of REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) (#) (sin : ( ( V6() V18( REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) , REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) ) ( Relation-like V6() non empty total V18( REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) , REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) V34() V35() V36() continuous ) Element of K19(K20(REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ,REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) : ( ( ) ( Relation-like V34() V35() V36() ) set ) ) : ( ( ) ( ) set ) ) * (AffineMap ((m : ( ( ) ( V21() V22() V23() V27() V28() V29() V30() ext-real non negative V50() V51() V52() V53() V54() V55() V56() ) Element of NAT : ( ( ) ( non empty V21() V22() V23() V51() V52() V53() V54() V55() V56() V57() ) Element of K19(REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) : ( ( ) ( ) set ) ) ) - n : ( ( ) ( V21() V22() V23() V27() V28() V29() V30() ext-real non negative V50() V51() V52() V53() V54() V55() V56() ) Element of NAT : ( ( ) ( non empty V21() V22() V23() V51() V52() V53() V54() V55() V56() V57() ) Element of K19(REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( ) ( V28() V29() V30() ext-real ) Element of REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) ,0 : ( ( ) ( V21() V22() V23() V27() V28() V29() V30() ext-real non negative V50() V51() V52() V53() V54() V55() V56() ) Element of NAT : ( ( ) ( non empty V21() V22() V23() V51() V52() V53() V54() V55() V56() V57() ) Element of K19(REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) : ( ( ) ( ) set ) ) ) )) : ( ( V6() V18( REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) , REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) ) ( Relation-like V6() non empty total V18( REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) , REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) V34() V35() V36() continuous ) Element of K19(K20(REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ,REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) : ( ( ) ( Relation-like V34() V35() V36() ) set ) ) : ( ( ) ( ) set ) ) ) : ( ( V6() ) ( Relation-like V6() non empty total V18( REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) , REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) V34() V35() V36() continuous ) Element of K19(K20(REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ,REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) : ( ( ) ( Relation-like V34() V35() V36() ) set ) ) : ( ( ) ( ) set ) ) ) : ( ( V6() ) ( Relation-like V6() non empty total V18( REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) , REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) V34() V35() V36() continuous ) Element of K19(K20(REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ,REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) : ( ( ) ( Relation-like V34() V35() V36() ) set ) ) : ( ( ) ( ) set ) ) ) : ( ( V6() ) ( Relation-like V6() non empty total V18( REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) , REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) V34() V35() V36() continuous ) Element of K19(K20(REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ,REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) : ( ( ) ( Relation-like V34() V35() V36() ) set ) ) : ( ( ) ( ) set ) ) . (upper_bound A : ( ( non empty closed_interval ) ( non empty V51() V52() V53() closed_interval V76() ) Subset of ( ( ) ( ) set ) ) ) : ( ( ) ( V28() V29() ext-real ) Element of REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) ) : ( ( ) (
V28()
V29()
ext-real )
Element of
REAL : ( ( ) ( non
empty V51()
V52()
V53()
V57()
V62() )
set ) )
- ((((1 : ( ( ) ( non empty V21() V22() V23() V27() V28() V29() V30() ext-real non negative V50() V51() V52() V53() V54() V55() V56() ) Element of NAT : ( ( ) ( non empty V21() V22() V23() V51() V52() V53() V54() V55() V56() V57() ) Element of K19(REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) : ( ( ) ( ) set ) ) ) / (2 : ( ( ) ( non empty V21() V22() V23() V27() V28() V29() V30() ext-real non negative V50() V51() V52() V53() V54() V55() V56() ) Element of NAT : ( ( ) ( non empty V21() V22() V23() V51() V52() V53() V54() V55() V56() V57() ) Element of K19(REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) : ( ( ) ( ) set ) ) ) * (m : ( ( ) ( V21() V22() V23() V27() V28() V29() V30() ext-real non negative V50() V51() V52() V53() V54() V55() V56() ) Element of NAT : ( ( ) ( non empty V21() V22() V23() V51() V52() V53() V54() V55() V56() V57() ) Element of K19(REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) : ( ( ) ( ) set ) ) ) + n : ( ( ) ( V21() V22() V23() V27() V28() V29() V30() ext-real non negative V50() V51() V52() V53() V54() V55() V56() ) Element of NAT : ( ( ) ( non empty V21() V22() V23() V51() V52() V53() V54() V55() V56() V57() ) Element of K19(REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( ) ( V21() V22() V23() V27() V28() V29() V30() ext-real non negative ) Element of REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) ) : ( ( ) ( V21() V22() V23() V27() V28() V29() V30() ext-real non negative ) Element of REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) ) : ( ( ) ( V28() V29() ext-real ) Element of REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) (#) (sin : ( ( V6() V18( REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) , REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) ) ( Relation-like V6() non empty total V18( REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) , REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) V34() V35() V36() continuous ) Element of K19(K20(REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ,REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) : ( ( ) ( Relation-like V34() V35() V36() ) set ) ) : ( ( ) ( ) set ) ) * (AffineMap ((m : ( ( ) ( V21() V22() V23() V27() V28() V29() V30() ext-real non negative V50() V51() V52() V53() V54() V55() V56() ) Element of NAT : ( ( ) ( non empty V21() V22() V23() V51() V52() V53() V54() V55() V56() V57() ) Element of K19(REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) : ( ( ) ( ) set ) ) ) + n : ( ( ) ( V21() V22() V23() V27() V28() V29() V30() ext-real non negative V50() V51() V52() V53() V54() V55() V56() ) Element of NAT : ( ( ) ( non empty V21() V22() V23() V51() V52() V53() V54() V55() V56() V57() ) Element of K19(REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( ) ( V21() V22() V23() V27() V28() V29() V30() ext-real non negative ) Element of REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) ,0 : ( ( ) ( V21() V22() V23() V27() V28() V29() V30() ext-real non negative V50() V51() V52() V53() V54() V55() V56() ) Element of NAT : ( ( ) ( non empty V21() V22() V23() V51() V52() V53() V54() V55() V56() V57() ) Element of K19(REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) : ( ( ) ( ) set ) ) ) )) : ( ( V6() V18( REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) , REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) ) ( Relation-like V6() non empty total V18( REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) , REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) V34() V35() V36() continuous ) Element of K19(K20(REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ,REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) : ( ( ) ( Relation-like V34() V35() V36() ) set ) ) : ( ( ) ( ) set ) ) ) : ( ( V6() ) ( Relation-like V6() non empty total V18( REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) , REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) V34() V35() V36() continuous ) Element of K19(K20(REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ,REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) : ( ( ) ( Relation-like V34() V35() V36() ) set ) ) : ( ( ) ( ) set ) ) ) : ( ( V6() ) ( Relation-like V6() non empty total V18( REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) , REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) V34() V35() V36() continuous ) Element of K19(K20(REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ,REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) : ( ( ) ( Relation-like V34() V35() V36() ) set ) ) : ( ( ) ( ) set ) ) + ((1 : ( ( ) ( non empty V21() V22() V23() V27() V28() V29() V30() ext-real non negative V50() V51() V52() V53() V54() V55() V56() ) Element of NAT : ( ( ) ( non empty V21() V22() V23() V51() V52() V53() V54() V55() V56() V57() ) Element of K19(REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) : ( ( ) ( ) set ) ) ) / (2 : ( ( ) ( non empty V21() V22() V23() V27() V28() V29() V30() ext-real non negative V50() V51() V52() V53() V54() V55() V56() ) Element of NAT : ( ( ) ( non empty V21() V22() V23() V51() V52() V53() V54() V55() V56() V57() ) Element of K19(REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) : ( ( ) ( ) set ) ) ) * (m : ( ( ) ( V21() V22() V23() V27() V28() V29() V30() ext-real non negative V50() V51() V52() V53() V54() V55() V56() ) Element of NAT : ( ( ) ( non empty V21() V22() V23() V51() V52() V53() V54() V55() V56() V57() ) Element of K19(REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) : ( ( ) ( ) set ) ) ) - n : ( ( ) ( V21() V22() V23() V27() V28() V29() V30() ext-real non negative V50() V51() V52() V53() V54() V55() V56() ) Element of NAT : ( ( ) ( non empty V21() V22() V23() V51() V52() V53() V54() V55() V56() V57() ) Element of K19(REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( ) ( V28() V29() V30() ext-real ) Element of REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) ) : ( ( ) ( V28() V29() V30() ext-real ) Element of REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) ) : ( ( ) ( V28() V29() ext-real ) Element of REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) (#) (sin : ( ( V6() V18( REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) , REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) ) ( Relation-like V6() non empty total V18( REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) , REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) V34() V35() V36() continuous ) Element of K19(K20(REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ,REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) : ( ( ) ( Relation-like V34() V35() V36() ) set ) ) : ( ( ) ( ) set ) ) * (AffineMap ((m : ( ( ) ( V21() V22() V23() V27() V28() V29() V30() ext-real non negative V50() V51() V52() V53() V54() V55() V56() ) Element of NAT : ( ( ) ( non empty V21() V22() V23() V51() V52() V53() V54() V55() V56() V57() ) Element of K19(REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) : ( ( ) ( ) set ) ) ) - n : ( ( ) ( V21() V22() V23() V27() V28() V29() V30() ext-real non negative V50() V51() V52() V53() V54() V55() V56() ) Element of NAT : ( ( ) ( non empty V21() V22() V23() V51() V52() V53() V54() V55() V56() V57() ) Element of K19(REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( ) ( V28() V29() V30() ext-real ) Element of REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) ,0 : ( ( ) ( V21() V22() V23() V27() V28() V29() V30() ext-real non negative V50() V51() V52() V53() V54() V55() V56() ) Element of NAT : ( ( ) ( non empty V21() V22() V23() V51() V52() V53() V54() V55() V56() V57() ) Element of K19(REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) : ( ( ) ( ) set ) ) ) )) : ( ( V6() V18( REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) , REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) ) ( Relation-like V6() non empty total V18( REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) , REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) V34() V35() V36() continuous ) Element of K19(K20(REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ,REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) : ( ( ) ( Relation-like V34() V35() V36() ) set ) ) : ( ( ) ( ) set ) ) ) : ( ( V6() ) ( Relation-like V6() non empty total V18( REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) , REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) V34() V35() V36() continuous ) Element of K19(K20(REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ,REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) : ( ( ) ( Relation-like V34() V35() V36() ) set ) ) : ( ( ) ( ) set ) ) ) : ( ( V6() ) ( Relation-like V6() non empty total V18( REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) , REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) V34() V35() V36() continuous ) Element of K19(K20(REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ,REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) : ( ( ) ( Relation-like V34() V35() V36() ) set ) ) : ( ( ) ( ) set ) ) ) : ( ( V6() ) ( Relation-like V6() non empty total V18( REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) , REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) V34() V35() V36() continuous ) Element of K19(K20(REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ,REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) : ( ( ) ( Relation-like V34() V35() V36() ) set ) ) : ( ( ) ( ) set ) ) . (lower_bound A : ( ( non empty closed_interval ) ( non empty V51() V52() V53() closed_interval V76() ) Subset of ( ( ) ( ) set ) ) ) : ( ( ) ( V28() V29() ext-real ) Element of REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) ) : ( ( ) (
V28()
V29()
ext-real )
Element of
REAL : ( ( ) ( non
empty V51()
V52()
V53()
V57()
V62() )
set ) ) : ( ( ) (
V28()
V29()
ext-real )
Element of
REAL : ( ( ) ( non
empty V51()
V52()
V53()
V57()
V62() )
set ) ) ;
theorem
for
m,
n being ( ( ) (
V21()
V22()
V23()
V27()
V28()
V29()
V30()
ext-real non
negative V50()
V51()
V52()
V53()
V54()
V55()
V56() )
Element of
NAT : ( ( ) ( non
empty V21()
V22()
V23()
V51()
V52()
V53()
V54()
V55()
V56()
V57() )
Element of
K19(
REAL : ( ( ) ( non
empty V51()
V52()
V53()
V57()
V62() )
set ) ) : ( ( ) ( )
set ) ) )
for
A being ( ( non
empty closed_interval ) ( non
empty V51()
V52()
V53()
closed_interval V76() )
Subset of ( ( ) ( )
set ) ) st
m : ( ( ) (
V21()
V22()
V23()
V27()
V28()
V29()
V30()
ext-real non
negative V50()
V51()
V52()
V53()
V54()
V55()
V56() )
Element of
NAT : ( ( ) ( non
empty V21()
V22()
V23()
V51()
V52()
V53()
V54()
V55()
V56()
V57() )
Element of
K19(
REAL : ( ( ) ( non
empty V51()
V52()
V53()
V57()
V62() )
set ) ) : ( ( ) ( )
set ) ) )
+ n : ( ( ) (
V21()
V22()
V23()
V27()
V28()
V29()
V30()
ext-real non
negative V50()
V51()
V52()
V53()
V54()
V55()
V56() )
Element of
NAT : ( ( ) ( non
empty V21()
V22()
V23()
V51()
V52()
V53()
V54()
V55()
V56()
V57() )
Element of
K19(
REAL : ( ( ) ( non
empty V51()
V52()
V53()
V57()
V62() )
set ) ) : ( ( ) ( )
set ) ) ) : ( ( ) (
V21()
V22()
V23()
V27()
V28()
V29()
V30()
ext-real non
negative )
Element of
REAL : ( ( ) ( non
empty V51()
V52()
V53()
V57()
V62() )
set ) )
<> 0 : ( ( ) (
V21()
V22()
V23()
V27()
V28()
V29()
V30()
ext-real non
negative V50()
V51()
V52()
V53()
V54()
V55()
V56() )
Element of
NAT : ( ( ) ( non
empty V21()
V22()
V23()
V51()
V52()
V53()
V54()
V55()
V56()
V57() )
Element of
K19(
REAL : ( ( ) ( non
empty V51()
V52()
V53()
V57()
V62() )
set ) ) : ( ( ) ( )
set ) ) ) &
m : ( ( ) (
V21()
V22()
V23()
V27()
V28()
V29()
V30()
ext-real non
negative V50()
V51()
V52()
V53()
V54()
V55()
V56() )
Element of
NAT : ( ( ) ( non
empty V21()
V22()
V23()
V51()
V52()
V53()
V54()
V55()
V56()
V57() )
Element of
K19(
REAL : ( ( ) ( non
empty V51()
V52()
V53()
V57()
V62() )
set ) ) : ( ( ) ( )
set ) ) )
- n : ( ( ) (
V21()
V22()
V23()
V27()
V28()
V29()
V30()
ext-real non
negative V50()
V51()
V52()
V53()
V54()
V55()
V56() )
Element of
NAT : ( ( ) ( non
empty V21()
V22()
V23()
V51()
V52()
V53()
V54()
V55()
V56()
V57() )
Element of
K19(
REAL : ( ( ) ( non
empty V51()
V52()
V53()
V57()
V62() )
set ) ) : ( ( ) ( )
set ) ) ) : ( ( ) (
V28()
V29()
V30()
ext-real )
Element of
REAL : ( ( ) ( non
empty V51()
V52()
V53()
V57()
V62() )
set ) )
<> 0 : ( ( ) (
V21()
V22()
V23()
V27()
V28()
V29()
V30()
ext-real non
negative V50()
V51()
V52()
V53()
V54()
V55()
V56() )
Element of
NAT : ( ( ) ( non
empty V21()
V22()
V23()
V51()
V52()
V53()
V54()
V55()
V56()
V57() )
Element of
K19(
REAL : ( ( ) ( non
empty V51()
V52()
V53()
V57()
V62() )
set ) ) : ( ( ) ( )
set ) ) ) holds
integral (
((sin : ( ( V6() V18( REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) , REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) ) ( Relation-like V6() non empty total V18( REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) , REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) V34() V35() V36() continuous ) Element of K19(K20(REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ,REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) : ( ( ) ( Relation-like V34() V35() V36() ) set ) ) : ( ( ) ( ) set ) ) * (AffineMap (m : ( ( ) ( V21() V22() V23() V27() V28() V29() V30() ext-real non negative V50() V51() V52() V53() V54() V55() V56() ) Element of NAT : ( ( ) ( non empty V21() V22() V23() V51() V52() V53() V54() V55() V56() V57() ) Element of K19(REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) : ( ( ) ( ) set ) ) ) ,0 : ( ( ) ( V21() V22() V23() V27() V28() V29() V30() ext-real non negative V50() V51() V52() V53() V54() V55() V56() ) Element of NAT : ( ( ) ( non empty V21() V22() V23() V51() V52() V53() V54() V55() V56() V57() ) Element of K19(REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) : ( ( ) ( ) set ) ) ) )) : ( ( V6() V18( REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) , REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) ) ( Relation-like V6() non empty total V18( REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) , REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) V34() V35() V36() continuous ) Element of K19(K20(REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ,REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) : ( ( ) ( Relation-like V34() V35() V36() ) set ) ) : ( ( ) ( ) set ) ) ) : ( ( V6() ) ( Relation-like V6() non empty total V18( REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) , REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) V34() V35() V36() continuous ) Element of K19(K20(REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ,REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) : ( ( ) ( Relation-like V34() V35() V36() ) set ) ) : ( ( ) ( ) set ) ) (#) (sin : ( ( V6() V18( REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) , REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) ) ( Relation-like V6() non empty total V18( REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) , REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) V34() V35() V36() continuous ) Element of K19(K20(REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ,REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) : ( ( ) ( Relation-like V34() V35() V36() ) set ) ) : ( ( ) ( ) set ) ) * (AffineMap (n : ( ( ) ( V21() V22() V23() V27() V28() V29() V30() ext-real non negative V50() V51() V52() V53() V54() V55() V56() ) Element of NAT : ( ( ) ( non empty V21() V22() V23() V51() V52() V53() V54() V55() V56() V57() ) Element of K19(REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) : ( ( ) ( ) set ) ) ) ,0 : ( ( ) ( V21() V22() V23() V27() V28() V29() V30() ext-real non negative V50() V51() V52() V53() V54() V55() V56() ) Element of NAT : ( ( ) ( non empty V21() V22() V23() V51() V52() V53() V54() V55() V56() V57() ) Element of K19(REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) : ( ( ) ( ) set ) ) ) )) : ( ( V6() V18( REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) , REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) ) ( Relation-like V6() non empty total V18( REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) , REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) V34() V35() V36() continuous ) Element of K19(K20(REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ,REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) : ( ( ) ( Relation-like V34() V35() V36() ) set ) ) : ( ( ) ( ) set ) ) ) : ( ( V6() ) ( Relation-like V6() non empty total V18( REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) , REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) V34() V35() V36() continuous ) Element of K19(K20(REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ,REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) : ( ( ) ( Relation-like V34() V35() V36() ) set ) ) : ( ( ) ( ) set ) ) ) : ( (
V6() ) (
Relation-like V6() non
empty total V18(
REAL : ( ( ) ( non
empty V51()
V52()
V53()
V57()
V62() )
set ) ,
REAL : ( ( ) ( non
empty V51()
V52()
V53()
V57()
V62() )
set ) )
V34()
V35()
V36()
continuous )
Element of
K19(
K20(
REAL : ( ( ) ( non
empty V51()
V52()
V53()
V57()
V62() )
set ) ,
REAL : ( ( ) ( non
empty V51()
V52()
V53()
V57()
V62() )
set ) ) : ( ( ) (
Relation-like V34()
V35()
V36() )
set ) ) : ( ( ) ( )
set ) ) ,
A : ( ( non
empty closed_interval ) ( non
empty V51()
V52()
V53()
closed_interval V76() )
Subset of ( ( ) ( )
set ) ) ) : ( ( ) (
V28()
V29()
ext-real )
Element of
REAL : ( ( ) ( non
empty V51()
V52()
V53()
V57()
V62() )
set ) )
= ((((1 : ( ( ) ( non empty V21() V22() V23() V27() V28() V29() V30() ext-real non negative V50() V51() V52() V53() V54() V55() V56() ) Element of NAT : ( ( ) ( non empty V21() V22() V23() V51() V52() V53() V54() V55() V56() V57() ) Element of K19(REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) : ( ( ) ( ) set ) ) ) / (2 : ( ( ) ( non empty V21() V22() V23() V27() V28() V29() V30() ext-real non negative V50() V51() V52() V53() V54() V55() V56() ) Element of NAT : ( ( ) ( non empty V21() V22() V23() V51() V52() V53() V54() V55() V56() V57() ) Element of K19(REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) : ( ( ) ( ) set ) ) ) * (m : ( ( ) ( V21() V22() V23() V27() V28() V29() V30() ext-real non negative V50() V51() V52() V53() V54() V55() V56() ) Element of NAT : ( ( ) ( non empty V21() V22() V23() V51() V52() V53() V54() V55() V56() V57() ) Element of K19(REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) : ( ( ) ( ) set ) ) ) - n : ( ( ) ( V21() V22() V23() V27() V28() V29() V30() ext-real non negative V50() V51() V52() V53() V54() V55() V56() ) Element of NAT : ( ( ) ( non empty V21() V22() V23() V51() V52() V53() V54() V55() V56() V57() ) Element of K19(REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( ) ( V28() V29() V30() ext-real ) Element of REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) ) : ( ( ) ( V28() V29() V30() ext-real ) Element of REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) ) : ( ( ) ( V28() V29() ext-real ) Element of REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) (#) (sin : ( ( V6() V18( REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) , REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) ) ( Relation-like V6() non empty total V18( REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) , REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) V34() V35() V36() continuous ) Element of K19(K20(REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ,REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) : ( ( ) ( Relation-like V34() V35() V36() ) set ) ) : ( ( ) ( ) set ) ) * (AffineMap ((m : ( ( ) ( V21() V22() V23() V27() V28() V29() V30() ext-real non negative V50() V51() V52() V53() V54() V55() V56() ) Element of NAT : ( ( ) ( non empty V21() V22() V23() V51() V52() V53() V54() V55() V56() V57() ) Element of K19(REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) : ( ( ) ( ) set ) ) ) - n : ( ( ) ( V21() V22() V23() V27() V28() V29() V30() ext-real non negative V50() V51() V52() V53() V54() V55() V56() ) Element of NAT : ( ( ) ( non empty V21() V22() V23() V51() V52() V53() V54() V55() V56() V57() ) Element of K19(REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( ) ( V28() V29() V30() ext-real ) Element of REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) ,0 : ( ( ) ( V21() V22() V23() V27() V28() V29() V30() ext-real non negative V50() V51() V52() V53() V54() V55() V56() ) Element of NAT : ( ( ) ( non empty V21() V22() V23() V51() V52() V53() V54() V55() V56() V57() ) Element of K19(REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) : ( ( ) ( ) set ) ) ) )) : ( ( V6() V18( REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) , REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) ) ( Relation-like V6() non empty total V18( REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) , REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) V34() V35() V36() continuous ) Element of K19(K20(REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ,REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) : ( ( ) ( Relation-like V34() V35() V36() ) set ) ) : ( ( ) ( ) set ) ) ) : ( ( V6() ) ( Relation-like V6() non empty total V18( REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) , REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) V34() V35() V36() continuous ) Element of K19(K20(REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ,REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) : ( ( ) ( Relation-like V34() V35() V36() ) set ) ) : ( ( ) ( ) set ) ) ) : ( ( V6() ) ( Relation-like V6() non empty total V18( REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) , REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) V34() V35() V36() continuous ) Element of K19(K20(REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ,REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) : ( ( ) ( Relation-like V34() V35() V36() ) set ) ) : ( ( ) ( ) set ) ) - ((1 : ( ( ) ( non empty V21() V22() V23() V27() V28() V29() V30() ext-real non negative V50() V51() V52() V53() V54() V55() V56() ) Element of NAT : ( ( ) ( non empty V21() V22() V23() V51() V52() V53() V54() V55() V56() V57() ) Element of K19(REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) : ( ( ) ( ) set ) ) ) / (2 : ( ( ) ( non empty V21() V22() V23() V27() V28() V29() V30() ext-real non negative V50() V51() V52() V53() V54() V55() V56() ) Element of NAT : ( ( ) ( non empty V21() V22() V23() V51() V52() V53() V54() V55() V56() V57() ) Element of K19(REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) : ( ( ) ( ) set ) ) ) * (m : ( ( ) ( V21() V22() V23() V27() V28() V29() V30() ext-real non negative V50() V51() V52() V53() V54() V55() V56() ) Element of NAT : ( ( ) ( non empty V21() V22() V23() V51() V52() V53() V54() V55() V56() V57() ) Element of K19(REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) : ( ( ) ( ) set ) ) ) + n : ( ( ) ( V21() V22() V23() V27() V28() V29() V30() ext-real non negative V50() V51() V52() V53() V54() V55() V56() ) Element of NAT : ( ( ) ( non empty V21() V22() V23() V51() V52() V53() V54() V55() V56() V57() ) Element of K19(REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( ) ( V21() V22() V23() V27() V28() V29() V30() ext-real non negative ) Element of REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) ) : ( ( ) ( V21() V22() V23() V27() V28() V29() V30() ext-real non negative ) Element of REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) ) : ( ( ) ( V28() V29() ext-real ) Element of REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) (#) (sin : ( ( V6() V18( REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) , REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) ) ( Relation-like V6() non empty total V18( REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) , REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) V34() V35() V36() continuous ) Element of K19(K20(REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ,REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) : ( ( ) ( Relation-like V34() V35() V36() ) set ) ) : ( ( ) ( ) set ) ) * (AffineMap ((m : ( ( ) ( V21() V22() V23() V27() V28() V29() V30() ext-real non negative V50() V51() V52() V53() V54() V55() V56() ) Element of NAT : ( ( ) ( non empty V21() V22() V23() V51() V52() V53() V54() V55() V56() V57() ) Element of K19(REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) : ( ( ) ( ) set ) ) ) + n : ( ( ) ( V21() V22() V23() V27() V28() V29() V30() ext-real non negative V50() V51() V52() V53() V54() V55() V56() ) Element of NAT : ( ( ) ( non empty V21() V22() V23() V51() V52() V53() V54() V55() V56() V57() ) Element of K19(REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( ) ( V21() V22() V23() V27() V28() V29() V30() ext-real non negative ) Element of REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) ,0 : ( ( ) ( V21() V22() V23() V27() V28() V29() V30() ext-real non negative V50() V51() V52() V53() V54() V55() V56() ) Element of NAT : ( ( ) ( non empty V21() V22() V23() V51() V52() V53() V54() V55() V56() V57() ) Element of K19(REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) : ( ( ) ( ) set ) ) ) )) : ( ( V6() V18( REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) , REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) ) ( Relation-like V6() non empty total V18( REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) , REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) V34() V35() V36() continuous ) Element of K19(K20(REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ,REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) : ( ( ) ( Relation-like V34() V35() V36() ) set ) ) : ( ( ) ( ) set ) ) ) : ( ( V6() ) ( Relation-like V6() non empty total V18( REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) , REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) V34() V35() V36() continuous ) Element of K19(K20(REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ,REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) : ( ( ) ( Relation-like V34() V35() V36() ) set ) ) : ( ( ) ( ) set ) ) ) : ( ( V6() ) ( Relation-like V6() non empty total V18( REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) , REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) V34() V35() V36() continuous ) Element of K19(K20(REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ,REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) : ( ( ) ( Relation-like V34() V35() V36() ) set ) ) : ( ( ) ( ) set ) ) ) : ( ( V6() ) ( Relation-like V6() non empty total V18( REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) , REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) V34() V35() V36() continuous ) Element of K19(K20(REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ,REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) : ( ( ) ( Relation-like V34() V35() V36() ) set ) ) : ( ( ) ( ) set ) ) . (upper_bound A : ( ( non empty closed_interval ) ( non empty V51() V52() V53() closed_interval V76() ) Subset of ( ( ) ( ) set ) ) ) : ( ( ) ( V28() V29() ext-real ) Element of REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) ) : ( ( ) (
V28()
V29()
ext-real )
Element of
REAL : ( ( ) ( non
empty V51()
V52()
V53()
V57()
V62() )
set ) )
- ((((1 : ( ( ) ( non empty V21() V22() V23() V27() V28() V29() V30() ext-real non negative V50() V51() V52() V53() V54() V55() V56() ) Element of NAT : ( ( ) ( non empty V21() V22() V23() V51() V52() V53() V54() V55() V56() V57() ) Element of K19(REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) : ( ( ) ( ) set ) ) ) / (2 : ( ( ) ( non empty V21() V22() V23() V27() V28() V29() V30() ext-real non negative V50() V51() V52() V53() V54() V55() V56() ) Element of NAT : ( ( ) ( non empty V21() V22() V23() V51() V52() V53() V54() V55() V56() V57() ) Element of K19(REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) : ( ( ) ( ) set ) ) ) * (m : ( ( ) ( V21() V22() V23() V27() V28() V29() V30() ext-real non negative V50() V51() V52() V53() V54() V55() V56() ) Element of NAT : ( ( ) ( non empty V21() V22() V23() V51() V52() V53() V54() V55() V56() V57() ) Element of K19(REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) : ( ( ) ( ) set ) ) ) - n : ( ( ) ( V21() V22() V23() V27() V28() V29() V30() ext-real non negative V50() V51() V52() V53() V54() V55() V56() ) Element of NAT : ( ( ) ( non empty V21() V22() V23() V51() V52() V53() V54() V55() V56() V57() ) Element of K19(REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( ) ( V28() V29() V30() ext-real ) Element of REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) ) : ( ( ) ( V28() V29() V30() ext-real ) Element of REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) ) : ( ( ) ( V28() V29() ext-real ) Element of REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) (#) (sin : ( ( V6() V18( REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) , REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) ) ( Relation-like V6() non empty total V18( REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) , REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) V34() V35() V36() continuous ) Element of K19(K20(REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ,REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) : ( ( ) ( Relation-like V34() V35() V36() ) set ) ) : ( ( ) ( ) set ) ) * (AffineMap ((m : ( ( ) ( V21() V22() V23() V27() V28() V29() V30() ext-real non negative V50() V51() V52() V53() V54() V55() V56() ) Element of NAT : ( ( ) ( non empty V21() V22() V23() V51() V52() V53() V54() V55() V56() V57() ) Element of K19(REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) : ( ( ) ( ) set ) ) ) - n : ( ( ) ( V21() V22() V23() V27() V28() V29() V30() ext-real non negative V50() V51() V52() V53() V54() V55() V56() ) Element of NAT : ( ( ) ( non empty V21() V22() V23() V51() V52() V53() V54() V55() V56() V57() ) Element of K19(REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( ) ( V28() V29() V30() ext-real ) Element of REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) ,0 : ( ( ) ( V21() V22() V23() V27() V28() V29() V30() ext-real non negative V50() V51() V52() V53() V54() V55() V56() ) Element of NAT : ( ( ) ( non empty V21() V22() V23() V51() V52() V53() V54() V55() V56() V57() ) Element of K19(REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) : ( ( ) ( ) set ) ) ) )) : ( ( V6() V18( REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) , REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) ) ( Relation-like V6() non empty total V18( REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) , REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) V34() V35() V36() continuous ) Element of K19(K20(REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ,REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) : ( ( ) ( Relation-like V34() V35() V36() ) set ) ) : ( ( ) ( ) set ) ) ) : ( ( V6() ) ( Relation-like V6() non empty total V18( REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) , REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) V34() V35() V36() continuous ) Element of K19(K20(REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ,REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) : ( ( ) ( Relation-like V34() V35() V36() ) set ) ) : ( ( ) ( ) set ) ) ) : ( ( V6() ) ( Relation-like V6() non empty total V18( REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) , REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) V34() V35() V36() continuous ) Element of K19(K20(REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ,REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) : ( ( ) ( Relation-like V34() V35() V36() ) set ) ) : ( ( ) ( ) set ) ) - ((1 : ( ( ) ( non empty V21() V22() V23() V27() V28() V29() V30() ext-real non negative V50() V51() V52() V53() V54() V55() V56() ) Element of NAT : ( ( ) ( non empty V21() V22() V23() V51() V52() V53() V54() V55() V56() V57() ) Element of K19(REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) : ( ( ) ( ) set ) ) ) / (2 : ( ( ) ( non empty V21() V22() V23() V27() V28() V29() V30() ext-real non negative V50() V51() V52() V53() V54() V55() V56() ) Element of NAT : ( ( ) ( non empty V21() V22() V23() V51() V52() V53() V54() V55() V56() V57() ) Element of K19(REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) : ( ( ) ( ) set ) ) ) * (m : ( ( ) ( V21() V22() V23() V27() V28() V29() V30() ext-real non negative V50() V51() V52() V53() V54() V55() V56() ) Element of NAT : ( ( ) ( non empty V21() V22() V23() V51() V52() V53() V54() V55() V56() V57() ) Element of K19(REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) : ( ( ) ( ) set ) ) ) + n : ( ( ) ( V21() V22() V23() V27() V28() V29() V30() ext-real non negative V50() V51() V52() V53() V54() V55() V56() ) Element of NAT : ( ( ) ( non empty V21() V22() V23() V51() V52() V53() V54() V55() V56() V57() ) Element of K19(REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( ) ( V21() V22() V23() V27() V28() V29() V30() ext-real non negative ) Element of REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) ) : ( ( ) ( V21() V22() V23() V27() V28() V29() V30() ext-real non negative ) Element of REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) ) : ( ( ) ( V28() V29() ext-real ) Element of REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) (#) (sin : ( ( V6() V18( REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) , REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) ) ( Relation-like V6() non empty total V18( REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) , REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) V34() V35() V36() continuous ) Element of K19(K20(REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ,REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) : ( ( ) ( Relation-like V34() V35() V36() ) set ) ) : ( ( ) ( ) set ) ) * (AffineMap ((m : ( ( ) ( V21() V22() V23() V27() V28() V29() V30() ext-real non negative V50() V51() V52() V53() V54() V55() V56() ) Element of NAT : ( ( ) ( non empty V21() V22() V23() V51() V52() V53() V54() V55() V56() V57() ) Element of K19(REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) : ( ( ) ( ) set ) ) ) + n : ( ( ) ( V21() V22() V23() V27() V28() V29() V30() ext-real non negative V50() V51() V52() V53() V54() V55() V56() ) Element of NAT : ( ( ) ( non empty V21() V22() V23() V51() V52() V53() V54() V55() V56() V57() ) Element of K19(REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( ) ( V21() V22() V23() V27() V28() V29() V30() ext-real non negative ) Element of REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) ,0 : ( ( ) ( V21() V22() V23() V27() V28() V29() V30() ext-real non negative V50() V51() V52() V53() V54() V55() V56() ) Element of NAT : ( ( ) ( non empty V21() V22() V23() V51() V52() V53() V54() V55() V56() V57() ) Element of K19(REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) : ( ( ) ( ) set ) ) ) )) : ( ( V6() V18( REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) , REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) ) ( Relation-like V6() non empty total V18( REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) , REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) V34() V35() V36() continuous ) Element of K19(K20(REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ,REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) : ( ( ) ( Relation-like V34() V35() V36() ) set ) ) : ( ( ) ( ) set ) ) ) : ( ( V6() ) ( Relation-like V6() non empty total V18( REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) , REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) V34() V35() V36() continuous ) Element of K19(K20(REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ,REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) : ( ( ) ( Relation-like V34() V35() V36() ) set ) ) : ( ( ) ( ) set ) ) ) : ( ( V6() ) ( Relation-like V6() non empty total V18( REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) , REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) V34() V35() V36() continuous ) Element of K19(K20(REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ,REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) : ( ( ) ( Relation-like V34() V35() V36() ) set ) ) : ( ( ) ( ) set ) ) ) : ( ( V6() ) ( Relation-like V6() non empty total V18( REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) , REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) V34() V35() V36() continuous ) Element of K19(K20(REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ,REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) : ( ( ) ( Relation-like V34() V35() V36() ) set ) ) : ( ( ) ( ) set ) ) . (lower_bound A : ( ( non empty closed_interval ) ( non empty V51() V52() V53() closed_interval V76() ) Subset of ( ( ) ( ) set ) ) ) : ( ( ) ( V28() V29() ext-real ) Element of REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) ) : ( ( ) (
V28()
V29()
ext-real )
Element of
REAL : ( ( ) ( non
empty V51()
V52()
V53()
V57()
V62() )
set ) ) : ( ( ) (
V28()
V29()
ext-real )
Element of
REAL : ( ( ) ( non
empty V51()
V52()
V53()
V57()
V62() )
set ) ) ;
theorem
for
m,
n being ( ( ) (
V21()
V22()
V23()
V27()
V28()
V29()
V30()
ext-real non
negative V50()
V51()
V52()
V53()
V54()
V55()
V56() )
Element of
NAT : ( ( ) ( non
empty V21()
V22()
V23()
V51()
V52()
V53()
V54()
V55()
V56()
V57() )
Element of
K19(
REAL : ( ( ) ( non
empty V51()
V52()
V53()
V57()
V62() )
set ) ) : ( ( ) ( )
set ) ) )
for
A being ( ( non
empty closed_interval ) ( non
empty V51()
V52()
V53()
closed_interval V76() )
Subset of ( ( ) ( )
set ) ) st
m : ( ( ) (
V21()
V22()
V23()
V27()
V28()
V29()
V30()
ext-real non
negative V50()
V51()
V52()
V53()
V54()
V55()
V56() )
Element of
NAT : ( ( ) ( non
empty V21()
V22()
V23()
V51()
V52()
V53()
V54()
V55()
V56()
V57() )
Element of
K19(
REAL : ( ( ) ( non
empty V51()
V52()
V53()
V57()
V62() )
set ) ) : ( ( ) ( )
set ) ) )
+ n : ( ( ) (
V21()
V22()
V23()
V27()
V28()
V29()
V30()
ext-real non
negative V50()
V51()
V52()
V53()
V54()
V55()
V56() )
Element of
NAT : ( ( ) ( non
empty V21()
V22()
V23()
V51()
V52()
V53()
V54()
V55()
V56()
V57() )
Element of
K19(
REAL : ( ( ) ( non
empty V51()
V52()
V53()
V57()
V62() )
set ) ) : ( ( ) ( )
set ) ) ) : ( ( ) (
V21()
V22()
V23()
V27()
V28()
V29()
V30()
ext-real non
negative )
Element of
REAL : ( ( ) ( non
empty V51()
V52()
V53()
V57()
V62() )
set ) )
<> 0 : ( ( ) (
V21()
V22()
V23()
V27()
V28()
V29()
V30()
ext-real non
negative V50()
V51()
V52()
V53()
V54()
V55()
V56() )
Element of
NAT : ( ( ) ( non
empty V21()
V22()
V23()
V51()
V52()
V53()
V54()
V55()
V56()
V57() )
Element of
K19(
REAL : ( ( ) ( non
empty V51()
V52()
V53()
V57()
V62() )
set ) ) : ( ( ) ( )
set ) ) ) &
m : ( ( ) (
V21()
V22()
V23()
V27()
V28()
V29()
V30()
ext-real non
negative V50()
V51()
V52()
V53()
V54()
V55()
V56() )
Element of
NAT : ( ( ) ( non
empty V21()
V22()
V23()
V51()
V52()
V53()
V54()
V55()
V56()
V57() )
Element of
K19(
REAL : ( ( ) ( non
empty V51()
V52()
V53()
V57()
V62() )
set ) ) : ( ( ) ( )
set ) ) )
- n : ( ( ) (
V21()
V22()
V23()
V27()
V28()
V29()
V30()
ext-real non
negative V50()
V51()
V52()
V53()
V54()
V55()
V56() )
Element of
NAT : ( ( ) ( non
empty V21()
V22()
V23()
V51()
V52()
V53()
V54()
V55()
V56()
V57() )
Element of
K19(
REAL : ( ( ) ( non
empty V51()
V52()
V53()
V57()
V62() )
set ) ) : ( ( ) ( )
set ) ) ) : ( ( ) (
V28()
V29()
V30()
ext-real )
Element of
REAL : ( ( ) ( non
empty V51()
V52()
V53()
V57()
V62() )
set ) )
<> 0 : ( ( ) (
V21()
V22()
V23()
V27()
V28()
V29()
V30()
ext-real non
negative V50()
V51()
V52()
V53()
V54()
V55()
V56() )
Element of
NAT : ( ( ) ( non
empty V21()
V22()
V23()
V51()
V52()
V53()
V54()
V55()
V56()
V57() )
Element of
K19(
REAL : ( ( ) ( non
empty V51()
V52()
V53()
V57()
V62() )
set ) ) : ( ( ) ( )
set ) ) ) holds
integral (
((sin : ( ( V6() V18( REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) , REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) ) ( Relation-like V6() non empty total V18( REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) , REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) V34() V35() V36() continuous ) Element of K19(K20(REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ,REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) : ( ( ) ( Relation-like V34() V35() V36() ) set ) ) : ( ( ) ( ) set ) ) * (AffineMap (m : ( ( ) ( V21() V22() V23() V27() V28() V29() V30() ext-real non negative V50() V51() V52() V53() V54() V55() V56() ) Element of NAT : ( ( ) ( non empty V21() V22() V23() V51() V52() V53() V54() V55() V56() V57() ) Element of K19(REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) : ( ( ) ( ) set ) ) ) ,0 : ( ( ) ( V21() V22() V23() V27() V28() V29() V30() ext-real non negative V50() V51() V52() V53() V54() V55() V56() ) Element of NAT : ( ( ) ( non empty V21() V22() V23() V51() V52() V53() V54() V55() V56() V57() ) Element of K19(REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) : ( ( ) ( ) set ) ) ) )) : ( ( V6() V18( REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) , REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) ) ( Relation-like V6() non empty total V18( REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) , REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) V34() V35() V36() continuous ) Element of K19(K20(REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ,REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) : ( ( ) ( Relation-like V34() V35() V36() ) set ) ) : ( ( ) ( ) set ) ) ) : ( ( V6() ) ( Relation-like V6() non empty total V18( REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) , REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) V34() V35() V36() continuous ) Element of K19(K20(REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ,REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) : ( ( ) ( Relation-like V34() V35() V36() ) set ) ) : ( ( ) ( ) set ) ) (#) (cos : ( ( V6() V18( REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) , REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) ) ( Relation-like V6() non empty total V18( REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) , REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) V34() V35() V36() continuous ) Element of K19(K20(REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ,REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) : ( ( ) ( Relation-like V34() V35() V36() ) set ) ) : ( ( ) ( ) set ) ) * (AffineMap (n : ( ( ) ( V21() V22() V23() V27() V28() V29() V30() ext-real non negative V50() V51() V52() V53() V54() V55() V56() ) Element of NAT : ( ( ) ( non empty V21() V22() V23() V51() V52() V53() V54() V55() V56() V57() ) Element of K19(REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) : ( ( ) ( ) set ) ) ) ,0 : ( ( ) ( V21() V22() V23() V27() V28() V29() V30() ext-real non negative V50() V51() V52() V53() V54() V55() V56() ) Element of NAT : ( ( ) ( non empty V21() V22() V23() V51() V52() V53() V54() V55() V56() V57() ) Element of K19(REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) : ( ( ) ( ) set ) ) ) )) : ( ( V6() V18( REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) , REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) ) ( Relation-like V6() non empty total V18( REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) , REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) V34() V35() V36() continuous ) Element of K19(K20(REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ,REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) : ( ( ) ( Relation-like V34() V35() V36() ) set ) ) : ( ( ) ( ) set ) ) ) : ( ( V6() ) ( Relation-like V6() non empty total V18( REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) , REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) V34() V35() V36() continuous ) Element of K19(K20(REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ,REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) : ( ( ) ( Relation-like V34() V35() V36() ) set ) ) : ( ( ) ( ) set ) ) ) : ( (
V6() ) (
Relation-like V6() non
empty total V18(
REAL : ( ( ) ( non
empty V51()
V52()
V53()
V57()
V62() )
set ) ,
REAL : ( ( ) ( non
empty V51()
V52()
V53()
V57()
V62() )
set ) )
V34()
V35()
V36()
continuous )
Element of
K19(
K20(
REAL : ( ( ) ( non
empty V51()
V52()
V53()
V57()
V62() )
set ) ,
REAL : ( ( ) ( non
empty V51()
V52()
V53()
V57()
V62() )
set ) ) : ( ( ) (
Relation-like V34()
V35()
V36() )
set ) ) : ( ( ) ( )
set ) ) ,
A : ( ( non
empty closed_interval ) ( non
empty V51()
V52()
V53()
closed_interval V76() )
Subset of ( ( ) ( )
set ) ) ) : ( ( ) (
V28()
V29()
ext-real )
Element of
REAL : ( ( ) ( non
empty V51()
V52()
V53()
V57()
V62() )
set ) )
= (((- ((1 : ( ( ) ( non empty V21() V22() V23() V27() V28() V29() V30() ext-real non negative V50() V51() V52() V53() V54() V55() V56() ) Element of NAT : ( ( ) ( non empty V21() V22() V23() V51() V52() V53() V54() V55() V56() V57() ) Element of K19(REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) : ( ( ) ( ) set ) ) ) / (2 : ( ( ) ( non empty V21() V22() V23() V27() V28() V29() V30() ext-real non negative V50() V51() V52() V53() V54() V55() V56() ) Element of NAT : ( ( ) ( non empty V21() V22() V23() V51() V52() V53() V54() V55() V56() V57() ) Element of K19(REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) : ( ( ) ( ) set ) ) ) * (m : ( ( ) ( V21() V22() V23() V27() V28() V29() V30() ext-real non negative V50() V51() V52() V53() V54() V55() V56() ) Element of NAT : ( ( ) ( non empty V21() V22() V23() V51() V52() V53() V54() V55() V56() V57() ) Element of K19(REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) : ( ( ) ( ) set ) ) ) + n : ( ( ) ( V21() V22() V23() V27() V28() V29() V30() ext-real non negative V50() V51() V52() V53() V54() V55() V56() ) Element of NAT : ( ( ) ( non empty V21() V22() V23() V51() V52() V53() V54() V55() V56() V57() ) Element of K19(REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( ) ( V21() V22() V23() V27() V28() V29() V30() ext-real non negative ) Element of REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) ) : ( ( ) ( V21() V22() V23() V27() V28() V29() V30() ext-real non negative ) Element of REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) ) : ( ( ) ( V28() V29() ext-real ) Element of REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) (#) (cos : ( ( V6() V18( REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) , REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) ) ( Relation-like V6() non empty total V18( REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) , REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) V34() V35() V36() continuous ) Element of K19(K20(REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ,REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) : ( ( ) ( Relation-like V34() V35() V36() ) set ) ) : ( ( ) ( ) set ) ) * (AffineMap ((m : ( ( ) ( V21() V22() V23() V27() V28() V29() V30() ext-real non negative V50() V51() V52() V53() V54() V55() V56() ) Element of NAT : ( ( ) ( non empty V21() V22() V23() V51() V52() V53() V54() V55() V56() V57() ) Element of K19(REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) : ( ( ) ( ) set ) ) ) + n : ( ( ) ( V21() V22() V23() V27() V28() V29() V30() ext-real non negative V50() V51() V52() V53() V54() V55() V56() ) Element of NAT : ( ( ) ( non empty V21() V22() V23() V51() V52() V53() V54() V55() V56() V57() ) Element of K19(REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( ) ( V21() V22() V23() V27() V28() V29() V30() ext-real non negative ) Element of REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) ,0 : ( ( ) ( V21() V22() V23() V27() V28() V29() V30() ext-real non negative V50() V51() V52() V53() V54() V55() V56() ) Element of NAT : ( ( ) ( non empty V21() V22() V23() V51() V52() V53() V54() V55() V56() V57() ) Element of K19(REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) : ( ( ) ( ) set ) ) ) )) : ( ( V6() V18( REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) , REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) ) ( Relation-like V6() non empty total V18( REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) , REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) V34() V35() V36() continuous ) Element of K19(K20(REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ,REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) : ( ( ) ( Relation-like V34() V35() V36() ) set ) ) : ( ( ) ( ) set ) ) ) : ( ( V6() ) ( Relation-like V6() non empty total V18( REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) , REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) V34() V35() V36() continuous ) Element of K19(K20(REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ,REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) : ( ( ) ( Relation-like V34() V35() V36() ) set ) ) : ( ( ) ( ) set ) ) ) : ( ( V6() ) ( Relation-like V6() non empty total V18( REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) , REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) V34() V35() V36() continuous ) Element of K19(K20(REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ,REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) : ( ( ) ( Relation-like V34() V35() V36() ) set ) ) : ( ( ) ( ) set ) ) ) : ( ( V6() ) ( Relation-like V6() non empty total V18( REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) , REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) V34() V35() V36() ) Element of K19(K20(REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ,REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) : ( ( ) ( Relation-like V34() V35() V36() ) set ) ) : ( ( ) ( ) set ) ) - ((1 : ( ( ) ( non empty V21() V22() V23() V27() V28() V29() V30() ext-real non negative V50() V51() V52() V53() V54() V55() V56() ) Element of NAT : ( ( ) ( non empty V21() V22() V23() V51() V52() V53() V54() V55() V56() V57() ) Element of K19(REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) : ( ( ) ( ) set ) ) ) / (2 : ( ( ) ( non empty V21() V22() V23() V27() V28() V29() V30() ext-real non negative V50() V51() V52() V53() V54() V55() V56() ) Element of NAT : ( ( ) ( non empty V21() V22() V23() V51() V52() V53() V54() V55() V56() V57() ) Element of K19(REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) : ( ( ) ( ) set ) ) ) * (m : ( ( ) ( V21() V22() V23() V27() V28() V29() V30() ext-real non negative V50() V51() V52() V53() V54() V55() V56() ) Element of NAT : ( ( ) ( non empty V21() V22() V23() V51() V52() V53() V54() V55() V56() V57() ) Element of K19(REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) : ( ( ) ( ) set ) ) ) - n : ( ( ) ( V21() V22() V23() V27() V28() V29() V30() ext-real non negative V50() V51() V52() V53() V54() V55() V56() ) Element of NAT : ( ( ) ( non empty V21() V22() V23() V51() V52() V53() V54() V55() V56() V57() ) Element of K19(REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( ) ( V28() V29() V30() ext-real ) Element of REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) ) : ( ( ) ( V28() V29() V30() ext-real ) Element of REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) ) : ( ( ) ( V28() V29() ext-real ) Element of REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) (#) (cos : ( ( V6() V18( REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) , REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) ) ( Relation-like V6() non empty total V18( REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) , REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) V34() V35() V36() continuous ) Element of K19(K20(REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ,REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) : ( ( ) ( Relation-like V34() V35() V36() ) set ) ) : ( ( ) ( ) set ) ) * (AffineMap ((m : ( ( ) ( V21() V22() V23() V27() V28() V29() V30() ext-real non negative V50() V51() V52() V53() V54() V55() V56() ) Element of NAT : ( ( ) ( non empty V21() V22() V23() V51() V52() V53() V54() V55() V56() V57() ) Element of K19(REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) : ( ( ) ( ) set ) ) ) - n : ( ( ) ( V21() V22() V23() V27() V28() V29() V30() ext-real non negative V50() V51() V52() V53() V54() V55() V56() ) Element of NAT : ( ( ) ( non empty V21() V22() V23() V51() V52() V53() V54() V55() V56() V57() ) Element of K19(REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( ) ( V28() V29() V30() ext-real ) Element of REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) ,0 : ( ( ) ( V21() V22() V23() V27() V28() V29() V30() ext-real non negative V50() V51() V52() V53() V54() V55() V56() ) Element of NAT : ( ( ) ( non empty V21() V22() V23() V51() V52() V53() V54() V55() V56() V57() ) Element of K19(REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) : ( ( ) ( ) set ) ) ) )) : ( ( V6() V18( REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) , REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) ) ( Relation-like V6() non empty total V18( REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) , REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) V34() V35() V36() continuous ) Element of K19(K20(REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ,REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) : ( ( ) ( Relation-like V34() V35() V36() ) set ) ) : ( ( ) ( ) set ) ) ) : ( ( V6() ) ( Relation-like V6() non empty total V18( REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) , REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) V34() V35() V36() continuous ) Element of K19(K20(REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ,REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) : ( ( ) ( Relation-like V34() V35() V36() ) set ) ) : ( ( ) ( ) set ) ) ) : ( ( V6() ) ( Relation-like V6() non empty total V18( REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) , REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) V34() V35() V36() continuous ) Element of K19(K20(REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ,REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) : ( ( ) ( Relation-like V34() V35() V36() ) set ) ) : ( ( ) ( ) set ) ) ) : ( ( V6() ) ( Relation-like V6() non empty total V18( REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) , REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) V34() V35() V36() ) Element of K19(K20(REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ,REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) : ( ( ) ( Relation-like V34() V35() V36() ) set ) ) : ( ( ) ( ) set ) ) . (upper_bound A : ( ( non empty closed_interval ) ( non empty V51() V52() V53() closed_interval V76() ) Subset of ( ( ) ( ) set ) ) ) : ( ( ) ( V28() V29() ext-real ) Element of REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) ) : ( ( ) (
V28()
V29()
ext-real )
Element of
REAL : ( ( ) ( non
empty V51()
V52()
V53()
V57()
V62() )
set ) )
- (((- ((1 : ( ( ) ( non empty V21() V22() V23() V27() V28() V29() V30() ext-real non negative V50() V51() V52() V53() V54() V55() V56() ) Element of NAT : ( ( ) ( non empty V21() V22() V23() V51() V52() V53() V54() V55() V56() V57() ) Element of K19(REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) : ( ( ) ( ) set ) ) ) / (2 : ( ( ) ( non empty V21() V22() V23() V27() V28() V29() V30() ext-real non negative V50() V51() V52() V53() V54() V55() V56() ) Element of NAT : ( ( ) ( non empty V21() V22() V23() V51() V52() V53() V54() V55() V56() V57() ) Element of K19(REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) : ( ( ) ( ) set ) ) ) * (m : ( ( ) ( V21() V22() V23() V27() V28() V29() V30() ext-real non negative V50() V51() V52() V53() V54() V55() V56() ) Element of NAT : ( ( ) ( non empty V21() V22() V23() V51() V52() V53() V54() V55() V56() V57() ) Element of K19(REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) : ( ( ) ( ) set ) ) ) + n : ( ( ) ( V21() V22() V23() V27() V28() V29() V30() ext-real non negative V50() V51() V52() V53() V54() V55() V56() ) Element of NAT : ( ( ) ( non empty V21() V22() V23() V51() V52() V53() V54() V55() V56() V57() ) Element of K19(REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( ) ( V21() V22() V23() V27() V28() V29() V30() ext-real non negative ) Element of REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) ) : ( ( ) ( V21() V22() V23() V27() V28() V29() V30() ext-real non negative ) Element of REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) ) : ( ( ) ( V28() V29() ext-real ) Element of REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) (#) (cos : ( ( V6() V18( REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) , REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) ) ( Relation-like V6() non empty total V18( REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) , REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) V34() V35() V36() continuous ) Element of K19(K20(REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ,REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) : ( ( ) ( Relation-like V34() V35() V36() ) set ) ) : ( ( ) ( ) set ) ) * (AffineMap ((m : ( ( ) ( V21() V22() V23() V27() V28() V29() V30() ext-real non negative V50() V51() V52() V53() V54() V55() V56() ) Element of NAT : ( ( ) ( non empty V21() V22() V23() V51() V52() V53() V54() V55() V56() V57() ) Element of K19(REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) : ( ( ) ( ) set ) ) ) + n : ( ( ) ( V21() V22() V23() V27() V28() V29() V30() ext-real non negative V50() V51() V52() V53() V54() V55() V56() ) Element of NAT : ( ( ) ( non empty V21() V22() V23() V51() V52() V53() V54() V55() V56() V57() ) Element of K19(REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( ) ( V21() V22() V23() V27() V28() V29() V30() ext-real non negative ) Element of REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) ,0 : ( ( ) ( V21() V22() V23() V27() V28() V29() V30() ext-real non negative V50() V51() V52() V53() V54() V55() V56() ) Element of NAT : ( ( ) ( non empty V21() V22() V23() V51() V52() V53() V54() V55() V56() V57() ) Element of K19(REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) : ( ( ) ( ) set ) ) ) )) : ( ( V6() V18( REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) , REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) ) ( Relation-like V6() non empty total V18( REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) , REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) V34() V35() V36() continuous ) Element of K19(K20(REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ,REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) : ( ( ) ( Relation-like V34() V35() V36() ) set ) ) : ( ( ) ( ) set ) ) ) : ( ( V6() ) ( Relation-like V6() non empty total V18( REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) , REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) V34() V35() V36() continuous ) Element of K19(K20(REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ,REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) : ( ( ) ( Relation-like V34() V35() V36() ) set ) ) : ( ( ) ( ) set ) ) ) : ( ( V6() ) ( Relation-like V6() non empty total V18( REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) , REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) V34() V35() V36() continuous ) Element of K19(K20(REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ,REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) : ( ( ) ( Relation-like V34() V35() V36() ) set ) ) : ( ( ) ( ) set ) ) ) : ( ( V6() ) ( Relation-like V6() non empty total V18( REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) , REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) V34() V35() V36() ) Element of K19(K20(REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ,REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) : ( ( ) ( Relation-like V34() V35() V36() ) set ) ) : ( ( ) ( ) set ) ) - ((1 : ( ( ) ( non empty V21() V22() V23() V27() V28() V29() V30() ext-real non negative V50() V51() V52() V53() V54() V55() V56() ) Element of NAT : ( ( ) ( non empty V21() V22() V23() V51() V52() V53() V54() V55() V56() V57() ) Element of K19(REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) : ( ( ) ( ) set ) ) ) / (2 : ( ( ) ( non empty V21() V22() V23() V27() V28() V29() V30() ext-real non negative V50() V51() V52() V53() V54() V55() V56() ) Element of NAT : ( ( ) ( non empty V21() V22() V23() V51() V52() V53() V54() V55() V56() V57() ) Element of K19(REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) : ( ( ) ( ) set ) ) ) * (m : ( ( ) ( V21() V22() V23() V27() V28() V29() V30() ext-real non negative V50() V51() V52() V53() V54() V55() V56() ) Element of NAT : ( ( ) ( non empty V21() V22() V23() V51() V52() V53() V54() V55() V56() V57() ) Element of K19(REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) : ( ( ) ( ) set ) ) ) - n : ( ( ) ( V21() V22() V23() V27() V28() V29() V30() ext-real non negative V50() V51() V52() V53() V54() V55() V56() ) Element of NAT : ( ( ) ( non empty V21() V22() V23() V51() V52() V53() V54() V55() V56() V57() ) Element of K19(REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( ) ( V28() V29() V30() ext-real ) Element of REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) ) : ( ( ) ( V28() V29() V30() ext-real ) Element of REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) ) : ( ( ) ( V28() V29() ext-real ) Element of REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) (#) (cos : ( ( V6() V18( REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) , REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) ) ( Relation-like V6() non empty total V18( REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) , REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) V34() V35() V36() continuous ) Element of K19(K20(REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ,REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) : ( ( ) ( Relation-like V34() V35() V36() ) set ) ) : ( ( ) ( ) set ) ) * (AffineMap ((m : ( ( ) ( V21() V22() V23() V27() V28() V29() V30() ext-real non negative V50() V51() V52() V53() V54() V55() V56() ) Element of NAT : ( ( ) ( non empty V21() V22() V23() V51() V52() V53() V54() V55() V56() V57() ) Element of K19(REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) : ( ( ) ( ) set ) ) ) - n : ( ( ) ( V21() V22() V23() V27() V28() V29() V30() ext-real non negative V50() V51() V52() V53() V54() V55() V56() ) Element of NAT : ( ( ) ( non empty V21() V22() V23() V51() V52() V53() V54() V55() V56() V57() ) Element of K19(REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( ) ( V28() V29() V30() ext-real ) Element of REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) ,0 : ( ( ) ( V21() V22() V23() V27() V28() V29() V30() ext-real non negative V50() V51() V52() V53() V54() V55() V56() ) Element of NAT : ( ( ) ( non empty V21() V22() V23() V51() V52() V53() V54() V55() V56() V57() ) Element of K19(REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) : ( ( ) ( ) set ) ) ) )) : ( ( V6() V18( REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) , REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) ) ( Relation-like V6() non empty total V18( REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) , REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) V34() V35() V36() continuous ) Element of K19(K20(REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ,REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) : ( ( ) ( Relation-like V34() V35() V36() ) set ) ) : ( ( ) ( ) set ) ) ) : ( ( V6() ) ( Relation-like V6() non empty total V18( REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) , REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) V34() V35() V36() continuous ) Element of K19(K20(REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ,REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) : ( ( ) ( Relation-like V34() V35() V36() ) set ) ) : ( ( ) ( ) set ) ) ) : ( ( V6() ) ( Relation-like V6() non empty total V18( REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) , REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) V34() V35() V36() continuous ) Element of K19(K20(REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ,REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) : ( ( ) ( Relation-like V34() V35() V36() ) set ) ) : ( ( ) ( ) set ) ) ) : ( ( V6() ) ( Relation-like V6() non empty total V18( REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) , REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) V34() V35() V36() ) Element of K19(K20(REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ,REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) : ( ( ) ( Relation-like V34() V35() V36() ) set ) ) : ( ( ) ( ) set ) ) . (lower_bound A : ( ( non empty closed_interval ) ( non empty V51() V52() V53() closed_interval V76() ) Subset of ( ( ) ( ) set ) ) ) : ( ( ) ( V28() V29() ext-real ) Element of REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) ) : ( ( ) (
