:: WAYBEL_4 semantic presentation

begin

definition
let L be ( ( non empty reflexive ) ( non empty reflexive ) RelStr ) ;
func L -waybelow -> ( ( ) ( Relation-like ) Relation of ) means :: WAYBEL_4:def 1
for x, y being ( ( ) ( ) Element of ( ( ) ( ) set ) ) holds
( [x : ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) ,y : ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) ] : ( ( ) ( ) Element of [: the carrier of L : ( ( ) ( ) 1-sorted ) : ( ( ) ( ) set ) , the carrier of L : ( ( ) ( ) 1-sorted ) : ( ( ) ( ) set ) :] : ( ( ) ( Relation-like ) set ) ) in it : ( ( ) ( ) NetStr over L : ( ( ) ( ) 1-sorted ) ) iff x : ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) << y : ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) );
end;

definition
let L be ( ( ) ( ) RelStr ) ;
func IntRel L -> ( ( ) ( Relation-like ) Relation of ) equals :: WAYBEL_4:def 2
the InternalRel of L : ( ( ) ( ) 1-sorted ) : ( ( ) ( Relation-like ) Element of bool [: the carrier of L : ( ( ) ( ) 1-sorted ) : ( ( ) ( ) set ) , the carrier of L : ( ( ) ( ) 1-sorted ) : ( ( ) ( ) set ) :] : ( ( ) ( Relation-like ) set ) : ( ( ) ( non empty ) set ) ) ;
end;

definition
let L be ( ( ) ( ) RelStr ) ;
let R be ( ( ) ( Relation-like ) Relation of ) ;
attr R is auxiliary(i) means :: WAYBEL_4:def 3
for x, y being ( ( ) ( ) Element of ( ( ) ( ) set ) ) st [x : ( ( ) ( ) Element of ( ( ) ( ) set ) ) ,y : ( ( ) ( ) Element of ( ( ) ( ) set ) ) ] : ( ( ) ( ) set ) in R : ( ( ) ( ) NetStr over L : ( ( ) ( ) 1-sorted ) ) holds
x : ( ( ) ( ) Element of ( ( ) ( ) set ) ) <= y : ( ( ) ( ) Element of ( ( ) ( ) set ) ) ;
attr R is auxiliary(ii) means :: WAYBEL_4:def 4
for x, y, z, u being ( ( ) ( ) Element of ( ( ) ( ) set ) ) st u : ( ( ) ( ) Element of ( ( ) ( ) set ) ) <= x : ( ( ) ( ) Element of ( ( ) ( ) set ) ) & [x : ( ( ) ( ) Element of ( ( ) ( ) set ) ) ,y : ( ( ) ( ) Element of ( ( ) ( ) set ) ) ] : ( ( ) ( ) set ) in R : ( ( ) ( ) NetStr over L : ( ( ) ( ) 1-sorted ) ) & y : ( ( ) ( ) Element of ( ( ) ( ) set ) ) <= z : ( ( ) ( ) Element of ( ( ) ( ) set ) ) holds
[u : ( ( ) ( ) Element of ( ( ) ( ) set ) ) ,z : ( ( ) ( ) Element of ( ( ) ( ) set ) ) ] : ( ( ) ( ) set ) in R : ( ( ) ( ) NetStr over L : ( ( ) ( ) 1-sorted ) ) ;
end;

definition
let L be ( ( non empty ) ( non empty ) RelStr ) ;
let R be ( ( ) ( Relation-like ) Relation of ) ;
attr R is auxiliary(iii) means :: WAYBEL_4:def 5
for x, y, z being ( ( ) ( ) Element of ( ( ) ( ) set ) ) st [x : ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) ,z : ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) ] : ( ( ) ( ) Element of [: the carrier of L : ( ( ) ( ) 1-sorted ) : ( ( ) ( ) set ) , the carrier of L : ( ( ) ( ) 1-sorted ) : ( ( ) ( ) set ) :] : ( ( ) ( Relation-like ) set ) ) in R : ( ( ) ( ) NetStr over L : ( ( ) ( ) 1-sorted ) ) & [y : ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) ,z : ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) ] : ( ( ) ( ) Element of [: the carrier of L : ( ( ) ( ) 1-sorted ) : ( ( ) ( ) set ) , the carrier of L : ( ( ) ( ) 1-sorted ) : ( ( ) ( ) set ) :] : ( ( ) ( Relation-like ) set ) ) in R : ( ( ) ( ) NetStr over L : ( ( ) ( ) 1-sorted ) ) holds
[(x : ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) "\/" y : ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) ) : ( ( ) ( ) Element of the carrier of L : ( ( ) ( ) 1-sorted ) : ( ( ) ( ) set ) ) ,z : ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) ] : ( ( ) ( ) Element of [: the carrier of L : ( ( ) ( ) 1-sorted ) : ( ( ) ( ) set ) , the carrier of L : ( ( ) ( ) 1-sorted ) : ( ( ) ( ) set ) :] : ( ( ) ( Relation-like ) set ) ) in R : ( ( ) ( ) NetStr over L : ( ( ) ( ) 1-sorted ) ) ;
attr R is auxiliary(iv) means :: WAYBEL_4:def 6
for x being ( ( ) ( ) Element of ( ( ) ( ) set ) ) holds [(Bottom L : ( ( ) ( ) 1-sorted ) ) : ( ( ) ( ) Element of the carrier of L : ( ( ) ( ) 1-sorted ) : ( ( ) ( ) set ) ) ,x : ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) ] : ( ( ) ( ) Element of [: the carrier of L : ( ( ) ( ) 1-sorted ) : ( ( ) ( ) set ) , the carrier of L : ( ( ) ( ) 1-sorted ) : ( ( ) ( ) set ) :] : ( ( ) ( Relation-like ) set ) ) in R : ( ( ) ( ) NetStr over L : ( ( ) ( ) 1-sorted ) ) ;
end;

definition
let L be ( ( non empty ) ( non empty ) RelStr ) ;
let R be ( ( ) ( Relation-like ) Relation of ) ;
attr R is auxiliary means :: WAYBEL_4:def 7
( R : ( ( ) ( ) NetStr over L : ( ( ) ( ) 1-sorted ) ) is auxiliary(i) & R : ( ( ) ( ) NetStr over L : ( ( ) ( ) 1-sorted ) ) is auxiliary(ii) & R : ( ( ) ( ) NetStr over L : ( ( ) ( ) 1-sorted ) ) is auxiliary(iii) & R : ( ( ) ( ) NetStr over L : ( ( ) ( ) 1-sorted ) ) is auxiliary(iv) );
end;

registration
let L be ( ( non empty ) ( non empty ) RelStr ) ;
cluster auxiliary -> auxiliary(i) auxiliary(ii) auxiliary(iii) auxiliary(iv) for ( ( ) ( ) Element of bool [: the carrier of L : ( ( ) ( ) 1-sorted ) : ( ( ) ( ) set ) , the carrier of L : ( ( ) ( ) 1-sorted ) : ( ( ) ( ) set ) :] : ( ( ) ( Relation-like ) set ) : ( ( ) ( non empty ) set ) ) ;
cluster auxiliary(i) auxiliary(ii) auxiliary(iii) auxiliary(iv) -> auxiliary for ( ( ) ( ) Element of bool [: the carrier of L : ( ( ) ( ) 1-sorted ) : ( ( ) ( ) set ) , the carrier of L : ( ( ) ( ) 1-sorted ) : ( ( ) ( ) set ) :] : ( ( ) ( Relation-like ) set ) : ( ( ) ( non empty ) set ) ) ;
end;

registration
let L be ( ( transitive antisymmetric lower-bounded with_suprema ) ( non empty transitive antisymmetric lower-bounded with_suprema ) RelStr ) ;
cluster Relation-like auxiliary for ( ( ) ( ) Element of bool [: the carrier of L : ( ( transitive antisymmetric lower-bounded with_suprema ) ( non empty transitive antisymmetric lower-bounded with_suprema ) RelStr ) : ( ( ) ( non empty ) set ) , the carrier of L : ( ( transitive antisymmetric lower-bounded with_suprema ) ( non empty transitive antisymmetric lower-bounded with_suprema ) RelStr ) : ( ( ) ( non empty ) set ) :] : ( ( ) ( non empty Relation-like ) set ) : ( ( ) ( non empty ) set ) ) ;
end;

theorem :: WAYBEL_4:1
for L being ( ( reflexive transitive antisymmetric lower-bounded with_suprema ) ( non empty reflexive transitive antisymmetric lower-bounded with_suprema ) sup-Semilattice)
for AR being ( ( auxiliary(ii) auxiliary(iii) ) ( Relation-like auxiliary(ii) auxiliary(iii) ) Relation of )
for x, y, z, u being ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) st [x : ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) ,z : ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) ] : ( ( ) ( ) Element of [: the carrier of b1 : ( ( reflexive transitive antisymmetric lower-bounded with_suprema ) ( non empty reflexive transitive antisymmetric lower-bounded with_suprema ) sup-Semilattice) : ( ( ) ( non empty ) set ) , the carrier of b1 : ( ( reflexive transitive antisymmetric lower-bounded with_suprema ) ( non empty reflexive transitive antisymmetric lower-bounded with_suprema ) sup-Semilattice) : ( ( ) ( non empty ) set ) :] : ( ( ) ( non empty Relation-like ) set ) ) in AR : ( ( auxiliary(ii) auxiliary(iii) ) ( Relation-like auxiliary(ii) auxiliary(iii) ) Relation of ) & [y : ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) ,u : ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) ] : ( ( ) ( ) Element of [: the carrier of b1 : ( ( reflexive transitive antisymmetric lower-bounded with_suprema ) ( non empty reflexive transitive antisymmetric lower-bounded with_suprema ) sup-Semilattice) : ( ( ) ( non empty ) set ) , the carrier of b1 : ( ( reflexive transitive antisymmetric lower-bounded with_suprema ) ( non empty reflexive transitive antisymmetric lower-bounded with_suprema ) sup-Semilattice) : ( ( ) ( non empty ) set ) :] : ( ( ) ( non empty Relation-like ) set ) ) in AR : ( ( auxiliary(ii) auxiliary(iii) ) ( Relation-like auxiliary(ii) auxiliary(iii) ) Relation of ) holds
[(x : ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) "\/" y : ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) ) : ( ( ) ( ) Element of the carrier of b1 : ( ( reflexive transitive antisymmetric lower-bounded with_suprema ) ( non empty reflexive transitive antisymmetric lower-bounded with_suprema ) sup-Semilattice) : ( ( ) ( non empty ) set ) ) ,(z : ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) "\/" u : ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) ) : ( ( ) ( ) Element of the carrier of b1 : ( ( reflexive transitive antisymmetric lower-bounded with_suprema ) ( non empty reflexive transitive antisymmetric lower-bounded with_suprema ) sup-Semilattice) : ( ( ) ( non empty ) set ) ) ] : ( ( ) ( ) Element of [: the carrier of b1 : ( ( reflexive transitive antisymmetric lower-bounded with_suprema ) ( non empty reflexive transitive antisymmetric lower-bounded with_suprema ) sup-Semilattice) : ( ( ) ( non empty ) set ) , the carrier of b1 : ( ( reflexive transitive antisymmetric lower-bounded with_suprema ) ( non empty reflexive transitive antisymmetric lower-bounded with_suprema ) sup-Semilattice) : ( ( ) ( non empty ) set ) :] : ( ( ) ( non empty Relation-like ) set ) ) in AR : ( ( auxiliary(ii) auxiliary(iii) ) ( Relation-like auxiliary(ii) auxiliary(iii) ) Relation of ) ;

registration
let L be ( ( reflexive transitive antisymmetric lower-bounded with_suprema ) ( non empty reflexive transitive antisymmetric lower-bounded with_suprema ) sup-Semilattice) ;
cluster auxiliary(i) auxiliary(ii) -> transitive for ( ( ) ( ) Element of bool [: the carrier of L : ( ( transitive antisymmetric lower-bounded with_suprema ) ( non empty transitive antisymmetric lower-bounded with_suprema ) RelStr ) : ( ( ) ( non empty ) set ) , the carrier of L : ( ( transitive antisymmetric lower-bounded with_suprema ) ( non empty transitive antisymmetric lower-bounded with_suprema ) RelStr ) : ( ( ) ( non empty ) set ) :] : ( ( ) ( non empty Relation-like ) set ) : ( ( ) ( non empty ) set ) ) ;
end;

registration
let L be ( ( ) ( ) RelStr ) ;
cluster IntRel L : ( ( ) ( ) RelStr ) : ( ( ) ( Relation-like ) Relation of ) -> auxiliary(i) ;
end;

registration
let L be ( ( transitive ) ( transitive ) RelStr ) ;
cluster IntRel L : ( ( transitive ) ( transitive ) RelStr ) : ( ( ) ( Relation-like auxiliary(i) ) Relation of ) -> auxiliary(ii) ;
end;

registration
let L be ( ( antisymmetric with_suprema ) ( non empty antisymmetric with_suprema ) RelStr ) ;
cluster IntRel L : ( ( antisymmetric with_suprema ) ( non empty antisymmetric with_suprema ) RelStr ) : ( ( ) ( Relation-like auxiliary(i) ) Relation of ) -> auxiliary(iii) ;
end;

registration
let L be ( ( non empty antisymmetric lower-bounded ) ( non empty antisymmetric lower-bounded ) RelStr ) ;
cluster IntRel L : ( ( non empty antisymmetric lower-bounded ) ( non empty antisymmetric lower-bounded ) RelStr ) : ( ( ) ( Relation-like auxiliary(i) ) Relation of ) -> auxiliary(iv) ;
end;

definition
let L be ( ( reflexive transitive antisymmetric lower-bounded with_suprema ) ( non empty reflexive transitive antisymmetric lower-bounded with_suprema ) sup-Semilattice) ;
func Aux L -> ( ( ) ( ) set ) means :: WAYBEL_4:def 8
for a being ( ( ) ( ) set ) holds
( a : ( ( ) ( ) set ) in it : ( ( non empty ) ( non empty ) set ) iff a : ( ( ) ( ) set ) is ( ( auxiliary ) ( Relation-like transitive auxiliary(i) auxiliary(ii) auxiliary(iii) auxiliary(iv) auxiliary ) Relation of ) );
end;

registration
let L be ( ( reflexive transitive antisymmetric lower-bounded with_suprema ) ( non empty reflexive transitive antisymmetric lower-bounded with_suprema ) sup-Semilattice) ;
cluster Aux L : ( ( reflexive transitive antisymmetric lower-bounded with_suprema ) ( non empty reflexive transitive antisymmetric lower-bounded with_suprema ) RelStr ) : ( ( ) ( ) set ) -> non empty ;
end;

theorem :: WAYBEL_4:2
for L being ( ( reflexive transitive antisymmetric lower-bounded with_suprema ) ( non empty reflexive transitive antisymmetric lower-bounded with_suprema ) sup-Semilattice)
for AR being ( ( auxiliary(i) ) ( Relation-like auxiliary(i) ) Relation of ) holds AR : ( ( auxiliary(i) ) ( Relation-like auxiliary(i) ) Relation of ) c= IntRel L : ( ( reflexive transitive antisymmetric lower-bounded with_suprema ) ( non empty reflexive transitive antisymmetric lower-bounded with_suprema ) sup-Semilattice) : ( ( ) ( Relation-like transitive auxiliary(i) auxiliary(ii) auxiliary(iii) auxiliary(iv) auxiliary ) Relation of ) ;

theorem :: WAYBEL_4:3
for L being ( ( reflexive transitive antisymmetric lower-bounded with_suprema ) ( non empty reflexive transitive antisymmetric lower-bounded with_suprema ) sup-Semilattice) holds Top (InclPoset (Aux L : ( ( reflexive transitive antisymmetric lower-bounded with_suprema ) ( non empty reflexive transitive antisymmetric lower-bounded with_suprema ) sup-Semilattice) ) : ( ( ) ( non empty ) set ) ) : ( ( strict ) ( non empty strict reflexive transitive antisymmetric ) RelStr ) : ( ( ) ( ) Element of the carrier of (InclPoset (Aux b1 : ( ( reflexive transitive antisymmetric lower-bounded with_suprema ) ( non empty reflexive transitive antisymmetric lower-bounded with_suprema ) sup-Semilattice) ) : ( ( ) ( non empty ) set ) ) : ( ( strict ) ( non empty strict reflexive transitive antisymmetric ) RelStr ) : ( ( ) ( non empty ) set ) ) = IntRel L : ( ( reflexive transitive antisymmetric lower-bounded with_suprema ) ( non empty reflexive transitive antisymmetric lower-bounded with_suprema ) sup-Semilattice) : ( ( ) ( Relation-like transitive auxiliary(i) auxiliary(ii) auxiliary(iii) auxiliary(iv) auxiliary ) Relation of ) ;

registration
let L be ( ( reflexive transitive antisymmetric lower-bounded with_suprema ) ( non empty reflexive transitive antisymmetric lower-bounded with_suprema ) sup-Semilattice) ;
cluster InclPoset (Aux L : ( ( reflexive transitive antisymmetric lower-bounded with_suprema ) ( non empty reflexive transitive antisymmetric lower-bounded with_suprema ) RelStr ) ) : ( ( ) ( non empty ) set ) : ( ( strict ) ( non empty strict reflexive transitive antisymmetric ) RelStr ) -> strict upper-bounded ;
end;

definition
let L be ( ( non empty ) ( non empty ) RelStr ) ;
func AuxBottom L -> ( ( ) ( Relation-like ) Relation of ) means :: WAYBEL_4:def 9
for x, y being ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) holds
( [x : ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) ,y : ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) ] : ( ( ) ( ) Element of [: the carrier of L : ( ( transitive antisymmetric lower-bounded with_suprema ) ( non empty transitive antisymmetric lower-bounded with_suprema ) RelStr ) : ( ( ) ( non empty ) set ) , the carrier of L : ( ( transitive antisymmetric lower-bounded with_suprema ) ( non empty transitive antisymmetric lower-bounded with_suprema ) RelStr ) : ( ( ) ( non empty ) set ) :] : ( ( ) ( non empty Relation-like ) set ) ) in it : ( ( non empty ) ( non empty ) set ) iff x : ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) = Bottom L : ( ( transitive antisymmetric lower-bounded with_suprema ) ( non empty transitive antisymmetric lower-bounded with_suprema ) RelStr ) : ( ( ) ( ) Element of the carrier of L : ( ( transitive antisymmetric lower-bounded with_suprema ) ( non empty transitive antisymmetric lower-bounded with_suprema ) RelStr ) : ( ( ) ( non empty ) set ) ) );
end;

registration
let L be ( ( reflexive transitive antisymmetric lower-bounded with_suprema ) ( non empty reflexive transitive antisymmetric lower-bounded with_suprema ) sup-Semilattice) ;
cluster AuxBottom L : ( ( reflexive transitive antisymmetric lower-bounded with_suprema ) ( non empty reflexive transitive antisymmetric lower-bounded with_suprema ) RelStr ) : ( ( ) ( Relation-like ) Relation of ) -> auxiliary ;
end;