V28()
V29()
ext-real )
Element of
REAL : ( ( ) ( non
empty V51()
V52()
V53()
V57()
V62() )
set ) ) : ( ( ) (
V28()
V29()
ext-real )
Element of
REAL : ( ( ) ( non
empty V51()
V52()
V53()
V57()
V62() )
set ) ) ;
theorem
for
n being ( ( ) (
V21()
V22()
V23()
V27()
V28()
V29()
V30()
ext-real non
negative V50()
V51()
V52()
V53()
V54()
V55()
V56() )
Element of
NAT : ( ( ) ( non
empty V21()
V22()
V23()
V51()
V52()
V53()
V54()
V55()
V56()
V57() )
Element of
K19(
REAL : ( ( ) ( non
empty V51()
V52()
V53()
V57()
V62() )
set ) ) : ( ( ) ( )
set ) ) )
for
A being ( ( non
empty closed_interval ) ( non
empty V51()
V52()
V53()
closed_interval V76() )
Subset of ( ( ) ( )
set ) ) st
n : ( ( ) (
V21()
V22()
V23()
V27()
V28()
V29()
V30()
ext-real non
negative V50()
V51()
V52()
V53()
V54()
V55()
V56() )
Element of
NAT : ( ( ) ( non
empty V21()
V22()
V23()
V51()
V52()
V53()
V54()
V55()
V56()
V57() )
Element of
K19(
REAL : ( ( ) ( non
empty V51()
V52()
V53()
V57()
V62() )
set ) ) : ( ( ) ( )
set ) ) )
<> 0 : ( ( ) (
V21()
V22()
V23()
V27()
V28()
V29()
V30()
ext-real non
negative V50()
V51()
V52()
V53()
V54()
V55()
V56() )
Element of
NAT : ( ( ) ( non
empty V21()
V22()
V23()
V51()
V52()
V53()
V54()
V55()
V56()
V57() )
Element of
K19(
REAL : ( ( ) ( non
empty V51()
V52()
V53()
V57()
V62() )
set ) ) : ( ( ) ( )
set ) ) ) holds
integral (
((AffineMap (1 : ( ( ) ( non empty V21() V22() V23() V27() V28() V29() V30() ext-real non negative V50() V51() V52() V53() V54() V55() V56() ) Element of NAT : ( ( ) ( non empty V21() V22() V23() V51() V52() V53() V54() V55() V56() V57() ) Element of K19(REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) : ( ( ) ( ) set ) ) ) ,0 : ( ( ) ( V21() V22() V23() V27() V28() V29() V30() ext-real non negative V50() V51() V52() V53() V54() V55() V56() ) Element of NAT : ( ( ) ( non empty V21() V22() V23() V51() V52() V53() V54() V55() V56() V57() ) Element of K19(REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) : ( ( ) ( ) set ) ) ) )) : ( ( V6() V18( REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) , REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) ) ( Relation-like V6() V7() non empty total V18( REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) , REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) V19( REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) V20( REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) , REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) V34() V35() V36() continuous ) Element of K19(K20(REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ,REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) : ( ( ) ( Relation-like V34() V35() V36() ) set ) ) : ( ( ) ( ) set ) ) (#) (sin : ( ( V6() V18( REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) , REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) ) ( Relation-like V6() non empty total V18( REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) , REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) V34() V35() V36() continuous ) Element of K19(K20(REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ,REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) : ( ( ) ( Relation-like V34() V35() V36() ) set ) ) : ( ( ) ( ) set ) ) * (AffineMap (n : ( ( ) ( V21() V22() V23() V27() V28() V29() V30() ext-real non negative V50() V51() V52() V53() V54() V55() V56() ) Element of NAT : ( ( ) ( non empty V21() V22() V23() V51() V52() V53() V54() V55() V56() V57() ) Element of K19(REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) : ( ( ) ( ) set ) ) ) ,0 : ( ( ) ( V21() V22() V23() V27() V28() V29() V30() ext-real non negative V50() V51() V52() V53() V54() V55() V56() ) Element of NAT : ( ( ) ( non empty V21() V22() V23() V51() V52() V53() V54() V55() V56() V57() ) Element of K19(REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) : ( ( ) ( ) set ) ) ) )) : ( ( V6() V18( REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) , REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) ) ( Relation-like V6() non empty total V18( REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) , REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) V34() V35() V36() continuous ) Element of K19(K20(REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ,REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) : ( ( ) ( Relation-like V34() V35() V36() ) set ) ) : ( ( ) ( ) set ) ) ) : ( ( V6() ) ( Relation-like V6() non empty total V18( REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) , REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) V34() V35() V36() continuous ) Element of K19(K20(REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ,REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) : ( ( ) ( Relation-like V34() V35() V36() ) set ) ) : ( ( ) ( ) set ) ) ) : ( (
V6() ) (
Relation-like V6() non
empty total V18(
REAL : ( ( ) ( non
empty V51()
V52()
V53()
V57()
V62() )
set ) ,
REAL : ( ( ) ( non
empty V51()
V52()
V53()
V57()
V62() )
set ) )
V34()
V35()
V36()
continuous )
Element of
K19(
K20(
REAL : ( ( ) ( non
empty V51()
V52()
V53()
V57()
V62() )
set ) ,
REAL : ( ( ) ( non
empty V51()
V52()
V53()
V57()
V62() )
set ) ) : ( ( ) (
Relation-like V34()
V35()
V36() )
set ) ) : ( ( ) ( )
set ) ) ,
A : ( ( non
empty closed_interval ) ( non
empty V51()
V52()
V53()
closed_interval V76() )
Subset of ( ( ) ( )
set ) ) ) : ( ( ) (
V28()
V29()
ext-real )
Element of
REAL : ( ( ) ( non
empty V51()
V52()
V53()
V57()
V62() )
set ) )
= ((((1 : ( ( ) ( non empty V21() V22() V23() V27() V28() V29() V30() ext-real non negative V50() V51() V52() V53() V54() V55() V56() ) Element of NAT : ( ( ) ( non empty V21() V22() V23() V51() V52() V53() V54() V55() V56() V57() ) Element of K19(REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) : ( ( ) ( ) set ) ) ) / (n : ( ( ) ( V21() V22() V23() V27() V28() V29() V30() ext-real non negative V50() V51() V52() V53() V54() V55() V56() ) Element of NAT : ( ( ) ( non empty V21() V22() V23() V51() V52() V53() V54() V55() V56() V57() ) Element of K19(REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) : ( ( ) ( ) set ) ) ) ^2) : ( ( ) ( V28() V29() ext-real ) Element of REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) ) : ( ( ) ( V28() V29() ext-real ) Element of REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) (#) (sin : ( ( V6() V18( REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) , REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) ) ( Relation-like V6() non empty total V18( REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) , REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) V34() V35() V36() continuous ) Element of K19(K20(REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ,REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) : ( ( ) ( Relation-like V34() V35() V36() ) set ) ) : ( ( ) ( ) set ) ) * (AffineMap (n : ( ( ) ( V21() V22() V23() V27() V28() V29() V30() ext-real non negative V50() V51() V52() V53() V54() V55() V56() ) Element of NAT : ( ( ) ( non empty V21() V22() V23() V51() V52() V53() V54() V55() V56() V57() ) Element of K19(REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) : ( ( ) ( ) set ) ) ) ,0 : ( ( ) ( V21() V22() V23() V27() V28() V29() V30() ext-real non negative V50() V51() V52() V53() V54() V55() V56() ) Element of NAT : ( ( ) ( non empty V21() V22() V23() V51() V52() V53() V54() V55() V56() V57() ) Element of K19(REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) : ( ( ) ( ) set ) ) ) )) : ( ( V6() V18( REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) , REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) ) ( Relation-like V6() non empty total V18( REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) , REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) V34() V35() V36() continuous ) Element of K19(K20(REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ,REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) : ( ( ) ( Relation-like V34() V35() V36() ) set ) ) : ( ( ) ( ) set ) ) ) : ( ( V6() ) ( Relation-like V6() non empty total V18( REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) , REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) V34() V35() V36() continuous ) Element of K19(K20(REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ,REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) : ( ( ) ( Relation-like V34() V35() V36() ) set ) ) : ( ( ) ( ) set ) ) ) : ( ( V6() ) ( Relation-like V6() non empty total V18( REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) , REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) V34() V35() V36() continuous ) Element of K19(K20(REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ,REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) : ( ( ) ( Relation-like V34() V35() V36() ) set ) ) : ( ( ) ( ) set ) ) - ((AffineMap ((1 : ( ( ) ( non empty V21() V22() V23() V27() V28() V29() V30() ext-real non negative V50() V51() V52() V53() V54() V55() V56() ) Element of NAT : ( ( ) ( non empty V21() V22() V23() V51() V52() V53() V54() V55() V56() V57() ) Element of K19(REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) : ( ( ) ( ) set ) ) ) / n : ( ( ) ( V21() V22() V23() V27() V28() V29() V30() ext-real non negative V50() V51() V52() V53() V54() V55() V56() ) Element of NAT : ( ( ) ( non empty V21() V22() V23() V51() V52() V53() V54() V55() V56() V57() ) Element of K19(REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( ) ( V28() V29() ext-real ) Element of REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) ,0 : ( ( ) ( V21() V22() V23() V27() V28() V29() V30() ext-real non negative V50() V51() V52() V53() V54() V55() V56() ) Element of NAT : ( ( ) ( non empty V21() V22() V23() V51() V52() V53() V54() V55() V56() V57() ) Element of K19(REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) : ( ( ) ( ) set ) ) ) )) : ( ( V6() V18( REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) , REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) ) ( Relation-like V6() non empty total V18( REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) , REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) V34() V35() V36() continuous ) Element of K19(K20(REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ,REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) : ( ( ) ( Relation-like V34() V35() V36() ) set ) ) : ( ( ) ( ) set ) ) (#) (cos : ( ( V6() V18( REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) , REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) ) ( Relation-like V6() non empty total V18( REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) , REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) V34() V35() V36() continuous ) Element of K19(K20(REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ,REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) : ( ( ) ( Relation-like V34() V35() V36() ) set ) ) : ( ( ) ( ) set ) ) * (AffineMap (n : ( ( ) ( V21() V22() V23() V27() V28() V29() V30() ext-real non negative V50() V51() V52() V53() V54() V55() V56() ) Element of NAT : ( ( ) ( non empty V21() V22() V23() V51() V52() V53() V54() V55() V56() V57() ) Element of K19(REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) : ( ( ) ( ) set ) ) ) ,0 : ( ( ) ( V21() V22() V23() V27() V28() V29() V30() ext-real non negative V50() V51() V52() V53() V54() V55() V56() ) Element of NAT : ( ( ) ( non empty V21() V22() V23() V51() V52() V53() V54() V55() V56() V57() ) Element of K19(REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) : ( ( ) ( ) set ) ) ) )) : ( ( V6() V18( REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) , REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) ) ( Relation-like V6() non empty total V18( REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) , REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) V34() V35() V36() continuous ) Element of K19(K20(REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ,REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) : ( ( ) ( Relation-like V34() V35() V36() ) set ) ) : ( ( ) ( ) set ) ) ) : ( ( V6() ) ( Relation-like V6() non empty total V18( REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) , REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) V34() V35() V36() continuous ) Element of K19(K20(REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ,REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) : ( ( ) ( Relation-like V34() V35() V36() ) set ) ) : ( ( ) ( ) set ) ) ) : ( ( V6() ) ( Relation-like V6() non empty total V18( REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) , REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) V34() V35() V36() continuous ) Element of K19(K20(REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ,REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) : ( ( ) ( Relation-like V34() V35() V36() ) set ) ) : ( ( ) ( ) set ) ) ) : ( ( V6() ) ( Relation-like V6() non empty total V18( REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) , REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) V34() V35() V36() continuous ) Element of K19(K20(REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ,REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) : ( ( ) ( Relation-like V34() V35() V36() ) set ) ) : ( ( ) ( ) set ) ) . (upper_bound A : ( ( non empty closed_interval ) ( non empty V51() V52() V53() closed_interval V76() ) Subset of ( ( ) ( ) set ) ) ) : ( ( ) ( V28() V29() ext-real ) Element of REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) ) : ( ( ) (
V28()
V29()
ext-real )
Element of
REAL : ( ( ) ( non
empty V51()
V52()
V53()
V57()
V62() )
set ) )
- ((((1 : ( ( ) ( non empty V21() V22() V23() V27() V28() V29() V30() ext-real non negative V50() V51() V52() V53() V54() V55() V56() ) Element of NAT : ( ( ) ( non empty V21() V22() V23() V51() V52() V53() V54() V55() V56() V57() ) Element of K19(REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) : ( ( ) ( ) set ) ) ) / (n : ( ( ) ( V21() V22() V23() V27() V28() V29() V30() ext-real non negative V50() V51() V52() V53() V54() V55() V56() ) Element of NAT : ( ( ) ( non empty V21() V22() V23() V51() V52() V53() V54() V55() V56() V57() ) Element of K19(REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) : ( ( ) ( ) set ) ) ) ^2) : ( ( ) ( V28() V29() ext-real ) Element of REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) ) : ( ( ) ( V28() V29() ext-real ) Element of REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) (#) (sin : ( ( V6() V18( REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) , REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) ) ( Relation-like V6() non empty total V18( REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) , REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) V34() V35() V36() continuous ) Element of K19(K20(REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ,REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) : ( ( ) ( Relation-like V34() V35() V36() ) set ) ) : ( ( ) ( ) set ) ) * (AffineMap (n : ( ( ) ( V21() V22() V23() V27() V28() V29() V30() ext-real non negative V50() V51() V52() V53() V54() V55() V56() ) Element of NAT : ( ( ) ( non empty V21() V22() V23() V51() V52() V53() V54() V55() V56() V57() ) Element of K19(REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) : ( ( ) ( ) set ) ) ) ,0 : ( ( ) ( V21() V22() V23() V27() V28() V29() V30() ext-real non negative V50() V51() V52() V53() V54() V55() V56() ) Element of NAT : ( ( ) ( non empty V21() V22() V23() V51() V52() V53() V54() V55() V56() V57() ) Element of K19(REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) : ( ( ) ( ) set ) ) ) )) : ( ( V6() V18( REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) , REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) ) ( Relation-like V6() non empty total V18( REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) , REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) V34() V35() V36() continuous ) Element of K19(K20(REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ,REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) : ( ( ) ( Relation-like V34() V35() V36() ) set ) ) : ( ( ) ( ) set ) ) ) : ( ( V6() ) ( Relation-like V6() non empty total V18( REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) , REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) V34() V35() V36() continuous ) Element of K19(K20(REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ,REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) : ( ( ) ( Relation-like V34() V35() V36() ) set ) ) : ( ( ) ( ) set ) ) ) : ( ( V6() ) ( Relation-like V6() non empty total V18( REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) , REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) V34() V35() V36() continuous ) Element of K19(K20(REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ,REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) : ( ( ) ( Relation-like V34() V35() V36() ) set ) ) : ( ( ) ( ) set ) ) - ((AffineMap ((1 : ( ( ) ( non empty V21() V22() V23() V27() V28() V29() V30() ext-real non negative V50() V51() V52() V53() V54() V55() V56() ) Element of NAT : ( ( ) ( non empty V21() V22() V23() V51() V52() V53() V54() V55() V56() V57() ) Element of K19(REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) : ( ( ) ( ) set ) ) ) / n : ( ( ) ( V21() V22() V23() V27() V28() V29() V30() ext-real non negative V50() V51() V52() V53() V54() V55() V56() ) Element of NAT : ( ( ) ( non empty V21() V22() V23() V51() V52() V53() V54() V55() V56() V57() ) Element of K19(REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( ) ( V28() V29() ext-real ) Element of REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) ,0 : ( ( ) ( V21() V22() V23() V27() V28() V29() V30() ext-real non negative V50() V51() V52() V53() V54() V55() V56() ) Element of NAT : ( ( ) ( non empty V21() V22() V23() V51() V52() V53() V54() V55() V56() V57() ) Element of K19(REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) : ( ( ) ( ) set ) ) ) )) : ( ( V6() V18( REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) , REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) ) ( Relation-like V6() non empty total V18( REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) , REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) V34() V35() V36() continuous ) Element of K19(K20(REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ,REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) : ( ( ) ( Relation-like V34() V35() V36() ) set ) ) : ( ( ) ( ) set ) ) (#) (cos : ( ( V6() V18( REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) , REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) ) ( Relation-like V6() non empty total V18( REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) , REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) V34() V35() V36() continuous ) Element of K19(K20(REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ,REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) : ( ( ) ( Relation-like V34() V35() V36() ) set ) ) : ( ( ) ( ) set ) ) * (AffineMap (n : ( ( ) ( V21() V22() V23() V27() V28() V29() V30() ext-real non negative V50() V51() V52() V53() V54() V55() V56() ) Element of NAT : ( ( ) ( non empty V21() V22() V23() V51() V52() V53() V54() V55() V56() V57() ) Element of K19(REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) : ( ( ) ( ) set ) ) ) ,0 : ( ( ) ( V21() V22() V23() V27() V28() V29() V30() ext-real non negative V50() V51() V52() V53() V54() V55() V56() ) Element of NAT : ( ( ) ( non empty V21() V22() V23() V51() V52() V53() V54() V55() V56() V57() ) Element of K19(REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) : ( ( ) ( ) set ) ) ) )) : ( ( V6() V18( REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) , REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) ) ( Relation-like V6() non empty total V18( REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) , REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) V34() V35() V36() continuous ) Element of K19(K20(REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ,REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) : ( ( ) ( Relation-like V34() V35() V36() ) set ) ) : ( ( ) ( ) set ) ) ) : ( ( V6() ) ( Relation-like V6() non empty total V18( REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) , REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) V34() V35() V36() continuous ) Element of K19(K20(REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ,REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) : ( ( ) ( Relation-like V34() V35() V36() ) set ) ) : ( ( ) ( ) set ) ) ) : ( ( V6() ) ( Relation-like V6() non empty total V18( REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) , REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) V34() V35() V36() continuous ) Element of K19(K20(REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ,REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) : ( ( ) ( Relation-like V34() V35() V36() ) set ) ) : ( ( ) ( ) set ) ) ) : ( ( V6() ) ( Relation-like V6() non empty total V18( REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) , REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) V34() V35() V36() continuous ) Element of K19(K20(REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ,REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) : ( ( ) ( Relation-like V34() V35() V36() ) set ) ) : ( ( ) ( ) set ) ) . (lower_bound A : ( ( non empty closed_interval ) ( non empty V51() V52() V53() closed_interval V76() ) Subset of ( ( ) ( ) set ) ) ) : ( ( ) ( V28() V29() ext-real ) Element of REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) ) : ( ( ) (
V28()
V29()
ext-real )
Element of
REAL : ( ( ) ( non
empty V51()
V52()
V53()
V57()
V62() )
set ) ) : ( ( ) (
V28()
V29()
ext-real )
Element of
REAL : ( ( ) ( non
empty V51()
V52()
V53()
V57()
V62() )
set ) ) ;
theorem
for
n being ( ( ) (
V21()
V22()
V23()
V27()
V28()
V29()
V30()
ext-real non
negative V50()
V51()
V52()
V53()
V54()
V55()
V56() )
Element of
NAT : ( ( ) ( non
empty V21()
V22()
V23()
V51()
V52()
V53()
V54()
V55()
V56()
V57() )
Element of
K19(
REAL : ( ( ) ( non
empty V51()
V52()
V53()
V57()
V62() )
set ) ) : ( ( ) ( )
set ) ) )
for
A being ( ( non
empty closed_interval ) ( non
empty V51()
V52()
V53()
closed_interval V76() )
Subset of ( ( ) ( )
set ) ) st
n : ( ( ) (
V21()
V22()
V23()
V27()
V28()
V29()
V30()
ext-real non
negative V50()
V51()
V52()
V53()
V54()
V55()
V56() )
Element of
NAT : ( ( ) ( non
empty V21()
V22()
V23()
V51()
V52()
V53()
V54()
V55()
V56()
V57() )
Element of
K19(
REAL : ( ( ) ( non
empty V51()
V52()
V53()
V57()
V62() )
set ) ) : ( ( ) ( )
set ) ) )
<> 0 : ( ( ) (
V21()
V22()
V23()
V27()
V28()
V29()
V30()
ext-real non
negative V50()
V51()
V52()
V53()
V54()
V55()
V56() )
Element of
NAT : ( ( ) ( non
empty V21()
V22()
V23()
V51()
V52()
V53()
V54()
V55()
V56()
V57() )
Element of
K19(
REAL : ( ( ) ( non
empty V51()
V52()
V53()
V57()
V62() )
set ) ) : ( ( ) ( )
set ) ) ) holds
integral (
((AffineMap (1 : ( ( ) ( non empty V21() V22() V23() V27() V28() V29() V30() ext-real non negative V50() V51() V52() V53() V54() V55() V56() ) Element of NAT : ( ( ) ( non empty V21() V22() V23() V51() V52() V53() V54() V55() V56() V57() ) Element of K19(REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) : ( ( ) ( ) set ) ) ) ,0 : ( ( ) ( V21() V22() V23() V27() V28() V29() V30() ext-real non negative V50() V51() V52() V53() V54() V55() V56() ) Element of NAT : ( ( ) ( non empty V21() V22() V23() V51() V52() V53() V54() V55() V56() V57() ) Element of K19(REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) : ( ( ) ( ) set ) ) ) )) : ( ( V6() V18( REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) , REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) ) ( Relation-like V6() V7() non empty total V18( REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) , REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) V19( REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) V20( REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) , REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) V34() V35() V36() continuous ) Element of K19(K20(REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ,REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) : ( ( ) ( Relation-like V34() V35() V36() ) set ) ) : ( ( ) ( ) set ) ) (#) (cos : ( ( V6() V18( REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) , REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) ) ( Relation-like V6() non empty total V18( REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) , REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) V34() V35() V36() continuous ) Element of K19(K20(REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ,REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) : ( ( ) ( Relation-like V34() V35() V36() ) set ) ) : ( ( ) ( ) set ) ) * (AffineMap (n : ( ( ) ( V21() V22() V23() V27() V28() V29() V30() ext-real non negative V50() V51() V52() V53() V54() V55() V56() ) Element of NAT : ( ( ) ( non empty V21() V22() V23() V51() V52() V53() V54() V55() V56() V57() ) Element of K19(REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) : ( ( ) ( ) set ) ) ) ,0 : ( ( ) ( V21() V22() V23() V27() V28() V29() V30() ext-real non negative V50() V51() V52() V53() V54() V55() V56() ) Element of NAT : ( ( ) ( non empty V21() V22() V23() V51() V52() V53() V54() V55() V56() V57() ) Element of K19(REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) : ( ( ) ( ) set ) ) ) )) : ( ( V6() V18( REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) , REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) ) ( Relation-like V6() non empty total V18( REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) , REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) V34() V35() V36() continuous ) Element of K19(K20(REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ,REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) : ( ( ) ( Relation-like V34() V35() V36() ) set ) ) : ( ( ) ( ) set ) ) ) : ( ( V6() ) ( Relation-like V6() non empty total V18( REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) , REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) V34() V35() V36() continuous ) Element of K19(K20(REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ,REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) : ( ( ) ( Relation-like V34() V35() V36() ) set ) ) : ( ( ) ( ) set ) ) ) : ( (
V6() ) (
Relation-like V6() non
empty total V18(
REAL : ( ( ) ( non
empty V51()
V52()
V53()
V57()
V62() )
set ) ,
REAL : ( ( ) ( non
empty V51()
V52()
V53()
V57()
V62() )
set ) )
V34()
V35()
V36()
continuous )
Element of
K19(
K20(
REAL : ( ( ) ( non
empty V51()
V52()
V53()
V57()
V62() )
set ) ,
REAL : ( ( ) ( non
empty V51()
V52()
V53()
V57()
V62() )
set ) ) : ( ( ) (
Relation-like V34()
V35()
V36() )
set ) ) : ( ( ) ( )
set ) ) ,
A : ( ( non
empty closed_interval ) ( non
empty V51()
V52()
V53()
closed_interval V76() )
Subset of ( ( ) ( )
set ) ) ) : ( ( ) (
V28()
V29()
ext-real )
Element of
REAL : ( ( ) ( non
empty V51()
V52()
V53()
V57()
V62() )
set ) )
= ((((1 : ( ( ) ( non empty V21() V22() V23() V27() V28() V29() V30() ext-real non negative V50() V51() V52() V53() V54() V55() V56() ) Element of NAT : ( ( ) ( non empty V21() V22() V23() V51() V52() V53() V54() V55() V56() V57() ) Element of K19(REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) : ( ( ) ( ) set ) ) ) / (n : ( ( ) ( V21() V22() V23() V27() V28() V29() V30() ext-real non negative V50() V51() V52() V53() V54() V55() V56() ) Element of NAT : ( ( ) ( non empty V21() V22() V23() V51() V52() V53() V54() V55() V56() V57() ) Element of K19(REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) : ( ( ) ( ) set ) ) ) ^2) : ( ( ) ( V28() V29() ext-real ) Element of REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) ) : ( ( ) ( V28() V29() ext-real ) Element of REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) (#) (cos : ( ( V6() V18( REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) , REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) ) ( Relation-like V6() non empty total V18( REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) , REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) V34() V35() V36() continuous ) Element of K19(K20(REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ,REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) : ( ( ) ( Relation-like V34() V35() V36() ) set ) ) : ( ( ) ( ) set ) ) * (AffineMap (n : ( ( ) ( V21() V22() V23() V27() V28() V29() V30() ext-real non negative V50() V51() V52() V53() V54() V55() V56() ) Element of NAT : ( ( ) ( non empty V21() V22() V23() V51() V52() V53() V54() V55() V56() V57() ) Element of K19(REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) : ( ( ) ( ) set ) ) ) ,0 : ( ( ) ( V21() V22() V23() V27() V28() V29() V30() ext-real non negative V50() V51() V52() V53() V54() V55() V56() ) Element of NAT : ( ( ) ( non empty V21() V22() V23() V51() V52() V53() V54() V55() V56() V57() ) Element of K19(REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) : ( ( ) ( ) set ) ) ) )) : ( ( V6() V18( REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) , REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) ) ( Relation-like V6() non empty total V18( REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) , REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) V34() V35() V36() continuous ) Element of K19(K20(REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ,REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) : ( ( ) ( Relation-like V34() V35() V36() ) set ) ) : ( ( ) ( ) set ) ) ) : ( ( V6() ) ( Relation-like V6() non empty total V18( REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) , REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) V34() V35() V36() continuous ) Element of K19(K20(REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ,REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) : ( ( ) ( Relation-like V34() V35() V36() ) set ) ) : ( ( ) ( ) set ) ) ) : ( ( V6() ) ( Relation-like V6() non empty total V18( REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) , REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) V34() V35() V36() continuous ) Element of K19(K20(REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ,REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) : ( ( ) ( Relation-like V34() V35() V36() ) set ) ) : ( ( ) ( ) set ) ) + ((AffineMap ((1 : ( ( ) ( non empty V21() V22() V23() V27() V28() V29() V30() ext-real non negative V50() V51() V52() V53() V54() V55() V56() ) Element of NAT : ( ( ) ( non empty V21() V22() V23() V51() V52() V53() V54() V55() V56() V57() ) Element of K19(REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) : ( ( ) ( ) set ) ) ) / n : ( ( ) ( V21() V22() V23() V27() V28() V29() V30() ext-real non negative V50() V51() V52() V53() V54() V55() V56() ) Element of NAT : ( ( ) ( non empty V21() V22() V23() V51() V52() V53() V54() V55() V56() V57() ) Element of K19(REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( ) ( V28() V29() ext-real ) Element of REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) ,0 : ( ( ) ( V21() V22() V23() V27() V28() V29() V30() ext-real non negative V50() V51() V52() V53() V54() V55() V56() ) Element of NAT : ( ( ) ( non empty V21() V22() V23() V51() V52() V53() V54() V55() V56() V57() ) Element of K19(REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) : ( ( ) ( ) set ) ) ) )) : ( ( V6() V18( REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) , REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) ) ( Relation-like V6() non empty total V18( REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) , REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) V34() V35() V36() continuous ) Element of K19(K20(REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ,REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) : ( ( ) ( Relation-like V34() V35() V36() ) set ) ) : ( ( ) ( ) set ) ) (#) (sin : ( ( V6() V18( REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) , REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) ) ( Relation-like V6() non empty total V18( REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) , REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) V34() V35() V36() continuous ) Element of K19(K20(REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ,REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) : ( ( ) ( Relation-like V34() V35() V36() ) set ) ) : ( ( ) ( ) set ) ) * (AffineMap (n : ( ( ) ( V21() V22() V23() V27() V28() V29() V30() ext-real non negative V50() V51() V52() V53() V54() V55() V56() ) Element of NAT : ( ( ) ( non empty V21() V22() V23() V51() V52() V53() V54() V55() V56() V57() ) Element of K19(REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) : ( ( ) ( ) set ) ) ) ,0 : ( ( ) ( V21() V22() V23() V27() V28() V29() V30() ext-real non negative V50() V51() V52() V53() V54() V55() V56() ) Element of NAT : ( ( ) ( non empty V21() V22() V23() V51() V52() V53() V54() V55() V56() V57() ) Element of K19(REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) : ( ( ) ( ) set ) ) ) )) : ( ( V6() V18( REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) , REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) ) ( Relation-like V6() non empty total V18( REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) , REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) V34() V35() V36() continuous ) Element of K19(K20(REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ,REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) : ( ( ) ( Relation-like V34() V35() V36() ) set ) ) : ( ( ) ( ) set ) ) ) : ( ( V6() ) ( Relation-like V6() non empty total V18( REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) , REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) V34() V35() V36() continuous ) Element of K19(K20(REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ,REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) : ( ( ) ( Relation-like V34() V35() V36() ) set ) ) : ( ( ) ( ) set ) ) ) : ( ( V6() ) ( Relation-like V6() non empty total V18( REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) , REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) V34() V35() V36() continuous ) Element of K19(K20(REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ,REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) : ( ( ) ( Relation-like V34() V35() V36() ) set ) ) : ( ( ) ( ) set ) ) ) : ( ( V6() ) ( Relation-like V6() non empty total V18( REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) , REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) V34() V35() V36() continuous ) Element of K19(K20(REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ,REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) : ( ( ) ( Relation-like V34() V35() V36() ) set ) ) : ( ( ) ( ) set ) ) . (upper_bound A : ( ( non empty closed_interval ) ( non empty V51() V52() V53() closed_interval V76() ) Subset of ( ( ) ( ) set ) ) ) : ( ( ) ( V28() V29() ext-real ) Element of REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) ) : ( ( ) (
V28()
V29()
ext-real )
Element of
REAL : ( ( ) ( non
empty V51()
V52()
V53()
V57()
V62() )
set ) )
- ((((1 : ( ( ) ( non empty V21() V22() V23() V27() V28() V29() V30() ext-real non negative V50() V51() V52() V53() V54() V55() V56() ) Element of NAT : ( ( ) ( non empty V21() V22() V23() V51() V52() V53() V54() V55() V56() V57() ) Element of K19(REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) : ( ( ) ( ) set ) ) ) / (n : ( ( ) ( V21() V22() V23() V27() V28() V29() V30() ext-real non negative V50() V51() V52() V53() V54() V55() V56() ) Element of NAT : ( ( ) ( non empty V21() V22() V23() V51() V52() V53() V54() V55() V56() V57() ) Element of K19(REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) : ( ( ) ( ) set ) ) ) ^2) : ( ( ) ( V28() V29() ext-real ) Element of REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) ) : ( ( ) ( V28() V29() ext-real ) Element of REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) (#) (cos : ( ( V6() V18( REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) , REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) ) ( Relation-like V6() non empty total V18( REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) , REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) V34() V35() V36() continuous ) Element of K19(K20(REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ,REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) : ( ( ) ( Relation-like V34() V35() V36() ) set ) ) : ( ( ) ( ) set ) ) * (AffineMap (n : ( ( ) ( V21() V22() V23() V27() V28() V29() V30() ext-real non negative V50() V51() V52() V53() V54() V55() V56() ) Element of NAT : ( ( ) ( non empty V21() V22() V23() V51() V52() V53() V54() V55() V56() V57() ) Element of K19(REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) : ( ( ) ( ) set ) ) ) ,0 : ( ( ) ( V21() V22() V23() V27() V28() V29() V30() ext-real non negative V50() V51() V52() V53() V54() V55() V56() ) Element of NAT : ( ( ) ( non empty V21() V22() V23() V51() V52() V53() V54() V55() V56() V57() ) Element of K19(REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) : ( ( ) ( ) set ) ) ) )) : ( ( V6() V18( REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) , REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) ) ( Relation-like V6() non empty total V18( REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) , REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) V34() V35() V36() continuous ) Element of K19(K20(REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ,REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) : ( ( ) ( Relation-like V34() V35() V36() ) set ) ) : ( ( ) ( ) set ) ) ) : ( ( V6() ) ( Relation-like V6() non empty total V18( REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) , REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) V34() V35() V36() continuous ) Element of K19(K20(REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ,REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) : ( ( ) ( Relation-like V34() V35() V36() ) set ) ) : ( ( ) ( ) set ) ) ) : ( ( V6() ) ( Relation-like V6() non empty total V18( REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) , REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) V34() V35() V36() continuous ) Element of K19(K20(REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ,REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) : ( ( ) ( Relation-like V34() V35() V36() ) set ) ) : ( ( ) ( ) set ) ) + ((AffineMap ((1 : ( ( ) ( non empty V21() V22() V23() V27() V28() V29() V30() ext-real non negative V50() V51() V52() V53() V54() V55() V56() ) Element of NAT : ( ( ) ( non empty V21() V22() V23() V51() V52() V53() V54() V55() V56() V57() ) Element of K19(REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) : ( ( ) ( ) set ) ) ) / n : ( ( ) ( V21() V22() V23() V27() V28() V29() V30() ext-real non negative V50() V51() V52() V53() V54() V55() V56() ) Element of NAT : ( ( ) ( non empty V21() V22() V23() V51() V52() V53() V54() V55() V56() V57() ) Element of K19(REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( ) ( V28() V29() ext-real ) Element of REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) ,0 : ( ( ) ( V21() V22() V23() V27() V28() V29() V30() ext-real non negative V50() V51() V52() V53() V54() V55() V56() ) Element of NAT : ( ( ) ( non empty V21() V22() V23() V51() V52() V53() V54() V55() V56() V57() ) Element of K19(REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) : ( ( ) ( ) set ) ) ) )) : ( ( V6() V18( REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) , REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) ) ( Relation-like V6() non empty total V18( REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) , REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) V34() V35() V36() continuous ) Element of K19(K20(REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ,REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) : ( ( ) ( Relation-like V34() V35() V36() ) set ) ) : ( ( ) ( ) set ) ) (#) (sin : ( ( V6() V18( REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) , REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) ) ( Relation-like V6() non empty total V18( REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) , REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) V34() V35() V36() continuous ) Element of K19(K20(REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ,REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) : ( ( ) ( Relation-like V34() V35() V36() ) set ) ) : ( ( ) ( ) set ) ) * (AffineMap (n : ( ( ) ( V21() V22() V23() V27() V28() V29() V30() ext-real non negative V50() V51() V52() V53() V54() V55() V56() ) Element of NAT : ( ( ) ( non empty V21() V22() V23() V51() V52() V53() V54() V55() V56() V57() ) Element of K19(REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) : ( ( ) ( ) set ) ) ) ,0 : ( ( ) ( V21() V22() V23() V27() V28() V29() V30() ext-real non negative V50() V51() V52() V53() V54() V55() V56() ) Element of NAT : ( ( ) ( non empty V21() V22() V23() V51() V52() V53() V54() V55() V56() V57() ) Element of K19(REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) : ( ( ) ( ) set ) ) ) )) : ( ( V6() V18( REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) , REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) ) ( Relation-like V6() non empty total V18( REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) , REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) V34() V35() V36() continuous ) Element of K19(K20(REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ,REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) : ( ( ) ( Relation-like V34() V35() V36() ) set ) ) : ( ( ) ( ) set ) ) ) : ( ( V6() ) ( Relation-like V6() non empty total V18( REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) , REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) V34() V35() V36() continuous ) Element of K19(K20(REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ,REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) : ( ( ) ( Relation-like V34() V35() V36() ) set ) ) : ( ( ) ( ) set ) ) ) : ( ( V6() ) ( Relation-like V6() non empty total V18( REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) , REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) V34() V35() V36() continuous ) Element of K19(K20(REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ,REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) : ( ( ) ( Relation-like V34() V35() V36() ) set ) ) : ( ( ) ( ) set ) ) ) : ( ( V6() ) ( Relation-like V6() non empty total V18( REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) , REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) V34() V35() V36() continuous ) Element of K19(K20(REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ,REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) : ( ( ) ( Relation-like V34() V35() V36() ) set ) ) : ( ( ) ( ) set ) ) . (lower_bound A : ( ( non empty closed_interval ) ( non empty V51() V52() V53() closed_interval V76() ) Subset of ( ( ) ( ) set ) ) ) : ( ( ) ( V28() V29() ext-real ) Element of REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) ) : ( ( ) (
V28()
V29()
ext-real )
Element of
REAL : ( ( ) ( non
empty V51()
V52()
V53()
V57()
V62() )
set ) ) : ( ( ) (
V28()
V29()
ext-real )
Element of
REAL : ( ( ) ( non
empty V51()
V52()
V53()
V57()
V62() )
set ) ) ;
theorem
for
A being ( ( non
empty closed_interval ) ( non
empty V51()
V52()
V53()
closed_interval V76() )
Subset of ( ( ) ( )
set ) ) holds
integral (
((AffineMap (1 : ( ( ) ( non empty V21() V22() V23() V27() V28() V29() V30() ext-real non negative V50() V51() V52() V53() V54() V55() V56() ) Element of NAT : ( ( ) ( non empty V21() V22() V23() V51() V52() V53() V54() V55() V56() V57() ) Element of K19(REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) : ( ( ) ( ) set ) ) ) ,0 : ( ( ) ( V21() V22() V23() V27() V28() V29() V30() ext-real non negative V50() V51() V52() V53() V54() V55() V56() ) Element of NAT : ( ( ) ( non empty V21() V22() V23() V51() V52() V53() V54() V55() V56() V57() ) Element of K19(REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) : ( ( ) ( ) set ) ) ) )) : ( ( V6() V18( REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) , REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) ) ( Relation-like V6() V7() non empty total V18( REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) , REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) V19( REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) V20( REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) , REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) V34() V35() V36() continuous ) Element of K19(K20(REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ,REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) : ( ( ) ( Relation-like V34() V35() V36() ) set ) ) : ( ( ) ( ) set ) ) (#) sinh : ( ( V6() V18( REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) , REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) ) ( Relation-like V6() non empty total V18( REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) , REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) V34() V35() V36() ) Element of K19(K20(REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ,REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) : ( ( ) ( Relation-like V34() V35() V36() ) set ) ) : ( ( ) ( ) set ) ) ) : ( (
V6() ) (
Relation-like V6() non
empty total V18(
REAL : ( ( ) ( non
empty V51()
V52()
V53()
V57()
V62() )
set ) ,
REAL : ( ( ) ( non
empty V51()
V52()
V53()
V57()
V62() )
set ) )
V34()
V35()
V36() )
Element of
K19(
K20(
REAL : ( ( ) ( non
empty V51()
V52()
V53()
V57()
V62() )
set ) ,
REAL : ( ( ) ( non
empty V51()
V52()
V53()
V57()
V62() )
set ) ) : ( ( ) (
Relation-like V34()
V35()
V36() )
set ) ) : ( ( ) ( )
set ) ) ,
A : ( ( non
empty closed_interval ) ( non
empty V51()
V52()
V53()
closed_interval V76() )
Subset of ( ( ) ( )
set ) ) ) : ( ( ) (
V28()
V29()
ext-real )
Element of
REAL : ( ( ) ( non
empty V51()
V52()
V53()
V57()
V62() )
set ) )
= ((((AffineMap (1 : ( ( ) ( non empty V21() V22() V23() V27() V28() V29() V30() ext-real non negative V50() V51() V52() V53() V54() V55() V56() ) Element of NAT : ( ( ) ( non empty V21() V22() V23() V51() V52() V53() V54() V55() V56() V57() ) Element of K19(REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) : ( ( ) ( ) set ) ) ) ,0 : ( ( ) ( V21() V22() V23() V27() V28() V29() V30() ext-real non negative V50() V51() V52() V53() V54() V55() V56() ) Element of NAT : ( ( ) ( non empty V21() V22() V23() V51() V52() V53() V54() V55() V56() V57() ) Element of K19(REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) : ( ( ) ( ) set ) ) ) )) : ( ( V6() V18( REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) , REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) ) ( Relation-like V6() V7() non empty total V18( REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) , REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) V19( REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) V20( REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) , REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) V34() V35() V36() continuous ) Element of K19(K20(REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ,REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) : ( ( ) ( Relation-like V34() V35() V36() ) set ) ) : ( ( ) ( ) set ) ) (#) cosh : ( ( V6() V18( REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) , REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) ) ( Relation-like V6() non empty total V18( REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) , REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) V34() V35() V36() ) Element of K19(K20(REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ,REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) : ( ( ) ( Relation-like V34() V35() V36() ) set ) ) : ( ( ) ( ) set ) ) ) : ( ( V6() ) ( Relation-like V6() non empty total V18( REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) , REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) V34() V35() V36() ) Element of K19(K20(REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ,REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) : ( ( ) ( Relation-like V34() V35() V36() ) set ) ) : ( ( ) ( ) set ) ) - sinh : ( ( V6() V18( REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) , REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) ) ( Relation-like V6() non empty total V18( REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) , REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) V34() V35() V36() ) Element of K19(K20(REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ,REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) : ( ( ) ( Relation-like V34() V35() V36() ) set ) ) : ( ( ) ( ) set ) ) ) : ( ( V6() ) ( Relation-like V6() non empty total V18( REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) , REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) V34() V35() V36() ) Element of K19(K20(REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ,REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) : ( ( ) ( Relation-like V34() V35() V36() ) set ) ) : ( ( ) ( ) set ) ) . (upper_bound A : ( ( non empty closed_interval ) ( non empty V51() V52() V53() closed_interval V76() ) Subset of ( ( ) ( ) set ) ) ) : ( ( ) ( V28() V29() ext-real ) Element of REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) ) : ( ( ) (
V28()
V29()
ext-real )
Element of
REAL : ( ( ) ( non
empty V51()
V52()
V53()
V57()
V62() )
set ) )
- ((((AffineMap (1 : ( ( ) ( non empty V21() V22() V23() V27() V28() V29() V30() ext-real non negative V50() V51() V52() V53() V54() V55() V56() ) Element of NAT : ( ( ) ( non empty V21() V22() V23() V51() V52() V53() V54() V55() V56() V57() ) Element of K19(REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) : ( ( ) ( ) set ) ) ) ,0 : ( ( ) ( V21() V22() V23() V27() V28() V29() V30() ext-real non negative V50() V51() V52() V53() V54() V55() V56() ) Element of NAT : ( ( ) ( non empty V21() V22() V23() V51() V52() V53() V54() V55() V56() V57() ) Element of K19(REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) : ( ( ) ( ) set ) ) ) )) : ( ( V6() V18( REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) , REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) ) ( Relation-like V6() V7() non empty total V18( REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) , REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) V19( REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) V20( REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) , REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) V34() V35() V36() continuous ) Element of K19(K20(REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ,REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) : ( ( ) ( Relation-like V34() V35() V36() ) set ) ) : ( ( ) ( ) set ) ) (#) cosh : ( ( V6() V18( REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) , REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) ) ( Relation-like V6() non empty total V18( REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) , REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) V34() V35() V36() ) Element of K19(K20(REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ,REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) : ( ( ) ( Relation-like V34() V35() V36() ) set ) ) : ( ( ) ( ) set ) ) ) : ( ( V6() ) ( Relation-like V6() non empty total V18( REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) , REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) V34() V35() V36() ) Element of K19(K20(REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ,REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) : ( ( ) ( Relation-like V34() V35() V36() ) set ) ) : ( ( ) ( ) set ) ) - sinh : ( ( V6() V18( REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) , REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) ) ( Relation-like V6() non empty total V18( REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) , REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) V34() V35() V36() ) Element of K19(K20(REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ,REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) : ( ( ) ( Relation-like V34() V35() V36() ) set ) ) : ( ( ) ( ) set ) ) ) : ( ( V6() ) ( Relation-like V6() non empty total V18( REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) , REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) V34() V35() V36() ) Element of K19(K20(REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ,REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) : ( ( ) ( Relation-like V34() V35() V36() ) set ) ) : ( ( ) ( ) set ) ) . (lower_bound A : ( ( non empty closed_interval ) ( non empty V51() V52() V53() closed_interval V76() ) Subset of ( ( ) ( ) set ) ) ) : ( ( ) ( V28() V29() ext-real ) Element of REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) ) : ( ( ) (
V28()
V29()
ext-real )
Element of
REAL : ( ( ) ( non
empty V51()
V52()
V53()
V57()
V62() )
set ) ) : ( ( ) (
V28()
V29()
ext-real )
Element of
REAL : ( ( ) ( non
empty V51()
V52()
V53()
V57()
V62() )
set ) ) ;
theorem
for
A being ( ( non
empty closed_interval ) ( non
empty V51()
V52()
V53()
closed_interval V76() )
Subset of ( ( ) ( )
set ) ) holds
integral (
((AffineMap (1 : ( ( ) ( non empty V21() V22() V23() V27() V28() V29() V30() ext-real non negative V50() V51() V52() V53() V54() V55() V56() ) Element of NAT : ( ( ) ( non empty V21() V22() V23() V51() V52() V53() V54() V55() V56() V57() ) Element of K19(REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) : ( ( ) ( ) set ) ) ) ,0 : ( ( ) ( V21() V22() V23() V27() V28() V29() V30() ext-real non negative V50() V51() V52() V53() V54() V55() V56() ) Element of NAT : ( ( ) ( non empty V21() V22() V23() V51() V52() V53() V54() V55() V56() V57() ) Element of K19(REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) : ( ( ) ( ) set ) ) ) )) : ( ( V6() V18( REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) , REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) ) ( Relation-like V6() V7() non empty total V18( REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) , REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) V19( REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) V20( REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) , REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) V34() V35() V36() continuous ) Element of K19(K20(REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ,REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) : ( ( ) ( Relation-like V34() V35() V36() ) set ) ) : ( ( ) ( ) set ) ) (#) cosh : ( ( V6() V18( REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) , REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) ) ( Relation-like V6() non empty total V18( REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) , REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) V34() V35() V36() ) Element of K19(K20(REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ,REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) : ( ( ) ( Relation-like V34() V35() V36() ) set ) ) : ( ( ) ( ) set ) ) ) : ( (
V6() ) (
Relation-like V6() non
empty total V18(
REAL : ( ( ) ( non
empty V51()
V52()
V53()
V57()
V62() )
set ) ,
REAL : ( ( ) ( non
empty V51()
V52()
V53()
V57()
V62() )
set ) )
V34()
V35()
V36() )
Element of
K19(
K20(
REAL : ( ( ) ( non
empty V51()
V52()
V53()
V57()
V62() )
set ) ,
REAL : ( ( ) ( non
empty V51()
V52()
V53()
V57()
V62() )
set ) ) : ( ( ) (
Relation-like V34()
V35()
V36() )
set ) ) : ( ( ) ( )
set ) ) ,
A : ( ( non
empty closed_interval ) ( non
empty V51()
V52()
V53()
closed_interval V76() )
Subset of ( ( ) ( )
set ) ) ) : ( ( ) (
V28()
V29()
ext-real )
Element of
REAL : ( ( ) ( non
empty V51()
V52()
V53()
V57()
V62() )
set ) )
= ((((AffineMap (1 : ( ( ) ( non empty V21() V22() V23() V27() V28() V29() V30() ext-real non negative V50() V51() V52() V53() V54() V55() V56() ) Element of NAT : ( ( ) ( non empty V21() V22() V23() V51() V52() V53() V54() V55() V56() V57() ) Element of K19(REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) : ( ( ) ( ) set ) ) ) ,0 : ( ( ) ( V21() V22() V23() V27() V28() V29() V30() ext-real non negative V50() V51() V52() V53() V54() V55() V56() ) Element of NAT : ( ( ) ( non empty V21() V22() V23() V51() V52() V53() V54() V55() V56() V57() ) Element of K19(REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) : ( ( ) ( ) set ) ) ) )) : ( ( V6() V18( REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) , REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) ) ( Relation-like V6() V7() non empty total V18( REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) , REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) V19( REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) V20( REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) , REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) V34() V35() V36() continuous ) Element of K19(K20(REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ,REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) : ( ( ) ( Relation-like V34() V35() V36() ) set ) ) : ( ( ) ( ) set ) ) (#) sinh : ( ( V6() V18( REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) , REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) ) ( Relation-like V6() non empty total V18( REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) , REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) V34() V35() V36() ) Element of K19(K20(REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ,REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) : ( ( ) ( Relation-like V34() V35() V36() ) set ) ) : ( ( ) ( ) set ) ) ) : ( ( V6() ) ( Relation-like V6() non empty total V18( REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) , REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) V34() V35() V36() ) Element of K19(K20(REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ,REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) : ( ( ) ( Relation-like V34() V35() V36() ) set ) ) : ( ( ) ( ) set ) ) - cosh : ( ( V6() V18( REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) , REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) ) ( Relation-like V6() non empty total V18( REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) , REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) V34() V35() V36() ) Element of K19(K20(REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ,REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) : ( ( ) ( Relation-like V34() V35() V36() ) set ) ) : ( ( ) ( ) set ) ) ) : ( ( V6() ) ( Relation-like V6() non empty total V18( REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) , REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) V34() V35() V36() ) Element of K19(K20(REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ,REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) : ( ( ) ( Relation-like V34() V35() V36() ) set ) ) : ( ( ) ( ) set ) ) . (upper_bound A : ( ( non empty closed_interval ) ( non empty V51() V52() V53() closed_interval V76() ) Subset of ( ( ) ( ) set ) ) ) : ( ( ) ( V28() V29() ext-real ) Element of REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) ) : ( ( ) (
V28()
V29()
ext-real )
Element of
REAL : ( ( ) ( non
empty V51()
V52()
V53()
V57()
V62() )
set ) )
- ((((AffineMap (1 : ( ( ) ( non empty V21() V22() V23() V27() V28() V29() V30() ext-real non negative V50() V51() V52() V53() V54() V55() V56() ) Element of NAT : ( ( ) ( non empty V21() V22() V23() V51() V52() V53() V54() V55() V56() V57() ) Element of K19(REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) : ( ( ) ( ) set ) ) ) ,0 : ( ( ) ( V21() V22() V23() V27() V28() V29() V30() ext-real non negative V50() V51() V52() V53() V54() V55() V56() ) Element of NAT : ( ( ) ( non empty V21() V22() V23() V51() V52() V53() V54() V55() V56() V57() ) Element of K19(REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) : ( ( ) ( ) set ) ) ) )) : ( ( V6() V18( REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) , REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) ) ( Relation-like V6() V7() non empty total V18( REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) , REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) V19( REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) V20( REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) , REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) V34() V35() V36() continuous ) Element of K19(K20(REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ,REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) : ( ( ) ( Relation-like V34() V35() V36() ) set ) ) : ( ( ) ( ) set ) ) (#) sinh : ( ( V6() V18( REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) , REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) ) ( Relation-like V6() non empty total V18( REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) , REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) V34() V35() V36() ) Element of K19(K20(REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ,REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) : ( ( ) ( Relation-like V34() V35() V36() ) set ) ) : ( ( ) ( ) set ) ) ) : ( ( V6() ) ( Relation-like V6() non empty total V18( REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) , REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) V34() V35() V36() ) Element of K19(K20(REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ,REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) : ( ( ) ( Relation-like V34() V35() V36() ) set ) ) : ( ( ) ( ) set ) ) - cosh : ( ( V6() V18( REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) , REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) ) ( Relation-like V6() non empty total V18( REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) , REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) V34() V35() V36() ) Element of K19(K20(REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ,REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) : ( ( ) ( Relation-like V34() V35() V36() ) set ) ) : ( ( ) ( ) set ) ) ) : ( ( V6() ) ( Relation-like V6() non empty total V18( REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) , REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) V34() V35() V36() ) Element of K19(K20(REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ,REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) : ( ( ) ( Relation-like V34() V35() V36() ) set ) ) : ( ( ) ( ) set ) ) . (lower_bound A : ( ( non empty closed_interval ) ( non empty V51() V52() V53() closed_interval V76() ) Subset of ( ( ) ( ) set ) ) ) : ( ( ) ( V28() V29() ext-real ) Element of REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) ) : ( ( ) (
V28()
V29()
ext-real )
Element of
REAL : ( ( ) ( non
empty V51()
V52()
V53()
V57()
V62() )
set ) ) : ( ( ) (
V28()
V29()
ext-real )
Element of
REAL : ( ( ) ( non
empty V51()
V52()
V53()
V57()
V62() )
set ) ) ;
theorem
for
a,
b being ( ( ) (
V28()
V29()
ext-real )
Real)
for
n being ( ( ) (
V21()
V22()
V23()
V27()
V28()
V29()
V30()
ext-real non
negative V50()
V51()
V52()
V53()
V54()
V55()
V56() )
Element of
NAT : ( ( ) ( non
empty V21()
V22()
V23()
V51()
V52()
V53()
V54()
V55()
V56()
V57() )
Element of
K19(
REAL : ( ( ) ( non
empty V51()
V52()
V53()
V57()
V62() )
set ) ) : ( ( ) ( )
set ) ) )
for
A being ( ( non
empty closed_interval ) ( non
empty V51()
V52()
V53()
closed_interval V76() )
Subset of ( ( ) ( )
set ) ) st
a : ( ( ) (
V28()
V29()
ext-real )
Real)
* (n : ( ( ) ( V21() V22() V23() V27() V28() V29() V30() ext-real non negative V50() V51() V52() V53() V54() V55() V56() ) Element of NAT : ( ( ) ( non empty V21() V22() V23() V51() V52() V53() V54() V55() V56() V57() ) Element of K19(REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) : ( ( ) ( ) set ) ) ) + 1 : ( ( ) ( non empty V21() V22() V23() V27() V28() V29() V30() ext-real non negative V50() V51() V52() V53() V54() V55() V56() ) Element of NAT : ( ( ) ( non empty V21() V22() V23() V51() V52() V53() V54() V55() V56() V57() ) Element of K19(REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( ) ( non
empty V21()
V22()
V23()
V27()
V28()
V29()
V30()
ext-real non
negative )
Element of
REAL : ( ( ) ( non
empty V51()
V52()
V53()
V57()
V62() )
set ) ) : ( ( ) (
V28()
V29()
ext-real )
Element of
REAL : ( ( ) ( non
empty V51()
V52()
V53()
V57()
V62() )
set ) )
<> 0 : ( ( ) (
V21()
V22()
V23()
V27()
V28()
V29()
V30()
ext-real non
negative V50()
V51()
V52()
V53()
V54()
V55()
V56() )
Element of
NAT : ( ( ) ( non
empty V21()
V22()
V23()
V51()
V52()
V53()
V54()
V55()
V56()
V57() )
Element of
K19(
REAL : ( ( ) ( non
empty V51()
V52()
V53()
V57()
V62() )
set ) ) : ( ( ) ( )
set ) ) ) holds
integral (
((#Z n : ( ( ) ( V21() V22() V23() V27() V28() V29() V30() ext-real non negative V50() V51() V52() V53() V54() V55() V56() ) Element of NAT : ( ( ) ( non empty V21() V22() V23() V51() V52() V53() V54() V55() V56() V57() ) Element of K19(REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( V6() V18( REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) , REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) ) ( Relation-like V6() non empty total V18( REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) , REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) V34() V35() V36() ) Element of K19(K20(REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ,REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) : ( ( ) ( Relation-like V34() V35() V36() ) set ) ) : ( ( ) ( ) set ) ) * (AffineMap (a : ( ( ) ( V28() V29() ext-real ) Real) ,b : ( ( ) ( V28() V29() ext-real ) Real) )) : ( ( V6() V18( REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) , REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) ) ( Relation-like V6() non empty total V18( REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) , REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) V34() V35() V36() continuous ) Element of K19(K20(REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ,REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) : ( ( ) ( Relation-like V34() V35() V36() ) set ) ) : ( ( ) ( ) set ) ) ) : ( (
V6() ) (
Relation-like V6() non
empty total V18(
REAL : ( ( ) ( non
empty V51()
V52()
V53()
V57()
V62() )
set ) ,
REAL : ( ( ) ( non
empty V51()
V52()
V53()
V57()
V62() )
set ) )
V34()
V35()
V36() )
Element of
K19(
K20(
REAL : ( ( ) ( non
empty V51()
V52()
V53()
V57()
V62() )
set ) ,
REAL : ( ( ) ( non
empty V51()
V52()
V53()
V57()
V62() )
set ) ) : ( ( ) (
Relation-like V34()
V35()
V36() )
set ) ) : ( ( ) ( )
set ) ) ,
A : ( ( non
empty closed_interval ) ( non
empty V51()
V52()
V53()
closed_interval V76() )
Subset of ( ( ) ( )
set ) ) ) : ( ( ) (
V28()
V29()
ext-real )
Element of
REAL : ( ( ) ( non
empty V51()
V52()
V53()
V57()
V62() )
set ) )
= (((1 : ( ( ) ( non empty V21() V22() V23() V27() V28() V29() V30() ext-real non negative V50() V51() V52() V53() V54() V55() V56() ) Element of NAT : ( ( ) ( non empty V21() V22() V23() V51() V52() V53() V54() V55() V56() V57() ) Element of K19(REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) : ( ( ) ( ) set ) ) ) / (a : ( ( ) ( V28() V29() ext-real ) Real) * (n : ( ( ) ( V21() V22() V23() V27() V28() V29() V30() ext-real non negative V50() V51() V52() V53() V54() V55() V56() ) Element of NAT : ( ( ) ( non empty V21() V22() V23() V51() V52() V53() V54() V55() V56() V57() ) Element of K19(REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) : ( ( ) ( ) set ) ) ) + 1 : ( ( ) ( non empty V21() V22() V23() V27() V28() V29() V30() ext-real non negative V50() V51() V52() V53() V54() V55() V56() ) Element of NAT : ( ( ) ( non empty V21() V22() V23() V51() V52() V53() V54() V55() V56() V57() ) Element of K19(REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( ) ( non empty V21() V22() V23() V27() V28() V29() V30() ext-real non negative ) Element of REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) ) : ( ( ) ( V28() V29() ext-real ) Element of REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) ) : ( ( ) ( V28() V29() ext-real ) Element of REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) (#) ((#Z (n : ( ( ) ( V21() V22() V23() V27() V28() V29() V30() ext-real non negative V50() V51() V52() V53() V54() V55() V56() ) Element of NAT : ( ( ) ( non empty V21() V22() V23() V51() V52() V53() V54() V55() V56() V57() ) Element of K19(REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) : ( ( ) ( ) set ) ) ) + 1 : ( ( ) ( non empty V21() V22() V23() V27() V28() V29() V30() ext-real non negative V50() V51() V52() V53() V54() V55() V56() ) Element of NAT : ( ( ) ( non empty V21() V22() V23() V51() V52() V53() V54() V55() V56() V57() ) Element of K19(REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( ) ( non empty V21() V22() V23() V27() V28() V29() V30() ext-real non negative ) Element of REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) ) : ( ( V6() V18( REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) , REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) ) ( Relation-like V6() non empty total V18( REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) , REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) V34() V35() V36() ) Element of K19(K20(REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ,REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) : ( ( ) ( Relation-like V34() V35() V36() ) set ) ) : ( ( ) ( ) set ) ) * (AffineMap (a : ( ( ) ( V28() V29() ext-real ) Real) ,b : ( ( ) ( V28() V29() ext-real ) Real) )) : ( ( V6() V18( REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) , REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) ) ( Relation-like V6() non empty total V18( REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) , REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) V34() V35() V36() continuous ) Element of K19(K20(REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ,REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) : ( ( ) ( Relation-like V34() V35() V36() ) set ) ) : ( ( ) ( ) set ) ) ) : ( ( V6() ) ( Relation-like V6() non empty total V18( REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) , REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) V34() V35() V36() ) Element of K19(K20(REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ,REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) : ( ( ) ( Relation-like V34() V35() V36() ) set ) ) : ( ( ) ( ) set ) ) ) : ( ( V6() ) ( Relation-like V6() non empty total V18( REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) , REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) V34() V35() V36() ) Element of K19(K20(REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ,REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) : ( ( ) ( Relation-like V34() V35() V36() ) set ) ) : ( ( ) ( ) set ) ) . (upper_bound A : ( ( non empty closed_interval ) ( non empty V51() V52() V53() closed_interval V76() ) Subset of ( ( ) ( ) set ) ) ) : ( ( ) ( V28() V29() ext-real ) Element of REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) ) : ( ( ) (
V28()
V29()
ext-real )
Element of
REAL : ( ( ) ( non
empty V51()
V52()
V53()
V57()
V62() )
set ) )
- (((1 : ( ( ) ( non empty V21() V22() V23() V27() V28() V29() V30() ext-real non negative V50() V51() V52() V53() V54() V55() V56() ) Element of NAT : ( ( ) ( non empty V21() V22() V23() V51() V52() V53() V54() V55() V56() V57() ) Element of K19(REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) : ( ( ) ( ) set ) ) ) / (a : ( ( ) ( V28() V29() ext-real ) Real) * (n : ( ( ) ( V21() V22() V23() V27() V28() V29() V30() ext-real non negative V50() V51() V52() V53() V54() V55() V56() ) Element of NAT : ( ( ) ( non empty V21() V22() V23() V51() V52() V53() V54() V55() V56() V57() ) Element of K19(REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) : ( ( ) ( ) set ) ) ) + 1 : ( ( ) ( non empty V21() V22() V23() V27() V28() V29() V30() ext-real non negative V50() V51() V52() V53() V54() V55() V56() ) Element of NAT : ( ( ) ( non empty V21() V22() V23() V51() V52() V53() V54() V55() V56() V57() ) Element of K19(REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( ) ( non empty V21() V22() V23() V27() V28() V29() V30() ext-real non negative ) Element of REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) ) : ( ( ) ( V28() V29() ext-real ) Element of REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) ) : ( ( ) ( V28() V29() ext-real ) Element of REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) (#) ((#Z (n : ( ( ) ( V21() V22() V23() V27() V28() V29() V30() ext-real non negative V50() V51() V52() V53() V54() V55() V56() ) Element of NAT : ( ( ) ( non empty V21() V22() V23() V51() V52() V53() V54() V55() V56() V57() ) Element of K19(REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) : ( ( ) ( ) set ) ) ) + 1 : ( ( ) ( non empty V21() V22() V23() V27() V28() V29() V30() ext-real non negative V50() V51() V52() V53() V54() V55() V56() ) Element of NAT : ( ( ) ( non empty V21() V22() V23() V51() V52() V53() V54() V55() V56() V57() ) Element of K19(REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( ) ( non empty V21() V22() V23() V27() V28() V29() V30() ext-real non negative ) Element of REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) ) : ( ( V6() V18( REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) , REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) ) ( Relation-like V6() non empty total V18( REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) , REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) V34() V35() V36() ) Element of K19(K20(REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ,REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) : ( ( ) ( Relation-like V34() V35() V36() ) set ) ) : ( ( ) ( ) set ) ) * (AffineMap (a : ( ( ) ( V28() V29() ext-real ) Real) ,b : ( ( ) ( V28() V29() ext-real ) Real) )) : ( ( V6() V18( REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) , REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) ) ( Relation-like V6() non empty total V18( REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) , REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) V34() V35() V36() continuous ) Element of K19(K20(REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ,REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) : ( ( ) ( Relation-like V34() V35() V36() ) set ) ) : ( ( ) ( ) set ) ) ) : ( ( V6() ) ( Relation-like V6() non empty total V18( REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) , REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) V34() V35() V36() ) Element of K19(K20(REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ,REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) : ( ( ) ( Relation-like V34() V35() V36() ) set ) ) : ( ( ) ( ) set ) ) ) : ( ( V6() ) ( Relation-like V6() non empty total V18( REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) , REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) V34() V35() V36() ) Element of K19(K20(REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ,REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) : ( ( ) ( Relation-like V34() V35() V36() ) set ) ) : ( ( ) ( ) set ) ) . (lower_bound A : ( ( non empty closed_interval ) ( non empty V51() V52() V53() closed_interval V76() ) Subset of ( ( ) ( ) set ) ) ) : ( ( ) ( V28() V29() ext-real ) Element of REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) ) : ( ( ) (
V28()
V29()
ext-real )
Element of
REAL : ( ( ) ( non
empty V51()
V52()
V53()
V57()
V62() )
set ) ) : ( ( ) (
V28()
V29()
ext-real )
Element of
REAL : ( ( ) ( non
empty V51()
V52()
V53()
V57()
V62() )
set ) ) ;
begin
theorem
for
Z being ( (
open ) (
V51()
V52()
V53()
open )
Subset of ( ( ) ( )
set ) )
for
f being ( (
V6() ) (
Relation-like V6()
V34()
V35()
V36() )
PartFunc of ,) st
Z : ( (
open ) (
V51()
V52()
V53()
open )
Subset of ( ( ) ( )
set ) )
c= dom ((1 : ( ( ) ( non empty V21() V22() V23() V27() V28() V29() V30() ext-real non negative V50() V51() V52() V53() V54() V55() V56() ) Element of NAT : ( ( ) ( non empty V21() V22() V23() V51() V52() V53() V54() V55() V56() V57() ) Element of K19(REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) : ( ( ) ( ) set ) ) ) / 2 : ( ( ) ( non empty V21() V22() V23() V27() V28() V29() V30() ext-real non negative V50() V51() V52() V53() V54() V55() V56() ) Element of NAT : ( ( ) ( non empty V21() V22() V23() V51() V52() V53() V54() V55() V56() V57() ) Element of K19(REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( ) ( V28() V29() ext-real ) Element of REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) (#) f : ( ( V6() ) ( Relation-like V6() V34() V35() V36() ) PartFunc of ,) ) : ( (
V6() ) (
Relation-like V6()
V34()
V35()
V36() )
Element of
K19(
K20(
REAL : ( ( ) ( non
empty V51()
V52()
V53()
V57()
V62() )
set ) ,
REAL : ( ( ) ( non
empty V51()
V52()
V53()
V57()
V62() )
set ) ) : ( ( ) (
Relation-like V34()
V35()
V36() )
set ) ) : ( ( ) ( )
set ) ) : ( ( ) ( )
set ) &
f : ( (
V6() ) (
Relation-like V6()
V34()
V35()
V36() )
PartFunc of ,)
= #Z 2 : ( ( ) ( non
empty V21()
V22()
V23()
V27()
V28()
V29()
V30()
ext-real non
negative V50()
V51()
V52()
V53()
V54()
V55()
V56() )
Element of
NAT : ( ( ) ( non
empty V21()
V22()
V23()
V51()
V52()
V53()
V54()
V55()
V56()
V57() )
Element of
K19(
REAL : ( ( ) ( non
empty V51()
V52()
V53()
V57()
V62() )
set ) ) : ( ( ) ( )
set ) ) ) : ( (
V6()
V18(
REAL : ( ( ) ( non
empty V51()
V52()
V53()
V57()
V62() )
set ) ,
REAL : ( ( ) ( non
empty V51()
V52()
V53()
V57()
V62() )
set ) ) ) (
Relation-like V6() non
empty total V18(
REAL : ( ( ) ( non
empty V51()
V52()
V53()
V57()
V62() )
set ) ,
REAL : ( ( ) ( non
empty V51()
V52()
V53()
V57()
V62() )
set ) )
V34()
V35()
V36() )
Element of
K19(
K20(
REAL : ( ( ) ( non
empty V51()
V52()
V53()
V57()
V62() )
set ) ,
REAL : ( ( ) ( non
empty V51()
V52()
V53()
V57()
V62() )
set ) ) : ( ( ) (
Relation-like V34()
V35()
V36() )
set ) ) : ( ( ) ( )
set ) ) holds
(
(1 : ( ( ) ( non empty V21() V22() V23() V27() V28() V29() V30() ext-real non negative V50() V51() V52() V53() V54() V55() V56() ) Element of NAT : ( ( ) ( non empty V21() V22() V23() V51() V52() V53() V54() V55() V56() V57() ) Element of K19(REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) : ( ( ) ( ) set ) ) ) / 2 : ( ( ) ( non empty V21() V22() V23() V27() V28() V29() V30() ext-real non negative V50() V51() V52() V53() V54() V55() V56() ) Element of NAT : ( ( ) ( non empty V21() V22() V23() V51() V52() V53() V54() V55() V56() V57() ) Element of K19(REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( ) (
V28()
V29()
ext-real )
Element of
REAL : ( ( ) ( non
empty V51()
V52()
V53()
V57()
V62() )
set ) )
(#) f : ( (
V6() ) (
Relation-like V6()
V34()
V35()
V36() )
PartFunc of ,) : ( (
V6() ) (
Relation-like V6()
V34()
V35()
V36() )
Element of
K19(
K20(
REAL : ( ( ) ( non
empty V51()
V52()
V53()
V57()
V62() )
set ) ,
REAL : ( ( ) ( non
empty V51()
V52()
V53()
V57()
V62() )
set ) ) : ( ( ) (
Relation-like V34()
V35()
V36() )
set ) ) : ( ( ) ( )
set ) )
is_differentiable_on Z : ( (
open ) (
V51()
V52()
V53()
open )
Subset of ( ( ) ( )
set ) ) & ( for
x being ( ( ) (
V28()
V29()
ext-real )
Real) st
x : ( ( ) (
V28()
V29()
ext-real )
Real)
in Z : ( (
open ) (
V51()
V52()
V53()
open )
Subset of ( ( ) ( )
set ) ) holds
(((1 : ( ( ) ( non empty V21() V22() V23() V27() V28() V29() V30() ext-real non negative V50() V51() V52() V53() V54() V55() V56() ) Element of NAT : ( ( ) ( non empty V21() V22() V23() V51() V52() V53() V54() V55() V56() V57() ) Element of K19(REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) : ( ( ) ( ) set ) ) ) / 2 : ( ( ) ( non empty V21() V22() V23() V27() V28() V29() V30() ext-real non negative V50() V51() V52() V53() V54() V55() V56() ) Element of NAT : ( ( ) ( non empty V21() V22() V23() V51() V52() V53() V54() V55() V56() V57() ) Element of K19(REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( ) ( V28() V29() ext-real ) Element of REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) (#) f : ( ( V6() ) ( Relation-like V6() V34() V35() V36() ) PartFunc of ,) ) : ( ( V6() ) ( Relation-like V6() V34() V35() V36() ) Element of K19(K20(REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ,REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) : ( ( ) ( Relation-like V34() V35() V36() ) set ) ) : ( ( ) ( ) set ) ) `| Z : ( ( open ) ( V51() V52() V53() open ) Subset of ( ( ) ( ) set ) ) ) : ( (
V6() ) (
Relation-like V6()
V34()
V35()
V36() )
Element of
K19(
K20(
REAL : ( ( ) ( non
empty V51()
V52()
V53()
V57()
V62() )
set ) ,
REAL : ( ( ) ( non
empty V51()
V52()
V53()
V57()
V62() )
set ) ) : ( ( ) (
Relation-like V34()
V35()
V36() )
set ) ) : ( ( ) ( )
set ) )
. x : ( ( ) (
V28()
V29()
ext-real )
Real) : ( ( ) (
V28()
V29()
ext-real )
Element of
REAL : ( ( ) ( non
empty V51()
V52()
V53()
V57()
V62() )
set ) )
= x : ( ( ) (
V28()
V29()
ext-real )
Real) ) ) ;
theorem
for
A being ( ( non
empty closed_interval ) ( non
empty V51()
V52()
V53()
closed_interval V76() )
Subset of ( ( ) ( )
set ) )
for
Z being ( (
open ) (
V51()
V52()
V53()
open )
Subset of ( ( ) ( )
set ) )
for
f being ( (
V6() ) (
Relation-like V6()
V34()
V35()
V36() )
PartFunc of ,) st
A : ( ( non
empty closed_interval ) ( non
empty V51()
V52()
V53()
closed_interval V76() )
Subset of ( ( ) ( )
set ) )
c= Z : ( (
open ) (
V51()
V52()
V53()
open )
Subset of ( ( ) ( )
set ) ) &
f : ( (
V6() ) (
Relation-like V6()
V34()
V35()
V36() )
PartFunc of ,)
= #Z 2 : ( ( ) ( non
empty V21()
V22()
V23()
V27()
V28()
V29()
V30()
ext-real non
negative V50()
V51()
V52()
V53()
V54()
V55()
V56() )
Element of
NAT : ( ( ) ( non
empty V21()
V22()
V23()
V51()
V52()
V53()
V54()
V55()
V56()
V57() )
Element of
K19(
REAL : ( ( ) ( non
empty V51()
V52()
V53()
V57()
V62() )
set ) ) : ( ( ) ( )
set ) ) ) : ( (
V6()
V18(
REAL : ( ( ) ( non
empty V51()
V52()
V53()
V57()
V62() )
set ) ,
REAL : ( ( ) ( non
empty V51()
V52()
V53()
V57()
V62() )
set ) ) ) (
Relation-like V6() non
empty total V18(
REAL : ( ( ) ( non
empty V51()
V52()
V53()
V57()
V62() )
set ) ,
REAL : ( ( ) ( non
empty V51()
V52()
V53()
V57()
V62() )
set ) )
V34()
V35()
V36() )
Element of
K19(
K20(
REAL : ( ( ) ( non
empty V51()
V52()
V53()
V57()
V62() )
set ) ,
REAL : ( ( ) ( non
empty V51()
V52()
V53()
V57()
V62() )
set ) ) : ( ( ) (
Relation-like V34()
V35()
V36() )
set ) ) : ( ( ) ( )
set ) ) &
Z : ( (
open ) (
V51()
V52()
V53()
open )
Subset of ( ( ) ( )
set ) )
= dom ((1 : ( ( ) ( non empty V21() V22() V23() V27() V28() V29() V30() ext-real non negative V50() V51() V52() V53() V54() V55() V56() ) Element of NAT : ( ( ) ( non empty V21() V22() V23() V51() V52() V53() V54() V55() V56() V57() ) Element of K19(REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) : ( ( ) ( ) set ) ) ) / 2 : ( ( ) ( non empty V21() V22() V23() V27() V28() V29() V30() ext-real non negative V50() V51() V52() V53() V54() V55() V56() ) Element of NAT : ( ( ) ( non empty V21() V22() V23() V51() V52() V53() V54() V55() V56() V57() ) Element of K19(REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( ) ( V28() V29() ext-real ) Element of REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) (#) f : ( ( V6() ) ( Relation-like V6() V34() V35() V36() ) PartFunc of ,) ) : ( (
V6() ) (
Relation-like V6()
V34()
V35()
V36() )
Element of
K19(
K20(
REAL : ( ( ) ( non
empty V51()
V52()
V53()
V57()
V62() )
set ) ,
REAL : ( ( ) ( non
empty V51()
V52()
V53()
V57()
V62() )
set ) ) : ( ( ) (
Relation-like V34()
V35()
V36() )
set ) ) : ( ( ) ( )
set ) ) : ( ( ) ( )
set ) holds
integral (
(id Z : ( ( open ) ( V51() V52() V53() open ) Subset of ( ( ) ( ) set ) ) ) : ( (
V6() ) (
Relation-like b2 : ( (
open ) (
V51()
V52()
V53()
open )
Subset of ( ( ) ( )
set ) )
-defined b2 : ( (
open ) (
V51()
V52()
V53()
open )
Subset of ( ( ) ( )
set ) )
-valued V6()
total V34()
V35()
V36()
continuous V49() )
Element of
K19(
K20(
REAL : ( ( ) ( non
empty V51()
V52()
V53()
V57()
V62() )
set ) ,
REAL : ( ( ) ( non
empty V51()
V52()
V53()
V57()
V62() )
set ) ) : ( ( ) (
Relation-like V34()
V35()
V36() )
set ) ) : ( ( ) ( )
set ) ) ,
A : ( ( non
empty closed_interval ) ( non
empty V51()
V52()
V53()
closed_interval V76() )
Subset of ( ( ) ( )
set ) ) ) : ( ( ) (
V28()
V29()
ext-real )
Element of
REAL : ( ( ) ( non
empty V51()
V52()
V53()
V57()
V62() )
set ) )
= (((1 : ( ( ) ( non empty V21() V22() V23() V27() V28() V29() V30() ext-real non negative V50() V51() V52() V53() V54() V55() V56() ) Element of NAT : ( ( ) ( non empty V21() V22() V23() V51() V52() V53() V54() V55() V56() V57() ) Element of K19(REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) : ( ( ) ( ) set ) ) ) / 2 : ( ( ) ( non empty V21() V22() V23() V27() V28() V29() V30() ext-real non negative V50() V51() V52() V53() V54() V55() V56() ) Element of NAT : ( ( ) ( non empty V21() V22() V23() V51() V52() V53() V54() V55() V56() V57() ) Element of K19(REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( ) ( V28() V29() ext-real ) Element of REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) (#) f : ( ( V6() ) ( Relation-like V6() V34() V35() V36() ) PartFunc of ,) ) : ( ( V6() ) ( Relation-like V6() V34() V35() V36() ) Element of K19(K20(REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ,REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) : ( ( ) ( Relation-like V34() V35() V36() ) set ) ) : ( ( ) ( ) set ) ) . (upper_bound A : ( ( non empty closed_interval ) ( non empty V51() V52() V53() closed_interval V76() ) Subset of ( ( ) ( ) set ) ) ) : ( ( ) ( V28() V29() ext-real ) Element of REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) ) : ( ( ) (
V28()
V29()
ext-real )
Element of
REAL : ( ( ) ( non
empty V51()
V52()
V53()
V57()
V62() )
set ) )
- (((1 : ( ( ) ( non empty V21() V22() V23() V27() V28() V29() V30() ext-real non negative V50() V51() V52() V53() V54() V55() V56() ) Element of NAT : ( ( ) ( non empty V21() V22() V23() V51() V52() V53() V54() V55() V56() V57() ) Element of K19(REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) : ( ( ) ( ) set ) ) ) / 2 : ( ( ) ( non empty V21() V22() V23() V27() V28() V29() V30() ext-real non negative V50() V51() V52() V53() V54() V55() V56() ) Element of NAT : ( ( ) ( non empty V21() V22() V23() V51() V52() V53() V54() V55() V56() V57() ) Element of K19(REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( ) ( V28() V29() ext-real ) Element of REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) (#) f : ( ( V6() ) ( Relation-like V6() V34() V35() V36() ) PartFunc of ,) ) : ( ( V6() ) ( Relation-like V6() V34() V35() V36() ) Element of K19(K20(REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ,REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) : ( ( ) ( Relation-like V34() V35() V36() ) set ) ) : ( ( ) ( ) set ) ) . (lower_bound A : ( ( non empty closed_interval ) ( non empty V51() V52() V53() closed_interval V76() ) Subset of ( ( ) ( ) set ) ) ) : ( ( ) ( V28() V29() ext-real ) Element of REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) ) : ( ( ) (
V28()
V29()
ext-real )
Element of
REAL : ( ( ) ( non
empty V51()
V52()
V53()
V57()
V62() )
set ) ) : ( ( ) (
V28()
V29()
ext-real )
Element of
REAL : ( ( ) ( non
empty V51()
V52()
V53()
V57()
V62() )
set ) ) ;
theorem
for
A being ( ( non
empty closed_interval ) ( non
empty V51()
V52()
V53()
closed_interval V76() )
Subset of ( ( ) ( )
set ) )
for
Z being ( (
open ) (
V51()
V52()
V53()
open )
Subset of ( ( ) ( )
set ) )
for
f being ( (
V6() ) (
Relation-like V6()
V34()
V35()
V36() )
PartFunc of ,) st not
0 : ( ( ) (
V21()
V22()
V23()
V27()
V28()
V29()
V30()
ext-real non
negative V50()
V51()
V52()
V53()
V54()
V55()
V56() )
Element of
NAT : ( ( ) ( non
empty V21()
V22()
V23()
V51()
V52()
V53()
V54()
V55()
V56()
V57() )
Element of
K19(
REAL : ( ( ) ( non
empty V51()
V52()
V53()
V57()
V62() )
set ) ) : ( ( ) ( )
set ) ) )
in Z : ( (
open ) (
V51()
V52()
V53()
open )
Subset of ( ( ) ( )
set ) ) &
A : ( ( non
empty closed_interval ) ( non
empty V51()
V52()
V53()
closed_interval V76() )
Subset of ( ( ) ( )
set ) )
c= Z : ( (
open ) (
V51()
V52()
V53()
open )
Subset of ( ( ) ( )
set ) ) & ( for
x being ( ( ) (
V28()
V29()
ext-real )
Real) st
x : ( ( ) (
V28()
V29()
ext-real )
Real)
in Z : ( (
open ) (
V51()
V52()
V53()
open )
Subset of ( ( ) ( )
set ) ) holds
(
x : ( ( ) (
V28()
V29()
ext-real )
Real)
<> 0 : ( ( ) (
V21()
V22()
V23()
V27()
V28()
V29()
V30()
ext-real non
negative V50()
V51()
V52()
V53()
V54()
V55()
V56() )
Element of
NAT : ( ( ) ( non
empty V21()
V22()
V23()
V51()
V52()
V53()
V54()
V55()
V56()
V57() )
Element of
K19(
REAL : ( ( ) ( non
empty V51()
V52()
V53()
V57()
V62() )
set ) ) : ( ( ) ( )
set ) ) ) &
f : ( (
V6() ) (
Relation-like V6()
V34()
V35()
V36() )
PartFunc of ,)
. x : ( ( ) (
V28()
V29()
ext-real )
Real) : ( ( ) (
V28()
V29()
ext-real )
Element of
REAL : ( ( ) ( non
empty V51()
V52()
V53()
V57()
V62() )
set ) )
= - (1 : ( ( ) ( non empty V21() V22() V23() V27() V28() V29() V30() ext-real non negative V50() V51() V52() V53() V54() V55() V56() ) Element of NAT : ( ( ) ( non empty V21() V22() V23() V51() V52() V53() V54() V55() V56() V57() ) Element of K19(REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) : ( ( ) ( ) set ) ) ) / (x : ( ( ) ( V28() V29() ext-real ) Real) ^2) : ( ( ) ( V28() V29() ext-real ) Element of REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) ) : ( ( ) (
V28()
V29()
ext-real )
Element of
REAL : ( ( ) ( non
empty V51()
V52()
V53()
V57()
V62() )
set ) ) : ( ( ) (
V28()
V29()
ext-real )
Element of
REAL : ( ( ) ( non
empty V51()
V52()
V53()
V57()
V62() )
set ) ) ) ) &
dom f : ( (
V6() ) (
Relation-like V6()
V34()
V35()
V36() )
PartFunc of ,) : ( ( ) ( )
set )
= Z : ( (
open ) (
V51()
V52()
V53()
open )
Subset of ( ( ) ( )
set ) ) &
f : ( (
V6() ) (
Relation-like V6()
V34()
V35()
V36() )
PartFunc of ,)
| A : ( ( non
empty closed_interval ) ( non
empty V51()
V52()
V53()
closed_interval V76() )
Subset of ( ( ) ( )
set ) ) : ( (
V6() ) (
Relation-like V6()
V34()
V35()
V36() )
Element of
K19(
K20(
REAL : ( ( ) ( non
empty V51()
V52()
V53()
V57()
V62() )
set ) ,
REAL : ( ( ) ( non
empty V51()
V52()
V53()
V57()
V62() )
set ) ) : ( ( ) (
Relation-like V34()
V35()
V36() )
set ) ) : ( ( ) ( )
set ) ) is
continuous holds
integral (
f : ( (
V6() ) (
Relation-like V6()
V34()
V35()
V36() )
PartFunc of ,) ,
A : ( ( non
empty closed_interval ) ( non
empty V51()
V52()
V53()
closed_interval V76() )
Subset of ( ( ) ( )
set ) ) ) : ( ( ) (
V28()
V29()
ext-real )
Element of
REAL : ( ( ) ( non
empty V51()
V52()
V53()
V57()
V62() )
set ) )
= (((id Z : ( ( open ) ( V51() V52() V53() open ) Subset of ( ( ) ( ) set ) ) ) : ( ( V6() ) ( Relation-like b2 : ( ( open ) ( V51() V52() V53() open ) Subset of ( ( ) ( ) set ) ) -defined b2 : ( ( open ) ( V51() V52() V53() open ) Subset of ( ( ) ( ) set ) ) -valued V6() total V34() V35() V36() continuous V49() ) Element of K19(K20(REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ,REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) : ( ( ) ( Relation-like V34() V35() V36() ) set ) ) : ( ( ) ( ) set ) ) ^) : ( ( V6() ) ( Relation-like V6() V34() V35() V36() ) Element of K19(K20(REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ,REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) : ( ( ) ( Relation-like V34() V35() V36() ) set ) ) : ( ( ) ( ) set ) ) . (upper_bound A : ( ( non empty closed_interval ) ( non empty V51() V52() V53() closed_interval V76() ) Subset of ( ( ) ( ) set ) ) ) : ( ( ) ( V28() V29() ext-real ) Element of REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) ) : ( ( ) (
V28()
V29()
ext-real )
Element of
REAL : ( ( ) ( non
empty V51()
V52()
V53()
V57()
V62() )
set ) )
- (((id Z : ( ( open ) ( V51() V52() V53() open ) Subset of ( ( ) ( ) set ) ) ) : ( ( V6() ) ( Relation-like b2 : ( ( open ) ( V51() V52() V53() open ) Subset of ( ( ) ( ) set ) ) -defined b2 : ( ( open ) ( V51() V52() V53() open ) Subset of ( ( ) ( ) set ) ) -valued V6() total V34() V35() V36() continuous V49() ) Element of K19(K20(REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ,REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) : ( ( ) ( Relation-like V34() V35() V36() ) set ) ) : ( ( ) ( ) set ) ) ^) : ( ( V6() ) ( Relation-like V6() V34() V35() V36() ) Element of K19(K20(REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ,REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) : ( ( ) ( Relation-like V34() V35() V36() ) set ) ) : ( ( ) ( ) set ) ) . (lower_bound A : ( ( non empty closed_interval ) ( non empty V51() V52() V53() closed_interval V76() ) Subset of ( ( ) ( ) set ) ) ) : ( ( ) ( V28() V29() ext-real ) Element of REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) ) : ( ( ) (
V28()
V29()
ext-real )
Element of
REAL : ( ( ) ( non
empty V51()
V52()
V53()
V57()
V62() )
set ) ) : ( ( ) (
V28()
V29()
ext-real )
Element of
REAL : ( ( ) ( non
empty V51()
V52()
V53()
V57()
V62() )
set ) ) ;
theorem
for
A being ( ( non
empty closed_interval ) ( non
empty V51()
V52()
V53()
closed_interval V76() )
Subset of ( ( ) ( )
set ) )
for
Z being ( (
open ) (
V51()
V52()
V53()
open )
Subset of ( ( ) ( )
set ) )
for
f1,
f2,
f being ( (
V6() ) (
Relation-like V6()
V34()
V35()
V36() )
PartFunc of ,) st
A : ( ( non
empty closed_interval ) ( non
empty V51()
V52()
V53()
closed_interval V76() )
Subset of ( ( ) ( )
set ) )
c= Z : ( (
open ) (
V51()
V52()
V53()
open )
Subset of ( ( ) ( )
set ) ) &
f1 : ( (
V6() ) (
Relation-like V6()
V34()
V35()
V36() )
PartFunc of ,)
= #Z 2 : ( ( ) ( non
empty V21()
V22()
V23()
V27()
V28()
V29()
V30()
ext-real non
negative V50()
V51()
V52()
V53()
V54()
V55()
V56() )
Element of
NAT : ( ( ) ( non
empty V21()
V22()
V23()
V51()
V52()
V53()
V54()
V55()
V56()
V57() )
Element of
K19(
REAL : ( ( ) ( non
empty V51()
V52()
V53()
V57()
V62() )
set ) ) : ( ( ) ( )
set ) ) ) : ( (
V6()
V18(
REAL : ( ( ) ( non
empty V51()
V52()
V53()
V57()
V62() )
set ) ,
REAL : ( ( ) ( non
empty V51()
V52()
V53()
V57()
V62() )
set ) ) ) (
Relation-like V6() non
empty total V18(
REAL : ( ( ) ( non
empty V51()
V52()
V53()
V57()
V62() )
set ) ,
REAL : ( ( ) ( non
empty V51()
V52()
V53()
V57()
V62() )
set ) )
V34()
V35()
V36() )
Element of
K19(
K20(
REAL : ( ( ) ( non
empty V51()
V52()
V53()
V57()
V62() )
set ) ,
REAL : ( ( ) ( non
empty V51()
V52()
V53()
V57()
V62() )
set ) ) : ( ( ) (
Relation-like V34()
V35()
V36() )
set ) ) : ( ( ) ( )
set ) ) & ( for
x being ( ( ) (
V28()
V29()
ext-real )
Real) st
x : ( ( ) (
V28()
V29()
ext-real )
Real)
in Z : ( (
open ) (
V51()
V52()
V53()
open )
Subset of ( ( ) ( )
set ) ) holds
(
f2 : ( (
V6() ) (
Relation-like V6()
V34()
V35()
V36() )
PartFunc of ,)
. x : ( ( ) (
V28()
V29()
ext-real )
Real) : ( ( ) (
V28()
V29()
ext-real )
Element of
REAL : ( ( ) ( non
empty V51()
V52()
V53()
V57()
V62() )
set ) )
= 1 : ( ( ) ( non
empty V21()
V22()
V23()
V27()
V28()
V29()
V30()
ext-real non
negative V50()
V51()
V52()
V53()
V54()
V55()
V56() )
Element of
NAT : ( ( ) ( non
empty V21()
V22()
V23()
V51()
V52()
V53()
V54()
V55()
V56()
V57() )
Element of
K19(
REAL : ( ( ) ( non
empty V51()
V52()
V53()
V57()
V62() )
set ) ) : ( ( ) ( )
set ) ) ) &
x : ( ( ) (
V28()
V29()
ext-real )
Real)
<> 0 : ( ( ) (
V21()
V22()
V23()
V27()
V28()
V29()
V30()
ext-real non
negative V50()
V51()
V52()
V53()
V54()
V55()
V56() )
Element of
NAT : ( ( ) ( non
empty V21()
V22()
V23()
V51()
V52()
V53()
V54()
V55()
V56()
V57() )
Element of
K19(
REAL : ( ( ) ( non
empty V51()
V52()
V53()
V57()
V62() )
set ) ) : ( ( ) ( )
set ) ) ) &
f : ( (
V6() ) (
Relation-like V6()
V34()
V35()
V36() )
PartFunc of ,)
. x : ( ( ) (
V28()
V29()
ext-real )
Real) : ( ( ) (
V28()
V29()
ext-real )
Element of
REAL : ( ( ) ( non
empty V51()
V52()
V53()
V57()
V62() )
set ) )
= (2 : ( ( ) ( non empty V21() V22() V23() V27() V28() V29() V30() ext-real non negative V50() V51() V52() V53() V54() V55() V56() ) Element of NAT : ( ( ) ( non empty V21() V22() V23() V51() V52() V53() V54() V55() V56() V57() ) Element of K19(REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) : ( ( ) ( ) set ) ) ) * x : ( ( ) ( V28() V29() ext-real ) Real) ) : ( ( ) (
V28()
V29()
ext-real )
Element of
REAL : ( ( ) ( non
empty V51()
V52()
V53()
V57()
V62() )
set ) )
/ ((1 : ( ( ) ( non empty V21() V22() V23() V27() V28() V29() V30() ext-real non negative V50() V51() V52() V53() V54() V55() V56() ) Element of NAT : ( ( ) ( non empty V21() V22() V23() V51() V52() V53() V54() V55() V56() V57() ) Element of K19(REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) : ( ( ) ( ) set ) ) ) + (x : ( ( ) ( V28() V29() ext-real ) Real) ^2) : ( ( ) ( V28() V29() ext-real ) Element of REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) ) : ( ( ) ( V28() V29() ext-real ) Element of REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) ^2) : ( ( ) (
V28()
V29()
ext-real )
Element of
REAL : ( ( ) ( non
empty V51()
V52()
V53()
V57()
V62() )
set ) ) : ( ( ) (
V28()
V29()
ext-real )
Element of
REAL : ( ( ) ( non
empty V51()
V52()
V53()
V57()
V62() )
set ) ) ) ) &
dom (f1 : ( ( V6() ) ( Relation-like V6() V34() V35() V36() ) PartFunc of ,) / (f2 : ( ( V6() ) ( Relation-like V6() V34() V35() V36() ) PartFunc of ,) + f1 : ( ( V6() ) ( Relation-like V6() V34() V35() V36() ) PartFunc of ,) ) : ( ( V6() ) ( Relation-like V6() V34() V35() V36() ) Element of K19(K20(REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ,REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) : ( ( ) ( Relation-like V34() V35() V36() ) set ) ) : ( ( ) ( ) set ) ) ) : ( (
V6() ) (
Relation-like V6()
V34()
V35()
V36() )
Element of
K19(
K20(
REAL : ( ( ) ( non
empty V51()
V52()
V53()
V57()
V62() )
set ) ,
REAL : ( ( ) ( non
empty V51()
V52()
V53()
V57()
V62() )
set ) ) : ( ( ) (
Relation-like V34()
V35()
V36() )
set ) ) : ( ( ) ( )
set ) ) : ( ( ) ( )
set )
= Z : ( (
open ) (
V51()
V52()
V53()
open )
Subset of ( ( ) ( )
set ) ) &
Z : ( (
open ) (
V51()
V52()
V53()
open )
Subset of ( ( ) ( )
set ) )
= dom f : ( (
V6() ) (
Relation-like V6()
V34()
V35()
V36() )
PartFunc of ,) : ( ( ) ( )
set ) &
f : ( (
V6() ) (
Relation-like V6()
V34()
V35()
V36() )
PartFunc of ,)
| A : ( ( non
empty closed_interval ) ( non
empty V51()
V52()
V53()
closed_interval V76() )
Subset of ( ( ) ( )
set ) ) : ( (
V6() ) (
Relation-like V6()
V34()
V35()
V36() )
Element of
K19(
K20(
REAL : ( ( ) ( non
empty V51()
V52()
V53()
V57()
V62() )
set ) ,
REAL : ( ( ) ( non
empty V51()
V52()
V53()
V57()
V62() )
set ) ) : ( ( ) (
Relation-like V34()
V35()
V36() )
set ) ) : ( ( ) ( )
set ) ) is
continuous holds
integral (
f : ( (
V6() ) (
Relation-like V6()
V34()
V35()
V36() )
PartFunc of ,) ,
A : ( ( non
empty closed_interval ) ( non
empty V51()
V52()
V53()
closed_interval V76() )
Subset of ( ( ) ( )
set ) ) ) : ( ( ) (
V28()
V29()
ext-real )
Element of
REAL : ( ( ) ( non
empty V51()
V52()
V53()
V57()
V62() )
set ) )
= ((f1 : ( ( V6() ) ( Relation-like V6() V34() V35() V36() ) PartFunc of ,) / (f2 : ( ( V6() ) ( Relation-like V6() V34() V35() V36() ) PartFunc of ,) + f1 : ( ( V6() ) ( Relation-like V6() V34() V35() V36() ) PartFunc of ,) ) : ( ( V6() ) ( Relation-like V6() V34() V35() V36() ) Element of K19(K20(REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ,REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) : ( ( ) ( Relation-like V34() V35() V36() ) set ) ) : ( ( ) ( ) set ) ) ) : ( ( V6() ) ( Relation-like V6() V34() V35() V36() ) Element of K19(K20(REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ,REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) : ( ( ) ( Relation-like V34() V35() V36() ) set ) ) : ( ( ) ( ) set ) ) . (upper_bound A : ( ( non empty closed_interval ) ( non empty V51() V52() V53() closed_interval V76() ) Subset of ( ( ) ( ) set ) ) ) : ( ( ) ( V28() V29() ext-real ) Element of REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) ) : ( ( ) (
V28()
V29()
ext-real )
Element of
REAL : ( ( ) ( non
empty V51()
V52()
V53()
V57()
V62() )
set ) )
- ((f1 : ( ( V6() ) ( Relation-like V6() V34() V35() V36() ) PartFunc of ,) / (f2 : ( ( V6() ) ( Relation-like V6() V34() V35() V36() ) PartFunc of ,) + f1 : ( ( V6() ) ( Relation-like V6() V34() V35() V36() ) PartFunc of ,) ) : ( ( V6() ) ( Relation-like V6() V34() V35() V36() ) Element of K19(K20(REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ,REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) : ( ( ) ( Relation-like V34() V35() V36() ) set ) ) : ( ( ) ( ) set ) ) ) : ( ( V6() ) ( Relation-like V6() V34() V35() V36() ) Element of K19(K20(REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ,REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) : ( ( ) ( Relation-like V34() V35() V36() ) set ) ) : ( ( ) ( ) set ) ) . (lower_bound A : ( ( non empty closed_interval ) ( non empty V51() V52() V53() closed_interval V76() ) Subset of ( ( ) ( ) set ) ) ) : ( ( ) ( V28() V29() ext-real ) Element of REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) ) : ( ( ) (
V28()
V29()
ext-real )
Element of
REAL : ( ( ) ( non
empty V51()
V52()
V53()
V57()
V62() )
set ) ) : ( ( ) (
V28()
V29()
ext-real )
Element of
REAL : ( ( ) ( non
empty V51()
V52()
V53()
V57()
V62() )
set ) ) ;
theorem
for
Z being ( (
open ) (
V51()
V52()
V53()
open )
Subset of ( ( ) ( )
set ) ) st
Z : ( (
open ) (
V51()
V52()
V53()
open )
Subset of ( ( ) ( )
set ) )
c= dom (tan : ( ( V6() ) ( Relation-like V6() V34() V35() V36() ) Element of K19(K20(REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ,REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) : ( ( ) ( Relation-like V34() V35() V36() ) set ) ) : ( ( ) ( ) set ) ) + sec : ( ( V6() ) ( Relation-like V6() V34() V35() V36() ) Element of K19(K20(REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ,REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) : ( ( ) ( Relation-like V34() V35() V36() ) set ) ) : ( ( ) ( ) set ) ) ) : ( (
V6() ) (
Relation-like V6()
V34()
V35()
V36() )
Element of
K19(
K20(
REAL : ( ( ) ( non
empty V51()
V52()
V53()
V57()
V62() )
set ) ,
REAL : ( ( ) ( non
empty V51()
V52()
V53()
V57()
V62() )
set ) ) : ( ( ) (
Relation-like V34()
V35()
V36() )
set ) ) : ( ( ) ( )
set ) ) : ( ( ) ( )
set ) & ( for
x being ( ( ) (
V28()
V29()
ext-real )
Real) st
x : ( ( ) (
V28()
V29()
ext-real )
Real)
in Z : ( (
open ) (
V51()
V52()
V53()
open )
Subset of ( ( ) ( )
set ) ) holds
( 1 : ( ( ) ( non
empty V21()
V22()
V23()
V27()
V28()
V29()
V30()
ext-real non
negative V50()
V51()
V52()
V53()
V54()
V55()
V56() )
Element of
NAT : ( ( ) ( non
empty V21()
V22()
V23()
V51()
V52()
V53()
V54()
V55()
V56()
V57() )
Element of
K19(
REAL : ( ( ) ( non
empty V51()
V52()
V53()
V57()
V62() )
set ) ) : ( ( ) ( )
set ) ) )
+ (sin : ( ( V6() V18( REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) , REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) ) ( Relation-like V6() non empty total V18( REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) , REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) V34() V35() V36() continuous ) Element of K19(K20(REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ,REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) : ( ( ) ( Relation-like V34() V35() V36() ) set ) ) : ( ( ) ( ) set ) ) . x : ( ( ) ( V28() V29() ext-real ) Real) ) : ( ( ) (
V28()
V29()
ext-real )
Element of
REAL : ( ( ) ( non
empty V51()
V52()
V53()
V57()
V62() )
set ) ) : ( ( ) (
V28()
V29()
ext-real )
Element of
REAL : ( ( ) ( non
empty V51()
V52()
V53()
V57()
V62() )
set ) )
<> 0 : ( ( ) (
V21()
V22()
V23()
V27()
V28()
V29()
V30()
ext-real non
negative V50()
V51()
V52()
V53()
V54()
V55()
V56() )
Element of
NAT : ( ( ) ( non
empty V21()
V22()
V23()
V51()
V52()
V53()
V54()
V55()
V56()
V57() )
Element of
K19(
REAL : ( ( ) ( non
empty V51()
V52()
V53()
V57()
V62() )
set ) ) : ( ( ) ( )
set ) ) ) & 1 : ( ( ) ( non
empty V21()
V22()
V23()
V27()
V28()
V29()
V30()
ext-real non
negative V50()
V51()
V52()
V53()
V54()
V55()
V56() )
Element of
NAT : ( ( ) ( non
empty V21()
V22()
V23()
V51()
V52()
V53()
V54()
V55()
V56()
V57() )
Element of
K19(
REAL : ( ( ) ( non
empty V51()
V52()
V53()
V57()
V62() )
set ) ) : ( ( ) ( )
set ) ) )
- (sin : ( ( V6() V18( REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) , REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) ) ( Relation-like V6() non empty total V18( REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) , REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) V34() V35() V36() continuous ) Element of K19(K20(REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ,REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) : ( ( ) ( Relation-like V34() V35() V36() ) set ) ) : ( ( ) ( ) set ) ) . x : ( ( ) ( V28() V29() ext-real ) Real) ) : ( ( ) (
V28()
V29()
ext-real )
Element of
REAL : ( ( ) ( non
empty V51()
V52()
V53()
V57()
V62() )
set ) ) : ( ( ) (
V28()
V29()
ext-real )
Element of
REAL : ( ( ) ( non
empty V51()
V52()
V53()
V57()
V62() )
set ) )
<> 0 : ( ( ) (
V21()
V22()
V23()
V27()
V28()
V29()
V30()
ext-real non
negative V50()
V51()
V52()
V53()
V54()
V55()
V56() )
Element of
NAT : ( ( ) ( non
empty V21()
V22()
V23()
V51()
V52()
V53()
V54()
V55()
V56()
V57() )
Element of
K19(
REAL : ( ( ) ( non
empty V51()
V52()
V53()
V57()
V62() )
set ) ) : ( ( ) ( )
set ) ) ) ) ) holds
(
tan : ( (
V6() ) (
Relation-like V6()
V34()
V35()
V36() )
Element of
K19(
K20(
REAL : ( ( ) ( non
empty V51()
V52()
V53()
V57()
V62() )
set ) ,
REAL : ( ( ) ( non
empty V51()
V52()
V53()
V57()
V62() )
set ) ) : ( ( ) (
Relation-like V34()
V35()
V36() )
set ) ) : ( ( ) ( )
set ) )
+ sec : ( (
V6() ) (
Relation-like V6()
V34()
V35()
V36() )
Element of
K19(
K20(
REAL : ( ( ) ( non
empty V51()
V52()
V53()
V57()
V62() )
set ) ,
REAL : ( ( ) ( non
empty V51()
V52()
V53()
V57()
V62() )
set ) ) : ( ( ) (
Relation-like V34()
V35()
V36() )
set ) ) : ( ( ) ( )
set ) ) : ( (
V6() ) (
Relation-like V6()
V34()
V35()
V36() )
Element of
K19(
K20(
REAL : ( ( ) ( non
empty V51()
V52()
V53()
V57()
V62() )
set ) ,
REAL : ( ( ) ( non
empty V51()
V52()
V53()
V57()
V62() )
set ) ) : ( ( ) (
Relation-like V34()
V35()
V36() )
set ) ) : ( ( ) ( )
set ) )
is_differentiable_on Z : ( (
open ) (
V51()
V52()
V53()
open )
Subset of ( ( ) ( )
set ) ) & ( for
x being ( ( ) (
V28()
V29()
ext-real )
Real) st
x : ( ( ) (
V28()
V29()
ext-real )
Real)
in Z : ( (
open ) (
V51()
V52()
V53()
open )
Subset of ( ( ) ( )
set ) ) holds
((tan : ( ( V6() ) ( Relation-like V6() V34() V35() V36() ) Element of K19(K20(REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ,REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) : ( ( ) ( Relation-like V34() V35() V36() ) set ) ) : ( ( ) ( ) set ) ) + sec : ( ( V6() ) ( Relation-like V6() V34() V35() V36() ) Element of K19(K20(REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ,REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) : ( ( ) ( Relation-like V34() V35() V36() ) set ) ) : ( ( ) ( ) set ) ) ) : ( ( V6() ) ( Relation-like V6() V34() V35() V36() ) Element of K19(K20(REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ,REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) : ( ( ) ( Relation-like V34() V35() V36() ) set ) ) : ( ( ) ( ) set ) ) `| Z : ( ( open ) ( V51() V52() V53() open ) Subset of ( ( ) ( ) set ) ) ) : ( (
V6() ) (
Relation-like V6()
V34()
V35()
V36() )
Element of
K19(
K20(
REAL : ( ( ) ( non
empty V51()
V52()
V53()
V57()
V62() )
set ) ,
REAL : ( ( ) ( non
empty V51()
V52()
V53()
V57()
V62() )
set ) ) : ( ( ) (
Relation-like V34()
V35()
V36() )
set ) ) : ( ( ) ( )
set ) )
. x : ( ( ) (
V28()
V29()
ext-real )
Real) : ( ( ) (
V28()
V29()
ext-real )
Element of
REAL : ( ( ) ( non
empty V51()
V52()
V53()
V57()
V62() )
set ) )
= 1 : ( ( ) ( non
empty V21()
V22()
V23()
V27()
V28()
V29()
V30()
ext-real non
negative V50()
V51()
V52()
V53()
V54()
V55()
V56() )
Element of
NAT : ( ( ) ( non
empty V21()
V22()
V23()
V51()
V52()
V53()
V54()
V55()
V56()
V57() )
Element of
K19(
REAL : ( ( ) ( non
empty V51()
V52()
V53()
V57()
V62() )
set ) ) : ( ( ) ( )
set ) ) )
/ (1 : ( ( ) ( non empty V21() V22() V23() V27() V28() V29() V30() ext-real non negative V50() V51() V52() V53() V54() V55() V56() ) Element of NAT : ( ( ) ( non empty V21() V22() V23() V51() V52() V53() V54() V55() V56() V57() ) Element of K19(REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) : ( ( ) ( ) set ) ) ) - (sin : ( ( V6() V18( REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) , REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) ) ( Relation-like V6() non empty total V18( REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) , REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) V34() V35() V36() continuous ) Element of K19(K20(REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ,REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) : ( ( ) ( Relation-like V34() V35() V36() ) set ) ) : ( ( ) ( ) set ) ) . x : ( ( ) ( V28() V29() ext-real ) Real) ) : ( ( ) ( V28() V29() ext-real ) Element of REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) ) : ( ( ) (
V28()
V29()
ext-real )
Element of
REAL : ( ( ) ( non
empty V51()
V52()
V53()
V57()
V62() )
set ) ) : ( ( ) (
V28()
V29()
ext-real )
Element of
REAL : ( ( ) ( non
empty V51()
V52()
V53()
V57()
V62() )
set ) ) ) ) ;
theorem
for
A being ( ( non
empty closed_interval ) ( non
empty V51()
V52()
V53()
closed_interval V76() )
Subset of ( ( ) ( )
set ) )
for
Z being ( (
open ) (
V51()
V52()
V53()
open )
Subset of ( ( ) ( )
set ) )
for
f being ( (
V6() ) (
Relation-like V6()
V34()
V35()
V36() )
PartFunc of ,) st
A : ( ( non
empty closed_interval ) ( non
empty V51()
V52()
V53()
closed_interval V76() )
Subset of ( ( ) ( )
set ) )
c= Z : ( (
open ) (
V51()
V52()
V53()
open )
Subset of ( ( ) ( )
set ) ) & ( for
x being ( ( ) (
V28()
V29()
ext-real )
Real) st
x : ( ( ) (
V28()
V29()
ext-real )
Real)
in Z : ( (
open ) (
V51()
V52()
V53()
open )
Subset of ( ( ) ( )
set ) ) holds
( 1 : ( ( ) ( non
empty V21()
V22()
V23()
V27()
V28()
V29()
V30()
ext-real non
negative V50()
V51()
V52()
V53()
V54()
V55()
V56() )
Element of
NAT : ( ( ) ( non
empty V21()
V22()
V23()
V51()
V52()
V53()
V54()
V55()
V56()
V57() )
Element of
K19(
REAL : ( ( ) ( non
empty V51()
V52()
V53()
V57()
V62() )
set ) ) : ( ( ) ( )
set ) ) )
+ (sin : ( ( V6() V18( REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) , REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) ) ( Relation-like V6() non empty total V18( REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) , REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) V34() V35() V36() continuous ) Element of K19(K20(REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ,REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) : ( ( ) ( Relation-like V34() V35() V36() ) set ) ) : ( ( ) ( ) set ) ) . x : ( ( ) ( V28() V29() ext-real ) Real) ) : ( ( ) (
V28()
V29()
ext-real )
Element of
REAL : ( ( ) ( non
empty V51()
V52()
V53()
V57()
V62() )
set ) ) : ( ( ) (
V28()
V29()
ext-real )
Element of
REAL : ( ( ) ( non
empty V51()
V52()
V53()
V57()
V62() )
set ) )
<> 0 : ( ( ) (
V21()
V22()
V23()
V27()
V28()
V29()
V30()
ext-real non
negative V50()
V51()
V52()
V53()
V54()
V55()
V56() )
Element of
NAT : ( ( ) ( non
empty V21()
V22()
V23()
V51()
V52()
V53()
V54()
V55()
V56()
V57() )
Element of
K19(
REAL : ( ( ) ( non
empty V51()
V52()
V53()
V57()
V62() )
set ) ) : ( ( ) ( )
set ) ) ) & 1 : ( ( ) ( non
empty V21()
V22()
V23()
V27()
V28()
V29()
V30()
ext-real non
negative V50()
V51()
V52()
V53()
V54()
V55()
V56() )
Element of
NAT : ( ( ) ( non
empty V21()
V22()
V23()
V51()
V52()
V53()
V54()
V55()
V56()
V57() )
Element of
K19(
REAL : ( ( ) ( non
empty V51()
V52()
V53()
V57()
V62() )
set ) ) : ( ( ) ( )
set ) ) )
- (sin : ( ( V6() V18( REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) , REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) ) ( Relation-like V6() non empty total V18( REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) , REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) V34() V35() V36() continuous ) Element of K19(K20(REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ,REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) : ( ( ) ( Relation-like V34() V35() V36() ) set ) ) : ( ( ) ( ) set ) ) . x : ( ( ) ( V28() V29() ext-real ) Real) ) : ( ( ) (
V28()
V29()
ext-real )
Element of
REAL : ( ( ) ( non
empty V51()
V52()
V53()
V57()
V62() )
set ) ) : ( ( ) (
V28()
V29()
ext-real )
Element of
REAL : ( ( ) ( non
empty V51()
V52()
V53()
V57()
V62() )
set ) )
<> 0 : ( ( ) (
V21()
V22()
V23()
V27()
V28()
V29()
V30()
ext-real non
negative V50()
V51()
V52()
V53()
V54()
V55()
V56() )
Element of
NAT : ( ( ) ( non
empty V21()
V22()
V23()
V51()
V52()
V53()
V54()
V55()
V56()
V57() )
Element of
K19(
REAL : ( ( ) ( non
empty V51()
V52()
V53()
V57()
V62() )
set ) ) : ( ( ) ( )
set ) ) ) &
f : ( (
V6() ) (
Relation-like V6()
V34()
V35()
V36() )
PartFunc of ,)
. x : ( ( ) (
V28()
V29()
ext-real )
Real) : ( ( ) (
V28()
V29()
ext-real )
Element of
REAL : ( ( ) ( non
empty V51()
V52()
V53()
V57()
V62() )
set ) )
= 1 : ( ( ) ( non
empty V21()
V22()
V23()
V27()
V28()
V29()
V30()
ext-real non
negative V50()
V51()
V52()
V53()
V54()
V55()
V56() )
Element of
NAT : ( ( ) ( non
empty V21()
V22()
V23()
V51()
V52()
V53()
V54()
V55()
V56()
V57() )
Element of
K19(
REAL : ( ( ) ( non
empty V51()
V52()
V53()
V57()
V62() )
set ) ) : ( ( ) ( )
set ) ) )
/ (1 : ( ( ) ( non empty V21() V22() V23() V27() V28() V29() V30() ext-real non negative V50() V51() V52() V53() V54() V55() V56() ) Element of NAT : ( ( ) ( non empty V21() V22() V23() V51() V52() V53() V54() V55() V56() V57() ) Element of K19(REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) : ( ( ) ( ) set ) ) ) - (sin : ( ( V6() V18( REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) , REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) ) ( Relation-like V6() non empty total V18( REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) , REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) V34() V35() V36() continuous ) Element of K19(K20(REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ,REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) : ( ( ) ( Relation-like V34() V35() V36() ) set ) ) : ( ( ) ( ) set ) ) . x : ( ( ) ( V28() V29() ext-real ) Real) ) : ( ( ) ( V28() V29() ext-real ) Element of REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) ) : ( ( ) (
V28()
V29()
ext-real )
Element of
REAL : ( ( ) ( non
empty V51()
V52()
V53()
V57()
V62() )
set ) ) : ( ( ) (
V28()
V29()
ext-real )
Element of
REAL : ( ( ) ( non
empty V51()
V52()
V53()
V57()
V62() )
set ) ) ) ) &
dom (tan : ( ( V6() ) ( Relation-like V6() V34() V35() V36() ) Element of K19(K20(REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ,REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) : ( ( ) ( Relation-like V34() V35() V36() ) set ) ) : ( ( ) ( ) set ) ) + sec : ( ( V6() ) ( Relation-like V6() V34() V35() V36() ) Element of K19(K20(REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ,REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) : ( ( ) ( Relation-like V34() V35() V36() ) set ) ) : ( ( ) ( ) set ) ) ) : ( (
V6() ) (
Relation-like V6()
V34()
V35()
V36() )
Element of
K19(
K20(
REAL : ( ( ) ( non
empty V51()
V52()
V53()
V57()
V62() )
set ) ,
REAL : ( ( ) ( non
empty V51()
V52()
V53()
V57()
V62() )
set ) ) : ( ( ) (
Relation-like V34()
V35()
V36() )
set ) ) : ( ( ) ( )
set ) ) : ( ( ) ( )
set )
= Z : ( (
open ) (
V51()
V52()
V53()
open )
Subset of ( ( ) ( )
set ) ) &
Z : ( (
open ) (
V51()
V52()
V53()
open )
Subset of ( ( ) ( )
set ) )
= dom f : ( (
V6() ) (
Relation-like V6()
V34()
V35()
V36() )
PartFunc of ,) : ( ( ) ( )
set ) &
f : ( (
V6() ) (
Relation-like V6()
V34()
V35()
V36() )
PartFunc of ,)
| A : ( ( non
empty closed_interval ) ( non
empty V51()
V52()
V53()
closed_interval V76() )
Subset of ( ( ) ( )
set ) ) : ( (
V6() ) (
Relation-like V6()
V34()
V35()
V36() )
Element of
K19(
K20(
REAL : ( ( ) ( non
empty V51()
V52()
V53()
V57()
V62() )
set ) ,
REAL : ( ( ) ( non
empty V51()
V52()
V53()
V57()
V62() )
set ) ) : ( ( ) (
Relation-like V34()
V35()
V36() )
set ) ) : ( ( ) ( )
set ) ) is
continuous holds
integral (
f : ( (
V6() ) (
Relation-like V6()
V34()
V35()
V36() )
PartFunc of ,) ,
A : ( ( non
empty closed_interval ) ( non
empty V51()
V52()
V53()
closed_interval V76() )
Subset of ( ( ) ( )
set ) ) ) : ( ( ) (
V28()
V29()
ext-real )
Element of
REAL : ( ( ) ( non
empty V51()
V52()
V53()
V57()
V62() )
set ) )
= ((tan : ( ( V6() ) ( Relation-like V6() V34() V35() V36() ) Element of K19(K20(REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ,REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) : ( ( ) ( Relation-like V34() V35() V36() ) set ) ) : ( ( ) ( ) set ) ) + sec : ( ( V6() ) ( Relation-like V6() V34() V35() V36() ) Element of K19(K20(REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ,REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) : ( ( ) ( Relation-like V34() V35() V36() ) set ) ) : ( ( ) ( ) set ) ) ) : ( ( V6() ) ( Relation-like V6() V34() V35() V36() ) Element of K19(K20(REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ,REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) : ( ( ) ( Relation-like V34() V35() V36() ) set ) ) : ( ( ) ( ) set ) ) . (upper_bound A : ( ( non empty closed_interval ) ( non empty V51() V52() V53() closed_interval V76() ) Subset of ( ( ) ( ) set ) ) ) : ( ( ) ( V28() V29() ext-real ) Element of REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) ) : ( ( ) (
V28()
V29()
ext-real )
Element of
REAL : ( ( ) ( non
empty V51()
V52()
V53()
V57()
V62() )
set ) )
- ((tan : ( ( V6() ) ( Relation-like V6() V34() V35() V36() ) Element of K19(K20(REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ,REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) : ( ( ) ( Relation-like V34() V35() V36() ) set ) ) : ( ( ) ( ) set ) ) + sec : ( ( V6() ) ( Relation-like V6() V34() V35() V36() ) Element of K19(K20(REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ,REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) : ( ( ) ( Relation-like V34() V35() V36() ) set ) ) : ( ( ) ( ) set ) ) ) : ( ( V6() ) ( Relation-like V6() V34() V35() V36() ) Element of K19(K20(REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ,REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) : ( ( ) ( Relation-like V34() V35() V36() ) set ) ) : ( ( ) ( ) set ) ) . (lower_bound A : ( ( non empty closed_interval ) ( non empty V51() V52() V53() closed_interval V76() ) Subset of ( ( ) ( ) set ) ) ) : ( ( ) ( V28() V29() ext-real ) Element of REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) ) : ( ( ) (
V28()
V29()
ext-real )
Element of
REAL : ( ( ) ( non
empty V51()
V52()
V53()
V57()
V62() )
set ) ) : ( ( ) (
V28()
V29()
ext-real )
Element of
REAL : ( ( ) ( non
empty V51()
V52()
V53()
V57()
V62() )
set ) ) ;
theorem
for
Z being ( (
open ) (
V51()
V52()
V53()
open )
Subset of ( ( ) ( )
set ) ) st
Z : ( (
open ) (
V51()
V52()
V53()
open )
Subset of ( ( ) ( )
set ) )
c= dom (tan : ( ( V6() ) ( Relation-like V6() V34() V35() V36() ) Element of K19(K20(REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ,REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) : ( ( ) ( Relation-like V34() V35() V36() ) set ) ) : ( ( ) ( ) set ) ) - sec : ( ( V6() ) ( Relation-like V6() V34() V35() V36() ) Element of K19(K20(REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ,REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) : ( ( ) ( Relation-like V34() V35() V36() ) set ) ) : ( ( ) ( ) set ) ) ) : ( (
V6() ) (
Relation-like V6()
V34()
V35()
V36() )
Element of
K19(
K20(
REAL : ( ( ) ( non
empty V51()
V52()
V53()
V57()
V62() )
set ) ,
REAL : ( ( ) ( non
empty V51()
V52()
V53()
V57()
V62() )
set ) ) : ( ( ) (
Relation-like V34()
V35()
V36() )
set ) ) : ( ( ) ( )
set ) ) : ( ( ) ( )
set ) & ( for
x being ( ( ) (
V28()
V29()
ext-real )
Real) st
x : ( ( ) (
V28()
V29()
ext-real )
Real)
in Z : ( (
open ) (
V51()
V52()
V53()
open )
Subset of ( ( ) ( )
set ) ) holds
( 1 : ( ( ) ( non
empty V21()
V22()
V23()
V27()
V28()
V29()
V30()
ext-real non
negative V50()
V51()
V52()
V53()
V54()
V55()
V56() )
Element of
NAT : ( ( ) ( non
empty V21()
V22()
V23()
V51()
V52()
V53()
V54()
V55()
V56()
V57() )
Element of
K19(
REAL : ( ( ) ( non
empty V51()
V52()
V53()
V57()
V62() )
set ) ) : ( ( ) ( )
set ) ) )
+ (sin : ( ( V6() V18( REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) , REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) ) ( Relation-like V6() non empty total V18( REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) , REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) V34() V35() V36() continuous ) Element of K19(K20(REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ,REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) : ( ( ) ( Relation-like V34() V35() V36() ) set ) ) : ( ( ) ( ) set ) ) . x : ( ( ) ( V28() V29() ext-real ) Real) ) : ( ( ) (
V28()
V29()
ext-real )
Element of
REAL : ( ( ) ( non
empty V51()
V52()
V53()
V57()
V62() )
set ) ) : ( ( ) (
V28()
V29()
ext-real )
Element of
REAL : ( ( ) ( non
empty V51()
V52()
V53()
V57()
V62() )
set ) )
<> 0 : ( ( ) (
V21()
V22()
V23()
V27()
V28()
V29()
V30()
ext-real non
negative V50()
V51()
V52()
V53()
V54()
V55()
V56() )
Element of
NAT : ( ( ) ( non
empty V21()
V22()
V23()
V51()
V52()
V53()
V54()
V55()
V56()
V57() )
Element of
K19(
REAL : ( ( ) ( non
empty V51()
V52()
V53()
V57()
V62() )
set ) ) : ( ( ) ( )
set ) ) ) & 1 : ( ( ) ( non
empty V21()
V22()
V23()
V27()
V28()
V29()
V30()
ext-real non
negative V50()
V51()
V52()
V53()
V54()
V55()
V56() )
Element of
NAT : ( ( ) ( non
empty V21()
V22()
V23()
V51()
V52()
V53()
V54()
V55()
V56()
V57() )
Element of
K19(
REAL : ( ( ) ( non
empty V51()
V52()
V53()
V57()
V62() )
set ) ) : ( ( ) ( )
set ) ) )
- (sin : ( ( V6() V18( REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) , REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) ) ( Relation-like V6() non empty total V18( REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) , REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) V34() V35() V36() continuous ) Element of K19(K20(REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ,REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) : ( ( ) ( Relation-like V34() V35() V36() ) set ) ) : ( ( ) ( ) set ) ) . x : ( ( ) ( V28() V29() ext-real ) Real) ) : ( ( ) (
V28()
V29()
ext-real )
Element of
REAL : ( ( ) ( non
empty V51()
V52()
V53()
V57()
V62() )
set ) ) : ( ( ) (
V28()
V29()
ext-real )
Element of
REAL : ( ( ) ( non
empty V51()
V52()
V53()
V57()
V62() )
set ) )
<> 0 : ( ( ) (
V21()
V22()
V23()
V27()
V28()
V29()
V30()
ext-real non
negative V50()
V51()
V52()
V53()
V54()
V55()
V56() )
Element of
NAT : ( ( ) ( non
empty V21()
V22()
V23()
V51()
V52()
V53()
V54()
V55()
V56()
V57() )
Element of
K19(
REAL : ( ( ) ( non
empty V51()
V52()
V53()
V57()
V62() )
set ) ) : ( ( ) ( )
set ) ) ) ) ) holds
(
tan : ( (
V6() ) (
Relation-like V6()
V34()
V35()
V36() )
Element of
K19(
K20(
REAL : ( ( ) ( non
empty V51()
V52()
V53()
V57()
V62() )
set ) ,
REAL : ( ( ) ( non
empty V51()
V52()
V53()
V57()
V62() )
set ) ) : ( ( ) (
Relation-like V34()
V35()
V36() )
set ) ) : ( ( ) ( )
set ) )
- sec : ( (
V6() ) (
Relation-like V6()
V34()
V35()
V36() )
Element of
K19(
K20(
REAL : ( ( ) ( non
empty V51()
V52()
V53()
V57()
V62() )
set ) ,
REAL : ( ( ) ( non
empty V51()
V52()
V53()
V57()
V62() )
set ) ) : ( ( ) (
Relation-like V34()
V35()
V36() )
set ) ) : ( ( ) ( )
set ) ) : ( (
V6() ) (
Relation-like V6()
V34()
V35()
V36() )
Element of
K19(
K20(
REAL : ( ( ) ( non
empty V51()
V52()
V53()
V57()
V62() )
set ) ,
REAL : ( ( ) ( non
empty V51()
V52()
V53()
V57()
V62() )
set ) ) : ( ( ) (
Relation-like V34()
V35()
V36() )
set ) ) : ( ( ) ( )
set ) )
is_differentiable_on Z : ( (
open ) (
V51()
V52()
V53()
open )
Subset of ( ( ) ( )
set ) ) & ( for
x being ( ( ) (
V28()
V29()
ext-real )
Real) st
x : ( ( ) (
V28()
V29()
ext-real )
Real)
in Z : ( (
open ) (
V51()
V52()
V53()
open )
Subset of ( ( ) ( )
set ) ) holds
((tan : ( ( V6() ) ( Relation-like V6() V34() V35() V36() ) Element of K19(K20(REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ,REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) : ( ( ) ( Relation-like V34() V35() V36() ) set ) ) : ( ( ) ( ) set ) ) - sec : ( ( V6() ) ( Relation-like V6() V34() V35() V36() ) Element of K19(K20(REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ,REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) : ( ( ) ( Relation-like V34() V35() V36() ) set ) ) : ( ( ) ( ) set ) ) ) : ( ( V6() ) ( Relation-like V6() V34() V35() V36() ) Element of K19(K20(REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ,REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) : ( ( ) ( Relation-like V34() V35() V36() ) set ) ) : ( ( ) ( ) set ) ) `| Z : ( ( open ) ( V51() V52() V53() open ) Subset of ( ( ) ( ) set ) ) ) : ( (
V6() ) (
Relation-like V6()
V34()
V35()
V36() )
Element of
K19(
K20(
REAL : ( ( ) ( non
empty V51()
V52()
V53()
V57()
V62() )
set ) ,
REAL : ( ( ) ( non
empty V51()
V52()
V53()
V57()
V62() )
set ) ) : ( ( ) (
Relation-like V34()
V35()
V36() )
set ) ) : ( ( ) ( )
set ) )
. x : ( ( ) (
V28()
V29()
ext-real )
Real) : ( ( ) (
V28()
V29()
ext-real )
Element of
REAL : ( ( ) ( non
empty V51()
V52()
V53()
V57()
V62() )
set ) )
= 1 : ( ( ) ( non
empty V21()
V22()
V23()
V27()
V28()
V29()
V30()
ext-real non
negative V50()
V51()
V52()
V53()
V54()
V55()
V56() )
Element of
NAT : ( ( ) ( non
empty V21()
V22()
V23()
V51()
V52()
V53()
V54()
V55()
V56()
V57() )
Element of
K19(
REAL : ( ( ) ( non
empty V51()
V52()
V53()
V57()
V62() )
set ) ) : ( ( ) ( )
set ) ) )
/ (1 : ( ( ) ( non empty V21() V22() V23() V27() V28() V29() V30() ext-real non negative V50() V51() V52() V53() V54() V55() V56() ) Element of NAT : ( ( ) ( non empty V21() V22() V23() V51() V52() V53() V54() V55() V56() V57() ) Element of K19(REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) : ( ( ) ( ) set ) ) ) + (sin : ( ( V6() V18( REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) , REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) ) ( Relation-like V6() non empty total V18( REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) , REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) V34() V35() V36() continuous ) Element of K19(K20(REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ,REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) : ( ( ) ( Relation-like V34() V35() V36() ) set ) ) : ( ( ) ( ) set ) ) . x : ( ( ) ( V28() V29() ext-real ) Real) ) : ( ( ) ( V28() V29() ext-real ) Element of REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) ) : ( ( ) (
V28()
V29()
ext-real )
Element of
REAL : ( ( ) ( non
empty V51()
V52()
V53()
V57()
V62() )
set ) ) : ( ( ) (
V28()
V29()
ext-real )
Element of
REAL : ( ( ) ( non
empty V51()
V52()
V53()
V57()
V62() )
set ) ) ) ) ;
theorem
for
A being ( ( non
empty closed_interval ) ( non
empty V51()
V52()
V53()
closed_interval V76() )
Subset of ( ( ) ( )
set ) )
for
Z being ( (
open ) (
V51()
V52()
V53()
open )
Subset of ( ( ) ( )
set ) )
for
f being ( (
V6() ) (
Relation-like V6()
V34()
V35()
V36() )
PartFunc of ,) st
A : ( ( non
empty closed_interval ) ( non
empty V51()
V52()
V53()
closed_interval V76() )
Subset of ( ( ) ( )
set ) )
c= Z : ( (
open ) (
V51()
V52()
V53()
open )
Subset of ( ( ) ( )
set ) ) & ( for
x being ( ( ) (
V28()
V29()
ext-real )
Real) st
x : ( ( ) (
V28()
V29()
ext-real )
Real)
in Z : ( (
open ) (
V51()
V52()
V53()
open )
Subset of ( ( ) ( )
set ) ) holds
( 1 : ( ( ) ( non
empty V21()
V22()
V23()
V27()
V28()
V29()
V30()
ext-real non
negative V50()
V51()
V52()
V53()
V54()
V55()
V56() )
Element of
NAT : ( ( ) ( non
empty V21()
V22()
V23()
V51()
V52()
V53()
V54()
V55()
V56()
V57() )
Element of
K19(
REAL : ( ( ) ( non
empty V51()
V52()
V53()
V57()
V62() )
set ) ) : ( ( ) ( )
set ) ) )
+ (sin : ( ( V6() V18( REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) , REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) ) ( Relation-like V6() non empty total V18( REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) , REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) V34() V35() V36() continuous ) Element of K19(K20(REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ,REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) : ( ( ) ( Relation-like V34() V35() V36() ) set ) ) : ( ( ) ( ) set ) ) . x : ( ( ) ( V28() V29() ext-real ) Real) ) : ( ( ) (
V28()
V29()
ext-real )
Element of
REAL : ( ( ) ( non
empty V51()
V52()
V53()
V57()
V62() )
set ) ) : ( ( ) (
V28()
V29()
ext-real )
Element of
REAL : ( ( ) ( non
empty V51()
V52()
V53()
V57()
V62() )
set ) )
<> 0 : ( ( ) (
V21()
V22()
V23()
V27()
V28()
V29()
V30()
ext-real non
negative V50()
V51()
V52()
V53()
V54()
V55()
V56() )
Element of
NAT : ( ( ) ( non
empty V21()
V22()
V23()
V51()
V52()
V53()
V54()
V55()
V56()
V57() )
Element of
K19(
REAL : ( ( ) ( non
empty V51()
V52()
V53()
V57()
V62() )
set ) ) : ( ( ) ( )
set ) ) ) & 1 : ( ( ) ( non
empty V21()
V22()
V23()
V27()
V28()
V29()
V30()
ext-real non
negative V50()
V51()
V52()
V53()
V54()
V55()
V56() )
Element of
NAT : ( ( ) ( non
empty V21()
V22()
V23()
V51()
V52()
V53()
V54()
V55()
V56()
V57() )
Element of
K19(
REAL : ( ( ) ( non
empty V51()
V52()
V53()
V57()
V62() )
set ) ) : ( ( ) ( )
set ) ) )
- (sin : ( ( V6() V18( REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) , REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) ) ( Relation-like V6() non empty total V18( REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) , REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) V34() V35() V36() continuous ) Element of K19(K20(REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ,REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) : ( ( ) ( Relation-like V34() V35() V36() ) set ) ) : ( ( ) ( ) set ) ) . x : ( ( ) ( V28() V29() ext-real ) Real) ) : ( ( ) (
V28()
V29()
ext-real )
Element of
REAL : ( ( ) ( non
empty V51()
V52()
V53()
V57()
V62() )
set ) ) : ( ( ) (
V28()
V29()
ext-real )
Element of
REAL : ( ( ) ( non
empty V51()
V52()
V53()
V57()
V62() )
set ) )
<> 0 : ( ( ) (
V21()
V22()
V23()
V27()
V28()
V29()
V30()
ext-real non
negative V50()
V51()
V52()
V53()
V54()
V55()
V56() )
Element of
NAT : ( ( ) ( non
empty V21()
V22()
V23()
V51()
V52()
V53()
V54()
V55()
V56()
V57() )
Element of
K19(
REAL : ( ( ) ( non
empty V51()
V52()
V53()
V57()
V62() )
set ) ) : ( ( ) ( )
set ) ) ) &
f : ( (
V6() ) (
Relation-like V6()
V34()
V35()
V36() )
PartFunc of ,)
. x : ( ( ) (
V28()
V29()
ext-real )
Real) : ( ( ) (
V28()
V29()
ext-real )
Element of
REAL : ( ( ) ( non
empty V51()
V52()
V53()
V57()
V62() )
set ) )
= 1 : ( ( ) ( non
empty V21()
V22()
V23()
V27()
V28()
V29()
V30()
ext-real non
negative V50()
V51()
V52()
V53()
V54()
V55()
V56() )
Element of
NAT : ( ( ) ( non
empty V21()
V22()
V23()
V51()
V52()
V53()
V54()
V55()
V56()
V57() )
Element of
K19(
REAL : ( ( ) ( non
empty V51()
V52()
V53()
V57()
V62() )
set ) ) : ( ( ) ( )
set ) ) )
/ (1 : ( ( ) ( non empty V21() V22() V23() V27() V28() V29() V30() ext-real non negative V50() V51() V52() V53() V54() V55() V56() ) Element of NAT : ( ( ) ( non empty V21() V22() V23() V51() V52() V53() V54() V55() V56() V57() ) Element of K19(REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) : ( ( ) ( ) set ) ) ) + (sin : ( ( V6() V18( REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) , REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) ) ( Relation-like V6() non empty total V18( REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) , REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) V34() V35() V36() continuous ) Element of K19(K20(REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ,REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) : ( ( ) ( Relation-like V34() V35() V36() ) set ) ) : ( ( ) ( ) set ) ) . x : ( ( ) ( V28() V29() ext-real ) Real) ) : ( ( ) ( V28() V29() ext-real ) Element of REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) ) : ( ( ) (
V28()
V29()
ext-real )
Element of
REAL : ( ( ) ( non
empty V51()
V52()
V53()
V57()
V62() )
set ) ) : ( ( ) (
V28()
V29()
ext-real )
Element of
REAL : ( ( ) ( non
empty V51()
V52()
V53()
V57()
V62() )
set ) ) ) ) &
dom (tan : ( ( V6() ) ( Relation-like V6() V34() V35() V36() ) Element of K19(K20(REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ,REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) : ( ( ) ( Relation-like V34() V35() V36() ) set ) ) : ( ( ) ( ) set ) ) - sec : ( ( V6() ) ( Relation-like V6() V34() V35() V36() ) Element of K19(K20(REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ,REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) : ( ( ) ( Relation-like V34() V35() V36() ) set ) ) : ( ( ) ( ) set ) ) ) : ( (
V6() ) (
Relation-like V6()
V34()
V35()
V36() )
Element of
K19(
K20(
REAL : ( ( ) ( non
empty V51()
V52()
V53()
V57()
V62() )
set ) ,
REAL : ( ( ) ( non
empty V51()
V52()
V53()
V57()
V62() )
set ) ) : ( ( ) (
Relation-like V34()
V35()
V36() )
set ) ) : ( ( ) ( )
set ) ) : ( ( ) ( )
set )
= Z : ( (
open ) (
V51()
V52()
V53()
open )
Subset of ( ( ) ( )
set ) ) &
Z : ( (
open ) (
V51()
V52()
V53()
open )
Subset of ( ( ) ( )
set ) )
= dom f : ( (
V6() ) (
Relation-like V6()
V34()
V35()
V36() )
PartFunc of ,) : ( ( ) ( )
set ) &
f : ( (
V6() ) (
Relation-like V6()
V34()
V35()
V36() )
PartFunc of ,)
| A : ( ( non
empty closed_interval ) ( non
empty V51()
V52()
V53()
closed_interval V76() )
Subset of ( ( ) ( )
set ) ) : ( (
V6() ) (
Relation-like V6()
V34()
V35()
V36() )
Element of
K19(
K20(
REAL : ( ( ) ( non
empty V51()
V52()
V53()
V57()
V62() )
set ) ,
REAL : ( ( ) ( non
empty V51()
V52()
V53()
V57()
V62() )
set ) ) : ( ( ) (
Relation-like V34()
V35()
V36() )
set ) ) : ( ( ) ( )
set ) ) is
continuous holds
integral (
f : ( (
V6() ) (
Relation-like V6()
V34()
V35()
V36() )
PartFunc of ,) ,
A : ( ( non
empty closed_interval ) ( non
empty V51()
V52()
V53()
closed_interval V76() )
Subset of ( ( ) ( )
set ) ) ) : ( ( ) (
V28()
V29()
ext-real )
Element of
REAL : ( ( ) ( non
empty V51()
V52()
V53()
V57()
V62() )
set ) )