theorem :: WAYBEL_4:4
for L being ( ( reflexive transitive antisymmetric lower-bounded with_suprema ) ( non empty reflexive transitive antisymmetric lower-bounded with_suprema ) sup-Semilattice)
for AR being ( ( auxiliary(iv) ) ( Relation-like auxiliary(iv) ) Relation of ) holds AuxBottom L : ( ( reflexive transitive antisymmetric lower-bounded with_suprema ) ( non empty reflexive transitive antisymmetric lower-bounded with_suprema ) sup-Semilattice) : ( ( ) ( Relation-like transitive auxiliary(i) auxiliary(ii) auxiliary(iii) auxiliary(iv) auxiliary ) Relation of ) c= AR : ( ( auxiliary(iv) ) ( Relation-like auxiliary(iv) ) Relation of ) ;

theorem :: WAYBEL_4:5
for L being ( ( reflexive transitive antisymmetric lower-bounded with_suprema ) ( non empty reflexive transitive antisymmetric lower-bounded with_suprema ) sup-Semilattice) holds Bottom (InclPoset (Aux L : ( ( reflexive transitive antisymmetric lower-bounded with_suprema ) ( non empty reflexive transitive antisymmetric lower-bounded with_suprema ) sup-Semilattice) ) : ( ( ) ( non empty ) set ) ) : ( ( strict ) ( non empty strict reflexive transitive antisymmetric upper-bounded ) RelStr ) : ( ( ) ( ) Element of the carrier of (InclPoset (Aux b1 : ( ( reflexive transitive antisymmetric lower-bounded with_suprema ) ( non empty reflexive transitive antisymmetric lower-bounded with_suprema ) sup-Semilattice) ) : ( ( ) ( non empty ) set ) ) : ( ( strict ) ( non empty strict reflexive transitive antisymmetric upper-bounded ) RelStr ) : ( ( ) ( non empty ) set ) ) = AuxBottom L : ( ( reflexive transitive antisymmetric lower-bounded with_suprema ) ( non empty reflexive transitive antisymmetric lower-bounded with_suprema ) sup-Semilattice) : ( ( ) ( Relation-like transitive auxiliary(i) auxiliary(ii) auxiliary(iii) auxiliary(iv) auxiliary ) Relation of ) ;

registration
let L be ( ( reflexive transitive antisymmetric lower-bounded with_suprema ) ( non empty reflexive transitive antisymmetric lower-bounded with_suprema ) sup-Semilattice) ;
cluster InclPoset (Aux L : ( ( reflexive transitive antisymmetric lower-bounded with_suprema ) ( non empty reflexive transitive antisymmetric lower-bounded with_suprema ) RelStr ) ) : ( ( ) ( non empty ) set ) : ( ( strict ) ( non empty strict reflexive transitive antisymmetric upper-bounded ) RelStr ) -> strict lower-bounded ;
end;

theorem :: WAYBEL_4:6
for L being ( ( reflexive transitive antisymmetric lower-bounded with_suprema ) ( non empty reflexive transitive antisymmetric lower-bounded with_suprema ) sup-Semilattice)
for a, b being ( ( auxiliary(i) ) ( Relation-like auxiliary(i) ) Relation of ) holds a : ( ( auxiliary(i) ) ( Relation-like auxiliary(i) ) Relation of ) /\ b : ( ( auxiliary(i) ) ( Relation-like auxiliary(i) ) Relation of ) : ( ( ) ( Relation-like ) Element of bool [: the carrier of b1 : ( ( reflexive transitive antisymmetric lower-bounded with_suprema ) ( non empty reflexive transitive antisymmetric lower-bounded with_suprema ) sup-Semilattice) : ( ( ) ( non empty ) set ) , the carrier of b1 : ( ( reflexive transitive antisymmetric lower-bounded with_suprema ) ( non empty reflexive transitive antisymmetric lower-bounded with_suprema ) sup-Semilattice) : ( ( ) ( non empty ) set ) :] : ( ( ) ( non empty Relation-like ) set ) : ( ( ) ( non empty ) set ) ) is ( ( auxiliary(i) ) ( Relation-like auxiliary(i) ) Relation of ) ;

theorem :: WAYBEL_4:7
for L being ( ( reflexive transitive antisymmetric lower-bounded with_suprema ) ( non empty reflexive transitive antisymmetric lower-bounded with_suprema ) sup-Semilattice)
for a, b being ( ( auxiliary(ii) ) ( Relation-like auxiliary(ii) ) Relation of ) holds a : ( ( auxiliary(ii) ) ( Relation-like auxiliary(ii) ) Relation of ) /\ b : ( ( auxiliary(ii) ) ( Relation-like auxiliary(ii) ) Relation of ) : ( ( ) ( Relation-like ) Element of bool [: the carrier of b1 : ( ( reflexive transitive antisymmetric lower-bounded with_suprema ) ( non empty reflexive transitive antisymmetric lower-bounded with_suprema ) sup-Semilattice) : ( ( ) ( non empty ) set ) , the carrier of b1 : ( ( reflexive transitive antisymmetric lower-bounded with_suprema ) ( non empty reflexive transitive antisymmetric lower-bounded with_suprema ) sup-Semilattice) : ( ( ) ( non empty ) set ) :] : ( ( ) ( non empty Relation-like ) set ) : ( ( ) ( non empty ) set ) ) is ( ( auxiliary(ii) ) ( Relation-like auxiliary(ii) ) Relation of ) ;

theorem :: WAYBEL_4:8
for L being ( ( reflexive transitive antisymmetric lower-bounded with_suprema ) ( non empty reflexive transitive antisymmetric lower-bounded with_suprema ) sup-Semilattice)
for a, b being ( ( auxiliary(iii) ) ( Relation-like auxiliary(iii) ) Relation of ) holds a : ( ( auxiliary(iii) ) ( Relation-like auxiliary(iii) ) Relation of ) /\ b : ( ( auxiliary(iii) ) ( Relation-like auxiliary(iii) ) Relation of ) : ( ( ) ( Relation-like ) Element of bool [: the carrier of b1 : ( ( reflexive transitive antisymmetric lower-bounded with_suprema ) ( non empty reflexive transitive antisymmetric lower-bounded with_suprema ) sup-Semilattice) : ( ( ) ( non empty ) set ) , the carrier of b1 : ( ( reflexive transitive antisymmetric lower-bounded with_suprema ) ( non empty reflexive transitive antisymmetric lower-bounded with_suprema ) sup-Semilattice) : ( ( ) ( non empty ) set ) :] : ( ( ) ( non empty Relation-like ) set ) : ( ( ) ( non empty ) set ) ) is ( ( auxiliary(iii) ) ( Relation-like auxiliary(iii) ) Relation of ) ;

theorem :: WAYBEL_4:9
for L being ( ( reflexive transitive antisymmetric lower-bounded with_suprema ) ( non empty reflexive transitive antisymmetric lower-bounded with_suprema ) sup-Semilattice)
for a, b being ( ( auxiliary(iv) ) ( Relation-like auxiliary(iv) ) Relation of ) holds a : ( ( auxiliary(iv) ) ( Relation-like auxiliary(iv) ) Relation of ) /\ b : ( ( auxiliary(iv) ) ( Relation-like auxiliary(iv) ) Relation of ) : ( ( ) ( Relation-like ) Element of bool [: the carrier of b1 : ( ( reflexive transitive antisymmetric lower-bounded with_suprema ) ( non empty reflexive transitive antisymmetric lower-bounded with_suprema ) sup-Semilattice) : ( ( ) ( non empty ) set ) , the carrier of b1 : ( ( reflexive transitive antisymmetric lower-bounded with_suprema ) ( non empty reflexive transitive antisymmetric lower-bounded with_suprema ) sup-Semilattice) : ( ( ) ( non empty ) set ) :] : ( ( ) ( non empty Relation-like ) set ) : ( ( ) ( non empty ) set ) ) is ( ( auxiliary(iv) ) ( Relation-like auxiliary(iv) ) Relation of ) ;

theorem :: WAYBEL_4:10
for L being ( ( reflexive transitive antisymmetric lower-bounded with_suprema ) ( non empty reflexive transitive antisymmetric lower-bounded with_suprema ) sup-Semilattice)
for a, b being ( ( auxiliary ) ( Relation-like transitive auxiliary(i) auxiliary(ii) auxiliary(iii) auxiliary(iv) auxiliary ) Relation of ) holds a : ( ( auxiliary ) ( Relation-like transitive auxiliary(i) auxiliary(ii) auxiliary(iii) auxiliary(iv) auxiliary ) Relation of ) /\ b : ( ( auxiliary ) ( Relation-like transitive auxiliary(i) auxiliary(ii) auxiliary(iii) auxiliary(iv) auxiliary ) Relation of ) : ( ( ) ( Relation-like ) Element of bool [: the carrier of b1 : ( ( reflexive transitive antisymmetric lower-bounded with_suprema ) ( non empty reflexive transitive antisymmetric lower-bounded with_suprema ) sup-Semilattice) : ( ( ) ( non empty ) set ) , the carrier of b1 : ( ( reflexive transitive antisymmetric lower-bounded with_suprema ) ( non empty reflexive transitive antisymmetric lower-bounded with_suprema ) sup-Semilattice) : ( ( ) ( non empty ) set ) :] : ( ( ) ( non empty Relation-like ) set ) : ( ( ) ( non empty ) set ) ) is ( ( auxiliary ) ( Relation-like transitive auxiliary(i) auxiliary(ii) auxiliary(iii) auxiliary(iv) auxiliary ) Relation of ) ;

theorem :: WAYBEL_4:11
for L being ( ( reflexive transitive antisymmetric lower-bounded with_suprema ) ( non empty reflexive transitive antisymmetric lower-bounded with_suprema ) sup-Semilattice)
for X being ( ( non empty ) ( non empty ) Subset of ) holds meet X : ( ( non empty ) ( non empty ) Subset of ) : ( ( ) ( ) set ) is ( ( auxiliary ) ( Relation-like transitive auxiliary(i) auxiliary(ii) auxiliary(iii) auxiliary(iv) auxiliary ) Relation of ) ;

registration
let L be ( ( reflexive transitive antisymmetric lower-bounded with_suprema ) ( non empty reflexive transitive antisymmetric lower-bounded with_suprema ) sup-Semilattice) ;
cluster InclPoset (Aux L : ( ( reflexive transitive antisymmetric lower-bounded with_suprema ) ( non empty reflexive transitive antisymmetric lower-bounded with_suprema ) RelStr ) ) : ( ( ) ( non empty ) set ) : ( ( strict ) ( non empty strict reflexive transitive antisymmetric lower-bounded upper-bounded V152() ) RelStr ) -> strict with_infima ;
end;

registration
let L be ( ( reflexive transitive antisymmetric lower-bounded with_suprema ) ( non empty reflexive transitive antisymmetric lower-bounded with_suprema ) sup-Semilattice) ;
cluster InclPoset (Aux L : ( ( reflexive transitive antisymmetric lower-bounded with_suprema ) ( non empty reflexive transitive antisymmetric lower-bounded with_suprema ) RelStr ) ) : ( ( ) ( non empty ) set ) : ( ( strict ) ( non empty strict reflexive transitive antisymmetric lower-bounded upper-bounded V152() with_infima ) RelStr ) -> strict complete ;
end;

definition
let L be ( ( non empty ) ( non empty ) RelStr ) ;
let x be ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) ;
let AR be ( ( ) ( Relation-like ) Relation of ) ;
func AR -below x -> ( ( ) ( ) Subset of ) equals :: WAYBEL_4:def 10
{ y : ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) where y is ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) : [y : ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) ,x : ( ( non empty ) ( non empty ) set ) ] : ( ( ) ( ) Element of [: the carrier of L : ( ( transitive antisymmetric lower-bounded with_suprema ) ( non empty transitive antisymmetric lower-bounded with_suprema ) RelStr ) : ( ( ) ( non empty ) set ) , the carrier of L : ( ( transitive antisymmetric lower-bounded with_suprema ) ( non empty transitive antisymmetric lower-bounded with_suprema ) RelStr ) : ( ( ) ( non empty ) set ) :] : ( ( ) ( non empty Relation-like ) set ) ) in AR : ( ( ) ( Relation-like ) Element of bool [:x : ( ( non empty ) ( non empty ) set ) ,x : ( ( non empty ) ( non empty ) set ) :] : ( ( ) ( non empty Relation-like ) set ) : ( ( ) ( non empty ) set ) ) } ;
func AR -above x -> ( ( ) ( ) Subset of ) equals :: WAYBEL_4:def 11
{ y : ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) where y is ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) : [x : ( ( non empty ) ( non empty ) set ) ,y : ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) ] : ( ( ) ( ) Element of [: the carrier of L : ( ( transitive antisymmetric lower-bounded with_suprema ) ( non empty transitive antisymmetric lower-bounded with_suprema ) RelStr ) : ( ( ) ( non empty ) set ) , the carrier of L : ( ( transitive antisymmetric lower-bounded with_suprema ) ( non empty transitive antisymmetric lower-bounded with_suprema ) RelStr ) : ( ( ) ( non empty ) set ) :] : ( ( ) ( non empty Relation-like ) set ) ) in AR : ( ( ) ( Relation-like ) Element of bool [:x : ( ( non empty ) ( non empty ) set ) ,x : ( ( non empty ) ( non empty ) set ) :] : ( ( ) ( non empty Relation-like ) set ) : ( ( ) ( non empty ) set ) ) } ;
end;

theorem :: WAYBEL_4:12
for L being ( ( reflexive transitive antisymmetric lower-bounded with_suprema ) ( non empty reflexive transitive antisymmetric lower-bounded with_suprema ) sup-Semilattice)
for x being ( ( ) ( ) Element of ( ( ) ( non empty ) set ) )
for AR being ( ( auxiliary(i) ) ( Relation-like auxiliary(i) ) Relation of ) holds AR : ( ( auxiliary(i) ) ( Relation-like auxiliary(i) ) Relation of ) -below x : ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) : ( ( ) ( ) Subset of ) c= downarrow x : ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) : ( ( ) ( non empty directed lower ) Element of bool the carrier of b1 : ( ( reflexive transitive antisymmetric lower-bounded with_suprema ) ( non empty reflexive transitive antisymmetric lower-bounded with_suprema ) sup-Semilattice) : ( ( ) ( non empty ) set ) : ( ( ) ( non empty ) set ) ) ;

registration
let L be ( ( reflexive transitive antisymmetric lower-bounded with_suprema ) ( non empty reflexive transitive antisymmetric lower-bounded with_suprema ) sup-Semilattice) ;
let x be ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) ;
let AR be ( ( auxiliary(iv) ) ( Relation-like auxiliary(iv) ) Relation of ) ;
cluster AR : ( ( auxiliary(iv) ) ( Relation-like auxiliary(iv) ) Element of bool [: the carrier of L : ( ( reflexive transitive antisymmetric lower-bounded with_suprema ) ( non empty reflexive transitive antisymmetric lower-bounded with_suprema ) RelStr ) : ( ( ) ( non empty ) set ) , the carrier of L : ( ( reflexive transitive antisymmetric lower-bounded with_suprema ) ( non empty reflexive transitive antisymmetric lower-bounded with_suprema ) RelStr ) : ( ( ) ( non empty ) set ) :] : ( ( ) ( non empty Relation-like ) set ) : ( ( ) ( non empty ) set ) ) -below x : ( ( ) ( ) Element of the carrier of L : ( ( reflexive transitive antisymmetric lower-bounded with_suprema ) ( non empty reflexive transitive antisymmetric lower-bounded with_suprema ) RelStr ) : ( ( ) ( non empty ) set ) ) : ( ( ) ( ) Subset of ) -> non empty ;
end;

registration
let L be ( ( reflexive transitive antisymmetric lower-bounded with_suprema ) ( non empty reflexive transitive antisymmetric lower-bounded with_suprema ) sup-Semilattice) ;
let x be ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) ;
let AR be ( ( auxiliary(ii) ) ( Relation-like auxiliary(ii) ) Relation of ) ;
cluster AR : ( ( auxiliary(ii) ) ( Relation-like auxiliary(ii) ) Element of bool [: the carrier of L : ( ( reflexive transitive antisymmetric lower-bounded with_suprema ) ( non empty reflexive transitive antisymmetric lower-bounded with_suprema ) RelStr ) : ( ( ) ( non empty ) set ) , the carrier of L : ( ( reflexive transitive antisymmetric lower-bounded with_suprema ) ( non empty reflexive transitive antisymmetric lower-bounded with_suprema ) RelStr ) : ( ( ) ( non empty ) set ) :] : ( ( ) ( non empty Relation-like ) set ) : ( ( ) ( non empty ) set ) ) -below x : ( ( ) ( ) Element of the carrier of L : ( ( reflexive transitive antisymmetric lower-bounded with_suprema ) ( non empty reflexive transitive antisymmetric lower-bounded with_suprema ) RelStr ) : ( ( ) ( non empty ) set ) ) : ( ( ) ( ) Subset of ) -> lower ;
end;

registration
let L be ( ( reflexive transitive antisymmetric lower-bounded with_suprema ) ( non empty reflexive transitive antisymmetric lower-bounded with_suprema ) sup-Semilattice) ;
let x be ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) ;
let AR be ( ( auxiliary(iii) ) ( Relation-like auxiliary(iii) ) Relation of ) ;
cluster AR : ( ( auxiliary(iii) ) ( Relation-like auxiliary(iii) ) Element of bool [: the carrier of L : ( ( reflexive transitive antisymmetric lower-bounded with_suprema ) ( non empty reflexive transitive antisymmetric lower-bounded with_suprema ) RelStr ) : ( ( ) ( non empty ) set ) , the carrier of L : ( ( reflexive transitive antisymmetric lower-bounded with_suprema ) ( non empty reflexive transitive antisymmetric lower-bounded with_suprema ) RelStr ) : ( ( ) ( non empty ) set ) :] : ( ( ) ( non empty Relation-like ) set ) : ( ( ) ( non empty ) set ) ) -below x : ( ( ) ( ) Element of the carrier of L : ( ( reflexive transitive antisymmetric lower-bounded with_suprema ) ( non empty reflexive transitive antisymmetric lower-bounded with_suprema ) RelStr ) : ( ( ) ( non empty ) set ) ) : ( ( ) ( ) Subset of ) -> directed ;
end;

definition
let L be ( ( reflexive transitive antisymmetric lower-bounded with_suprema ) ( non empty reflexive transitive antisymmetric lower-bounded with_suprema ) sup-Semilattice) ;
let AR be ( ( auxiliary(ii) auxiliary(iii) auxiliary(iv) ) ( Relation-like auxiliary(ii) auxiliary(iii) auxiliary(iv) ) Relation of ) ;
func AR -below -> ( ( Function-like quasi_total ) ( non empty Relation-like Function-like total quasi_total ) Function of ( ( ) ( non empty ) set ) , ( ( ) ( ) set ) ) means :: WAYBEL_4:def 12
for x being ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) holds it : ( ( auxiliary(iii) ) ( Relation-like auxiliary(iii) ) Element of bool [: the carrier of L : ( ( transitive antisymmetric lower-bounded with_suprema ) ( non empty transitive antisymmetric lower-bounded with_suprema ) RelStr ) : ( ( ) ( non empty ) set ) , the carrier of L : ( ( transitive antisymmetric lower-bounded with_suprema ) ( non empty transitive antisymmetric lower-bounded with_suprema ) RelStr ) : ( ( ) ( non empty ) set ) :] : ( ( ) ( non empty Relation-like ) set ) : ( ( ) ( non empty ) set ) ) . x : ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) : ( ( ) ( ) Element of the carrier of (InclPoset (Ids L : ( ( transitive antisymmetric lower-bounded with_suprema ) ( non empty transitive antisymmetric lower-bounded with_suprema ) RelStr ) ) : ( ( ) ( ) set ) ) : ( ( strict ) ( strict reflexive transitive antisymmetric ) RelStr ) : ( ( ) ( ) set ) ) = AR : ( ( non empty ) ( non empty ) set ) -below x : ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) : ( ( ) ( ) Subset of ) ;
end;