= ((tan : ( ( V6() ) ( Relation-like V6() V34() V35() V36() ) Element of K19(K20(REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ,REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) : ( ( ) ( Relation-like V34() V35() V36() ) set ) ) : ( ( ) ( ) set ) ) - sec : ( ( V6() ) ( Relation-like V6() V34() V35() V36() ) Element of K19(K20(REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ,REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) : ( ( ) ( Relation-like V34() V35() V36() ) set ) ) : ( ( ) ( ) set ) ) ) : ( ( V6() ) ( Relation-like V6() V34() V35() V36() ) Element of K19(K20(REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ,REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) : ( ( ) ( Relation-like V34() V35() V36() ) set ) ) : ( ( ) ( ) set ) ) . (upper_bound A : ( ( non empty closed_interval ) ( non empty V51() V52() V53() closed_interval V76() ) Subset of ( ( ) ( ) set ) ) ) : ( ( ) ( V28() V29() ext-real ) Element of REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) ) : ( ( ) (
V28()
V29()
ext-real )
Element of
REAL : ( ( ) ( non
empty V51()
V52()
V53()
V57()
V62() )
set ) )
- ((tan : ( ( V6() ) ( Relation-like V6() V34() V35() V36() ) Element of K19(K20(REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ,REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) : ( ( ) ( Relation-like V34() V35() V36() ) set ) ) : ( ( ) ( ) set ) ) - sec : ( ( V6() ) ( Relation-like V6() V34() V35() V36() ) Element of K19(K20(REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ,REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) : ( ( ) ( Relation-like V34() V35() V36() ) set ) ) : ( ( ) ( ) set ) ) ) : ( ( V6() ) ( Relation-like V6() V34() V35() V36() ) Element of K19(K20(REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ,REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) : ( ( ) ( Relation-like V34() V35() V36() ) set ) ) : ( ( ) ( ) set ) ) . (lower_bound A : ( ( non empty closed_interval ) ( non empty V51() V52() V53() closed_interval V76() ) Subset of ( ( ) ( ) set ) ) ) : ( ( ) ( V28() V29() ext-real ) Element of REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) ) : ( ( ) (
V28()
V29()
ext-real )
Element of
REAL : ( ( ) ( non
empty V51()
V52()
V53()
V57()
V62() )
set ) ) : ( ( ) (
V28()
V29()
ext-real )
Element of
REAL : ( ( ) ( non
empty V51()
V52()
V53()
V57()
V62() )
set ) ) ;
theorem
for
Z being ( (
open ) (
V51()
V52()
V53()
open )
Subset of ( ( ) ( )
set ) ) st
Z : ( (
open ) (
V51()
V52()
V53()
open )
Subset of ( ( ) ( )
set ) )
c= dom ((- cot : ( ( V6() ) ( Relation-like V6() V34() V35() V36() ) Element of K19(K20(REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ,REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) : ( ( ) ( Relation-like V34() V35() V36() ) set ) ) : ( ( ) ( ) set ) ) ) : ( ( V6() ) ( Relation-like V6() V34() V35() V36() ) Element of K19(K20(REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ,REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) : ( ( ) ( Relation-like V34() V35() V36() ) set ) ) : ( ( ) ( ) set ) ) + cosec : ( ( V6() ) ( Relation-like V6() V34() V35() V36() ) Element of K19(K20(REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ,REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) : ( ( ) ( Relation-like V34() V35() V36() ) set ) ) : ( ( ) ( ) set ) ) ) : ( (
V6() ) (
Relation-like V6()
V34()
V35()
V36() )
Element of
K19(
K20(
REAL : ( ( ) ( non
empty V51()
V52()
V53()
V57()
V62() )
set ) ,
REAL : ( ( ) ( non
empty V51()
V52()
V53()
V57()
V62() )
set ) ) : ( ( ) (
Relation-like V34()
V35()
V36() )
set ) ) : ( ( ) ( )
set ) ) : ( ( ) ( )
set ) & ( for
x being ( ( ) (
V28()
V29()
ext-real )
Real) st
x : ( ( ) (
V28()
V29()
ext-real )
Real)
in Z : ( (
open ) (
V51()
V52()
V53()
open )
Subset of ( ( ) ( )
set ) ) holds
( 1 : ( ( ) ( non
empty V21()
V22()
V23()
V27()
V28()
V29()
V30()
ext-real non
negative V50()
V51()
V52()
V53()
V54()
V55()
V56() )
Element of
NAT : ( ( ) ( non
empty V21()
V22()
V23()
V51()
V52()
V53()
V54()
V55()
V56()
V57() )
Element of
K19(
REAL : ( ( ) ( non
empty V51()
V52()
V53()
V57()
V62() )
set ) ) : ( ( ) ( )
set ) ) )
+ (cos : ( ( V6() V18( REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) , REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) ) ( Relation-like V6() non empty total V18( REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) , REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) V34() V35() V36() continuous ) Element of K19(K20(REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ,REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) : ( ( ) ( Relation-like V34() V35() V36() ) set ) ) : ( ( ) ( ) set ) ) . x : ( ( ) ( V28() V29() ext-real ) Real) ) : ( ( ) (
V28()
V29()
ext-real )
Element of
REAL : ( ( ) ( non
empty V51()
V52()
V53()
V57()
V62() )
set ) ) : ( ( ) (
V28()
V29()
ext-real )
Element of
REAL : ( ( ) ( non
empty V51()
V52()
V53()
V57()
V62() )
set ) )
<> 0 : ( ( ) (
V21()
V22()
V23()
V27()
V28()
V29()
V30()
ext-real non
negative V50()
V51()
V52()
V53()
V54()
V55()
V56() )
Element of
NAT : ( ( ) ( non
empty V21()
V22()
V23()
V51()
V52()
V53()
V54()
V55()
V56()
V57() )
Element of
K19(
REAL : ( ( ) ( non
empty V51()
V52()
V53()
V57()
V62() )
set ) ) : ( ( ) ( )
set ) ) ) & 1 : ( ( ) ( non
empty V21()
V22()
V23()
V27()
V28()
V29()
V30()
ext-real non
negative V50()
V51()
V52()
V53()
V54()
V55()
V56() )
Element of
NAT : ( ( ) ( non
empty V21()
V22()
V23()
V51()
V52()
V53()
V54()
V55()
V56()
V57() )
Element of
K19(
REAL : ( ( ) ( non
empty V51()
V52()
V53()
V57()
V62() )
set ) ) : ( ( ) ( )
set ) ) )
- (cos : ( ( V6() V18( REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) , REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) ) ( Relation-like V6() non empty total V18( REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) , REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) V34() V35() V36() continuous ) Element of K19(K20(REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ,REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) : ( ( ) ( Relation-like V34() V35() V36() ) set ) ) : ( ( ) ( ) set ) ) . x : ( ( ) ( V28() V29() ext-real ) Real) ) : ( ( ) (
V28()
V29()
ext-real )
Element of
REAL : ( ( ) ( non
empty V51()
V52()
V53()
V57()
V62() )
set ) ) : ( ( ) (
V28()
V29()
ext-real )
Element of
REAL : ( ( ) ( non
empty V51()
V52()
V53()
V57()
V62() )
set ) )
<> 0 : ( ( ) (
V21()
V22()
V23()
V27()
V28()
V29()
V30()
ext-real non
negative V50()
V51()
V52()
V53()
V54()
V55()
V56() )
Element of
NAT : ( ( ) ( non
empty V21()
V22()
V23()
V51()
V52()
V53()
V54()
V55()
V56()
V57() )
Element of
K19(
REAL : ( ( ) ( non
empty V51()
V52()
V53()
V57()
V62() )
set ) ) : ( ( ) ( )
set ) ) ) ) ) holds
(
(- cot : ( ( V6() ) ( Relation-like V6() V34() V35() V36() ) Element of K19(K20(REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ,REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) : ( ( ) ( Relation-like V34() V35() V36() ) set ) ) : ( ( ) ( ) set ) ) ) : ( (
V6() ) (
Relation-like V6()
V34()
V35()
V36() )
Element of
K19(
K20(
REAL : ( ( ) ( non
empty V51()
V52()
V53()
V57()
V62() )
set ) ,
REAL : ( ( ) ( non
empty V51()
V52()
V53()
V57()
V62() )
set ) ) : ( ( ) (
Relation-like V34()
V35()
V36() )
set ) ) : ( ( ) ( )
set ) )
+ cosec : ( (
V6() ) (
Relation-like V6()
V34()
V35()
V36() )
Element of
K19(
K20(
REAL : ( ( ) ( non
empty V51()
V52()
V53()
V57()
V62() )
set ) ,
REAL : ( ( ) ( non
empty V51()
V52()
V53()
V57()
V62() )
set ) ) : ( ( ) (
Relation-like V34()
V35()
V36() )
set ) ) : ( ( ) ( )
set ) ) : ( (
V6() ) (
Relation-like V6()
V34()
V35()
V36() )
Element of
K19(
K20(
REAL : ( ( ) ( non
empty V51()
V52()
V53()
V57()
V62() )
set ) ,
REAL : ( ( ) ( non
empty V51()
V52()
V53()
V57()
V62() )
set ) ) : ( ( ) (
Relation-like V34()
V35()
V36() )
set ) ) : ( ( ) ( )
set ) )
is_differentiable_on Z : ( (
open ) (
V51()
V52()
V53()
open )
Subset of ( ( ) ( )
set ) ) & ( for
x being ( ( ) (
V28()
V29()
ext-real )
Real) st
x : ( ( ) (
V28()
V29()
ext-real )
Real)
in Z : ( (
open ) (
V51()
V52()
V53()
open )
Subset of ( ( ) ( )
set ) ) holds
(((- cot : ( ( V6() ) ( Relation-like V6() V34() V35() V36() ) Element of K19(K20(REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ,REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) : ( ( ) ( Relation-like V34() V35() V36() ) set ) ) : ( ( ) ( ) set ) ) ) : ( ( V6() ) ( Relation-like V6() V34() V35() V36() ) Element of K19(K20(REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ,REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) : ( ( ) ( Relation-like V34() V35() V36() ) set ) ) : ( ( ) ( ) set ) ) + cosec : ( ( V6() ) ( Relation-like V6() V34() V35() V36() ) Element of K19(K20(REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ,REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) : ( ( ) ( Relation-like V34() V35() V36() ) set ) ) : ( ( ) ( ) set ) ) ) : ( ( V6() ) ( Relation-like V6() V34() V35() V36() ) Element of K19(K20(REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ,REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) : ( ( ) ( Relation-like V34() V35() V36() ) set ) ) : ( ( ) ( ) set ) ) `| Z : ( ( open ) ( V51() V52() V53() open ) Subset of ( ( ) ( ) set ) ) ) : ( (
V6() ) (
Relation-like V6()
V34()
V35()
V36() )
Element of
K19(
K20(
REAL : ( ( ) ( non
empty V51()
V52()
V53()
V57()
V62() )
set ) ,
REAL : ( ( ) ( non
empty V51()
V52()
V53()
V57()
V62() )
set ) ) : ( ( ) (
Relation-like V34()
V35()
V36() )
set ) ) : ( ( ) ( )
set ) )
. x : ( ( ) (
V28()
V29()
ext-real )
Real) : ( ( ) (
V28()
V29()
ext-real )
Element of
REAL : ( ( ) ( non
empty V51()
V52()
V53()
V57()
V62() )
set ) )
= 1 : ( ( ) ( non
empty V21()
V22()
V23()
V27()
V28()
V29()
V30()
ext-real non
negative V50()
V51()
V52()
V53()
V54()
V55()
V56() )
Element of
NAT : ( ( ) ( non
empty V21()
V22()
V23()
V51()
V52()
V53()
V54()
V55()
V56()
V57() )
Element of
K19(
REAL : ( ( ) ( non
empty V51()
V52()
V53()
V57()
V62() )
set ) ) : ( ( ) ( )
set ) ) )
/ (1 : ( ( ) ( non empty V21() V22() V23() V27() V28() V29() V30() ext-real non negative V50() V51() V52() V53() V54() V55() V56() ) Element of NAT : ( ( ) ( non empty V21() V22() V23() V51() V52() V53() V54() V55() V56() V57() ) Element of K19(REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) : ( ( ) ( ) set ) ) ) + (cos : ( ( V6() V18( REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) , REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) ) ( Relation-like V6() non empty total V18( REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) , REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) V34() V35() V36() continuous ) Element of K19(K20(REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ,REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) : ( ( ) ( Relation-like V34() V35() V36() ) set ) ) : ( ( ) ( ) set ) ) . x : ( ( ) ( V28() V29() ext-real ) Real) ) : ( ( ) ( V28() V29() ext-real ) Element of REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) ) : ( ( ) (
V28()
V29()
ext-real )
Element of
REAL : ( ( ) ( non
empty V51()
V52()
V53()
V57()
V62() )
set ) ) : ( ( ) (
V28()
V29()
ext-real )
Element of
REAL : ( ( ) ( non
empty V51()
V52()
V53()
V57()
V62() )
set ) ) ) ) ;
theorem
for
A being ( ( non
empty closed_interval ) ( non
empty V51()
V52()
V53()
closed_interval V76() )
Subset of ( ( ) ( )
set ) )
for
Z being ( (
open ) (
V51()
V52()
V53()
open )
Subset of ( ( ) ( )
set ) )
for
f being ( (
V6() ) (
Relation-like V6()
V34()
V35()
V36() )
PartFunc of ,) st
A : ( ( non
empty closed_interval ) ( non
empty V51()
V52()
V53()
closed_interval V76() )
Subset of ( ( ) ( )
set ) )
c= Z : ( (
open ) (
V51()
V52()
V53()
open )
Subset of ( ( ) ( )
set ) ) & ( for
x being ( ( ) (
V28()
V29()
ext-real )
Real) st
x : ( ( ) (
V28()
V29()
ext-real )
Real)
in Z : ( (
open ) (
V51()
V52()
V53()
open )
Subset of ( ( ) ( )
set ) ) holds
( 1 : ( ( ) ( non
empty V21()
V22()
V23()
V27()
V28()
V29()
V30()
ext-real non
negative V50()
V51()
V52()
V53()
V54()
V55()
V56() )
Element of
NAT : ( ( ) ( non
empty V21()
V22()
V23()
V51()
V52()
V53()
V54()
V55()
V56()
V57() )
Element of
K19(
REAL : ( ( ) ( non
empty V51()
V52()
V53()
V57()
V62() )
set ) ) : ( ( ) ( )
set ) ) )
+ (cos : ( ( V6() V18( REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) , REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) ) ( Relation-like V6() non empty total V18( REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) , REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) V34() V35() V36() continuous ) Element of K19(K20(REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ,REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) : ( ( ) ( Relation-like V34() V35() V36() ) set ) ) : ( ( ) ( ) set ) ) . x : ( ( ) ( V28() V29() ext-real ) Real) ) : ( ( ) (
V28()
V29()
ext-real )
Element of
REAL : ( ( ) ( non
empty V51()
V52()
V53()
V57()
V62() )
set ) ) : ( ( ) (
V28()
V29()
ext-real )
Element of
REAL : ( ( ) ( non
empty V51()
V52()
V53()
V57()
V62() )
set ) )
<> 0 : ( ( ) (
V21()
V22()
V23()
V27()
V28()
V29()
V30()
ext-real non
negative V50()
V51()
V52()
V53()
V54()
V55()
V56() )
Element of
NAT : ( ( ) ( non
empty V21()
V22()
V23()
V51()
V52()
V53()
V54()
V55()
V56()
V57() )
Element of
K19(
REAL : ( ( ) ( non
empty V51()
V52()
V53()
V57()
V62() )
set ) ) : ( ( ) ( )
set ) ) ) & 1 : ( ( ) ( non
empty V21()
V22()
V23()
V27()
V28()
V29()
V30()
ext-real non
negative V50()
V51()
V52()
V53()
V54()
V55()
V56() )
Element of
NAT : ( ( ) ( non
empty V21()
V22()
V23()
V51()
V52()
V53()
V54()
V55()
V56()
V57() )
Element of
K19(
REAL : ( ( ) ( non
empty V51()
V52()
V53()
V57()
V62() )
set ) ) : ( ( ) ( )
set ) ) )
- (cos : ( ( V6() V18( REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) , REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) ) ( Relation-like V6() non empty total V18( REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) , REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) V34() V35() V36() continuous ) Element of K19(K20(REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ,REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) : ( ( ) ( Relation-like V34() V35() V36() ) set ) ) : ( ( ) ( ) set ) ) . x : ( ( ) ( V28() V29() ext-real ) Real) ) : ( ( ) (
V28()
V29()
ext-real )
Element of
REAL : ( ( ) ( non
empty V51()
V52()
V53()
V57()
V62() )
set ) ) : ( ( ) (
V28()
V29()
ext-real )
Element of
REAL : ( ( ) ( non
empty V51()
V52()
V53()
V57()
V62() )
set ) )
<> 0 : ( ( ) (
V21()
V22()
V23()
V27()
V28()
V29()
V30()
ext-real non
negative V50()
V51()
V52()
V53()
V54()
V55()
V56() )
Element of
NAT : ( ( ) ( non
empty V21()
V22()
V23()
V51()
V52()
V53()
V54()
V55()
V56()
V57() )
Element of
K19(
REAL : ( ( ) ( non
empty V51()
V52()
V53()
V57()
V62() )
set ) ) : ( ( ) ( )
set ) ) ) &
f : ( (
V6() ) (
Relation-like V6()
V34()
V35()
V36() )
PartFunc of ,)
. x : ( ( ) (
V28()
V29()
ext-real )
Real) : ( ( ) (
V28()
V29()
ext-real )
Element of
REAL : ( ( ) ( non
empty V51()
V52()
V53()
V57()
V62() )
set ) )
= 1 : ( ( ) ( non
empty V21()
V22()
V23()
V27()
V28()
V29()
V30()
ext-real non
negative V50()
V51()
V52()
V53()
V54()
V55()
V56() )
Element of
NAT : ( ( ) ( non
empty V21()
V22()
V23()
V51()
V52()
V53()
V54()
V55()
V56()
V57() )
Element of
K19(
REAL : ( ( ) ( non
empty V51()
V52()
V53()
V57()
V62() )
set ) ) : ( ( ) ( )
set ) ) )
/ (1 : ( ( ) ( non empty V21() V22() V23() V27() V28() V29() V30() ext-real non negative V50() V51() V52() V53() V54() V55() V56() ) Element of NAT : ( ( ) ( non empty V21() V22() V23() V51() V52() V53() V54() V55() V56() V57() ) Element of K19(REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) : ( ( ) ( ) set ) ) ) + (cos : ( ( V6() V18( REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) , REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) ) ( Relation-like V6() non empty total V18( REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) , REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) V34() V35() V36() continuous ) Element of K19(K20(REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ,REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) : ( ( ) ( Relation-like V34() V35() V36() ) set ) ) : ( ( ) ( ) set ) ) . x : ( ( ) ( V28() V29() ext-real ) Real) ) : ( ( ) ( V28() V29() ext-real ) Element of REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) ) : ( ( ) (
V28()
V29()
ext-real )
Element of
REAL : ( ( ) ( non
empty V51()
V52()
V53()
V57()
V62() )
set ) ) : ( ( ) (
V28()
V29()
ext-real )
Element of
REAL : ( ( ) ( non
empty V51()
V52()
V53()
V57()
V62() )
set ) ) ) ) &
dom ((- cot : ( ( V6() ) ( Relation-like V6() V34() V35() V36() ) Element of K19(K20(REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ,REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) : ( ( ) ( Relation-like V34() V35() V36() ) set ) ) : ( ( ) ( ) set ) ) ) : ( ( V6() ) ( Relation-like V6() V34() V35() V36() ) Element of K19(K20(REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ,REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) : ( ( ) ( Relation-like V34() V35() V36() ) set ) ) : ( ( ) ( ) set ) ) + cosec : ( ( V6() ) ( Relation-like V6() V34() V35() V36() ) Element of K19(K20(REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ,REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) : ( ( ) ( Relation-like V34() V35() V36() ) set ) ) : ( ( ) ( ) set ) ) ) : ( (
V6() ) (
Relation-like V6()
V34()
V35()
V36() )
Element of
K19(
K20(
REAL : ( ( ) ( non
empty V51()
V52()
V53()
V57()
V62() )
set ) ,
REAL : ( ( ) ( non
empty V51()
V52()
V53()
V57()
V62() )
set ) ) : ( ( ) (
Relation-like V34()
V35()
V36() )
set ) ) : ( ( ) ( )
set ) ) : ( ( ) ( )
set )
= Z : ( (
open ) (
V51()
V52()
V53()
open )
Subset of ( ( ) ( )
set ) ) &
Z : ( (
open ) (
V51()
V52()
V53()
open )
Subset of ( ( ) ( )
set ) )
= dom f : ( (
V6() ) (
Relation-like V6()
V34()
V35()
V36() )
PartFunc of ,) : ( ( ) ( )
set ) &
f : ( (
V6() ) (
Relation-like V6()
V34()
V35()
V36() )
PartFunc of ,)
| A : ( ( non
empty closed_interval ) ( non
empty V51()
V52()
V53()
closed_interval V76() )
Subset of ( ( ) ( )
set ) ) : ( (
V6() ) (
Relation-like V6()
V34()
V35()
V36() )
Element of
K19(
K20(
REAL : ( ( ) ( non
empty V51()
V52()
V53()
V57()
V62() )
set ) ,
REAL : ( ( ) ( non
empty V51()
V52()
V53()
V57()
V62() )
set ) ) : ( ( ) (
Relation-like V34()
V35()
V36() )
set ) ) : ( ( ) ( )
set ) ) is
continuous holds
integral (
f : ( (
V6() ) (
Relation-like V6()
V34()
V35()
V36() )
PartFunc of ,) ,
A : ( ( non
empty closed_interval ) ( non
empty V51()
V52()
V53()
closed_interval V76() )
Subset of ( ( ) ( )
set ) ) ) : ( ( ) (
V28()
V29()
ext-real )
Element of
REAL : ( ( ) ( non
empty V51()
V52()
V53()
V57()
V62() )
set ) )
= (((- cot : ( ( V6() ) ( Relation-like V6() V34() V35() V36() ) Element of K19(K20(REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ,REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) : ( ( ) ( Relation-like V34() V35() V36() ) set ) ) : ( ( ) ( ) set ) ) ) : ( ( V6() ) ( Relation-like V6() V34() V35() V36() ) Element of K19(K20(REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ,REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) : ( ( ) ( Relation-like V34() V35() V36() ) set ) ) : ( ( ) ( ) set ) ) + cosec : ( ( V6() ) ( Relation-like V6() V34() V35() V36() ) Element of K19(K20(REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ,REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) : ( ( ) ( Relation-like V34() V35() V36() ) set ) ) : ( ( ) ( ) set ) ) ) : ( ( V6() ) ( Relation-like V6() V34() V35() V36() ) Element of K19(K20(REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ,REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) : ( ( ) ( Relation-like V34() V35() V36() ) set ) ) : ( ( ) ( ) set ) ) . (upper_bound A : ( ( non empty closed_interval ) ( non empty V51() V52() V53() closed_interval V76() ) Subset of ( ( ) ( ) set ) ) ) : ( ( ) ( V28() V29() ext-real ) Element of REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) ) : ( ( ) (
V28()
V29()
ext-real )
Element of
REAL : ( ( ) ( non
empty V51()
V52()
V53()
V57()
V62() )
set ) )
- (((- cot : ( ( V6() ) ( Relation-like V6() V34() V35() V36() ) Element of K19(K20(REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ,REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) : ( ( ) ( Relation-like V34() V35() V36() ) set ) ) : ( ( ) ( ) set ) ) ) : ( ( V6() ) ( Relation-like V6() V34() V35() V36() ) Element of K19(K20(REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ,REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) : ( ( ) ( Relation-like V34() V35() V36() ) set ) ) : ( ( ) ( ) set ) ) + cosec : ( ( V6() ) ( Relation-like V6() V34() V35() V36() ) Element of K19(K20(REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ,REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) : ( ( ) ( Relation-like V34() V35() V36() ) set ) ) : ( ( ) ( ) set ) ) ) : ( ( V6() ) ( Relation-like V6() V34() V35() V36() ) Element of K19(K20(REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ,REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) : ( ( ) ( Relation-like V34() V35() V36() ) set ) ) : ( ( ) ( ) set ) ) . (lower_bound A : ( ( non empty closed_interval ) ( non empty V51() V52() V53() closed_interval V76() ) Subset of ( ( ) ( ) set ) ) ) : ( ( ) ( V28() V29() ext-real ) Element of REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) ) : ( ( ) (
V28()
V29()
ext-real )
Element of
REAL : ( ( ) ( non
empty V51()
V52()
V53()
V57()
V62() )
set ) ) : ( ( ) (
V28()
V29()
ext-real )
Element of
REAL : ( ( ) ( non
empty V51()
V52()
V53()
V57()
V62() )
set ) ) ;
theorem
for
Z being ( (
open ) (
V51()
V52()
V53()
open )
Subset of ( ( ) ( )
set ) ) st
Z : ( (
open ) (
V51()
V52()
V53()
open )
Subset of ( ( ) ( )
set ) )
c= dom ((- cot : ( ( V6() ) ( Relation-like V6() V34() V35() V36() ) Element of K19(K20(REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ,REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) : ( ( ) ( Relation-like V34() V35() V36() ) set ) ) : ( ( ) ( ) set ) ) ) : ( ( V6() ) ( Relation-like V6() V34() V35() V36() ) Element of K19(K20(REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ,REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) : ( ( ) ( Relation-like V34() V35() V36() ) set ) ) : ( ( ) ( ) set ) ) - cosec : ( ( V6() ) ( Relation-like V6() V34() V35() V36() ) Element of K19(K20(REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ,REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) : ( ( ) ( Relation-like V34() V35() V36() ) set ) ) : ( ( ) ( ) set ) ) ) : ( (
V6() ) (
Relation-like V6()
V34()
V35()
V36() )
Element of
K19(
K20(
REAL : ( ( ) ( non
empty V51()
V52()
V53()
V57()
V62() )
set ) ,
REAL : ( ( ) ( non
empty V51()
V52()
V53()
V57()
V62() )
set ) ) : ( ( ) (
Relation-like V34()
V35()
V36() )
set ) ) : ( ( ) ( )
set ) ) : ( ( ) ( )
set ) & ( for
x being ( ( ) (
V28()
V29()
ext-real )
Real) st
x : ( ( ) (
V28()
V29()
ext-real )
Real)
in Z : ( (
open ) (
V51()
V52()
V53()
open )
Subset of ( ( ) ( )
set ) ) holds
( 1 : ( ( ) ( non
empty V21()
V22()
V23()
V27()
V28()
V29()
V30()
ext-real non
negative V50()
V51()
V52()
V53()
V54()
V55()
V56() )
Element of
NAT : ( ( ) ( non
empty V21()
V22()
V23()
V51()
V52()
V53()
V54()
V55()
V56()
V57() )
Element of
K19(
REAL : ( ( ) ( non
empty V51()
V52()
V53()
V57()
V62() )
set ) ) : ( ( ) ( )
set ) ) )
+ (cos : ( ( V6() V18( REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) , REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) ) ( Relation-like V6() non empty total V18( REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) , REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) V34() V35() V36() continuous ) Element of K19(K20(REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ,REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) : ( ( ) ( Relation-like V34() V35() V36() ) set ) ) : ( ( ) ( ) set ) ) . x : ( ( ) ( V28() V29() ext-real ) Real) ) : ( ( ) (
V28()
V29()
ext-real )
Element of
REAL : ( ( ) ( non
empty V51()
V52()
V53()
V57()
V62() )
set ) ) : ( ( ) (
V28()
V29()
ext-real )
Element of
REAL : ( ( ) ( non
empty V51()
V52()
V53()
V57()
V62() )
set ) )
<> 0 : ( ( ) (
V21()
V22()
V23()
V27()
V28()
V29()
V30()
ext-real non
negative V50()
V51()
V52()
V53()
V54()
V55()
V56() )
Element of
NAT : ( ( ) ( non
empty V21()
V22()
V23()
V51()
V52()
V53()
V54()
V55()
V56()
V57() )
Element of
K19(
REAL : ( ( ) ( non
empty V51()
V52()
V53()
V57()
V62() )
set ) ) : ( ( ) ( )
set ) ) ) & 1 : ( ( ) ( non
empty V21()
V22()
V23()
V27()
V28()
V29()
V30()
ext-real non
negative V50()
V51()
V52()
V53()
V54()
V55()
V56() )
Element of
NAT : ( ( ) ( non
empty V21()
V22()
V23()
V51()
V52()
V53()
V54()
V55()
V56()
V57() )
Element of
K19(
REAL : ( ( ) ( non
empty V51()
V52()
V53()
V57()
V62() )
set ) ) : ( ( ) ( )
set ) ) )
- (cos : ( ( V6() V18( REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) , REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) ) ( Relation-like V6() non empty total V18( REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) , REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) V34() V35() V36() continuous ) Element of K19(K20(REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ,REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) : ( ( ) ( Relation-like V34() V35() V36() ) set ) ) : ( ( ) ( ) set ) ) . x : ( ( ) ( V28() V29() ext-real ) Real) ) : ( ( ) (
V28()
V29()
ext-real )
Element of
REAL : ( ( ) ( non
empty V51()
V52()
V53()
V57()
V62() )
set ) ) : ( ( ) (
V28()
V29()
ext-real )
Element of
REAL : ( ( ) ( non
empty V51()
V52()
V53()
V57()
V62() )
set ) )
<> 0 : ( ( ) (
V21()
V22()
V23()
V27()
V28()
V29()
V30()
ext-real non
negative V50()
V51()
V52()
V53()
V54()
V55()
V56() )
Element of
NAT : ( ( ) ( non
empty V21()
V22()
V23()
V51()
V52()
V53()
V54()
V55()
V56()
V57() )
Element of
K19(
REAL : ( ( ) ( non
empty V51()
V52()
V53()
V57()
V62() )
set ) ) : ( ( ) ( )
set ) ) ) ) ) holds
(
(- cot : ( ( V6() ) ( Relation-like V6() V34() V35() V36() ) Element of K19(K20(REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ,REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) : ( ( ) ( Relation-like V34() V35() V36() ) set ) ) : ( ( ) ( ) set ) ) ) : ( (
V6() ) (
Relation-like V6()
V34()
V35()
V36() )
Element of
K19(
K20(
REAL : ( ( ) ( non
empty V51()
V52()
V53()
V57()
V62() )
set ) ,
REAL : ( ( ) ( non
empty V51()
V52()
V53()
V57()
V62() )
set ) ) : ( ( ) (
Relation-like V34()
V35()
V36() )
set ) ) : ( ( ) ( )
set ) )
- cosec : ( (
V6() ) (
Relation-like V6()
V34()
V35()
V36() )
Element of
K19(
K20(
REAL : ( ( ) ( non
empty V51()
V52()
V53()
V57()
V62() )
set ) ,
REAL : ( ( ) ( non
empty V51()
V52()
V53()
V57()
V62() )
set ) ) : ( ( ) (
Relation-like V34()
V35()
V36() )
set ) ) : ( ( ) ( )
set ) ) : ( (
V6() ) (
Relation-like V6()
V34()
V35()
V36() )
Element of
K19(
K20(
REAL : ( ( ) ( non
empty V51()
V52()
V53()
V57()
V62() )
set ) ,
REAL : ( ( ) ( non
empty V51()
V52()
V53()
V57()
V62() )
set ) ) : ( ( ) (
Relation-like V34()
V35()
V36() )
set ) ) : ( ( ) ( )
set ) )
is_differentiable_on Z : ( (
open ) (
V51()
V52()
V53()
open )
Subset of ( ( ) ( )
set ) ) & ( for
x being ( ( ) (
V28()
V29()
ext-real )
Real) st
x : ( ( ) (
V28()
V29()
ext-real )
Real)
in Z : ( (
open ) (
V51()
V52()
V53()
open )
Subset of ( ( ) ( )
set ) ) holds
(((- cot : ( ( V6() ) ( Relation-like V6() V34() V35() V36() ) Element of K19(K20(REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ,REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) : ( ( ) ( Relation-like V34() V35() V36() ) set ) ) : ( ( ) ( ) set ) ) ) : ( ( V6() ) ( Relation-like V6() V34() V35() V36() ) Element of K19(K20(REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ,REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) : ( ( ) ( Relation-like V34() V35() V36() ) set ) ) : ( ( ) ( ) set ) ) - cosec : ( ( V6() ) ( Relation-like V6() V34() V35() V36() ) Element of K19(K20(REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ,REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) : ( ( ) ( Relation-like V34() V35() V36() ) set ) ) : ( ( ) ( ) set ) ) ) : ( ( V6() ) ( Relation-like V6() V34() V35() V36() ) Element of K19(K20(REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ,REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) : ( ( ) ( Relation-like V34() V35() V36() ) set ) ) : ( ( ) ( ) set ) ) `| Z : ( ( open ) ( V51() V52() V53() open ) Subset of ( ( ) ( ) set ) ) ) : ( (
V6() ) (
Relation-like V6()
V34()
V35()
V36() )
Element of
K19(
K20(
REAL : ( ( ) ( non
empty V51()
V52()
V53()
V57()
V62() )
set ) ,
REAL : ( ( ) ( non
empty V51()
V52()
V53()
V57()
V62() )
set ) ) : ( ( ) (
Relation-like V34()
V35()
V36() )
set ) ) : ( ( ) ( )
set ) )
. x : ( ( ) (
V28()
V29()
ext-real )
Real) : ( ( ) (
V28()
V29()
ext-real )
Element of
REAL : ( ( ) ( non
empty V51()
V52()
V53()
V57()
V62() )
set ) )
= 1 : ( ( ) ( non
empty V21()
V22()
V23()
V27()
V28()
V29()
V30()
ext-real non
negative V50()
V51()
V52()
V53()
V54()
V55()
V56() )
Element of
NAT : ( ( ) ( non
empty V21()
V22()
V23()
V51()
V52()
V53()
V54()
V55()
V56()
V57() )
Element of
K19(
REAL : ( ( ) ( non
empty V51()
V52()
V53()
V57()
V62() )
set ) ) : ( ( ) ( )
set ) ) )
/ (1 : ( ( ) ( non empty V21() V22() V23() V27() V28() V29() V30() ext-real non negative V50() V51() V52() V53() V54() V55() V56() ) Element of NAT : ( ( ) ( non empty V21() V22() V23() V51() V52() V53() V54() V55() V56() V57() ) Element of K19(REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) : ( ( ) ( ) set ) ) ) - (cos : ( ( V6() V18( REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) , REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) ) ( Relation-like V6() non empty total V18( REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) , REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) V34() V35() V36() continuous ) Element of K19(K20(REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ,REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) : ( ( ) ( Relation-like V34() V35() V36() ) set ) ) : ( ( ) ( ) set ) ) . x : ( ( ) ( V28() V29() ext-real ) Real) ) : ( ( ) ( V28() V29() ext-real ) Element of REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) ) : ( ( ) (
V28()
V29()
ext-real )
Element of
REAL : ( ( ) ( non
empty V51()
V52()
V53()
V57()
V62() )
set ) ) : ( ( ) (
V28()
V29()
ext-real )
Element of
REAL : ( ( ) ( non
empty V51()
V52()
V53()
V57()
V62() )
set ) ) ) ) ;
theorem
for
A being ( ( non
empty closed_interval ) ( non
empty V51()
V52()
V53()
closed_interval V76() )
Subset of ( ( ) ( )
set ) )
for
Z being ( (
open ) (
V51()
V52()
V53()
open )
Subset of ( ( ) ( )
set ) )
for
f being ( (
V6() ) (
Relation-like V6()
V34()
V35()
V36() )
PartFunc of ,) st
A : ( ( non
empty closed_interval ) ( non
empty V51()
V52()
V53()
closed_interval V76() )
Subset of ( ( ) ( )
set ) )
c= Z : ( (
open ) (
V51()
V52()
V53()
open )
Subset of ( ( ) ( )
set ) ) & ( for
x being ( ( ) (
V28()
V29()
ext-real )
Real) st
x : ( ( ) (
V28()
V29()
ext-real )
Real)
in Z : ( (
open ) (
V51()
V52()
V53()
open )
Subset of ( ( ) ( )
set ) ) holds
( 1 : ( ( ) ( non
empty V21()
V22()
V23()
V27()
V28()
V29()
V30()
ext-real non
negative V50()
V51()
V52()
V53()
V54()
V55()
V56() )
Element of
NAT : ( ( ) ( non
empty V21()
V22()
V23()
V51()
V52()
V53()
V54()
V55()
V56()
V57() )
Element of
K19(
REAL : ( ( ) ( non
empty V51()
V52()
V53()
V57()
V62() )
set ) ) : ( ( ) ( )
set ) ) )
+ (cos : ( ( V6() V18( REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) , REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) ) ( Relation-like V6() non empty total V18( REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) , REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) V34() V35() V36() continuous ) Element of K19(K20(REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ,REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) : ( ( ) ( Relation-like V34() V35() V36() ) set ) ) : ( ( ) ( ) set ) ) . x : ( ( ) ( V28() V29() ext-real ) Real) ) : ( ( ) (
V28()
V29()
ext-real )
Element of
REAL : ( ( ) ( non
empty V51()
V52()
V53()
V57()
V62() )
set ) ) : ( ( ) (
V28()
V29()
ext-real )
Element of
REAL : ( ( ) ( non
empty V51()
V52()
V53()
V57()
V62() )
set ) )
<> 0 : ( ( ) (
V21()
V22()
V23()
V27()
V28()
V29()
V30()
ext-real non
negative V50()
V51()
V52()
V53()
V54()
V55()
V56() )
Element of
NAT : ( ( ) ( non
empty V21()
V22()
V23()
V51()
V52()
V53()
V54()
V55()
V56()
V57() )
Element of
K19(
REAL : ( ( ) ( non
empty V51()
V52()
V53()
V57()
V62() )
set ) ) : ( ( ) ( )
set ) ) ) & 1 : ( ( ) ( non
empty V21()
V22()
V23()
V27()
V28()
V29()
V30()
ext-real non
negative V50()
V51()
V52()
V53()
V54()
V55()
V56() )
Element of
NAT : ( ( ) ( non
empty V21()
V22()
V23()
V51()
V52()
V53()
V54()
V55()
V56()
V57() )
Element of
K19(
REAL : ( ( ) ( non
empty V51()
V52()
V53()
V57()
V62() )
set ) ) : ( ( ) ( )
set ) ) )
- (cos : ( ( V6() V18( REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) , REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) ) ( Relation-like V6() non empty total V18( REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) , REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) V34() V35() V36() continuous ) Element of K19(K20(REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ,REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) : ( ( ) ( Relation-like V34() V35() V36() ) set ) ) : ( ( ) ( ) set ) ) . x : ( ( ) ( V28() V29() ext-real ) Real) ) : ( ( ) (
V28()
V29()
ext-real )
Element of
REAL : ( ( ) ( non
empty V51()
V52()
V53()
V57()
V62() )
set ) ) : ( ( ) (
V28()
V29()
ext-real )
Element of
REAL : ( ( ) ( non
empty V51()
V52()
V53()
V57()
V62() )
set ) )
<> 0 : ( ( ) (
V21()
V22()
V23()
V27()
V28()
V29()
V30()
ext-real non
negative V50()
V51()
V52()
V53()
V54()
V55()
V56() )
Element of
NAT : ( ( ) ( non
empty V21()
V22()
V23()
V51()
V52()
V53()
V54()
V55()
V56()
V57() )
Element of
K19(
REAL : ( ( ) ( non
empty V51()
V52()
V53()
V57()
V62() )
set ) ) : ( ( ) ( )
set ) ) ) &
f : ( (
V6() ) (
Relation-like V6()
V34()
V35()
V36() )
PartFunc of ,)
. x : ( ( ) (
V28()
V29()
ext-real )
Real) : ( ( ) (
V28()
V29()
ext-real )
Element of
REAL : ( ( ) ( non
empty V51()
V52()
V53()
V57()
V62() )
set ) )
= 1 : ( ( ) ( non
empty V21()
V22()
V23()
V27()
V28()
V29()
V30()
ext-real non
negative V50()
V51()
V52()
V53()
V54()
V55()
V56() )
Element of
NAT : ( ( ) ( non
empty V21()
V22()
V23()
V51()
V52()
V53()
V54()
V55()
V56()
V57() )
Element of
K19(
REAL : ( ( ) ( non
empty V51()
V52()
V53()
V57()
V62() )
set ) ) : ( ( ) ( )
set ) ) )
/ (1 : ( ( ) ( non empty V21() V22() V23() V27() V28() V29() V30() ext-real non negative V50() V51() V52() V53() V54() V55() V56() ) Element of NAT : ( ( ) ( non empty V21() V22() V23() V51() V52() V53() V54() V55() V56() V57() ) Element of K19(REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) : ( ( ) ( ) set ) ) ) - (cos : ( ( V6() V18( REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) , REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) ) ( Relation-like V6() non empty total V18( REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) , REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) V34() V35() V36() continuous ) Element of K19(K20(REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ,REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) : ( ( ) ( Relation-like V34() V35() V36() ) set ) ) : ( ( ) ( ) set ) ) . x : ( ( ) ( V28() V29() ext-real ) Real) ) : ( ( ) ( V28() V29() ext-real ) Element of REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) ) : ( ( ) (
V28()
V29()
ext-real )
Element of
REAL : ( ( ) ( non
empty V51()
V52()
V53()
V57()
V62() )
set ) ) : ( ( ) (
V28()
V29()
ext-real )
Element of
REAL : ( ( ) ( non
empty V51()
V52()
V53()
V57()
V62() )
set ) ) ) ) &
dom ((- cot : ( ( V6() ) ( Relation-like V6() V34() V35() V36() ) Element of K19(K20(REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ,REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) : ( ( ) ( Relation-like V34() V35() V36() ) set ) ) : ( ( ) ( ) set ) ) ) : ( ( V6() ) ( Relation-like V6() V34() V35() V36() ) Element of K19(K20(REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ,REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) : ( ( ) ( Relation-like V34() V35() V36() ) set ) ) : ( ( ) ( ) set ) ) - cosec : ( ( V6() ) ( Relation-like V6() V34() V35() V36() ) Element of K19(K20(REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ,REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) : ( ( ) ( Relation-like V34() V35() V36() ) set ) ) : ( ( ) ( ) set ) ) ) : ( (
V6() ) (
Relation-like V6()
V34()
V35()
V36() )
Element of
K19(
K20(
REAL : ( ( ) ( non
empty V51()
V52()
V53()
V57()
V62() )
set ) ,
REAL : ( ( ) ( non
empty V51()
V52()
V53()
V57()
V62() )
set ) ) : ( ( ) (
Relation-like V34()
V35()
V36() )
set ) ) : ( ( ) ( )
set ) ) : ( ( ) ( )
set )
= Z : ( (
open ) (
V51()
V52()
V53()
open )
Subset of ( ( ) ( )
set ) ) &
Z : ( (
open ) (
V51()
V52()
V53()
open )
Subset of ( ( ) ( )
set ) )
= dom f : ( (
V6() ) (
Relation-like V6()
V34()
V35()
V36() )
PartFunc of ,) : ( ( ) ( )
set ) &
f : ( (
V6() ) (
Relation-like V6()
V34()
V35()
V36() )
PartFunc of ,)
| A : ( ( non
empty closed_interval ) ( non
empty V51()
V52()
V53()
closed_interval V76() )
Subset of ( ( ) ( )
set ) ) : ( (
V6() ) (
Relation-like V6()
V34()
V35()
V36() )
Element of
K19(
K20(
REAL : ( ( ) ( non
empty V51()
V52()
V53()
V57()
V62() )
set ) ,
REAL : ( ( ) ( non
empty V51()
V52()
V53()
V57()
V62() )
set ) ) : ( ( ) (
Relation-like V34()
V35()
V36() )
set ) ) : ( ( ) ( )
set ) ) is
continuous holds
integral (
f : ( (
V6() ) (
Relation-like V6()
V34()
V35()
V36() )
PartFunc of ,) ,
A : ( ( non
empty closed_interval ) ( non
empty V51()
V52()
V53()
closed_interval V76() )
Subset of ( ( ) ( )
set ) ) ) : ( ( ) (
V28()
V29()
ext-real )
Element of
REAL : ( ( ) ( non
empty V51()
V52()
V53()
V57()
V62() )
set ) )
= (((- cot : ( ( V6() ) ( Relation-like V6() V34() V35() V36() ) Element of K19(K20(REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ,REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) : ( ( ) ( Relation-like V34() V35() V36() ) set ) ) : ( ( ) ( ) set ) ) ) : ( ( V6() ) ( Relation-like V6() V34() V35() V36() ) Element of K19(K20(REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ,REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) : ( ( ) ( Relation-like V34() V35() V36() ) set ) ) : ( ( ) ( ) set ) ) - cosec : ( ( V6() ) ( Relation-like V6() V34() V35() V36() ) Element of K19(K20(REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ,REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) : ( ( ) ( Relation-like V34() V35() V36() ) set ) ) : ( ( ) ( ) set ) ) ) : ( ( V6() ) ( Relation-like V6() V34() V35() V36() ) Element of K19(K20(REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ,REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) : ( ( ) ( Relation-like V34() V35() V36() ) set ) ) : ( ( ) ( ) set ) ) . (upper_bound A : ( ( non empty closed_interval ) ( non empty V51() V52() V53() closed_interval V76() ) Subset of ( ( ) ( ) set ) ) ) : ( ( ) ( V28() V29() ext-real ) Element of REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) ) : ( ( ) (
V28()
V29()
ext-real )
Element of
REAL : ( ( ) ( non
empty V51()
V52()
V53()
V57()
V62() )
set ) )
- (((- cot : ( ( V6() ) ( Relation-like V6() V34() V35() V36() ) Element of K19(K20(REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ,REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) : ( ( ) ( Relation-like V34() V35() V36() ) set ) ) : ( ( ) ( ) set ) ) ) : ( ( V6() ) ( Relation-like V6() V34() V35() V36() ) Element of K19(K20(REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ,REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) : ( ( ) ( Relation-like V34() V35() V36() ) set ) ) : ( ( ) ( ) set ) ) - cosec : ( ( V6() ) ( Relation-like V6() V34() V35() V36() ) Element of K19(K20(REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ,REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) : ( ( ) ( Relation-like V34() V35() V36() ) set ) ) : ( ( ) ( ) set ) ) ) : ( ( V6() ) ( Relation-like V6() V34() V35() V36() ) Element of K19(K20(REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ,REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) : ( ( ) ( Relation-like V34() V35() V36() ) set ) ) : ( ( ) ( ) set ) ) . (lower_bound A : ( ( non empty closed_interval ) ( non empty V51() V52() V53() closed_interval V76() ) Subset of ( ( ) ( ) set ) ) ) : ( ( ) ( V28() V29() ext-real ) Element of REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) ) : ( ( ) (
V28()
V29()
ext-real )
Element of
REAL : ( ( ) ( non
empty V51()
V52()
V53()
V57()
V62() )
set ) ) : ( ( ) (
V28()
V29()
ext-real )
Element of
REAL : ( ( ) ( non
empty V51()
V52()
V53()
V57()
V62() )
set ) ) ;
theorem
for
A being ( ( non
empty closed_interval ) ( non
empty V51()
V52()
V53()
closed_interval V76() )
Subset of ( ( ) ( )
set ) )
for
Z being ( (
open ) (
V51()
V52()
V53()
open )
Subset of ( ( ) ( )
set ) )
for
f being ( (
V6() ) (
Relation-like V6()
V34()
V35()
V36() )
PartFunc of ,) st
A : ( ( non
empty closed_interval ) ( non
empty V51()
V52()
V53()
closed_interval V76() )
Subset of ( ( ) ( )
set ) )
c= Z : ( (
open ) (
V51()
V52()
V53()
open )
Subset of ( ( ) ( )
set ) ) &
Z : ( (
open ) (
V51()
V52()
V53()
open )
Subset of ( ( ) ( )
set ) )
c= ].(- 1 : ( ( ) ( non empty V21() V22() V23() V27() V28() V29() V30() ext-real non negative V50() V51() V52() V53() V54() V55() V56() ) Element of NAT : ( ( ) ( non empty V21() V22() V23() V51() V52() V53() V54() V55() V56() V57() ) Element of K19(REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( ) ( V28() V29() V30() ext-real ) Element of REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) ,1 : ( ( ) ( non empty V21() V22() V23() V27() V28() V29() V30() ext-real non negative V50() V51() V52() V53() V54() V55() V56() ) Element of NAT : ( ( ) ( non empty V21() V22() V23() V51() V52() V53() V54() V55() V56() V57() ) Element of K19(REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) : ( ( ) ( ) set ) ) ) .[ : ( ( ) (
V51()
V52()
V53()
open )
Element of
K19(
REAL : ( ( ) ( non
empty V51()
V52()
V53()
V57()
V62() )
set ) ) : ( ( ) ( )
set ) ) & ( for
x being ( ( ) (
V28()
V29()
ext-real )
Real) st
x : ( ( ) (
V28()
V29()
ext-real )
Real)
in Z : ( (
open ) (
V51()
V52()
V53()
open )
Subset of ( ( ) ( )
set ) ) holds
f : ( (
V6() ) (
Relation-like V6()
V34()
V35()
V36() )
PartFunc of ,)
. x : ( ( ) (
V28()
V29()
ext-real )
Real) : ( ( ) (
V28()
V29()
ext-real )
Element of
REAL : ( ( ) ( non
empty V51()
V52()
V53()
V57()
V62() )
set ) )
= 1 : ( ( ) ( non
empty V21()
V22()
V23()
V27()
V28()
V29()
V30()
ext-real non
negative V50()
V51()
V52()
V53()
V54()
V55()
V56() )
Element of
NAT : ( ( ) ( non
empty V21()
V22()
V23()
V51()
V52()
V53()
V54()
V55()
V56()
V57() )
Element of
K19(
REAL : ( ( ) ( non
empty V51()
V52()
V53()
V57()
V62() )
set ) ) : ( ( ) ( )
set ) ) )
/ (1 : ( ( ) ( non empty V21() V22() V23() V27() V28() V29() V30() ext-real non negative V50() V51() V52() V53() V54() V55() V56() ) Element of NAT : ( ( ) ( non empty V21() V22() V23() V51() V52() V53() V54() V55() V56() V57() ) Element of K19(REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) : ( ( ) ( ) set ) ) ) + (x : ( ( ) ( V28() V29() ext-real ) Real) ^2) : ( ( ) ( V28() V29() ext-real ) Element of REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) ) : ( ( ) (
V28()
V29()
ext-real )
Element of
REAL : ( ( ) ( non
empty V51()
V52()
V53()
V57()
V62() )
set ) ) : ( ( ) (
V28()
V29()
ext-real )
Element of
REAL : ( ( ) ( non
empty V51()
V52()
V53()
V57()
V62() )
set ) ) ) &
Z : ( (
open ) (
V51()
V52()
V53()
open )
Subset of ( ( ) ( )
set ) )
= dom f : ( (
V6() ) (
Relation-like V6()
V34()
V35()
V36() )
PartFunc of ,) : ( ( ) ( )
set ) &
f : ( (
V6() ) (
Relation-like V6()
V34()
V35()
V36() )
PartFunc of ,)
| A : ( ( non
empty closed_interval ) ( non
empty V51()
V52()
V53()
closed_interval V76() )
Subset of ( ( ) ( )
set ) ) : ( (
V6() ) (
Relation-like V6()
V34()
V35()
V36() )
Element of
K19(
K20(
REAL : ( ( ) ( non
empty V51()
V52()
V53()
V57()
V62() )
set ) ,
REAL : ( ( ) ( non
empty V51()
V52()
V53()
V57()
V62() )
set ) ) : ( ( ) (
Relation-like V34()
V35()
V36() )
set ) ) : ( ( ) ( )
set ) ) is
continuous holds
integral (
f : ( (
V6() ) (
Relation-like V6()
V34()
V35()
V36() )
PartFunc of ,) ,
A : ( ( non
empty closed_interval ) ( non
empty V51()
V52()
V53()
closed_interval V76() )
Subset of ( ( ) ( )
set ) ) ) : ( ( ) (
V28()
V29()
ext-real )
Element of
REAL : ( ( ) ( non
empty V51()
V52()
V53()
V57()
V62() )
set ) )
= (arctan : ( ( V6() ) ( Relation-like V6() V34() V35() V36() ) Element of K19(K20(REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ,REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) : ( ( ) ( Relation-like V34() V35() V36() ) set ) ) : ( ( ) ( ) set ) ) . (upper_bound A : ( ( non empty closed_interval ) ( non empty V51() V52() V53() closed_interval V76() ) Subset of ( ( ) ( ) set ) ) ) : ( ( ) ( V28() V29() ext-real ) Element of REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) ) : ( ( ) (
V28()
V29()
ext-real )
Element of
REAL : ( ( ) ( non
empty V51()
V52()
V53()
V57()
V62() )
set ) )
- (arctan : ( ( V6() ) ( Relation-like V6() V34() V35() V36() ) Element of K19(K20(REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ,REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) : ( ( ) ( Relation-like V34() V35() V36() ) set ) ) : ( ( ) ( ) set ) ) . (lower_bound A : ( ( non empty closed_interval ) ( non empty V51() V52() V53() closed_interval V76() ) Subset of ( ( ) ( ) set ) ) ) : ( ( ) ( V28() V29() ext-real ) Element of REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) ) : ( ( ) (
V28()
V29()
ext-real )
Element of
REAL : ( ( ) ( non
empty V51()
V52()
V53()
V57()
V62() )
set ) ) : ( ( ) (
V28()
V29()
ext-real )
Element of
REAL : ( ( ) ( non
empty V51()
V52()
V53()
V57()
V62() )
set ) ) ;
theorem
for
r being ( ( ) (
V28()
V29()
ext-real )
Real)
for
A being ( ( non
empty closed_interval ) ( non
empty V51()
V52()
V53()
closed_interval V76() )
Subset of ( ( ) ( )
set ) )
for
Z being ( (
open ) (
V51()
V52()
V53()
open )
Subset of ( ( ) ( )
set ) )
for
f being ( (
V6() ) (
Relation-like V6()
V34()
V35()
V36() )
PartFunc of ,) st
A : ( ( non
empty closed_interval ) ( non
empty V51()
V52()
V53()
closed_interval V76() )
Subset of ( ( ) ( )
set ) )
c= Z : ( (
open ) (
V51()
V52()
V53()
open )
Subset of ( ( ) ( )
set ) ) &
Z : ( (
open ) (
V51()
V52()
V53()
open )
Subset of ( ( ) ( )
set ) )
c= ].(- 1 : ( ( ) ( non empty V21() V22() V23() V27() V28() V29() V30() ext-real non negative V50() V51() V52() V53() V54() V55() V56() ) Element of NAT : ( ( ) ( non empty V21() V22() V23() V51() V52() V53() V54() V55() V56() V57() ) Element of K19(REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( ) ( V28() V29() V30() ext-real ) Element of REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) ,1 : ( ( ) ( non empty V21() V22() V23() V27() V28() V29() V30() ext-real non negative V50() V51() V52() V53() V54() V55() V56() ) Element of NAT : ( ( ) ( non empty V21() V22() V23() V51() V52() V53() V54() V55() V56() V57() ) Element of K19(REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) : ( ( ) ( ) set ) ) ) .[ : ( ( ) (
V51()
V52()
V53()
open )
Element of
K19(
REAL : ( ( ) ( non
empty V51()
V52()
V53()
V57()
V62() )
set ) ) : ( ( ) ( )
set ) ) & ( for
x being ( ( ) (
V28()
V29()
ext-real )
Real) st
x : ( ( ) (
V28()
V29()
ext-real )
Real)
in Z : ( (
open ) (
V51()
V52()
V53()
open )
Subset of ( ( ) ( )
set ) ) holds
f : ( (
V6() ) (
Relation-like V6()
V34()
V35()
V36() )
PartFunc of ,)
. x : ( ( ) (
V28()
V29()
ext-real )
Real) : ( ( ) (
V28()
V29()
ext-real )
Element of
REAL : ( ( ) ( non
empty V51()
V52()
V53()
V57()
V62() )
set ) )
= r : ( ( ) (
V28()
V29()
ext-real )
Real)
/ (1 : ( ( ) ( non empty V21() V22() V23() V27() V28() V29() V30() ext-real non negative V50() V51() V52() V53() V54() V55() V56() ) Element of NAT : ( ( ) ( non empty V21() V22() V23() V51() V52() V53() V54() V55() V56() V57() ) Element of K19(REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) : ( ( ) ( ) set ) ) ) + (x : ( ( ) ( V28() V29() ext-real ) Real) ^2) : ( ( ) ( V28() V29() ext-real ) Element of REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) ) : ( ( ) (
V28()
V29()
ext-real )
Element of
REAL : ( ( ) ( non
empty V51()
V52()
V53()
V57()
V62() )
set ) ) : ( ( ) (
V28()
V29()
ext-real )
Element of
REAL : ( ( ) ( non
empty V51()
V52()
V53()
V57()
V62() )
set ) ) ) &
Z : ( (
open ) (
V51()
V52()
V53()
open )
Subset of ( ( ) ( )
set ) )
= dom f : ( (
V6() ) (
Relation-like V6()
V34()
V35()
V36() )
PartFunc of ,) : ( ( ) ( )
set ) &
f : ( (
V6() ) (
Relation-like V6()
V34()
V35()
V36() )
PartFunc of ,)
| A : ( ( non
empty closed_interval ) ( non
empty V51()
V52()
V53()
closed_interval V76() )
Subset of ( ( ) ( )
set ) ) : ( (
V6() ) (
Relation-like V6()
V34()
V35()
V36() )
Element of
K19(
K20(
REAL : ( ( ) ( non
empty V51()
V52()
V53()
V57()
V62() )
set ) ,
REAL : ( ( ) ( non
empty V51()
V52()
V53()
V57()
V62() )
set ) ) : ( ( ) (
Relation-like V34()
V35()
V36() )
set ) ) : ( ( ) ( )
set ) ) is
continuous holds
integral (
f : ( (
V6() ) (
Relation-like V6()
V34()
V35()
V36() )
PartFunc of ,) ,
A : ( ( non
empty closed_interval ) ( non
empty V51()
V52()
V53()
closed_interval V76() )
Subset of ( ( ) ( )
set ) ) ) : ( ( ) (
V28()
V29()
ext-real )
Element of
REAL : ( ( ) ( non
empty V51()
V52()
V53()
V57()
V62() )
set ) )
= ((r : ( ( ) ( V28() V29() ext-real ) Real) (#) arctan : ( ( V6() ) ( Relation-like V6() V34() V35() V36() ) Element of K19(K20(REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ,REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) : ( ( ) ( Relation-like V34() V35() V36() ) set ) ) : ( ( ) ( ) set ) ) ) : ( ( V6() ) ( Relation-like V6() V34() V35() V36() ) Element of K19(K20(REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ,REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) : ( ( ) ( Relation-like V34() V35() V36() ) set ) ) : ( ( ) ( ) set ) ) . (upper_bound A : ( ( non empty closed_interval ) ( non empty V51() V52() V53() closed_interval V76() ) Subset of ( ( ) ( ) set ) ) ) : ( ( ) ( V28() V29() ext-real ) Element of REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) ) : ( ( ) (
V28()
V29()
ext-real )
Element of
REAL : ( ( ) ( non
empty V51()
V52()
V53()
V57()
V62() )
set ) )
- ((r : ( ( ) ( V28() V29() ext-real ) Real) (#) arctan : ( ( V6() ) ( Relation-like V6() V34() V35() V36() ) Element of K19(K20(REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ,REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) : ( ( ) ( Relation-like V34() V35() V36() ) set ) ) : ( ( ) ( ) set ) ) ) : ( ( V6() ) ( Relation-like V6() V34() V35() V36() ) Element of K19(K20(REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ,REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) : ( ( ) ( Relation-like V34() V35() V36() ) set ) ) : ( ( ) ( ) set ) ) . (lower_bound A : ( ( non empty closed_interval ) ( non empty V51() V52() V53() closed_interval V76() ) Subset of ( ( ) ( ) set ) ) ) : ( ( ) ( V28() V29() ext-real ) Element of REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) ) : ( ( ) (
V28()
V29()
ext-real )
Element of
REAL : ( ( ) ( non
empty V51()
V52()
V53()
V57()
V62() )
set ) ) : ( ( ) (
V28()
V29()
ext-real )
Element of
REAL : ( ( ) ( non
empty V51()
V52()
V53()
V57()
V62() )
set ) ) ;
theorem
for
A being ( ( non
empty closed_interval ) ( non
empty V51()
V52()
V53()
closed_interval V76() )
Subset of ( ( ) ( )
set ) )
for
Z being ( (
open ) (
V51()
V52()
V53()
open )
Subset of ( ( ) ( )
set ) )
for
f being ( (
V6() ) (
Relation-like V6()
V34()
V35()
V36() )
PartFunc of ,) st
A : ( ( non
empty closed_interval ) ( non
empty V51()
V52()
V53()
closed_interval V76() )
Subset of ( ( ) ( )
set ) )
c= Z : ( (
open ) (
V51()
V52()
V53()
open )
Subset of ( ( ) ( )
set ) ) &
Z : ( (
open ) (
V51()
V52()
V53()
open )
Subset of ( ( ) ( )
set ) )
c= ].(- 1 : ( ( ) ( non empty V21() V22() V23() V27() V28() V29() V30() ext-real non negative V50() V51() V52() V53() V54() V55() V56() ) Element of NAT : ( ( ) ( non empty V21() V22() V23() V51() V52() V53() V54() V55() V56() V57() ) Element of K19(REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( ) ( V28() V29() V30() ext-real ) Element of REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) ,1 : ( ( ) ( non empty V21() V22() V23() V27() V28() V29() V30() ext-real non negative V50() V51() V52() V53() V54() V55() V56() ) Element of NAT : ( ( ) ( non empty V21() V22() V23() V51() V52() V53() V54() V55() V56() V57() ) Element of K19(REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) : ( ( ) ( ) set ) ) ) .[ : ( ( ) (
V51()
V52()
V53()
open )
Element of
K19(
REAL : ( ( ) ( non
empty V51()
V52()
V53()
V57()
V62() )
set ) ) : ( ( ) ( )
set ) ) & ( for
x being ( ( ) (
V28()
V29()
ext-real )
Real) st
x : ( ( ) (
V28()
V29()
ext-real )
Real)
in Z : ( (
open ) (
V51()
V52()
V53()
open )
Subset of ( ( ) ( )
set ) ) holds
f : ( (
V6() ) (
Relation-like V6()
V34()
V35()
V36() )
PartFunc of ,)
. x : ( ( ) (
V28()
V29()
ext-real )
Real) : ( ( ) (
V28()
V29()
ext-real )
Element of
REAL : ( ( ) ( non
empty V51()
V52()
V53()
V57()
V62() )
set ) )
= - (1 : ( ( ) ( non empty V21() V22() V23() V27() V28() V29() V30() ext-real non negative V50() V51() V52() V53() V54() V55() V56() ) Element of NAT : ( ( ) ( non empty V21() V22() V23() V51() V52() V53() V54() V55() V56() V57() ) Element of K19(REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) : ( ( ) ( ) set ) ) ) / (1 : ( ( ) ( non empty V21() V22() V23() V27() V28() V29() V30() ext-real non negative V50() V51() V52() V53() V54() V55() V56() ) Element of NAT : ( ( ) ( non empty V21() V22() V23() V51() V52() V53() V54() V55() V56() V57() ) Element of K19(REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) : ( ( ) ( ) set ) ) ) + (x : ( ( ) ( V28() V29() ext-real ) Real) ^2) : ( ( ) ( V28() V29() ext-real ) Element of REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) ) : ( ( ) ( V28() V29() ext-real ) Element of REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) ) : ( ( ) (
V28()
V29()
ext-real )
Element of
REAL : ( ( ) ( non
empty V51()
V52()
V53()
V57()
V62() )
set ) ) : ( ( ) (
V28()
V29()
ext-real )
Element of
REAL : ( ( ) ( non
empty V51()
V52()
V53()
V57()
V62() )
set ) ) ) &
Z : ( (
open ) (
V51()
V52()
V53()
open )
Subset of ( ( ) ( )
set ) )
= dom f : ( (
V6() ) (
Relation-like V6()
V34()
V35()
V36() )
PartFunc of ,) : ( ( ) ( )
set ) &
f : ( (
V6() ) (
Relation-like V6()
V34()
V35()
V36() )
PartFunc of ,)
| A : ( ( non
empty closed_interval ) ( non
empty V51()
V52()
V53()
closed_interval V76() )
Subset of ( ( ) ( )
set ) ) : ( (
V6() ) (
Relation-like V6()
V34()
V35()
V36() )
Element of
K19(
K20(
REAL : ( ( ) ( non
empty V51()
V52()
V53()
V57()
V62() )
set ) ,
REAL : ( ( ) ( non
empty V51()
V52()
V53()
V57()
V62() )
set ) ) : ( ( ) (
Relation-like V34()
V35()
V36() )
set ) ) : ( ( ) ( )
set ) ) is
continuous holds
integral (
f : ( (
V6() ) (
Relation-like V6()
V34()
V35()
V36() )
PartFunc of ,) ,
A : ( ( non
empty closed_interval ) ( non
empty V51()
V52()
V53()
closed_interval V76() )
Subset of ( ( ) ( )
set ) ) ) : ( ( ) (
V28()
V29()
ext-real )
Element of
REAL : ( ( ) ( non
empty V51()
V52()
V53()
V57()
V62() )
set ) )
= (arccot : ( ( V6() ) ( Relation-like V6() V34() V35() V36() ) Element of K19(K20(REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ,REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) : ( ( ) ( Relation-like V34() V35() V36() ) set ) ) : ( ( ) ( ) set ) ) . (upper_bound A : ( ( non empty closed_interval ) ( non empty V51() V52() V53() closed_interval V76() ) Subset of ( ( ) ( ) set ) ) ) : ( ( ) ( V28() V29() ext-real ) Element of REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) ) : ( ( ) (
V28()
V29()
ext-real )
Element of
REAL : ( ( ) ( non
empty V51()
V52()
V53()
V57()
V62() )
set ) )
- (arccot : ( ( V6() ) ( Relation-like V6() V34() V35() V36() ) Element of K19(K20(REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ,REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) : ( ( ) ( Relation-like V34() V35() V36() ) set ) ) : ( ( ) ( ) set ) ) . (lower_bound A : ( ( non empty closed_interval ) ( non empty V51() V52() V53() closed_interval V76() ) Subset of ( ( ) ( ) set ) ) ) : ( ( ) ( V28() V29() ext-real ) Element of REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) ) : ( ( ) (
V28()
V29()
ext-real )
Element of
REAL : ( ( ) ( non
empty V51()
V52()
V53()
V57()
V62() )
set ) ) : ( ( ) (
V28()
V29()
ext-real )
Element of
REAL : ( ( ) ( non
empty V51()
V52()
V53()
V57()
V62() )
set ) ) ;
theorem
for
r being ( ( ) (
V28()
V29()
ext-real )
Real)
for
A being ( ( non
empty closed_interval ) ( non
empty V51()
V52()
V53()
closed_interval V76() )
Subset of ( ( ) ( )
set ) )
for
Z being ( (
open ) (
V51()
V52()
V53()
open )
Subset of ( ( ) ( )
set ) )
for
f being ( (
V6() ) (
Relation-like V6()
V34()
V35()
V36() )
PartFunc of ,) st
A : ( ( non
empty closed_interval ) ( non
empty V51()
V52()
V53()
closed_interval V76() )
Subset of ( ( ) ( )
set ) )
c= Z : ( (
open ) (
V51()
V52()
V53()
open )
Subset of ( ( ) ( )
set ) ) &
Z : ( (
open ) (
V51()
V52()
V53()
open )
Subset of ( ( ) ( )
set ) )
c= ].(- 1 : ( ( ) ( non empty V21() V22() V23() V27() V28() V29() V30() ext-real non negative V50() V51() V52() V53() V54() V55() V56() ) Element of NAT : ( ( ) ( non empty V21() V22() V23() V51() V52() V53() V54() V55() V56() V57() ) Element of K19(REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( ) ( V28() V29() V30() ext-real ) Element of REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) ,1 : ( ( ) ( non empty V21() V22() V23() V27() V28() V29() V30() ext-real non negative V50() V51() V52() V53() V54() V55() V56() ) Element of NAT : ( ( ) ( non empty V21() V22() V23() V51() V52() V53() V54() V55() V56() V57() ) Element of K19(REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) : ( ( ) ( ) set ) ) ) .[ : ( ( ) (
V51()
V52()
V53()
open )
Element of
K19(
REAL : ( ( ) ( non
empty V51()
V52()
V53()
V57()
V62() )
set ) ) : ( ( ) ( )
set ) ) & ( for
x being ( ( ) (
V28()
V29()
ext-real )
Real) st
x : ( ( ) (
V28()
V29()
ext-real )
Real)
in Z : ( (
open ) (
V51()
V52()
V53()
open )
Subset of ( ( ) ( )
set ) ) holds
f : ( (
V6() ) (
Relation-like V6()
V34()
V35()
V36() )
PartFunc of ,)
. x : ( ( ) (
V28()
V29()
ext-real )
Real) : ( ( ) (
V28()
V29()
ext-real )
Element of
REAL : ( ( ) ( non
empty V51()
V52()
V53()
V57()
V62() )
set ) )
= - (r : ( ( ) ( V28() V29() ext-real ) Real) / (1 : ( ( ) ( non empty V21() V22() V23() V27() V28() V29() V30() ext-real non negative V50() V51() V52() V53() V54() V55() V56() ) Element of NAT : ( ( ) ( non empty V21() V22() V23() V51() V52() V53() V54() V55() V56() V57() ) Element of K19(REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) : ( ( ) ( ) set ) ) ) + (x : ( ( ) ( V28() V29() ext-real ) Real) ^2) : ( ( ) ( V28() V29() ext-real ) Element of REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) ) : ( ( ) ( V28() V29() ext-real ) Element of REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) ) : ( ( ) (
V28()
V29()
ext-real )
Element of
REAL : ( ( ) ( non
empty V51()
V52()
V53()
V57()
V62() )
set ) ) : ( ( ) (
V28()
V29()
ext-real )
Element of
REAL : ( ( ) ( non
empty V51()
V52()
V53()
V57()
V62() )
set ) ) ) &
Z : ( (
open ) (
V51()
V52()
V53()
open )
Subset of ( ( ) ( )
set ) )
= dom f : ( (
V6() ) (
Relation-like V6()
V34()
V35()
V36() )
PartFunc of ,) : ( ( ) ( )
set ) &
f : ( (
V6() ) (
Relation-like V6()
V34()
V35()
V36() )
PartFunc of ,)
| A : ( ( non
empty closed_interval ) ( non
empty V51()
V52()
V53()
closed_interval V76() )
Subset of ( ( ) ( )
set ) ) : ( (
V6() ) (
Relation-like V6()
V34()
V35()
V36() )
Element of
K19(
K20(
REAL : ( ( ) ( non
empty V51()
V52()
V53()
V57()
V62() )
set ) ,
REAL : ( ( ) ( non
empty V51()
V52()
V53()
V57()
V62() )
set ) ) : ( ( ) (
Relation-like V34()
V35()
V36() )
set ) ) : ( ( ) ( )
set ) ) is
continuous holds
integral (
f : ( (
V6() ) (
Relation-like V6()
V34()
V35()
V36() )
PartFunc of ,) ,
A : ( ( non
empty closed_interval ) ( non
empty V51()
V52()
V53()
closed_interval V76() )
Subset of ( ( ) ( )
set ) ) ) : ( ( ) (
V28()
V29()
ext-real )
Element of
REAL : ( ( ) ( non
empty V51()
V52()
V53()
V57()
V62() )
set ) )
= ((r : ( ( ) ( V28() V29() ext-real ) Real) (#) arccot : ( ( V6() ) ( Relation-like V6() V34() V35() V36() ) Element of K19(K20(REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ,REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) : ( ( ) ( Relation-like V34() V35() V36() ) set ) ) : ( ( ) ( ) set ) ) ) : ( ( V6() ) ( Relation-like V6() V34() V35() V36() ) Element of K19(K20(REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ,REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) : ( ( ) ( Relation-like V34() V35() V36() ) set ) ) : ( ( ) ( ) set ) ) . (upper_bound A : ( ( non empty closed_interval ) ( non empty V51() V52() V53() closed_interval V76() ) Subset of ( ( ) ( ) set ) ) ) : ( ( ) ( V28() V29() ext-real ) Element of REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) ) : ( ( ) (
V28()
V29()
ext-real )
Element of
REAL : ( ( ) ( non
empty V51()
V52()
V53()
V57()
V62() )
set ) )
- ((r : ( ( ) ( V28() V29() ext-real ) Real) (#) arccot : ( ( V6() ) ( Relation-like V6() V34() V35() V36() ) Element of K19(K20(REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ,REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) : ( ( ) ( Relation-like V34() V35() V36() ) set ) ) : ( ( ) ( ) set ) ) ) : ( ( V6() ) ( Relation-like V6() V34() V35() V36() ) Element of K19(K20(REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ,REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) : ( ( ) ( Relation-like V34() V35() V36() ) set ) ) : ( ( ) ( ) set ) ) . (lower_bound A : ( ( non empty closed_interval ) ( non empty V51() V52() V53() closed_interval V76() ) Subset of ( ( ) ( ) set ) ) ) : ( ( ) ( V28() V29() ext-real ) Element of REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) ) : ( ( ) (
V28()
V29()
ext-real )
Element of
REAL : ( ( ) ( non
empty V51()
V52()
V53()
V57()
V62() )
set ) ) : ( ( ) (
V28()
V29()
ext-real )
Element of
REAL : ( ( ) ( non
empty V51()
V52()
V53()
V57()
V62() )
set ) ) ;
theorem
for
Z being ( (
open ) (
V51()
V52()
V53()
open )
Subset of ( ( ) ( )
set ) ) st
Z : ( (
open ) (
V51()
V52()
V53()
open )
Subset of ( ( ) ( )
set ) )
c= dom (((id Z : ( ( open ) ( V51() V52() V53() open ) Subset of ( ( ) ( ) set ) ) ) : ( ( V6() ) ( Relation-like b1 : ( ( open ) ( V51() V52() V53() open ) Subset of ( ( ) ( ) set ) ) -defined b1 : ( ( open ) ( V51() V52() V53() open ) Subset of ( ( ) ( ) set ) ) -valued V6() total V34() V35() V36() continuous V49() ) Element of K19(K20(REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ,REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) : ( ( ) ( Relation-like V34() V35() V36() ) set ) ) : ( ( ) ( ) set ) ) + cot : ( ( V6() ) ( Relation-like V6() V34() V35() V36() ) Element of K19(K20(REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ,REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) : ( ( ) ( Relation-like V34() V35() V36() ) set ) ) : ( ( ) ( ) set ) ) ) : ( ( V6() ) ( Relation-like b1 : ( ( open ) ( V51() V52() V53() open ) Subset of ( ( ) ( ) set ) ) -defined V6() V34() V35() V36() ) Element of K19(K20(REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ,REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) : ( ( ) ( Relation-like V34() V35() V36() ) set ) ) : ( ( ) ( ) set ) ) - cosec : ( ( V6() ) ( Relation-like V6() V34() V35() V36() ) Element of K19(K20(REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ,REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) : ( ( ) ( Relation-like V34() V35() V36() ) set ) ) : ( ( ) ( ) set ) ) ) : ( (
V6() ) (
Relation-like V6()
V34()
V35()
V36() )
Element of
K19(
K20(
REAL : ( ( ) ( non
empty V51()
V52()
V53()
V57()
V62() )
set ) ,
REAL : ( ( ) ( non
empty V51()
V52()
V53()
V57()
V62() )
set ) ) : ( ( ) (
Relation-like V34()
V35()
V36() )
set ) ) : ( ( ) ( )
set ) ) : ( ( ) ( )
set ) & ( for
x being ( ( ) (
V28()
V29()
ext-real )
Real) st
x : ( ( ) (
V28()
V29()
ext-real )
Real)
in Z : ( (
open ) (
V51()
V52()
V53()
open )
Subset of ( ( ) ( )
set ) ) holds
( 1 : ( ( ) ( non
empty V21()
V22()
V23()
V27()
V28()
V29()
V30()
ext-real non
negative V50()
V51()
V52()
V53()
V54()
V55()
V56() )
Element of
NAT : ( ( ) ( non
empty V21()
V22()
V23()
V51()
V52()
V53()
V54()
V55()
V56()
V57() )
Element of
K19(
REAL : ( ( ) ( non
empty V51()
V52()
V53()
V57()
V62() )
set ) ) : ( ( ) ( )
set ) ) )
+ (cos : ( ( V6() V18( REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) , REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) ) ( Relation-like V6() non empty total V18( REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) , REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) V34() V35() V36() continuous ) Element of K19(K20(REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ,REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) : ( ( ) ( Relation-like V34() V35() V36() ) set ) ) : ( ( ) ( ) set ) ) . x : ( ( ) ( V28() V29() ext-real ) Real) ) : ( ( ) (
V28()
V29()
ext-real )
Element of
REAL : ( ( ) ( non
empty V51()
V52()
V53()
V57()
V62() )
set ) ) : ( ( ) (
V28()
V29()
ext-real )
Element of
REAL : ( ( ) ( non
empty V51()
V52()
V53()
V57()
V62() )
set ) )
<> 0 : ( ( ) (
V21()
V22()
V23()
V27()
V28()
V29()
V30()
ext-real non
negative V50()
V51()
V52()
V53()
V54()
V55()
V56() )
Element of
NAT : ( ( ) ( non
empty V21()
V22()
V23()
V51()
V52()
V53()
V54()
V55()
V56()
V57() )
Element of
K19(
REAL : ( ( ) ( non
empty V51()
V52()
V53()
V57()
V62() )
set ) ) : ( ( ) ( )
set ) ) ) & 1 : ( ( ) ( non
empty V21()
V22()
V23()
V27()
V28()
V29()
V30()
ext-real non
negative V50()
V51()
V52()
V53()
V54()
V55()
V56() )
Element of
NAT : ( ( ) ( non
empty V21()
V22()
V23()
V51()
V52()
V53()
V54()
V55()
V56()
V57() )
Element of
K19(
REAL : ( ( ) ( non
empty V51()
V52()
V53()
V57()
V62() )
set ) ) : ( ( ) ( )
set ) ) )
- (cos : ( ( V6() V18( REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) , REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) ) ( Relation-like V6() non empty total V18( REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) , REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) V34() V35() V36() continuous ) Element of K19(K20(REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ,REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) : ( ( ) ( Relation-like V34() V35() V36() ) set ) ) : ( ( ) ( ) set ) ) . x : ( ( ) ( V28() V29() ext-real ) Real) ) : ( ( ) (
V28()
V29()
ext-real )
Element of
REAL : ( ( ) ( non
empty V51()
V52()
V53()
V57()
V62() )
set ) ) : ( ( ) (
V28()
V29()
ext-real )
Element of
REAL : ( ( ) ( non
empty V51()
V52()
V53()
V57()
V62() )
set ) )
<> 0 : ( ( ) (
V21()
V22()
V23()
V27()
V28()
V29()
V30()
ext-real non
negative V50()
V51()
V52()
V53()
V54()
V55()
V56() )
Element of
NAT : ( ( ) ( non
empty V21()
V22()
V23()
V51()
V52()
V53()
V54()
V55()
V56()
V57() )
Element of
K19(
REAL : ( ( ) ( non
empty V51()
V52()
V53()
V57()
V62() )
set ) ) : ( ( ) ( )
set ) ) ) ) ) holds
(
((id Z : ( ( open ) ( V51() V52() V53() open ) Subset of ( ( ) ( ) set ) ) ) : ( ( V6() ) ( Relation-like b1 : ( ( open ) ( V51() V52() V53() open ) Subset of ( ( ) ( ) set ) ) -defined b1 : ( ( open ) ( V51() V52() V53() open ) Subset of ( ( ) ( ) set ) ) -valued V6() total V34() V35() V36() continuous V49() ) Element of K19(K20(REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ,REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) : ( ( ) ( Relation-like V34() V35() V36() ) set ) ) : ( ( ) ( ) set ) ) + cot : ( ( V6() ) ( Relation-like V6() V34() V35() V36() ) Element of K19(K20(REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ,REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) : ( ( ) ( Relation-like V34() V35() V36() ) set ) ) : ( ( ) ( ) set ) ) ) : ( (
V6() ) (
Relation-like b1 : ( (
open ) (
V51()
V52()
V53()
open )
Subset of ( ( ) ( )
set ) )
-defined V6()
V34()
V35()
V36() )
Element of
K19(
K20(
REAL : ( ( ) ( non
empty V51()
V52()
V53()
V57()
V62() )
set ) ,
REAL : ( ( ) ( non
empty V51()
V52()
V53()
V57()
V62() )
set ) ) : ( ( ) (
Relation-like V34()
V35()
V36() )
set ) ) : ( ( ) ( )
set ) )
- cosec : ( (
V6() ) (
Relation-like V6()
V34()
V35()
V36() )
Element of
K19(
K20(
REAL : ( ( ) ( non
empty V51()
V52()
V53()
V57()
V62() )
set ) ,
REAL : ( ( ) ( non
empty V51()
V52()
V53()
V57()
V62() )
set ) ) : ( ( ) (
Relation-like V34()
V35()
V36() )
set ) ) : ( ( ) ( )
set ) ) : ( (
V6() ) (
Relation-like V6()
V34()
V35()
V36() )
Element of
K19(
K20(
REAL : ( ( ) ( non
empty V51()
V52()
V53()
V57()
V62() )
set ) ,
REAL : ( ( ) ( non
empty V51()
V52()
V53()
V57()
V62() )
set ) ) : ( ( ) (
Relation-like V34()
V35()
V36() )
set ) ) : ( ( ) ( )
set ) )
is_differentiable_on Z : ( (
open ) (
V51()
V52()
V53()
open )
Subset of ( ( ) ( )
set ) ) & ( for
x being ( ( ) (
V28()
V29()
ext-real )
Real) st
x : ( ( ) (
V28()
V29()
ext-real )
Real)
in Z : ( (
open ) (
V51()
V52()
V53()
open )
Subset of ( ( ) ( )
set ) ) holds
((((id Z : ( ( open ) ( V51() V52() V53() open ) Subset of ( ( ) ( ) set ) ) ) : ( ( V6() ) ( Relation-like b1 : ( ( open ) ( V51() V52() V53() open ) Subset of ( ( ) ( ) set ) ) -defined b1 : ( ( open ) ( V51() V52() V53() open ) Subset of ( ( ) ( ) set ) ) -valued V6() total V34() V35() V36() continuous V49() ) Element of K19(K20(REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ,REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) : ( ( ) ( Relation-like V34() V35() V36() ) set ) ) : ( ( ) ( ) set ) ) + cot : ( ( V6() ) ( Relation-like V6() V34() V35() V36() ) Element of K19(K20(REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ,REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) : ( ( ) ( Relation-like V34() V35() V36() ) set ) ) : ( ( ) ( ) set ) ) ) : ( ( V6() ) ( Relation-like b1 : ( ( open ) ( V51() V52() V53() open ) Subset of ( ( ) ( ) set ) ) -defined V6() V34() V35() V36() ) Element of K19(K20(REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ,REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) : ( ( ) ( Relation-like V34() V35() V36() ) set ) ) : ( ( ) ( ) set ) ) - cosec : ( ( V6() ) ( Relation-like V6() V34() V35() V36() ) Element of K19(K20(REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ,REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) : ( ( ) ( Relation-like V34() V35() V36() ) set ) ) : ( ( ) ( ) set ) ) ) : ( ( V6() ) ( Relation-like V6() V34() V35() V36() ) Element of K19(K20(REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ,REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) : ( ( ) ( Relation-like V34() V35() V36() ) set ) ) : ( ( ) ( ) set ) ) `| Z : ( ( open ) ( V51() V52() V53() open ) Subset of ( ( ) ( ) set ) ) ) : ( (
V6() ) (
Relation-like V6()
V34()
V35()
V36() )
Element of
K19(
K20(
REAL : ( ( ) ( non
empty V51()
V52()
V53()
V57()
V62() )
set ) ,
REAL : ( ( ) ( non
empty V51()
V52()
V53()
V57()
V62() )
set ) ) : ( ( ) (
Relation-like V34()
V35()
V36() )
set ) ) : ( ( ) ( )
set ) )
. x : ( ( ) (
V28()
V29()
ext-real )
Real) : ( ( ) (
V28()
V29()
ext-real )
Element of
REAL : ( ( ) ( non
empty V51()
V52()
V53()
V57()
V62() )
set ) )
= (cos : ( ( V6() V18( REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) , REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) ) ( Relation-like V6() non empty total V18( REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) , REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) V34() V35() V36() continuous ) Element of K19(K20(REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ,REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) : ( ( ) ( Relation-like V34() V35() V36() ) set ) ) : ( ( ) ( ) set ) ) . x : ( ( ) ( V28() V29() ext-real ) Real) ) : ( ( ) (
V28()
V29()
ext-real )
Element of
REAL : ( ( ) ( non
empty V51()
V52()
V53()
V57()
V62() )
set ) )
/ (1 : ( ( ) ( non empty V21() V22() V23() V27() V28() V29() V30() ext-real non negative V50() V51() V52() V53() V54() V55() V56() ) Element of NAT : ( ( ) ( non empty V21() V22() V23() V51() V52() V53() V54() V55() V56() V57() ) Element of K19(REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) : ( ( ) ( ) set ) ) ) + (cos : ( ( V6() V18( REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) , REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) ) ( Relation-like V6() non empty total V18( REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) , REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) V34() V35() V36() continuous ) Element of K19(K20(REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ,REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) : ( ( ) ( Relation-like V34() V35() V36() ) set ) ) : ( ( ) ( ) set ) ) . x : ( ( ) ( V28() V29() ext-real ) Real) ) : ( ( ) ( V28() V29() ext-real ) Element of REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) ) : ( ( ) (
V28()
V29()
ext-real )
Element of
REAL : ( ( ) ( non
empty V51()
V52()
V53()
V57()
V62() )
set ) ) : ( ( ) (
V28()
V29()
ext-real )
Element of
REAL : ( ( ) ( non
empty V51()
V52()
V53()
V57()
V62() )
set ) ) ) ) ;
theorem
for
A being ( ( non
empty closed_interval ) ( non
empty V51()
V52()
V53()
closed_interval V76() )
Subset of ( ( ) ( )
set ) )
for
Z being ( (
open ) (
V51()
V52()
V53()
open )
Subset of ( ( ) ( )
set ) )
for
f being ( (
V6() ) (
Relation-like V6()
V34()
V35()
V36() )
PartFunc of ,) st
A : ( ( non
empty closed_interval ) ( non
empty V51()
V52()
V53()
closed_interval V76() )
Subset of ( ( ) ( )
set ) )
c= Z : ( (
open ) (
V51()
V52()
V53()
open )
Subset of ( ( ) ( )
set ) ) & ( for
x being ( ( ) (
V28()
V29()
ext-real )
Real) st
x : ( ( ) (
V28()
V29()
ext-real )
Real)
in Z : ( (
open ) (
V51()
V52()
V53()
open )
Subset of ( ( ) ( )
set ) ) holds
( 1 : ( ( ) ( non
empty V21()
V22()
V23()
V27()
V28()
V29()
V30()
ext-real non
negative V50()
V51()
V52()
V53()
V54()
V55()
V56() )
Element of
NAT : ( ( ) ( non
empty V21()
V22()
V23()
V51()
V52()
V53()
V54()
V55()
V56()
V57() )
Element of
K19(
REAL : ( ( ) ( non
empty V51()
V52()
V53()
V57()
V62() )
set ) ) : ( ( ) ( )
set ) ) )
+ (cos : ( ( V6() V18( REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) , REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) ) ( Relation-like V6() non empty total V18( REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) , REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) V34() V35() V36() continuous ) Element of K19(K20(REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ,REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) : ( ( ) ( Relation-like V34() V35() V36() ) set ) ) : ( ( ) ( ) set ) ) . x : ( ( ) ( V28() V29() ext-real ) Real) ) : ( ( ) (
V28()
V29()
ext-real )
Element of
REAL : ( ( ) ( non
empty V51()
V52()
V53()
V57()
V62() )
set ) ) : ( ( ) (
V28()
V29()
ext-real )
Element of
REAL : ( ( ) ( non
empty V51()
V52()
V53()
V57()
V62() )
set ) )
<> 0 : ( ( ) (
V21()
V22()
V23()
V27()
V28()
V29()
V30()
ext-real non
negative V50()
V51()
V52()
V53()
V54()
V55()
V56() )
Element of
NAT : ( ( ) ( non
empty V21()
V22()
V23()
V51()
V52()
V53()
V54()
V55()
V56()
V57() )
Element of
K19(
REAL : ( ( ) ( non
empty V51()
V52()
V53()
V57()
V62() )
set ) ) : ( ( ) ( )
set ) ) ) & 1 : ( ( ) ( non
empty V21()
V22()
V23()
V27()
V28()
V29()
V30()
ext-real non
negative V50()
V51()
V52()
V53()
V54()
V55()
V56() )
Element of
NAT : ( ( ) ( non
empty V21()
V22()
V23()
V51()
V52()
V53()
V54()
V55()
V56()
V57() )
Element of
K19(
REAL : ( ( ) ( non
empty V51()
V52()
V53()
V57()
V62() )
set ) ) : ( ( ) ( )
set ) ) )
- (cos : ( ( V6() V18( REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) , REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) ) ( Relation-like V6() non empty total V18( REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) , REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) V34() V35() V36() continuous ) Element of K19(K20(REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ,REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) : ( ( ) ( Relation-like V34() V35() V36() ) set ) ) : ( ( ) ( ) set ) ) . x : ( ( ) ( V28() V29() ext-real ) Real) ) : ( ( ) (
V28()
V29()
ext-real )
Element of
REAL : ( ( ) ( non
empty V51()
V52()
V53()
V57()
V62() )
set ) ) : ( ( ) (
V28()
V29()
ext-real )
Element of
REAL : ( ( ) ( non
empty V51()
V52()
V53()
V57()
V62() )
set ) )
<> 0 : ( ( ) (
V21()
V22()
V23()
V27()
V28()
V29()
V30()
ext-real non
negative V50()
V51()
V52()
V53()
V54()
V55()
V56() )
Element of
NAT : ( ( ) ( non
empty V21()
V22()
V23()
V51()
V52()
V53()
V54()
V55()
V56()
V57() )
Element of
K19(
REAL : ( ( ) ( non
empty V51()
V52()
V53()
V57()
V62() )
set ) ) : ( ( ) ( )
set ) ) ) &
f : ( (
V6() ) (
Relation-like V6()
V34()
V35()
V36() )
PartFunc of ,)
. x : ( ( ) (
V28()
V29()
ext-real )
Real) : ( ( ) (
V28()
V29()
ext-real )
Element of
REAL : ( ( ) ( non
empty V51()
V52()
V53()
V57()
V62() )
set ) )
= (cos : ( ( V6() V18( REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) , REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) ) ( Relation-like V6() non empty total V18( REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) , REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) V34() V35() V36() continuous ) Element of K19(K20(REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ,REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) : ( ( ) ( Relation-like V34() V35() V36() ) set ) ) : ( ( ) ( ) set ) ) . x : ( ( ) ( V28() V29() ext-real ) Real) ) : ( ( ) (
V28()
V29()
ext-real )
Element of
REAL : ( ( ) ( non
empty V51()
V52()
V53()
V57()
V62() )
set ) )
/ (1 : ( ( ) ( non empty V21() V22() V23() V27() V28() V29() V30() ext-real non negative V50() V51() V52() V53() V54() V55() V56() ) Element of NAT : ( ( ) ( non empty V21() V22() V23() V51() V52() V53() V54() V55() V56() V57() ) Element of K19(REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) : ( ( ) ( ) set ) ) ) + (cos : ( ( V6() V18( REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) , REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) ) ( Relation-like V6() non empty total V18( REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) , REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) V34() V35() V36() continuous ) Element of K19(K20(REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ,REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) : ( ( ) ( Relation-like V34() V35() V36() ) set ) ) : ( ( ) ( ) set ) ) . x : ( ( ) ( V28() V29() ext-real ) Real) ) : ( ( ) ( V28() V29() ext-real ) Element of REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) ) : ( ( ) (
V28()
V29()
ext-real )
Element of
REAL : ( ( ) ( non
empty V51()
V52()
V53()
V57()
V62() )
set ) ) : ( ( ) (
V28()
V29()
ext-real )
Element of
REAL : ( ( ) ( non
empty V51()
V52()
V53()
V57()
V62() )
set ) ) ) ) &
dom (((id Z : ( ( open ) ( V51() V52() V53() open ) Subset of ( ( ) ( ) set ) ) ) : ( ( V6() ) ( Relation-like b2 : ( ( open ) ( V51() V52() V53() open ) Subset of ( ( ) ( ) set ) ) -defined b2 : ( ( open ) ( V51() V52() V53() open ) Subset of ( ( ) ( ) set ) ) -valued V6() total V34() V35() V36() continuous V49() ) Element of K19(K20(REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ,REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) : ( ( ) ( Relation-like V34() V35() V36() ) set ) ) : ( ( ) ( ) set ) ) + cot : ( ( V6() ) ( Relation-like V6() V34() V35() V36() ) Element of K19(K20(REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ,REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) : ( ( ) ( Relation-like V34() V35() V36() ) set ) ) : ( ( ) ( ) set ) ) ) : ( ( V6() ) ( Relation-like b2 : ( ( open ) ( V51() V52() V53() open ) Subset of ( ( ) ( ) set ) ) -defined V6() V34() V35() V36() ) Element of K19(K20(REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ,REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) : ( ( ) ( Relation-like V34() V35() V36() ) set ) ) : ( ( ) ( ) set ) ) - cosec : ( ( V6() ) ( Relation-like V6() V34() V35() V36() ) Element of K19(K20(REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ,REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) : ( ( ) ( Relation-like V34() V35() V36() ) set ) ) : ( ( ) ( ) set ) ) ) : ( (
V6() ) (
Relation-like V6()
V34()
V35()
V36() )
Element of
K19(
K20(
REAL : ( ( ) ( non
empty V51()
V52()
V53()
V57()
V62() )
set ) ,
REAL : ( ( ) ( non
empty V51()
V52()
V53()
V57()
V62() )
set ) ) : ( ( ) (
Relation-like V34()
V35()
V36() )
set ) ) : ( ( ) ( )
set ) ) : ( ( ) ( )
set )
= Z : ( (
open ) (
V51()
V52()
V53()
open )
Subset of ( ( ) ( )
set ) ) &
Z : ( (
open ) (
V51()
V52()
V53()
open )
Subset of ( ( ) ( )
set ) )
= dom f : ( (
V6() ) (
Relation-like V6()
V34()
V35()
V36() )
PartFunc of ,) : ( ( ) ( )
set ) &
f : ( (
V6() ) (
Relation-like V6()
V34()
V35()
V36() )
PartFunc of ,)
| A : ( ( non
empty closed_interval ) ( non
empty V51()
V52()
V53()
closed_interval V76() )
Subset of ( ( ) ( )
set ) ) : ( (
V6() ) (
Relation-like V6()
V34()
V35()
V36() )
Element of
K19(
K20(
REAL : ( ( ) ( non
empty V51()
V52()
V53()
V57()
V62() )
set ) ,
REAL : ( ( ) ( non
empty V51()
V52()
V53()
V57()
V62() )
set ) ) : ( ( ) (
Relation-like V34()
V35()
V36() )
set ) ) : ( ( ) ( )
set ) ) is
continuous holds
integral (
f : ( (
V6() ) (
Relation-like V6()
V34()
V35()
V36() )
PartFunc of ,) ,
A : ( ( non
empty closed_interval ) ( non
empty V51()
V52()
V53()
closed_interval V76() )
Subset of ( ( ) ( )
set ) ) ) : ( ( ) (
V28()
V29()
ext-real )
Element of
REAL : ( ( ) ( non
empty V51()
V52()
V53()
V57()
V62() )
set ) )
= ((((id Z : ( ( open ) ( V51() V52() V53() open ) Subset of ( ( ) ( ) set ) ) ) : ( ( V6() ) ( Relation-like b2 : ( ( open ) ( V51() V52() V53() open ) Subset of ( ( ) ( ) set ) ) -defined b2 : ( ( open ) ( V51() V52() V53() open ) Subset of ( ( ) ( ) set ) ) -valued V6() total V34() V35() V36() continuous V49() ) Element of K19(K20(REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ,REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) : ( ( ) ( Relation-like V34() V35() V36() ) set ) ) : ( ( ) ( ) set ) ) + cot : ( ( V6() ) ( Relation-like V6() V34() V35() V36() ) Element of K19(K20(REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ,REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) : ( ( ) ( Relation-like V34() V35() V36() ) set ) ) : ( ( ) ( ) set ) ) ) : ( ( V6() ) ( Relation-like b2 : ( ( open ) ( V51() V52() V53() open ) Subset of ( ( ) ( ) set ) ) -defined V6() V34() V35() V36() ) Element of K19(K20(REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ,REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) : ( ( ) ( Relation-like V34() V35() V36() ) set ) ) : ( ( ) ( ) set ) ) - cosec : ( ( V6() ) ( Relation-like V6() V34() V35() V36() ) Element of K19(K20(REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ,REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) : ( ( ) ( Relation-like V34() V35() V36() ) set ) ) : ( ( ) ( ) set ) ) ) : ( ( V6() ) ( Relation-like V6() V34() V35() V36() ) Element of K19(K20(REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ,REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) : ( ( ) ( Relation-like V34() V35() V36() ) set ) ) : ( ( ) ( ) set ) ) . (upper_bound A : ( ( non empty closed_interval ) ( non empty V51() V52() V53() closed_interval V76() ) Subset of ( ( ) ( ) set ) ) ) : ( ( ) ( V28() V29() ext-real ) Element of REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) ) : ( ( ) (
V28()
V29()
ext-real )
Element of
REAL : ( ( ) ( non
empty V51()
V52()
V53()
V57()
V62() )
set ) )
- ((((id Z : ( ( open ) ( V51() V52() V53() open ) Subset of ( ( ) ( ) set ) ) ) : ( ( V6() ) ( Relation-like b2 : ( ( open ) ( V51() V52() V53() open ) Subset of ( ( ) ( ) set ) ) -defined b2 : ( ( open ) ( V51() V52() V53() open ) Subset of ( ( ) ( ) set ) ) -valued V6() total V34() V35() V36() continuous V49() ) Element of K19(K20(REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ,REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) : ( ( ) ( Relation-like V34() V35() V36() ) set ) ) : ( ( ) ( ) set ) ) + cot : ( ( V6() ) ( Relation-like V6() V34() V35() V36() ) Element of K19(K20(REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ,REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) : ( ( ) ( Relation-like V34() V35() V36() ) set ) ) : ( ( ) ( ) set ) ) ) : ( ( V6() ) ( Relation-like b2 : ( ( open ) ( V51() V52() V53() open ) Subset of ( ( ) ( ) set ) ) -defined V6() V34() V35() V36() ) Element of K19(K20(REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ,REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) : ( ( ) ( Relation-like V34() V35() V36() ) set ) ) : ( ( ) ( ) set ) ) - cosec : ( ( V6() ) ( Relation-like V6() V34() V35() V36() ) Element of K19(K20(REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ,REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) : ( ( ) ( Relation-like V34() V35() V36() ) set ) ) : ( ( ) ( ) set ) ) ) : ( ( V6() ) ( Relation-like V6() V34() V35() V36() ) Element of K19(K20(REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ,REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) : ( ( ) ( Relation-like V34() V35() V36() ) set ) ) : ( ( ) ( ) set ) ) . (lower_bound A : ( ( non empty closed_interval ) ( non empty V51() V52() V53() closed_interval V76() ) Subset of ( ( ) ( ) set ) ) ) : ( ( ) ( V28() V29() ext-real ) Element of REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) ) : ( ( ) (
V28()
V29()
ext-real )
Element of
REAL : ( ( ) ( non
empty V51()
V52()
V53()
V57()
V62() )
set ) ) : ( ( ) (
V28()
V29()
ext-real )
Element of
REAL : ( ( ) ( non
empty V51()
V52()
V53()
V57()
V62() )
set ) ) ;
theorem
for
Z being ( (
open ) (
V51()
V52()
V53()
open )
Subset of ( ( ) ( )
set ) ) st
Z : ( (
open ) (
V51()
V52()
V53()
open )
Subset of ( ( ) ( )
set ) )
c= dom (((id Z : ( ( open ) ( V51() V52() V53() open ) Subset of ( ( ) ( ) set ) ) ) : ( ( V6() ) ( Relation-like b1 : ( ( open ) ( V51() V52() V53() open ) Subset of ( ( ) ( ) set ) ) -defined b1 : ( ( open ) ( V51() V52() V53() open ) Subset of ( ( ) ( ) set ) ) -valued V6() total V34() V35() V36() continuous V49() ) Element of K19(K20(REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ,REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) : ( ( ) ( Relation-like V34() V35() V36() ) set ) ) : ( ( ) ( ) set ) ) + cot : ( ( V6() ) ( Relation-like V6() V34() V35() V36() ) Element of K19(K20(REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ,REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) : ( ( ) ( Relation-like V34() V35() V36() ) set ) ) : ( ( ) ( ) set ) ) ) : ( ( V6() ) ( Relation-like b1 : ( ( open ) ( V51() V52() V53() open ) Subset of ( ( ) ( ) set ) ) -defined V6() V34() V35() V36() ) Element of K19(K20(REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ,REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) : ( ( ) ( Relation-like V34() V35() V36() ) set ) ) : ( ( ) ( ) set ) ) + cosec : ( ( V6() ) ( Relation-like V6() V34() V35() V36() ) Element of K19(K20(REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ,REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) : ( ( ) ( Relation-like V34() V35() V36() ) set ) ) : ( ( ) ( ) set ) ) ) : ( (
V6() ) (
Relation-like b1 : ( (
open ) (
V51()
V52()
V53()
open )
Subset of ( ( ) ( )
set ) )
-defined V6()
V34()
V35()
V36() )
Element of
K19(
K20(
REAL : ( ( ) ( non
empty V51()
V52()
V53()
V57()
V62() )
set ) ,
REAL : ( ( ) ( non
empty V51()
V52()
V53()
V57()
V62() )
set ) ) : ( ( ) (
Relation-like V34()
V35()
V36() )
set ) ) : ( ( ) ( )
set ) ) : ( ( ) ( )
set ) & ( for
x being ( ( ) (
V28()
V29()
ext-real )
Real) st
x : ( ( ) (
V28()
V29()
ext-real )
Real)
in Z : ( (
open ) (
V51()
V52()
V53()
open )
Subset of ( ( ) ( )
set ) ) holds
( 1 : ( ( ) ( non
empty V21()
V22()
V23()
V27()
V28()
V29()
V30()
ext-real non
negative V50()
V51()
V52()
V53()
V54()
V55()
V56() )
Element of
NAT : ( ( ) ( non
empty V21()
V22()
V23()
V51()
V52()
V53()
V54()
V55()
V56()
V57() )
Element of
K19(
REAL : ( ( ) ( non
empty V51()
V52()
V53()
V57()
V62() )
set ) ) : ( ( ) ( )
set ) ) )
+ (cos : ( ( V6() V18( REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) , REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) ) ( Relation-like V6() non empty total V18( REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) , REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) V34() V35() V36() continuous ) Element of K19(K20(REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ,REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) : ( ( ) ( Relation-like V34() V35() V36() ) set ) ) : ( ( ) ( ) set ) ) . x : ( ( ) ( V28() V29() ext-real ) Real) ) : ( ( ) (
V28()
V29()
ext-real )
Element of
REAL : ( ( ) ( non
empty V51()
V52()
V53()
V57()
V62() )
set ) ) : ( ( ) (
V28()
V29()
ext-real )
Element of
REAL : ( ( ) ( non
empty V51()
V52()
V53()
V57()
V62() )
set ) )
<> 0 : ( ( ) (
V21()
V22()
V23()
V27()
V28()
V29()
V30()
ext-real non
negative V50()
V51()
V52()
V53()
V54()
V55()
V56() )
Element of
NAT : ( ( ) ( non
empty V21()
V22()
V23()
V51()
V52()
V53()
V54()
V55()
V56()
V57() )
Element of
K19(
REAL : ( ( ) ( non
empty V51()
V52()
V53()
V57()
V62() )
set ) ) : ( ( ) ( )
set ) ) ) & 1 : ( ( ) ( non
empty V21()
V22()
V23()
V27()
V28()
V29()
V30()
ext-real non
negative V50()
V51()
V52()
V53()
V54()
V55()
V56() )
Element of
NAT : ( ( ) ( non
empty V21()
V22()
V23()
V51()
V52()
V53()
V54()
V55()
V56()
V57() )
Element of
K19(
REAL : ( ( ) ( non
empty V51()
V52()
V53()
V57()
V62() )
set ) ) : ( ( ) ( )
set ) ) )
- (cos : ( ( V6() V18( REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) , REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) ) ( Relation-like V6() non empty total V18( REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) , REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) V34() V35() V36() continuous ) Element of K19(K20(REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ,REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) : ( ( ) ( Relation-like V34() V35() V36() ) set ) ) : ( ( ) ( ) set ) ) . x : ( ( ) ( V28() V29() ext-real ) Real) ) : ( ( ) (
V28()
V29()
ext-real )
Element of
REAL : ( ( ) ( non
empty V51()
V52()
V53()
V57()
V62() )
set ) ) : ( ( ) (
V28()
V29()
ext-real )
Element of
REAL : ( ( ) ( non
empty V51()
V52()
V53()
V57()
V62() )
set ) )
<> 0 : ( ( ) (
V21()
V22()
V23()
V27()
V28()
V29()
V30()
ext-real non
negative V50()
V51()
V52()
V53()
V54()
V55()
V56() )
Element of
NAT : ( ( ) ( non
empty V21()
V22()
V23()
V51()
V52()
V53()
V54()
V55()
V56()
V57() )
Element of
K19(
REAL : ( ( ) ( non
empty V51()
V52()
V53()
V57()
V62() )
set ) ) : ( ( ) ( )
set ) ) ) ) ) holds
(
((id Z : ( ( open ) ( V51() V52() V53() open ) Subset of ( ( ) ( ) set ) ) ) : ( ( V6() ) ( Relation-like b1 : ( ( open ) ( V51() V52() V53() open ) Subset of ( ( ) ( ) set ) ) -defined b1 : ( ( open ) ( V51() V52() V53() open ) Subset of ( ( ) ( ) set ) ) -valued V6() total V34() V35() V36() continuous V49() ) Element of K19(K20(REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ,REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) : ( ( ) ( Relation-like V34() V35() V36() ) set ) ) : ( ( ) ( ) set ) ) + cot : ( ( V6() ) ( Relation-like V6() V34() V35() V36() ) Element of K19(K20(REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ,REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) : ( ( ) ( Relation-like V34() V35() V36() ) set ) ) : ( ( ) ( ) set ) ) ) : ( (
V6() ) (
Relation-like b1 : ( (
open ) (
V51()
V52()
V53()
open )
Subset of ( ( ) ( )
set ) )
-defined V6()
V34()
V35()
V36() )
Element of
K19(
K20(
REAL : ( ( ) ( non
empty V51()
V52()
V53()
V57()
V62() )
set ) ,
REAL : ( ( ) ( non
empty V51()
V52()
V53()
V57()
V62() )
set ) ) : ( ( ) (
Relation-like V34()
V35()
V36() )
set ) ) : ( ( ) ( )
set ) )
+ cosec : ( (
V6() ) (
Relation-like V6()
V34()
V35()
V36() )
Element of
K19(
K20(
REAL : ( ( ) ( non
empty V51()
V52()
V53()
V57()
V62() )
set ) ,
REAL : ( ( ) ( non
empty V51()
V52()
V53()
V57()
V62() )
set ) ) : ( ( ) (
Relation-like V34()
V35()
V36() )
set ) ) : ( ( ) ( )
set ) ) : ( (
V6() ) (
Relation-like b1 : ( (
open ) (
V51()
V52()
V53()
open )
Subset of ( ( ) ( )
set ) )
-defined V6()
V34()
V35()
V36() )
Element of
K19(
K20(
REAL : ( ( ) ( non
empty V51()
V52()
V53()
V57()
V62() )
set ) ,
REAL : ( ( ) ( non
empty V51()
V52()
V53()
V57()
V62() )
set ) ) : ( ( ) (
Relation-like V34()
V35()
V36() )
set ) ) : ( ( ) ( )
set ) )
is_differentiable_on Z : ( (
open ) (
V51()
V52()
V53()
open )
Subset of ( ( ) ( )
set ) ) & ( for
x being ( ( ) (
V28()
V29()
ext-real )
Real) st
x : ( ( ) (
V28()
V29()
ext-real )
Real)
in Z : ( (
open ) (
V51()
V52()
V53()
open )
Subset of ( ( ) ( )
set ) ) holds
((((id Z : ( ( open ) ( V51() V52() V53() open ) Subset of ( ( ) ( ) set ) ) ) : ( ( V6() ) ( Relation-like b1 : ( ( open ) ( V51() V52() V53() open ) Subset of ( ( ) ( ) set ) ) -defined b1 : ( ( open ) ( V51() V52() V53() open ) Subset of ( ( ) ( ) set ) ) -valued V6() total V34() V35() V36() continuous V49() ) Element of K19(K20(REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ,REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) : ( ( ) ( Relation-like V34() V35() V36() ) set ) ) : ( ( ) ( ) set ) ) + cot : ( ( V6() ) ( Relation-like V6() V34() V35() V36() ) Element of K19(K20(REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ,REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) : ( ( ) ( Relation-like V34() V35() V36() ) set ) ) : ( ( ) ( ) set ) ) ) : ( ( V6() ) ( Relation-like b1 : ( ( open ) ( V51() V52() V53() open ) Subset of ( ( ) ( ) set ) ) -defined V6() V34() V35() V36() ) Element of K19(K20(REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ,REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) : ( ( ) ( Relation-like V34() V35() V36() ) set ) ) : ( ( ) ( ) set ) ) + cosec : ( ( V6() ) ( Relation-like V6() V34() V35() V36() ) Element of K19(K20(REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ,REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) : ( ( ) ( Relation-like V34() V35() V36() ) set ) ) : ( ( ) ( ) set ) ) ) : ( ( V6() ) ( Relation-like b1 : ( ( open ) ( V51() V52() V53() open ) Subset of ( ( ) ( ) set ) ) -defined V6() V34() V35() V36() ) Element of K19(K20(REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ,REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) : ( ( ) ( Relation-like V34() V35() V36() ) set ) ) : ( ( ) ( ) set ) ) `| Z : ( ( open ) ( V51() V52() V53() open ) Subset of ( ( ) ( ) set ) ) ) : ( (
V6() ) (
Relation-like V6()
V34()
V35()
V36() )
Element of
K19(
K20(
REAL : ( ( ) ( non
empty V51()
V52()
V53()
V57()
V62() )
set ) ,
REAL : ( ( ) ( non
empty V51()
V52()
V53()
V57()
V62() )
set ) ) : ( ( ) (
Relation-like V34()
V35()
V36() )
set ) ) : ( ( ) ( )
set ) )
. x : ( ( ) (
V28()
V29()
ext-real )
Real) : ( ( ) (
V28()
V29()
ext-real )
Element of
REAL : ( ( ) ( non
empty V51()
V52()
V53()
V57()
V62() )
set ) )
= (cos : ( ( V6() V18( REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) , REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) ) ( Relation-like V6() non empty total V18( REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) , REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) V34() V35() V36() continuous ) Element of K19(K20(REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ,REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) : ( ( ) ( Relation-like V34() V35() V36() ) set ) ) : ( ( ) ( ) set ) ) . x : ( ( ) ( V28() V29() ext-real ) Real) ) : ( ( ) (
V28()
V29()
ext-real )
Element of
REAL : ( ( ) ( non
empty V51()
V52()
V53()
V57()
V62() )
set ) )
/ ((cos : ( ( V6() V18( REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) , REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) ) ( Relation-like V6() non empty total V18( REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) , REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) V34() V35() V36() continuous ) Element of K19(K20(REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ,REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) : ( ( ) ( Relation-like V34() V35() V36() ) set ) ) : ( ( ) ( ) set ) ) . x : ( ( ) ( V28() V29() ext-real ) Real) ) : ( ( ) ( V28() V29() ext-real ) Element of REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) - 1 : ( ( ) ( non empty V21() V22() V23() V27() V28() V29() V30() ext-real non negative V50() V51() V52() V53() V54() V55() V56() ) Element of NAT : ( ( ) ( non empty V21() V22() V23() V51() V52() V53() V54() V55() V56() V57() ) Element of K19(REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( ) (
V28()
V29()
ext-real )
Element of
REAL : ( ( ) ( non
empty V51()
V52()
V53()
V57()
V62() )
set ) ) : ( ( ) (
V28()
V29()
ext-real )
Element of
REAL : ( ( ) ( non
empty V51()
V52()
V53()
V57()
V62() )
set ) ) ) ) ;
theorem
for
A being ( ( non
empty closed_interval ) ( non
empty V51()
V52()
V53()
closed_interval V76() )
Subset of ( ( ) ( )
set ) )
for
Z being ( (
open ) (
V51()
V52()
V53()
open )
Subset of ( ( ) ( )
set ) )
for
f being ( (
V6() ) (
Relation-like V6()
V34()
V35()
V36() )
PartFunc of ,) st
A : ( ( non
empty closed_interval ) ( non
empty V51()
V52()
V53()
closed_interval V76() )
Subset of ( ( ) ( )
set ) )
c= Z : ( (
open ) (
V51()
V52()
V53()
open )
Subset of ( ( ) ( )
set ) ) & ( for
x being ( ( ) (
V28()
V29()
ext-real )
Real) st
x : ( ( ) (
V28()
V29()
ext-real )
Real)
in Z : ( (
open ) (
V51()
V52()
V53()
open )
Subset of ( ( ) ( )
set ) ) holds
( 1 : ( ( ) ( non
empty V21()
V22()
V23()
V27()
V28()
V29()
V30()
ext-real non
negative V50()
V51()
V52()
V53()
V54()
V55()
V56() )
Element of
NAT : ( ( ) ( non
empty V21()
V22()
V23()
V51()
V52()
V53()
V54()
V55()
V56()
V57() )
Element of
K19(
REAL : ( ( ) ( non
empty V51()
V52()
V53()
V57()
V62() )
set ) ) : ( ( ) ( )
set ) ) )
+ (cos : ( ( V6() V18( REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) , REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) ) ( Relation-like V6() non empty total V18( REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) , REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) V34() V35() V36() continuous ) Element of K19(K20(REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ,REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) : ( ( ) ( Relation-like V34() V35() V36() ) set ) ) : ( ( ) ( ) set ) ) . x : ( ( ) ( V28() V29() ext-real ) Real) ) : ( ( ) (
V28()
V29()
ext-real )
Element of
REAL : ( ( ) ( non
empty V51()
V52()
V53()
V57()
V62() )
set ) ) : ( ( ) (
V28()
V29()
ext-real )
Element of
REAL : ( ( ) ( non
empty V51()
V52()
V53()
V57()
V62() )
set ) )
<> 0 : ( ( ) (
V21()
V22()
V23()
V27()
V28()
V29()
V30()
ext-real non
negative V50()
V51()
V52()
V53()
V54()
V55()
V56() )
Element of
NAT : ( ( ) ( non
empty V21()
V22()
V23()
V51()
V52()
V53()
V54()
V55()
V56()
V57() )
Element of
K19(
REAL : ( ( ) ( non
empty V51()
V52()
V53()
V57()
V62() )
set ) ) : ( ( ) ( )
set ) ) ) & 1 : ( ( ) ( non
empty V21()
V22()
V23()
V27()
V28()
V29()
V30()
ext-real non
negative V50()
V51()
V52()
V53()
V54()
V55()
V56() )
Element of
NAT : ( ( ) ( non
empty V21()
V22()
V23()
V51()
V52()
V53()
V54()
V55()
V56()
V57() )
Element of
K19(
REAL : ( ( ) ( non
empty V51()
V52()
V53()
V57()
V62() )
set ) ) : ( ( ) ( )
set ) ) )
- (cos : ( ( V6() V18( REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) , REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) ) ( Relation-like V6() non empty total V18( REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) , REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) V34() V35() V36() continuous ) Element of K19(K20(REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ,REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) : ( ( ) ( Relation-like V34() V35() V36() ) set ) ) : ( ( ) ( ) set ) ) . x : ( ( ) ( V28() V29() ext-real ) Real) ) : ( ( ) (
V28()
V29()
ext-real )
Element of
REAL : ( ( ) ( non
empty V51()
V52()
V53()
V57()
V62() )
set ) ) : ( ( ) (
V28()
V29()
ext-real )
Element of
REAL : ( ( ) ( non
empty V51()
V52()
V53()
V57()
V62() )
set ) )
<> 0 : ( ( ) (
V21()
V22()
V23()
V27()
V28()
V29()
V30()
ext-real non
negative V50()
V51()
V52()
V53()
V54()
V55()
V56() )
Element of
NAT : ( ( ) ( non
empty V21()
V22()
V23()
V51()
V52()
V53()
V54()
V55()
V56()
V57() )
Element of
K19(
REAL : ( ( ) ( non
empty V51()
V52()
V53()
V57()
V62() )
set ) ) : ( ( ) ( )
set ) ) ) &
f : ( (
V6() ) (
Relation-like V6()
V34()
V35()
V36() )
PartFunc of ,)
. x : ( ( ) (
V28()
V29()
ext-real )
Real) : ( ( ) (
V28()
V29()
ext-real )
Element of
REAL : ( ( ) ( non
empty V51()
V52()
V53()
V57()
V62() )
set ) )
= (cos : ( ( V6() V18( REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) , REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) ) ( Relation-like V6() non empty total V18( REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) , REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) V34() V35() V36() continuous ) Element of K19(K20(REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ,REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) : ( ( ) ( Relation-like V34() V35() V36() ) set ) ) : ( ( ) ( ) set ) ) . x : ( ( ) ( V28() V29() ext-real ) Real) ) : ( ( ) (
V28()
V29()
ext-real )
Element of
REAL : ( ( ) ( non
empty V51()
V52()
V53()
V57()
V62() )
set ) )
/ ((cos : ( ( V6() V18( REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) , REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) ) ( Relation-like V6() non empty total V18( REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) , REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) V34() V35() V36() continuous ) Element of K19(K20(REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ,REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) : ( ( ) ( Relation-like V34() V35() V36() ) set ) ) : ( ( ) ( ) set ) ) . x : ( ( ) ( V28() V29() ext-real ) Real) ) : ( ( ) ( V28() V29() ext-real ) Element of REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) - 1 : ( ( ) ( non empty V21() V22() V23() V27() V28() V29() V30() ext-real non negative V50() V51() V52() V53() V54() V55() V56() ) Element of NAT : ( ( ) ( non empty V21() V22() V23() V51() V52() V53() V54() V55() V56() V57() ) Element of K19(REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( ) (
V28()
V29()
ext-real )
Element of
REAL : ( ( ) ( non
empty V51()
V52()
V53()
V57()
V62() )
set ) ) : ( ( ) (
V28()
V29()
ext-real )
Element of
REAL : ( ( ) ( non
empty V51()
V52()
V53()
V57()
V62() )
set ) ) ) ) &
dom (((id Z : ( ( open ) ( V51() V52() V53() open ) Subset of ( ( ) ( ) set ) ) ) : ( ( V6() ) ( Relation-like b2 : ( ( open ) ( V51() V52() V53() open ) Subset of ( ( ) ( ) set ) ) -defined b2 : ( ( open ) ( V51() V52() V53() open ) Subset of ( ( ) ( ) set ) ) -valued V6() total V34() V35() V36() continuous V49() ) Element of K19(K20(REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ,REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) : ( ( ) ( Relation-like V34() V35() V36() ) set ) ) : ( ( ) ( ) set ) ) + cot : ( ( V6() ) ( Relation-like V6() V34() V35() V36() ) Element of K19(K20(REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ,REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) : ( ( ) ( Relation-like V34() V35() V36() ) set ) ) : ( ( ) ( ) set ) ) ) : ( ( V6() ) ( Relation-like b2 : ( ( open ) ( V51() V52() V53() open ) Subset of ( ( ) ( ) set ) ) -defined V6() V34() V35() V36() ) Element of K19(K20(REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ,REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) : ( ( ) ( Relation-like V34() V35() V36() ) set ) ) : ( ( ) ( ) set ) ) + cosec : ( ( V6() ) ( Relation-like V6() V34() V35() V36() ) Element of K19(K20(REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ,REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) : ( ( ) ( Relation-like V34() V35() V36() ) set ) ) : ( ( ) ( ) set ) ) ) : ( (
V6() ) (
Relation-like b2 : ( (
open ) (
V51()
V52()
V53()
open )
Subset of ( ( ) ( )
set ) )
-defined V6()
V34()
V35()
V36() )
Element of
K19(
K20(
REAL : ( ( ) ( non
empty V51()
V52()
V53()
V57()
V62() )
set ) ,
REAL : ( ( ) ( non
empty V51()
V52()
V53()
V57()
V62() )
set ) ) : ( ( ) (
Relation-like V34()
V35()
V36() )
set ) ) : ( ( ) ( )
set ) ) : ( ( ) ( )
set )
= Z : ( (
open ) (
V51()
V52()
V53()
open )
Subset of ( ( ) ( )
set ) ) &
Z : ( (
open ) (
V51()
V52()
V53()
open )
Subset of ( ( ) ( )
set ) )
= dom f : ( (
V6() ) (
Relation-like V6()
V34()
V35()
V36() )
PartFunc of ,) : ( ( ) ( )
set ) &
f : ( (
V6() ) (
Relation-like V6()
V34()
V35()
V36() )
PartFunc of ,)
| A : ( ( non
empty closed_interval ) ( non
empty V51()
V52()
V53()
closed_interval V76() )
Subset of ( ( ) ( )
set ) ) : ( (
V6() ) (
Relation-like V6()
V34()
V35()
V36() )
Element of
K19(
K20(
REAL : ( ( ) ( non
empty V51()
V52()
V53()
V57()
V62() )
set ) ,
REAL : ( ( ) ( non
empty V51()
V52()
V53()
V57()
V62() )
set ) ) : ( ( ) (
Relation-like V34()
V35()
V36() )
set ) ) : ( ( ) ( )
set ) ) is
continuous holds
integral (
f : ( (
V6() ) (
Relation-like V6()
V34()
V35()
V36() )
PartFunc of ,) ,
A : ( ( non
empty closed_interval ) ( non
empty V51()
V52()
V53()
closed_interval V76() )
Subset of ( ( ) ( )
set ) ) ) : ( ( ) (
V28()
V29()
ext-real )
Element of
REAL : ( ( ) ( non
empty V51()
V52()
V53()
V57()
V62() )
set ) )
= ((((id Z : ( ( open ) ( V51() V52() V53() open ) Subset of ( ( ) ( ) set ) ) ) : ( ( V6() ) ( Relation-like b2 : ( ( open ) ( V51() V52() V53() open ) Subset of ( ( ) ( ) set ) ) -defined b2 : ( ( open ) ( V51() V52() V53() open ) Subset of ( ( ) ( ) set ) ) -valued V6() total V34() V35() V36() continuous V49() ) Element of K19(K20(REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ,REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) : ( ( ) ( Relation-like V34() V35() V36() ) set ) ) : ( ( ) ( ) set ) ) + cot : ( ( V6() ) ( Relation-like V6() V34() V35() V36() ) Element of K19(K20(REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ,REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) : ( ( ) ( Relation-like V34() V35() V36() ) set ) ) : ( ( ) ( ) set ) ) ) : ( ( V6() ) ( Relation-like b2 : ( ( open ) ( V51() V52() V53() open ) Subset of ( ( ) ( ) set ) ) -defined V6() V34() V35() V36() ) Element of K19(K20(REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ,REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) : ( ( ) ( Relation-like V34() V35() V36() ) set ) ) : ( ( ) ( ) set ) ) + cosec : ( ( V6() ) ( Relation-like V6() V34() V35() V36() ) Element of K19(K20(REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ,REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) : ( ( ) ( Relation-like V34() V35() V36() ) set ) ) : ( ( ) ( ) set ) ) ) : ( ( V6() ) ( Relation-like b2 : ( ( open ) ( V51() V52() V53() open ) Subset of ( ( ) ( ) set ) ) -defined V6() V34() V35() V36() ) Element of K19(K20(REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ,REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) : ( ( ) ( Relation-like V34() V35() V36() ) set ) ) : ( ( ) ( ) set ) ) . (upper_bound A : ( ( non empty closed_interval ) ( non empty V51() V52() V53() closed_interval V76() ) Subset of ( ( ) ( ) set ) ) ) : ( ( ) ( V28() V29() ext-real ) Element of REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) ) : ( ( ) (
V28()
V29()
ext-real )
Element of
REAL : ( ( ) ( non
empty V51()
V52()
V53()
V57()
V62() )
set ) )
- ((((id Z : ( ( open ) ( V51() V52() V53() open ) Subset of ( ( ) ( ) set ) ) ) : ( ( V6() ) ( Relation-like b2 : ( ( open ) ( V51() V52() V53() open ) Subset of ( ( ) ( ) set ) ) -defined b2 : ( ( open ) ( V51() V52() V53() open ) Subset of ( ( ) ( ) set ) ) -valued V6() total V34() V35() V36() continuous V49() ) Element of K19(K20(REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ,REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) : ( ( ) ( Relation-like V34() V35() V36() ) set ) ) : ( ( ) ( ) set ) ) + cot : ( ( V6() ) ( Relation-like V6() V34() V35() V36() ) Element of K19(K20(REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ,REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) : ( ( ) ( Relation-like V34() V35() V36() ) set ) ) : ( ( ) ( ) set ) ) ) : ( ( V6() ) ( Relation-like b2 : ( ( open ) ( V51() V52() V53() open ) Subset of ( ( ) ( ) set ) ) -defined V6() V34() V35() V36() ) Element of K19(K20(REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ,REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) : ( ( ) ( Relation-like V34() V35() V36() ) set ) ) : ( ( ) ( ) set ) ) + cosec : ( ( V6() ) ( Relation-like V6() V34() V35() V36() ) Element of K19(K20(REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ,REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) : ( ( ) ( Relation-like V34() V35() V36() ) set ) ) : ( ( ) ( ) set ) ) ) : ( ( V6() ) ( Relation-like b2 : ( ( open ) ( V51() V52() V53() open ) Subset of ( ( ) ( ) set ) ) -defined V6() V34() V35() V36() ) Element of K19(K20(REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ,REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) : ( ( ) ( Relation-like V34() V35() V36() ) set ) ) : ( ( ) ( ) set ) ) . (lower_bound A : ( ( non empty closed_interval ) ( non empty V51() V52() V53() closed_interval V76() ) Subset of ( ( ) ( ) set ) ) ) : ( ( ) ( V28() V29() ext-real ) Element of REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) ) : ( ( ) (
V28()
V29()
ext-real )
Element of
REAL : ( ( ) ( non
empty V51()
V52()
V53()
V57()
V62() )
set ) ) : ( ( ) (
V28()
V29()
ext-real )
Element of
REAL : ( ( ) ( non
empty V51()
V52()
V53()
V57()
V62() )
set ) ) ;
theorem
for
Z being ( (
open ) (
V51()
V52()
V53()
open )
Subset of ( ( ) ( )
set ) ) st
Z : ( (
open ) (
V51()
V52()
V53()
open )
Subset of ( ( ) ( )
set ) )
c= dom (((id Z : ( ( open ) ( V51() V52() V53() open ) Subset of ( ( ) ( ) set ) ) ) : ( ( V6() ) ( Relation-like b1 : ( ( open ) ( V51() V52() V53() open ) Subset of ( ( ) ( ) set ) ) -defined b1 : ( ( open ) ( V51() V52() V53() open ) Subset of ( ( ) ( ) set ) ) -valued V6() total V34() V35() V36() continuous V49() ) Element of K19(K20(REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ,REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) : ( ( ) ( Relation-like V34() V35() V36() ) set ) ) : ( ( ) ( ) set ) ) - tan : ( ( V6() ) ( Relation-like V6() V34() V35() V36() ) Element of K19(K20(REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ,REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) : ( ( ) ( Relation-like V34() V35() V36() ) set ) ) : ( ( ) ( ) set ) ) ) : ( ( V6() ) ( Relation-like V6() V34() V35() V36() ) Element of K19(K20(REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ,REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) : ( ( ) ( Relation-like V34() V35() V36() ) set ) ) : ( ( ) ( ) set ) ) + sec : ( ( V6() ) ( Relation-like V6() V34() V35() V36() ) Element of K19(K20(REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ,REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) : ( ( ) ( Relation-like V34() V35() V36() ) set ) ) : ( ( ) ( ) set ) ) ) : ( (
V6() ) (
Relation-like V6()
V34()
V35()
V36() )
Element of
K19(
K20(
REAL : ( ( ) ( non
empty V51()
V52()
V53()
V57()
V62() )
set ) ,
REAL : ( ( ) ( non
empty V51()
V52()
V53()
V57()
V62() )
set ) ) : ( ( ) (
Relation-like V34()
V35()
V36() )
set ) ) : ( ( ) ( )
set ) ) : ( ( ) ( )
set ) & ( for
x being ( ( ) (
V28()
V29()
ext-real )
Real) st
x : ( ( ) (
V28()
V29()
ext-real )
Real)
in Z : ( (
open ) (
V51()
V52()
V53()
open )
Subset of ( ( ) ( )
set ) ) holds
( 1 : ( ( ) ( non
empty V21()
V22()
V23()
V27()
V28()
V29()
V30()
ext-real non
negative V50()
V51()
V52()
V53()
V54()
V55()
V56() )
Element of
NAT : ( ( ) ( non
empty V21()
V22()
V23()
V51()
V52()
V53()
V54()
V55()
V56()
V57() )
Element of
K19(
REAL : ( ( ) ( non
empty V51()
V52()
V53()
V57()
V62() )
set ) ) : ( ( ) ( )
set ) ) )
+ (sin : ( ( V6() V18( REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) , REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) ) ( Relation-like V6() non empty total V18( REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) , REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) V34() V35() V36() continuous ) Element of K19(K20(REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ,REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) : ( ( ) ( Relation-like V34() V35() V36() ) set ) ) : ( ( ) ( ) set ) ) . x : ( ( ) ( V28() V29() ext-real ) Real) ) : ( ( ) (
V28()
V29()
ext-real )
Element of
REAL : ( ( ) ( non
empty V51()
V52()
V53()
V57()
V62() )
set ) ) : ( ( ) (
V28()
V29()
ext-real )
Element of
REAL : ( ( ) ( non
empty V51()
V52()
V53()
V57()
V62() )
set ) )
<> 0 : ( ( ) (
V21()
V22()
V23()
V27()
V28()
V29()
V30()
ext-real non
negative V50()
V51()
V52()
V53()
V54()
V55()
V56() )
Element of
NAT : ( ( ) ( non
empty V21()
V22()
V23()
V51()
V52()
V53()
V54()
V55()
V56()
V57() )
Element of
K19(
REAL : ( ( ) ( non
empty V51()
V52()
V53()
V57()
V62() )
set ) ) : ( ( ) ( )
set ) ) ) & 1 : ( ( ) ( non
empty V21()
V22()
V23()
V27()
V28()
V29()
V30()
ext-real non
negative V50()
V51()
V52()
V53()
V54()
V55()
V56() )
Element of
NAT : ( ( ) ( non
empty V21()
V22()
V23()
V51()
V52()
V53()
V54()
V55()
V56()
V57() )
Element of
K19(
REAL : ( ( ) ( non
empty V51()
V52()
V53()
V57()
V62() )
set ) ) : ( ( ) ( )
set ) ) )
- (sin : ( ( V6() V18( REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) , REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) ) ( Relation-like V6() non empty total V18( REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) , REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) V34() V35() V36() continuous ) Element of K19(K20(REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ,REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) : ( ( ) ( Relation-like V34() V35() V36() ) set ) ) : ( ( ) ( ) set ) ) . x : ( ( ) ( V28() V29() ext-real ) Real) ) : ( ( ) (
V28()
V29()
ext-real )
Element of
REAL : ( ( ) ( non
empty V51()
V52()
V53()
V57()
V62() )
set ) ) : ( ( ) (
V28()
V29()
ext-real )
Element of
REAL : ( ( ) ( non
empty V51()
V52()
V53()
V57()
V62() )
set ) )
<> 0 : ( ( ) (
V21()
V22()
V23()
V27()
V28()
V29()
V30()
ext-real non
negative V50()
V51()
V52()
V53()
V54()
V55()
V56() )
Element of
NAT : ( ( ) ( non
empty V21()
V22()
V23()
V51()
V52()
V53()
V54()
V55()
V56()
V57() )
Element of
K19(
REAL : ( ( ) ( non
empty V51()
V52()
V53()
V57()
V62() )
set ) ) : ( ( ) ( )
set ) ) ) ) ) holds
(
((id Z : ( ( open ) ( V51() V52() V53() open ) Subset of ( ( ) ( ) set ) ) ) : ( ( V6() ) ( Relation-like b1 : ( ( open ) ( V51() V52() V53() open ) Subset of ( ( ) ( ) set ) ) -defined b1 : ( ( open ) ( V51() V52() V53() open ) Subset of ( ( ) ( ) set ) ) -valued V6() total V34() V35() V36() continuous V49() ) Element of K19(K20(REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ,REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) : ( ( ) ( Relation-like V34() V35() V36() ) set ) ) : ( ( ) ( ) set ) ) - tan : ( ( V6() ) ( Relation-like V6() V34() V35() V36() ) Element of K19(K20(REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ,REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) : ( ( ) ( Relation-like V34() V35() V36() ) set ) ) : ( ( ) ( ) set ) ) ) : ( (
V6() ) (
Relation-like V6()
V34()
V35()
V36() )
Element of
K19(
K20(
REAL : ( ( ) ( non
empty V51()
V52()
V53()
V57()
V62() )
set ) ,
REAL : ( ( ) ( non
empty V51()
V52()
V53()
V57()
V62() )
set ) ) : ( ( ) (
Relation-like V34()
V35()
V36() )
set ) ) : ( ( ) ( )
set ) )
+ sec : ( (
V6() ) (
Relation-like V6()
V34()
V35()
V36() )
Element of
K19(
K20(
REAL : ( ( ) ( non
empty V51()
V52()
V53()
V57()
V62() )
set ) ,
REAL : ( ( ) ( non
empty V51()
V52()
V53()
V57()
V62() )
set ) ) : ( ( ) (
Relation-like V34()
V35()
V36() )
set ) ) : ( ( ) ( )
set ) ) : ( (
V6() ) (
Relation-like V6()
V34()
V35()
V36() )
Element of
K19(
K20(
REAL : ( ( ) ( non
empty V51()
V52()
V53()
V57()
V62() )
set ) ,
REAL : ( ( ) ( non
empty V51()
V52()
V53()
V57()
V62() )
set ) ) : ( ( ) (
Relation-like V34()
V35()
V36() )
set ) ) : ( ( ) ( )
set ) )
is_differentiable_on Z : ( (
open ) (
V51()
V52()
V53()
open )
Subset of ( ( ) ( )
set ) ) & ( for
x being ( ( ) (
V28()
V29()
ext-real )
Real) st
x : ( ( ) (
V28()
V29()
ext-real )
Real)
in Z : ( (
open ) (
V51()
V52()
V53()
open )
Subset of ( ( ) ( )
set ) ) holds
((((id Z : ( ( open ) ( V51() V52() V53() open ) Subset of ( ( ) ( ) set ) ) ) : ( ( V6() ) ( Relation-like b1 : ( ( open ) ( V51() V52() V53() open ) Subset of ( ( ) ( ) set ) ) -defined b1 : ( ( open ) ( V51() V52() V53() open ) Subset of ( ( ) ( ) set ) ) -valued V6() total V34() V35() V36() continuous V49() ) Element of K19(K20(REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ,REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) : ( ( ) ( Relation-like V34() V35() V36() ) set ) ) : ( ( ) ( ) set ) ) - tan : ( ( V6() ) ( Relation-like V6() V34() V35() V36() ) Element of K19(K20(REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ,REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) : ( ( ) ( Relation-like V34() V35() V36() ) set ) ) : ( ( ) ( ) set ) ) ) : ( ( V6() ) ( Relation-like V6() V34() V35() V36() ) Element of K19(K20(REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ,REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) : ( ( ) ( Relation-like V34() V35() V36() ) set ) ) : ( ( ) ( ) set ) ) + sec : ( ( V6() ) ( Relation-like V6() V34() V35() V36() ) Element of K19(K20(REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ,REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) : ( ( ) ( Relation-like V34() V35() V36() ) set ) ) : ( ( ) ( ) set ) ) ) : ( ( V6() ) ( Relation-like V6() V34() V35() V36() ) Element of K19(K20(REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ,REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) : ( ( ) ( Relation-like V34() V35() V36() ) set ) ) : ( ( ) ( ) set ) ) `| Z : ( ( open ) ( V51() V52() V53() open ) Subset of ( ( ) ( ) set ) ) ) : ( (
V6() ) (
Relation-like V6()
V34()
V35()
V36() )
Element of
K19(
K20(
REAL : ( ( ) ( non
empty V51()
V52()
V53()
V57()
V62() )
set ) ,
REAL : ( ( ) ( non
empty V51()
V52()
V53()
V57()
V62() )
set ) ) : ( ( ) (
Relation-like V34()
V35()
V36() )
set ) ) : ( ( ) ( )
set ) )
. x : ( ( ) (
V28()
V29()
ext-real )
Real) : ( ( ) (
V28()
V29()
ext-real )
Element of
REAL : ( ( ) ( non
empty V51()
V52()
V53()
V57()
V62() )
set ) )
= (sin : ( ( V6() V18( REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) , REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) ) ( Relation-like V6() non empty total V18( REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) , REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) V34() V35() V36() continuous ) Element of K19(K20(REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ,REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) : ( ( ) ( Relation-like V34() V35() V36() ) set ) ) : ( ( ) ( ) set ) ) . x : ( ( ) ( V28() V29() ext-real ) Real) ) : ( ( ) (
V28()
V29()
ext-real )
Element of
REAL : ( ( ) ( non
empty V51()
V52()
V53()
V57()
V62() )
set ) )
/ ((sin : ( ( V6() V18( REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) , REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) ) ( Relation-like V6() non empty total V18( REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) , REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) V34() V35() V36() continuous ) Element of K19(K20(REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ,REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) : ( ( ) ( Relation-like V34() V35() V36() ) set ) ) : ( ( ) ( ) set ) ) . x : ( ( ) ( V28() V29() ext-real ) Real) ) : ( ( ) ( V28() V29() ext-real ) Element of REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) + 1 : ( ( ) ( non empty V21() V22() V23() V27() V28() V29() V30() ext-real non negative V50() V51() V52() V53() V54() V55() V56() ) Element of NAT : ( ( ) ( non empty V21() V22() V23() V51() V52() V53() V54() V55() V56() V57() ) Element of K19(REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( ) (
V28()
V29()
ext-real )
Element of
REAL : ( ( ) ( non
empty V51()
V52()
V53()
V57()
V62() )
set ) ) : ( ( ) (
V28()
V29()
ext-real )
Element of
REAL : ( ( ) ( non
empty V51()
V52()
V53()
V57()
V62() )
set ) ) ) ) ;
theorem
for
A being ( ( non
empty closed_interval ) ( non
empty V51()
V52()
V53()
closed_interval V76() )
Subset of ( ( ) ( )
set ) )
for
Z being ( (
open ) (
V51()
V52()
V53()
open )
Subset of ( ( ) ( )
set ) )
for
f being ( (
V6() ) (
Relation-like V6()
V34()
V35()
V36() )
PartFunc of ,) st
A : ( ( non
empty closed_interval ) ( non
empty V51()
V52()
V53()
closed_interval V76() )
Subset of ( ( ) ( )
set ) )
c= Z : ( (
open ) (
V51()
V52()
V53()
open )
Subset of ( ( ) ( )
set ) ) & ( for
x being ( ( ) (
V28()
V29()
ext-real )
Real) st
x : ( ( ) (
V28()
V29()
ext-real )
Real)
in Z : ( (
open ) (
V51()
V52()
V53()
open )
Subset of ( ( ) ( )
set ) ) holds
( 1 : ( ( ) ( non
empty V21()
V22()
V23()
V27()
V28()
V29()
V30()
ext-real non
negative V50()
V51()
V52()
V53()
V54()
V55()
V56() )
Element of
NAT : ( ( ) ( non
empty V21()
V22()
V23()
V51()
V52()
V53()
V54()
V55()
V56()
V57() )
Element of
K19(
REAL : ( ( ) ( non
empty V51()
V52()
V53()
V57()
V62() )
set ) ) : ( ( ) ( )
set ) ) )
+ (sin : ( ( V6() V18( REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) , REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) ) ( Relation-like V6() non empty total V18( REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) , REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) V34() V35() V36() continuous ) Element of K19(K20(REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ,REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) : ( ( ) ( Relation-like V34() V35() V36() ) set ) ) : ( ( ) ( ) set ) ) . x : ( ( ) ( V28() V29() ext-real ) Real) ) : ( ( ) (
V28()
V29()
ext-real )
Element of
REAL : ( ( ) ( non
empty V51()
V52()
V53()
V57()
V62() )
set ) ) : ( ( ) (
V28()
V29()
ext-real )
Element of
REAL : ( ( ) ( non
empty V51()
V52()
V53()
V57()
V62() )
set ) )
<> 0 : ( ( ) (
V21()
V22()
V23()
V27()
V28()
V29()
V30()
ext-real non
negative V50()
V51()
V52()
V53()
V54()
V55()
V56() )
Element of
NAT : ( ( ) ( non
empty V21()
V22()
V23()
V51()
V52()
V53()
V54()
V55()
V56()
V57() )
Element of
K19(
REAL : ( ( ) ( non
empty V51()
V52()
V53()
V57()
V62() )
set ) ) : ( ( ) ( )
set ) ) ) & 1 : ( ( ) ( non
empty V21()
V22()
V23()
V27()
V28()
V29()
V30()
ext-real non
negative V50()
V51()
V52()
V53()
V54()
V55()
V56() )
Element of
NAT : ( ( ) ( non
empty V21()
V22()
V23()
V51()
V52()
V53()
V54()
V55()
V56()
V57() )
Element of
K19(
REAL : ( ( ) ( non
empty V51()
V52()
V53()
V57()
V62() )
set ) ) : ( ( ) ( )
set ) ) )
- (sin : ( ( V6() V18( REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) , REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) ) ( Relation-like V6() non empty total V18( REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) , REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) V34() V35() V36() continuous ) Element of K19(K20(REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ,REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) : ( ( ) ( Relation-like V34() V35() V36() ) set ) ) : ( ( ) ( ) set ) ) . x : ( ( ) ( V28() V29() ext-real ) Real) ) : ( ( ) (
V28()
V29()
ext-real )
Element of
REAL : ( ( ) ( non
empty V51()
V52()
V53()
V57()
V62() )
set ) ) : ( ( ) (
V28()
V29()
ext-real )
Element of
REAL : ( ( ) ( non
empty V51()
V52()
V53()
V57()
V62() )
set ) )
<> 0 : ( ( ) (
V21()
V22()
V23()
V27()
V28()
V29()
V30()
ext-real non
negative V50()
V51()
V52()
V53()
V54()
V55()
V56() )
Element of
NAT : ( ( ) ( non
empty V21()
V22()
V23()
V51()
V52()
V53()
V54()
V55()
V56()
V57() )
Element of
K19(
REAL : ( ( ) ( non
empty V51()
V52()
V53()
V57()
V62() )
set ) ) : ( ( ) ( )
set ) ) ) &
f : ( (
V6() ) (
Relation-like V6()
V34()
V35()
V36() )
PartFunc of ,)
. x : ( ( ) (
V28()
V29()
ext-real )
Real) : ( ( ) (
V28()
V29()
ext-real )
Element of
REAL : ( ( ) ( non
empty V51()
V52()
V53()
V57()
V62() )
set ) )
= (sin : ( ( V6() V18( REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) , REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) ) ( Relation-like V6() non empty total V18( REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) , REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) V34() V35() V36() continuous ) Element of K19(K20(REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ,REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) : ( ( ) ( Relation-like V34() V35() V36() ) set ) ) : ( ( ) ( ) set ) ) . x : ( ( ) ( V28() V29() ext-real ) Real) ) : ( ( ) (
V28()
V29()
ext-real )
Element of
REAL : ( ( ) ( non
empty V51()
V52()
V53()
V57()
V62() )
set ) )
/ (1 : ( ( ) ( non empty V21() V22() V23() V27() V28() V29() V30() ext-real non negative V50() V51() V52() V53() V54() V55() V56() ) Element of NAT : ( ( ) ( non empty V21() V22() V23() V51() V52() V53() V54() V55() V56() V57() ) Element of K19(REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) : ( ( ) ( ) set ) ) ) + (sin : ( ( V6() V18( REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) , REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) ) ( Relation-like V6() non empty total V18( REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) , REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) V34() V35() V36() continuous ) Element of K19(K20(REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ,REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) : ( ( ) ( Relation-like V34() V35() V36() ) set ) ) : ( ( ) ( ) set ) ) . x : ( ( ) ( V28() V29() ext-real ) Real) ) : ( ( ) ( V28() V29() ext-real ) Element of REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) ) : ( ( ) (
V28()
V29()
ext-real )
Element of
REAL : ( ( ) ( non
empty V51()
V52()
V53()
V57()
V62() )
set ) ) : ( ( ) (
V28()
V29()
ext-real )
Element of
REAL : ( ( ) ( non
empty V51()
V52()
V53()
V57()
V62() )
set ) ) ) ) &
Z : ( (
open ) (
V51()
V52()
V53()
open )
Subset of ( ( ) ( )
set ) )
c= dom (((id Z : ( ( open ) ( V51() V52() V53() open ) Subset of ( ( ) ( ) set ) ) ) : ( ( V6() ) ( Relation-like b2 : ( ( open ) ( V51() V52() V53() open ) Subset of ( ( ) ( ) set ) ) -defined b2 : ( ( open ) ( V51() V52() V53() open ) Subset of ( ( ) ( ) set ) ) -valued V6() total V34() V35() V36() continuous V49() ) Element of K19(K20(REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ,REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) : ( ( ) ( Relation-like V34() V35() V36() ) set ) ) : ( ( ) ( ) set ) ) - tan : ( ( V6() ) ( Relation-like V6() V34() V35() V36() ) Element of K19(K20(REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ,REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) : ( ( ) ( Relation-like V34() V35() V36() ) set ) ) : ( ( ) ( ) set ) ) ) : ( ( V6() ) ( Relation-like V6() V34() V35() V36() ) Element of K19(K20(REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ,REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) : ( ( ) ( Relation-like V34() V35() V36() ) set ) ) : ( ( ) ( ) set ) ) + sec : ( ( V6() ) ( Relation-like V6() V34() V35() V36() ) Element of K19(K20(REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ,REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) : ( ( ) ( Relation-like V34() V35() V36() ) set ) ) : ( ( ) ( ) set ) ) ) : ( (
V6() ) (
Relation-like V6()
V34()
V35()
V36() )
Element of
K19(
K20(
REAL : ( ( ) ( non
empty V51()
V52()
V53()
V57()
V62() )
set ) ,
REAL : ( ( ) ( non
empty V51()
V52()
V53()
V57()
V62() )
set ) ) : ( ( ) (
Relation-like V34()
V35()
V36() )
set ) ) : ( ( ) ( )
set ) ) : ( ( ) ( )
set ) &
Z : ( (
open ) (
V51()
V52()
V53()
open )
Subset of ( ( ) ( )
set ) )
= dom f : ( (
V6() ) (
Relation-like V6()
V34()
V35()
V36() )
PartFunc of ,) : ( ( ) ( )
set ) &
f : ( (
V6() ) (
Relation-like V6()
V34()
V35()
V36() )
PartFunc of ,)
| A : ( ( non
empty closed_interval ) ( non
empty V51()
V52()
V53()
closed_interval V76() )
Subset of ( ( ) ( )
set ) ) : ( (
V6() ) (
Relation-like V6()
V34()
V35()
V36() )
Element of
K19(
K20(
REAL : ( ( ) ( non
empty V51()
V52()
V53()
V57()
V62() )
set ) ,
REAL : ( ( ) ( non
empty V51()
V52()
V53()
V57()
V62() )
set ) ) : ( ( ) (
Relation-like V34()
V35()
V36() )
set ) ) : ( ( ) ( )
set ) ) is
continuous holds
integral (
f : ( (
V6() ) (
Relation-like V6()
V34()
V35()
V36() )
PartFunc of ,) ,
A : ( ( non
empty closed_interval ) ( non
empty V51()
V52()
V53()
closed_interval V76() )
Subset of ( ( ) ( )
set ) ) ) : ( ( ) (
V28()
V29()
ext-real )
Element of
REAL : ( ( ) ( non
empty V51()
V52()
V53()
V57()
V62() )
set ) )
= ((((id Z : ( ( open ) ( V51() V52() V53() open ) Subset of ( ( ) ( ) set ) ) ) : ( ( V6() ) ( Relation-like b2 : ( ( open ) ( V51() V52() V53() open ) Subset of ( ( ) ( ) set ) ) -defined b2 : ( ( open ) ( V51() V52() V53() open ) Subset of ( ( ) ( ) set ) ) -valued V6() total V34() V35() V36() continuous V49() ) Element of K19(K20(REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ,REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) : ( ( ) ( Relation-like V34() V35() V36() ) set ) ) : ( ( ) ( ) set ) ) - tan : ( ( V6() ) ( Relation-like V6() V34() V35() V36() ) Element of K19(K20(REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ,REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) : ( ( ) ( Relation-like V34() V35() V36() ) set ) ) : ( ( ) ( ) set ) ) ) : ( ( V6() ) ( Relation-like V6() V34() V35() V36() ) Element of K19(K20(REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ,REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) : ( ( ) ( Relation-like V34() V35() V36() ) set ) ) : ( ( ) ( ) set ) ) + sec : ( ( V6() ) ( Relation-like V6() V34() V35() V36() ) Element of K19(K20(REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ,REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) : ( ( ) ( Relation-like V34() V35() V36() ) set ) ) : ( ( ) ( ) set ) ) ) : ( ( V6() ) ( Relation-like V6() V34() V35() V36() ) Element of K19(K20(REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ,REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) : ( ( ) ( Relation-like V34() V35() V36() ) set ) ) : ( ( ) ( ) set ) ) . (upper_bound A : ( ( non empty closed_interval ) ( non empty V51() V52() V53() closed_interval V76() ) Subset of ( ( ) ( ) set ) ) ) : ( ( ) ( V28() V29() ext-real ) Element of REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) ) : ( ( ) (
V28()
V29()
ext-real )
Element of
REAL : ( ( ) ( non
empty V51()
V52()
V53()
V57()
V62() )
set ) )
- ((((id Z : ( ( open ) ( V51() V52() V53() open ) Subset of ( ( ) ( ) set ) ) ) : ( ( V6() ) ( Relation-like b2 : ( ( open ) ( V51() V52() V53() open ) Subset of ( ( ) ( ) set ) ) -defined b2 : ( ( open ) ( V51() V52() V53() open ) Subset of ( ( ) ( ) set ) ) -valued V6() total V34() V35() V36() continuous V49() ) Element of K19(K20(REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ,REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) : ( ( ) ( Relation-like V34() V35() V36() ) set ) ) : ( ( ) ( ) set ) ) - tan : ( ( V6() ) ( Relation-like V6() V34() V35() V36() ) Element of K19(K20(REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ,REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) : ( ( ) ( Relation-like V34() V35() V36() ) set ) ) : ( ( ) ( ) set ) ) ) : ( ( V6() ) ( Relation-like V6() V34() V35() V36() ) Element of K19(K20(REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ,REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) : ( ( ) ( Relation-like V34() V35() V36() ) set ) ) : ( ( ) ( ) set ) ) + sec : ( ( V6() ) ( Relation-like V6() V34() V35() V36() ) Element of K19(K20(REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ,REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) : ( ( ) ( Relation-like V34() V35() V36() ) set ) ) : ( ( ) ( ) set ) ) ) : ( ( V6() ) ( Relation-like V6() V34() V35() V36() ) Element of K19(K20(REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ,REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) : ( ( ) ( Relation-like V34() V35() V36() ) set ) ) : ( ( ) ( ) set ) ) . (lower_bound A : ( ( non empty closed_interval ) ( non empty V51() V52() V53() closed_interval V76() ) Subset of ( ( ) ( ) set ) ) ) : ( ( ) ( V28() V29() ext-real ) Element of REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) ) : ( ( ) (
V28()
V29()
ext-real )
Element of
REAL : ( ( ) ( non
empty V51()
V52()
V53()
V57()
V62() )
set ) ) : ( ( ) (
V28()
V29()
ext-real )
Element of
REAL : ( ( ) ( non
empty V51()
V52()
V53()
V57()
V62() )
set ) ) ;
theorem
for
Z being ( (
open ) (
V51()
V52()
V53()
open )
Subset of ( ( ) ( )
set ) ) st
Z : ( (
open ) (
V51()
V52()
V53()
open )
Subset of ( ( ) ( )
set ) )
c= dom (((id Z : ( ( open ) ( V51() V52() V53() open ) Subset of ( ( ) ( ) set ) ) ) : ( ( V6() ) ( Relation-like b1 : ( ( open ) ( V51() V52() V53() open ) Subset of ( ( ) ( ) set ) ) -defined b1 : ( ( open ) ( V51() V52() V53() open ) Subset of ( ( ) ( ) set ) ) -valued V6() total V34() V35() V36() continuous V49() ) Element of K19(K20(REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ,REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) : ( ( ) ( Relation-like V34() V35() V36() ) set ) ) : ( ( ) ( ) set ) ) - tan : ( ( V6() ) ( Relation-like V6() V34() V35() V36() ) Element of K19(K20(REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ,REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) : ( ( ) ( Relation-like V34() V35() V36() ) set ) ) : ( ( ) ( ) set ) ) ) : ( ( V6() ) ( Relation-like V6() V34() V35() V36() ) Element of K19(K20(REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ,REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) : ( ( ) ( Relation-like V34() V35() V36() ) set ) ) : ( ( ) ( ) set ) ) - sec : ( ( V6() ) ( Relation-like V6() V34() V35() V36() ) Element of K19(K20(REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ,REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) : ( ( ) ( Relation-like V34() V35() V36() ) set ) ) : ( ( ) ( ) set ) ) ) : ( (
V6() ) (
Relation-like V6()
V34()
V35()
V36() )
Element of
K19(
K20(
REAL : ( ( ) ( non
empty V51()
V52()
V53()
V57()
V62() )
set ) ,
REAL : ( ( ) ( non
empty V51()
V52()
V53()
V57()
V62() )
set ) ) : ( ( ) (
Relation-like V34()
V35()
V36() )
set ) ) : ( ( ) ( )
set ) ) : ( ( ) ( )
set ) & ( for
x being ( ( ) (
V28()
V29()
ext-real )
Real) st
x : ( ( ) (
V28()
V29()
ext-real )
Real)
in Z : ( (
open ) (
V51()
V52()
V53()
open )
Subset of ( ( ) ( )
set ) ) holds
( 1 : ( ( ) ( non
empty V21()
V22()
V23()
V27()
V28()
V29()
V30()
ext-real non
negative V50()
V51()
V52()
V53()
V54()
V55()
V56() )
Element of
NAT : ( ( ) ( non
empty V21()
V22()
V23()
V51()
V52()
V53()
V54()
V55()
V56()
V57() )
Element of
K19(
REAL : ( ( ) ( non
empty V51()
V52()
V53()
V57()
V62() )
set ) ) : ( ( ) ( )
set ) ) )
+ (sin : ( ( V6() V18( REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) , REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) ) ( Relation-like V6() non empty total V18( REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) , REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) V34() V35() V36() continuous ) Element of K19(K20(REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ,REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) : ( ( ) ( Relation-like V34() V35() V36() ) set ) ) : ( ( ) ( ) set ) ) . x : ( ( ) ( V28() V29() ext-real ) Real) ) : ( ( ) (
V28()
V29()
ext-real )
Element of
REAL : ( ( ) ( non
empty V51()
V52()
V53()
V57()
V62() )
set ) ) : ( ( ) (
V28()
V29()
ext-real )
Element of
REAL : ( ( ) ( non
empty V51()
V52()
V53()
V57()
V62() )
set ) )
<> 0 : ( ( ) (
V21()
V22()
V23()
V27()
V28()
V29()
V30()
ext-real non
negative V50()
V51()
V52()
V53()
V54()
V55()
V56() )
Element of
NAT : ( ( ) ( non
empty V21()
V22()
V23()
V51()
V52()
V53()
V54()
V55()
V56()
V57() )
Element of
K19(