theorem :: WAYBEL_4:13
for L being ( ( non empty ) ( non empty ) RelStr )
for AR being ( ( ) ( Relation-like ) Relation of )
for a being ( ( ) ( ) set )
for y being ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) holds
( a : ( ( ) ( ) set ) in AR : ( ( ) ( Relation-like ) Relation of ) -below y : ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) : ( ( ) ( ) Subset of ) iff [a : ( ( ) ( ) set ) ,y : ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) ] : ( ( ) ( ) set ) in AR : ( ( ) ( Relation-like ) Relation of ) ) ;

theorem :: WAYBEL_4:14
for a being ( ( ) ( ) set )
for L being ( ( reflexive transitive antisymmetric with_suprema ) ( non empty reflexive transitive antisymmetric with_suprema ) sup-Semilattice)
for AR being ( ( ) ( Relation-like ) Relation of )
for y being ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) holds
( a : ( ( ) ( ) set ) in AR : ( ( ) ( Relation-like ) Relation of ) -above y : ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) : ( ( ) ( ) Subset of ) iff [y : ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) ,a : ( ( ) ( ) set ) ] : ( ( ) ( ) set ) in AR : ( ( ) ( Relation-like ) Relation of ) ) ;

theorem :: WAYBEL_4:15
for L being ( ( reflexive transitive antisymmetric lower-bounded with_suprema ) ( non empty reflexive transitive antisymmetric lower-bounded with_suprema ) sup-Semilattice)
for AR being ( ( auxiliary(i) ) ( Relation-like auxiliary(i) ) Relation of )
for x being ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) st AR : ( ( auxiliary(i) ) ( Relation-like auxiliary(i) ) Relation of ) = the InternalRel of L : ( ( reflexive transitive antisymmetric lower-bounded with_suprema ) ( non empty reflexive transitive antisymmetric lower-bounded with_suprema ) sup-Semilattice) : ( ( ) ( Relation-like ) Element of bool [: the carrier of b1 : ( ( reflexive transitive antisymmetric lower-bounded with_suprema ) ( non empty reflexive transitive antisymmetric lower-bounded with_suprema ) sup-Semilattice) : ( ( ) ( non empty ) set ) , the carrier of b1 : ( ( reflexive transitive antisymmetric lower-bounded with_suprema ) ( non empty reflexive transitive antisymmetric lower-bounded with_suprema ) sup-Semilattice) : ( ( ) ( non empty ) set ) :] : ( ( ) ( non empty Relation-like ) set ) : ( ( ) ( non empty ) set ) ) holds
AR : ( ( auxiliary(i) ) ( Relation-like auxiliary(i) ) Relation of ) -below x : ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) : ( ( ) ( ) Subset of ) = downarrow x : ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) : ( ( ) ( non empty directed lower ) Element of bool the carrier of b1 : ( ( reflexive transitive antisymmetric lower-bounded with_suprema ) ( non empty reflexive transitive antisymmetric lower-bounded with_suprema ) sup-Semilattice) : ( ( ) ( non empty ) set ) : ( ( ) ( non empty ) set ) ) ;

definition
let L be ( ( non empty reflexive transitive antisymmetric ) ( non empty reflexive transitive antisymmetric ) Poset) ;
func MonSet L -> ( ( strict ) ( strict ) RelStr ) means :: WAYBEL_4:def 13
for a being ( ( ) ( ) set ) holds
( ( a : ( ( ) ( ) set ) in the carrier of it : ( ( non empty ) ( non empty ) set ) : ( ( ) ( ) set ) implies ex s being ( ( Function-like quasi_total ) ( non empty Relation-like Function-like total quasi_total ) Function of ( ( ) ( non empty ) set ) , ( ( ) ( ) set ) ) st
( a : ( ( ) ( ) set ) = s : ( ( ) ( ) set ) & s : ( ( ) ( ) set ) is monotone & ( for x being ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) holds s : ( ( ) ( ) set ) . x : ( ( ) ( ) set ) : ( ( ) ( ) Element of the carrier of (InclPoset (Ids L : ( ( transitive antisymmetric lower-bounded with_suprema ) ( non empty transitive antisymmetric lower-bounded with_suprema ) RelStr ) ) : ( ( ) ( ) set ) ) : ( ( strict ) ( strict reflexive transitive antisymmetric ) RelStr ) : ( ( ) ( ) set ) ) c= downarrow x : ( ( ) ( ) set ) : ( ( ) ( ) Element of bool the carrier of L : ( ( transitive antisymmetric lower-bounded with_suprema ) ( non empty transitive antisymmetric lower-bounded with_suprema ) RelStr ) : ( ( ) ( non empty ) set ) : ( ( ) ( non empty ) set ) ) ) ) ) & ( ex s being ( ( Function-like quasi_total ) ( non empty Relation-like Function-like total quasi_total ) Function of ( ( ) ( non empty ) set ) , ( ( ) ( ) set ) ) st
( a : ( ( ) ( ) set ) = s : ( ( ) ( ) set ) & s : ( ( ) ( ) set ) is monotone & ( for x being ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) holds s : ( ( ) ( ) set ) . x : ( ( ) ( ) set ) : ( ( ) ( ) Element of the carrier of (InclPoset (Ids L : ( ( transitive antisymmetric lower-bounded with_suprema ) ( non empty transitive antisymmetric lower-bounded with_suprema ) RelStr ) ) : ( ( ) ( ) set ) ) : ( ( strict ) ( strict reflexive transitive antisymmetric ) RelStr ) : ( ( ) ( ) set ) ) c= downarrow x : ( ( ) ( ) set ) : ( ( ) ( ) Element of bool the carrier of L : ( ( transitive antisymmetric lower-bounded with_suprema ) ( non empty transitive antisymmetric lower-bounded with_suprema ) RelStr ) : ( ( ) ( non empty ) set ) : ( ( ) ( non empty ) set ) ) ) ) implies a : ( ( ) ( ) set ) in the carrier of it : ( ( non empty ) ( non empty ) set ) : ( ( ) ( ) set ) ) & ( for c, d being ( ( ) ( ) set ) holds
( [c : ( ( ) ( ) set ) ,d : ( ( ) ( ) set ) ] : ( ( ) ( ) set ) in the InternalRel of it : ( ( non empty ) ( non empty ) set ) : ( ( ) ( Relation-like ) Element of bool [: the carrier of it : ( ( non empty ) ( non empty ) set ) : ( ( ) ( ) set ) , the carrier of it : ( ( non empty ) ( non empty ) set ) : ( ( ) ( ) set ) :] : ( ( ) ( Relation-like ) set ) : ( ( ) ( non empty ) set ) ) iff ex f, g being ( ( Function-like quasi_total ) ( non empty Relation-like Function-like total quasi_total ) Function of ( ( ) ( non empty ) set ) , ( ( ) ( ) set ) ) st
( c : ( ( ) ( ) set ) = f : ( ( Function-like quasi_total ) ( non empty Relation-like Function-like total quasi_total ) Function of ( ( ) ( non empty ) set ) , ( ( ) ( non empty ) set ) ) & d : ( ( ) ( ) set ) = g : ( ( Function-like quasi_total ) ( non empty Relation-like Function-like total quasi_total ) Function of ( ( ) ( non empty ) set ) , ( ( ) ( non empty ) set ) ) & c : ( ( ) ( ) set ) in the carrier of it : ( ( non empty ) ( non empty ) set ) : ( ( ) ( ) set ) & d : ( ( ) ( ) set ) in the carrier of it : ( ( non empty ) ( non empty ) set ) : ( ( ) ( ) set ) & f : ( ( Function-like quasi_total ) ( non empty Relation-like Function-like total quasi_total ) Function of ( ( ) ( non empty ) set ) , ( ( ) ( non empty ) set ) ) <= g : ( ( Function-like quasi_total ) ( non empty Relation-like Function-like total quasi_total ) Function of ( ( ) ( non empty ) set ) , ( ( ) ( non empty ) set ) ) ) ) ) );
end;

theorem :: WAYBEL_4:16
for L being ( ( reflexive transitive antisymmetric lower-bounded with_suprema ) ( non empty reflexive transitive antisymmetric lower-bounded with_suprema ) sup-Semilattice) holds MonSet L : ( ( reflexive transitive antisymmetric lower-bounded with_suprema ) ( non empty reflexive transitive antisymmetric lower-bounded with_suprema ) sup-Semilattice) : ( ( strict ) ( strict ) RelStr ) is ( ( full ) ( reflexive transitive antisymmetric full ) SubRelStr of (InclPoset (Ids L : ( ( reflexive transitive antisymmetric lower-bounded with_suprema ) ( non empty reflexive transitive antisymmetric lower-bounded with_suprema ) sup-Semilattice) ) : ( ( ) ( non empty ) set ) ) : ( ( strict ) ( non empty strict reflexive transitive antisymmetric lower-bounded upper-bounded V152() up-complete /\-complete with_suprema with_infima complete ) RelStr ) |^ the carrier of L : ( ( reflexive transitive antisymmetric lower-bounded with_suprema ) ( non empty reflexive transitive antisymmetric lower-bounded with_suprema ) sup-Semilattice) : ( ( ) ( non empty ) set ) : ( ( strict ) ( non empty strict reflexive transitive antisymmetric with_suprema with_infima ) RelStr ) ) ;

theorem :: WAYBEL_4:17
for L being ( ( reflexive transitive antisymmetric lower-bounded with_suprema ) ( non empty reflexive transitive antisymmetric lower-bounded with_suprema ) sup-Semilattice)
for AR being ( ( auxiliary(ii) ) ( Relation-like auxiliary(ii) ) Relation of )
for x, y being ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) st x : ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) <= y : ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) holds
AR : ( ( auxiliary(ii) ) ( Relation-like auxiliary(ii) ) Relation of ) -below x : ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) : ( ( ) ( lower ) Subset of ) c= AR : ( ( auxiliary(ii) ) ( Relation-like auxiliary(ii) ) Relation of ) -below y : ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) : ( ( ) ( lower ) Subset of ) ;

registration
let L be ( ( reflexive transitive antisymmetric lower-bounded with_suprema ) ( non empty reflexive transitive antisymmetric lower-bounded with_suprema ) sup-Semilattice) ;
let AR be ( ( auxiliary(ii) auxiliary(iii) auxiliary(iv) ) ( Relation-like auxiliary(ii) auxiliary(iii) auxiliary(iv) ) Relation of ) ;
cluster AR : ( ( auxiliary(ii) auxiliary(iii) auxiliary(iv) ) ( Relation-like auxiliary(ii) auxiliary(iii) auxiliary(iv) ) Element of bool [: the carrier of L : ( ( reflexive transitive antisymmetric lower-bounded with_suprema ) ( non empty reflexive transitive antisymmetric lower-bounded with_suprema ) RelStr ) : ( ( ) ( non empty ) set ) , the carrier of L : ( ( reflexive transitive antisymmetric lower-bounded with_suprema ) ( non empty reflexive transitive antisymmetric lower-bounded with_suprema ) RelStr ) : ( ( ) ( non empty ) set ) :] : ( ( ) ( non empty Relation-like ) set ) : ( ( ) ( non empty ) set ) ) -below : ( ( Function-like quasi_total ) ( non empty Relation-like Function-like total quasi_total ) Function of ( ( ) ( non empty ) set ) , ( ( ) ( non empty ) set ) ) -> Function-like quasi_total monotone ;
end;

theorem :: WAYBEL_4:18
for L being ( ( reflexive transitive antisymmetric lower-bounded with_suprema ) ( non empty reflexive transitive antisymmetric lower-bounded with_suprema ) sup-Semilattice)
for AR being ( ( auxiliary ) ( Relation-like transitive auxiliary(i) auxiliary(ii) auxiliary(iii) auxiliary(iv) auxiliary ) Relation of ) holds AR : ( ( auxiliary ) ( Relation-like transitive auxiliary(i) auxiliary(ii) auxiliary(iii) auxiliary(iv) auxiliary ) Relation of ) -below : ( ( Function-like quasi_total ) ( non empty Relation-like Function-like total quasi_total monotone ) Function of ( ( ) ( non empty ) set ) , ( ( ) ( non empty ) set ) ) in the carrier of (MonSet L : ( ( reflexive transitive antisymmetric lower-bounded with_suprema ) ( non empty reflexive transitive antisymmetric lower-bounded with_suprema ) sup-Semilattice) ) : ( ( strict ) ( strict ) RelStr ) : ( ( ) ( ) set ) ;

registration
let L be ( ( reflexive transitive antisymmetric lower-bounded with_suprema ) ( non empty reflexive transitive antisymmetric lower-bounded with_suprema ) sup-Semilattice) ;
cluster MonSet L : ( ( reflexive transitive antisymmetric lower-bounded with_suprema ) ( non empty reflexive transitive antisymmetric lower-bounded with_suprema ) RelStr ) : ( ( strict ) ( strict ) RelStr ) -> non empty strict ;
end;

theorem :: WAYBEL_4:19
for L being ( ( reflexive transitive antisymmetric lower-bounded with_suprema ) ( non empty reflexive transitive antisymmetric lower-bounded with_suprema ) sup-Semilattice) holds IdsMap L : ( ( reflexive transitive antisymmetric lower-bounded with_suprema ) ( non empty reflexive transitive antisymmetric lower-bounded with_suprema ) sup-Semilattice) : ( ( Function-like quasi_total ) ( non empty Relation-like Function-like total quasi_total monotone ) Element of bool [: the carrier of b1 : ( ( reflexive transitive antisymmetric lower-bounded with_suprema ) ( non empty reflexive transitive antisymmetric lower-bounded with_suprema ) sup-Semilattice) : ( ( ) ( non empty ) set ) , the carrier of (InclPoset (Ids b1 : ( ( reflexive transitive antisymmetric lower-bounded with_suprema ) ( non empty reflexive transitive antisymmetric lower-bounded with_suprema ) sup-Semilattice) ) : ( ( ) ( non empty ) set ) ) : ( ( strict ) ( non empty strict reflexive transitive antisymmetric lower-bounded upper-bounded V152() up-complete /\-complete with_suprema with_infima complete ) RelStr ) : ( ( ) ( non empty ) set ) :] : ( ( ) ( non empty Relation-like ) set ) : ( ( ) ( non empty ) set ) ) in the carrier of (MonSet L : ( ( reflexive transitive antisymmetric lower-bounded with_suprema ) ( non empty reflexive transitive antisymmetric lower-bounded with_suprema ) sup-Semilattice) ) : ( ( strict ) ( non empty strict ) RelStr ) : ( ( ) ( non empty ) set ) ;

theorem :: WAYBEL_4:20
for L being ( ( reflexive transitive antisymmetric lower-bounded with_suprema ) ( non empty reflexive transitive antisymmetric lower-bounded with_suprema ) sup-Semilattice)
for AR being ( ( auxiliary ) ( Relation-like transitive auxiliary(i) auxiliary(ii) auxiliary(iii) auxiliary(iv) auxiliary ) Relation of ) holds AR : ( ( auxiliary ) ( Relation-like transitive auxiliary(i) auxiliary(ii) auxiliary(iii) auxiliary(iv) auxiliary ) Relation of ) -below : ( ( Function-like quasi_total ) ( non empty Relation-like Function-like total quasi_total monotone ) Function of ( ( ) ( non empty ) set ) , ( ( ) ( non empty ) set ) ) <= IdsMap L : ( ( reflexive transitive antisymmetric lower-bounded with_suprema ) ( non empty reflexive transitive antisymmetric lower-bounded with_suprema ) sup-Semilattice) : ( ( Function-like quasi_total ) ( non empty Relation-like Function-like total quasi_total monotone ) Element of bool [: the carrier of b1 : ( ( reflexive transitive antisymmetric lower-bounded with_suprema ) ( non empty reflexive transitive antisymmetric lower-bounded with_suprema ) sup-Semilattice) : ( ( ) ( non empty ) set ) , the carrier of (InclPoset (Ids b1 : ( ( reflexive transitive antisymmetric lower-bounded with_suprema ) ( non empty reflexive transitive antisymmetric lower-bounded with_suprema ) sup-Semilattice) ) : ( ( ) ( non empty ) set ) ) : ( ( strict ) ( non empty strict reflexive transitive antisymmetric lower-bounded upper-bounded V152() up-complete /\-complete with_suprema with_infima complete ) RelStr ) : ( ( ) ( non empty ) set ) :] : ( ( ) ( non empty Relation-like ) set ) : ( ( ) ( non empty ) set ) ) ;

theorem :: WAYBEL_4:21
for L being ( ( non empty reflexive transitive antisymmetric lower-bounded ) ( non empty reflexive transitive antisymmetric lower-bounded ) Poset)
for I being ( ( non empty directed lower ) ( non empty directed lower ) Ideal of L : ( ( non empty reflexive transitive antisymmetric lower-bounded ) ( non empty reflexive transitive antisymmetric lower-bounded ) Poset) ) holds Bottom L : ( ( non empty reflexive transitive antisymmetric lower-bounded ) ( non empty reflexive transitive antisymmetric lower-bounded ) Poset) : ( ( ) ( ) Element of the carrier of b1 : ( ( non empty reflexive transitive antisymmetric lower-bounded ) ( non empty reflexive transitive antisymmetric lower-bounded ) Poset) : ( ( ) ( non empty ) set ) ) in I : ( ( non empty directed lower ) ( non empty directed lower ) Ideal of b1 : ( ( non empty reflexive transitive antisymmetric lower-bounded ) ( non empty reflexive transitive antisymmetric lower-bounded ) Poset) ) ;

theorem :: WAYBEL_4:22
for L being ( ( non empty reflexive transitive antisymmetric upper-bounded ) ( non empty reflexive transitive antisymmetric upper-bounded ) Poset)
for F being ( ( non empty filtered upper ) ( non empty filtered upper ) Filter of L : ( ( non empty reflexive transitive antisymmetric upper-bounded ) ( non empty reflexive transitive antisymmetric upper-bounded ) Poset) ) holds Top L : ( ( non empty reflexive transitive antisymmetric upper-bounded ) ( non empty reflexive transitive antisymmetric upper-bounded ) Poset) : ( ( ) ( ) Element of the carrier of b1 : ( ( non empty reflexive transitive antisymmetric upper-bounded ) ( non empty reflexive transitive antisymmetric upper-bounded ) Poset) : ( ( ) ( non empty ) set ) ) in F : ( ( non empty filtered upper ) ( non empty filtered upper ) Filter of b1 : ( ( non empty reflexive transitive antisymmetric upper-bounded ) ( non empty reflexive transitive antisymmetric upper-bounded ) Poset) ) ;