REAL : ( ( ) ( non
empty V51()
V52()
V53()
V57()
V62() )
set ) ) : ( ( ) ( )
set ) ) ) & 1 : ( ( ) ( non
empty V21()
V22()
V23()
V27()
V28()
V29()
V30()
ext-real non
negative V50()
V51()
V52()
V53()
V54()
V55()
V56() )
Element of
NAT : ( ( ) ( non
empty V21()
V22()
V23()
V51()
V52()
V53()
V54()
V55()
V56()
V57() )
Element of
K19(
REAL : ( ( ) ( non
empty V51()
V52()
V53()
V57()
V62() )
set ) ) : ( ( ) ( )
set ) ) )
- (sin : ( ( V6() V18( REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) , REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) ) ( Relation-like V6() non empty total V18( REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) , REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) V34() V35() V36() continuous ) Element of K19(K20(REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ,REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) : ( ( ) ( Relation-like V34() V35() V36() ) set ) ) : ( ( ) ( ) set ) ) . x : ( ( ) ( V28() V29() ext-real ) Real) ) : ( ( ) (
V28()
V29()
ext-real )
Element of
REAL : ( ( ) ( non
empty V51()
V52()
V53()
V57()
V62() )
set ) ) : ( ( ) (
V28()
V29()
ext-real )
Element of
REAL : ( ( ) ( non
empty V51()
V52()
V53()
V57()
V62() )
set ) )
<> 0 : ( ( ) (
V21()
V22()
V23()
V27()
V28()
V29()
V30()
ext-real non
negative V50()
V51()
V52()
V53()
V54()
V55()
V56() )
Element of
NAT : ( ( ) ( non
empty V21()
V22()
V23()
V51()
V52()
V53()
V54()
V55()
V56()
V57() )
Element of
K19(
REAL : ( ( ) ( non
empty V51()
V52()
V53()
V57()
V62() )
set ) ) : ( ( ) ( )
set ) ) ) ) ) holds
(
((id Z : ( ( open ) ( V51() V52() V53() open ) Subset of ( ( ) ( ) set ) ) ) : ( ( V6() ) ( Relation-like b1 : ( ( open ) ( V51() V52() V53() open ) Subset of ( ( ) ( ) set ) ) -defined b1 : ( ( open ) ( V51() V52() V53() open ) Subset of ( ( ) ( ) set ) ) -valued V6() total V34() V35() V36() continuous V49() ) Element of K19(K20(REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ,REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) : ( ( ) ( Relation-like V34() V35() V36() ) set ) ) : ( ( ) ( ) set ) ) - tan : ( ( V6() ) ( Relation-like V6() V34() V35() V36() ) Element of K19(K20(REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ,REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) : ( ( ) ( Relation-like V34() V35() V36() ) set ) ) : ( ( ) ( ) set ) ) ) : ( (
V6() ) (
Relation-like V6()
V34()
V35()
V36() )
Element of
K19(
K20(
REAL : ( ( ) ( non
empty V51()
V52()
V53()
V57()
V62() )
set ) ,
REAL : ( ( ) ( non
empty V51()
V52()
V53()
V57()
V62() )
set ) ) : ( ( ) (
Relation-like V34()
V35()
V36() )
set ) ) : ( ( ) ( )
set ) )
- sec : ( (
V6() ) (
Relation-like V6()
V34()
V35()
V36() )
Element of
K19(
K20(
REAL : ( ( ) ( non
empty V51()
V52()
V53()
V57()
V62() )
set ) ,
REAL : ( ( ) ( non
empty V51()
V52()
V53()
V57()
V62() )
set ) ) : ( ( ) (
Relation-like V34()
V35()
V36() )
set ) ) : ( ( ) ( )
set ) ) : ( (
V6() ) (
Relation-like V6()
V34()
V35()
V36() )
Element of
K19(
K20(
REAL : ( ( ) ( non
empty V51()
V52()
V53()
V57()
V62() )
set ) ,
REAL : ( ( ) ( non
empty V51()
V52()
V53()
V57()
V62() )
set ) ) : ( ( ) (
Relation-like V34()
V35()
V36() )
set ) ) : ( ( ) ( )
set ) )
is_differentiable_on Z : ( (
open ) (
V51()
V52()
V53()
open )
Subset of ( ( ) ( )
set ) ) & ( for
x being ( ( ) (
V28()
V29()
ext-real )
Real) st
x : ( ( ) (
V28()
V29()
ext-real )
Real)
in Z : ( (
open ) (
V51()
V52()
V53()
open )
Subset of ( ( ) ( )
set ) ) holds
((((id Z : ( ( open ) ( V51() V52() V53() open ) Subset of ( ( ) ( ) set ) ) ) : ( ( V6() ) ( Relation-like b1 : ( ( open ) ( V51() V52() V53() open ) Subset of ( ( ) ( ) set ) ) -defined b1 : ( ( open ) ( V51() V52() V53() open ) Subset of ( ( ) ( ) set ) ) -valued V6() total V34() V35() V36() continuous V49() ) Element of K19(K20(REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ,REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) : ( ( ) ( Relation-like V34() V35() V36() ) set ) ) : ( ( ) ( ) set ) ) - tan : ( ( V6() ) ( Relation-like V6() V34() V35() V36() ) Element of K19(K20(REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ,REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) : ( ( ) ( Relation-like V34() V35() V36() ) set ) ) : ( ( ) ( ) set ) ) ) : ( ( V6() ) ( Relation-like V6() V34() V35() V36() ) Element of K19(K20(REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ,REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) : ( ( ) ( Relation-like V34() V35() V36() ) set ) ) : ( ( ) ( ) set ) ) - sec : ( ( V6() ) ( Relation-like V6() V34() V35() V36() ) Element of K19(K20(REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ,REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) : ( ( ) ( Relation-like V34() V35() V36() ) set ) ) : ( ( ) ( ) set ) ) ) : ( ( V6() ) ( Relation-like V6() V34() V35() V36() ) Element of K19(K20(REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ,REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) : ( ( ) ( Relation-like V34() V35() V36() ) set ) ) : ( ( ) ( ) set ) ) `| Z : ( ( open ) ( V51() V52() V53() open ) Subset of ( ( ) ( ) set ) ) ) : ( (
V6() ) (
Relation-like V6()
V34()
V35()
V36() )
Element of
K19(
K20(
REAL : ( ( ) ( non
empty V51()
V52()
V53()
V57()
V62() )
set ) ,
REAL : ( ( ) ( non
empty V51()
V52()
V53()
V57()
V62() )
set ) ) : ( ( ) (
Relation-like V34()
V35()
V36() )
set ) ) : ( ( ) ( )
set ) )
. x : ( ( ) (
V28()
V29()
ext-real )
Real) : ( ( ) (
V28()
V29()
ext-real )
Element of
REAL : ( ( ) ( non
empty V51()
V52()
V53()
V57()
V62() )
set ) )
= (sin : ( ( V6() V18( REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) , REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) ) ( Relation-like V6() non empty total V18( REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) , REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) V34() V35() V36() continuous ) Element of K19(K20(REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ,REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) : ( ( ) ( Relation-like V34() V35() V36() ) set ) ) : ( ( ) ( ) set ) ) . x : ( ( ) ( V28() V29() ext-real ) Real) ) : ( ( ) (
V28()
V29()
ext-real )
Element of
REAL : ( ( ) ( non
empty V51()
V52()
V53()
V57()
V62() )
set ) )
/ ((sin : ( ( V6() V18( REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) , REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) ) ( Relation-like V6() non empty total V18( REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) , REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) V34() V35() V36() continuous ) Element of K19(K20(REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ,REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) : ( ( ) ( Relation-like V34() V35() V36() ) set ) ) : ( ( ) ( ) set ) ) . x : ( ( ) ( V28() V29() ext-real ) Real) ) : ( ( ) ( V28() V29() ext-real ) Element of REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) - 1 : ( ( ) ( non empty V21() V22() V23() V27() V28() V29() V30() ext-real non negative V50() V51() V52() V53() V54() V55() V56() ) Element of NAT : ( ( ) ( non empty V21() V22() V23() V51() V52() V53() V54() V55() V56() V57() ) Element of K19(REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( ) (
V28()
V29()
ext-real )
Element of
REAL : ( ( ) ( non
empty V51()
V52()
V53()
V57()
V62() )
set ) ) : ( ( ) (
V28()
V29()
ext-real )
Element of
REAL : ( ( ) ( non
empty V51()
V52()
V53()
V57()
V62() )
set ) ) ) ) ;
theorem
for
A being ( ( non
empty closed_interval ) ( non
empty V51()
V52()
V53()
closed_interval V76() )
Subset of ( ( ) ( )
set ) )
for
Z being ( (
open ) (
V51()
V52()
V53()
open )
Subset of ( ( ) ( )
set ) )
for
f being ( (
V6() ) (
Relation-like V6()
V34()
V35()
V36() )
PartFunc of ,) st
A : ( ( non
empty closed_interval ) ( non
empty V51()
V52()
V53()
closed_interval V76() )
Subset of ( ( ) ( )
set ) )
c= Z : ( (
open ) (
V51()
V52()
V53()
open )
Subset of ( ( ) ( )
set ) ) & ( for
x being ( ( ) (
V28()
V29()
ext-real )
Real) st
x : ( ( ) (
V28()
V29()
ext-real )
Real)
in Z : ( (
open ) (
V51()
V52()
V53()
open )
Subset of ( ( ) ( )
set ) ) holds
( 1 : ( ( ) ( non
empty V21()
V22()
V23()
V27()
V28()
V29()
V30()
ext-real non
negative V50()
V51()
V52()
V53()
V54()
V55()
V56() )
Element of
NAT : ( ( ) ( non
empty V21()
V22()
V23()
V51()
V52()
V53()
V54()
V55()
V56()
V57() )
Element of
K19(
REAL : ( ( ) ( non
empty V51()
V52()
V53()
V57()
V62() )
set ) ) : ( ( ) ( )
set ) ) )
+ (sin : ( ( V6() V18( REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) , REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) ) ( Relation-like V6() non empty total V18( REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) , REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) V34() V35() V36() continuous ) Element of K19(K20(REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ,REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) : ( ( ) ( Relation-like V34() V35() V36() ) set ) ) : ( ( ) ( ) set ) ) . x : ( ( ) ( V28() V29() ext-real ) Real) ) : ( ( ) (
V28()
V29()
ext-real )
Element of
REAL : ( ( ) ( non
empty V51()
V52()
V53()
V57()
V62() )
set ) ) : ( ( ) (
V28()
V29()
ext-real )
Element of
REAL : ( ( ) ( non
empty V51()
V52()
V53()
V57()
V62() )
set ) )
<> 0 : ( ( ) (
V21()
V22()
V23()
V27()
V28()
V29()
V30()
ext-real non
negative V50()
V51()
V52()
V53()
V54()
V55()
V56() )
Element of
NAT : ( ( ) ( non
empty V21()
V22()
V23()
V51()
V52()
V53()
V54()
V55()
V56()
V57() )
Element of
K19(
REAL : ( ( ) ( non
empty V51()
V52()
V53()
V57()
V62() )
set ) ) : ( ( ) ( )
set ) ) ) & 1 : ( ( ) ( non
empty V21()
V22()
V23()
V27()
V28()
V29()
V30()
ext-real non
negative V50()
V51()
V52()
V53()
V54()
V55()
V56() )
Element of
NAT : ( ( ) ( non
empty V21()
V22()
V23()
V51()
V52()
V53()
V54()
V55()
V56()
V57() )
Element of
K19(
REAL : ( ( ) ( non
empty V51()
V52()
V53()
V57()
V62() )
set ) ) : ( ( ) ( )
set ) ) )
- (sin : ( ( V6() V18( REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) , REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) ) ( Relation-like V6() non empty total V18( REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) , REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) V34() V35() V36() continuous ) Element of K19(K20(REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ,REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) : ( ( ) ( Relation-like V34() V35() V36() ) set ) ) : ( ( ) ( ) set ) ) . x : ( ( ) ( V28() V29() ext-real ) Real) ) : ( ( ) (
V28()
V29()
ext-real )
Element of
REAL : ( ( ) ( non
empty V51()
V52()
V53()
V57()
V62() )
set ) ) : ( ( ) (
V28()
V29()
ext-real )
Element of
REAL : ( ( ) ( non
empty V51()
V52()
V53()
V57()
V62() )
set ) )
<> 0 : ( ( ) (
V21()
V22()
V23()
V27()
V28()
V29()
V30()
ext-real non
negative V50()
V51()
V52()
V53()
V54()
V55()
V56() )
Element of
NAT : ( ( ) ( non
empty V21()
V22()
V23()
V51()
V52()
V53()
V54()
V55()
V56()
V57() )
Element of
K19(
REAL : ( ( ) ( non
empty V51()
V52()
V53()
V57()
V62() )
set ) ) : ( ( ) ( )
set ) ) ) &
f : ( (
V6() ) (
Relation-like V6()
V34()
V35()
V36() )
PartFunc of ,)
. x : ( ( ) (
V28()
V29()
ext-real )
Real) : ( ( ) (
V28()
V29()
ext-real )
Element of
REAL : ( ( ) ( non
empty V51()
V52()
V53()
V57()
V62() )
set ) )
= (sin : ( ( V6() V18( REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) , REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) ) ( Relation-like V6() non empty total V18( REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) , REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) V34() V35() V36() continuous ) Element of K19(K20(REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ,REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) : ( ( ) ( Relation-like V34() V35() V36() ) set ) ) : ( ( ) ( ) set ) ) . x : ( ( ) ( V28() V29() ext-real ) Real) ) : ( ( ) (
V28()
V29()
ext-real )
Element of
REAL : ( ( ) ( non
empty V51()
V52()
V53()
V57()
V62() )
set ) )
/ ((sin : ( ( V6() V18( REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) , REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) ) ( Relation-like V6() non empty total V18( REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) , REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) V34() V35() V36() continuous ) Element of K19(K20(REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ,REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) : ( ( ) ( Relation-like V34() V35() V36() ) set ) ) : ( ( ) ( ) set ) ) . x : ( ( ) ( V28() V29() ext-real ) Real) ) : ( ( ) ( V28() V29() ext-real ) Element of REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) - 1 : ( ( ) ( non empty V21() V22() V23() V27() V28() V29() V30() ext-real non negative V50() V51() V52() V53() V54() V55() V56() ) Element of NAT : ( ( ) ( non empty V21() V22() V23() V51() V52() V53() V54() V55() V56() V57() ) Element of K19(REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( ) (
V28()
V29()
ext-real )
Element of
REAL : ( ( ) ( non
empty V51()
V52()
V53()
V57()
V62() )
set ) ) : ( ( ) (
V28()
V29()
ext-real )
Element of
REAL : ( ( ) ( non
empty V51()
V52()
V53()
V57()
V62() )
set ) ) ) ) &
Z : ( (
open ) (
V51()
V52()
V53()
open )
Subset of ( ( ) ( )
set ) )
c= dom (((id Z : ( ( open ) ( V51() V52() V53() open ) Subset of ( ( ) ( ) set ) ) ) : ( ( V6() ) ( Relation-like b2 : ( ( open ) ( V51() V52() V53() open ) Subset of ( ( ) ( ) set ) ) -defined b2 : ( ( open ) ( V51() V52() V53() open ) Subset of ( ( ) ( ) set ) ) -valued V6() total V34() V35() V36() continuous V49() ) Element of K19(K20(REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ,REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) : ( ( ) ( Relation-like V34() V35() V36() ) set ) ) : ( ( ) ( ) set ) ) - tan : ( ( V6() ) ( Relation-like V6() V34() V35() V36() ) Element of K19(K20(REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ,REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) : ( ( ) ( Relation-like V34() V35() V36() ) set ) ) : ( ( ) ( ) set ) ) ) : ( ( V6() ) ( Relation-like V6() V34() V35() V36() ) Element of K19(K20(REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ,REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) : ( ( ) ( Relation-like V34() V35() V36() ) set ) ) : ( ( ) ( ) set ) ) - sec : ( ( V6() ) ( Relation-like V6() V34() V35() V36() ) Element of K19(K20(REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ,REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) : ( ( ) ( Relation-like V34() V35() V36() ) set ) ) : ( ( ) ( ) set ) ) ) : ( (
V6() ) (
Relation-like V6()
V34()
V35()
V36() )
Element of
K19(
K20(
REAL : ( ( ) ( non
empty V51()
V52()
V53()
V57()
V62() )
set ) ,
REAL : ( ( ) ( non
empty V51()
V52()
V53()
V57()
V62() )
set ) ) : ( ( ) (
Relation-like V34()
V35()
V36() )
set ) ) : ( ( ) ( )
set ) ) : ( ( ) ( )
set ) &
Z : ( (
open ) (
V51()
V52()
V53()
open )
Subset of ( ( ) ( )
set ) )
= dom f : ( (
V6() ) (
Relation-like V6()
V34()
V35()
V36() )
PartFunc of ,) : ( ( ) ( )
set ) &
f : ( (
V6() ) (
Relation-like V6()
V34()
V35()
V36() )
PartFunc of ,)
| A : ( ( non
empty closed_interval ) ( non
empty V51()
V52()
V53()
closed_interval V76() )
Subset of ( ( ) ( )
set ) ) : ( (
V6() ) (
Relation-like V6()
V34()
V35()
V36() )
Element of
K19(
K20(
REAL : ( ( ) ( non
empty V51()
V52()
V53()
V57()
V62() )
set ) ,
REAL : ( ( ) ( non
empty V51()
V52()
V53()
V57()
V62() )
set ) ) : ( ( ) (
Relation-like V34()
V35()
V36() )
set ) ) : ( ( ) ( )
set ) ) is
continuous holds
integral (
f : ( (
V6() ) (
Relation-like V6()
V34()
V35()
V36() )
PartFunc of ,) ,
A : ( ( non
empty closed_interval ) ( non
empty V51()
V52()
V53()
closed_interval V76() )
Subset of ( ( ) ( )
set ) ) ) : ( ( ) (
V28()
V29()
ext-real )
Element of
REAL : ( ( ) ( non
empty V51()
V52()
V53()
V57()
V62() )
set ) )
= ((((id Z : ( ( open ) ( V51() V52() V53() open ) Subset of ( ( ) ( ) set ) ) ) : ( ( V6() ) ( Relation-like b2 : ( ( open ) ( V51() V52() V53() open ) Subset of ( ( ) ( ) set ) ) -defined b2 : ( ( open ) ( V51() V52() V53() open ) Subset of ( ( ) ( ) set ) ) -valued V6() total V34() V35() V36() continuous V49() ) Element of K19(K20(REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ,REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) : ( ( ) ( Relation-like V34() V35() V36() ) set ) ) : ( ( ) ( ) set ) ) - tan : ( ( V6() ) ( Relation-like V6() V34() V35() V36() ) Element of K19(K20(REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ,REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) : ( ( ) ( Relation-like V34() V35() V36() ) set ) ) : ( ( ) ( ) set ) ) ) : ( ( V6() ) ( Relation-like V6() V34() V35() V36() ) Element of K19(K20(REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ,REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) : ( ( ) ( Relation-like V34() V35() V36() ) set ) ) : ( ( ) ( ) set ) ) - sec : ( ( V6() ) ( Relation-like V6() V34() V35() V36() ) Element of K19(K20(REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ,REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) : ( ( ) ( Relation-like V34() V35() V36() ) set ) ) : ( ( ) ( ) set ) ) ) : ( ( V6() ) ( Relation-like V6() V34() V35() V36() ) Element of K19(K20(REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ,REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) : ( ( ) ( Relation-like V34() V35() V36() ) set ) ) : ( ( ) ( ) set ) ) . (upper_bound A : ( ( non empty closed_interval ) ( non empty V51() V52() V53() closed_interval V76() ) Subset of ( ( ) ( ) set ) ) ) : ( ( ) ( V28() V29() ext-real ) Element of REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) ) : ( ( ) (
V28()
V29()
ext-real )
Element of
REAL : ( ( ) ( non
empty V51()
V52()
V53()
V57()
V62() )
set ) )
- ((((id Z : ( ( open ) ( V51() V52() V53() open ) Subset of ( ( ) ( ) set ) ) ) : ( ( V6() ) ( Relation-like b2 : ( ( open ) ( V51() V52() V53() open ) Subset of ( ( ) ( ) set ) ) -defined b2 : ( ( open ) ( V51() V52() V53() open ) Subset of ( ( ) ( ) set ) ) -valued V6() total V34() V35() V36() continuous V49() ) Element of K19(K20(REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ,REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) : ( ( ) ( Relation-like V34() V35() V36() ) set ) ) : ( ( ) ( ) set ) ) - tan : ( ( V6() ) ( Relation-like V6() V34() V35() V36() ) Element of K19(K20(REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ,REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) : ( ( ) ( Relation-like V34() V35() V36() ) set ) ) : ( ( ) ( ) set ) ) ) : ( ( V6() ) ( Relation-like V6() V34() V35() V36() ) Element of K19(K20(REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ,REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) : ( ( ) ( Relation-like V34() V35() V36() ) set ) ) : ( ( ) ( ) set ) ) - sec : ( ( V6() ) ( Relation-like V6() V34() V35() V36() ) Element of K19(K20(REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ,REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) : ( ( ) ( Relation-like V34() V35() V36() ) set ) ) : ( ( ) ( ) set ) ) ) : ( ( V6() ) ( Relation-like V6() V34() V35() V36() ) Element of K19(K20(REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ,REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) : ( ( ) ( Relation-like V34() V35() V36() ) set ) ) : ( ( ) ( ) set ) ) . (lower_bound A : ( ( non empty closed_interval ) ( non empty V51() V52() V53() closed_interval V76() ) Subset of ( ( ) ( ) set ) ) ) : ( ( ) ( V28() V29() ext-real ) Element of REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) ) : ( ( ) (
V28()
V29()
ext-real )
Element of
REAL : ( ( ) ( non
empty V51()
V52()
V53()
V57()
V62() )
set ) ) : ( ( ) (
V28()
V29()
ext-real )
Element of
REAL : ( ( ) ( non
empty V51()
V52()
V53()
V57()
V62() )
set ) ) ;
theorem
for
Z being ( (
open ) (
V51()
V52()
V53()
open )
Subset of ( ( ) ( )
set ) ) st
Z : ( (
open ) (
V51()
V52()
V53()
open )
Subset of ( ( ) ( )
set ) )
c= dom (tan : ( ( V6() ) ( Relation-like V6() V34() V35() V36() ) Element of K19(K20(REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ,REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) : ( ( ) ( Relation-like V34() V35() V36() ) set ) ) : ( ( ) ( ) set ) ) - (id Z : ( ( open ) ( V51() V52() V53() open ) Subset of ( ( ) ( ) set ) ) ) : ( ( V6() ) ( Relation-like b1 : ( ( open ) ( V51() V52() V53() open ) Subset of ( ( ) ( ) set ) ) -defined b1 : ( ( open ) ( V51() V52() V53() open ) Subset of ( ( ) ( ) set ) ) -valued V6() total V34() V35() V36() continuous V49() ) Element of K19(K20(REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ,REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) : ( ( ) ( Relation-like V34() V35() V36() ) set ) ) : ( ( ) ( ) set ) ) ) : ( (
V6() ) (
Relation-like b1 : ( (
open ) (
V51()
V52()
V53()
open )
Subset of ( ( ) ( )
set ) )
-defined V6()
V34()
V35()
V36() )
Element of
K19(
K20(
REAL : ( ( ) ( non
empty V51()
V52()
V53()
V57()
V62() )
set ) ,
REAL : ( ( ) ( non
empty V51()
V52()
V53()
V57()
V62() )
set ) ) : ( ( ) (
Relation-like V34()
V35()
V36() )
set ) ) : ( ( ) ( )
set ) ) : ( ( ) ( )
set ) holds
(
tan : ( (
V6() ) (
Relation-like V6()
V34()
V35()
V36() )
Element of
K19(
K20(
REAL : ( ( ) ( non
empty V51()
V52()
V53()
V57()
V62() )
set ) ,
REAL : ( ( ) ( non
empty V51()
V52()
V53()
V57()
V62() )
set ) ) : ( ( ) (
Relation-like V34()
V35()
V36() )
set ) ) : ( ( ) ( )
set ) )
- (id Z : ( ( open ) ( V51() V52() V53() open ) Subset of ( ( ) ( ) set ) ) ) : ( (
V6() ) (
Relation-like b1 : ( (
open ) (
V51()
V52()
V53()
open )
Subset of ( ( ) ( )
set ) )
-defined b1 : ( (
open ) (
V51()
V52()
V53()
open )
Subset of ( ( ) ( )
set ) )
-valued V6()
total V34()
V35()
V36()
continuous V49() )
Element of
K19(
K20(
REAL : ( ( ) ( non
empty V51()
V52()
V53()
V57()
V62() )
set ) ,
REAL : ( ( ) ( non
empty V51()
V52()
V53()
V57()
V62() )
set ) ) : ( ( ) (
Relation-like V34()
V35()
V36() )
set ) ) : ( ( ) ( )
set ) ) : ( (
V6() ) (
Relation-like b1 : ( (
open ) (
V51()
V52()
V53()
open )
Subset of ( ( ) ( )
set ) )
-defined V6()
V34()
V35()
V36() )
Element of
K19(
K20(
REAL : ( ( ) ( non
empty V51()
V52()
V53()
V57()
V62() )
set ) ,
REAL : ( ( ) ( non
empty V51()
V52()
V53()
V57()
V62() )
set ) ) : ( ( ) (
Relation-like V34()
V35()
V36() )
set ) ) : ( ( ) ( )
set ) )
is_differentiable_on Z : ( (
open ) (
V51()
V52()
V53()
open )
Subset of ( ( ) ( )
set ) ) & ( for
x being ( ( ) (
V28()
V29()
ext-real )
Real) st
x : ( ( ) (
V28()
V29()
ext-real )
Real)
in Z : ( (
open ) (
V51()
V52()
V53()
open )
Subset of ( ( ) ( )
set ) ) holds
((tan : ( ( V6() ) ( Relation-like V6() V34() V35() V36() ) Element of K19(K20(REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ,REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) : ( ( ) ( Relation-like V34() V35() V36() ) set ) ) : ( ( ) ( ) set ) ) - (id Z : ( ( open ) ( V51() V52() V53() open ) Subset of ( ( ) ( ) set ) ) ) : ( ( V6() ) ( Relation-like b1 : ( ( open ) ( V51() V52() V53() open ) Subset of ( ( ) ( ) set ) ) -defined b1 : ( ( open ) ( V51() V52() V53() open ) Subset of ( ( ) ( ) set ) ) -valued V6() total V34() V35() V36() continuous V49() ) Element of K19(K20(REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ,REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) : ( ( ) ( Relation-like V34() V35() V36() ) set ) ) : ( ( ) ( ) set ) ) ) : ( ( V6() ) ( Relation-like b1 : ( ( open ) ( V51() V52() V53() open ) Subset of ( ( ) ( ) set ) ) -defined V6() V34() V35() V36() ) Element of K19(K20(REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ,REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) : ( ( ) ( Relation-like V34() V35() V36() ) set ) ) : ( ( ) ( ) set ) ) `| Z : ( ( open ) ( V51() V52() V53() open ) Subset of ( ( ) ( ) set ) ) ) : ( (
V6() ) (
Relation-like V6()
V34()
V35()
V36() )
Element of
K19(
K20(
REAL : ( ( ) ( non
empty V51()
V52()
V53()
V57()
V62() )
set ) ,
REAL : ( ( ) ( non
empty V51()
V52()
V53()
V57()
V62() )
set ) ) : ( ( ) (
Relation-like V34()
V35()
V36() )
set ) ) : ( ( ) ( )
set ) )
. x : ( ( ) (
V28()
V29()
ext-real )
Real) : ( ( ) (
V28()
V29()
ext-real )
Element of
REAL : ( ( ) ( non
empty V51()
V52()
V53()
V57()
V62() )
set ) )
= (tan : ( ( V6() ) ( Relation-like V6() V34() V35() V36() ) Element of K19(K20(REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ,REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) : ( ( ) ( Relation-like V34() V35() V36() ) set ) ) : ( ( ) ( ) set ) ) . x : ( ( ) ( V28() V29() ext-real ) Real) ) : ( ( ) (
V28()
V29()
ext-real )
Element of
REAL : ( ( ) ( non
empty V51()
V52()
V53()
V57()
V62() )
set ) )
^2 : ( ( ) (
V28()
V29()
ext-real )
Element of
REAL : ( ( ) ( non
empty V51()
V52()
V53()
V57()
V62() )
set ) ) ) ) ;
theorem
for
A being ( ( non
empty closed_interval ) ( non
empty V51()
V52()
V53()
closed_interval V76() )
Subset of ( ( ) ( )
set ) )
for
Z being ( (
open ) (
V51()
V52()
V53()
open )
Subset of ( ( ) ( )
set ) )
for
f being ( (
V6() ) (
Relation-like V6()
V34()
V35()
V36() )
PartFunc of ,) st
A : ( ( non
empty closed_interval ) ( non
empty V51()
V52()
V53()
closed_interval V76() )
Subset of ( ( ) ( )
set ) )
c= Z : ( (
open ) (
V51()
V52()
V53()
open )
Subset of ( ( ) ( )
set ) ) & ( for
x being ( ( ) (
V28()
V29()
ext-real )
Real) st
x : ( ( ) (
V28()
V29()
ext-real )
Real)
in Z : ( (
open ) (
V51()
V52()
V53()
open )
Subset of ( ( ) ( )
set ) ) holds
(
cos : ( (
V6()
V18(
REAL : ( ( ) ( non
empty V51()
V52()
V53()
V57()
V62() )
set ) ,
REAL : ( ( ) ( non
empty V51()
V52()
V53()
V57()
V62() )
set ) ) ) (
Relation-like V6() non
empty total V18(
REAL : ( ( ) ( non
empty V51()
V52()
V53()
V57()
V62() )
set ) ,
REAL : ( ( ) ( non
empty V51()
V52()
V53()
V57()
V62() )
set ) )
V34()
V35()
V36()
continuous )
Element of
K19(
K20(
REAL : ( ( ) ( non
empty V51()
V52()
V53()
V57()
V62() )
set ) ,
REAL : ( ( ) ( non
empty V51()
V52()
V53()
V57()
V62() )
set ) ) : ( ( ) (
Relation-like V34()
V35()
V36() )
set ) ) : ( ( ) ( )
set ) )
. x : ( ( ) (
V28()
V29()
ext-real )
Real) : ( ( ) (
V28()
V29()
ext-real )
Element of
REAL : ( ( ) ( non
empty V51()
V52()
V53()
V57()
V62() )
set ) )
> 0 : ( ( ) (
V21()
V22()
V23()
V27()
V28()
V29()
V30()
ext-real non
negative V50()
V51()
V52()
V53()
V54()
V55()
V56() )
Element of
NAT : ( ( ) ( non
empty V21()
V22()
V23()
V51()
V52()
V53()
V54()
V55()
V56()
V57() )
Element of
K19(
REAL : ( ( ) ( non
empty V51()
V52()
V53()
V57()
V62() )
set ) ) : ( ( ) ( )
set ) ) ) &
f : ( (
V6() ) (
Relation-like V6()
V34()
V35()
V36() )
PartFunc of ,)
. x : ( ( ) (
V28()
V29()
ext-real )
Real) : ( ( ) (
V28()
V29()
ext-real )
Element of
REAL : ( ( ) ( non
empty V51()
V52()
V53()
V57()
V62() )
set ) )
= (tan : ( ( V6() ) ( Relation-like V6() V34() V35() V36() ) Element of K19(K20(REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ,REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) : ( ( ) ( Relation-like V34() V35() V36() ) set ) ) : ( ( ) ( ) set ) ) . x : ( ( ) ( V28() V29() ext-real ) Real) ) : ( ( ) (
V28()
V29()
ext-real )
Element of
REAL : ( ( ) ( non
empty V51()
V52()
V53()
V57()
V62() )
set ) )
^2 : ( ( ) (
V28()
V29()
ext-real )
Element of
REAL : ( ( ) ( non
empty V51()
V52()
V53()
V57()
V62() )
set ) ) ) ) &
Z : ( (
open ) (
V51()
V52()
V53()
open )
Subset of ( ( ) ( )
set ) )
c= dom (tan : ( ( V6() ) ( Relation-like V6() V34() V35() V36() ) Element of K19(K20(REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ,REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) : ( ( ) ( Relation-like V34() V35() V36() ) set ) ) : ( ( ) ( ) set ) ) - (id Z : ( ( open ) ( V51() V52() V53() open ) Subset of ( ( ) ( ) set ) ) ) : ( ( V6() ) ( Relation-like b2 : ( ( open ) ( V51() V52() V53() open ) Subset of ( ( ) ( ) set ) ) -defined b2 : ( ( open ) ( V51() V52() V53() open ) Subset of ( ( ) ( ) set ) ) -valued V6() total V34() V35() V36() continuous V49() ) Element of K19(K20(REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ,REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) : ( ( ) ( Relation-like V34() V35() V36() ) set ) ) : ( ( ) ( ) set ) ) ) : ( (
V6() ) (
Relation-like b2 : ( (
open ) (
V51()
V52()
V53()
open )
Subset of ( ( ) ( )
set ) )
-defined V6()
V34()
V35()
V36() )
Element of
K19(
K20(
REAL : ( ( ) ( non
empty V51()
V52()
V53()
V57()
V62() )
set ) ,
REAL : ( ( ) ( non
empty V51()
V52()
V53()
V57()
V62() )
set ) ) : ( ( ) (
Relation-like V34()
V35()
V36() )
set ) ) : ( ( ) ( )
set ) ) : ( ( ) ( )
set ) &
Z : ( (
open ) (
V51()
V52()
V53()
open )
Subset of ( ( ) ( )
set ) )
= dom f : ( (
V6() ) (
Relation-like V6()
V34()
V35()
V36() )
PartFunc of ,) : ( ( ) ( )
set ) &
f : ( (
V6() ) (
Relation-like V6()
V34()
V35()
V36() )
PartFunc of ,)
| A : ( ( non
empty closed_interval ) ( non
empty V51()
V52()
V53()
closed_interval V76() )
Subset of ( ( ) ( )
set ) ) : ( (
V6() ) (
Relation-like V6()
V34()
V35()
V36() )
Element of
K19(
K20(
REAL : ( ( ) ( non
empty V51()
V52()
V53()
V57()
V62() )
set ) ,
REAL : ( ( ) ( non
empty V51()
V52()
V53()
V57()
V62() )
set ) ) : ( ( ) (
Relation-like V34()
V35()
V36() )
set ) ) : ( ( ) ( )
set ) ) is
continuous holds
integral (
f : ( (
V6() ) (
Relation-like V6()
V34()
V35()
V36() )
PartFunc of ,) ,
A : ( ( non
empty closed_interval ) ( non
empty V51()
V52()
V53()
closed_interval V76() )
Subset of ( ( ) ( )
set ) ) ) : ( ( ) (
V28()
V29()
ext-real )
Element of
REAL : ( ( ) ( non
empty V51()
V52()
V53()
V57()
V62() )
set ) )
= ((tan : ( ( V6() ) ( Relation-like V6() V34() V35() V36() ) Element of K19(K20(REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ,REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) : ( ( ) ( Relation-like V34() V35() V36() ) set ) ) : ( ( ) ( ) set ) ) - (id Z : ( ( open ) ( V51() V52() V53() open ) Subset of ( ( ) ( ) set ) ) ) : ( ( V6() ) ( Relation-like b2 : ( ( open ) ( V51() V52() V53() open ) Subset of ( ( ) ( ) set ) ) -defined b2 : ( ( open ) ( V51() V52() V53() open ) Subset of ( ( ) ( ) set ) ) -valued V6() total V34() V35() V36() continuous V49() ) Element of K19(K20(REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ,REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) : ( ( ) ( Relation-like V34() V35() V36() ) set ) ) : ( ( ) ( ) set ) ) ) : ( ( V6() ) ( Relation-like b2 : ( ( open ) ( V51() V52() V53() open ) Subset of ( ( ) ( ) set ) ) -defined V6() V34() V35() V36() ) Element of K19(K20(REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ,REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) : ( ( ) ( Relation-like V34() V35() V36() ) set ) ) : ( ( ) ( ) set ) ) . (upper_bound A : ( ( non empty closed_interval ) ( non empty V51() V52() V53() closed_interval V76() ) Subset of ( ( ) ( ) set ) ) ) : ( ( ) ( V28() V29() ext-real ) Element of REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) ) : ( ( ) (
V28()
V29()
ext-real )
Element of
REAL : ( ( ) ( non
empty V51()
V52()
V53()
V57()
V62() )
set ) )
- ((tan : ( ( V6() ) ( Relation-like V6() V34() V35() V36() ) Element of K19(K20(REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ,REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) : ( ( ) ( Relation-like V34() V35() V36() ) set ) ) : ( ( ) ( ) set ) ) - (id Z : ( ( open ) ( V51() V52() V53() open ) Subset of ( ( ) ( ) set ) ) ) : ( ( V6() ) ( Relation-like b2 : ( ( open ) ( V51() V52() V53() open ) Subset of ( ( ) ( ) set ) ) -defined b2 : ( ( open ) ( V51() V52() V53() open ) Subset of ( ( ) ( ) set ) ) -valued V6() total V34() V35() V36() continuous V49() ) Element of K19(K20(REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ,REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) : ( ( ) ( Relation-like V34() V35() V36() ) set ) ) : ( ( ) ( ) set ) ) ) : ( ( V6() ) ( Relation-like b2 : ( ( open ) ( V51() V52() V53() open ) Subset of ( ( ) ( ) set ) ) -defined V6() V34() V35() V36() ) Element of K19(K20(REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ,REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) : ( ( ) ( Relation-like V34() V35() V36() ) set ) ) : ( ( ) ( ) set ) ) . (lower_bound A : ( ( non empty closed_interval ) ( non empty V51() V52() V53() closed_interval V76() ) Subset of ( ( ) ( ) set ) ) ) : ( ( ) ( V28() V29() ext-real ) Element of REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) ) : ( ( ) (
V28()
V29()
ext-real )
Element of
REAL : ( ( ) ( non
empty V51()
V52()
V53()
V57()
V62() )
set ) ) : ( ( ) (
V28()
V29()
ext-real )
Element of
REAL : ( ( ) ( non
empty V51()
V52()
V53()
V57()
V62() )
set ) ) ;
theorem
for
Z being ( (
open ) (
V51()
V52()
V53()
open )
Subset of ( ( ) ( )
set ) ) st
Z : ( (
open ) (
V51()
V52()
V53()
open )
Subset of ( ( ) ( )
set ) )
c= dom ((- cot : ( ( V6() ) ( Relation-like V6() V34() V35() V36() ) Element of K19(K20(REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ,REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) : ( ( ) ( Relation-like V34() V35() V36() ) set ) ) : ( ( ) ( ) set ) ) ) : ( ( V6() ) ( Relation-like V6() V34() V35() V36() ) Element of K19(K20(REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ,REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) : ( ( ) ( Relation-like V34() V35() V36() ) set ) ) : ( ( ) ( ) set ) ) - (id Z : ( ( open ) ( V51() V52() V53() open ) Subset of ( ( ) ( ) set ) ) ) : ( ( V6() ) ( Relation-like b1 : ( ( open ) ( V51() V52() V53() open ) Subset of ( ( ) ( ) set ) ) -defined b1 : ( ( open ) ( V51() V52() V53() open ) Subset of ( ( ) ( ) set ) ) -valued V6() total V34() V35() V36() continuous V49() ) Element of K19(K20(REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ,REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) : ( ( ) ( Relation-like V34() V35() V36() ) set ) ) : ( ( ) ( ) set ) ) ) : ( (
V6() ) (
Relation-like b1 : ( (
open ) (
V51()
V52()
V53()
open )
Subset of ( ( ) ( )
set ) )
-defined V6()
V34()
V35()
V36() )
Element of
K19(
K20(
REAL : ( ( ) ( non
empty V51()
V52()
V53()
V57()
V62() )
set ) ,
REAL : ( ( ) ( non
empty V51()
V52()
V53()
V57()
V62() )
set ) ) : ( ( ) (
Relation-like V34()
V35()
V36() )
set ) ) : ( ( ) ( )
set ) ) : ( ( ) ( )
set ) holds
(
(- cot : ( ( V6() ) ( Relation-like V6() V34() V35() V36() ) Element of K19(K20(REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ,REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) : ( ( ) ( Relation-like V34() V35() V36() ) set ) ) : ( ( ) ( ) set ) ) ) : ( (
V6() ) (
Relation-like V6()
V34()
V35()
V36() )
Element of
K19(
K20(
REAL : ( ( ) ( non
empty V51()
V52()
V53()
V57()
V62() )
set ) ,
REAL : ( ( ) ( non
empty V51()
V52()
V53()
V57()
V62() )
set ) ) : ( ( ) (
Relation-like V34()
V35()
V36() )
set ) ) : ( ( ) ( )
set ) )
- (id Z : ( ( open ) ( V51() V52() V53() open ) Subset of ( ( ) ( ) set ) ) ) : ( (
V6() ) (
Relation-like b1 : ( (
open ) (
V51()
V52()
V53()
open )
Subset of ( ( ) ( )
set ) )
-defined b1 : ( (
open ) (
V51()
V52()
V53()
open )
Subset of ( ( ) ( )
set ) )
-valued V6()
total V34()
V35()
V36()
continuous V49() )
Element of
K19(
K20(
REAL : ( ( ) ( non
empty V51()
V52()
V53()
V57()
V62() )
set ) ,
REAL : ( ( ) ( non
empty V51()
V52()
V53()
V57()
V62() )
set ) ) : ( ( ) (
Relation-like V34()
V35()
V36() )
set ) ) : ( ( ) ( )
set ) ) : ( (
V6() ) (
Relation-like b1 : ( (
open ) (
V51()
V52()
V53()
open )
Subset of ( ( ) ( )
set ) )
-defined V6()
V34()
V35()
V36() )
Element of
K19(
K20(
REAL : ( ( ) ( non
empty V51()
V52()
V53()
V57()
V62() )
set ) ,
REAL : ( ( ) ( non
empty V51()
V52()
V53()
V57()
V62() )
set ) ) : ( ( ) (
Relation-like V34()
V35()
V36() )
set ) ) : ( ( ) ( )
set ) )
is_differentiable_on Z : ( (
open ) (
V51()
V52()
V53()
open )
Subset of ( ( ) ( )
set ) ) & ( for
x being ( ( ) (
V28()
V29()
ext-real )
Real) st
x : ( ( ) (
V28()
V29()
ext-real )
Real)
in Z : ( (
open ) (
V51()
V52()
V53()
open )
Subset of ( ( ) ( )
set ) ) holds
(((- cot : ( ( V6() ) ( Relation-like V6() V34() V35() V36() ) Element of K19(K20(REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ,REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) : ( ( ) ( Relation-like V34() V35() V36() ) set ) ) : ( ( ) ( ) set ) ) ) : ( ( V6() ) ( Relation-like V6() V34() V35() V36() ) Element of K19(K20(REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ,REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) : ( ( ) ( Relation-like V34() V35() V36() ) set ) ) : ( ( ) ( ) set ) ) - (id Z : ( ( open ) ( V51() V52() V53() open ) Subset of ( ( ) ( ) set ) ) ) : ( ( V6() ) ( Relation-like b1 : ( ( open ) ( V51() V52() V53() open ) Subset of ( ( ) ( ) set ) ) -defined b1 : ( ( open ) ( V51() V52() V53() open ) Subset of ( ( ) ( ) set ) ) -valued V6() total V34() V35() V36() continuous V49() ) Element of K19(K20(REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ,REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) : ( ( ) ( Relation-like V34() V35() V36() ) set ) ) : ( ( ) ( ) set ) ) ) : ( ( V6() ) ( Relation-like b1 : ( ( open ) ( V51() V52() V53() open ) Subset of ( ( ) ( ) set ) ) -defined V6() V34() V35() V36() ) Element of K19(K20(REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ,REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) : ( ( ) ( Relation-like V34() V35() V36() ) set ) ) : ( ( ) ( ) set ) ) `| Z : ( ( open ) ( V51() V52() V53() open ) Subset of ( ( ) ( ) set ) ) ) : ( (
V6() ) (
Relation-like V6()
V34()
V35()
V36() )
Element of
K19(
K20(
REAL : ( ( ) ( non
empty V51()
V52()
V53()
V57()
V62() )
set ) ,
REAL : ( ( ) ( non
empty V51()
V52()
V53()
V57()
V62() )
set ) ) : ( ( ) (
Relation-like V34()
V35()
V36() )
set ) ) : ( ( ) ( )
set ) )
. x : ( ( ) (
V28()
V29()
ext-real )
Real) : ( ( ) (
V28()
V29()
ext-real )
Element of
REAL : ( ( ) ( non
empty V51()
V52()
V53()
V57()
V62() )
set ) )
= (cot : ( ( V6() ) ( Relation-like V6() V34() V35() V36() ) Element of K19(K20(REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ,REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) : ( ( ) ( Relation-like V34() V35() V36() ) set ) ) : ( ( ) ( ) set ) ) . x : ( ( ) ( V28() V29() ext-real ) Real) ) : ( ( ) (
V28()
V29()
ext-real )
Element of
REAL : ( ( ) ( non
empty V51()
V52()
V53()
V57()
V62() )
set ) )
^2 : ( ( ) (
V28()
V29()
ext-real )
Element of
REAL : ( ( ) ( non
empty V51()
V52()
V53()
V57()
V62() )
set ) ) ) ) ;
theorem
for
A being ( ( non
empty closed_interval ) ( non
empty V51()
V52()
V53()
closed_interval V76() )
Subset of ( ( ) ( )
set ) )
for
Z being ( (
open ) (
V51()
V52()
V53()
open )
Subset of ( ( ) ( )
set ) )
for
f being ( (
V6() ) (
Relation-like V6()
V34()
V35()
V36() )
PartFunc of ,) st
A : ( ( non
empty closed_interval ) ( non
empty V51()
V52()
V53()
closed_interval V76() )
Subset of ( ( ) ( )
set ) )
c= Z : ( (
open ) (
V51()
V52()
V53()
open )
Subset of ( ( ) ( )
set ) ) & ( for
x being ( ( ) (
V28()
V29()
ext-real )
Real) st
x : ( ( ) (
V28()
V29()
ext-real )
Real)
in Z : ( (
open ) (
V51()
V52()
V53()
open )
Subset of ( ( ) ( )
set ) ) holds
(
sin : ( (
V6()
V18(
REAL : ( ( ) ( non
empty V51()
V52()
V53()
V57()
V62() )
set ) ,
REAL : ( ( ) ( non
empty V51()
V52()
V53()
V57()
V62() )
set ) ) ) (
Relation-like V6() non
empty total V18(
REAL : ( ( ) ( non
empty V51()
V52()
V53()
V57()
V62() )
set ) ,
REAL : ( ( ) ( non
empty V51()
V52()
V53()
V57()
V62() )
set ) )
V34()
V35()
V36()
continuous )
Element of
K19(
K20(
REAL : ( ( ) ( non
empty V51()
V52()
V53()
V57()
V62() )
set ) ,
REAL : ( ( ) ( non
empty V51()
V52()
V53()
V57()
V62() )
set ) ) : ( ( ) (
Relation-like V34()
V35()
V36() )
set ) ) : ( ( ) ( )
set ) )
. x : ( ( ) (
V28()
V29()
ext-real )
Real) : ( ( ) (
V28()
V29()
ext-real )
Element of
REAL : ( ( ) ( non
empty V51()
V52()
V53()
V57()
V62() )
set ) )
> 0 : ( ( ) (
V21()
V22()
V23()
V27()
V28()
V29()
V30()
ext-real non
negative V50()
V51()
V52()
V53()
V54()
V55()
V56() )
Element of
NAT : ( ( ) ( non
empty V21()
V22()
V23()
V51()
V52()
V53()
V54()
V55()
V56()
V57() )
Element of
K19(
REAL : ( ( ) ( non
empty V51()
V52()
V53()
V57()
V62() )
set ) ) : ( ( ) ( )
set ) ) ) &
f : ( (
V6() ) (
Relation-like V6()
V34()
V35()
V36() )
PartFunc of ,)
. x : ( ( ) (
V28()
V29()
ext-real )
Real) : ( ( ) (
V28()
V29()
ext-real )
Element of
REAL : ( ( ) ( non
empty V51()
V52()
V53()
V57()
V62() )
set ) )
= (cot : ( ( V6() ) ( Relation-like V6() V34() V35() V36() ) Element of K19(K20(REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ,REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) : ( ( ) ( Relation-like V34() V35() V36() ) set ) ) : ( ( ) ( ) set ) ) . x : ( ( ) ( V28() V29() ext-real ) Real) ) : ( ( ) (
V28()
V29()
ext-real )
Element of
REAL : ( ( ) ( non
empty V51()
V52()
V53()
V57()
V62() )
set ) )
^2 : ( ( ) (
V28()
V29()
ext-real )
Element of
REAL : ( ( ) ( non
empty V51()
V52()
V53()
V57()
V62() )
set ) ) ) ) &
Z : ( (
open ) (
V51()
V52()
V53()
open )
Subset of ( ( ) ( )
set ) )
c= dom ((- cot : ( ( V6() ) ( Relation-like V6() V34() V35() V36() ) Element of K19(K20(REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ,REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) : ( ( ) ( Relation-like V34() V35() V36() ) set ) ) : ( ( ) ( ) set ) ) ) : ( ( V6() ) ( Relation-like V6() V34() V35() V36() ) Element of K19(K20(REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ,REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) : ( ( ) ( Relation-like V34() V35() V36() ) set ) ) : ( ( ) ( ) set ) ) - (id Z : ( ( open ) ( V51() V52() V53() open ) Subset of ( ( ) ( ) set ) ) ) : ( ( V6() ) ( Relation-like b2 : ( ( open ) ( V51() V52() V53() open ) Subset of ( ( ) ( ) set ) ) -defined b2 : ( ( open ) ( V51() V52() V53() open ) Subset of ( ( ) ( ) set ) ) -valued V6() total V34() V35() V36() continuous V49() ) Element of K19(K20(REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ,REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) : ( ( ) ( Relation-like V34() V35() V36() ) set ) ) : ( ( ) ( ) set ) ) ) : ( (
V6() ) (
Relation-like b2 : ( (
open ) (
V51()
V52()
V53()
open )
Subset of ( ( ) ( )
set ) )
-defined V6()
V34()
V35()
V36() )
Element of
K19(
K20(
REAL : ( ( ) ( non
empty V51()
V52()
V53()
V57()
V62() )
set ) ,
REAL : ( ( ) ( non
empty V51()
V52()
V53()
V57()
V62() )
set ) ) : ( ( ) (
Relation-like V34()
V35()
V36() )
set ) ) : ( ( ) ( )
set ) ) : ( ( ) ( )
set ) &
Z : ( (
open ) (
V51()
V52()
V53()
open )
Subset of ( ( ) ( )
set ) )
= dom f : ( (
V6() ) (
Relation-like V6()
V34()
V35()
V36() )
PartFunc of ,) : ( ( ) ( )
set ) &
f : ( (
V6() ) (
Relation-like V6()
V34()
V35()
V36() )
PartFunc of ,)
| A : ( ( non
empty closed_interval ) ( non
empty V51()
V52()
V53()
closed_interval V76() )
Subset of ( ( ) ( )
set ) ) : ( (
V6() ) (
Relation-like V6()
V34()
V35()
V36() )
Element of
K19(
K20(
REAL : ( ( ) ( non
empty V51()
V52()
V53()
V57()
V62() )
set ) ,
REAL : ( ( ) ( non
empty V51()
V52()
V53()
V57()
V62() )
set ) ) : ( ( ) (
Relation-like V34()
V35()
V36() )
set ) ) : ( ( ) ( )
set ) ) is
continuous holds
integral (
f : ( (
V6() ) (
Relation-like V6()
V34()
V35()
V36() )
PartFunc of ,) ,
A : ( ( non
empty closed_interval ) ( non
empty V51()
V52()
V53()
closed_interval V76() )
Subset of ( ( ) ( )
set ) ) ) : ( ( ) (
V28()
V29()
ext-real )
Element of
REAL : ( ( ) ( non
empty V51()
V52()
V53()
V57()
V62() )
set ) )
= (((- cot : ( ( V6() ) ( Relation-like V6() V34() V35() V36() ) Element of K19(K20(REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ,REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) : ( ( ) ( Relation-like V34() V35() V36() ) set ) ) : ( ( ) ( ) set ) ) ) : ( ( V6() ) ( Relation-like V6() V34() V35() V36() ) Element of K19(K20(REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ,REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) : ( ( ) ( Relation-like V34() V35() V36() ) set ) ) : ( ( ) ( ) set ) ) - (id Z : ( ( open ) ( V51() V52() V53() open ) Subset of ( ( ) ( ) set ) ) ) : ( ( V6() ) ( Relation-like b2 : ( ( open ) ( V51() V52() V53() open ) Subset of ( ( ) ( ) set ) ) -defined b2 : ( ( open ) ( V51() V52() V53() open ) Subset of ( ( ) ( ) set ) ) -valued V6() total V34() V35() V36() continuous V49() ) Element of K19(K20(REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ,REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) : ( ( ) ( Relation-like V34() V35() V36() ) set ) ) : ( ( ) ( ) set ) ) ) : ( ( V6() ) ( Relation-like b2 : ( ( open ) ( V51() V52() V53() open ) Subset of ( ( ) ( ) set ) ) -defined V6() V34() V35() V36() ) Element of K19(K20(REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ,REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) : ( ( ) ( Relation-like V34() V35() V36() ) set ) ) : ( ( ) ( ) set ) ) . (upper_bound A : ( ( non empty closed_interval ) ( non empty V51() V52() V53() closed_interval V76() ) Subset of ( ( ) ( ) set ) ) ) : ( ( ) ( V28() V29() ext-real ) Element of REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) ) : ( ( ) (
V28()
V29()
ext-real )
Element of
REAL : ( ( ) ( non
empty V51()
V52()
V53()
V57()
V62() )
set ) )
- (((- cot : ( ( V6() ) ( Relation-like V6() V34() V35() V36() ) Element of K19(K20(REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ,REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) : ( ( ) ( Relation-like V34() V35() V36() ) set ) ) : ( ( ) ( ) set ) ) ) : ( ( V6() ) ( Relation-like V6() V34() V35() V36() ) Element of K19(K20(REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ,REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) : ( ( ) ( Relation-like V34() V35() V36() ) set ) ) : ( ( ) ( ) set ) ) - (id Z : ( ( open ) ( V51() V52() V53() open ) Subset of ( ( ) ( ) set ) ) ) : ( ( V6() ) ( Relation-like b2 : ( ( open ) ( V51() V52() V53() open ) Subset of ( ( ) ( ) set ) ) -defined b2 : ( ( open ) ( V51() V52() V53() open ) Subset of ( ( ) ( ) set ) ) -valued V6() total V34() V35() V36() continuous V49() ) Element of K19(K20(REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ,REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) : ( ( ) ( Relation-like V34() V35() V36() ) set ) ) : ( ( ) ( ) set ) ) ) : ( ( V6() ) ( Relation-like b2 : ( ( open ) ( V51() V52() V53() open ) Subset of ( ( ) ( ) set ) ) -defined V6() V34() V35() V36() ) Element of K19(K20(REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ,REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) : ( ( ) ( Relation-like V34() V35() V36() ) set ) ) : ( ( ) ( ) set ) ) . (lower_bound A : ( ( non empty closed_interval ) ( non empty V51() V52() V53() closed_interval V76() ) Subset of ( ( ) ( ) set ) ) ) : ( ( ) ( V28() V29() ext-real ) Element of REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) ) : ( ( ) (
V28()
V29()
ext-real )
Element of
REAL : ( ( ) ( non
empty V51()
V52()
V53()
V57()
V62() )
set ) ) : ( ( ) (
V28()
V29()
ext-real )
Element of
REAL : ( ( ) ( non
empty V51()
V52()
V53()
V57()
V62() )
set ) ) ;
theorem
for
A being ( ( non
empty closed_interval ) ( non
empty V51()
V52()
V53()
closed_interval V76() )
Subset of ( ( ) ( )
set ) )
for
Z being ( (
open ) (
V51()
V52()
V53()
open )
Subset of ( ( ) ( )
set ) )
for
f being ( (
V6() ) (
Relation-like V6()
V34()
V35()
V36() )
PartFunc of ,) st
A : ( ( non
empty closed_interval ) ( non
empty V51()
V52()
V53()
closed_interval V76() )
Subset of ( ( ) ( )
set ) )
c= Z : ( (
open ) (
V51()
V52()
V53()
open )
Subset of ( ( ) ( )
set ) ) & ( for
x being ( ( ) (
V28()
V29()
ext-real )
Real) st
x : ( ( ) (
V28()
V29()
ext-real )
Real)
in Z : ( (
open ) (
V51()
V52()
V53()
open )
Subset of ( ( ) ( )
set ) ) holds
(
f : ( (
V6() ) (
Relation-like V6()
V34()
V35()
V36() )
PartFunc of ,)
. x : ( ( ) (
V28()
V29()
ext-real )
Real) : ( ( ) (
V28()
V29()
ext-real )
Element of
REAL : ( ( ) ( non
empty V51()
V52()
V53()
V57()
V62() )
set ) )
= 1 : ( ( ) ( non
empty V21()
V22()
V23()
V27()
V28()
V29()
V30()
ext-real non
negative V50()
V51()
V52()
V53()
V54()
V55()
V56() )
Element of
NAT : ( ( ) ( non
empty V21()
V22()
V23()
V51()
V52()
V53()
V54()
V55()
V56()
V57() )
Element of
K19(
REAL : ( ( ) ( non
empty V51()
V52()
V53()
V57()
V62() )
set ) ) : ( ( ) ( )
set ) ) )
/ ((cos : ( ( V6() V18( REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) , REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) ) ( Relation-like V6() non empty total V18( REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) , REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) V34() V35() V36() continuous ) Element of K19(K20(REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ,REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) : ( ( ) ( Relation-like V34() V35() V36() ) set ) ) : ( ( ) ( ) set ) ) . x : ( ( ) ( V28() V29() ext-real ) Real) ) : ( ( ) ( V28() V29() ext-real ) Element of REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) ^2) : ( ( ) (
V28()
V29()
ext-real )
Element of
REAL : ( ( ) ( non
empty V51()
V52()
V53()
V57()
V62() )
set ) ) : ( ( ) (
V28()
V29()
ext-real )
Element of
REAL : ( ( ) ( non
empty V51()
V52()
V53()
V57()
V62() )
set ) ) &
cos : ( (
V6()
V18(
REAL : ( ( ) ( non
empty V51()
V52()
V53()
V57()
V62() )
set ) ,
REAL : ( ( ) ( non
empty V51()
V52()
V53()
V57()
V62() )
set ) ) ) (
Relation-like V6() non
empty total V18(
REAL : ( ( ) ( non
empty V51()
V52()
V53()
V57()
V62() )
set ) ,
REAL : ( ( ) ( non
empty V51()
V52()
V53()
V57()
V62() )
set ) )
V34()
V35()
V36()
continuous )
Element of
K19(
K20(
REAL : ( ( ) ( non
empty V51()
V52()
V53()
V57()
V62() )
set ) ,
REAL : ( ( ) ( non
empty V51()
V52()
V53()
V57()
V62() )
set ) ) : ( ( ) (
Relation-like V34()
V35()
V36() )
set ) ) : ( ( ) ( )
set ) )
. x : ( ( ) (
V28()
V29()
ext-real )
Real) : ( ( ) (
V28()
V29()
ext-real )
Element of
REAL : ( ( ) ( non
empty V51()
V52()
V53()
V57()
V62() )
set ) )
<> 0 : ( ( ) (
V21()
V22()
V23()
V27()
V28()
V29()
V30()
ext-real non
negative V50()
V51()
V52()
V53()
V54()
V55()
V56() )
Element of
NAT : ( ( ) ( non
empty V21()
V22()
V23()
V51()
V52()
V53()
V54()
V55()
V56()
V57() )
Element of
K19(
REAL : ( ( ) ( non
empty V51()
V52()
V53()
V57()
V62() )
set ) ) : ( ( ) ( )
set ) ) ) ) ) &
dom tan : ( (
V6() ) (
Relation-like V6()
V34()
V35()
V36() )
Element of
K19(
K20(
REAL : ( ( ) ( non
empty V51()
V52()
V53()
V57()
V62() )
set ) ,
REAL : ( ( ) ( non
empty V51()
V52()
V53()
V57()
V62() )
set ) ) : ( ( ) (
Relation-like V34()
V35()
V36() )
set ) ) : ( ( ) ( )
set ) ) : ( ( ) ( )
set )
= Z : ( (
open ) (
V51()
V52()
V53()
open )
Subset of ( ( ) ( )
set ) ) &
Z : ( (
open ) (
V51()
V52()
V53()
open )
Subset of ( ( ) ( )
set ) )
= dom f : ( (
V6() ) (
Relation-like V6()
V34()
V35()
V36() )
PartFunc of ,) : ( ( ) ( )
set ) &
f : ( (
V6() ) (
Relation-like V6()
V34()
V35()
V36() )
PartFunc of ,)
| A : ( ( non
empty closed_interval ) ( non
empty V51()
V52()
V53()
closed_interval V76() )
Subset of ( ( ) ( )
set ) ) : ( (
V6() ) (
Relation-like V6()
V34()
V35()
V36() )
Element of
K19(
K20(
REAL : ( ( ) ( non
empty V51()
V52()
V53()
V57()
V62() )
set ) ,
REAL : ( ( ) ( non
empty V51()
V52()
V53()
V57()
V62() )
set ) ) : ( ( ) (
Relation-like V34()
V35()
V36() )
set ) ) : ( ( ) ( )
set ) ) is
continuous holds
integral (
f : ( (
V6() ) (
Relation-like V6()
V34()
V35()
V36() )
PartFunc of ,) ,
A : ( ( non
empty closed_interval ) ( non
empty V51()
V52()
V53()
closed_interval V76() )
Subset of ( ( ) ( )
set ) ) ) : ( ( ) (
V28()
V29()
ext-real )
Element of
REAL : ( ( ) ( non
empty V51()
V52()
V53()
V57()
V62() )
set ) )
= (tan : ( ( V6() ) ( Relation-like V6() V34() V35() V36() ) Element of K19(K20(REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ,REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) : ( ( ) ( Relation-like V34() V35() V36() ) set ) ) : ( ( ) ( ) set ) ) . (upper_bound A : ( ( non empty closed_interval ) ( non empty V51() V52() V53() closed_interval V76() ) Subset of ( ( ) ( ) set ) ) ) : ( ( ) ( V28() V29() ext-real ) Element of REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) ) : ( ( ) (
V28()
V29()
ext-real )
Element of
REAL : ( ( ) ( non
empty V51()
V52()
V53()
V57()
V62() )
set ) )
- (tan : ( ( V6() ) ( Relation-like V6() V34() V35() V36() ) Element of K19(K20(REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ,REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) : ( ( ) ( Relation-like V34() V35() V36() ) set ) ) : ( ( ) ( ) set ) ) . (lower_bound A : ( ( non empty closed_interval ) ( non empty V51() V52() V53() closed_interval V76() ) Subset of ( ( ) ( ) set ) ) ) : ( ( ) ( V28() V29() ext-real ) Element of REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) ) : ( ( ) (
V28()
V29()
ext-real )
Element of
REAL : ( ( ) ( non
empty V51()
V52()
V53()
V57()
V62() )
set ) ) : ( ( ) (
V28()
V29()
ext-real )
Element of
REAL : ( ( ) ( non
empty V51()
V52()
V53()
V57()
V62() )
set ) ) ;
theorem
for
A being ( ( non
empty closed_interval ) ( non
empty V51()
V52()
V53()
closed_interval V76() )
Subset of ( ( ) ( )
set ) )
for
Z being ( (
open ) (
V51()
V52()
V53()
open )
Subset of ( ( ) ( )
set ) )
for
f being ( (
V6() ) (
Relation-like V6()
V34()
V35()
V36() )
PartFunc of ,) st
A : ( ( non
empty closed_interval ) ( non
empty V51()
V52()
V53()
closed_interval V76() )
Subset of ( ( ) ( )
set ) )
c= Z : ( (
open ) (
V51()
V52()
V53()
open )
Subset of ( ( ) ( )
set ) ) & ( for
x being ( ( ) (
V28()
V29()
ext-real )
Real) st
x : ( ( ) (
V28()
V29()
ext-real )
Real)
in Z : ( (
open ) (
V51()
V52()
V53()
open )
Subset of ( ( ) ( )
set ) ) holds
(
f : ( (
V6() ) (
Relation-like V6()
V34()
V35()
V36() )
PartFunc of ,)
. x : ( ( ) (
V28()
V29()
ext-real )
Real) : ( ( ) (
V28()
V29()
ext-real )
Element of
REAL : ( ( ) ( non
empty V51()
V52()
V53()
V57()
V62() )
set ) )
= - (1 : ( ( ) ( non empty V21() V22() V23() V27() V28() V29() V30() ext-real non negative V50() V51() V52() V53() V54() V55() V56() ) Element of NAT : ( ( ) ( non empty V21() V22() V23() V51() V52() V53() V54() V55() V56() V57() ) Element of K19(REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) : ( ( ) ( ) set ) ) ) / ((sin : ( ( V6() V18( REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) , REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) ) ( Relation-like V6() non empty total V18( REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) , REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) V34() V35() V36() continuous ) Element of K19(K20(REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ,REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) : ( ( ) ( Relation-like V34() V35() V36() ) set ) ) : ( ( ) ( ) set ) ) . x : ( ( ) ( V28() V29() ext-real ) Real) ) : ( ( ) ( V28() V29() ext-real ) Element of REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) ^2) : ( ( ) ( V28() V29() ext-real ) Element of REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) ) : ( ( ) (
V28()
V29()
ext-real )
Element of
REAL : ( ( ) ( non
empty V51()
V52()
V53()
V57()
V62() )
set ) ) : ( ( ) (
V28()
V29()
ext-real )
Element of
REAL : ( ( ) ( non
empty V51()
V52()
V53()
V57()
V62() )
set ) ) &
sin : ( (
V6()
V18(
REAL : ( ( ) ( non
empty V51()
V52()
V53()
V57()
V62() )
set ) ,
REAL : ( ( ) ( non
empty V51()
V52()
V53()
V57()
V62() )
set ) ) ) (
Relation-like V6() non
empty total V18(
REAL : ( ( ) ( non
empty V51()
V52()
V53()
V57()
V62() )
set ) ,
REAL : ( ( ) ( non
empty V51()
V52()
V53()
V57()
V62() )
set ) )
V34()
V35()
V36()
continuous )
Element of
K19(
K20(
REAL : ( ( ) ( non
empty V51()
V52()
V53()
V57()
V62() )
set ) ,
REAL : ( ( ) ( non
empty V51()
V52()
V53()
V57()
V62() )
set ) ) : ( ( ) (
Relation-like V34()
V35()
V36() )
set ) ) : ( ( ) ( )
set ) )
. x : ( ( ) (
V28()
V29()
ext-real )
Real) : ( ( ) (
V28()
V29()
ext-real )
Element of
REAL : ( ( ) ( non
empty V51()
V52()
V53()
V57()
V62() )
set ) )
<> 0 : ( ( ) (
V21()
V22()
V23()
V27()
V28()
V29()
V30()
ext-real non
negative V50()
V51()
V52()
V53()
V54()
V55()
V56() )
Element of
NAT : ( ( ) ( non
empty V21()
V22()
V23()
V51()
V52()
V53()
V54()
V55()
V56()
V57() )
Element of
K19(
REAL : ( ( ) ( non
empty V51()
V52()
V53()
V57()
V62() )
set ) ) : ( ( ) ( )
set ) ) ) ) ) &
dom cot : ( (
V6() ) (
Relation-like V6()
V34()
V35()
V36() )
Element of
K19(
K20(
REAL : ( ( ) ( non
empty V51()
V52()
V53()
V57()
V62() )
set ) ,
REAL : ( ( ) ( non
empty V51()
V52()
V53()
V57()
V62() )
set ) ) : ( ( ) (
Relation-like V34()
V35()
V36() )
set ) ) : ( ( ) ( )
set ) ) : ( ( ) ( )
set )
= Z : ( (
open ) (
V51()
V52()
V53()
open )
Subset of ( ( ) ( )
set ) ) &
Z : ( (
open ) (
V51()
V52()
V53()
open )
Subset of ( ( ) ( )
set ) )
= dom f : ( (
V6() ) (
Relation-like V6()
V34()
V35()
V36() )
PartFunc of ,) : ( ( ) ( )
set ) &
f : ( (
V6() ) (
Relation-like V6()
V34()
V35()
V36() )
PartFunc of ,)
| A : ( ( non
empty closed_interval ) ( non
empty V51()
V52()
V53()
closed_interval V76() )
Subset of ( ( ) ( )
set ) ) : ( (
V6() ) (
Relation-like V6()
V34()
V35()
V36() )
Element of
K19(
K20(
REAL : ( ( ) ( non
empty V51()
V52()
V53()
V57()
V62() )
set ) ,
REAL : ( ( ) ( non
empty V51()
V52()
V53()
V57()
V62() )
set ) ) : ( ( ) (
Relation-like V34()
V35()
V36() )
set ) ) : ( ( ) ( )
set ) ) is
continuous holds
integral (
f : ( (
V6() ) (
Relation-like V6()
V34()
V35()
V36() )
PartFunc of ,) ,
A : ( ( non
empty closed_interval ) ( non
empty V51()
V52()
V53()
closed_interval V76() )
Subset of ( ( ) ( )
set ) ) ) : ( ( ) (
V28()
V29()
ext-real )
Element of
REAL : ( ( ) ( non
empty V51()
V52()
V53()
V57()
V62() )
set ) )
= (cot : ( ( V6() ) ( Relation-like V6() V34() V35() V36() ) Element of K19(K20(REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ,REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) : ( ( ) ( Relation-like V34() V35() V36() ) set ) ) : ( ( ) ( ) set ) ) . (upper_bound A : ( ( non empty closed_interval ) ( non empty V51() V52() V53() closed_interval V76() ) Subset of ( ( ) ( ) set ) ) ) : ( ( ) ( V28() V29() ext-real ) Element of REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) ) : ( ( ) (
V28()
V29()
ext-real )
Element of
REAL : ( ( ) ( non
empty V51()
V52()
V53()
V57()
V62() )
set ) )
- (cot : ( ( V6() ) ( Relation-like V6() V34() V35() V36() ) Element of K19(K20(REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ,REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) : ( ( ) ( Relation-like V34() V35() V36() ) set ) ) : ( ( ) ( ) set ) ) . (lower_bound A : ( ( non empty closed_interval ) ( non empty V51() V52() V53() closed_interval V76() ) Subset of ( ( ) ( ) set ) ) ) : ( ( ) ( V28() V29() ext-real ) Element of REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) ) : ( ( ) (
V28()
V29()
ext-real )
Element of
REAL : ( ( ) ( non
empty V51()
V52()
V53()
V57()
V62() )
set ) ) : ( ( ) (
V28()
V29()
ext-real )
Element of
REAL : ( ( ) ( non
empty V51()
V52()
V53()
V57()
V62() )
set ) ) ;
theorem
for
A being ( ( non
empty closed_interval ) ( non
empty V51()
V52()
V53()
closed_interval V76() )
Subset of ( ( ) ( )
set ) )
for
Z being ( (
open ) (
V51()
V52()
V53()
open )
Subset of ( ( ) ( )
set ) )
for
f being ( (
V6() ) (
Relation-like V6()
V34()
V35()
V36() )
PartFunc of ,) st
A : ( ( non
empty closed_interval ) ( non
empty V51()
V52()
V53()
closed_interval V76() )
Subset of ( ( ) ( )
set ) )
c= Z : ( (
open ) (
V51()
V52()
V53()
open )
Subset of ( ( ) ( )
set ) ) & ( for
x being ( ( ) (
V28()
V29()
ext-real )
Real) st
x : ( ( ) (
V28()
V29()
ext-real )
Real)
in Z : ( (
open ) (
V51()
V52()
V53()
open )
Subset of ( ( ) ( )
set ) ) holds
f : ( (
V6() ) (
Relation-like V6()
V34()
V35()
V36() )
PartFunc of ,)
. x : ( ( ) (
V28()
V29()
ext-real )
Real) : ( ( ) (
V28()
V29()
ext-real )
Element of
REAL : ( ( ) ( non
empty V51()
V52()
V53()
V57()
V62() )
set ) )
= ((sin : ( ( V6() V18( REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) , REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) ) ( Relation-like V6() non empty total V18( REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) , REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) V34() V35() V36() continuous ) Element of K19(K20(REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ,REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) : ( ( ) ( Relation-like V34() V35() V36() ) set ) ) : ( ( ) ( ) set ) ) . x : ( ( ) ( V28() V29() ext-real ) Real) ) : ( ( ) ( V28() V29() ext-real ) Element of REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) - ((cos : ( ( V6() V18( REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) , REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) ) ( Relation-like V6() non empty total V18( REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) , REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) V34() V35() V36() continuous ) Element of K19(K20(REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ,REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) : ( ( ) ( Relation-like V34() V35() V36() ) set ) ) : ( ( ) ( ) set ) ) . x : ( ( ) ( V28() V29() ext-real ) Real) ) : ( ( ) ( V28() V29() ext-real ) Element of REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) ^2) : ( ( ) ( V28() V29() ext-real ) Element of REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) ) : ( ( ) (
V28()
V29()
ext-real )
Element of
REAL : ( ( ) ( non
empty V51()
V52()
V53()
V57()
V62() )
set ) )
/ ((cos : ( ( V6() V18( REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) , REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) ) ( Relation-like V6() non empty total V18( REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) , REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) V34() V35() V36() continuous ) Element of K19(K20(REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ,REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) : ( ( ) ( Relation-like V34() V35() V36() ) set ) ) : ( ( ) ( ) set ) ) . x : ( ( ) ( V28() V29() ext-real ) Real) ) : ( ( ) ( V28() V29() ext-real ) Element of REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) ^2) : ( ( ) (
V28()
V29()
ext-real )
Element of
REAL : ( ( ) ( non
empty V51()
V52()
V53()
V57()
V62() )
set ) ) : ( ( ) (
V28()
V29()
ext-real )
Element of
REAL : ( ( ) ( non
empty V51()
V52()
V53()
V57()
V62() )
set ) ) ) &
Z : ( (
open ) (
V51()
V52()
V53()
open )
Subset of ( ( ) ( )
set ) )
c= dom (sec : ( ( V6() ) ( Relation-like V6() V34() V35() V36() ) Element of K19(K20(REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ,REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) : ( ( ) ( Relation-like V34() V35() V36() ) set ) ) : ( ( ) ( ) set ) ) - (id Z : ( ( open ) ( V51() V52() V53() open ) Subset of ( ( ) ( ) set ) ) ) : ( ( V6() ) ( Relation-like b2 : ( ( open ) ( V51() V52() V53() open ) Subset of ( ( ) ( ) set ) ) -defined b2 : ( ( open ) ( V51() V52() V53() open ) Subset of ( ( ) ( ) set ) ) -valued V6() total V34() V35() V36() continuous V49() ) Element of K19(K20(REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ,REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) : ( ( ) ( Relation-like V34() V35() V36() ) set ) ) : ( ( ) ( ) set ) ) ) : ( (
V6() ) (
Relation-like b2 : ( (
open ) (
V51()
V52()
V53()
open )
Subset of ( ( ) ( )
set ) )
-defined V6()
V34()
V35()
V36() )
Element of
K19(
K20(
REAL : ( ( ) ( non
empty V51()
V52()
V53()
V57()
V62() )
set ) ,
REAL : ( ( ) ( non
empty V51()
V52()
V53()
V57()
V62() )
set ) ) : ( ( ) (
Relation-like V34()
V35()
V36() )
set ) ) : ( ( ) ( )
set ) ) : ( ( ) ( )
set ) &
Z : ( (
open ) (
V51()
V52()
V53()
open )
Subset of ( ( ) ( )
set ) )
= dom f : ( (
V6() ) (
Relation-like V6()
V34()
V35()
V36() )
PartFunc of ,) : ( ( ) ( )
set ) &
f : ( (
V6() ) (
Relation-like V6()
V34()
V35()
V36() )
PartFunc of ,)
| A : ( ( non
empty closed_interval ) ( non
empty V51()
V52()
V53()
closed_interval V76() )
Subset of ( ( ) ( )
set ) ) : ( (
V6() ) (
Relation-like V6()
V34()
V35()
V36() )
Element of
K19(
K20(
REAL : ( ( ) ( non
empty V51()
V52()
V53()
V57()
V62() )
set ) ,
REAL : ( ( ) ( non
empty V51()
V52()
V53()
V57()
V62() )
set ) ) : ( ( ) (
Relation-like V34()
V35()
V36() )
set ) ) : ( ( ) ( )
set ) ) is
continuous holds
integral (
f : ( (
V6() ) (
Relation-like V6()
V34()
V35()
V36() )
PartFunc of ,) ,
A : ( ( non
empty closed_interval ) ( non
empty V51()
V52()
V53()
closed_interval V76() )
Subset of ( ( ) ( )
set ) ) ) : ( ( ) (
V28()
V29()
ext-real )
Element of
REAL : ( ( ) ( non
empty V51()
V52()
V53()
V57()
V62() )
set ) )
= ((sec : ( ( V6() ) ( Relation-like V6() V34() V35() V36() ) Element of K19(K20(REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ,REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) : ( ( ) ( Relation-like V34() V35() V36() ) set ) ) : ( ( ) ( ) set ) ) - (id Z : ( ( open ) ( V51() V52() V53() open ) Subset of ( ( ) ( ) set ) ) ) : ( ( V6() ) ( Relation-like b2 : ( ( open ) ( V51() V52() V53() open ) Subset of ( ( ) ( ) set ) ) -defined b2 : ( ( open ) ( V51() V52() V53() open ) Subset of ( ( ) ( ) set ) ) -valued V6() total V34() V35() V36() continuous V49() ) Element of K19(K20(REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ,REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) : ( ( ) ( Relation-like V34() V35() V36() ) set ) ) : ( ( ) ( ) set ) ) ) : ( ( V6() ) ( Relation-like b2 : ( ( open ) ( V51() V52() V53() open ) Subset of ( ( ) ( ) set ) ) -defined V6() V34() V35() V36() ) Element of K19(K20(REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ,REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) : ( ( ) ( Relation-like V34() V35() V36() ) set ) ) : ( ( ) ( ) set ) ) . (upper_bound A : ( ( non empty closed_interval ) ( non empty V51() V52() V53() closed_interval V76() ) Subset of ( ( ) ( ) set ) ) ) : ( ( ) ( V28() V29() ext-real ) Element of REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) ) : ( ( ) (
V28()
V29()
ext-real )
Element of
REAL : ( ( ) ( non
empty V51()
V52()
V53()
V57()
V62() )
set ) )
- ((sec : ( ( V6() ) ( Relation-like V6() V34() V35() V36() ) Element of K19(K20(REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ,REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) : ( ( ) ( Relation-like V34() V35() V36() ) set ) ) : ( ( ) ( ) set ) ) - (id Z : ( ( open ) ( V51() V52() V53() open ) Subset of ( ( ) ( ) set ) ) ) : ( ( V6() ) ( Relation-like b2 : ( ( open ) ( V51() V52() V53() open ) Subset of ( ( ) ( ) set ) ) -defined b2 : ( ( open ) ( V51() V52() V53() open ) Subset of ( ( ) ( ) set ) ) -valued V6() total V34() V35() V36() continuous V49() ) Element of K19(K20(REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ,REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) : ( ( ) ( Relation-like V34() V35() V36() ) set ) ) : ( ( ) ( ) set ) ) ) : ( ( V6() ) ( Relation-like b2 : ( ( open ) ( V51() V52() V53() open ) Subset of ( ( ) ( ) set ) ) -defined V6() V34() V35() V36() ) Element of K19(K20(REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ,REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) : ( ( ) ( Relation-like V34() V35() V36() ) set ) ) : ( ( ) ( ) set ) ) . (lower_bound A : ( ( non empty closed_interval ) ( non empty V51() V52() V53() closed_interval V76() ) Subset of ( ( ) ( ) set ) ) ) : ( ( ) ( V28() V29() ext-real ) Element of REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) ) : ( ( ) (
V28()
V29()
ext-real )
Element of
REAL : ( ( ) ( non
empty V51()
V52()
V53()
V57()
V62() )
set ) ) : ( ( ) (
V28()
V29()
ext-real )
Element of
REAL : ( ( ) ( non
empty V51()
V52()
V53()
V57()
V62() )
set ) ) ;
theorem
for
A being ( ( non
empty closed_interval ) ( non
empty V51()
V52()
V53()
closed_interval V76() )
Subset of ( ( ) ( )
set ) )
for
Z being ( (
open ) (
V51()
V52()
V53()
open )
Subset of ( ( ) ( )
set ) )
for
f being ( (
V6() ) (
Relation-like V6()
V34()
V35()
V36() )
PartFunc of ,) st
A : ( ( non
empty closed_interval ) ( non
empty V51()
V52()
V53()
closed_interval V76() )
Subset of ( ( ) ( )
set ) )
c= Z : ( (
open ) (
V51()
V52()
V53()
open )
Subset of ( ( ) ( )
set ) ) & ( for
x being ( ( ) (
V28()
V29()
ext-real )
Real) st
x : ( ( ) (
V28()
V29()
ext-real )
Real)
in Z : ( (
open ) (
V51()
V52()
V53()
open )
Subset of ( ( ) ( )
set ) ) holds
f : ( (
V6() ) (
Relation-like V6()
V34()
V35()
V36() )
PartFunc of ,)
. x : ( ( ) (
V28()
V29()
ext-real )
Real) : ( ( ) (
V28()
V29()
ext-real )
Element of
REAL : ( ( ) ( non
empty V51()
V52()
V53()
V57()
V62() )
set ) )
= ((cos : ( ( V6() V18( REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) , REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) ) ( Relation-like V6() non empty total V18( REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) , REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) V34() V35() V36() continuous ) Element of K19(K20(REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ,REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) : ( ( ) ( Relation-like V34() V35() V36() ) set ) ) : ( ( ) ( ) set ) ) . x : ( ( ) ( V28() V29() ext-real ) Real) ) : ( ( ) ( V28() V29() ext-real ) Element of REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) - ((sin : ( ( V6() V18( REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) , REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) ) ( Relation-like V6() non empty total V18( REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) , REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) V34() V35() V36() continuous ) Element of K19(K20(REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ,REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) : ( ( ) ( Relation-like V34() V35() V36() ) set ) ) : ( ( ) ( ) set ) ) . x : ( ( ) ( V28() V29() ext-real ) Real) ) : ( ( ) ( V28() V29() ext-real ) Element of REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) ^2) : ( ( ) ( V28() V29() ext-real ) Element of REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) ) : ( ( ) (
V28()
V29()
ext-real )
Element of
REAL : ( ( ) ( non
empty V51()
V52()
V53()
V57()
V62() )
set ) )
/ ((sin : ( ( V6() V18( REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) , REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) ) ( Relation-like V6() non empty total V18( REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) , REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) V34() V35() V36() continuous ) Element of K19(K20(REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ,REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) : ( ( ) ( Relation-like V34() V35() V36() ) set ) ) : ( ( ) ( ) set ) ) . x : ( ( ) ( V28() V29() ext-real ) Real) ) : ( ( ) ( V28() V29() ext-real ) Element of REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) ^2) : ( ( ) (
V28()
V29()
ext-real )
Element of
REAL : ( ( ) ( non
empty V51()
V52()
V53()
V57()
V62() )
set ) ) : ( ( ) (
V28()
V29()
ext-real )
Element of
REAL : ( ( ) ( non
empty V51()
V52()
V53()
V57()
V62() )
set ) ) ) &
Z : ( (
open ) (
V51()
V52()
V53()
open )
Subset of ( ( ) ( )
set ) )
c= dom ((- cosec : ( ( V6() ) ( Relation-like V6() V34() V35() V36() ) Element of K19(K20(REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ,REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) : ( ( ) ( Relation-like V34() V35() V36() ) set ) ) : ( ( ) ( ) set ) ) ) : ( ( V6() ) ( Relation-like V6() V34() V35() V36() ) Element of K19(K20(REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ,REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) : ( ( ) ( Relation-like V34() V35() V36() ) set ) ) : ( ( ) ( ) set ) ) - (id Z : ( ( open ) ( V51() V52() V53() open ) Subset of ( ( ) ( ) set ) ) ) : ( ( V6() ) ( Relation-like b2 : ( ( open ) ( V51() V52() V53() open ) Subset of ( ( ) ( ) set ) ) -defined b2 : ( ( open ) ( V51() V52() V53() open ) Subset of ( ( ) ( ) set ) ) -valued V6() total V34() V35() V36() continuous V49() ) Element of K19(K20(REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ,REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) : ( ( ) ( Relation-like V34() V35() V36() ) set ) ) : ( ( ) ( ) set ) ) ) : ( (
V6() ) (
Relation-like b2 : ( (
open ) (
V51()
V52()
V53()
open )
Subset of ( ( ) ( )
set ) )
-defined V6()
V34()
V35()
V36() )
Element of
K19(
K20(
REAL : ( ( ) ( non
empty V51()
V52()
V53()
V57()
V62() )
set ) ,
REAL : ( ( ) ( non
empty V51()
V52()
V53()
V57()
V62() )
set ) ) : ( ( ) (
Relation-like V34()
V35()
V36() )
set ) ) : ( ( ) ( )
set ) ) : ( ( ) ( )
set ) &
Z : ( (
open ) (
V51()
V52()
V53()
open )
Subset of ( ( ) ( )
set ) )
= dom f : ( (
V6() ) (
Relation-like V6()
V34()
V35()
V36() )
PartFunc of ,) : ( ( ) ( )
set ) &
f : ( (
V6() ) (
Relation-like V6()
V34()
V35()
V36() )
PartFunc of ,)
| A : ( ( non
empty closed_interval ) ( non
empty V51()
V52()
V53()
closed_interval V76() )
Subset of ( ( ) ( )
set ) ) : ( (
V6() ) (
Relation-like V6()
V34()
V35()
V36() )
Element of
K19(
K20(
REAL : ( ( ) ( non
empty V51()
V52()
V53()
V57()
V62() )
set ) ,
REAL : ( ( ) ( non
empty V51()
V52()
V53()
V57()
V62() )
set ) ) : ( ( ) (
Relation-like V34()
V35()
V36() )
set ) ) : ( ( ) ( )
set ) ) is
continuous holds
integral (
f : ( (
V6() ) (
Relation-like V6()
V34()
V35()
V36() )
PartFunc of ,) ,
A : ( ( non
empty closed_interval ) ( non
empty V51()
V52()
V53()
closed_interval V76() )
Subset of ( ( ) ( )
set ) ) ) : ( ( ) (
V28()
V29()
ext-real )
Element of
REAL : ( ( ) ( non
empty V51()
V52()
V53()
V57()
V62() )
set ) )
= (((- cosec : ( ( V6() ) ( Relation-like V6() V34() V35() V36() ) Element of K19(K20(REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ,REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) : ( ( ) ( Relation-like V34() V35() V36() ) set ) ) : ( ( ) ( ) set ) ) ) : ( ( V6() ) ( Relation-like V6() V34() V35() V36() ) Element of K19(K20(REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ,REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) : ( ( ) ( Relation-like V34() V35() V36() ) set ) ) : ( ( ) ( ) set ) ) - (id Z : ( ( open ) ( V51() V52() V53() open ) Subset of ( ( ) ( ) set ) ) ) : ( ( V6() ) ( Relation-like b2 : ( ( open ) ( V51() V52() V53() open ) Subset of ( ( ) ( ) set ) ) -defined b2 : ( ( open ) ( V51() V52() V53() open ) Subset of ( ( ) ( ) set ) ) -valued V6() total V34() V35() V36() continuous V49() ) Element of K19(K20(REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ,REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) : ( ( ) ( Relation-like V34() V35() V36() ) set ) ) : ( ( ) ( ) set ) ) ) : ( ( V6() ) ( Relation-like b2 : ( ( open ) ( V51() V52() V53() open ) Subset of ( ( ) ( ) set ) ) -defined V6() V34() V35() V36() ) Element of K19(K20(REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ,REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) : ( ( ) ( Relation-like V34() V35() V36() ) set ) ) : ( ( ) ( ) set ) ) . (upper_bound A : ( ( non empty closed_interval ) ( non empty V51() V52() V53() closed_interval V76() ) Subset of ( ( ) ( ) set ) ) ) : ( ( ) ( V28() V29() ext-real ) Element of REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) ) : ( ( ) (
V28()
V29()
ext-real )
Element of
REAL : ( ( ) ( non
empty V51()
V52()
V53()
V57()
V62() )
set ) )
- (((- cosec : ( ( V6() ) ( Relation-like V6() V34() V35() V36() ) Element of K19(K20(REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ,REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) : ( ( ) ( Relation-like V34() V35() V36() ) set ) ) : ( ( ) ( ) set ) ) ) : ( ( V6() ) ( Relation-like V6() V34() V35() V36() ) Element of K19(K20(REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ,REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) : ( ( ) ( Relation-like V34() V35() V36() ) set ) ) : ( ( ) ( ) set ) ) - (id Z : ( ( open ) ( V51() V52() V53() open ) Subset of ( ( ) ( ) set ) ) ) : ( ( V6() ) ( Relation-like b2 : ( ( open ) ( V51() V52() V53() open ) Subset of ( ( ) ( ) set ) ) -defined b2 : ( ( open ) ( V51() V52() V53() open ) Subset of ( ( ) ( ) set ) ) -valued V6() total V34() V35() V36() continuous V49() ) Element of K19(K20(REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ,REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) : ( ( ) ( Relation-like V34() V35() V36() ) set ) ) : ( ( ) ( ) set ) ) ) : ( ( V6() ) ( Relation-like b2 : ( ( open ) ( V51() V52() V53() open ) Subset of ( ( ) ( ) set ) ) -defined V6() V34() V35() V36() ) Element of K19(K20(REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ,REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) : ( ( ) ( Relation-like V34() V35() V36() ) set ) ) : ( ( ) ( ) set ) ) . (lower_bound A : ( ( non empty closed_interval ) ( non empty V51() V52() V53() closed_interval V76() ) Subset of ( ( ) ( ) set ) ) ) : ( ( ) ( V28() V29() ext-real ) Element of REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) ) : ( ( ) (
V28()
V29()
ext-real )
Element of
REAL : ( ( ) ( non
empty V51()
V52()
V53()
V57()
V62() )
set ) ) : ( ( ) (
V28()
V29()
ext-real )
Element of
REAL : ( ( ) ( non
empty V51()
V52()
V53()
V57()
V62() )
set ) ) ;
theorem
for
A being ( ( non
empty closed_interval ) ( non
empty V51()
V52()
V53()
closed_interval V76() )
Subset of ( ( ) ( )
set ) )
for
Z being ( (
open ) (
V51()
V52()
V53()
open )
Subset of ( ( ) ( )
set ) ) st
A : ( ( non
empty closed_interval ) ( non
empty V51()
V52()
V53()
closed_interval V76() )
Subset of ( ( ) ( )
set ) )
c= Z : ( (
open ) (
V51()
V52()
V53()
open )
Subset of ( ( ) ( )
set ) ) & ( for
x being ( ( ) (
V28()
V29()
ext-real )
Real) st
x : ( ( ) (
V28()
V29()
ext-real )
Real)
in Z : ( (
open ) (
V51()
V52()
V53()
open )
Subset of ( ( ) ( )
set ) ) holds
sin : ( (
V6()
V18(
REAL : ( ( ) ( non
empty V51()
V52()
V53()
V57()
V62() )
set ) ,
REAL : ( ( ) ( non
empty V51()
V52()
V53()
V57()
V62() )
set ) ) ) (
Relation-like V6() non
empty total V18(
REAL : ( ( ) ( non
empty V51()
V52()
V53()
V57()
V62() )
set ) ,
REAL : ( ( ) ( non
empty V51()
V52()
V53()
V57()
V62() )
set ) )
V34()
V35()
V36()
continuous )
Element of
K19(
K20(
REAL : ( ( ) ( non
empty V51()
V52()
V53()
V57()
V62() )
set ) ,
REAL : ( ( ) ( non
empty V51()
V52()
V53()
V57()
V62() )
set ) ) : ( ( ) (
Relation-like V34()
V35()
V36() )
set ) ) : ( ( ) ( )
set ) )
. x : ( ( ) (
V28()
V29()
ext-real )
Real) : ( ( ) (
V28()
V29()
ext-real )
Element of
REAL : ( ( ) ( non
empty V51()
V52()
V53()
V57()
V62() )
set ) )
> 0 : ( ( ) (
V21()
V22()
V23()
V27()
V28()
V29()
V30()
ext-real non
negative V50()
V51()
V52()
V53()
V54()
V55()
V56() )
Element of
NAT : ( ( ) ( non
empty V21()
V22()
V23()
V51()
V52()
V53()
V54()
V55()
V56()
V57() )
Element of
K19(
REAL : ( ( ) ( non
empty V51()
V52()
V53()
V57()
V62() )
set ) ) : ( ( ) ( )
set ) ) ) ) &
Z : ( (
open ) (
V51()
V52()
V53()
open )
Subset of ( ( ) ( )
set ) )
c= dom (ln : ( ( V6() ) ( Relation-like V6() V34() V35() V36() ) Element of K19(K20(REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ,REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) : ( ( ) ( Relation-like V34() V35() V36() ) set ) ) : ( ( ) ( ) set ) ) * sin : ( ( V6() V18( REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) , REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) ) ( Relation-like V6() non empty total V18( REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) , REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) V34() V35() V36() continuous ) Element of K19(K20(REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ,REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) : ( ( ) ( Relation-like V34() V35() V36() ) set ) ) : ( ( ) ( ) set ) ) ) : ( (
V6() ) (
Relation-like V6()
V34()
V35()
V36() )
Element of
K19(
K20(
REAL : ( ( ) ( non
empty V51()
V52()
V53()
V57()
V62() )
set ) ,
REAL : ( ( ) ( non
empty V51()
V52()
V53()
V57()
V62() )
set ) ) : ( ( ) (
Relation-like V34()
V35()
V36() )
set ) ) : ( ( ) ( )
set ) ) : ( ( ) ( )
set ) &
Z : ( (
open ) (
V51()
V52()
V53()
open )
Subset of ( ( ) ( )
set ) )
= dom cot : ( (
V6() ) (
Relation-like V6()
V34()
V35()
V36() )
Element of
K19(
K20(
REAL : ( ( ) ( non
empty V51()
V52()
V53()
V57()
V62() )
set ) ,
REAL : ( ( ) ( non
empty V51()
V52()
V53()
V57()
V62() )
set ) ) : ( ( ) (
Relation-like V34()
V35()
V36() )
set ) ) : ( ( ) ( )
set ) ) : ( ( ) ( )
set ) &
cot : ( (
V6() ) (
Relation-like V6()
V34()
V35()
V36() )
Element of
K19(
K20(
REAL : ( ( ) ( non
empty V51()
V52()
V53()
V57()
V62() )
set ) ,
REAL : ( ( ) ( non
empty V51()
V52()
V53()
V57()
V62() )
set ) ) : ( ( ) (
Relation-like V34()
V35()
V36() )
set ) ) : ( ( ) ( )
set ) )
| A : ( ( non
empty closed_interval ) ( non
empty V51()
V52()
V53()
closed_interval V76() )
Subset of ( ( ) ( )
set ) ) : ( (
V6() ) (
Relation-like V6()
V34()
V35()
V36() )
Element of
K19(
K20(
REAL : ( ( ) ( non
empty V51()
V52()
V53()
V57()
V62() )
set ) ,
REAL : ( ( ) ( non
empty V51()
V52()
V53()
V57()
V62() )
set ) ) : ( ( ) (
Relation-like V34()
V35()
V36() )
set ) ) : ( ( ) ( )
set ) ) is
continuous holds
integral (
cot : ( (
V6() ) (
Relation-like V6()
V34()
V35()
V36() )
Element of
K19(
K20(
REAL : ( ( ) ( non
empty V51()
V52()
V53()
V57()
V62() )
set ) ,
REAL : ( ( ) ( non
empty V51()
V52()
V53()
V57()
V62() )
set ) ) : ( ( ) (
Relation-like V34()
V35()
V36() )
set ) ) : ( ( ) ( )
set ) ) ,
A : ( ( non
empty closed_interval ) ( non
empty V51()
V52()
V53()
closed_interval V76() )
Subset of ( ( ) ( )
set ) ) ) : ( ( ) (
V28()
V29()
ext-real )
Element of
REAL : ( ( ) ( non
empty V51()
V52()
V53()
V57()
V62() )
set ) )
= ((ln : ( ( V6() ) ( Relation-like V6() V34() V35() V36() ) Element of K19(K20(REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ,REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) : ( ( ) ( Relation-like V34() V35() V36() ) set ) ) : ( ( ) ( ) set ) ) * sin : ( ( V6() V18( REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) , REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) ) ( Relation-like V6() non empty total V18( REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) , REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) V34() V35() V36() continuous ) Element of K19(K20(REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ,REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) : ( ( ) ( Relation-like V34() V35() V36() ) set ) ) : ( ( ) ( ) set ) ) ) : ( ( V6() ) ( Relation-like V6() V34() V35() V36() ) Element of K19(K20(REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ,REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) : ( ( ) ( Relation-like V34() V35() V36() ) set ) ) : ( ( ) ( ) set ) ) . (upper_bound A : ( ( non empty closed_interval ) ( non empty V51() V52() V53() closed_interval V76() ) Subset of ( ( ) ( ) set ) ) ) : ( ( ) ( V28() V29() ext-real ) Element of REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) ) : ( ( ) (
V28()
V29()
ext-real )
Element of
REAL : ( ( ) ( non
empty V51()
V52()
V53()
V57()
V62() )
set ) )
- ((ln : ( ( V6() ) ( Relation-like V6() V34() V35() V36() ) Element of K19(K20(REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ,REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) : ( ( ) ( Relation-like V34() V35() V36() ) set ) ) : ( ( ) ( ) set ) ) * sin : ( ( V6() V18( REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) , REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) ) ( Relation-like V6() non empty total V18( REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) , REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) V34() V35() V36() continuous ) Element of K19(K20(REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ,REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) : ( ( ) ( Relation-like V34() V35() V36() ) set ) ) : ( ( ) ( ) set ) ) ) : ( ( V6() ) ( Relation-like V6() V34() V35() V36() ) Element of K19(K20(REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ,REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) : ( ( ) ( Relation-like V34() V35() V36() ) set ) ) : ( ( ) ( ) set ) ) . (lower_bound A : ( ( non empty closed_interval ) ( non empty V51() V52() V53() closed_interval V76() ) Subset of ( ( ) ( ) set ) ) ) : ( ( ) ( V28() V29() ext-real ) Element of REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) ) : ( ( ) (
V28()
V29()
ext-real )
Element of
REAL : ( ( ) ( non
empty V51()
V52()
V53()
V57()
V62() )
set ) ) : ( ( ) (
V28()
V29()
ext-real )
Element of
REAL : ( ( ) ( non
empty V51()
V52()
V53()
V57()
V62() )
set ) ) ;
theorem
for
A being ( ( non
empty closed_interval ) ( non
empty V51()
V52()
V53()
closed_interval V76() )
Subset of ( ( ) ( )
set ) )
for
Z being ( (
open ) (
V51()
V52()
V53()
open )
Subset of ( ( ) ( )
set ) )
for
f being ( (
V6() ) (
Relation-like V6()
V34()
V35()
V36() )
PartFunc of ,) st
A : ( ( non
empty closed_interval ) ( non
empty V51()
V52()
V53()
closed_interval V76() )
Subset of ( ( ) ( )
set ) )
c= Z : ( (
open ) (
V51()
V52()
V53()
open )
Subset of ( ( ) ( )
set ) ) &
Z : ( (
open ) (
V51()
V52()
V53()
open )
Subset of ( ( ) ( )
set ) )
c= ].(- 1 : ( ( ) ( non empty V21() V22() V23() V27() V28() V29() V30() ext-real non negative V50() V51() V52() V53() V54() V55() V56() ) Element of NAT : ( ( ) ( non empty V21() V22() V23() V51() V52() V53() V54() V55() V56() V57() ) Element of K19(REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( ) ( V28() V29() V30() ext-real ) Element of REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) ,1 : ( ( ) ( non empty V21() V22() V23() V27() V28() V29() V30() ext-real non negative V50() V51() V52() V53() V54() V55() V56() ) Element of NAT : ( ( ) ( non empty V21() V22() V23() V51() V52() V53() V54() V55() V56() V57() ) Element of K19(REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) : ( ( ) ( ) set ) ) ) .[ : ( ( ) (
V51()
V52()
V53()
open )
Element of
K19(
REAL : ( ( ) ( non
empty V51()
V52()
V53()
V57()
V62() )
set ) ) : ( ( ) ( )
set ) ) & ( for
x being ( ( ) (
V28()
V29()
ext-real )
Real) st
x : ( ( ) (
V28()
V29()
ext-real )
Real)
in Z : ( (
open ) (
V51()
V52()
V53()
open )
Subset of ( ( ) ( )
set ) ) holds
f : ( (
V6() ) (
Relation-like V6()
V34()
V35()
V36() )
PartFunc of ,)
. x : ( ( ) (
V28()
V29()
ext-real )
Real) : ( ( ) (
V28()
V29()
ext-real )
Element of
REAL : ( ( ) ( non
empty V51()
V52()
V53()
V57()
V62() )
set ) )
= (arcsin : ( ( V6() ) ( Relation-like V6() V34() V35() V36() continuous ) Element of K19(K20(REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ,REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) : ( ( ) ( Relation-like V34() V35() V36() ) set ) ) : ( ( ) ( ) set ) ) . x : ( ( ) ( V28() V29() ext-real ) Real) ) : ( ( ) (
V28()
V29()
ext-real )
Element of
REAL : ( ( ) ( non
empty V51()
V52()
V53()
V57()
V62() )
set ) )
/ (sqrt (1 : ( ( ) ( non empty V21() V22() V23() V27() V28() V29() V30() ext-real non negative V50() V51() V52() V53() V54() V55() V56() ) Element of NAT : ( ( ) ( non empty V21() V22() V23() V51() V52() V53() V54() V55() V56() V57() ) Element of K19(REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) : ( ( ) ( ) set ) ) ) - (x : ( ( ) ( V28() V29() ext-real ) Real) ^2) : ( ( ) ( V28() V29() ext-real ) Element of REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) ) : ( ( ) ( V28() V29() ext-real ) Element of REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) ) : ( ( ) (
V28()
V29()
ext-real )
Element of
REAL : ( ( ) ( non
empty V51()
V52()
V53()
V57()
V62() )
set ) ) : ( ( ) (
V28()
V29()
ext-real )
Element of
REAL : ( ( ) ( non
empty V51()
V52()
V53()
V57()
V62() )
set ) ) ) &
Z : ( (
open ) (
V51()
V52()
V53()
open )
Subset of ( ( ) ( )
set ) )
c= dom ((1 : ( ( ) ( non empty V21() V22() V23() V27() V28() V29() V30() ext-real non negative V50() V51() V52() V53() V54() V55() V56() ) Element of NAT : ( ( ) ( non empty V21() V22() V23() V51() V52() V53() V54() V55() V56() V57() ) Element of K19(REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) : ( ( ) ( ) set ) ) ) / 2 : ( ( ) ( non empty V21() V22() V23() V27() V28() V29() V30() ext-real non negative V50() V51() V52() V53() V54() V55() V56() ) Element of NAT : ( ( ) ( non empty V21() V22() V23() V51() V52() V53() V54() V55() V56() V57() ) Element of K19(REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( ) ( V28() V29() ext-real ) Element of REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) (#) ((#Z 2 : ( ( ) ( non empty V21() V22() V23() V27() V28() V29() V30() ext-real non negative V50() V51() V52() V53() V54() V55() V56() ) Element of NAT : ( ( ) ( non empty V21() V22() V23() V51() V52() V53() V54() V55() V56() V57() ) Element of K19(REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( V6() V18( REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) , REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) ) ( Relation-like V6() non empty total V18( REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) , REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) V34() V35() V36() ) Element of K19(K20(REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ,REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) : ( ( ) ( Relation-like V34() V35() V36() ) set ) ) : ( ( ) ( ) set ) ) * arcsin : ( ( V6() ) ( Relation-like V6() V34() V35() V36() continuous ) Element of K19(K20(REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ,REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) : ( ( ) ( Relation-like V34() V35() V36() ) set ) ) : ( ( ) ( ) set ) ) ) : ( ( V6() ) ( Relation-like V6() V34() V35() V36() ) Element of K19(K20(REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ,REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) : ( ( ) ( Relation-like V34() V35() V36() ) set ) ) : ( ( ) ( ) set ) ) ) : ( (
V6() ) (
Relation-like V6()
V34()
V35()
V36() )
Element of
K19(
K20(
REAL : ( ( ) ( non
empty V51()
V52()
V53()
V57()
V62() )
set ) ,
REAL : ( ( ) ( non
empty V51()
V52()
V53()
V57()
V62() )
set ) ) : ( ( ) (
Relation-like V34()
V35()
V36() )
set ) ) : ( ( ) ( )
set ) ) : ( ( ) ( )
set ) &
Z : ( (
open ) (
V51()
V52()
V53()
open )
Subset of ( ( ) ( )
set ) )
= dom f : ( (
V6() ) (
Relation-like V6()
V34()
V35()
V36() )
PartFunc of ,) : ( ( ) ( )
set ) &
f : ( (
V6() ) (
Relation-like V6()
V34()
V35()
V36() )
PartFunc of ,)
| A : ( ( non
empty closed_interval ) ( non
empty V51()
V52()
V53()
closed_interval V76() )
Subset of ( ( ) ( )
set ) ) : ( (
V6() ) (
Relation-like V6()
V34()
V35()
V36() )
Element of
K19(
K20(
REAL : ( ( ) ( non
empty V51()
V52()
V53()
V57()
V62() )
set ) ,
REAL : ( ( ) ( non
empty V51()
V52()
V53()
V57()
V62() )
set ) ) : ( ( ) (
Relation-like V34()
V35()
V36() )
set ) ) : ( ( ) ( )
set ) ) is
continuous holds
integral (
f : ( (
V6() ) (
Relation-like V6()
V34()
V35()
V36() )
PartFunc of ,) ,
A : ( ( non
empty closed_interval ) ( non
empty V51()
V52()
V53()
closed_interval V76() )
Subset of ( ( ) ( )
set ) ) ) : ( ( ) (
V28()
V29()
ext-real )
Element of
REAL : ( ( ) ( non
empty V51()
V52()
V53()
V57()
V62() )
set ) )
= (((1 : ( ( ) ( non empty V21() V22() V23() V27() V28() V29() V30() ext-real non negative V50() V51() V52() V53() V54() V55() V56() ) Element of NAT : ( ( ) ( non empty V21() V22() V23() V51() V52() V53() V54() V55() V56() V57() ) Element of K19(REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) : ( ( ) ( ) set ) ) ) / 2 : ( ( ) ( non empty V21() V22() V23() V27() V28() V29() V30() ext-real non negative V50() V51() V52() V53() V54() V55() V56() ) Element of NAT : ( ( ) ( non empty V21() V22() V23() V51() V52() V53() V54() V55() V56() V57() ) Element of K19(REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( ) ( V28() V29() ext-real ) Element of REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) (#) ((#Z 2 : ( ( ) ( non empty V21() V22() V23() V27() V28() V29() V30() ext-real non negative V50() V51() V52() V53() V54() V55() V56() ) Element of NAT : ( ( ) ( non empty V21() V22() V23() V51() V52() V53() V54() V55() V56() V57() ) Element of K19(REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( V6() V18( REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) , REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) ) ( Relation-like V6() non empty total V18( REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) , REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) V34() V35() V36() ) Element of K19(K20(REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ,REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) : ( ( ) ( Relation-like V34() V35() V36() ) set ) ) : ( ( ) ( ) set ) ) * arcsin : ( ( V6() ) ( Relation-like V6() V34() V35() V36() continuous ) Element of K19(K20(REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ,REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) : ( ( ) ( Relation-like V34() V35() V36() ) set ) ) : ( ( ) ( ) set ) ) ) : ( ( V6() ) ( Relation-like V6() V34() V35() V36() ) Element of K19(K20(REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ,REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) : ( ( ) ( Relation-like V34() V35() V36() ) set ) ) : ( ( ) ( ) set ) ) ) : ( ( V6() ) ( Relation-like V6() V34() V35() V36() ) Element of K19(K20(REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ,REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) : ( ( ) ( Relation-like V34() V35() V36() ) set ) ) : ( ( ) ( ) set ) ) . (upper_bound A : ( ( non empty closed_interval ) ( non empty V51() V52() V53() closed_interval V76() ) Subset of ( ( ) ( ) set ) ) ) : ( ( ) ( V28() V29() ext-real ) Element of REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) ) : ( ( ) (
V28()
V29()
ext-real )
Element of
REAL : ( ( ) ( non
empty V51()
V52()
V53()
V57()
V62() )
set ) )
- (((1 : ( ( ) ( non empty V21() V22() V23() V27() V28() V29() V30() ext-real non negative V50() V51() V52() V53() V54() V55() V56() ) Element of NAT : ( ( ) ( non empty V21() V22() V23() V51() V52() V53() V54() V55() V56() V57() ) Element of K19(REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) : ( ( ) ( ) set ) ) ) / 2 : ( ( ) ( non empty V21() V22() V23() V27() V28() V29() V30() ext-real non negative V50() V51() V52() V53() V54() V55() V56() ) Element of NAT : ( ( ) ( non empty V21() V22() V23() V51() V52() V53() V54() V55() V56() V57() ) Element of K19(REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( ) ( V28() V29() ext-real ) Element of REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) (#) ((#Z 2 : ( ( ) ( non empty V21() V22() V23() V27() V28() V29() V30() ext-real non negative V50() V51() V52() V53() V54() V55() V56() ) Element of NAT : ( ( ) ( non empty V21() V22() V23() V51() V52() V53() V54() V55() V56() V57() ) Element of K19(REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( V6() V18( REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) , REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) ) ( Relation-like V6() non empty total V18( REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) , REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) V34() V35() V36() ) Element of K19(K20(REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ,REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) : ( ( ) ( Relation-like V34() V35() V36() ) set ) ) : ( ( ) ( ) set ) ) * arcsin : ( ( V6() ) ( Relation-like V6() V34() V35() V36() continuous ) Element of K19(K20(REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ,REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) : ( ( ) ( Relation-like V34() V35() V36() ) set ) ) : ( ( ) ( ) set ) ) ) : ( ( V6() ) ( Relation-like V6() V34() V35() V36() ) Element of K19(K20(REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ,REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) : ( ( ) ( Relation-like V34() V35() V36() ) set ) ) : ( ( ) ( ) set ) ) ) : ( ( V6() ) ( Relation-like V6() V34() V35() V36() ) Element of K19(K20(REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ,REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) : ( ( ) ( Relation-like V34() V35() V36() ) set ) ) : ( ( ) ( ) set ) ) . (lower_bound A : ( ( non empty closed_interval ) ( non empty V51() V52() V53() closed_interval V76() ) Subset of ( ( ) ( ) set ) ) ) : ( ( ) ( V28() V29() ext-real ) Element of REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) ) : ( ( ) (
V28()
V29()
ext-real )
Element of
REAL : ( ( ) ( non
empty V51()
V52()
V53()
V57()
V62() )
set ) ) : ( ( ) (
V28()
V29()
ext-real )
Element of
REAL : ( ( ) ( non
empty V51()
V52()
V53()
V57()
V62() )
set ) ) ;
theorem
for
A being ( ( non
empty closed_interval ) ( non
empty V51()
V52()
V53()
closed_interval V76() )
Subset of ( ( ) ( )
set ) )
for
Z being ( (
open ) (
V51()
V52()
V53()
open )
Subset of ( ( ) ( )
set ) )
for
f being ( (
V6() ) (
Relation-like V6()
V34()
V35()
V36() )
PartFunc of ,) st
A : ( ( non
empty closed_interval ) ( non
empty V51()
V52()
V53()
closed_interval V76() )
Subset of ( ( ) ( )
set ) )
c= Z : ( (
open ) (
V51()
V52()
V53()
open )
Subset of ( ( ) ( )
set ) ) &
Z : ( (
open ) (
V51()
V52()
V53()
open )
Subset of ( ( ) ( )
set ) )
c= ].(- 1 : ( ( ) ( non empty V21() V22() V23() V27() V28() V29() V30() ext-real non negative V50() V51() V52() V53() V54() V55() V56() ) Element of NAT : ( ( ) ( non empty V21() V22() V23() V51() V52() V53() V54() V55() V56() V57() ) Element of K19(REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( ) ( V28() V29() V30() ext-real ) Element of REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) ,1 : ( ( ) ( non empty V21() V22() V23() V27() V28() V29() V30() ext-real non negative V50() V51() V52() V53() V54() V55() V56() ) Element of NAT : ( ( ) ( non empty V21() V22() V23() V51() V52() V53() V54() V55() V56() V57() ) Element of K19(REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) : ( ( ) ( ) set ) ) ) .[ : ( ( ) (
V51()
V52()
V53()
open )
Element of
K19(
REAL : ( ( ) ( non
empty V51()
V52()
V53()
V57()
V62() )
set ) ) : ( ( ) ( )
set ) ) & ( for
x being ( ( ) (
V28()
V29()
ext-real )
Real) st
x : ( ( ) (
V28()
V29()
ext-real )
Real)
in Z : ( (
open ) (
V51()
V52()
V53()
open )
Subset of ( ( ) ( )
set ) ) holds
f : ( (
V6() ) (
Relation-like V6()
V34()
V35()
V36() )
PartFunc of ,)
. x : ( ( ) (
V28()
V29()
ext-real )
Real) : ( ( ) (
V28()
V29()
ext-real )
Element of
REAL : ( ( ) ( non
empty V51()
V52()
V53()
V57()
V62() )
set ) )
= - ((arccos : ( ( V6() ) ( Relation-like V6() V34() V35() V36() continuous ) Element of K19(K20(REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ,REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) : ( ( ) ( Relation-like V34() V35() V36() ) set ) ) : ( ( ) ( ) set ) ) . x : ( ( ) ( V28() V29() ext-real ) Real) ) : ( ( ) ( V28() V29() ext-real ) Element of REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) / (sqrt (1 : ( ( ) ( non empty V21() V22() V23() V27() V28() V29() V30() ext-real non negative V50() V51() V52() V53() V54() V55() V56() ) Element of NAT : ( ( ) ( non empty V21() V22() V23() V51() V52() V53() V54() V55() V56() V57() ) Element of K19(REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) : ( ( ) ( ) set ) ) ) - (x : ( ( ) ( V28() V29() ext-real ) Real) ^2) : ( ( ) ( V28() V29() ext-real ) Element of REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) ) : ( ( ) ( V28() V29() ext-real ) Element of REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) ) : ( ( ) ( V28() V29() ext-real ) Element of REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) ) : ( ( ) (
V28()
V29()
ext-real )
Element of
REAL : ( ( ) ( non
empty V51()
V52()
V53()
V57()
V62() )
set ) ) : ( ( ) (
V28()
V29()
ext-real )
Element of
REAL : ( ( ) ( non
empty V51()
V52()
V53()
V57()
V62() )
set ) ) ) &
Z : ( (
open ) (
V51()
V52()
V53()
open )
Subset of ( ( ) ( )
set ) )
c= dom ((1 : ( ( ) ( non empty V21() V22() V23() V27() V28() V29() V30() ext-real non negative V50() V51() V52() V53() V54() V55() V56() ) Element of NAT : ( ( ) ( non empty V21() V22() V23() V51() V52() V53() V54() V55() V56() V57() ) Element of K19(REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) : ( ( ) ( ) set ) ) ) / 2 : ( ( ) ( non empty V21() V22() V23() V27() V28() V29() V30() ext-real non negative V50() V51() V52() V53() V54() V55() V56() ) Element of NAT : ( ( ) ( non empty V21() V22() V23() V51() V52() V53() V54() V55() V56() V57() ) Element of K19(REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( ) ( V28() V29() ext-real ) Element of REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) (#) ((#Z 2 : ( ( ) ( non empty V21() V22() V23() V27() V28() V29() V30() ext-real non negative V50() V51() V52() V53() V54() V55() V56() ) Element of NAT : ( ( ) ( non empty V21() V22() V23() V51() V52() V53() V54() V55() V56() V57() ) Element of K19(REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( V6() V18( REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) , REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) ) ( Relation-like V6() non empty total V18( REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) , REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) V34() V35() V36() ) Element of K19(K20(REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ,REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) : ( ( ) ( Relation-like V34() V35() V36() ) set ) ) : ( ( ) ( ) set ) ) * arccos : ( ( V6() ) ( Relation-like V6() V34() V35() V36() continuous ) Element of K19(K20(REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ,REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) : ( ( ) ( Relation-like V34() V35() V36() ) set ) ) : ( ( ) ( ) set ) ) ) : ( ( V6() ) ( Relation-like V6() V34() V35() V36() ) Element of K19(K20(REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ,REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) : ( ( ) ( Relation-like V34() V35() V36() ) set ) ) : ( ( ) ( ) set ) ) ) : ( (
V6() ) (
Relation-like V6()
V34()
V35()
V36() )
Element of
K19(
K20(
REAL : ( ( ) ( non
empty V51()
V52()
V53()
V57()
V62() )
set ) ,
REAL : ( ( ) ( non
empty V51()
V52()
V53()
V57()
V62() )
set ) ) : ( ( ) (
Relation-like V34()
V35()
V36() )
set ) ) : ( ( ) ( )
set ) ) : ( ( ) ( )
set ) &
Z : ( (
open ) (
V51()
V52()
V53()
open )
Subset of ( ( ) ( )
set ) )
= dom f : ( (
V6() ) (
Relation-like V6()
V34()
V35()
V36() )
PartFunc of ,) : ( ( ) ( )
set ) &
f : ( (
V6() ) (
Relation-like V6()
V34()
V35()
V36() )
PartFunc of ,)
| A : ( ( non
empty closed_interval ) ( non
empty V51()
V52()
V53()
closed_interval V76() )
Subset of ( ( ) ( )
set ) ) : ( (
V6() ) (
Relation-like V6()
V34()
V35()
V36() )
Element of
K19(
K20(
REAL : ( ( ) ( non
empty V51()
V52()
V53()
V57()
V62() )
set ) ,
REAL : ( ( ) ( non
empty V51()
V52()
V53()
V57()
V62() )
set ) ) : ( ( ) (
Relation-like V34()
V35()
V36() )
set ) ) : ( ( ) ( )
set ) ) is
continuous holds
integral (
f : ( (
V6() ) (
Relation-like V6()
V34()
V35()
V36() )
PartFunc of ,) ,
A : ( ( non
empty closed_interval ) ( non
empty V51()
V52()
V53()
closed_interval V76() )
Subset of ( ( ) ( )
set ) ) ) : ( ( ) (
V28()
V29()
ext-real )
Element of
REAL : ( ( ) ( non
empty V51()
V52()
V53()
V57()
V62() )
set ) )
= (((1 : ( ( ) ( non empty V21() V22() V23() V27() V28() V29() V30() ext-real non negative V50() V51() V52() V53() V54() V55() V56() ) Element of NAT : ( ( ) ( non empty V21() V22() V23() V51() V52() V53() V54() V55() V56() V57() ) Element of K19(REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) : ( ( ) ( ) set ) ) ) / 2 : ( ( ) ( non empty V21() V22() V23() V27() V28() V29() V30() ext-real non negative V50() V51() V52() V53() V54() V55() V56() ) Element of NAT : ( ( ) ( non empty V21() V22() V23() V51() V52() V53() V54() V55() V56() V57() ) Element of K19(REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( ) ( V28() V29() ext-real ) Element of REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) (#) ((#Z 2 : ( ( ) ( non empty V21() V22() V23() V27() V28() V29() V30() ext-real non negative V50() V51() V52() V53() V54() V55() V56() ) Element of NAT : ( ( ) ( non empty V21() V22() V23() V51() V52() V53() V54() V55() V56() V57() ) Element of K19(REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( V6() V18( REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) , REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) ) ( Relation-like V6() non empty total V18( REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) , REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) V34() V35() V36() ) Element of K19(K20(REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ,REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) : ( ( ) ( Relation-like V34() V35() V36() ) set ) ) : ( ( ) ( ) set ) ) * arccos : ( ( V6() ) ( Relation-like V6() V34() V35() V36() continuous ) Element of K19(K20(REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ,REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) : ( ( ) ( Relation-like V34() V35() V36() ) set ) ) : ( ( ) ( ) set ) ) ) : ( ( V6() ) ( Relation-like V6() V34() V35() V36() ) Element of K19(K20(REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ,REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) : ( ( ) ( Relation-like V34() V35() V36() ) set ) ) : ( ( ) ( ) set ) ) ) : ( ( V6() ) ( Relation-like V6() V34() V35() V36() ) Element of K19(K20(REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ,REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) : ( ( ) ( Relation-like V34() V35() V36() ) set ) ) : ( ( ) ( ) set ) ) . (upper_bound A : ( ( non empty closed_interval ) ( non empty V51() V52() V53() closed_interval V76() ) Subset of ( ( ) ( ) set ) ) ) : ( ( ) ( V28() V29() ext-real ) Element of REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) ) : ( ( ) (
V28()
V29()
ext-real )
Element of
REAL : ( ( ) ( non
empty V51()
V52()
V53()
V57()
V62() )
set ) )
- (((1 : ( ( ) ( non empty V21() V22() V23() V27() V28() V29() V30() ext-real non negative V50() V51() V52() V53() V54() V55() V56() ) Element of NAT : ( ( ) ( non empty V21() V22() V23() V51() V52() V53() V54() V55() V56() V57() ) Element of K19(REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) : ( ( ) ( ) set ) ) ) / 2 : ( ( ) ( non empty V21() V22() V23() V27() V28() V29() V30() ext-real non negative V50() V51() V52() V53() V54() V55() V56() ) Element of NAT : ( ( ) ( non empty V21() V22() V23() V51() V52() V53() V54() V55() V56() V57() ) Element of K19(REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( ) ( V28() V29() ext-real ) Element of REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) (#) ((#Z 2 : ( ( ) ( non empty V21() V22() V23() V27() V28() V29() V30() ext-real non negative V50() V51() V52() V53() V54() V55() V56() ) Element of NAT : ( ( ) ( non empty V21() V22() V23() V51() V52() V53() V54() V55() V56() V57() ) Element of K19(REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( V6() V18( REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) , REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) ) ( Relation-like V6() non empty total V18( REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) , REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) V34() V35() V36() ) Element of K19(K20(REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ,REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) : ( ( ) ( Relation-like V34() V35() V36() ) set ) ) : ( ( ) ( ) set ) ) * arccos : ( ( V6() ) ( Relation-like V6() V34() V35() V36() continuous ) Element of K19(K20(REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ,REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) : ( ( ) ( Relation-like V34() V35() V36() ) set ) ) : ( ( ) ( ) set ) ) ) : ( ( V6() ) ( Relation-like V6() V34() V35() V36() ) Element of K19(K20(REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ,REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) : ( ( ) ( Relation-like V34() V35() V36() ) set ) ) : ( ( ) ( ) set ) ) ) : ( ( V6() ) ( Relation-like V6() V34() V35() V36() ) Element of K19(K20(REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ,REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) : ( ( ) ( Relation-like V34() V35() V36() ) set ) ) : ( ( ) ( ) set ) ) . (lower_bound A : ( ( non empty closed_interval ) ( non empty V51() V52() V53() closed_interval V76() ) Subset of ( ( ) ( ) set ) ) ) : ( ( ) ( V28() V29() ext-real ) Element of REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) ) : ( ( ) (
V28()
V29()
ext-real )
Element of
REAL : ( ( ) ( non
empty V51()
V52()
V53()
V57()
V62() )
set ) ) : ( ( ) (
V28()
V29()
ext-real )
Element of
REAL : ( ( ) ( non
empty V51()
V52()
V53()
V57()
V62() )
set ) ) ;
theorem
for
A being ( ( non
empty closed_interval ) ( non
empty V51()
V52()
V53()
closed_interval V76() )
Subset of ( ( ) ( )
set ) )
for
Z being ( (
open ) (
V51()
V52()
V53()
open )
Subset of ( ( ) ( )
set ) )
for
f,
f1,
f2 being ( (
V6() ) (
Relation-like V6()
V34()
V35()
V36() )
PartFunc of ,) st
A : ( ( non
empty closed_interval ) ( non
empty V51()
V52()
V53()
closed_interval V76() )
Subset of ( ( ) ( )
set ) )
c= Z : ( (
open ) (
V51()
V52()
V53()
open )
Subset of ( ( ) ( )
set ) ) &
Z : ( (
open ) (
V51()
V52()
V53()
open )
Subset of ( ( ) ( )
set ) )
c= ].(- 1 : ( ( ) ( non empty V21() V22() V23() V27() V28() V29() V30() ext-real non negative V50() V51() V52() V53() V54() V55() V56() ) Element of NAT : ( ( ) ( non empty V21() V22() V23() V51() V52() V53() V54() V55() V56() V57() ) Element of K19(REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( ) ( V28() V29() V30() ext-real ) Element of REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) ,1 : ( ( ) ( non empty V21() V22() V23() V27() V28() V29() V30() ext-real non negative V50() V51() V52() V53() V54() V55() V56() ) Element of NAT : ( ( ) ( non empty V21() V22() V23() V51() V52() V53() V54() V55() V56() V57() ) Element of K19(REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) : ( ( ) ( ) set ) ) ) .[ : ( ( ) (
V51()
V52()
V53()
open )
Element of
K19(
REAL : ( ( ) ( non
empty V51()
V52()
V53()
V57()
V62() )
set ) ) : ( ( ) ( )
set ) ) &
f : ( (
V6() ) (
Relation-like V6()
V34()
V35()
V36() )
PartFunc of ,)
= f1 : ( (
V6() ) (
Relation-like V6()
V34()
V35()
V36() )
PartFunc of ,)
- f2 : ( (
V6() ) (
Relation-like V6()
V34()
V35()
V36() )
PartFunc of ,) : ( (
V6() ) (
Relation-like V6()
V34()
V35()
V36() )
Element of
K19(
K20(
REAL : ( ( ) ( non
empty V51()
V52()
V53()
V57()
V62() )
set ) ,
REAL : ( ( ) ( non
empty V51()
V52()
V53()
V57()
V62() )
set ) ) : ( ( ) (
Relation-like V34()
V35()
V36() )
set ) ) : ( ( ) ( )
set ) ) &
f2 : ( (
V6() ) (
Relation-like V6()
V34()
V35()
V36() )
PartFunc of ,)
= #Z 2 : ( ( ) ( non
empty V21()
V22()
V23()
V27()
V28()
V29()
V30()
ext-real non
negative V50()
V51()
V52()
V53()
V54()
V55()
V56() )
Element of
NAT : ( ( ) ( non
empty V21()
V22()
V23()
V51()
V52()
V53()
V54()
V55()
V56()
V57() )
Element of
K19(
REAL : ( ( ) ( non
empty V51()
V52()
V53()
V57()
V62() )
set ) ) : ( ( ) ( )
set ) ) ) : ( (
V6()
V18(
REAL : ( ( ) ( non
empty V51()
V52()
V53()
V57()
V62() )
set ) ,
REAL : ( ( ) ( non
empty V51()
V52()
V53()
V57()
V62() )
set ) ) ) (
Relation-like V6() non
empty total V18(
REAL : ( ( ) ( non
empty V51()
V52()
V53()
V57()
V62() )
set ) ,
REAL : ( ( ) ( non
empty V51()
V52()
V53()
V57()
V62() )
set ) )
V34()
V35()
V36() )
Element of
K19(
K20(
REAL : ( ( ) ( non
empty V51()
V52()
V53()
V57()
V62() )
set ) ,
REAL : ( ( ) ( non
empty V51()
V52()
V53()
V57()
V62() )
set ) ) : ( ( ) (
Relation-like V34()
V35()
V36() )
set ) ) : ( ( ) ( )
set ) ) & ( for
x being ( ( ) (
V28()
V29()
ext-real )
Real) st
x : ( ( ) (
V28()
V29()
ext-real )
Real)
in Z : ( (
open ) (
V51()
V52()
V53()
open )
Subset of ( ( ) ( )
set ) ) holds
(
f1 : ( (
V6() ) (
Relation-like V6()
V34()
V35()
V36() )
PartFunc of ,)
. x : ( ( ) (
V28()
V29()
ext-real )
Real) : ( ( ) (
V28()
V29()
ext-real )
Element of
REAL : ( ( ) ( non
empty V51()
V52()
V53()
V57()
V62() )
set ) )
= 1 : ( ( ) ( non
empty V21()
V22()
V23()
V27()
V28()
V29()
V30()
ext-real non
negative V50()
V51()
V52()
V53()
V54()
V55()
V56() )
Element of
NAT : ( ( ) ( non
empty V21()
V22()
V23()
V51()
V52()
V53()
V54()
V55()
V56()
V57() )
Element of
K19(
REAL : ( ( ) ( non
empty V51()
V52()
V53()
V57()
V62() )
set ) ) : ( ( ) ( )
set ) ) ) &
f : ( (
V6() ) (
Relation-like V6()
V34()
V35()
V36() )
PartFunc of ,)
. x : ( ( ) (
V28()
V29()
ext-real )
Real) : ( ( ) (
V28()
V29()
ext-real )
Element of
REAL : ( ( ) ( non
empty V51()
V52()
V53()
V57()
V62() )
set ) )
> 0 : ( ( ) (
V21()
V22()
V23()
V27()
V28()
V29()
V30()
ext-real non
negative V50()
V51()
V52()
V53()
V54()
V55()
V56() )
Element of
NAT : ( ( ) ( non
empty V21()
V22()
V23()
V51()
V52()
V53()
V54()
V55()
V56()
V57() )
Element of
K19(
REAL : ( ( ) ( non
empty V51()
V52()
V53()
V57()
V62() )
set ) ) : ( ( ) ( )
set ) ) ) &
x : ( ( ) (
V28()
V29()
ext-real )
Real)
<> 0 : ( ( ) (
V21()
V22()
V23()
V27()
V28()
V29()
V30()
ext-real non
negative V50()
V51()
V52()
V53()
V54()
V55()
V56() )
Element of
NAT : ( ( ) ( non
empty V21()
V22()
V23()
V51()
V52()
V53()
V54()
V55()
V56()
V57() )
Element of
K19(
REAL : ( ( ) ( non
empty V51()
V52()
V53()
V57()
V62() )
set ) ) : ( ( ) ( )
set ) ) ) ) ) &
dom arcsin : ( (
V6() ) (
Relation-like V6()
V34()
V35()
V36()
continuous )
Element of
K19(
K20(
REAL : ( ( ) ( non
empty V51()
V52()
V53()
V57()
V62() )
set ) ,
REAL : ( ( ) ( non
empty V51()
V52()
V53()
V57()
V62() )
set ) ) : ( ( ) (
Relation-like V34()
V35()
V36() )
set ) ) : ( ( ) ( )
set ) ) : ( ( ) ( )
set )
= Z : ( (
open ) (
V51()
V52()
V53()
open )
Subset of ( ( ) ( )
set ) ) &
Z : ( (
open ) (
V51()
V52()
V53()
open )
Subset of ( ( ) ( )
set ) )
c= dom (((id Z : ( ( open ) ( V51() V52() V53() open ) Subset of ( ( ) ( ) set ) ) ) : ( ( V6() ) ( Relation-like b2 : ( ( open ) ( V51() V52() V53() open ) Subset of ( ( ) ( ) set ) ) -defined b2 : ( ( open ) ( V51() V52() V53() open ) Subset of ( ( ) ( ) set ) ) -valued V6() total V34() V35() V36() continuous V49() ) Element of K19(K20(REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ,REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) : ( ( ) ( Relation-like V34() V35() V36() ) set ) ) : ( ( ) ( ) set ) ) (#) arcsin : ( ( V6() ) ( Relation-like V6() V34() V35() V36() continuous ) Element of K19(K20(REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ,REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) : ( ( ) ( Relation-like V34() V35() V36() ) set ) ) : ( ( ) ( ) set ) ) ) : ( ( V6() ) ( Relation-like b2 : ( ( open ) ( V51() V52() V53() open ) Subset of ( ( ) ( ) set ) ) -defined V6() V34() V35() V36() continuous ) Element of K19(K20(REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ,REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) : ( ( ) ( Relation-like V34() V35() V36() ) set ) ) : ( ( ) ( ) set ) ) + ((#R (1 : ( ( ) ( non empty V21() V22() V23() V27() V28() V29() V30() ext-real non negative V50() V51() V52() V53() V54() V55() V56() ) Element of NAT : ( ( ) ( non empty V21() V22() V23() V51() V52() V53() V54() V55() V56() V57() ) Element of K19(REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) : ( ( ) ( ) set ) ) ) / 2 : ( ( ) ( non empty V21() V22() V23() V27() V28() V29() V30() ext-real non negative V50() V51() V52() V53() V54() V55() V56() ) Element of NAT : ( ( ) ( non empty V21() V22() V23() V51() V52() V53() V54() V55() V56() V57() ) Element of K19(REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( ) ( V28() V29() ext-real ) Element of REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) ) : ( ( V6() ) ( Relation-like V6() V34() V35() V36() ) Element of K19(K20(REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ,REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) : ( ( ) ( Relation-like V34() V35() V36() ) set ) ) : ( ( ) ( ) set ) ) * f : ( ( V6() ) ( Relation-like V6() V34() V35() V36() ) PartFunc of ,) ) : ( ( V6() ) ( Relation-like V6() V34() V35() V36() ) Element of K19(K20(REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ,REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) : ( ( ) ( Relation-like V34() V35() V36() ) set ) ) : ( ( ) ( ) set ) ) ) : ( (
V6() ) (
Relation-like b2 : ( (
open ) (
V51()
V52()
V53()
open )
Subset of ( ( ) ( )
set ) )
-defined V6()
V34()
V35()
V36() )
Element of
K19(
K20(
REAL : ( ( ) ( non
empty V51()
V52()
V53()
V57()
V62() )
set ) ,
REAL : ( ( ) ( non
empty V51()
V52()
V53()
V57()
V62() )
set ) ) : ( ( ) (
Relation-like V34()
V35()
V36() )
set ) ) : ( ( ) ( )
set ) ) : ( ( ) ( )
set ) holds
integral (
arcsin : ( (
V6() ) (
Relation-like V6()
V34()
V35()
V36()
continuous )
Element of
K19(
K20(
REAL : ( ( ) ( non
empty V51()
V52()
V53()
V57()
V62() )
set ) ,
REAL : ( ( ) ( non
empty V51()
V52()
V53()
V57()
V62() )
set ) ) : ( ( ) (
Relation-like V34()
V35()
V36() )
set ) ) : ( ( ) ( )
set ) ) ,
A : ( ( non
empty closed_interval ) ( non
empty V51()
V52()
V53()
closed_interval V76() )
Subset of ( ( ) ( )
set ) ) ) : ( ( ) (
V28()
V29()
ext-real )
Element of
REAL : ( ( ) ( non
empty V51()
V52()
V53()
V57()
V62() )
set ) )
= ((((id Z : ( ( open ) ( V51() V52() V53() open ) Subset of ( ( ) ( ) set ) ) ) : ( ( V6() ) ( Relation-like b2 : ( ( open ) ( V51() V52() V53() open ) Subset of ( ( ) ( ) set ) ) -defined b2 : ( ( open ) ( V51() V52() V53() open ) Subset of ( ( ) ( ) set ) ) -valued V6() total V34() V35() V36() continuous V49() ) Element of K19(K20(REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ,REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) : ( ( ) ( Relation-like V34() V35() V36() ) set ) ) : ( ( ) ( ) set ) ) (#) arcsin : ( ( V6() ) ( Relation-like V6() V34() V35() V36() continuous ) Element of K19(K20(REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ,REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) : ( ( ) ( Relation-like V34() V35() V36() ) set ) ) : ( ( ) ( ) set ) ) ) : ( ( V6() ) ( Relation-like b2 : ( ( open ) ( V51() V52() V53() open ) Subset of ( ( ) ( ) set ) ) -defined V6() V34() V35() V36() continuous ) Element of K19(K20(REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ,REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) : ( ( ) ( Relation-like V34() V35() V36() ) set ) ) : ( ( ) ( ) set ) ) + ((#R (1 : ( ( ) ( non empty V21() V22() V23() V27() V28() V29() V30() ext-real non negative V50() V51() V52() V53() V54() V55() V56() ) Element of NAT : ( ( ) ( non empty V21() V22() V23() V51() V52() V53() V54() V55() V56() V57() ) Element of K19(REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) : ( ( ) ( ) set ) ) ) / 2 : ( ( ) ( non empty V21() V22() V23() V27() V28() V29() V30() ext-real non negative V50() V51() V52() V53() V54() V55() V56() ) Element of NAT : ( ( ) ( non empty V21() V22() V23() V51() V52() V53() V54() V55() V56() V57() ) Element of K19(REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( ) ( V28() V29() ext-real ) Element of REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) ) : ( ( V6() ) ( Relation-like V6() V34() V35() V36() ) Element of K19(K20(REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ,REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) : ( ( ) ( Relation-like V34() V35() V36() ) set ) ) : ( ( ) ( ) set ) ) * f : ( ( V6() ) ( Relation-like V6() V34() V35() V36() ) PartFunc of ,) ) : ( ( V6() ) ( Relation-like V6() V34() V35() V36() ) Element of K19(K20(REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ,REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) : ( ( ) ( Relation-like V34() V35() V36() ) set ) ) : ( ( ) ( ) set ) ) ) : ( ( V6() ) ( Relation-like b2 : ( ( open ) ( V51() V52() V53() open ) Subset of ( ( ) ( ) set ) ) -defined V6() V34() V35() V36() ) Element of K19(K20(REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ,REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) : ( ( ) ( Relation-like V34() V35() V36() ) set ) ) : ( ( ) ( ) set ) ) . (upper_bound A : ( ( non empty closed_interval ) ( non empty V51() V52() V53() closed_interval V76() ) Subset of ( ( ) ( ) set ) ) ) : ( ( ) ( V28() V29() ext-real ) Element of REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) ) : ( ( ) (
V28()
V29()
ext-real )
Element of
REAL : ( ( ) ( non
empty V51()
V52()
V53()
V57()
V62() )
set ) )
- ((((id Z : ( ( open ) ( V51() V52() V53() open ) Subset of ( ( ) ( ) set ) ) ) : ( ( V6() ) ( Relation-like b2 : ( ( open ) ( V51() V52() V53() open ) Subset of ( ( ) ( ) set ) ) -defined b2 : ( ( open ) ( V51() V52() V53() open ) Subset of ( ( ) ( ) set ) ) -valued V6() total V34() V35() V36() continuous V49() ) Element of K19(K20(REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ,REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) : ( ( ) ( Relation-like V34() V35() V36() ) set ) ) : ( ( ) ( ) set ) ) (#) arcsin : ( ( V6() ) ( Relation-like V6() V34() V35() V36() continuous ) Element of K19(K20(REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ,REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) : ( ( ) ( Relation-like V34() V35() V36() ) set ) ) : ( ( ) ( ) set ) ) ) : ( ( V6() ) ( Relation-like b2 : ( ( open ) ( V51() V52() V53() open ) Subset of ( ( ) ( ) set ) ) -defined V6() V34() V35() V36() continuous ) Element of K19(K20(REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ,REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) : ( ( ) ( Relation-like V34() V35() V36() ) set ) ) : ( ( ) ( ) set ) ) + ((#R (1 : ( ( ) ( non empty V21() V22() V23() V27() V28() V29() V30() ext-real non negative V50() V51() V52() V53() V54() V55() V56() ) Element of NAT : ( ( ) ( non empty V21() V22() V23() V51() V52() V53() V54() V55() V56() V57() ) Element of K19(REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) : ( ( ) ( ) set ) ) ) / 2 : ( ( ) ( non empty V21() V22() V23() V27() V28() V29() V30() ext-real non negative V50() V51() V52() V53() V54() V55() V56() ) Element of NAT : ( ( ) ( non empty V21() V22() V23() V51() V52() V53() V54() V55() V56() V57() ) Element of K19(REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( ) ( V28() V29() ext-real ) Element of REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) ) : ( ( V6() ) ( Relation-like V6() V34() V35() V36() ) Element of K19(K20(REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ,REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) : ( ( ) ( Relation-like V34() V35() V36() ) set ) ) : ( ( ) ( ) set ) ) * f : ( ( V6() ) ( Relation-like V6() V34() V35() V36() ) PartFunc of ,) ) : ( ( V6() ) ( Relation-like V6() V34() V35() V36() ) Element of K19(K20(REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ,REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) : ( ( ) ( Relation-like V34() V35() V36() ) set ) ) : ( ( ) ( ) set ) ) ) : ( ( V6() ) ( Relation-like b2 : ( ( open ) ( V51() V52() V53() open ) Subset of ( ( ) ( ) set ) ) -defined V6() V34() V35() V36() ) Element of K19(K20(REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ,REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) : ( ( ) ( Relation-like V34() V35() V36() ) set ) ) : ( ( ) ( ) set ) ) . (lower_bound A : ( ( non empty closed_interval ) ( non empty V51() V52() V53() closed_interval V76() ) Subset of ( ( ) ( ) set ) ) ) : ( ( ) ( V28() V29() ext-real ) Element of REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) ) : ( ( ) (
V28()
V29()
ext-real )
Element of
REAL : ( ( ) ( non
empty V51()
V52()
V53()
V57()
V62() )
set ) ) : ( ( ) (
V28()
V29()
ext-real )
Element of
REAL : ( ( ) ( non
empty V51()
V52()
V53()
V57()
V62() )
set ) ) ;
theorem
for
a being ( ( ) (
V28()
V29()
ext-real )
Real)
for
A being ( ( non
empty closed_interval ) ( non
empty V51()
V52()
V53()
closed_interval V76() )
Subset of ( ( ) ( )
set ) )
for
Z being ( (
open ) (
V51()
V52()
V53()
open )
Subset of ( ( ) ( )
set ) )
for
f,
f1,
f2,
f3 being ( (
V6() ) (
Relation-like V6()
V34()
V35()
V36() )
PartFunc of ,) st
A : ( ( non
empty closed_interval ) ( non
empty V51()
V52()
V53()
closed_interval V76() )
Subset of ( ( ) ( )
set ) )
c= Z : ( (
open ) (
V51()
V52()
V53()
open )
Subset of ( ( ) ( )
set ) ) &
f : ( (
V6() ) (
Relation-like V6()
V34()
V35()
V36() )
PartFunc of ,)
= f1 : ( (
V6() ) (
Relation-like V6()
V34()
V35()
V36() )
PartFunc of ,)
- f2 : ( (
V6() ) (
Relation-like V6()
V34()
V35()
V36() )
PartFunc of ,) : ( (
V6() ) (
Relation-like V6()
V34()
V35()
V36() )
Element of
K19(
K20(
REAL : ( ( ) ( non
empty V51()
V52()
V53()
V57()
V62() )
set ) ,
REAL : ( ( ) ( non
empty V51()
V52()
V53()
V57()
V62() )
set ) ) : ( ( ) (
Relation-like V34()
V35()
V36() )
set ) ) : ( ( ) ( )
set ) ) &
f2 : ( (
V6() ) (
Relation-like V6()
V34()
V35()
V36() )
PartFunc of ,)
= #Z 2 : ( ( ) ( non
empty V21()
V22()
V23()
V27()
V28()
V29()
V30()
ext-real non
negative V50()
V51()
V52()
V53()
V54()
V55()
V56() )
Element of
NAT : ( ( ) ( non
empty V21()
V22()
V23()
V51()
V52()
V53()
V54()
V55()
V56()
V57() )
Element of
K19(
REAL : ( ( ) ( non
empty V51()
V52()
V53()
V57()
V62() )
set ) ) : ( ( ) ( )
set ) ) ) : ( (
V6()
V18(
REAL : ( ( ) ( non
empty V51()
V52()
V53()
V57()
V62() )
set ) ,
REAL : ( ( ) ( non
empty V51()
V52()
V53()
V57()
V62() )
set ) ) ) (
Relation-like V6() non
empty total V18(
REAL : ( ( ) ( non
empty V51()
V52()
V53()
V57()
V62() )
set ) ,
REAL : ( ( ) ( non
empty V51()
V52()
V53()
V57()
V62() )
set ) )
V34()
V35()
V36() )
Element of
K19(
K20(
REAL : ( ( ) ( non
empty V51()
V52()
V53()
V57()
V62() )
set ) ,
REAL : ( ( ) ( non
empty V51()
V52()
V53()
V57()
V62() )
set ) ) : ( ( ) (
Relation-like V34()
V35()
V36() )
set ) ) : ( ( ) ( )
set ) ) & ( for
x being ( ( ) (
V28()
V29()
ext-real )
Real) st
x : ( ( ) (
V28()
V29()
ext-real )
Real)
in Z : ( (
open ) (
V51()
V52()
V53()
open )
Subset of ( ( ) ( )
set ) ) holds
(
f1 : ( (
V6() ) (
Relation-like V6()
V34()
V35()
V36() )
PartFunc of ,)
. x : ( ( ) (
V28()
V29()
ext-real )
Real) : ( ( ) (
V28()
V29()
ext-real )
Element of
REAL : ( ( ) ( non
empty V51()
V52()
V53()
V57()
V62() )
set ) )
= a : ( ( ) (
V28()
V29()
ext-real )
Real)
^2 : ( ( ) (
V28()
V29()
ext-real )
Element of
REAL : ( ( ) ( non
empty V51()
V52()
V53()
V57()
V62() )
set ) ) &
f : ( (
V6() ) (
Relation-like V6()
V34()
V35()
V36() )
PartFunc of ,)
. x : ( ( ) (
V28()
V29()
ext-real )
Real) : ( ( ) (
V28()
V29()
ext-real )
Element of
REAL : ( ( ) ( non
empty V51()
V52()
V53()
V57()
V62() )
set ) )
> 0 : ( ( ) (
V21()
V22()
V23()
V27()
V28()
V29()
V30()
ext-real non
negative V50()
V51()
V52()
V53()
V54()
V55()
V56() )
Element of
NAT : ( ( ) ( non
empty V21()
V22()
V23()
V51()
V52()
V53()
V54()
V55()
V56()
V57() )
Element of
K19(
REAL : ( ( ) ( non
empty V51()
V52()
V53()
V57()
V62() )
set ) ) : ( ( ) ( )
set ) ) ) &
f3 : ( (
V6() ) (
Relation-like V6()
V34()
V35()
V36() )
PartFunc of ,)
. x : ( ( ) (
V28()
V29()
ext-real )
Real) : ( ( ) (
V28()
V29()
ext-real )
Element of
REAL : ( ( ) ( non
empty V51()
V52()
V53()
V57()
V62() )
set ) )
= x : ( ( ) (
V28()
V29()
ext-real )
Real)
/ a : ( ( ) (
V28()
V29()
ext-real )
Real) : ( ( ) (
V28()
V29()
ext-real )
Element of
REAL : ( ( ) ( non
empty V51()
V52()
V53()
V57()
V62() )
set ) ) &
f3 : ( (
V6() ) (
Relation-like V6()
V34()
V35()
V36() )
PartFunc of ,)
. x : ( ( ) (
V28()
V29()
ext-real )
Real) : ( ( ) (
V28()
V29()
ext-real )
Element of
REAL : ( ( ) ( non
empty V51()
V52()
V53()
V57()
V62() )
set ) )
> - 1 : ( ( ) ( non
empty V21()
V22()
V23()
V27()
V28()
V29()
V30()
ext-real non
negative V50()
V51()
V52()
V53()
V54()
V55()
V56() )
Element of
NAT : ( ( ) ( non
empty V21()
V22()
V23()
V51()
V52()
V53()
V54()
V55()
V56()
V57() )
Element of
K19(
REAL : ( ( ) ( non
empty V51()
V52()
V53()
V57()
V62() )
set ) ) : ( ( ) ( )
set ) ) ) : ( ( ) (
V28()
V29()
V30()
ext-real )
Element of
REAL : ( ( ) ( non
empty V51()
V52()
V53()
V57()
V62() )
set ) ) &
f3 : ( (
V6() ) (
Relation-like V6()
V34()
V35()
V36() )
PartFunc of ,)
. x : ( ( ) (
V28()
V29()
ext-real )
Real) : ( ( ) (
V28()
V29()
ext-real )
Element of
REAL : ( ( ) ( non
empty V51()
V52()
V53()
V57()
V62() )
set ) )
< 1 : ( ( ) ( non
empty V21()
V22()
V23()
V27()
V28()
V29()
V30()
ext-real non
negative V50()
V51()
V52()
V53()
V54()
V55()
V56() )
Element of
NAT : ( ( ) ( non
empty V21()
V22()
V23()
V51()
V52()
V53()
V54()
V55()
V56()
V57() )
Element of
K19(
REAL : ( ( ) ( non
empty V51()
V52()
V53()
V57()
V62() )
set ) ) : ( ( ) ( )
set ) ) ) &
x : ( ( ) (
V28()
V29()
ext-real )
Real)
<> 0 : ( ( ) (
V21()
V22()
V23()
V27()
V28()
V29()
V30()
ext-real non
negative V50()
V51()
V52()
V53()
V54()
V55()
V56() )
Element of
NAT : ( ( ) ( non
empty V21()
V22()
V23()
V51()
V52()
V53()
V54()
V55()
V56()
V57() )
Element of
K19(
REAL : ( ( ) ( non
empty V51()
V52()
V53()
V57()
V62() )
set ) ) : ( ( ) ( )
set ) ) ) &
a : ( ( ) (
V28()
V29()
ext-real )
Real)
> 0 : ( ( ) (
V21()
V22()
V23()
V27()
V28()
V29()
V30()
ext-real non
negative V50()
V51()
V52()
V53()
V54()
V55()
V56() )
Element of
NAT : ( ( ) ( non
empty V21()
V22()
V23()
V51()
V52()
V53()
V54()
V55()
V56()
V57() )
Element of
K19(
REAL : ( ( ) ( non
empty V51()
V52()
V53()
V57()
V62() )
set ) ) : ( ( ) ( )
set ) ) ) ) ) &
dom (arcsin : ( ( V6() ) ( Relation-like V6() V34() V35() V36() continuous ) Element of K19(K20(REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ,REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) : ( ( ) ( Relation-like V34() V35() V36() ) set ) ) : ( ( ) ( ) set ) ) * f3 : ( ( V6() ) ( Relation-like V6() V34() V35() V36() ) PartFunc of ,) ) : ( (
V6() ) (
Relation-like V6()
V34()
V35()
V36() )
Element of
K19(
K20(
REAL : ( ( ) ( non
empty V51()
V52()
V53()
V57()
V62() )
set ) ,
REAL : ( ( ) ( non
empty V51()
V52()
V53()
V57()
V62() )
set ) ) : ( ( ) (
Relation-like V34()
V35()
V36() )
set ) ) : ( ( ) ( )
set ) ) : ( ( ) ( )
set )
= Z : ( (
open ) (
V51()
V52()
V53()
open )
Subset of ( ( ) ( )
set ) ) &
Z : ( (
open ) (
V51()
V52()
V53()
open )
Subset of ( ( ) ( )
set ) )
c= dom (((id Z : ( ( open ) ( V51() V52() V53() open ) Subset of ( ( ) ( ) set ) ) ) : ( ( V6() ) ( Relation-like b3 : ( ( open ) ( V51() V52() V53() open ) Subset of ( ( ) ( ) set ) ) -defined b3 : ( ( open ) ( V51() V52() V53() open ) Subset of ( ( ) ( ) set ) ) -valued V6() total V34() V35() V36() continuous V49() ) Element of K19(K20(REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ,REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) : ( ( ) ( Relation-like V34() V35() V36() ) set ) ) : ( ( ) ( ) set ) ) (#) (arcsin : ( ( V6() ) ( Relation-like V6() V34() V35() V36() continuous ) Element of K19(K20(REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ,REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) : ( ( ) ( Relation-like V34() V35() V36() ) set ) ) : ( ( ) ( ) set ) ) * f3 : ( ( V6() ) ( Relation-like V6() V34() V35() V36() ) PartFunc of ,) ) : ( ( V6() ) ( Relation-like V6() V34() V35() V36() ) Element of K19(K20(REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ,REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) : ( ( ) ( Relation-like V34() V35() V36() ) set ) ) : ( ( ) ( ) set ) ) ) : ( ( V6() ) ( Relation-like b3 : ( ( open ) ( V51() V52() V53() open ) Subset of ( ( ) ( ) set ) ) -defined V6() V34() V35() V36() ) Element of K19(K20(REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ,REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) : ( ( ) ( Relation-like V34() V35() V36() ) set ) ) : ( ( ) ( ) set ) ) + ((#R (1 : ( ( ) ( non empty V21() V22() V23() V27() V28() V29() V30() ext-real non negative V50() V51() V52() V53() V54() V55() V56() ) Element of NAT : ( ( ) ( non empty V21() V22() V23() V51() V52() V53() V54() V55() V56() V57() ) Element of K19(REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) : ( ( ) ( ) set ) ) ) / 2 : ( ( ) ( non empty V21() V22() V23() V27() V28() V29() V30() ext-real non negative V50() V51() V52() V53() V54() V55() V56() ) Element of NAT : ( ( ) ( non empty V21() V22() V23() V51() V52() V53() V54() V55() V56() V57() ) Element of K19(REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( ) ( V28() V29() ext-real ) Element of REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) ) : ( ( V6() ) ( Relation-like V6() V34() V35() V36() ) Element of K19(K20(REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ,REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) : ( ( ) ( Relation-like V34() V35() V36() ) set ) ) : ( ( ) ( ) set ) ) * f : ( ( V6() ) ( Relation-like V6() V34() V35() V36() ) PartFunc of ,) ) : ( ( V6() ) ( Relation-like V6() V34() V35() V36() ) Element of K19(K20(REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ,REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) : ( ( ) ( Relation-like V34() V35() V36() ) set ) ) : ( ( ) ( ) set ) ) ) : ( (
V6() ) (
Relation-like b3 : ( (
open ) (
V51()
V52()
V53()
open )
Subset of ( ( ) ( )
set ) )
-defined V6()
V34()
V35()
V36() )
Element of
K19(
K20(
REAL : ( ( ) ( non
empty V51()
V52()
V53()
V57()
V62() )
set ) ,
REAL : ( ( ) ( non
empty V51()
V52()
V53()
V57()
V62() )
set ) ) : ( ( ) (
Relation-like V34()
V35()
V36() )
set ) ) : ( ( ) ( )
set ) ) : ( ( ) ( )
set ) &
(arcsin : ( ( V6() ) ( Relation-like V6() V34() V35() V36() continuous ) Element of K19(K20(REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ,REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) : ( ( ) ( Relation-like V34() V35() V36() ) set ) ) : ( ( ) ( ) set ) ) * f3 : ( ( V6() ) ( Relation-like V6() V34() V35() V36() ) PartFunc of ,) ) : ( (
V6() ) (
Relation-like V6()
V34()
V35()
V36() )
Element of
K19(
K20(
REAL : ( ( ) ( non
empty V51()
V52()
V53()
V57()
V62() )
set ) ,
REAL : ( ( ) ( non
empty V51()
V52()
V53()
V57()
V62() )
set ) ) : ( ( ) (
Relation-like V34()
V35()
V36() )
set ) ) : ( ( ) ( )
set ) )
| A : ( ( non
empty closed_interval ) ( non
empty V51()
V52()
V53()
closed_interval V76() )
Subset of ( ( ) ( )
set ) ) : ( (
V6() ) (
Relation-like V6()
V34()
V35()
V36() )
Element of
K19(
K20(
REAL : ( ( ) ( non
empty V51()
V52()
V53()
V57()
V62() )
set ) ,
REAL : ( ( ) ( non
empty V51()
V52()
V53()
V57()
V62() )
set ) ) : ( ( ) (
Relation-like V34()
V35()
V36() )
set ) ) : ( ( ) ( )
set ) ) is
continuous holds
integral (
(arcsin : ( ( V6() ) ( Relation-like V6() V34() V35() V36() continuous ) Element of K19(K20(REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ,REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) : ( ( ) ( Relation-like V34() V35() V36() ) set ) ) : ( ( ) ( ) set ) ) * f3 : ( ( V6() ) ( Relation-like V6() V34() V35() V36() ) PartFunc of ,) ) : ( (
V6() ) (
Relation-like V6()
V34()
V35()
V36() )
Element of
K19(
K20(
REAL : ( ( ) ( non
empty V51()
V52()
V53()
V57()
V62() )
set ) ,
REAL : ( ( ) ( non
empty V51()
V52()
V53()
V57()
V62() )
set ) ) : ( ( ) (
Relation-like V34()
V35()
V36() )
set ) ) : ( ( ) ( )
set ) ) ,
A : ( ( non
empty closed_interval ) ( non
empty V51()
V52()
V53()
closed_interval V76() )
Subset of ( ( ) ( )
set ) ) ) : ( ( ) (
V28()
V29()
ext-real )
Element of
REAL : ( ( ) ( non
empty V51()
V52()
V53()
V57()
V62() )
set ) )
= ((((id Z : ( ( open ) ( V51() V52() V53() open ) Subset of ( ( ) ( ) set ) ) ) : ( ( V6() ) ( Relation-like b3 : ( ( open ) ( V51() V52() V53() open ) Subset of ( ( ) ( ) set ) ) -defined b3 : ( ( open ) ( V51() V52() V53() open ) Subset of ( ( ) ( ) set ) ) -valued V6() total V34() V35() V36() continuous V49() ) Element of K19(K20(REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ,REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) : ( ( ) ( Relation-like V34() V35() V36() ) set ) ) : ( ( ) ( ) set ) ) (#) (arcsin : ( ( V6() ) ( Relation-like V6() V34() V35() V36() continuous ) Element of K19(K20(REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ,REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) : ( ( ) ( Relation-like V34() V35() V36() ) set ) ) : ( ( ) ( ) set ) ) * f3 : ( ( V6() ) ( Relation-like V6() V34() V35() V36() ) PartFunc of ,) ) : ( ( V6() ) ( Relation-like V6() V34() V35() V36() ) Element of K19(K20(REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ,REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) : ( ( ) ( Relation-like V34() V35() V36() ) set ) ) : ( ( ) ( ) set ) ) ) : ( ( V6() ) ( Relation-like b3 : ( ( open ) ( V51() V52() V53() open ) Subset of ( ( ) ( ) set ) ) -defined V6() V34() V35() V36() ) Element of K19(K20(REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ,REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) : ( ( ) ( Relation-like V34() V35() V36() ) set ) ) : ( ( ) ( ) set ) ) + ((#R (1 : ( ( ) ( non empty V21() V22() V23() V27() V28() V29() V30() ext-real non negative V50() V51() V52() V53() V54() V55() V56() ) Element of NAT : ( ( ) ( non empty V21() V22() V23() V51() V52() V53() V54() V55() V56() V57() ) Element of K19(REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) : ( ( ) ( ) set ) ) ) / 2 : ( ( ) ( non empty V21() V22() V23() V27() V28() V29() V30() ext-real non negative V50() V51() V52() V53() V54() V55() V56() ) Element of NAT : ( ( ) ( non empty V21() V22() V23() V51() V52() V53() V54() V55() V56() V57() ) Element of K19(REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( ) ( V28() V29() ext-real ) Element of REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) ) : ( ( V6() ) ( Relation-like V6() V34() V35() V36() ) Element of K19(K20(REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ,REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) : ( ( ) ( Relation-like V34() V35() V36() ) set ) ) : ( ( ) ( ) set ) ) * f : ( ( V6() ) ( Relation-like V6() V34() V35() V36() ) PartFunc of ,) ) : ( ( V6() ) ( Relation-like V6() V34() V35() V36() ) Element of K19(K20(REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ,REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) : ( ( ) ( Relation-like V34() V35() V36() ) set ) ) : ( ( ) ( ) set ) ) ) : ( ( V6() ) ( Relation-like b3 : ( ( open ) ( V51() V52() V53() open ) Subset of ( ( ) ( ) set ) ) -defined V6() V34() V35() V36() ) Element of K19(K20(REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ,REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) : ( ( ) ( Relation-like V34() V35() V36() ) set ) ) : ( ( ) ( ) set ) ) . (upper_bound A : ( ( non empty closed_interval ) ( non empty V51() V52() V53() closed_interval V76() ) Subset of ( ( ) ( ) set ) ) ) : ( ( ) ( V28() V29() ext-real ) Element of REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) ) : ( ( ) (