theorem :: WAYBEL_4:23
for L being ( ( non empty reflexive transitive antisymmetric lower-bounded ) ( non empty reflexive transitive antisymmetric lower-bounded ) Poset) holds downarrow (Bottom L : ( ( non empty reflexive transitive antisymmetric lower-bounded ) ( non empty reflexive transitive antisymmetric lower-bounded ) Poset) ) : ( ( ) ( ) Element of the carrier of b1 : ( ( non empty reflexive transitive antisymmetric lower-bounded ) ( non empty reflexive transitive antisymmetric lower-bounded ) Poset) : ( ( ) ( non empty ) set ) ) : ( ( ) ( non empty directed lower ) Element of bool the carrier of b1 : ( ( non empty reflexive transitive antisymmetric lower-bounded ) ( non empty reflexive transitive antisymmetric lower-bounded ) Poset) : ( ( ) ( non empty ) set ) : ( ( ) ( non empty ) set ) ) = {(Bottom L : ( ( non empty reflexive transitive antisymmetric lower-bounded ) ( non empty reflexive transitive antisymmetric lower-bounded ) Poset) ) : ( ( ) ( ) Element of the carrier of b1 : ( ( non empty reflexive transitive antisymmetric lower-bounded ) ( non empty reflexive transitive antisymmetric lower-bounded ) Poset) : ( ( ) ( non empty ) set ) ) } : ( ( ) ( ) Element of bool the carrier of b1 : ( ( non empty reflexive transitive antisymmetric lower-bounded ) ( non empty reflexive transitive antisymmetric lower-bounded ) Poset) : ( ( ) ( non empty ) set ) : ( ( ) ( non empty ) set ) ) ;

theorem :: WAYBEL_4:24
for L being ( ( non empty reflexive transitive antisymmetric upper-bounded ) ( non empty reflexive transitive antisymmetric upper-bounded ) Poset) holds uparrow (Top L : ( ( non empty reflexive transitive antisymmetric upper-bounded ) ( non empty reflexive transitive antisymmetric upper-bounded ) Poset) ) : ( ( ) ( ) Element of the carrier of b1 : ( ( non empty reflexive transitive antisymmetric upper-bounded ) ( non empty reflexive transitive antisymmetric upper-bounded ) Poset) : ( ( ) ( non empty ) set ) ) : ( ( ) ( non empty filtered upper ) Element of bool the carrier of b1 : ( ( non empty reflexive transitive antisymmetric upper-bounded ) ( non empty reflexive transitive antisymmetric upper-bounded ) Poset) : ( ( ) ( non empty ) set ) : ( ( ) ( non empty ) set ) ) = {(Top L : ( ( non empty reflexive transitive antisymmetric upper-bounded ) ( non empty reflexive transitive antisymmetric upper-bounded ) Poset) ) : ( ( ) ( ) Element of the carrier of b1 : ( ( non empty reflexive transitive antisymmetric upper-bounded ) ( non empty reflexive transitive antisymmetric upper-bounded ) Poset) : ( ( ) ( non empty ) set ) ) } : ( ( ) ( ) Element of bool the carrier of b1 : ( ( non empty reflexive transitive antisymmetric upper-bounded ) ( non empty reflexive transitive antisymmetric upper-bounded ) Poset) : ( ( ) ( non empty ) set ) : ( ( ) ( non empty ) set ) ) ;

theorem :: WAYBEL_4:25
for L being ( ( reflexive transitive antisymmetric lower-bounded with_suprema ) ( non empty reflexive transitive antisymmetric lower-bounded with_suprema ) sup-Semilattice) holds the carrier of L : ( ( reflexive transitive antisymmetric lower-bounded with_suprema ) ( non empty reflexive transitive antisymmetric lower-bounded with_suprema ) sup-Semilattice) : ( ( ) ( non empty ) set ) --> {(Bottom L : ( ( reflexive transitive antisymmetric lower-bounded with_suprema ) ( non empty reflexive transitive antisymmetric lower-bounded with_suprema ) sup-Semilattice) ) : ( ( ) ( ) Element of the carrier of b1 : ( ( reflexive transitive antisymmetric lower-bounded with_suprema ) ( non empty reflexive transitive antisymmetric lower-bounded with_suprema ) sup-Semilattice) : ( ( ) ( non empty ) set ) ) } : ( ( ) ( ) Element of bool the carrier of b1 : ( ( reflexive transitive antisymmetric lower-bounded with_suprema ) ( non empty reflexive transitive antisymmetric lower-bounded with_suprema ) sup-Semilattice) : ( ( ) ( non empty ) set ) : ( ( ) ( non empty ) set ) ) : ( ( Function-like quasi_total ) ( non empty Relation-like the carrier of b1 : ( ( reflexive transitive antisymmetric lower-bounded with_suprema ) ( non empty reflexive transitive antisymmetric lower-bounded with_suprema ) sup-Semilattice) : ( ( ) ( non empty ) set ) -defined bool the carrier of b1 : ( ( reflexive transitive antisymmetric lower-bounded with_suprema ) ( non empty reflexive transitive antisymmetric lower-bounded with_suprema ) sup-Semilattice) : ( ( ) ( non empty ) set ) : ( ( ) ( non empty ) set ) -valued Function-like constant total quasi_total ) Element of bool [: the carrier of b1 : ( ( reflexive transitive antisymmetric lower-bounded with_suprema ) ( non empty reflexive transitive antisymmetric lower-bounded with_suprema ) sup-Semilattice) : ( ( ) ( non empty ) set ) ,(bool the carrier of b1 : ( ( reflexive transitive antisymmetric lower-bounded with_suprema ) ( non empty reflexive transitive antisymmetric lower-bounded with_suprema ) sup-Semilattice) : ( ( ) ( non empty ) set ) ) : ( ( ) ( non empty ) set ) :] : ( ( ) ( non empty Relation-like ) set ) : ( ( ) ( non empty ) set ) ) is ( ( Function-like quasi_total ) ( non empty Relation-like Function-like total quasi_total ) Function of ( ( ) ( non empty ) set ) , ( ( ) ( non empty ) set ) ) ;

theorem :: WAYBEL_4:26
for L being ( ( reflexive transitive antisymmetric lower-bounded with_suprema ) ( non empty reflexive transitive antisymmetric lower-bounded with_suprema ) sup-Semilattice) holds the carrier of L : ( ( reflexive transitive antisymmetric lower-bounded with_suprema ) ( non empty reflexive transitive antisymmetric lower-bounded with_suprema ) sup-Semilattice) : ( ( ) ( non empty ) set ) --> {(Bottom L : ( ( reflexive transitive antisymmetric lower-bounded with_suprema ) ( non empty reflexive transitive antisymmetric lower-bounded with_suprema ) sup-Semilattice) ) : ( ( ) ( ) Element of the carrier of b1 : ( ( reflexive transitive antisymmetric lower-bounded with_suprema ) ( non empty reflexive transitive antisymmetric lower-bounded with_suprema ) sup-Semilattice) : ( ( ) ( non empty ) set ) ) } : ( ( ) ( ) Element of bool the carrier of b1 : ( ( reflexive transitive antisymmetric lower-bounded with_suprema ) ( non empty reflexive transitive antisymmetric lower-bounded with_suprema ) sup-Semilattice) : ( ( ) ( non empty ) set ) : ( ( ) ( non empty ) set ) ) : ( ( Function-like quasi_total ) ( non empty Relation-like the carrier of b1 : ( ( reflexive transitive antisymmetric lower-bounded with_suprema ) ( non empty reflexive transitive antisymmetric lower-bounded with_suprema ) sup-Semilattice) : ( ( ) ( non empty ) set ) -defined bool the carrier of b1 : ( ( reflexive transitive antisymmetric lower-bounded with_suprema ) ( non empty reflexive transitive antisymmetric lower-bounded with_suprema ) sup-Semilattice) : ( ( ) ( non empty ) set ) : ( ( ) ( non empty ) set ) -valued Function-like constant total quasi_total ) Element of bool [: the carrier of b1 : ( ( reflexive transitive antisymmetric lower-bounded with_suprema ) ( non empty reflexive transitive antisymmetric lower-bounded with_suprema ) sup-Semilattice) : ( ( ) ( non empty ) set ) ,(bool the carrier of b1 : ( ( reflexive transitive antisymmetric lower-bounded with_suprema ) ( non empty reflexive transitive antisymmetric lower-bounded with_suprema ) sup-Semilattice) : ( ( ) ( non empty ) set ) ) : ( ( ) ( non empty ) set ) :] : ( ( ) ( non empty Relation-like ) set ) : ( ( ) ( non empty ) set ) ) in the carrier of (MonSet L : ( ( reflexive transitive antisymmetric lower-bounded with_suprema ) ( non empty reflexive transitive antisymmetric lower-bounded with_suprema ) sup-Semilattice) ) : ( ( strict ) ( non empty strict ) RelStr ) : ( ( ) ( non empty ) set ) ;

theorem :: WAYBEL_4:27
for L being ( ( reflexive transitive antisymmetric lower-bounded with_suprema ) ( non empty reflexive transitive antisymmetric lower-bounded with_suprema ) sup-Semilattice)
for AR being ( ( auxiliary ) ( Relation-like transitive auxiliary(i) auxiliary(ii) auxiliary(iii) auxiliary(iv) auxiliary ) Relation of ) holds [( the carrier of L : ( ( reflexive transitive antisymmetric lower-bounded with_suprema ) ( non empty reflexive transitive antisymmetric lower-bounded with_suprema ) sup-Semilattice) : ( ( ) ( non empty ) set ) --> {(Bottom L : ( ( reflexive transitive antisymmetric lower-bounded with_suprema ) ( non empty reflexive transitive antisymmetric lower-bounded with_suprema ) sup-Semilattice) ) : ( ( ) ( ) Element of the carrier of b1 : ( ( reflexive transitive antisymmetric lower-bounded with_suprema ) ( non empty reflexive transitive antisymmetric lower-bounded with_suprema ) sup-Semilattice) : ( ( ) ( non empty ) set ) ) } : ( ( ) ( ) Element of bool the carrier of b1 : ( ( reflexive transitive antisymmetric lower-bounded with_suprema ) ( non empty reflexive transitive antisymmetric lower-bounded with_suprema ) sup-Semilattice) : ( ( ) ( non empty ) set ) : ( ( ) ( non empty ) set ) ) ) : ( ( Function-like quasi_total ) ( non empty Relation-like the carrier of b1 : ( ( reflexive transitive antisymmetric lower-bounded with_suprema ) ( non empty reflexive transitive antisymmetric lower-bounded with_suprema ) sup-Semilattice) : ( ( ) ( non empty ) set ) -defined bool the carrier of b1 : ( ( reflexive transitive antisymmetric lower-bounded with_suprema ) ( non empty reflexive transitive antisymmetric lower-bounded with_suprema ) sup-Semilattice) : ( ( ) ( non empty ) set ) : ( ( ) ( non empty ) set ) -valued Function-like constant total quasi_total ) Element of bool [: the carrier of b1 : ( ( reflexive transitive antisymmetric lower-bounded with_suprema ) ( non empty reflexive transitive antisymmetric lower-bounded with_suprema ) sup-Semilattice) : ( ( ) ( non empty ) set ) ,(bool the carrier of b1 : ( ( reflexive transitive antisymmetric lower-bounded with_suprema ) ( non empty reflexive transitive antisymmetric lower-bounded with_suprema ) sup-Semilattice) : ( ( ) ( non empty ) set ) ) : ( ( ) ( non empty ) set ) :] : ( ( ) ( non empty Relation-like ) set ) : ( ( ) ( non empty ) set ) ) ,(AR : ( ( auxiliary ) ( Relation-like transitive auxiliary(i) auxiliary(ii) auxiliary(iii) auxiliary(iv) auxiliary ) Relation of ) -below) : ( ( Function-like quasi_total ) ( non empty Relation-like Function-like total quasi_total monotone ) Function of ( ( ) ( non empty ) set ) , ( ( ) ( non empty ) set ) ) ] : ( ( ) ( ) Element of [:(bool [: the carrier of b1 : ( ( reflexive transitive antisymmetric lower-bounded with_suprema ) ( non empty reflexive transitive antisymmetric lower-bounded with_suprema ) sup-Semilattice) : ( ( ) ( non empty ) set ) ,(bool the carrier of b1 : ( ( reflexive transitive antisymmetric lower-bounded with_suprema ) ( non empty reflexive transitive antisymmetric lower-bounded with_suprema ) sup-Semilattice) : ( ( ) ( non empty ) set ) ) : ( ( ) ( non empty ) set ) :] : ( ( ) ( non empty Relation-like ) set ) ) : ( ( ) ( non empty ) set ) ,(bool [: the carrier of b1 : ( ( reflexive transitive antisymmetric lower-bounded with_suprema ) ( non empty reflexive transitive antisymmetric lower-bounded with_suprema ) sup-Semilattice) : ( ( ) ( non empty ) set ) , the carrier of (InclPoset (Ids b1 : ( ( reflexive transitive antisymmetric lower-bounded with_suprema ) ( non empty reflexive transitive antisymmetric lower-bounded with_suprema ) sup-Semilattice) ) : ( ( ) ( non empty ) set ) ) : ( ( strict ) ( non empty strict reflexive transitive antisymmetric lower-bounded upper-bounded V152() up-complete /\-complete with_suprema with_infima complete ) RelStr ) : ( ( ) ( non empty ) set ) :] : ( ( ) ( non empty Relation-like ) set ) ) : ( ( ) ( non empty ) set ) :] : ( ( ) ( non empty Relation-like ) set ) ) in the InternalRel of (MonSet L : ( ( reflexive transitive antisymmetric lower-bounded with_suprema ) ( non empty reflexive transitive antisymmetric lower-bounded with_suprema ) sup-Semilattice) ) : ( ( strict ) ( non empty strict ) RelStr ) : ( ( ) ( Relation-like ) Element of bool [: the carrier of (MonSet b1 : ( ( reflexive transitive antisymmetric lower-bounded with_suprema ) ( non empty reflexive transitive antisymmetric lower-bounded with_suprema ) sup-Semilattice) ) : ( ( strict ) ( non empty strict ) RelStr ) : ( ( ) ( non empty ) set ) , the carrier of (MonSet b1 : ( ( reflexive transitive antisymmetric lower-bounded with_suprema ) ( non empty reflexive transitive antisymmetric lower-bounded with_suprema ) sup-Semilattice) ) : ( ( strict ) ( non empty strict ) RelStr ) : ( ( ) ( non empty ) set ) :] : ( ( ) ( non empty Relation-like ) set ) : ( ( ) ( non empty ) set ) ) ;

registration
let L be ( ( reflexive transitive antisymmetric lower-bounded with_suprema ) ( non empty reflexive transitive antisymmetric lower-bounded with_suprema ) sup-Semilattice) ;
cluster MonSet L : ( ( reflexive transitive antisymmetric lower-bounded with_suprema ) ( non empty reflexive transitive antisymmetric lower-bounded with_suprema ) RelStr ) : ( ( strict ) ( non empty strict ) RelStr ) -> strict upper-bounded ;
end;

definition
let L be ( ( reflexive transitive antisymmetric lower-bounded with_suprema ) ( non empty reflexive transitive antisymmetric lower-bounded with_suprema ) sup-Semilattice) ;
func Rel2Map L -> ( ( Function-like quasi_total ) ( non empty Relation-like Function-like total quasi_total ) Function of ( ( ) ( ) set ) , ( ( ) ( ) set ) ) means :: WAYBEL_4:def 14
for AR being ( ( auxiliary ) ( Relation-like transitive auxiliary(i) auxiliary(ii) auxiliary(iii) auxiliary(iv) auxiliary ) Relation of ) holds it : ( ( non empty ) ( non empty ) set ) . AR : ( ( auxiliary ) ( Relation-like transitive auxiliary(i) auxiliary(ii) auxiliary(iii) auxiliary(iv) auxiliary ) Relation of ) : ( ( ) ( ) set ) = AR : ( ( auxiliary ) ( Relation-like transitive auxiliary(i) auxiliary(ii) auxiliary(iii) auxiliary(iv) auxiliary ) Relation of ) -below : ( ( Function-like quasi_total ) ( non empty Relation-like Function-like total quasi_total ) Function of ( ( ) ( non empty ) set ) , ( ( ) ( ) set ) ) ;
end;

theorem :: WAYBEL_4:28
for L being ( ( reflexive transitive antisymmetric lower-bounded with_suprema ) ( non empty reflexive transitive antisymmetric lower-bounded with_suprema ) sup-Semilattice)
for R1, R2 being ( ( auxiliary ) ( Relation-like transitive auxiliary(i) auxiliary(ii) auxiliary(iii) auxiliary(iv) auxiliary ) Relation of ) st R1 : ( ( auxiliary ) ( Relation-like transitive auxiliary(i) auxiliary(ii) auxiliary(iii) auxiliary(iv) auxiliary ) Relation of ) c= R2 : ( ( auxiliary ) ( Relation-like transitive auxiliary(i) auxiliary(ii) auxiliary(iii) auxiliary(iv) auxiliary ) Relation of ) holds
R1 : ( ( auxiliary ) ( Relation-like transitive auxiliary(i) auxiliary(ii) auxiliary(iii) auxiliary(iv) auxiliary ) Relation of ) -below : ( ( Function-like quasi_total ) ( non empty Relation-like Function-like total quasi_total monotone ) Function of ( ( ) ( non empty ) set ) , ( ( ) ( non empty ) set ) ) <= R2 : ( ( auxiliary ) ( Relation-like transitive auxiliary(i) auxiliary(ii) auxiliary(iii) auxiliary(iv) auxiliary ) Relation of ) -below : ( ( Function-like quasi_total ) ( non empty Relation-like Function-like total quasi_total monotone ) Function of ( ( ) ( non empty ) set ) , ( ( ) ( non empty ) set ) ) ;

theorem :: WAYBEL_4:29
for L being ( ( reflexive transitive antisymmetric lower-bounded with_suprema ) ( non empty reflexive transitive antisymmetric lower-bounded with_suprema ) sup-Semilattice)
for x being ( ( ) ( ) Element of ( ( ) ( non empty ) set ) )
for R1, R2 being ( ( ) ( Relation-like ) Relation of ) st R1 : ( ( ) ( Relation-like ) Relation of ) c= R2 : ( ( ) ( Relation-like ) Relation of ) holds
R1 : ( ( ) ( Relation-like ) Relation of ) -below x : ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) : ( ( ) ( ) Subset of ) c= R2 : ( ( ) ( Relation-like ) Relation of ) -below x : ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) : ( ( ) ( ) Subset of ) ;

registration
let L be ( ( reflexive transitive antisymmetric lower-bounded with_suprema ) ( non empty reflexive transitive antisymmetric lower-bounded with_suprema ) sup-Semilattice) ;
cluster Rel2Map L : ( ( reflexive transitive antisymmetric lower-bounded with_suprema ) ( non empty reflexive transitive antisymmetric lower-bounded with_suprema ) RelStr ) : ( ( Function-like quasi_total ) ( non empty Relation-like Function-like total quasi_total ) Function of ( ( ) ( non empty ) set ) , ( ( ) ( non empty ) set ) ) -> Function-like quasi_total monotone ;
end;

definition
let L be ( ( reflexive transitive antisymmetric lower-bounded with_suprema ) ( non empty reflexive transitive antisymmetric lower-bounded with_suprema ) sup-Semilattice) ;
func Map2Rel L -> ( ( Function-like quasi_total ) ( non empty Relation-like Function-like total quasi_total ) Function of ( ( ) ( ) set ) , ( ( ) ( ) set ) ) means :: WAYBEL_4:def 15
for s being ( ( ) ( ) set ) st s : ( ( ) ( ) set ) in the carrier of (MonSet L : ( ( transitive antisymmetric lower-bounded with_suprema ) ( non empty transitive antisymmetric lower-bounded with_suprema ) RelStr ) ) : ( ( strict ) ( strict ) RelStr ) : ( ( ) ( ) set ) holds
ex AR being ( ( auxiliary ) ( Relation-like transitive auxiliary(i) auxiliary(ii) auxiliary(iii) auxiliary(iv) auxiliary ) Relation of ) st
( AR : ( ( auxiliary ) ( Relation-like transitive auxiliary(i) auxiliary(ii) auxiliary(iii) auxiliary(iv) auxiliary ) Relation of ) = it : ( ( non empty ) ( non empty ) set ) . s : ( ( ) ( ) set ) : ( ( ) ( ) set ) & ( for x, y being ( ( ) ( ) set ) holds
( [x : ( ( ) ( ) set ) ,y : ( ( ) ( ) set ) ] : ( ( ) ( ) set ) in AR : ( ( auxiliary ) ( Relation-like transitive auxiliary(i) auxiliary(ii) auxiliary(iii) auxiliary(iv) auxiliary ) Relation of ) iff ex x9, y9 being ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) ex s9 being ( ( Function-like quasi_total ) ( non empty Relation-like Function-like total quasi_total ) Function of ( ( ) ( non empty ) set ) , ( ( ) ( ) set ) ) st
( x9 : ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) = x : ( ( ) ( ) set ) & y9 : ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) = y : ( ( ) ( ) set ) & s9 : ( ( Function-like quasi_total ) ( non empty Relation-like Function-like total quasi_total ) Function of ( ( ) ( non empty ) set ) , ( ( ) ( non empty ) set ) ) = s : ( ( ) ( ) set ) & x9 : ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) in s9 : ( ( Function-like quasi_total ) ( non empty Relation-like Function-like total quasi_total ) Function of ( ( ) ( non empty ) set ) , ( ( ) ( non empty ) set ) ) . y9 : ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) : ( ( ) ( ) Element of the carrier of (InclPoset (Ids L : ( ( transitive antisymmetric lower-bounded with_suprema ) ( non empty transitive antisymmetric lower-bounded with_suprema ) RelStr ) ) : ( ( ) ( ) set ) ) : ( ( strict ) ( strict reflexive transitive antisymmetric ) RelStr ) : ( ( ) ( ) set ) ) ) ) ) );
end;

registration
let L be ( ( reflexive transitive antisymmetric lower-bounded with_suprema ) ( non empty reflexive transitive antisymmetric lower-bounded with_suprema ) sup-Semilattice) ;
cluster Map2Rel L : ( ( reflexive transitive antisymmetric lower-bounded with_suprema ) ( non empty reflexive transitive antisymmetric lower-bounded with_suprema ) RelStr ) : ( ( Function-like quasi_total ) ( non empty Relation-like Function-like total quasi_total ) Function of ( ( ) ( non empty ) set ) , ( ( ) ( non empty ) set ) ) -> Function-like quasi_total monotone ;
end;

theorem :: WAYBEL_4:30
for L being ( ( reflexive transitive antisymmetric lower-bounded with_suprema ) ( non empty reflexive transitive antisymmetric lower-bounded with_suprema ) sup-Semilattice) holds (Map2Rel L : ( ( reflexive transitive antisymmetric lower-bounded with_suprema ) ( non empty reflexive transitive antisymmetric lower-bounded with_suprema ) sup-Semilattice) ) : ( ( Function-like quasi_total ) ( non empty Relation-like Function-like total quasi_total monotone ) Function of ( ( ) ( non empty ) set ) , ( ( ) ( non empty ) set ) ) * (Rel2Map L : ( ( reflexive transitive antisymmetric lower-bounded with_suprema ) ( non empty reflexive transitive antisymmetric lower-bounded with_suprema ) sup-Semilattice) ) : ( ( Function-like quasi_total ) ( non empty Relation-like Function-like total quasi_total monotone ) Function of ( ( ) ( non empty ) set ) , ( ( ) ( non empty ) set ) ) : ( ( Function-like ) ( non empty Relation-like Function-like total quasi_total ) Element of bool [: the carrier of (InclPoset (Aux b1 : ( ( reflexive transitive antisymmetric lower-bounded with_suprema ) ( non empty reflexive transitive antisymmetric lower-bounded with_suprema ) sup-Semilattice) ) : ( ( ) ( non empty ) set ) ) : ( ( strict ) ( non empty strict reflexive transitive antisymmetric lower-bounded upper-bounded V152() up-complete /\-complete with_suprema with_infima complete ) RelStr ) : ( ( ) ( non empty ) set ) , the carrier of (InclPoset (Aux b1 : ( ( reflexive transitive antisymmetric lower-bounded with_suprema ) ( non empty reflexive transitive antisymmetric lower-bounded with_suprema ) sup-Semilattice) ) : ( ( ) ( non empty ) set ) ) : ( ( strict ) ( non empty strict reflexive transitive antisymmetric lower-bounded upper-bounded V152() up-complete /\-complete with_suprema with_infima complete ) RelStr ) : ( ( ) ( non empty ) set ) :] : ( ( ) ( non empty Relation-like ) set ) : ( ( ) ( non empty ) set ) ) = id (dom (Rel2Map L : ( ( reflexive transitive antisymmetric lower-bounded with_suprema ) ( non empty reflexive transitive antisymmetric lower-bounded with_suprema ) sup-Semilattice) ) : ( ( Function-like quasi_total ) ( non empty Relation-like Function-like total quasi_total monotone ) Function of ( ( ) ( non empty ) set ) , ( ( ) ( non empty ) set ) ) ) : ( ( ) ( non empty ) set ) : ( ( total ) ( non empty Relation-like dom (Rel2Map b1 : ( ( reflexive transitive antisymmetric lower-bounded with_suprema ) ( non empty reflexive transitive antisymmetric lower-bounded with_suprema ) sup-Semilattice) ) : ( ( Function-like quasi_total ) ( non empty Relation-like Function-like total quasi_total monotone ) Function of ( ( ) ( non empty ) set ) , ( ( ) ( non empty ) set ) ) : ( ( ) ( non empty ) set ) -defined dom (Rel2Map b1 : ( ( reflexive transitive antisymmetric lower-bounded with_suprema ) ( non empty reflexive transitive antisymmetric lower-bounded with_suprema ) sup-Semilattice) ) : ( ( Function-like quasi_total ) ( non empty Relation-like Function-like total quasi_total monotone ) Function of ( ( ) ( non empty ) set ) , ( ( ) ( non empty ) set ) ) : ( ( ) ( non empty ) set ) -valued Function-like one-to-one total quasi_total ) Element of bool [:(dom (Rel2Map b1 : ( ( reflexive transitive antisymmetric lower-bounded with_suprema ) ( non empty reflexive transitive antisymmetric lower-bounded with_suprema ) sup-Semilattice) ) : ( ( Function-like quasi_total ) ( non empty Relation-like Function-like total quasi_total monotone ) Function of ( ( ) ( non empty ) set ) , ( ( ) ( non empty ) set ) ) ) : ( ( ) ( non empty ) set ) ,(dom (Rel2Map b1 : ( ( reflexive transitive antisymmetric lower-bounded with_suprema ) ( non empty reflexive transitive antisymmetric lower-bounded with_suprema ) sup-Semilattice) ) : ( ( Function-like quasi_total ) ( non empty Relation-like Function-like total quasi_total monotone ) Function of ( ( ) ( non empty ) set ) , ( ( ) ( non empty ) set ) ) ) : ( ( ) ( non empty ) set ) :] : ( ( ) ( non empty Relation-like ) set ) : ( ( ) ( non empty ) set ) ) ;

theorem :: WAYBEL_4:31
for L being ( ( reflexive transitive antisymmetric lower-bounded with_suprema ) ( non empty reflexive transitive antisymmetric lower-bounded with_suprema ) sup-Semilattice) holds (Rel2Map L : ( ( reflexive transitive antisymmetric lower-bounded with_suprema ) ( non empty reflexive transitive antisymmetric lower-bounded with_suprema ) sup-Semilattice) ) : ( ( Function-like quasi_total ) ( non empty Relation-like Function-like total quasi_total monotone ) Function of ( ( ) ( non empty ) set ) , ( ( ) ( non empty ) set ) ) * (Map2Rel L : ( ( reflexive transitive antisymmetric lower-bounded with_suprema ) ( non empty reflexive transitive antisymmetric lower-bounded with_suprema ) sup-Semilattice) ) : ( ( Function-like quasi_total ) ( non empty Relation-like Function-like total quasi_total monotone ) Function of ( ( ) ( non empty ) set ) , ( ( ) ( non empty ) set ) ) : ( ( Function-like ) ( non empty Relation-like Function-like total quasi_total ) Element of bool [: the carrier of (MonSet b1 : ( ( reflexive transitive antisymmetric lower-bounded with_suprema ) ( non empty reflexive transitive antisymmetric lower-bounded with_suprema ) sup-Semilattice) ) : ( ( strict ) ( non empty strict upper-bounded ) RelStr ) : ( ( ) ( non empty ) set ) , the carrier of (MonSet b1 : ( ( reflexive transitive antisymmetric lower-bounded with_suprema ) ( non empty reflexive transitive antisymmetric lower-bounded with_suprema ) sup-Semilattice) ) : ( ( strict ) ( non empty strict upper-bounded ) RelStr ) : ( ( ) ( non empty ) set ) :] : ( ( ) ( non empty Relation-like ) set ) : ( ( ) ( non empty ) set ) ) = id the carrier of (MonSet L : ( ( reflexive transitive antisymmetric lower-bounded with_suprema ) ( non empty reflexive transitive antisymmetric lower-bounded with_suprema ) sup-Semilattice) ) : ( ( strict ) ( non empty strict upper-bounded ) RelStr ) : ( ( ) ( non empty ) set ) : ( ( total ) ( non empty Relation-like the carrier of (MonSet b1 : ( ( reflexive transitive antisymmetric lower-bounded with_suprema ) ( non empty reflexive transitive antisymmetric lower-bounded with_suprema ) sup-Semilattice) ) : ( ( strict ) ( non empty strict upper-bounded ) RelStr ) : ( ( ) ( non empty ) set ) -defined the carrier of (MonSet b1 : ( ( reflexive transitive antisymmetric lower-bounded with_suprema ) ( non empty reflexive transitive antisymmetric lower-bounded with_suprema ) sup-Semilattice) ) : ( ( strict ) ( non empty strict upper-bounded ) RelStr ) : ( ( ) ( non empty ) set ) -valued Function-like one-to-one total quasi_total ) Element of bool [: the carrier of (MonSet b1 : ( ( reflexive transitive antisymmetric lower-bounded with_suprema ) ( non empty reflexive transitive antisymmetric lower-bounded with_suprema ) sup-Semilattice) ) : ( ( strict ) ( non empty strict upper-bounded ) RelStr ) : ( ( ) ( non empty ) set ) , the carrier of (MonSet b1 : ( ( reflexive transitive antisymmetric lower-bounded with_suprema ) ( non empty reflexive transitive antisymmetric lower-bounded with_suprema ) sup-Semilattice) ) : ( ( strict ) ( non empty strict upper-bounded ) RelStr ) : ( ( ) ( non empty ) set ) :] : ( ( ) ( non empty Relation-like ) set ) : ( ( ) ( non empty ) set ) ) ;

registration
let L be ( ( reflexive transitive antisymmetric lower-bounded with_suprema ) ( non empty reflexive transitive antisymmetric lower-bounded with_suprema ) sup-Semilattice) ;
cluster Rel2Map L : ( ( reflexive transitive antisymmetric lower-bounded with_suprema ) ( non empty reflexive transitive antisymmetric lower-bounded with_suprema ) RelStr ) : ( ( Function-like quasi_total ) ( non empty Relation-like Function-like total quasi_total monotone ) Function of ( ( ) ( non empty ) set ) , ( ( ) ( non empty ) set ) ) -> Function-like V16() quasi_total ;
end;

theorem :: WAYBEL_4:32
for L being ( ( reflexive transitive antisymmetric lower-bounded with_suprema ) ( non empty reflexive transitive antisymmetric lower-bounded with_suprema ) sup-Semilattice) holds (Rel2Map L : ( ( reflexive transitive antisymmetric lower-bounded with_suprema ) ( non empty reflexive transitive antisymmetric lower-bounded with_suprema ) sup-Semilattice) ) : ( ( Function-like quasi_total ) ( non empty Relation-like Function-like V16() total quasi_total monotone ) Function of ( ( ) ( non empty ) set ) , ( ( ) ( non empty ) set ) ) " : ( ( Relation-like Function-like ) ( Relation-like Function-like one-to-one ) set ) = Map2Rel L : ( ( reflexive transitive antisymmetric lower-bounded with_suprema ) ( non empty reflexive transitive antisymmetric lower-bounded with_suprema ) sup-Semilattice) : ( ( Function-like quasi_total ) ( non empty Relation-like Function-like total quasi_total monotone ) Function of ( ( ) ( non empty ) set ) , ( ( ) ( non empty ) set ) ) ;

theorem :: WAYBEL_4:33
for L being ( ( reflexive transitive antisymmetric lower-bounded with_suprema ) ( non empty reflexive transitive antisymmetric lower-bounded with_suprema ) sup-Semilattice) holds Rel2Map L : ( ( reflexive transitive antisymmetric lower-bounded with_suprema ) ( non empty reflexive transitive antisymmetric lower-bounded with_suprema ) sup-Semilattice) : ( ( Function-like quasi_total ) ( non empty Relation-like Function-like V16() total quasi_total monotone ) Function of ( ( ) ( non empty ) set ) , ( ( ) ( non empty ) set ) ) is isomorphic ;

theorem :: WAYBEL_4:34
for L being ( ( reflexive transitive antisymmetric with_suprema with_infima complete ) ( non empty reflexive transitive antisymmetric lower-bounded upper-bounded V152() up-complete /\-complete with_suprema with_infima complete ) LATTICE)
for x being ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) holds meet { I : ( ( non empty directed lower ) ( non empty directed lower ) Ideal of b1 : ( ( reflexive transitive antisymmetric with_suprema with_infima complete ) ( non empty reflexive transitive antisymmetric lower-bounded upper-bounded V152() up-complete /\-complete with_suprema with_infima complete ) LATTICE) ) where I is ( ( non empty directed lower ) ( non empty directed lower ) Ideal of L : ( ( reflexive transitive antisymmetric with_suprema with_infima complete ) ( non empty reflexive transitive antisymmetric lower-bounded upper-bounded V152() up-complete /\-complete with_suprema with_infima complete ) LATTICE) ) : x : ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) <= sup I : ( ( non empty directed lower ) ( non empty directed lower ) Ideal of b1 : ( ( reflexive transitive antisymmetric with_suprema with_infima complete ) ( non empty reflexive transitive antisymmetric lower-bounded upper-bounded V152() up-complete /\-complete with_suprema with_infima complete ) LATTICE) ) : ( ( ) ( ) Element of the carrier of b1 : ( ( reflexive transitive antisymmetric with_suprema with_infima complete ) ( non empty reflexive transitive antisymmetric lower-bounded upper-bounded V152() up-complete /\-complete with_suprema with_infima complete ) LATTICE) : ( ( ) ( non empty ) set ) ) } : ( ( ) ( ) set ) = waybelow x : ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) : ( ( ) ( non empty directed lower ) Element of bool the carrier of b1 : ( ( reflexive transitive antisymmetric with_suprema with_infima complete ) ( non empty reflexive transitive antisymmetric lower-bounded upper-bounded V152() up-complete /\-complete with_suprema with_infima complete ) LATTICE) : ( ( ) ( non empty ) set ) : ( ( ) ( non empty ) set ) ) ;

definition
let L be ( ( reflexive transitive antisymmetric with_infima ) ( non empty reflexive transitive antisymmetric with_infima ) Semilattice) ;
let I be ( ( non empty directed lower ) ( non empty directed lower ) Ideal of L : ( ( reflexive transitive antisymmetric with_infima ) ( non empty reflexive transitive antisymmetric with_infima ) Semilattice) ) ;
func DownMap I -> ( ( Function-like quasi_total ) ( non empty Relation-like Function-like total quasi_total ) Function of ( ( ) ( non empty ) set ) , ( ( ) ( ) set ) ) means :: WAYBEL_4:def 16
for x being ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) holds
( ( x : ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) <= sup I : ( ( non empty ) ( non empty ) set ) : ( ( ) ( ) Element of the carrier of L : ( ( transitive antisymmetric lower-bounded with_suprema ) ( non empty transitive antisymmetric lower-bounded with_suprema ) RelStr ) : ( ( ) ( non empty ) set ) ) implies it : ( ( auxiliary(iii) ) ( Relation-like auxiliary(iii) ) Element of bool [: the carrier of L : ( ( transitive antisymmetric lower-bounded with_suprema ) ( non empty transitive antisymmetric lower-bounded with_suprema ) RelStr ) : ( ( ) ( non empty ) set ) , the carrier of L : ( ( transitive antisymmetric lower-bounded with_suprema ) ( non empty transitive antisymmetric lower-bounded with_suprema ) RelStr ) : ( ( ) ( non empty ) set ) :] : ( ( ) ( non empty Relation-like ) set ) : ( ( ) ( non empty ) set ) ) . x : ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) : ( ( ) ( ) Element of the carrier of (InclPoset (Ids L : ( ( transitive antisymmetric lower-bounded with_suprema ) ( non empty transitive antisymmetric lower-bounded with_suprema ) RelStr ) ) : ( ( ) ( ) set ) ) : ( ( strict ) ( strict reflexive transitive antisymmetric ) RelStr ) : ( ( ) ( ) set ) ) = (downarrow x : ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) ) : ( ( ) ( ) Element of bool the carrier of L : ( ( transitive antisymmetric lower-bounded with_suprema ) ( non empty transitive antisymmetric lower-bounded with_suprema ) RelStr ) : ( ( ) ( non empty ) set ) : ( ( ) ( non empty ) set ) ) /\ I : ( ( non empty ) ( non empty ) set ) : ( ( ) ( ) Element of bool the carrier of L : ( ( transitive antisymmetric lower-bounded with_suprema ) ( non empty transitive antisymmetric lower-bounded with_suprema ) RelStr ) : ( ( ) ( non empty ) set ) : ( ( ) ( non empty ) set ) ) ) & ( not x : ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) <= sup I : ( ( non empty ) ( non empty ) set ) : ( ( ) ( ) Element of the carrier of L : ( ( transitive antisymmetric lower-bounded with_suprema ) ( non empty transitive antisymmetric lower-bounded with_suprema ) RelStr ) : ( ( ) ( non empty ) set ) ) implies it : ( ( auxiliary(iii) ) ( Relation-like auxiliary(iii) ) Element of bool [: the carrier of L : ( ( transitive antisymmetric lower-bounded with_suprema ) ( non empty transitive antisymmetric lower-bounded with_suprema ) RelStr ) : ( ( ) ( non empty ) set ) , the carrier of L : ( ( transitive antisymmetric lower-bounded with_suprema ) ( non empty transitive antisymmetric lower-bounded with_suprema ) RelStr ) : ( ( ) ( non empty ) set ) :] : ( ( ) ( non empty Relation-like ) set ) : ( ( ) ( non empty ) set ) ) . x : ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) : ( ( ) ( ) Element of the carrier of (InclPoset (Ids L : ( ( transitive antisymmetric lower-bounded with_suprema ) ( non empty transitive antisymmetric lower-bounded with_suprema ) RelStr ) ) : ( ( ) ( ) set ) ) : ( ( strict ) ( strict reflexive transitive antisymmetric ) RelStr ) : ( ( ) ( ) set ) ) = downarrow x : ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) : ( ( ) ( ) Element of bool the carrier of L : ( ( transitive antisymmetric lower-bounded with_suprema ) ( non empty transitive antisymmetric lower-bounded with_suprema ) RelStr ) : ( ( ) ( non empty ) set ) : ( ( ) ( non empty ) set ) ) ) );
end;