V28()
V29()
ext-real )
Element of
REAL : ( ( ) ( non
empty V51()
V52()
V53()
V57()
V62() )
set ) )
- ((((id Z : ( ( open ) ( V51() V52() V53() open ) Subset of ( ( ) ( ) set ) ) ) : ( ( V6() ) ( Relation-like b3 : ( ( open ) ( V51() V52() V53() open ) Subset of ( ( ) ( ) set ) ) -defined b3 : ( ( open ) ( V51() V52() V53() open ) Subset of ( ( ) ( ) set ) ) -valued V6() total V34() V35() V36() continuous V49() ) Element of K19(K20(REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ,REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) : ( ( ) ( Relation-like V34() V35() V36() ) set ) ) : ( ( ) ( ) set ) ) (#) (arcsin : ( ( V6() ) ( Relation-like V6() V34() V35() V36() continuous ) Element of K19(K20(REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ,REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) : ( ( ) ( Relation-like V34() V35() V36() ) set ) ) : ( ( ) ( ) set ) ) * f3 : ( ( V6() ) ( Relation-like V6() V34() V35() V36() ) PartFunc of ,) ) : ( ( V6() ) ( Relation-like V6() V34() V35() V36() ) Element of K19(K20(REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ,REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) : ( ( ) ( Relation-like V34() V35() V36() ) set ) ) : ( ( ) ( ) set ) ) ) : ( ( V6() ) ( Relation-like b3 : ( ( open ) ( V51() V52() V53() open ) Subset of ( ( ) ( ) set ) ) -defined V6() V34() V35() V36() ) Element of K19(K20(REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ,REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) : ( ( ) ( Relation-like V34() V35() V36() ) set ) ) : ( ( ) ( ) set ) ) + ((#R (1 : ( ( ) ( non empty V21() V22() V23() V27() V28() V29() V30() ext-real non negative V50() V51() V52() V53() V54() V55() V56() ) Element of NAT : ( ( ) ( non empty V21() V22() V23() V51() V52() V53() V54() V55() V56() V57() ) Element of K19(REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) : ( ( ) ( ) set ) ) ) / 2 : ( ( ) ( non empty V21() V22() V23() V27() V28() V29() V30() ext-real non negative V50() V51() V52() V53() V54() V55() V56() ) Element of NAT : ( ( ) ( non empty V21() V22() V23() V51() V52() V53() V54() V55() V56() V57() ) Element of K19(REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( ) ( V28() V29() ext-real ) Element of REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) ) : ( ( V6() ) ( Relation-like V6() V34() V35() V36() ) Element of K19(K20(REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ,REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) : ( ( ) ( Relation-like V34() V35() V36() ) set ) ) : ( ( ) ( ) set ) ) * f : ( ( V6() ) ( Relation-like V6() V34() V35() V36() ) PartFunc of ,) ) : ( ( V6() ) ( Relation-like V6() V34() V35() V36() ) Element of K19(K20(REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ,REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) : ( ( ) ( Relation-like V34() V35() V36() ) set ) ) : ( ( ) ( ) set ) ) ) : ( ( V6() ) ( Relation-like b3 : ( ( open ) ( V51() V52() V53() open ) Subset of ( ( ) ( ) set ) ) -defined V6() V34() V35() V36() ) Element of K19(K20(REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ,REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) : ( ( ) ( Relation-like V34() V35() V36() ) set ) ) : ( ( ) ( ) set ) ) . (lower_bound A : ( ( non empty closed_interval ) ( non empty V51() V52() V53() closed_interval V76() ) Subset of ( ( ) ( ) set ) ) ) : ( ( ) ( V28() V29() ext-real ) Element of REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) ) : ( ( ) (
V28()
V29()
ext-real )
Element of
REAL : ( ( ) ( non
empty V51()
V52()
V53()
V57()
V62() )
set ) ) : ( ( ) (
V28()
V29()
ext-real )
Element of
REAL : ( ( ) ( non
empty V51()
V52()
V53()
V57()
V62() )
set ) ) ;
theorem
for
A being ( ( non
empty closed_interval ) ( non
empty V51()
V52()
V53()
closed_interval V76() )
Subset of ( ( ) ( )
set ) )
for
Z being ( (
open ) (
V51()
V52()
V53()
open )
Subset of ( ( ) ( )
set ) )
for
f,
f1,
f2 being ( (
V6() ) (
Relation-like V6()
V34()
V35()
V36() )
PartFunc of ,) st
A : ( ( non
empty closed_interval ) ( non
empty V51()
V52()
V53()
closed_interval V76() )
Subset of ( ( ) ( )
set ) )
c= Z : ( (
open ) (
V51()
V52()
V53()
open )
Subset of ( ( ) ( )
set ) ) &
Z : ( (
open ) (
V51()
V52()
V53()
open )
Subset of ( ( ) ( )
set ) )
c= ].(- 1 : ( ( ) ( non empty V21() V22() V23() V27() V28() V29() V30() ext-real non negative V50() V51() V52() V53() V54() V55() V56() ) Element of NAT : ( ( ) ( non empty V21() V22() V23() V51() V52() V53() V54() V55() V56() V57() ) Element of K19(REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( ) ( V28() V29() V30() ext-real ) Element of REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) ,1 : ( ( ) ( non empty V21() V22() V23() V27() V28() V29() V30() ext-real non negative V50() V51() V52() V53() V54() V55() V56() ) Element of NAT : ( ( ) ( non empty V21() V22() V23() V51() V52() V53() V54() V55() V56() V57() ) Element of K19(REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) : ( ( ) ( ) set ) ) ) .[ : ( ( ) (
V51()
V52()
V53()
open )
Element of
K19(
REAL : ( ( ) ( non
empty V51()
V52()
V53()
V57()
V62() )
set ) ) : ( ( ) ( )
set ) ) &
f : ( (
V6() ) (
Relation-like V6()
V34()
V35()
V36() )
PartFunc of ,)
= f1 : ( (
V6() ) (
Relation-like V6()
V34()
V35()
V36() )
PartFunc of ,)
- f2 : ( (
V6() ) (
Relation-like V6()
V34()
V35()
V36() )
PartFunc of ,) : ( (
V6() ) (
Relation-like V6()
V34()
V35()
V36() )
Element of
K19(
K20(
REAL : ( ( ) ( non
empty V51()
V52()
V53()
V57()
V62() )
set ) ,
REAL : ( ( ) ( non
empty V51()
V52()
V53()
V57()
V62() )
set ) ) : ( ( ) (
Relation-like V34()
V35()
V36() )
set ) ) : ( ( ) ( )
set ) ) &
f2 : ( (
V6() ) (
Relation-like V6()
V34()
V35()
V36() )
PartFunc of ,)
= #Z 2 : ( ( ) ( non
empty V21()
V22()
V23()
V27()
V28()
V29()
V30()
ext-real non
negative V50()
V51()
V52()
V53()
V54()
V55()
V56() )
Element of
NAT : ( ( ) ( non
empty V21()
V22()
V23()
V51()
V52()
V53()
V54()
V55()
V56()
V57() )
Element of
K19(
REAL : ( ( ) ( non
empty V51()
V52()
V53()
V57()
V62() )
set ) ) : ( ( ) ( )
set ) ) ) : ( (
V6()
V18(
REAL : ( ( ) ( non
empty V51()
V52()
V53()
V57()
V62() )
set ) ,
REAL : ( ( ) ( non
empty V51()
V52()
V53()
V57()
V62() )
set ) ) ) (
Relation-like V6() non
empty total V18(
REAL : ( ( ) ( non
empty V51()
V52()
V53()
V57()
V62() )
set ) ,
REAL : ( ( ) ( non
empty V51()
V52()
V53()
V57()
V62() )
set ) )
V34()
V35()
V36() )
Element of
K19(
K20(
REAL : ( ( ) ( non
empty V51()
V52()
V53()
V57()
V62() )
set ) ,
REAL : ( ( ) ( non
empty V51()
V52()
V53()
V57()
V62() )
set ) ) : ( ( ) (
Relation-like V34()
V35()
V36() )
set ) ) : ( ( ) ( )
set ) ) & ( for
x being ( ( ) (
V28()
V29()
ext-real )
Real) st
x : ( ( ) (
V28()
V29()
ext-real )
Real)
in Z : ( (
open ) (
V51()
V52()
V53()
open )
Subset of ( ( ) ( )
set ) ) holds
(
f1 : ( (
V6() ) (
Relation-like V6()
V34()
V35()
V36() )
PartFunc of ,)
. x : ( ( ) (
V28()
V29()
ext-real )
Real) : ( ( ) (
V28()
V29()
ext-real )
Element of
REAL : ( ( ) ( non
empty V51()
V52()
V53()
V57()
V62() )
set ) )
= 1 : ( ( ) ( non
empty V21()
V22()
V23()
V27()
V28()
V29()
V30()
ext-real non
negative V50()
V51()
V52()
V53()
V54()
V55()
V56() )
Element of
NAT : ( ( ) ( non
empty V21()
V22()
V23()
V51()
V52()
V53()
V54()
V55()
V56()
V57() )
Element of
K19(
REAL : ( ( ) ( non
empty V51()
V52()
V53()
V57()
V62() )
set ) ) : ( ( ) ( )
set ) ) ) &
f : ( (
V6() ) (
Relation-like V6()
V34()
V35()
V36() )
PartFunc of ,)
. x : ( ( ) (
V28()
V29()
ext-real )
Real) : ( ( ) (
V28()
V29()
ext-real )
Element of
REAL : ( ( ) ( non
empty V51()
V52()
V53()
V57()
V62() )
set ) )
> 0 : ( ( ) (
V21()
V22()
V23()
V27()
V28()
V29()
V30()
ext-real non
negative V50()
V51()
V52()
V53()
V54()
V55()
V56() )
Element of
NAT : ( ( ) ( non
empty V21()
V22()
V23()
V51()
V52()
V53()
V54()
V55()
V56()
V57() )
Element of
K19(
REAL : ( ( ) ( non
empty V51()
V52()
V53()
V57()
V62() )
set ) ) : ( ( ) ( )
set ) ) ) &
x : ( ( ) (
V28()
V29()
ext-real )
Real)
<> 0 : ( ( ) (
V21()
V22()
V23()
V27()
V28()
V29()
V30()
ext-real non
negative V50()
V51()
V52()
V53()
V54()
V55()
V56() )
Element of
NAT : ( ( ) ( non
empty V21()
V22()
V23()
V51()
V52()
V53()
V54()
V55()
V56()
V57() )
Element of
K19(
REAL : ( ( ) ( non
empty V51()
V52()
V53()
V57()
V62() )
set ) ) : ( ( ) ( )
set ) ) ) ) ) &
dom arccos : ( (
V6() ) (
Relation-like V6()
V34()
V35()
V36()
continuous )
Element of
K19(
K20(
REAL : ( ( ) ( non
empty V51()
V52()
V53()
V57()
V62() )
set ) ,
REAL : ( ( ) ( non
empty V51()
V52()
V53()
V57()
V62() )
set ) ) : ( ( ) (
Relation-like V34()
V35()
V36() )
set ) ) : ( ( ) ( )
set ) ) : ( ( ) ( )
set )
= Z : ( (
open ) (
V51()
V52()
V53()
open )
Subset of ( ( ) ( )
set ) ) &
Z : ( (
open ) (
V51()
V52()
V53()
open )
Subset of ( ( ) ( )
set ) )
c= dom (((id Z : ( ( open ) ( V51() V52() V53() open ) Subset of ( ( ) ( ) set ) ) ) : ( ( V6() ) ( Relation-like b2 : ( ( open ) ( V51() V52() V53() open ) Subset of ( ( ) ( ) set ) ) -defined b2 : ( ( open ) ( V51() V52() V53() open ) Subset of ( ( ) ( ) set ) ) -valued V6() total V34() V35() V36() continuous V49() ) Element of K19(K20(REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ,REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) : ( ( ) ( Relation-like V34() V35() V36() ) set ) ) : ( ( ) ( ) set ) ) (#) arccos : ( ( V6() ) ( Relation-like V6() V34() V35() V36() continuous ) Element of K19(K20(REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ,REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) : ( ( ) ( Relation-like V34() V35() V36() ) set ) ) : ( ( ) ( ) set ) ) ) : ( ( V6() ) ( Relation-like b2 : ( ( open ) ( V51() V52() V53() open ) Subset of ( ( ) ( ) set ) ) -defined V6() V34() V35() V36() continuous ) Element of K19(K20(REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ,REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) : ( ( ) ( Relation-like V34() V35() V36() ) set ) ) : ( ( ) ( ) set ) ) - ((#R (1 : ( ( ) ( non empty V21() V22() V23() V27() V28() V29() V30() ext-real non negative V50() V51() V52() V53() V54() V55() V56() ) Element of NAT : ( ( ) ( non empty V21() V22() V23() V51() V52() V53() V54() V55() V56() V57() ) Element of K19(REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) : ( ( ) ( ) set ) ) ) / 2 : ( ( ) ( non empty V21() V22() V23() V27() V28() V29() V30() ext-real non negative V50() V51() V52() V53() V54() V55() V56() ) Element of NAT : ( ( ) ( non empty V21() V22() V23() V51() V52() V53() V54() V55() V56() V57() ) Element of K19(REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( ) ( V28() V29() ext-real ) Element of REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) ) : ( ( V6() ) ( Relation-like V6() V34() V35() V36() ) Element of K19(K20(REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ,REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) : ( ( ) ( Relation-like V34() V35() V36() ) set ) ) : ( ( ) ( ) set ) ) * f : ( ( V6() ) ( Relation-like V6() V34() V35() V36() ) PartFunc of ,) ) : ( ( V6() ) ( Relation-like V6() V34() V35() V36() ) Element of K19(K20(REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ,REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) : ( ( ) ( Relation-like V34() V35() V36() ) set ) ) : ( ( ) ( ) set ) ) ) : ( (
V6() ) (
Relation-like V6()
V34()
V35()
V36() )
Element of
K19(
K20(
REAL : ( ( ) ( non
empty V51()
V52()
V53()
V57()
V62() )
set ) ,
REAL : ( ( ) ( non
empty V51()
V52()
V53()
V57()
V62() )
set ) ) : ( ( ) (
Relation-like V34()
V35()
V36() )
set ) ) : ( ( ) ( )
set ) ) : ( ( ) ( )
set ) holds
integral (
arccos : ( (
V6() ) (
Relation-like V6()
V34()
V35()
V36()
continuous )
Element of
K19(
K20(
REAL : ( ( ) ( non
empty V51()
V52()
V53()
V57()
V62() )
set ) ,
REAL : ( ( ) ( non
empty V51()
V52()
V53()
V57()
V62() )
set ) ) : ( ( ) (
Relation-like V34()
V35()
V36() )
set ) ) : ( ( ) ( )
set ) ) ,
A : ( ( non
empty closed_interval ) ( non
empty V51()
V52()
V53()
closed_interval V76() )
Subset of ( ( ) ( )
set ) ) ) : ( ( ) (
V28()
V29()
ext-real )
Element of
REAL : ( ( ) ( non
empty V51()
V52()
V53()
V57()
V62() )
set ) )
= ((((id Z : ( ( open ) ( V51() V52() V53() open ) Subset of ( ( ) ( ) set ) ) ) : ( ( V6() ) ( Relation-like b2 : ( ( open ) ( V51() V52() V53() open ) Subset of ( ( ) ( ) set ) ) -defined b2 : ( ( open ) ( V51() V52() V53() open ) Subset of ( ( ) ( ) set ) ) -valued V6() total V34() V35() V36() continuous V49() ) Element of K19(K20(REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ,REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) : ( ( ) ( Relation-like V34() V35() V36() ) set ) ) : ( ( ) ( ) set ) ) (#) arccos : ( ( V6() ) ( Relation-like V6() V34() V35() V36() continuous ) Element of K19(K20(REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ,REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) : ( ( ) ( Relation-like V34() V35() V36() ) set ) ) : ( ( ) ( ) set ) ) ) : ( ( V6() ) ( Relation-like b2 : ( ( open ) ( V51() V52() V53() open ) Subset of ( ( ) ( ) set ) ) -defined V6() V34() V35() V36() continuous ) Element of K19(K20(REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ,REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) : ( ( ) ( Relation-like V34() V35() V36() ) set ) ) : ( ( ) ( ) set ) ) - ((#R (1 : ( ( ) ( non empty V21() V22() V23() V27() V28() V29() V30() ext-real non negative V50() V51() V52() V53() V54() V55() V56() ) Element of NAT : ( ( ) ( non empty V21() V22() V23() V51() V52() V53() V54() V55() V56() V57() ) Element of K19(REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) : ( ( ) ( ) set ) ) ) / 2 : ( ( ) ( non empty V21() V22() V23() V27() V28() V29() V30() ext-real non negative V50() V51() V52() V53() V54() V55() V56() ) Element of NAT : ( ( ) ( non empty V21() V22() V23() V51() V52() V53() V54() V55() V56() V57() ) Element of K19(REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( ) ( V28() V29() ext-real ) Element of REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) ) : ( ( V6() ) ( Relation-like V6() V34() V35() V36() ) Element of K19(K20(REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ,REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) : ( ( ) ( Relation-like V34() V35() V36() ) set ) ) : ( ( ) ( ) set ) ) * f : ( ( V6() ) ( Relation-like V6() V34() V35() V36() ) PartFunc of ,) ) : ( ( V6() ) ( Relation-like V6() V34() V35() V36() ) Element of K19(K20(REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ,REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) : ( ( ) ( Relation-like V34() V35() V36() ) set ) ) : ( ( ) ( ) set ) ) ) : ( ( V6() ) ( Relation-like V6() V34() V35() V36() ) Element of K19(K20(REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ,REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) : ( ( ) ( Relation-like V34() V35() V36() ) set ) ) : ( ( ) ( ) set ) ) . (upper_bound A : ( ( non empty closed_interval ) ( non empty V51() V52() V53() closed_interval V76() ) Subset of ( ( ) ( ) set ) ) ) : ( ( ) ( V28() V29() ext-real ) Element of REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) ) : ( ( ) (
V28()
V29()
ext-real )
Element of
REAL : ( ( ) ( non
empty V51()
V52()
V53()
V57()
V62() )
set ) )
- ((((id Z : ( ( open ) ( V51() V52() V53() open ) Subset of ( ( ) ( ) set ) ) ) : ( ( V6() ) ( Relation-like b2 : ( ( open ) ( V51() V52() V53() open ) Subset of ( ( ) ( ) set ) ) -defined b2 : ( ( open ) ( V51() V52() V53() open ) Subset of ( ( ) ( ) set ) ) -valued V6() total V34() V35() V36() continuous V49() ) Element of K19(K20(REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ,REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) : ( ( ) ( Relation-like V34() V35() V36() ) set ) ) : ( ( ) ( ) set ) ) (#) arccos : ( ( V6() ) ( Relation-like V6() V34() V35() V36() continuous ) Element of K19(K20(REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ,REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) : ( ( ) ( Relation-like V34() V35() V36() ) set ) ) : ( ( ) ( ) set ) ) ) : ( ( V6() ) ( Relation-like b2 : ( ( open ) ( V51() V52() V53() open ) Subset of ( ( ) ( ) set ) ) -defined V6() V34() V35() V36() continuous ) Element of K19(K20(REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ,REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) : ( ( ) ( Relation-like V34() V35() V36() ) set ) ) : ( ( ) ( ) set ) ) - ((#R (1 : ( ( ) ( non empty V21() V22() V23() V27() V28() V29() V30() ext-real non negative V50() V51() V52() V53() V54() V55() V56() ) Element of NAT : ( ( ) ( non empty V21() V22() V23() V51() V52() V53() V54() V55() V56() V57() ) Element of K19(REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) : ( ( ) ( ) set ) ) ) / 2 : ( ( ) ( non empty V21() V22() V23() V27() V28() V29() V30() ext-real non negative V50() V51() V52() V53() V54() V55() V56() ) Element of NAT : ( ( ) ( non empty V21() V22() V23() V51() V52() V53() V54() V55() V56() V57() ) Element of K19(REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( ) ( V28() V29() ext-real ) Element of REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) ) : ( ( V6() ) ( Relation-like V6() V34() V35() V36() ) Element of K19(K20(REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ,REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) : ( ( ) ( Relation-like V34() V35() V36() ) set ) ) : ( ( ) ( ) set ) ) * f : ( ( V6() ) ( Relation-like V6() V34() V35() V36() ) PartFunc of ,) ) : ( ( V6() ) ( Relation-like V6() V34() V35() V36() ) Element of K19(K20(REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ,REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) : ( ( ) ( Relation-like V34() V35() V36() ) set ) ) : ( ( ) ( ) set ) ) ) : ( ( V6() ) ( Relation-like V6() V34() V35() V36() ) Element of K19(K20(REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ,REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) : ( ( ) ( Relation-like V34() V35() V36() ) set ) ) : ( ( ) ( ) set ) ) . (lower_bound A : ( ( non empty closed_interval ) ( non empty V51() V52() V53() closed_interval V76() ) Subset of ( ( ) ( ) set ) ) ) : ( ( ) ( V28() V29() ext-real ) Element of REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) ) : ( ( ) (
V28()
V29()
ext-real )
Element of
REAL : ( ( ) ( non
empty V51()
V52()
V53()
V57()
V62() )
set ) ) : ( ( ) (
V28()
V29()
ext-real )
Element of
REAL : ( ( ) ( non
empty V51()
V52()
V53()
V57()
V62() )
set ) ) ;
theorem
for
a being ( ( ) (
V28()
V29()
ext-real )
Real)
for
A being ( ( non
empty closed_interval ) ( non
empty V51()
V52()
V53()
closed_interval V76() )
Subset of ( ( ) ( )
set ) )
for
Z being ( (
open ) (
V51()
V52()
V53()
open )
Subset of ( ( ) ( )
set ) )
for
f,
f1,
f2,
f3 being ( (
V6() ) (
Relation-like V6()
V34()
V35()
V36() )
PartFunc of ,) st
A : ( ( non
empty closed_interval ) ( non
empty V51()
V52()
V53()
closed_interval V76() )
Subset of ( ( ) ( )
set ) )
c= Z : ( (
open ) (
V51()
V52()
V53()
open )
Subset of ( ( ) ( )
set ) ) &
f : ( (
V6() ) (
Relation-like V6()
V34()
V35()
V36() )
PartFunc of ,)
= f1 : ( (
V6() ) (
Relation-like V6()
V34()
V35()
V36() )
PartFunc of ,)
- f2 : ( (
V6() ) (
Relation-like V6()
V34()
V35()
V36() )
PartFunc of ,) : ( (
V6() ) (
Relation-like V6()
V34()
V35()
V36() )
Element of
K19(
K20(
REAL : ( ( ) ( non
empty V51()
V52()
V53()
V57()
V62() )
set ) ,
REAL : ( ( ) ( non
empty V51()
V52()
V53()
V57()
V62() )
set ) ) : ( ( ) (
Relation-like V34()
V35()
V36() )
set ) ) : ( ( ) ( )
set ) ) &
f2 : ( (
V6() ) (
Relation-like V6()
V34()
V35()
V36() )
PartFunc of ,)
= #Z 2 : ( ( ) ( non
empty V21()
V22()
V23()
V27()
V28()
V29()
V30()
ext-real non
negative V50()
V51()
V52()
V53()
V54()
V55()
V56() )
Element of
NAT : ( ( ) ( non
empty V21()
V22()
V23()
V51()
V52()
V53()
V54()
V55()
V56()
V57() )
Element of
K19(
REAL : ( ( ) ( non
empty V51()
V52()
V53()
V57()
V62() )
set ) ) : ( ( ) ( )
set ) ) ) : ( (
V6()
V18(
REAL : ( ( ) ( non
empty V51()
V52()
V53()
V57()
V62() )
set ) ,
REAL : ( ( ) ( non
empty V51()
V52()
V53()
V57()
V62() )
set ) ) ) (
Relation-like V6() non
empty total V18(
REAL : ( ( ) ( non
empty V51()
V52()
V53()
V57()
V62() )
set ) ,
REAL : ( ( ) ( non
empty V51()
V52()
V53()
V57()
V62() )
set ) )
V34()
V35()
V36() )
Element of
K19(
K20(
REAL : ( ( ) ( non
empty V51()
V52()
V53()
V57()
V62() )
set ) ,
REAL : ( ( ) ( non
empty V51()
V52()
V53()
V57()
V62() )
set ) ) : ( ( ) (
Relation-like V34()
V35()
V36() )
set ) ) : ( ( ) ( )
set ) ) & ( for
x being ( ( ) (
V28()
V29()
ext-real )
Real) st
x : ( ( ) (
V28()
V29()
ext-real )
Real)
in Z : ( (
open ) (
V51()
V52()
V53()
open )
Subset of ( ( ) ( )
set ) ) holds
(
f1 : ( (
V6() ) (
Relation-like V6()
V34()
V35()
V36() )
PartFunc of ,)
. x : ( ( ) (
V28()
V29()
ext-real )
Real) : ( ( ) (
V28()
V29()
ext-real )
Element of
REAL : ( ( ) ( non
empty V51()
V52()
V53()
V57()
V62() )
set ) )
= a : ( ( ) (
V28()
V29()
ext-real )
Real)
^2 : ( ( ) (
V28()
V29()
ext-real )
Element of
REAL : ( ( ) ( non
empty V51()
V52()
V53()
V57()
V62() )
set ) ) &
f : ( (
V6() ) (
Relation-like V6()
V34()
V35()
V36() )
PartFunc of ,)
. x : ( ( ) (
V28()
V29()
ext-real )
Real) : ( ( ) (
V28()
V29()
ext-real )
Element of
REAL : ( ( ) ( non
empty V51()
V52()
V53()
V57()
V62() )
set ) )
> 0 : ( ( ) (
V21()
V22()
V23()
V27()
V28()
V29()
V30()
ext-real non
negative V50()
V51()
V52()
V53()
V54()
V55()
V56() )
Element of
NAT : ( ( ) ( non
empty V21()
V22()
V23()
V51()
V52()
V53()
V54()
V55()
V56()
V57() )
Element of
K19(
REAL : ( ( ) ( non
empty V51()
V52()
V53()
V57()
V62() )
set ) ) : ( ( ) ( )
set ) ) ) &
f3 : ( (
V6() ) (
Relation-like V6()
V34()
V35()
V36() )
PartFunc of ,)
. x : ( ( ) (
V28()
V29()
ext-real )
Real) : ( ( ) (
V28()
V29()
ext-real )
Element of
REAL : ( ( ) ( non
empty V51()
V52()
V53()
V57()
V62() )
set ) )
= x : ( ( ) (
V28()
V29()
ext-real )
Real)
/ a : ( ( ) (
V28()
V29()
ext-real )
Real) : ( ( ) (
V28()
V29()
ext-real )
Element of
REAL : ( ( ) ( non
empty V51()
V52()
V53()
V57()
V62() )
set ) ) &
f3 : ( (
V6() ) (
Relation-like V6()
V34()
V35()
V36() )
PartFunc of ,)
. x : ( ( ) (
V28()
V29()
ext-real )
Real) : ( ( ) (
V28()
V29()
ext-real )
Element of
REAL : ( ( ) ( non
empty V51()
V52()
V53()
V57()
V62() )
set ) )
> - 1 : ( ( ) ( non
empty V21()
V22()
V23()
V27()
V28()
V29()
V30()
ext-real non
negative V50()
V51()
V52()
V53()
V54()
V55()
V56() )
Element of
NAT : ( ( ) ( non
empty V21()
V22()
V23()
V51()
V52()
V53()
V54()
V55()
V56()
V57() )
Element of
K19(
REAL : ( ( ) ( non
empty V51()
V52()
V53()
V57()
V62() )
set ) ) : ( ( ) ( )
set ) ) ) : ( ( ) (
V28()
V29()
V30()
ext-real )
Element of
REAL : ( ( ) ( non
empty V51()
V52()
V53()
V57()
V62() )
set ) ) &
f3 : ( (
V6() ) (
Relation-like V6()
V34()
V35()
V36() )
PartFunc of ,)
. x : ( ( ) (
V28()
V29()
ext-real )
Real) : ( ( ) (
V28()
V29()
ext-real )
Element of
REAL : ( ( ) ( non
empty V51()
V52()
V53()
V57()
V62() )
set ) )
< 1 : ( ( ) ( non
empty V21()
V22()
V23()
V27()
V28()
V29()
V30()
ext-real non
negative V50()
V51()
V52()
V53()
V54()
V55()
V56() )
Element of
NAT : ( ( ) ( non
empty V21()
V22()
V23()
V51()
V52()
V53()
V54()
V55()
V56()
V57() )
Element of
K19(
REAL : ( ( ) ( non
empty V51()
V52()
V53()
V57()
V62() )
set ) ) : ( ( ) ( )
set ) ) ) &
x : ( ( ) (
V28()
V29()
ext-real )
Real)
<> 0 : ( ( ) (
V21()
V22()
V23()
V27()
V28()
V29()
V30()
ext-real non
negative V50()
V51()
V52()
V53()
V54()
V55()
V56() )
Element of
NAT : ( ( ) ( non
empty V21()
V22()
V23()
V51()
V52()
V53()
V54()
V55()
V56()
V57() )
Element of
K19(
REAL : ( ( ) ( non
empty V51()
V52()
V53()
V57()
V62() )
set ) ) : ( ( ) ( )
set ) ) ) &
a : ( ( ) (
V28()
V29()
ext-real )
Real)
> 0 : ( ( ) (
V21()
V22()
V23()
V27()
V28()
V29()
V30()
ext-real non
negative V50()
V51()
V52()
V53()
V54()
V55()
V56() )
Element of
NAT : ( ( ) ( non
empty V21()
V22()
V23()
V51()
V52()
V53()
V54()
V55()
V56()
V57() )
Element of
K19(
REAL : ( ( ) ( non
empty V51()
V52()
V53()
V57()
V62() )
set ) ) : ( ( ) ( )
set ) ) ) ) ) &
dom (arccos : ( ( V6() ) ( Relation-like V6() V34() V35() V36() continuous ) Element of K19(K20(REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ,REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) : ( ( ) ( Relation-like V34() V35() V36() ) set ) ) : ( ( ) ( ) set ) ) * f3 : ( ( V6() ) ( Relation-like V6() V34() V35() V36() ) PartFunc of ,) ) : ( (
V6() ) (
Relation-like V6()
V34()
V35()
V36() )
Element of
K19(
K20(
REAL : ( ( ) ( non
empty V51()
V52()
V53()
V57()
V62() )
set ) ,
REAL : ( ( ) ( non
empty V51()
V52()
V53()
V57()
V62() )
set ) ) : ( ( ) (
Relation-like V34()
V35()
V36() )
set ) ) : ( ( ) ( )
set ) ) : ( ( ) ( )
set )
= Z : ( (
open ) (
V51()
V52()
V53()
open )
Subset of ( ( ) ( )
set ) ) &
Z : ( (
open ) (
V51()
V52()
V53()
open )
Subset of ( ( ) ( )
set ) )
= dom (((id Z : ( ( open ) ( V51() V52() V53() open ) Subset of ( ( ) ( ) set ) ) ) : ( ( V6() ) ( Relation-like b3 : ( ( open ) ( V51() V52() V53() open ) Subset of ( ( ) ( ) set ) ) -defined b3 : ( ( open ) ( V51() V52() V53() open ) Subset of ( ( ) ( ) set ) ) -valued V6() total V34() V35() V36() continuous V49() ) Element of K19(K20(REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ,REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) : ( ( ) ( Relation-like V34() V35() V36() ) set ) ) : ( ( ) ( ) set ) ) (#) (arccos : ( ( V6() ) ( Relation-like V6() V34() V35() V36() continuous ) Element of K19(K20(REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ,REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) : ( ( ) ( Relation-like V34() V35() V36() ) set ) ) : ( ( ) ( ) set ) ) * f3 : ( ( V6() ) ( Relation-like V6() V34() V35() V36() ) PartFunc of ,) ) : ( ( V6() ) ( Relation-like V6() V34() V35() V36() ) Element of K19(K20(REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ,REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) : ( ( ) ( Relation-like V34() V35() V36() ) set ) ) : ( ( ) ( ) set ) ) ) : ( ( V6() ) ( Relation-like b3 : ( ( open ) ( V51() V52() V53() open ) Subset of ( ( ) ( ) set ) ) -defined V6() V34() V35() V36() ) Element of K19(K20(REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ,REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) : ( ( ) ( Relation-like V34() V35() V36() ) set ) ) : ( ( ) ( ) set ) ) - ((#R (1 : ( ( ) ( non empty V21() V22() V23() V27() V28() V29() V30() ext-real non negative V50() V51() V52() V53() V54() V55() V56() ) Element of NAT : ( ( ) ( non empty V21() V22() V23() V51() V52() V53() V54() V55() V56() V57() ) Element of K19(REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) : ( ( ) ( ) set ) ) ) / 2 : ( ( ) ( non empty V21() V22() V23() V27() V28() V29() V30() ext-real non negative V50() V51() V52() V53() V54() V55() V56() ) Element of NAT : ( ( ) ( non empty V21() V22() V23() V51() V52() V53() V54() V55() V56() V57() ) Element of K19(REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( ) ( V28() V29() ext-real ) Element of REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) ) : ( ( V6() ) ( Relation-like V6() V34() V35() V36() ) Element of K19(K20(REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ,REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) : ( ( ) ( Relation-like V34() V35() V36() ) set ) ) : ( ( ) ( ) set ) ) * f : ( ( V6() ) ( Relation-like V6() V34() V35() V36() ) PartFunc of ,) ) : ( ( V6() ) ( Relation-like V6() V34() V35() V36() ) Element of K19(K20(REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ,REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) : ( ( ) ( Relation-like V34() V35() V36() ) set ) ) : ( ( ) ( ) set ) ) ) : ( (
V6() ) (
Relation-like V6()
V34()
V35()
V36() )
Element of
K19(
K20(
REAL : ( ( ) ( non
empty V51()
V52()
V53()
V57()
V62() )
set ) ,
REAL : ( ( ) ( non
empty V51()
V52()
V53()
V57()
V62() )
set ) ) : ( ( ) (
Relation-like V34()
V35()
V36() )
set ) ) : ( ( ) ( )
set ) ) : ( ( ) ( )
set ) &
(arccos : ( ( V6() ) ( Relation-like V6() V34() V35() V36() continuous ) Element of K19(K20(REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ,REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) : ( ( ) ( Relation-like V34() V35() V36() ) set ) ) : ( ( ) ( ) set ) ) * f3 : ( ( V6() ) ( Relation-like V6() V34() V35() V36() ) PartFunc of ,) ) : ( (
V6() ) (
Relation-like V6()
V34()
V35()
V36() )
Element of
K19(
K20(
REAL : ( ( ) ( non
empty V51()
V52()
V53()
V57()
V62() )
set ) ,
REAL : ( ( ) ( non
empty V51()
V52()
V53()
V57()
V62() )
set ) ) : ( ( ) (
Relation-like V34()
V35()
V36() )
set ) ) : ( ( ) ( )
set ) )
| A : ( ( non
empty closed_interval ) ( non
empty V51()
V52()
V53()
closed_interval V76() )
Subset of ( ( ) ( )
set ) ) : ( (
V6() ) (
Relation-like V6()
V34()
V35()
V36() )
Element of
K19(
K20(
REAL : ( ( ) ( non
empty V51()
V52()
V53()
V57()
V62() )
set ) ,
REAL : ( ( ) ( non
empty V51()
V52()
V53()
V57()
V62() )
set ) ) : ( ( ) (
Relation-like V34()
V35()
V36() )
set ) ) : ( ( ) ( )
set ) ) is
continuous holds
integral (
(arccos : ( ( V6() ) ( Relation-like V6() V34() V35() V36() continuous ) Element of K19(K20(REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ,REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) : ( ( ) ( Relation-like V34() V35() V36() ) set ) ) : ( ( ) ( ) set ) ) * f3 : ( ( V6() ) ( Relation-like V6() V34() V35() V36() ) PartFunc of ,) ) : ( (
V6() ) (
Relation-like V6()
V34()
V35()
V36() )
Element of
K19(
K20(
REAL : ( ( ) ( non
empty V51()
V52()
V53()
V57()
V62() )
set ) ,
REAL : ( ( ) ( non
empty V51()
V52()
V53()
V57()
V62() )
set ) ) : ( ( ) (
Relation-like V34()
V35()
V36() )
set ) ) : ( ( ) ( )
set ) ) ,
A : ( ( non
empty closed_interval ) ( non
empty V51()
V52()
V53()
closed_interval V76() )
Subset of ( ( ) ( )
set ) ) ) : ( ( ) (
V28()
V29()
ext-real )
Element of
REAL : ( ( ) ( non
empty V51()
V52()
V53()
V57()
V62() )
set ) )
= ((((id Z : ( ( open ) ( V51() V52() V53() open ) Subset of ( ( ) ( ) set ) ) ) : ( ( V6() ) ( Relation-like b3 : ( ( open ) ( V51() V52() V53() open ) Subset of ( ( ) ( ) set ) ) -defined b3 : ( ( open ) ( V51() V52() V53() open ) Subset of ( ( ) ( ) set ) ) -valued V6() total V34() V35() V36() continuous V49() ) Element of K19(K20(REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ,REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) : ( ( ) ( Relation-like V34() V35() V36() ) set ) ) : ( ( ) ( ) set ) ) (#) (arccos : ( ( V6() ) ( Relation-like V6() V34() V35() V36() continuous ) Element of K19(K20(REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ,REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) : ( ( ) ( Relation-like V34() V35() V36() ) set ) ) : ( ( ) ( ) set ) ) * f3 : ( ( V6() ) ( Relation-like V6() V34() V35() V36() ) PartFunc of ,) ) : ( ( V6() ) ( Relation-like V6() V34() V35() V36() ) Element of K19(K20(REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ,REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) : ( ( ) ( Relation-like V34() V35() V36() ) set ) ) : ( ( ) ( ) set ) ) ) : ( ( V6() ) ( Relation-like b3 : ( ( open ) ( V51() V52() V53() open ) Subset of ( ( ) ( ) set ) ) -defined V6() V34() V35() V36() ) Element of K19(K20(REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ,REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) : ( ( ) ( Relation-like V34() V35() V36() ) set ) ) : ( ( ) ( ) set ) ) - ((#R (1 : ( ( ) ( non empty V21() V22() V23() V27() V28() V29() V30() ext-real non negative V50() V51() V52() V53() V54() V55() V56() ) Element of NAT : ( ( ) ( non empty V21() V22() V23() V51() V52() V53() V54() V55() V56() V57() ) Element of K19(REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) : ( ( ) ( ) set ) ) ) / 2 : ( ( ) ( non empty V21() V22() V23() V27() V28() V29() V30() ext-real non negative V50() V51() V52() V53() V54() V55() V56() ) Element of NAT : ( ( ) ( non empty V21() V22() V23() V51() V52() V53() V54() V55() V56() V57() ) Element of K19(REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( ) ( V28() V29() ext-real ) Element of REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) ) : ( ( V6() ) ( Relation-like V6() V34() V35() V36() ) Element of K19(K20(REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ,REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) : ( ( ) ( Relation-like V34() V35() V36() ) set ) ) : ( ( ) ( ) set ) ) * f : ( ( V6() ) ( Relation-like V6() V34() V35() V36() ) PartFunc of ,) ) : ( ( V6() ) ( Relation-like V6() V34() V35() V36() ) Element of K19(K20(REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ,REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) : ( ( ) ( Relation-like V34() V35() V36() ) set ) ) : ( ( ) ( ) set ) ) ) : ( ( V6() ) ( Relation-like V6() V34() V35() V36() ) Element of K19(K20(REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ,REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) : ( ( ) ( Relation-like V34() V35() V36() ) set ) ) : ( ( ) ( ) set ) ) . (upper_bound A : ( ( non empty closed_interval ) ( non empty V51() V52() V53() closed_interval V76() ) Subset of ( ( ) ( ) set ) ) ) : ( ( ) ( V28() V29() ext-real ) Element of REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) ) : ( ( ) (
V28()
V29()
ext-real )
Element of
REAL : ( ( ) ( non
empty V51()
V52()
V53()
V57()
V62() )
set ) )
- ((((id Z : ( ( open ) ( V51() V52() V53() open ) Subset of ( ( ) ( ) set ) ) ) : ( ( V6() ) ( Relation-like b3 : ( ( open ) ( V51() V52() V53() open ) Subset of ( ( ) ( ) set ) ) -defined b3 : ( ( open ) ( V51() V52() V53() open ) Subset of ( ( ) ( ) set ) ) -valued V6() total V34() V35() V36() continuous V49() ) Element of K19(K20(REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ,REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) : ( ( ) ( Relation-like V34() V35() V36() ) set ) ) : ( ( ) ( ) set ) ) (#) (arccos : ( ( V6() ) ( Relation-like V6() V34() V35() V36() continuous ) Element of K19(K20(REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ,REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) : ( ( ) ( Relation-like V34() V35() V36() ) set ) ) : ( ( ) ( ) set ) ) * f3 : ( ( V6() ) ( Relation-like V6() V34() V35() V36() ) PartFunc of ,) ) : ( ( V6() ) ( Relation-like V6() V34() V35() V36() ) Element of K19(K20(REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ,REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) : ( ( ) ( Relation-like V34() V35() V36() ) set ) ) : ( ( ) ( ) set ) ) ) : ( ( V6() ) ( Relation-like b3 : ( ( open ) ( V51() V52() V53() open ) Subset of ( ( ) ( ) set ) ) -defined V6() V34() V35() V36() ) Element of K19(K20(REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ,REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) : ( ( ) ( Relation-like V34() V35() V36() ) set ) ) : ( ( ) ( ) set ) ) - ((#R (1 : ( ( ) ( non empty V21() V22() V23() V27() V28() V29() V30() ext-real non negative V50() V51() V52() V53() V54() V55() V56() ) Element of NAT : ( ( ) ( non empty V21() V22() V23() V51() V52() V53() V54() V55() V56() V57() ) Element of K19(REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) : ( ( ) ( ) set ) ) ) / 2 : ( ( ) ( non empty V21() V22() V23() V27() V28() V29() V30() ext-real non negative V50() V51() V52() V53() V54() V55() V56() ) Element of NAT : ( ( ) ( non empty V21() V22() V23() V51() V52() V53() V54() V55() V56() V57() ) Element of K19(REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( ) ( V28() V29() ext-real ) Element of REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) ) : ( ( V6() ) ( Relation-like V6() V34() V35() V36() ) Element of K19(K20(REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ,REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) : ( ( ) ( Relation-like V34() V35() V36() ) set ) ) : ( ( ) ( ) set ) ) * f : ( ( V6() ) ( Relation-like V6() V34() V35() V36() ) PartFunc of ,) ) : ( ( V6() ) ( Relation-like V6() V34() V35() V36() ) Element of K19(K20(REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ,REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) : ( ( ) ( Relation-like V34() V35() V36() ) set ) ) : ( ( ) ( ) set ) ) ) : ( ( V6() ) ( Relation-like V6() V34() V35() V36() ) Element of K19(K20(REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ,REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) : ( ( ) ( Relation-like V34() V35() V36() ) set ) ) : ( ( ) ( ) set ) ) . (lower_bound A : ( ( non empty closed_interval ) ( non empty V51() V52() V53() closed_interval V76() ) Subset of ( ( ) ( ) set ) ) ) : ( ( ) ( V28() V29() ext-real ) Element of REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) ) : ( ( ) (
V28()
V29()
ext-real )
Element of
REAL : ( ( ) ( non
empty V51()
V52()
V53()
V57()
V62() )
set ) ) : ( ( ) (
V28()
V29()
ext-real )
Element of
REAL : ( ( ) ( non
empty V51()
V52()
V53()
V57()
V62() )
set ) ) ;
theorem
for
A being ( ( non
empty closed_interval ) ( non
empty V51()
V52()
V53()
closed_interval V76() )
Subset of ( ( ) ( )
set ) )
for
Z being ( (
open ) (
V51()
V52()
V53()
open )
Subset of ( ( ) ( )
set ) )
for
f2,
f1 being ( (
V6() ) (
Relation-like V6()
V34()
V35()
V36() )
PartFunc of ,) st
A : ( ( non
empty closed_interval ) ( non
empty V51()
V52()
V53()
closed_interval V76() )
Subset of ( ( ) ( )
set ) )
c= Z : ( (
open ) (
V51()
V52()
V53()
open )
Subset of ( ( ) ( )
set ) ) &
Z : ( (
open ) (
V51()
V52()
V53()
open )
Subset of ( ( ) ( )
set ) )
c= ].(- 1 : ( ( ) ( non empty V21() V22() V23() V27() V28() V29() V30() ext-real non negative V50() V51() V52() V53() V54() V55() V56() ) Element of NAT : ( ( ) ( non empty V21() V22() V23() V51() V52() V53() V54() V55() V56() V57() ) Element of K19(REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( ) ( V28() V29() V30() ext-real ) Element of REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) ,1 : ( ( ) ( non empty V21() V22() V23() V27() V28() V29() V30() ext-real non negative V50() V51() V52() V53() V54() V55() V56() ) Element of NAT : ( ( ) ( non empty V21() V22() V23() V51() V52() V53() V54() V55() V56() V57() ) Element of K19(REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) : ( ( ) ( ) set ) ) ) .[ : ( ( ) (
V51()
V52()
V53()
open )
Element of
K19(
REAL : ( ( ) ( non
empty V51()
V52()
V53()
V57()
V62() )
set ) ) : ( ( ) ( )
set ) ) &
f2 : ( (
V6() ) (
Relation-like V6()
V34()
V35()
V36() )
PartFunc of ,)
= #Z 2 : ( ( ) ( non
empty V21()
V22()
V23()
V27()
V28()
V29()
V30()
ext-real non
negative V50()
V51()
V52()
V53()
V54()
V55()
V56() )
Element of
NAT : ( ( ) ( non
empty V21()
V22()
V23()
V51()
V52()
V53()
V54()
V55()
V56()
V57() )
Element of
K19(
REAL : ( ( ) ( non
empty V51()
V52()
V53()
V57()
V62() )
set ) ) : ( ( ) ( )
set ) ) ) : ( (
V6()
V18(
REAL : ( ( ) ( non
empty V51()
V52()
V53()
V57()
V62() )
set ) ,
REAL : ( ( ) ( non
empty V51()
V52()
V53()
V57()
V62() )
set ) ) ) (
Relation-like V6() non
empty total V18(
REAL : ( ( ) ( non
empty V51()
V52()
V53()
V57()
V62() )
set ) ,
REAL : ( ( ) ( non
empty V51()
V52()
V53()
V57()
V62() )
set ) )
V34()
V35()
V36() )
Element of
K19(
K20(
REAL : ( ( ) ( non
empty V51()
V52()
V53()
V57()
V62() )
set ) ,
REAL : ( ( ) ( non
empty V51()
V52()
V53()
V57()
V62() )
set ) ) : ( ( ) (
Relation-like V34()
V35()
V36() )
set ) ) : ( ( ) ( )
set ) ) & ( for
x being ( ( ) (
V28()
V29()
ext-real )
Real) st
x : ( ( ) (
V28()
V29()
ext-real )
Real)
in Z : ( (
open ) (
V51()
V52()
V53()
open )
Subset of ( ( ) ( )
set ) ) holds
f1 : ( (
V6() ) (
Relation-like V6()
V34()
V35()
V36() )
PartFunc of ,)
. x : ( ( ) (
V28()
V29()
ext-real )
Real) : ( ( ) (
V28()
V29()
ext-real )
Element of
REAL : ( ( ) ( non
empty V51()
V52()
V53()
V57()
V62() )
set ) )
= 1 : ( ( ) ( non
empty V21()
V22()
V23()
V27()
V28()
V29()
V30()
ext-real non
negative V50()
V51()
V52()
V53()
V54()
V55()
V56() )
Element of
NAT : ( ( ) ( non
empty V21()
V22()
V23()
V51()
V52()
V53()
V54()
V55()
V56()
V57() )
Element of
K19(
REAL : ( ( ) ( non
empty V51()
V52()
V53()
V57()
V62() )
set ) ) : ( ( ) ( )
set ) ) ) ) &
Z : ( (
open ) (
V51()
V52()
V53()
open )
Subset of ( ( ) ( )
set ) )
= dom arctan : ( (
V6() ) (
Relation-like V6()
V34()
V35()
V36() )
Element of
K19(
K20(
REAL : ( ( ) ( non
empty V51()
V52()
V53()
V57()
V62() )
set ) ,
REAL : ( ( ) ( non
empty V51()
V52()
V53()
V57()
V62() )
set ) ) : ( ( ) (
Relation-like V34()
V35()
V36() )
set ) ) : ( ( ) ( )
set ) ) : ( ( ) ( )
set ) &
Z : ( (
open ) (
V51()
V52()
V53()
open )
Subset of ( ( ) ( )
set ) )
= dom (((id Z : ( ( open ) ( V51() V52() V53() open ) Subset of ( ( ) ( ) set ) ) ) : ( ( V6() ) ( Relation-like b2 : ( ( open ) ( V51() V52() V53() open ) Subset of ( ( ) ( ) set ) ) -defined b2 : ( ( open ) ( V51() V52() V53() open ) Subset of ( ( ) ( ) set ) ) -valued V6() total V34() V35() V36() continuous V49() ) Element of K19(K20(REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ,REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) : ( ( ) ( Relation-like V34() V35() V36() ) set ) ) : ( ( ) ( ) set ) ) (#) arctan : ( ( V6() ) ( Relation-like V6() V34() V35() V36() ) Element of K19(K20(REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ,REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) : ( ( ) ( Relation-like V34() V35() V36() ) set ) ) : ( ( ) ( ) set ) ) ) : ( ( V6() ) ( Relation-like b2 : ( ( open ) ( V51() V52() V53() open ) Subset of ( ( ) ( ) set ) ) -defined V6() V34() V35() V36() ) Element of K19(K20(REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ,REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) : ( ( ) ( Relation-like V34() V35() V36() ) set ) ) : ( ( ) ( ) set ) ) - ((1 : ( ( ) ( non empty V21() V22() V23() V27() V28() V29() V30() ext-real non negative V50() V51() V52() V53() V54() V55() V56() ) Element of NAT : ( ( ) ( non empty V21() V22() V23() V51() V52() V53() V54() V55() V56() V57() ) Element of K19(REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) : ( ( ) ( ) set ) ) ) / 2 : ( ( ) ( non empty V21() V22() V23() V27() V28() V29() V30() ext-real non negative V50() V51() V52() V53() V54() V55() V56() ) Element of NAT : ( ( ) ( non empty V21() V22() V23() V51() V52() V53() V54() V55() V56() V57() ) Element of K19(REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( ) ( V28() V29() ext-real ) Element of REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) (#) (ln : ( ( V6() ) ( Relation-like V6() V34() V35() V36() ) Element of K19(K20(REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ,REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) : ( ( ) ( Relation-like V34() V35() V36() ) set ) ) : ( ( ) ( ) set ) ) * (f1 : ( ( V6() ) ( Relation-like V6() V34() V35() V36() ) PartFunc of ,) + f2 : ( ( V6() ) ( Relation-like V6() V34() V35() V36() ) PartFunc of ,) ) : ( ( V6() ) ( Relation-like V6() V34() V35() V36() ) Element of K19(K20(REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ,REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) : ( ( ) ( Relation-like V34() V35() V36() ) set ) ) : ( ( ) ( ) set ) ) ) : ( ( V6() ) ( Relation-like V6() V34() V35() V36() ) Element of K19(K20(REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ,REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) : ( ( ) ( Relation-like V34() V35() V36() ) set ) ) : ( ( ) ( ) set ) ) ) : ( ( V6() ) ( Relation-like V6() V34() V35() V36() ) Element of K19(K20(REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ,REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) : ( ( ) ( Relation-like V34() V35() V36() ) set ) ) : ( ( ) ( ) set ) ) ) : ( (
V6() ) (
Relation-like V6()
V34()
V35()
V36() )
Element of
K19(
K20(
REAL : ( ( ) ( non
empty V51()
V52()
V53()
V57()
V62() )
set ) ,
REAL : ( ( ) ( non
empty V51()
V52()
V53()
V57()
V62() )
set ) ) : ( ( ) (
Relation-like V34()
V35()
V36() )
set ) ) : ( ( ) ( )
set ) ) : ( ( ) ( )
set ) holds
integral (
arctan : ( (
V6() ) (
Relation-like V6()
V34()
V35()
V36() )
Element of
K19(
K20(
REAL : ( ( ) ( non
empty V51()
V52()
V53()
V57()
V62() )
set ) ,
REAL : ( ( ) ( non
empty V51()
V52()
V53()
V57()
V62() )
set ) ) : ( ( ) (
Relation-like V34()
V35()
V36() )
set ) ) : ( ( ) ( )
set ) ) ,
A : ( ( non
empty closed_interval ) ( non
empty V51()
V52()
V53()
closed_interval V76() )
Subset of ( ( ) ( )
set ) ) ) : ( ( ) (
V28()
V29()
ext-real )
Element of
REAL : ( ( ) ( non
empty V51()
V52()
V53()
V57()
V62() )
set ) )
= ((((id Z : ( ( open ) ( V51() V52() V53() open ) Subset of ( ( ) ( ) set ) ) ) : ( ( V6() ) ( Relation-like b2 : ( ( open ) ( V51() V52() V53() open ) Subset of ( ( ) ( ) set ) ) -defined b2 : ( ( open ) ( V51() V52() V53() open ) Subset of ( ( ) ( ) set ) ) -valued V6() total V34() V35() V36() continuous V49() ) Element of K19(K20(REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ,REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) : ( ( ) ( Relation-like V34() V35() V36() ) set ) ) : ( ( ) ( ) set ) ) (#) arctan : ( ( V6() ) ( Relation-like V6() V34() V35() V36() ) Element of K19(K20(REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ,REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) : ( ( ) ( Relation-like V34() V35() V36() ) set ) ) : ( ( ) ( ) set ) ) ) : ( ( V6() ) ( Relation-like b2 : ( ( open ) ( V51() V52() V53() open ) Subset of ( ( ) ( ) set ) ) -defined V6() V34() V35() V36() ) Element of K19(K20(REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ,REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) : ( ( ) ( Relation-like V34() V35() V36() ) set ) ) : ( ( ) ( ) set ) ) - ((1 : ( ( ) ( non empty V21() V22() V23() V27() V28() V29() V30() ext-real non negative V50() V51() V52() V53() V54() V55() V56() ) Element of NAT : ( ( ) ( non empty V21() V22() V23() V51() V52() V53() V54() V55() V56() V57() ) Element of K19(REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) : ( ( ) ( ) set ) ) ) / 2 : ( ( ) ( non empty V21() V22() V23() V27() V28() V29() V30() ext-real non negative V50() V51() V52() V53() V54() V55() V56() ) Element of NAT : ( ( ) ( non empty V21() V22() V23() V51() V52() V53() V54() V55() V56() V57() ) Element of K19(REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( ) ( V28() V29() ext-real ) Element of REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) (#) (ln : ( ( V6() ) ( Relation-like V6() V34() V35() V36() ) Element of K19(K20(REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ,REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) : ( ( ) ( Relation-like V34() V35() V36() ) set ) ) : ( ( ) ( ) set ) ) * (f1 : ( ( V6() ) ( Relation-like V6() V34() V35() V36() ) PartFunc of ,) + f2 : ( ( V6() ) ( Relation-like V6() V34() V35() V36() ) PartFunc of ,) ) : ( ( V6() ) ( Relation-like V6() V34() V35() V36() ) Element of K19(K20(REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ,REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) : ( ( ) ( Relation-like V34() V35() V36() ) set ) ) : ( ( ) ( ) set ) ) ) : ( ( V6() ) ( Relation-like V6() V34() V35() V36() ) Element of K19(K20(REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ,REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) : ( ( ) ( Relation-like V34() V35() V36() ) set ) ) : ( ( ) ( ) set ) ) ) : ( ( V6() ) ( Relation-like V6() V34() V35() V36() ) Element of K19(K20(REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ,REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) : ( ( ) ( Relation-like V34() V35() V36() ) set ) ) : ( ( ) ( ) set ) ) ) : ( ( V6() ) ( Relation-like V6() V34() V35() V36() ) Element of K19(K20(REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ,REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) : ( ( ) ( Relation-like V34() V35() V36() ) set ) ) : ( ( ) ( ) set ) ) . (upper_bound A : ( ( non empty closed_interval ) ( non empty V51() V52() V53() closed_interval V76() ) Subset of ( ( ) ( ) set ) ) ) : ( ( ) ( V28() V29() ext-real ) Element of REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) ) : ( ( ) (
V28()
V29()
ext-real )
Element of
REAL : ( ( ) ( non
empty V51()
V52()
V53()
V57()
V62() )
set ) )
- ((((id Z : ( ( open ) ( V51() V52() V53() open ) Subset of ( ( ) ( ) set ) ) ) : ( ( V6() ) ( Relation-like b2 : ( ( open ) ( V51() V52() V53() open ) Subset of ( ( ) ( ) set ) ) -defined b2 : ( ( open ) ( V51() V52() V53() open ) Subset of ( ( ) ( ) set ) ) -valued V6() total V34() V35() V36() continuous V49() ) Element of K19(K20(REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ,REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) : ( ( ) ( Relation-like V34() V35() V36() ) set ) ) : ( ( ) ( ) set ) ) (#) arctan : ( ( V6() ) ( Relation-like V6() V34() V35() V36() ) Element of K19(K20(REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ,REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) : ( ( ) ( Relation-like V34() V35() V36() ) set ) ) : ( ( ) ( ) set ) ) ) : ( ( V6() ) ( Relation-like b2 : ( ( open ) ( V51() V52() V53() open ) Subset of ( ( ) ( ) set ) ) -defined V6() V34() V35() V36() ) Element of K19(K20(REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ,REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) : ( ( ) ( Relation-like V34() V35() V36() ) set ) ) : ( ( ) ( ) set ) ) - ((1 : ( ( ) ( non empty V21() V22() V23() V27() V28() V29() V30() ext-real non negative V50() V51() V52() V53() V54() V55() V56() ) Element of NAT : ( ( ) ( non empty V21() V22() V23() V51() V52() V53() V54() V55() V56() V57() ) Element of K19(REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) : ( ( ) ( ) set ) ) ) / 2 : ( ( ) ( non empty V21() V22() V23() V27() V28() V29() V30() ext-real non negative V50() V51() V52() V53() V54() V55() V56() ) Element of NAT : ( ( ) ( non empty V21() V22() V23() V51() V52() V53() V54() V55() V56() V57() ) Element of K19(REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( ) ( V28() V29() ext-real ) Element of REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) (#) (ln : ( ( V6() ) ( Relation-like V6() V34() V35() V36() ) Element of K19(K20(REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ,REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) : ( ( ) ( Relation-like V34() V35() V36() ) set ) ) : ( ( ) ( ) set ) ) * (f1 : ( ( V6() ) ( Relation-like V6() V34() V35() V36() ) PartFunc of ,) + f2 : ( ( V6() ) ( Relation-like V6() V34() V35() V36() ) PartFunc of ,) ) : ( ( V6() ) ( Relation-like V6() V34() V35() V36() ) Element of K19(K20(REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ,REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) : ( ( ) ( Relation-like V34() V35() V36() ) set ) ) : ( ( ) ( ) set ) ) ) : ( ( V6() ) ( Relation-like V6() V34() V35() V36() ) Element of K19(K20(REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ,REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) : ( ( ) ( Relation-like V34() V35() V36() ) set ) ) : ( ( ) ( ) set ) ) ) : ( ( V6() ) ( Relation-like V6() V34() V35() V36() ) Element of K19(K20(REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ,REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) : ( ( ) ( Relation-like V34() V35() V36() ) set ) ) : ( ( ) ( ) set ) ) ) : ( ( V6() ) ( Relation-like V6() V34() V35() V36() ) Element of K19(K20(REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ,REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) : ( ( ) ( Relation-like V34() V35() V36() ) set ) ) : ( ( ) ( ) set ) ) . (lower_bound A : ( ( non empty closed_interval ) ( non empty V51() V52() V53() closed_interval V76() ) Subset of ( ( ) ( ) set ) ) ) : ( ( ) ( V28() V29() ext-real ) Element of REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) ) : ( ( ) (
V28()
V29()
ext-real )
Element of
REAL : ( ( ) ( non
empty V51()
V52()
V53()
V57()
V62() )
set ) ) : ( ( ) (
V28()
V29()
ext-real )
Element of
REAL : ( ( ) ( non
empty V51()
V52()
V53()
V57()
V62() )
set ) ) ;
theorem
for
A being ( ( non
empty closed_interval ) ( non
empty V51()
V52()
V53()
closed_interval V76() )
Subset of ( ( ) ( )
set ) )
for
Z being ( (
open ) (
V51()
V52()
V53()
open )
Subset of ( ( ) ( )
set ) )
for
f2,
f1 being ( (
V6() ) (
Relation-like V6()
V34()
V35()
V36() )
PartFunc of ,) st
A : ( ( non
empty closed_interval ) ( non
empty V51()
V52()
V53()
closed_interval V76() )
Subset of ( ( ) ( )
set ) )
c= Z : ( (
open ) (
V51()
V52()
V53()
open )
Subset of ( ( ) ( )
set ) ) &
Z : ( (
open ) (
V51()
V52()
V53()
open )
Subset of ( ( ) ( )
set ) )
c= ].(- 1 : ( ( ) ( non empty V21() V22() V23() V27() V28() V29() V30() ext-real non negative V50() V51() V52() V53() V54() V55() V56() ) Element of NAT : ( ( ) ( non empty V21() V22() V23() V51() V52() V53() V54() V55() V56() V57() ) Element of K19(REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( ) ( V28() V29() V30() ext-real ) Element of REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) ,1 : ( ( ) ( non empty V21() V22() V23() V27() V28() V29() V30() ext-real non negative V50() V51() V52() V53() V54() V55() V56() ) Element of NAT : ( ( ) ( non empty V21() V22() V23() V51() V52() V53() V54() V55() V56() V57() ) Element of K19(REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) : ( ( ) ( ) set ) ) ) .[ : ( ( ) (
V51()
V52()
V53()
open )
Element of
K19(
REAL : ( ( ) ( non
empty V51()
V52()
V53()
V57()
V62() )
set ) ) : ( ( ) ( )
set ) ) &
f2 : ( (
V6() ) (
Relation-like V6()
V34()
V35()
V36() )
PartFunc of ,)
= #Z 2 : ( ( ) ( non
empty V21()
V22()
V23()
V27()
V28()
V29()
V30()
ext-real non
negative V50()
V51()
V52()
V53()
V54()
V55()
V56() )
Element of
NAT : ( ( ) ( non
empty V21()
V22()
V23()
V51()
V52()
V53()
V54()
V55()
V56()
V57() )
Element of
K19(
REAL : ( ( ) ( non
empty V51()
V52()
V53()
V57()
V62() )
set ) ) : ( ( ) ( )
set ) ) ) : ( (
V6()
V18(
REAL : ( ( ) ( non
empty V51()
V52()
V53()
V57()
V62() )
set ) ,
REAL : ( ( ) ( non
empty V51()
V52()
V53()
V57()
V62() )
set ) ) ) (
Relation-like V6() non
empty total V18(
REAL : ( ( ) ( non
empty V51()
V52()
V53()
V57()
V62() )
set ) ,
REAL : ( ( ) ( non
empty V51()
V52()
V53()
V57()
V62() )
set ) )
V34()
V35()
V36() )
Element of
K19(
K20(
REAL : ( ( ) ( non
empty V51()
V52()
V53()
V57()
V62() )
set ) ,
REAL : ( ( ) ( non
empty V51()
V52()
V53()
V57()
V62() )
set ) ) : ( ( ) (
Relation-like V34()
V35()
V36() )
set ) ) : ( ( ) ( )
set ) ) & ( for
x being ( ( ) (
V28()
V29()
ext-real )
Real) st
x : ( ( ) (
V28()
V29()
ext-real )
Real)
in Z : ( (
open ) (
V51()
V52()
V53()
open )
Subset of ( ( ) ( )
set ) ) holds
f1 : ( (
V6() ) (
Relation-like V6()
V34()
V35()
V36() )
PartFunc of ,)
. x : ( ( ) (
V28()
V29()
ext-real )
Real) : ( ( ) (
V28()
V29()
ext-real )
Element of
REAL : ( ( ) ( non
empty V51()
V52()
V53()
V57()
V62() )
set ) )
= 1 : ( ( ) ( non
empty V21()
V22()
V23()
V27()
V28()
V29()
V30()
ext-real non
negative V50()
V51()
V52()
V53()
V54()
V55()
V56() )
Element of
NAT : ( ( ) ( non
empty V21()
V22()
V23()
V51()
V52()
V53()
V54()
V55()
V56()
V57() )
Element of
K19(
REAL : ( ( ) ( non
empty V51()
V52()
V53()
V57()
V62() )
set ) ) : ( ( ) ( )
set ) ) ) ) &
dom arccot : ( (
V6() ) (
Relation-like V6()
V34()
V35()
V36() )
Element of
K19(
K20(
REAL : ( ( ) ( non
empty V51()
V52()
V53()
V57()
V62() )
set ) ,
REAL : ( ( ) ( non
empty V51()
V52()
V53()
V57()
V62() )
set ) ) : ( ( ) (
Relation-like V34()
V35()
V36() )
set ) ) : ( ( ) ( )
set ) ) : ( ( ) ( )
set )
= Z : ( (
open ) (
V51()
V52()
V53()
open )
Subset of ( ( ) ( )
set ) ) &
Z : ( (
open ) (
V51()
V52()
V53()
open )
Subset of ( ( ) ( )
set ) )
= dom (((id Z : ( ( open ) ( V51() V52() V53() open ) Subset of ( ( ) ( ) set ) ) ) : ( ( V6() ) ( Relation-like b2 : ( ( open ) ( V51() V52() V53() open ) Subset of ( ( ) ( ) set ) ) -defined b2 : ( ( open ) ( V51() V52() V53() open ) Subset of ( ( ) ( ) set ) ) -valued V6() total V34() V35() V36() continuous V49() ) Element of K19(K20(REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ,REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) : ( ( ) ( Relation-like V34() V35() V36() ) set ) ) : ( ( ) ( ) set ) ) (#) arccot : ( ( V6() ) ( Relation-like V6() V34() V35() V36() ) Element of K19(K20(REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ,REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) : ( ( ) ( Relation-like V34() V35() V36() ) set ) ) : ( ( ) ( ) set ) ) ) : ( ( V6() ) ( Relation-like b2 : ( ( open ) ( V51() V52() V53() open ) Subset of ( ( ) ( ) set ) ) -defined V6() V34() V35() V36() ) Element of K19(K20(REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ,REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) : ( ( ) ( Relation-like V34() V35() V36() ) set ) ) : ( ( ) ( ) set ) ) + ((1 : ( ( ) ( non empty V21() V22() V23() V27() V28() V29() V30() ext-real non negative V50() V51() V52() V53() V54() V55() V56() ) Element of NAT : ( ( ) ( non empty V21() V22() V23() V51() V52() V53() V54() V55() V56() V57() ) Element of K19(REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) : ( ( ) ( ) set ) ) ) / 2 : ( ( ) ( non empty V21() V22() V23() V27() V28() V29() V30() ext-real non negative V50() V51() V52() V53() V54() V55() V56() ) Element of NAT : ( ( ) ( non empty V21() V22() V23() V51() V52() V53() V54() V55() V56() V57() ) Element of K19(REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( ) ( V28() V29() ext-real ) Element of REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) (#) (ln : ( ( V6() ) ( Relation-like V6() V34() V35() V36() ) Element of K19(K20(REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ,REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) : ( ( ) ( Relation-like V34() V35() V36() ) set ) ) : ( ( ) ( ) set ) ) * (f1 : ( ( V6() ) ( Relation-like V6() V34() V35() V36() ) PartFunc of ,) + f2 : ( ( V6() ) ( Relation-like V6() V34() V35() V36() ) PartFunc of ,) ) : ( ( V6() ) ( Relation-like V6() V34() V35() V36() ) Element of K19(K20(REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ,REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) : ( ( ) ( Relation-like V34() V35() V36() ) set ) ) : ( ( ) ( ) set ) ) ) : ( ( V6() ) ( Relation-like V6() V34() V35() V36() ) Element of K19(K20(REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ,REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) : ( ( ) ( Relation-like V34() V35() V36() ) set ) ) : ( ( ) ( ) set ) ) ) : ( ( V6() ) ( Relation-like V6() V34() V35() V36() ) Element of K19(K20(REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ,REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) : ( ( ) ( Relation-like V34() V35() V36() ) set ) ) : ( ( ) ( ) set ) ) ) : ( (
V6() ) (
Relation-like b2 : ( (
open ) (
V51()
V52()
V53()
open )
Subset of ( ( ) ( )
set ) )
-defined V6()
V34()
V35()
V36() )
Element of
K19(
K20(
REAL : ( ( ) ( non
empty V51()
V52()
V53()
V57()
V62() )
set ) ,
REAL : ( ( ) ( non
empty V51()
V52()
V53()
V57()
V62() )
set ) ) : ( ( ) (
Relation-like V34()
V35()
V36() )
set ) ) : ( ( ) ( )
set ) ) : ( ( ) ( )
set ) holds
integral (
arccot : ( (
V6() ) (
Relation-like V6()
V34()
V35()
V36() )
Element of
K19(
K20(
REAL : ( ( ) ( non
empty V51()
V52()
V53()
V57()
V62() )
set ) ,
REAL : ( ( ) ( non
empty V51()
V52()
V53()
V57()
V62() )
set ) ) : ( ( ) (
Relation-like V34()
V35()
V36() )
set ) ) : ( ( ) ( )
set ) ) ,
A : ( ( non
empty closed_interval ) ( non
empty V51()
V52()
V53()
closed_interval V76() )
Subset of ( ( ) ( )
set ) ) ) : ( ( ) (
V28()
V29()
ext-real )
Element of
REAL : ( ( ) ( non
empty V51()
V52()
V53()
V57()
V62() )
set ) )
= ((((id Z : ( ( open ) ( V51() V52() V53() open ) Subset of ( ( ) ( ) set ) ) ) : ( ( V6() ) ( Relation-like b2 : ( ( open ) ( V51() V52() V53() open ) Subset of ( ( ) ( ) set ) ) -defined b2 : ( ( open ) ( V51() V52() V53() open ) Subset of ( ( ) ( ) set ) ) -valued V6() total V34() V35() V36() continuous V49() ) Element of K19(K20(REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ,REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) : ( ( ) ( Relation-like V34() V35() V36() ) set ) ) : ( ( ) ( ) set ) ) (#) arccot : ( ( V6() ) ( Relation-like V6() V34() V35() V36() ) Element of K19(K20(REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ,REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) : ( ( ) ( Relation-like V34() V35() V36() ) set ) ) : ( ( ) ( ) set ) ) ) : ( ( V6() ) ( Relation-like b2 : ( ( open ) ( V51() V52() V53() open ) Subset of ( ( ) ( ) set ) ) -defined V6() V34() V35() V36() ) Element of K19(K20(REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ,REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) : ( ( ) ( Relation-like V34() V35() V36() ) set ) ) : ( ( ) ( ) set ) ) + ((1 : ( ( ) ( non empty V21() V22() V23() V27() V28() V29() V30() ext-real non negative V50() V51() V52() V53() V54() V55() V56() ) Element of NAT : ( ( ) ( non empty V21() V22() V23() V51() V52() V53() V54() V55() V56() V57() ) Element of K19(REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) : ( ( ) ( ) set ) ) ) / 2 : ( ( ) ( non empty V21() V22() V23() V27() V28() V29() V30() ext-real non negative V50() V51() V52() V53() V54() V55() V56() ) Element of NAT : ( ( ) ( non empty V21() V22() V23() V51() V52() V53() V54() V55() V56() V57() ) Element of K19(REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( ) ( V28() V29() ext-real ) Element of REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) (#) (ln : ( ( V6() ) ( Relation-like V6() V34() V35() V36() ) Element of K19(K20(REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ,REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) : ( ( ) ( Relation-like V34() V35() V36() ) set ) ) : ( ( ) ( ) set ) ) * (f1 : ( ( V6() ) ( Relation-like V6() V34() V35() V36() ) PartFunc of ,) + f2 : ( ( V6() ) ( Relation-like V6() V34() V35() V36() ) PartFunc of ,) ) : ( ( V6() ) ( Relation-like V6() V34() V35() V36() ) Element of K19(K20(REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ,REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) : ( ( ) ( Relation-like V34() V35() V36() ) set ) ) : ( ( ) ( ) set ) ) ) : ( ( V6() ) ( Relation-like V6() V34() V35() V36() ) Element of K19(K20(REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ,REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) : ( ( ) ( Relation-like V34() V35() V36() ) set ) ) : ( ( ) ( ) set ) ) ) : ( ( V6() ) ( Relation-like V6() V34() V35() V36() ) Element of K19(K20(REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ,REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) : ( ( ) ( Relation-like V34() V35() V36() ) set ) ) : ( ( ) ( ) set ) ) ) : ( ( V6() ) ( Relation-like b2 : ( ( open ) ( V51() V52() V53() open ) Subset of ( ( ) ( ) set ) ) -defined V6() V34() V35() V36() ) Element of K19(K20(REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ,REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) : ( ( ) ( Relation-like V34() V35() V36() ) set ) ) : ( ( ) ( ) set ) ) . (upper_bound A : ( ( non empty closed_interval ) ( non empty V51() V52() V53() closed_interval V76() ) Subset of ( ( ) ( ) set ) ) ) : ( ( ) ( V28() V29() ext-real ) Element of REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) ) : ( ( ) (
V28()
V29()
ext-real )
Element of
REAL : ( ( ) ( non
empty V51()
V52()
V53()
V57()
V62() )
set ) )
- ((((id Z : ( ( open ) ( V51() V52() V53() open ) Subset of ( ( ) ( ) set ) ) ) : ( ( V6() ) ( Relation-like b2 : ( ( open ) ( V51() V52() V53() open ) Subset of ( ( ) ( ) set ) ) -defined b2 : ( ( open ) ( V51() V52() V53() open ) Subset of ( ( ) ( ) set ) ) -valued V6() total V34() V35() V36() continuous V49() ) Element of K19(K20(REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ,REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) : ( ( ) ( Relation-like V34() V35() V36() ) set ) ) : ( ( ) ( ) set ) ) (#) arccot : ( ( V6() ) ( Relation-like V6() V34() V35() V36() ) Element of K19(K20(REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ,REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) : ( ( ) ( Relation-like V34() V35() V36() ) set ) ) : ( ( ) ( ) set ) ) ) : ( ( V6() ) ( Relation-like b2 : ( ( open ) ( V51() V52() V53() open ) Subset of ( ( ) ( ) set ) ) -defined V6() V34() V35() V36() ) Element of K19(K20(REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ,REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) : ( ( ) ( Relation-like V34() V35() V36() ) set ) ) : ( ( ) ( ) set ) ) + ((1 : ( ( ) ( non empty V21() V22() V23() V27() V28() V29() V30() ext-real non negative V50() V51() V52() V53() V54() V55() V56() ) Element of NAT : ( ( ) ( non empty V21() V22() V23() V51() V52() V53() V54() V55() V56() V57() ) Element of K19(REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) : ( ( ) ( ) set ) ) ) / 2 : ( ( ) ( non empty V21() V22() V23() V27() V28() V29() V30() ext-real non negative V50() V51() V52() V53() V54() V55() V56() ) Element of NAT : ( ( ) ( non empty V21() V22() V23() V51() V52() V53() V54() V55() V56() V57() ) Element of K19(REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) : ( ( ) ( ) set ) ) ) ) : ( ( ) ( V28() V29() ext-real ) Element of REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) (#) (ln : ( ( V6() ) ( Relation-like V6() V34() V35() V36() ) Element of K19(K20(REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ,REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) : ( ( ) ( Relation-like V34() V35() V36() ) set ) ) : ( ( ) ( ) set ) ) * (f1 : ( ( V6() ) ( Relation-like V6() V34() V35() V36() ) PartFunc of ,) + f2 : ( ( V6() ) ( Relation-like V6() V34() V35() V36() ) PartFunc of ,) ) : ( ( V6() ) ( Relation-like V6() V34() V35() V36() ) Element of K19(K20(REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ,REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) : ( ( ) ( Relation-like V34() V35() V36() ) set ) ) : ( ( ) ( ) set ) ) ) : ( ( V6() ) ( Relation-like V6() V34() V35() V36() ) Element of K19(K20(REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ,REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) : ( ( ) ( Relation-like V34() V35() V36() ) set ) ) : ( ( ) ( ) set ) ) ) : ( ( V6() ) ( Relation-like V6() V34() V35() V36() ) Element of K19(K20(REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ,REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) : ( ( ) ( Relation-like V34() V35() V36() ) set ) ) : ( ( ) ( ) set ) ) ) : ( ( V6() ) ( Relation-like b2 : ( ( open ) ( V51() V52() V53() open ) Subset of ( ( ) ( ) set ) ) -defined V6() V34() V35() V36() ) Element of K19(K20(REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ,REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) : ( ( ) ( Relation-like V34() V35() V36() ) set ) ) : ( ( ) ( ) set ) ) . (lower_bound A : ( ( non empty closed_interval ) ( non empty V51() V52() V53() closed_interval V76() ) Subset of ( ( ) ( ) set ) ) ) : ( ( ) ( V28() V29() ext-real ) Element of REAL : ( ( ) ( non empty V51() V52() V53() V57() V62() ) set ) ) ) : ( ( ) (
V28()
V29()
ext-real )
Element of
REAL : ( ( ) ( non
empty V51()
V52()
V53()
V57()
V62() )
set ) ) : ( ( ) (
V28()
V29()
ext-real )
Element of
REAL : ( ( ) ( non
empty V51()
V52()
V53()
V57()
V62() )
set ) ) ;