theorem :: WAYBEL_4:35
for L being ( ( reflexive transitive antisymmetric with_infima ) ( non empty reflexive transitive antisymmetric with_infima ) Semilattice)
for I being ( ( non empty directed lower ) ( non empty directed lower ) Ideal of L : ( ( reflexive transitive antisymmetric with_infima ) ( non empty reflexive transitive antisymmetric with_infima ) Semilattice) ) holds DownMap I : ( ( non empty directed lower ) ( non empty directed lower ) Ideal of b1 : ( ( reflexive transitive antisymmetric with_infima ) ( non empty reflexive transitive antisymmetric with_infima ) Semilattice) ) : ( ( Function-like quasi_total ) ( non empty Relation-like Function-like total quasi_total ) Function of ( ( ) ( non empty ) set ) , ( ( ) ( non empty ) set ) ) in the carrier of (MonSet L : ( ( reflexive transitive antisymmetric with_infima ) ( non empty reflexive transitive antisymmetric with_infima ) Semilattice) ) : ( ( strict ) ( strict ) RelStr ) : ( ( ) ( non empty ) set ) ;

theorem :: WAYBEL_4:36
for L being ( ( reflexive antisymmetric with_infima ) ( non empty reflexive antisymmetric with_infima ) RelStr )
for x being ( ( ) ( ) Element of ( ( ) ( non empty ) set ) )
for D being ( ( non empty lower ) ( non empty lower ) Subset of ) holds {x : ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) } : ( ( ) ( ) Element of bool the carrier of b1 : ( ( reflexive antisymmetric with_infima ) ( non empty reflexive antisymmetric with_infima ) RelStr ) : ( ( ) ( non empty ) set ) : ( ( ) ( non empty ) set ) ) "/\" D : ( ( non empty lower ) ( non empty lower ) Subset of ) : ( ( ) ( ) Element of bool the carrier of b1 : ( ( reflexive antisymmetric with_infima ) ( non empty reflexive antisymmetric with_infima ) RelStr ) : ( ( ) ( non empty ) set ) : ( ( ) ( non empty ) set ) ) = (downarrow x : ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) ) : ( ( ) ( non empty directed ) Element of bool the carrier of b1 : ( ( reflexive antisymmetric with_infima ) ( non empty reflexive antisymmetric with_infima ) RelStr ) : ( ( ) ( non empty ) set ) : ( ( ) ( non empty ) set ) ) /\ D : ( ( non empty lower ) ( non empty lower ) Subset of ) : ( ( ) ( ) Element of bool the carrier of b1 : ( ( reflexive antisymmetric with_infima ) ( non empty reflexive antisymmetric with_infima ) RelStr ) : ( ( ) ( non empty ) set ) : ( ( ) ( non empty ) set ) ) ;

begin

definition
let L be ( ( non empty ) ( non empty ) RelStr ) ;
let AR be ( ( ) ( Relation-like ) Relation of ) ;
attr AR is approximating means :: WAYBEL_4:def 17
for x being ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) holds x : ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) = sup (AR : ( ( non empty ) ( non empty ) set ) -below x : ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) ) : ( ( ) ( ) Subset of ) : ( ( ) ( ) Element of the carrier of L : ( ( transitive antisymmetric lower-bounded with_suprema ) ( non empty transitive antisymmetric lower-bounded with_suprema ) RelStr ) : ( ( ) ( non empty ) set ) ) ;
end;

definition
let L be ( ( non empty reflexive transitive antisymmetric ) ( non empty reflexive transitive antisymmetric ) Poset) ;
let mp be ( ( Function-like quasi_total ) ( non empty Relation-like Function-like total quasi_total ) Function of ( ( ) ( non empty ) set ) , ( ( ) ( non empty ) set ) ) ;
attr mp is approximating means :: WAYBEL_4:def 18
for x being ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) ex ii being ( ( ) ( ) Subset of ) st
( ii : ( ( ) ( ) Subset of ) = mp : ( ( non empty ) ( non empty ) set ) . x : ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) : ( ( ) ( ) Element of the carrier of (InclPoset (Ids L : ( ( transitive antisymmetric lower-bounded with_suprema ) ( non empty transitive antisymmetric lower-bounded with_suprema ) RelStr ) ) : ( ( ) ( ) set ) ) : ( ( strict ) ( strict reflexive transitive antisymmetric ) RelStr ) : ( ( ) ( ) set ) ) & x : ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) = sup ii : ( ( ) ( ) Subset of ) : ( ( ) ( ) Element of the carrier of L : ( ( transitive antisymmetric lower-bounded with_suprema ) ( non empty transitive antisymmetric lower-bounded with_suprema ) RelStr ) : ( ( ) ( non empty ) set ) ) );
end;

theorem :: WAYBEL_4:37
for L being ( ( reflexive transitive antisymmetric lower-bounded with_infima meet-continuous ) ( non empty reflexive transitive antisymmetric lower-bounded up-complete with_infima satisfying_MC meet-continuous ) Semilattice)
for I being ( ( non empty directed lower ) ( non empty directed lower ) Ideal of L : ( ( reflexive transitive antisymmetric lower-bounded with_infima meet-continuous ) ( non empty reflexive transitive antisymmetric lower-bounded up-complete with_infima satisfying_MC meet-continuous ) Semilattice) ) holds DownMap I : ( ( non empty directed lower ) ( non empty directed lower ) Ideal of b1 : ( ( reflexive transitive antisymmetric lower-bounded with_infima meet-continuous ) ( non empty reflexive transitive antisymmetric lower-bounded up-complete with_infima satisfying_MC meet-continuous ) Semilattice) ) : ( ( Function-like quasi_total ) ( non empty Relation-like Function-like total quasi_total ) Function of ( ( ) ( non empty ) set ) , ( ( ) ( non empty ) set ) ) is approximating ;

theorem :: WAYBEL_4:38
for L being ( ( reflexive transitive antisymmetric lower-bounded with_suprema with_infima continuous ) ( non empty reflexive transitive antisymmetric lower-bounded upper-bounded V152() up-complete /\-complete with_suprema with_infima complete satisfying_axiom_of_approximation continuous ) LATTICE) holds L : ( ( reflexive transitive antisymmetric lower-bounded with_suprema with_infima continuous ) ( non empty reflexive transitive antisymmetric lower-bounded upper-bounded V152() up-complete /\-complete with_suprema with_infima complete satisfying_axiom_of_approximation continuous ) LATTICE) is meet-continuous ;

registration
cluster reflexive transitive antisymmetric lower-bounded with_suprema with_infima continuous -> reflexive transitive antisymmetric lower-bounded with_suprema with_infima meet-continuous for ( ( ) ( ) RelStr ) ;
end;

theorem :: WAYBEL_4:39
for L being ( ( reflexive transitive antisymmetric lower-bounded with_suprema with_infima continuous ) ( non empty reflexive transitive antisymmetric lower-bounded upper-bounded V152() up-complete /\-complete with_suprema with_infima complete satisfying_MC meet-continuous satisfying_axiom_of_approximation continuous ) LATTICE)
for I being ( ( non empty directed lower ) ( non empty directed lower ) Ideal of L : ( ( reflexive transitive antisymmetric lower-bounded with_suprema with_infima continuous ) ( non empty reflexive transitive antisymmetric lower-bounded upper-bounded V152() up-complete /\-complete with_suprema with_infima complete satisfying_MC meet-continuous satisfying_axiom_of_approximation continuous ) LATTICE) ) holds DownMap I : ( ( non empty directed lower ) ( non empty directed lower ) Ideal of b1 : ( ( reflexive transitive antisymmetric lower-bounded with_suprema with_infima continuous ) ( non empty reflexive transitive antisymmetric lower-bounded upper-bounded V152() up-complete /\-complete with_suprema with_infima complete satisfying_MC meet-continuous satisfying_axiom_of_approximation continuous ) LATTICE) ) : ( ( Function-like quasi_total ) ( non empty Relation-like Function-like total quasi_total ) Function of ( ( ) ( non empty ) set ) , ( ( ) ( non empty ) set ) ) is approximating ;

registration
let L be ( ( non empty reflexive antisymmetric ) ( non empty reflexive antisymmetric ) RelStr ) ;
cluster L : ( ( non empty reflexive antisymmetric ) ( non empty reflexive antisymmetric ) RelStr ) -waybelow : ( ( ) ( Relation-like ) Relation of ) -> auxiliary(i) ;
end;

registration
let L be ( ( non empty reflexive transitive ) ( non empty reflexive transitive ) RelStr ) ;
cluster L : ( ( non empty reflexive transitive ) ( non empty reflexive transitive ) RelStr ) -waybelow : ( ( ) ( Relation-like ) Relation of ) -> auxiliary(ii) ;
end;

registration
let L be ( ( reflexive transitive antisymmetric with_suprema ) ( non empty reflexive transitive antisymmetric with_suprema ) Poset) ;
cluster L : ( ( reflexive transitive antisymmetric with_suprema ) ( non empty reflexive transitive antisymmetric with_suprema ) RelStr ) -waybelow : ( ( ) ( Relation-like auxiliary(i) auxiliary(ii) ) Relation of ) -> auxiliary(iii) ;
end;

registration
let L be ( ( non empty reflexive transitive antisymmetric /\-complete ) ( non empty reflexive transitive antisymmetric lower-bounded /\-complete with_infima ) Poset) ;
cluster L : ( ( non empty reflexive transitive antisymmetric /\-complete ) ( non empty reflexive transitive antisymmetric lower-bounded /\-complete with_infima ) RelStr ) -waybelow : ( ( ) ( Relation-like auxiliary(i) auxiliary(ii) ) Relation of ) -> auxiliary(iii) ;
end;

registration
let L be ( ( non empty reflexive antisymmetric lower-bounded ) ( non empty reflexive antisymmetric lower-bounded ) RelStr ) ;
cluster L : ( ( non empty reflexive antisymmetric lower-bounded ) ( non empty reflexive antisymmetric lower-bounded ) RelStr ) -waybelow : ( ( ) ( Relation-like auxiliary(i) ) Relation of ) -> auxiliary(iv) ;
end;

theorem :: WAYBEL_4:40
for L being ( ( reflexive transitive antisymmetric with_suprema with_infima complete ) ( non empty reflexive transitive antisymmetric lower-bounded upper-bounded V152() up-complete /\-complete with_suprema with_infima complete ) LATTICE)
for x being ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) holds (L : ( ( reflexive transitive antisymmetric with_suprema with_infima complete ) ( non empty reflexive transitive antisymmetric lower-bounded upper-bounded V152() up-complete /\-complete with_suprema with_infima complete ) LATTICE) -waybelow) : ( ( ) ( Relation-like transitive auxiliary(i) auxiliary(ii) auxiliary(iii) auxiliary(iv) auxiliary ) Relation of ) -below x : ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) : ( ( ) ( non empty directed lower ) Subset of ) = waybelow x : ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) : ( ( ) ( non empty directed lower ) Element of bool the carrier of b1 : ( ( reflexive transitive antisymmetric with_suprema with_infima complete ) ( non empty reflexive transitive antisymmetric lower-bounded upper-bounded V152() up-complete /\-complete with_suprema with_infima complete ) LATTICE) : ( ( ) ( non empty ) set ) : ( ( ) ( non empty ) set ) ) ;

theorem :: WAYBEL_4:41
for L being ( ( reflexive transitive antisymmetric with_suprema with_infima ) ( non empty reflexive transitive antisymmetric with_suprema with_infima ) LATTICE) holds IntRel L : ( ( reflexive transitive antisymmetric with_suprema with_infima ) ( non empty reflexive transitive antisymmetric with_suprema with_infima ) LATTICE) : ( ( ) ( Relation-like auxiliary(i) auxiliary(ii) auxiliary(iii) ) Relation of ) is approximating ;

registration
let L be ( ( reflexive transitive antisymmetric lower-bounded with_suprema with_infima continuous ) ( non empty reflexive transitive antisymmetric lower-bounded upper-bounded V152() up-complete /\-complete with_suprema with_infima complete satisfying_MC meet-continuous satisfying_axiom_of_approximation continuous ) LATTICE) ;
cluster L : ( ( reflexive transitive antisymmetric lower-bounded with_suprema with_infima continuous ) ( non empty reflexive transitive antisymmetric lower-bounded upper-bounded V152() up-complete /\-complete with_suprema with_infima complete satisfying_MC meet-continuous satisfying_axiom_of_approximation continuous ) RelStr ) -waybelow : ( ( ) ( Relation-like transitive auxiliary(i) auxiliary(ii) auxiliary(iii) auxiliary(iv) auxiliary ) Relation of ) -> approximating ;
end;

registration
let L be ( ( reflexive transitive antisymmetric with_suprema with_infima complete ) ( non empty reflexive transitive antisymmetric lower-bounded upper-bounded V152() up-complete /\-complete with_suprema with_infima complete ) LATTICE) ;
cluster Relation-like auxiliary approximating for ( ( ) ( ) Element of bool [: the carrier of L : ( ( reflexive transitive antisymmetric with_suprema with_infima complete ) ( non empty reflexive transitive antisymmetric lower-bounded upper-bounded V152() up-complete /\-complete with_suprema with_infima complete ) RelStr ) : ( ( ) ( non empty ) set ) , the carrier of L : ( ( reflexive transitive antisymmetric with_suprema with_infima complete ) ( non empty reflexive transitive antisymmetric lower-bounded upper-bounded V152() up-complete /\-complete with_suprema with_infima complete ) RelStr ) : ( ( ) ( non empty ) set ) :] : ( ( ) ( non empty Relation-like ) set ) : ( ( ) ( non empty ) set ) ) ;
end;

definition
let L be ( ( reflexive transitive antisymmetric with_suprema with_infima complete ) ( non empty reflexive transitive antisymmetric lower-bounded upper-bounded V152() up-complete /\-complete with_suprema with_infima complete ) LATTICE) ;
func App L -> ( ( ) ( ) set ) means :: WAYBEL_4:def 19
for a being ( ( ) ( ) set ) holds
( a : ( ( ) ( ) set ) in it : ( ( non empty ) ( non empty ) set ) iff a : ( ( ) ( ) set ) is ( ( auxiliary approximating ) ( Relation-like transitive auxiliary(i) auxiliary(ii) auxiliary(iii) auxiliary(iv) auxiliary approximating ) Relation of ) );
end;

registration
let L be ( ( reflexive transitive antisymmetric with_suprema with_infima complete ) ( non empty reflexive transitive antisymmetric lower-bounded upper-bounded V152() up-complete /\-complete with_suprema with_infima complete ) LATTICE) ;
cluster App L : ( ( reflexive transitive antisymmetric with_suprema with_infima complete ) ( non empty reflexive transitive antisymmetric lower-bounded upper-bounded V152() up-complete /\-complete with_suprema with_infima complete ) RelStr ) : ( ( ) ( ) set ) -> non empty ;
end;

theorem :: WAYBEL_4:42
for L being ( ( reflexive transitive antisymmetric with_suprema with_infima complete ) ( non empty reflexive transitive antisymmetric lower-bounded upper-bounded V152() up-complete /\-complete with_suprema with_infima complete ) LATTICE)
for mp being ( ( Function-like quasi_total ) ( non empty Relation-like Function-like total quasi_total ) Function of ( ( ) ( non empty ) set ) , ( ( ) ( non empty ) set ) ) st mp : ( ( Function-like quasi_total ) ( non empty Relation-like Function-like total quasi_total ) Function of ( ( ) ( non empty ) set ) , ( ( ) ( non empty ) set ) ) is approximating & mp : ( ( Function-like quasi_total ) ( non empty Relation-like Function-like total quasi_total ) Function of ( ( ) ( non empty ) set ) , ( ( ) ( non empty ) set ) ) in the carrier of (MonSet L : ( ( reflexive transitive antisymmetric with_suprema with_infima complete ) ( non empty reflexive transitive antisymmetric lower-bounded upper-bounded V152() up-complete /\-complete with_suprema with_infima complete ) LATTICE) ) : ( ( strict ) ( non empty strict upper-bounded ) RelStr ) : ( ( ) ( non empty ) set ) holds
ex AR being ( ( auxiliary approximating ) ( Relation-like transitive auxiliary(i) auxiliary(ii) auxiliary(iii) auxiliary(iv) auxiliary approximating ) Relation of ) st AR : ( ( auxiliary approximating ) ( Relation-like transitive auxiliary(i) auxiliary(ii) auxiliary(iii) auxiliary(iv) auxiliary approximating ) Relation of ) = (Map2Rel L : ( ( reflexive transitive antisymmetric with_suprema with_infima complete ) ( non empty reflexive transitive antisymmetric lower-bounded upper-bounded V152() up-complete /\-complete with_suprema with_infima complete ) LATTICE) ) : ( ( Function-like quasi_total ) ( non empty Relation-like Function-like total quasi_total monotone ) Function of ( ( ) ( non empty ) set ) , ( ( ) ( non empty ) set ) ) . mp : ( ( Function-like quasi_total ) ( non empty Relation-like Function-like total quasi_total ) Function of ( ( ) ( non empty ) set ) , ( ( ) ( non empty ) set ) ) : ( ( ) ( ) set ) ;

theorem :: WAYBEL_4:43
for L being ( ( reflexive transitive antisymmetric with_suprema with_infima complete ) ( non empty reflexive transitive antisymmetric lower-bounded upper-bounded V152() up-complete /\-complete with_suprema with_infima complete ) LATTICE)
for x being ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) holds meet { ((DownMap I : ( ( non empty directed lower ) ( non empty directed lower ) Ideal of b1 : ( ( reflexive transitive antisymmetric with_suprema with_infima complete ) ( non empty reflexive transitive antisymmetric lower-bounded upper-bounded V152() up-complete /\-complete with_suprema with_infima complete ) LATTICE) ) ) : ( ( Function-like quasi_total ) ( non empty Relation-like Function-like total quasi_total ) Function of ( ( ) ( non empty ) set ) , ( ( ) ( non empty ) set ) ) . x : ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) ) : ( ( ) ( ) Element of the carrier of (InclPoset (Ids b1 : ( ( reflexive transitive antisymmetric with_suprema with_infima complete ) ( non empty reflexive transitive antisymmetric lower-bounded upper-bounded V152() up-complete /\-complete with_suprema with_infima complete ) LATTICE) ) : ( ( ) ( non empty ) set ) ) : ( ( strict ) ( non empty strict reflexive transitive antisymmetric lower-bounded upper-bounded V152() up-complete /\-complete with_suprema with_infima complete ) RelStr ) : ( ( ) ( non empty ) set ) ) where I is ( ( non empty directed lower ) ( non empty directed lower ) Ideal of L : ( ( reflexive transitive antisymmetric with_suprema with_infima complete ) ( non empty reflexive transitive antisymmetric lower-bounded upper-bounded V152() up-complete /\-complete with_suprema with_infima complete ) LATTICE) ) : verum } : ( ( ) ( ) set ) = waybelow x : ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) : ( ( ) ( non empty directed lower ) Element of bool the carrier of b1 : ( ( reflexive transitive antisymmetric with_suprema with_infima complete ) ( non empty reflexive transitive antisymmetric lower-bounded upper-bounded V152() up-complete /\-complete with_suprema with_infima complete ) LATTICE) : ( ( ) ( non empty ) set ) : ( ( ) ( non empty ) set ) ) ;

theorem :: WAYBEL_4:44
for L being ( ( reflexive transitive antisymmetric lower-bounded with_suprema with_infima meet-continuous ) ( non empty reflexive transitive antisymmetric lower-bounded upper-bounded V152() up-complete /\-complete with_suprema with_infima complete satisfying_MC meet-continuous ) LATTICE)
for x being ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) holds meet { (AR : ( ( auxiliary ) ( Relation-like transitive auxiliary(i) auxiliary(ii) auxiliary(iii) auxiliary(iv) auxiliary ) Relation of ) -below x : ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) ) : ( ( ) ( non empty directed lower ) Subset of ) where AR is ( ( auxiliary ) ( Relation-like transitive auxiliary(i) auxiliary(ii) auxiliary(iii) auxiliary(iv) auxiliary ) Relation of ) : AR : ( ( auxiliary ) ( Relation-like transitive auxiliary(i) auxiliary(ii) auxiliary(iii) auxiliary(iv) auxiliary ) Relation of ) in App L : ( ( reflexive transitive antisymmetric lower-bounded with_suprema with_infima meet-continuous ) ( non empty reflexive transitive antisymmetric lower-bounded upper-bounded V152() up-complete /\-complete with_suprema with_infima complete satisfying_MC meet-continuous ) LATTICE) : ( ( ) ( non empty ) set ) } : ( ( ) ( ) set ) = waybelow x : ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) : ( ( ) ( non empty directed lower ) Element of bool the carrier of b1 : ( ( reflexive transitive antisymmetric lower-bounded with_suprema with_infima meet-continuous ) ( non empty reflexive transitive antisymmetric lower-bounded upper-bounded V152() up-complete /\-complete with_suprema with_infima complete satisfying_MC meet-continuous ) LATTICE) : ( ( ) ( non empty ) set ) : ( ( ) ( non empty ) set ) ) ;

theorem :: WAYBEL_4:45
for L being ( ( reflexive transitive antisymmetric with_suprema with_infima complete ) ( non empty reflexive transitive antisymmetric lower-bounded upper-bounded V152() up-complete /\-complete with_suprema with_infima complete ) LATTICE) holds
( L : ( ( reflexive transitive antisymmetric with_suprema with_infima complete ) ( non empty reflexive transitive antisymmetric lower-bounded upper-bounded V152() up-complete /\-complete with_suprema with_infima complete ) LATTICE) is continuous iff for R being ( ( auxiliary approximating ) ( Relation-like transitive auxiliary(i) auxiliary(ii) auxiliary(iii) auxiliary(iv) auxiliary approximating ) Relation of ) holds
( L : ( ( reflexive transitive antisymmetric with_suprema with_infima complete ) ( non empty reflexive transitive antisymmetric lower-bounded upper-bounded V152() up-complete /\-complete with_suprema with_infima complete ) LATTICE) -waybelow : ( ( ) ( Relation-like transitive auxiliary(i) auxiliary(ii) auxiliary(iii) auxiliary(iv) auxiliary ) Relation of ) c= R : ( ( auxiliary approximating ) ( Relation-like transitive auxiliary(i) auxiliary(ii) auxiliary(iii) auxiliary(iv) auxiliary approximating ) Relation of ) & L : ( ( reflexive transitive antisymmetric with_suprema with_infima complete ) ( non empty reflexive transitive antisymmetric lower-bounded upper-bounded V152() up-complete /\-complete with_suprema with_infima complete ) LATTICE) -waybelow : ( ( ) ( Relation-like transitive auxiliary(i) auxiliary(ii) auxiliary(iii) auxiliary(iv) auxiliary ) Relation of ) is approximating ) ) ;

theorem :: WAYBEL_4:46
for L being ( ( reflexive transitive antisymmetric with_suprema with_infima complete ) ( non empty reflexive transitive antisymmetric lower-bounded upper-bounded V152() up-complete /\-complete with_suprema with_infima complete ) LATTICE) holds
( L : ( ( reflexive transitive antisymmetric with_suprema with_infima complete ) ( non empty reflexive transitive antisymmetric lower-bounded upper-bounded V152() up-complete /\-complete with_suprema with_infima complete ) LATTICE) is continuous iff ( L : ( ( reflexive transitive antisymmetric with_suprema with_infima complete ) ( non empty reflexive transitive antisymmetric lower-bounded upper-bounded V152() up-complete /\-complete with_suprema with_infima complete ) LATTICE) is meet-continuous & ex R being ( ( auxiliary approximating ) ( Relation-like transitive auxiliary(i) auxiliary(ii) auxiliary(iii) auxiliary(iv) auxiliary approximating ) Relation of ) st
for R9 being ( ( auxiliary approximating ) ( Relation-like transitive auxiliary(i) auxiliary(ii) auxiliary(iii) auxiliary(iv) auxiliary approximating ) Relation of ) holds R : ( ( auxiliary approximating ) ( Relation-like transitive auxiliary(i) auxiliary(ii) auxiliary(iii) auxiliary(iv) auxiliary approximating ) Relation of ) c= R9 : ( ( auxiliary approximating ) ( Relation-like transitive auxiliary(i) auxiliary(ii) auxiliary(iii) auxiliary(iv) auxiliary approximating ) Relation of ) ) ) ;

definition
let L be ( ( ) ( ) RelStr ) ;
let AR be ( ( ) ( Relation-like ) Relation of ) ;
attr AR is satisfying_SI means :: WAYBEL_4:def 20
for x, z being ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) st [x : ( ( ) ( ) Element of ( ( ) ( ) set ) ) ,z : ( ( ) ( ) Element of ( ( ) ( ) set ) ) ] : ( ( ) ( ) set ) in AR : ( ( non empty ) ( non empty ) set ) & x : ( ( ) ( ) Element of ( ( ) ( ) set ) ) <> z : ( ( ) ( ) Element of ( ( ) ( ) set ) ) holds
ex y being ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) st
( [x : ( ( ) ( ) Element of ( ( ) ( ) set ) ) ,y : ( ( ) ( ) Element of ( ( ) ( ) set ) ) ] : ( ( ) ( ) set ) in AR : ( ( non empty ) ( non empty ) set ) & [y : ( ( ) ( ) Element of ( ( ) ( ) set ) ) ,z : ( ( ) ( ) Element of ( ( ) ( ) set ) ) ] : ( ( ) ( ) set ) in AR : ( ( non empty ) ( non empty ) set ) & x : ( ( ) ( ) Element of ( ( ) ( ) set ) ) <> y : ( ( ) ( ) Element of ( ( ) ( ) set ) ) );
end;

definition
let L be ( ( ) ( ) RelStr ) ;
let AR be ( ( ) ( Relation-like ) Relation of ) ;
attr AR is satisfying_INT means :: WAYBEL_4:def 21
for x, z being ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) st [x : ( ( ) ( ) Element of ( ( ) ( ) set ) ) ,z : ( ( ) ( ) Element of ( ( ) ( ) set ) ) ] : ( ( ) ( ) set ) in AR : ( ( non empty ) ( non empty ) set ) holds
ex y being ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) st
( [x : ( ( ) ( ) Element of ( ( ) ( ) set ) ) ,y : ( ( ) ( ) Element of ( ( ) ( ) set ) ) ] : ( ( ) ( ) set ) in AR : ( ( non empty ) ( non empty ) set ) & [y : ( ( ) ( ) Element of ( ( ) ( ) set ) ) ,z : ( ( ) ( ) Element of ( ( ) ( ) set ) ) ] : ( ( ) ( ) set ) in AR : ( ( non empty ) ( non empty ) set ) );
end;

theorem :: WAYBEL_4:47
for L being ( ( ) ( ) RelStr )
for AR being ( ( ) ( Relation-like ) Relation of ) st AR : ( ( ) ( Relation-like ) Relation of ) is satisfying_SI holds
AR : ( ( ) ( Relation-like ) Relation of ) is satisfying_INT ;

registration
let L be ( ( non empty ) ( non empty ) RelStr ) ;
cluster satisfying_SI -> satisfying_INT for ( ( ) ( ) Element of bool [: the carrier of L : ( ( reflexive transitive antisymmetric with_suprema with_infima complete ) ( non empty reflexive transitive antisymmetric lower-bounded upper-bounded V152() up-complete /\-complete with_suprema with_infima complete ) RelStr ) : ( ( ) ( non empty ) set ) , the carrier of L : ( ( reflexive transitive antisymmetric with_suprema with_infima complete ) ( non empty reflexive transitive antisymmetric lower-bounded upper-bounded V152() up-complete /\-complete with_suprema with_infima complete ) RelStr ) : ( ( ) ( non empty ) set ) :] : ( ( ) ( non empty Relation-like ) set ) : ( ( ) ( non empty ) set ) ) ;
end;

theorem :: WAYBEL_4:48
for L being ( ( reflexive transitive antisymmetric with_suprema with_infima complete ) ( non empty reflexive transitive antisymmetric lower-bounded upper-bounded V152() up-complete /\-complete with_suprema with_infima complete ) LATTICE)
for x, y being ( ( ) ( ) Element of ( ( ) ( non empty ) set ) )
for AR being ( ( approximating ) ( Relation-like approximating ) Relation of ) st not x : ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) <= y : ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) holds
ex u being ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) st
( [u : ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) ,x : ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) ] : ( ( ) ( ) Element of [: the carrier of b1 : ( ( reflexive transitive antisymmetric with_suprema with_infima complete ) ( non empty reflexive transitive antisymmetric lower-bounded upper-bounded V152() up-complete /\-complete with_suprema with_infima complete ) LATTICE) : ( ( ) ( non empty ) set ) , the carrier of b1 : ( ( reflexive transitive antisymmetric with_suprema with_infima complete ) ( non empty reflexive transitive antisymmetric lower-bounded upper-bounded V152() up-complete /\-complete with_suprema with_infima complete ) LATTICE) : ( ( ) ( non empty ) set ) :] : ( ( ) ( non empty Relation-like ) set ) ) in AR : ( ( approximating ) ( Relation-like approximating ) Relation of ) & not u : ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) <= y : ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) ) ;

theorem :: WAYBEL_4:49
for L being ( ( reflexive transitive antisymmetric with_suprema with_infima complete ) ( non empty reflexive transitive antisymmetric lower-bounded upper-bounded V152() up-complete /\-complete with_suprema with_infima complete ) LATTICE)
for x, z being ( ( ) ( ) Element of ( ( ) ( non empty ) set ) )
for R being ( ( auxiliary(i) auxiliary(iii) approximating ) ( Relation-like auxiliary(i) auxiliary(iii) approximating ) Relation of ) st [x : ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) ,z : ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) ] : ( ( ) ( ) Element of [: the carrier of b1 : ( ( reflexive transitive antisymmetric with_suprema with_infima complete ) ( non empty reflexive transitive antisymmetric lower-bounded upper-bounded V152() up-complete /\-complete with_suprema with_infima complete ) LATTICE) : ( ( ) ( non empty ) set ) , the carrier of b1 : ( ( reflexive transitive antisymmetric with_suprema with_infima complete ) ( non empty reflexive transitive antisymmetric lower-bounded upper-bounded V152() up-complete /\-complete with_suprema with_infima complete ) LATTICE) : ( ( ) ( non empty ) set ) :] : ( ( ) ( non empty Relation-like ) set ) ) in R : ( ( auxiliary(i) auxiliary(iii) approximating ) ( Relation-like auxiliary(i) auxiliary(iii) approximating ) Relation of ) & x : ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) <> z : ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) holds
ex y being ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) st
( x : ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) <= y : ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) & [y : ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) ,z : ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) ] : ( ( ) ( ) Element of [: the carrier of b1 : ( ( reflexive transitive antisymmetric with_suprema with_infima complete ) ( non empty reflexive transitive antisymmetric lower-bounded upper-bounded V152() up-complete /\-complete with_suprema with_infima complete ) LATTICE) : ( ( ) ( non empty ) set ) , the carrier of b1 : ( ( reflexive transitive antisymmetric with_suprema with_infima complete ) ( non empty reflexive transitive antisymmetric lower-bounded upper-bounded V152() up-complete /\-complete with_suprema with_infima complete ) LATTICE) : ( ( ) ( non empty ) set ) :] : ( ( ) ( non empty Relation-like ) set ) ) in R : ( ( auxiliary(i) auxiliary(iii) approximating ) ( Relation-like auxiliary(i) auxiliary(iii) approximating ) Relation of ) & x : ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) <> y : ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) ) ;

theorem :: WAYBEL_4:50
for L being ( ( reflexive transitive antisymmetric with_suprema with_infima complete ) ( non empty reflexive transitive antisymmetric lower-bounded upper-bounded V152() up-complete /\-complete with_suprema with_infima complete ) LATTICE)
for x, z being ( ( ) ( ) Element of ( ( ) ( non empty ) set ) )
for R being ( ( auxiliary approximating ) ( Relation-like transitive auxiliary(i) auxiliary(ii) auxiliary(iii) auxiliary(iv) auxiliary approximating ) Relation of ) st x : ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) << z : ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) & x : ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) <> z : ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) holds
ex y being ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) st
( [x : ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) ,y : ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) ] : ( ( ) ( ) Element of [: the carrier of b1 : ( ( reflexive transitive antisymmetric with_suprema with_infima complete ) ( non empty reflexive transitive antisymmetric lower-bounded upper-bounded V152() up-complete /\-complete with_suprema with_infima complete ) LATTICE) : ( ( ) ( non empty ) set ) , the carrier of b1 : ( ( reflexive transitive antisymmetric with_suprema with_infima complete ) ( non empty reflexive transitive antisymmetric lower-bounded upper-bounded V152() up-complete /\-complete with_suprema with_infima complete ) LATTICE) : ( ( ) ( non empty ) set ) :] : ( ( ) ( non empty Relation-like ) set ) ) in R : ( ( auxiliary approximating ) ( Relation-like transitive auxiliary(i) auxiliary(ii) auxiliary(iii) auxiliary(iv) auxiliary approximating ) Relation of ) & [y : ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) ,z : ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) ] : ( ( ) ( ) Element of [: the carrier of b1 : ( ( reflexive transitive antisymmetric with_suprema with_infima complete ) ( non empty reflexive transitive antisymmetric lower-bounded upper-bounded V152() up-complete /\-complete with_suprema with_infima complete ) LATTICE) : ( ( ) ( non empty ) set ) , the carrier of b1 : ( ( reflexive transitive antisymmetric with_suprema with_infima complete ) ( non empty reflexive transitive antisymmetric lower-bounded upper-bounded V152() up-complete /\-complete with_suprema with_infima complete ) LATTICE) : ( ( ) ( non empty ) set ) :] : ( ( ) ( non empty Relation-like ) set ) ) in R : ( ( auxiliary approximating ) ( Relation-like transitive auxiliary(i) auxiliary(ii) auxiliary(iii) auxiliary(iv) auxiliary approximating ) Relation of ) & x : ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) <> y : ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) ) ;

theorem :: WAYBEL_4:51
for L being ( ( reflexive transitive antisymmetric lower-bounded with_suprema with_infima continuous ) ( non empty reflexive transitive antisymmetric lower-bounded upper-bounded V152() up-complete /\-complete with_suprema with_infima complete satisfying_MC meet-continuous satisfying_axiom_of_approximation continuous ) LATTICE) holds L : ( ( reflexive transitive antisymmetric lower-bounded with_suprema with_infima continuous ) ( non empty reflexive transitive antisymmetric lower-bounded upper-bounded V152() up-complete /\-complete with_suprema with_infima complete satisfying_MC meet-continuous satisfying_axiom_of_approximation continuous ) LATTICE) -waybelow : ( ( ) ( Relation-like transitive auxiliary(i) auxiliary(ii) auxiliary(iii) auxiliary(iv) auxiliary approximating ) Relation of ) is satisfying_SI ;

registration
let L be ( ( reflexive transitive antisymmetric lower-bounded with_suprema with_infima continuous ) ( non empty reflexive transitive antisymmetric lower-bounded upper-bounded V152() up-complete /\-complete with_suprema with_infima complete satisfying_MC meet-continuous satisfying_axiom_of_approximation continuous ) LATTICE) ;
cluster L : ( ( reflexive transitive antisymmetric lower-bounded with_suprema with_infima continuous ) ( non empty reflexive transitive antisymmetric lower-bounded upper-bounded V152() up-complete /\-complete with_suprema with_infima complete satisfying_MC meet-continuous satisfying_axiom_of_approximation continuous ) RelStr ) -waybelow : ( ( ) ( Relation-like transitive auxiliary(i) auxiliary(ii) auxiliary(iii) auxiliary(iv) auxiliary approximating ) Relation of ) -> satisfying_SI ;
end;

theorem :: WAYBEL_4:52
for L being ( ( reflexive transitive antisymmetric lower-bounded with_suprema with_infima continuous ) ( non empty reflexive transitive antisymmetric lower-bounded upper-bounded V152() up-complete /\-complete with_suprema with_infima complete satisfying_MC meet-continuous satisfying_axiom_of_approximation continuous ) LATTICE)
for x, y being ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) st x : ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) << y : ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) holds
ex x9 being ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) st
( x : ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) << x9 : ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) & x9 : ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) << y : ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) ) ;

theorem :: WAYBEL_4:53
for L being ( ( reflexive transitive antisymmetric lower-bounded with_suprema with_infima continuous ) ( non empty reflexive transitive antisymmetric lower-bounded upper-bounded V152() up-complete /\-complete with_suprema with_infima complete satisfying_MC meet-continuous satisfying_axiom_of_approximation continuous ) LATTICE)
for x, y being ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) holds
( x : ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) << y : ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) iff for D being ( ( non empty directed ) ( non empty directed ) Subset of ) st y : ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) <= sup D : ( ( non empty directed ) ( non empty directed ) Subset of ) : ( ( ) ( ) Element of the carrier of b1 : ( ( reflexive transitive antisymmetric lower-bounded with_suprema with_infima continuous ) ( non empty reflexive transitive antisymmetric lower-bounded upper-bounded V152() up-complete /\-complete with_suprema with_infima complete satisfying_MC meet-continuous satisfying_axiom_of_approximation continuous ) LATTICE) : ( ( ) ( non empty ) set ) ) holds
ex d being ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) st
( d : ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) in D : ( ( non empty directed ) ( non empty directed ) Subset of ) & x : ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) << d : ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) ) ) ;

begin

definition
let L be ( ( ) ( ) RelStr ) ;
let X be ( ( ) ( ) Subset of ) ;
let R be ( ( ) ( Relation-like ) Relation of ) ;
pred X is_directed_wrt R means :: WAYBEL_4:def 22
for x, y being ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) st x : ( ( ) ( ) Element of ( ( ) ( ) set ) ) in X : ( ( non empty ) ( non empty ) set ) & y : ( ( ) ( ) Element of ( ( ) ( ) set ) ) in X : ( ( non empty ) ( non empty ) set ) holds
ex z being ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) st
( z : ( ( ) ( ) Element of ( ( ) ( ) set ) ) in X : ( ( non empty ) ( non empty ) set ) & [x : ( ( ) ( ) Element of ( ( ) ( ) set ) ) ,z : ( ( ) ( ) Element of ( ( ) ( ) set ) ) ] : ( ( ) ( ) set ) in R : ( ( auxiliary(iii) ) ( Relation-like auxiliary(iii) ) Element of bool [: the carrier of L : ( ( reflexive transitive antisymmetric with_suprema with_infima complete ) ( non empty reflexive transitive antisymmetric lower-bounded upper-bounded V152() up-complete /\-complete with_suprema with_infima complete ) RelStr ) : ( ( ) ( non empty ) set ) , the carrier of L : ( ( reflexive transitive antisymmetric with_suprema with_infima complete ) ( non empty reflexive transitive antisymmetric lower-bounded upper-bounded V152() up-complete /\-complete with_suprema with_infima complete ) RelStr ) : ( ( ) ( non empty ) set ) :] : ( ( ) ( non empty Relation-like ) set ) : ( ( ) ( non empty ) set ) ) & [y : ( ( ) ( ) Element of ( ( ) ( ) set ) ) ,z : ( ( ) ( ) Element of ( ( ) ( ) set ) ) ] : ( ( ) ( ) set ) in R : ( ( auxiliary(iii) ) ( Relation-like auxiliary(iii) ) Element of bool [: the carrier of L : ( ( reflexive transitive antisymmetric with_suprema with_infima complete ) ( non empty reflexive transitive antisymmetric lower-bounded upper-bounded V152() up-complete /\-complete with_suprema with_infima complete ) RelStr ) : ( ( ) ( non empty ) set ) , the carrier of L : ( ( reflexive transitive antisymmetric with_suprema with_infima complete ) ( non empty reflexive transitive antisymmetric lower-bounded upper-bounded V152() up-complete /\-complete with_suprema with_infima complete ) RelStr ) : ( ( ) ( non empty ) set ) :] : ( ( ) ( non empty Relation-like ) set ) : ( ( ) ( non empty ) set ) ) );
end;

theorem :: WAYBEL_4:54
for L being ( ( ) ( ) RelStr )
for X being ( ( ) ( ) Subset of ) st X : ( ( ) ( ) Subset of ) is_directed_wrt the InternalRel of L : ( ( ) ( ) RelStr ) : ( ( ) ( Relation-like ) Element of bool [: the carrier of b1 : ( ( ) ( ) RelStr ) : ( ( ) ( ) set ) , the carrier of b1 : ( ( ) ( ) RelStr ) : ( ( ) ( ) set ) :] : ( ( ) ( non empty Relation-like ) set ) : ( ( ) ( non empty ) set ) ) holds
X : ( ( ) ( ) Subset of ) is directed ;

definition
let X, x be ( ( ) ( ) set ) ;
let R be ( ( Relation-like ) ( Relation-like ) Relation) ;
pred x is_maximal_wrt X,R means :: WAYBEL_4:def 23
( x : ( ( non empty ) ( non empty ) set ) in X : ( ( reflexive transitive antisymmetric with_suprema with_infima complete ) ( non empty reflexive transitive antisymmetric lower-bounded upper-bounded V152() up-complete /\-complete with_suprema with_infima complete ) RelStr ) & ( for y being ( ( ) ( ) set ) holds
( not y : ( ( ) ( ) set ) in X : ( ( reflexive transitive antisymmetric with_suprema with_infima complete ) ( non empty reflexive transitive antisymmetric lower-bounded upper-bounded V152() up-complete /\-complete with_suprema with_infima complete ) RelStr ) or not y : ( ( ) ( ) set ) <> x : ( ( non empty ) ( non empty ) set ) or not [x : ( ( non empty ) ( non empty ) set ) ,y : ( ( ) ( ) set ) ] : ( ( ) ( ) set ) in R : ( ( auxiliary(iii) ) ( Relation-like auxiliary(iii) ) Element of bool [: the carrier of X : ( ( reflexive transitive antisymmetric with_suprema with_infima complete ) ( non empty reflexive transitive antisymmetric lower-bounded upper-bounded V152() up-complete /\-complete with_suprema with_infima complete ) RelStr ) : ( ( ) ( non empty ) set ) , the carrier of X : ( ( reflexive transitive antisymmetric with_suprema with_infima complete ) ( non empty reflexive transitive antisymmetric lower-bounded upper-bounded V152() up-complete /\-complete with_suprema with_infima complete ) RelStr ) : ( ( ) ( non empty ) set ) :] : ( ( ) ( non empty Relation-like ) set ) : ( ( ) ( non empty ) set ) ) ) ) );
end;

definition
let L be ( ( ) ( ) RelStr ) ;
let X be ( ( ) ( ) set ) ;
let x be ( ( ) ( ) Element of ( ( ) ( ) set ) ) ;
pred x is_maximal_in X means :: WAYBEL_4:def 24
x : ( ( auxiliary(iii) ) ( Relation-like auxiliary(iii) ) Element of bool [: the carrier of L : ( ( reflexive transitive antisymmetric with_suprema with_infima complete ) ( non empty reflexive transitive antisymmetric lower-bounded upper-bounded V152() up-complete /\-complete with_suprema with_infima complete ) RelStr ) : ( ( ) ( non empty ) set ) , the carrier of L : ( ( reflexive transitive antisymmetric with_suprema with_infima complete ) ( non empty reflexive transitive antisymmetric lower-bounded upper-bounded V152() up-complete /\-complete with_suprema with_infima complete ) RelStr ) : ( ( ) ( non empty ) set ) :] : ( ( ) ( non empty Relation-like ) set ) : ( ( ) ( non empty ) set ) ) is_maximal_wrt X : ( ( non empty ) ( non empty ) set ) , the InternalRel of L : ( ( reflexive transitive antisymmetric with_suprema with_infima complete ) ( non empty reflexive transitive antisymmetric lower-bounded upper-bounded V152() up-complete /\-complete with_suprema with_infima complete ) RelStr ) : ( ( ) ( Relation-like ) Element of bool [: the carrier of L : ( ( reflexive transitive antisymmetric with_suprema with_infima complete ) ( non empty reflexive transitive antisymmetric lower-bounded upper-bounded V152() up-complete /\-complete with_suprema with_infima complete ) RelStr ) : ( ( ) ( non empty ) set ) , the carrier of L : ( ( reflexive transitive antisymmetric with_suprema with_infima complete ) ( non empty reflexive transitive antisymmetric lower-bounded upper-bounded V152() up-complete /\-complete with_suprema with_infima complete ) RelStr ) : ( ( ) ( non empty ) set ) :] : ( ( ) ( non empty Relation-like ) set ) : ( ( ) ( non empty ) set ) ) ;
end;

theorem :: WAYBEL_4:55
for L being ( ( ) ( ) RelStr )
for X being ( ( ) ( ) set )
for x being ( ( ) ( ) Element of ( ( ) ( ) set ) ) holds
( x : ( ( ) ( ) Element of ( ( ) ( ) set ) ) is_maximal_in X : ( ( ) ( ) set ) iff ( x : ( ( ) ( ) Element of ( ( ) ( ) set ) ) in X : ( ( ) ( ) set ) & ( for y being ( ( ) ( ) Element of ( ( ) ( ) set ) ) holds
( not y : ( ( ) ( ) Element of ( ( ) ( ) set ) ) in X : ( ( ) ( ) set ) or not x : ( ( ) ( ) Element of ( ( ) ( ) set ) ) < y : ( ( ) ( ) Element of ( ( ) ( ) set ) ) ) ) ) ) ;

definition
let X, x be ( ( ) ( ) set ) ;
let R be ( ( Relation-like ) ( Relation-like ) Relation) ;
pred x is_minimal_wrt X,R means :: WAYBEL_4:def 25
( x : ( ( non empty ) ( non empty ) set ) in X : ( ( reflexive transitive antisymmetric with_suprema with_infima complete ) ( non empty reflexive transitive antisymmetric lower-bounded upper-bounded V152() up-complete /\-complete with_suprema with_infima complete ) RelStr ) & ( for y being ( ( ) ( ) set ) holds
( not y : ( ( ) ( ) set ) in X : ( ( reflexive transitive antisymmetric with_suprema with_infima complete ) ( non empty reflexive transitive antisymmetric lower-bounded upper-bounded V152() up-complete /\-complete with_suprema with_infima complete ) RelStr ) or not y : ( ( ) ( ) set ) <> x : ( ( non empty ) ( non empty ) set ) or not [y : ( ( ) ( ) set ) ,x : ( ( non empty ) ( non empty ) set ) ] : ( ( ) ( ) set ) in R : ( ( auxiliary(iii) ) ( Relation-like auxiliary(iii) ) Element of bool [: the carrier of X : ( ( reflexive transitive antisymmetric with_suprema with_infima complete ) ( non empty reflexive transitive antisymmetric lower-bounded upper-bounded V152() up-complete /\-complete with_suprema with_infima complete ) RelStr ) : ( ( ) ( non empty ) set ) , the carrier of X : ( ( reflexive transitive antisymmetric with_suprema with_infima complete ) ( non empty reflexive transitive antisymmetric lower-bounded upper-bounded V152() up-complete /\-complete with_suprema with_infima complete ) RelStr ) : ( ( ) ( non empty ) set ) :] : ( ( ) ( non empty Relation-like ) set ) : ( ( ) ( non empty ) set ) ) ) ) );
end;

definition
let L be ( ( ) ( ) RelStr ) ;
let X be ( ( ) ( ) set ) ;
let x be ( ( ) ( ) Element of ( ( ) ( ) set ) ) ;
pred x is_minimal_in X means :: WAYBEL_4:def 26
x : ( ( auxiliary(iii) ) ( Relation-like auxiliary(iii) ) Element of bool [: the carrier of L : ( ( reflexive transitive antisymmetric with_suprema with_infima complete ) ( non empty reflexive transitive antisymmetric lower-bounded upper-bounded V152() up-complete /\-complete with_suprema with_infima complete ) RelStr ) : ( ( ) ( non empty ) set ) , the carrier of L : ( ( reflexive transitive antisymmetric with_suprema with_infima complete ) ( non empty reflexive transitive antisymmetric lower-bounded upper-bounded V152() up-complete /\-complete with_suprema with_infima complete ) RelStr ) : ( ( ) ( non empty ) set ) :] : ( ( ) ( non empty Relation-like ) set ) : ( ( ) ( non empty ) set ) ) is_minimal_wrt X : ( ( non empty ) ( non empty ) set ) , the InternalRel of L : ( ( reflexive transitive antisymmetric with_suprema with_infima complete ) ( non empty reflexive transitive antisymmetric lower-bounded upper-bounded V152() up-complete /\-complete with_suprema with_infima complete ) RelStr ) : ( ( ) ( Relation-like ) Element of bool [: the carrier of L : ( ( reflexive transitive antisymmetric with_suprema with_infima complete ) ( non empty reflexive transitive antisymmetric lower-bounded upper-bounded V152() up-complete /\-complete with_suprema with_infima complete ) RelStr ) : ( ( ) ( non empty ) set ) , the carrier of L : ( ( reflexive transitive antisymmetric with_suprema with_infima complete ) ( non empty reflexive transitive antisymmetric lower-bounded upper-bounded V152() up-complete /\-complete with_suprema with_infima complete ) RelStr ) : ( ( ) ( non empty ) set ) :] : ( ( ) ( non empty Relation-like ) set ) : ( ( ) ( non empty ) set ) ) ;
end;

theorem :: WAYBEL_4:56
for L being ( ( ) ( ) RelStr )
for X being ( ( ) ( ) set )
for x being ( ( ) ( ) Element of ( ( ) ( ) set ) ) holds
( x : ( ( ) ( ) Element of ( ( ) ( ) set ) ) is_minimal_in X : ( ( ) ( ) set ) iff ( x : ( ( ) ( ) Element of ( ( ) ( ) set ) ) in X : ( ( ) ( ) set ) & ( for y being ( ( ) ( ) Element of ( ( ) ( ) set ) ) holds
( not y : ( ( ) ( ) Element of ( ( ) ( ) set ) ) in X : ( ( ) ( ) set ) or not x : ( ( ) ( ) Element of ( ( ) ( ) set ) ) > y : ( ( ) ( ) Element of ( ( ) ( ) set ) ) ) ) ) ) ;

theorem :: WAYBEL_4:57
for L being ( ( reflexive transitive antisymmetric with_suprema with_infima complete ) ( non empty reflexive transitive antisymmetric lower-bounded upper-bounded V152() up-complete /\-complete with_suprema with_infima complete ) LATTICE)
for AR being ( ( ) ( Relation-like ) Relation of ) st AR : ( ( ) ( Relation-like ) Relation of ) is satisfying_SI holds
for x being ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) st ex y being ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) st y : ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) is_maximal_wrt AR : ( ( ) ( Relation-like ) Relation of ) -below x : ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) : ( ( ) ( ) Subset of ) ,AR : ( ( ) ( Relation-like ) Relation of ) holds
[x : ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) ,x : ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) ] : ( ( ) ( ) Element of [: the carrier of b1 : ( ( reflexive transitive antisymmetric with_suprema with_infima complete ) ( non empty reflexive transitive antisymmetric lower-bounded upper-bounded V152() up-complete /\-complete with_suprema with_infima complete ) LATTICE) : ( ( ) ( non empty ) set ) , the carrier of b1 : ( ( reflexive transitive antisymmetric with_suprema with_infima complete ) ( non empty reflexive transitive antisymmetric lower-bounded upper-bounded V152() up-complete /\-complete with_suprema with_infima complete ) LATTICE) : ( ( ) ( non empty ) set ) :] : ( ( ) ( non empty Relation-like ) set ) ) in AR : ( ( ) ( Relation-like ) Relation of ) ;

theorem :: WAYBEL_4:58
for L being ( ( reflexive transitive antisymmetric with_suprema with_infima complete ) ( non empty reflexive transitive antisymmetric lower-bounded upper-bounded V152() up-complete /\-complete with_suprema with_infima complete ) LATTICE)
for AR being ( ( ) ( Relation-like ) Relation of ) st ( for x being ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) st ex y being ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) st y : ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) is_maximal_wrt AR : ( ( ) ( Relation-like ) Relation of ) -below x : ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) : ( ( ) ( ) Subset of ) ,AR : ( ( ) ( Relation-like ) Relation of ) holds
[x : ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) ,x : ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) ] : ( ( ) ( ) Element of [: the carrier of b1 : ( ( reflexive transitive antisymmetric with_suprema with_infima complete ) ( non empty reflexive transitive antisymmetric lower-bounded upper-bounded V152() up-complete /\-complete with_suprema with_infima complete ) LATTICE) : ( ( ) ( non empty ) set ) , the carrier of b1 : ( ( reflexive transitive antisymmetric with_suprema with_infima complete ) ( non empty reflexive transitive antisymmetric lower-bounded upper-bounded V152() up-complete /\-complete with_suprema with_infima complete ) LATTICE) : ( ( ) ( non empty ) set ) :] : ( ( ) ( non empty Relation-like ) set ) ) in AR : ( ( ) ( Relation-like ) Relation of ) ) holds
AR : ( ( ) ( Relation-like ) Relation of ) is satisfying_SI ;

theorem :: WAYBEL_4:59
for L being ( ( reflexive transitive antisymmetric with_suprema with_infima complete ) ( non empty reflexive transitive antisymmetric lower-bounded upper-bounded V152() up-complete /\-complete with_suprema with_infima complete ) LATTICE)
for AR being ( ( auxiliary(ii) auxiliary(iii) ) ( Relation-like auxiliary(ii) auxiliary(iii) ) Relation of ) st AR : ( ( auxiliary(ii) auxiliary(iii) ) ( Relation-like auxiliary(ii) auxiliary(iii) ) Relation of ) is satisfying_INT holds
for x being ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) holds AR : ( ( auxiliary(ii) auxiliary(iii) ) ( Relation-like auxiliary(ii) auxiliary(iii) ) Relation of ) -below x : ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) : ( ( ) ( directed lower ) Subset of ) is_directed_wrt AR : ( ( auxiliary(ii) auxiliary(iii) ) ( Relation-like auxiliary(ii) auxiliary(iii) ) Relation of ) ;

theorem :: WAYBEL_4:60
for L being ( ( reflexive transitive antisymmetric with_suprema with_infima complete ) ( non empty reflexive transitive antisymmetric lower-bounded upper-bounded V152() up-complete /\-complete with_suprema with_infima complete ) LATTICE)
for AR being ( ( ) ( Relation-like ) Relation of ) st ( for x being ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) holds AR : ( ( ) ( Relation-like ) Relation of ) -below x : ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) : ( ( ) ( ) Subset of ) is_directed_wrt AR : ( ( ) ( Relation-like ) Relation of ) ) holds
AR : ( ( ) ( Relation-like ) Relation of ) is satisfying_INT ;

theorem :: WAYBEL_4:61
for L being ( ( reflexive transitive antisymmetric with_suprema with_infima complete ) ( non empty reflexive transitive antisymmetric lower-bounded upper-bounded V152() up-complete /\-complete with_suprema with_infima complete ) LATTICE)
for R being ( ( auxiliary(i) auxiliary(ii) auxiliary(iii) approximating ) ( Relation-like transitive auxiliary(i) auxiliary(ii) auxiliary(iii) approximating ) Relation of ) st R : ( ( auxiliary(i) auxiliary(ii) auxiliary(iii) approximating ) ( Relation-like transitive auxiliary(i) auxiliary(ii) auxiliary(iii) approximating ) Relation of ) is satisfying_INT holds
R : ( ( auxiliary(i) auxiliary(ii) auxiliary(iii) approximating ) ( Relation-like transitive auxiliary(i) auxiliary(ii) auxiliary(iii) approximating ) Relation of ) is satisfying_SI ;

registration
let L be ( ( reflexive transitive antisymmetric with_suprema with_infima complete ) ( non empty reflexive transitive antisymmetric lower-bounded upper-bounded V152() up-complete /\-complete with_suprema with_infima complete ) LATTICE) ;
cluster auxiliary approximating satisfying_INT -> auxiliary approximating satisfying_SI for ( ( ) ( ) Element of bool [: the carrier of L : ( ( reflexive transitive antisymmetric with_suprema with_infima complete ) ( non empty reflexive transitive antisymmetric lower-bounded upper-bounded V152() up-complete /\-complete with_suprema with_infima complete ) RelStr ) : ( ( ) ( non empty ) set ) , the carrier of L : ( ( reflexive transitive antisymmetric with_suprema with_infima complete ) ( non empty reflexive transitive antisymmetric lower-bounded upper-bounded V152() up-complete /\-complete with_suprema with_infima complete ) RelStr ) : ( ( ) ( non empty ) set ) :] : ( ( ) ( non empty Relation-like ) set ) : ( ( ) ( non empty ) set ) ) ;
end;