environ
vocabularies HIDDEN, NUMBERS, SUBSET_1, ARYTM_3, XXREAL_0, ARYTM_1, CARD_1, FINSEQ_2, FINSEQ_1, FUNCT_1, RELAT_1, PARTFUN1, NAT_1, TARSKI, ORDINAL4, MATRIX_1, ZFMISC_1, GOBRD10, CHORD;
notations HIDDEN, TARSKI, XBOOLE_0, ZFMISC_1, SUBSET_1, ORDINAL1, NUMBERS, XCMPLX_0, NAT_1, NAT_D, RELAT_1, FUNCT_1, PARTFUN1, FINSEQ_1, FINSEQ_2, MATRIX_0, XXREAL_0;
definitions TARSKI;
theorems TARSKI, NAT_1, FINSEQ_1, FINSEQ_4, FUNCT_1, FINSEQ_2, FINSEQ_3, ZFMISC_1, XREAL_1, XXREAL_0, PARTFUN1, XREAL_0, NAT_D, CARD_1;
schemes NAT_1, FINSEQ_1, FINSEQ_2;
registrations SUBSET_1, ORDINAL1, RELSET_1, XXREAL_0, XREAL_0, NAT_1, XBOOLE_0, FINSEQ_1, FINSEQ_2;
constructors HIDDEN, NAT_1, NAT_D, MATRIX_0, FUNCOP_1, RELSET_1;
requirements HIDDEN, REAL, NUMERALS, BOOLE, SUBSET, ARITHM;
equalities FINSEQ_2;
expansions ;
definition
let i1,
j1,
i2,
j2 be
Nat;
end;
Lm1:
for n, i, j being Element of NAT st 1 <= j & j <= n holds
(n |-> i) . j = i
by FINSEQ_1:1, FINSEQ_2:57;
theorem Th7:
for
n,
m,
i1,
j1,
i2,
j2 being
Element of
NAT st
i1 <= n &
j1 <= m &
i2 <= n &
j2 <= m holds
ex
fs1,
fs2 being
FinSequence of
NAT st
( ( for
i,
k1,
k2 being
Element of
NAT st
i in dom fs1 &
k1 = fs1 . i &
k2 = fs2 . i holds
(
k1 <= n &
k2 <= m ) ) &
fs1 . 1
= i1 &
fs1 . (len fs1) = i2 &
fs2 . 1
= j1 &
fs2 . (len fs2) = j2 &
len fs1 = len fs2 &
len fs1 = ((((i1 -' i2) + (i2 -' i1)) + (j1 -' j2)) + (j2 -' j1)) + 1 & ( for
i being
Element of
NAT st 1
<= i &
i < len fs1 holds
fs1 /. i,
fs2 /. i,
fs1 /. (i + 1),
fs2 /. (i + 1) are_adjacent ) )
theorem
for
n,
m being
Element of
NAT for
S being
set for
Y being
Subset of
S for
F being
Matrix of
n,
m,
(bool S) st ex
i,
j being
Element of
NAT st
(
i in Seg n &
j in Seg m &
F * (
i,
j)
c= Y ) & ( for
i1,
j1,
i2,
j2 being
Element of
NAT st
i1 in Seg n &
i2 in Seg n &
j1 in Seg m &
j2 in Seg m &
i1,
j1,
i2,
j2 are_adjacent holds
(
F * (
i1,
j1)
c= Y iff
F * (
i2,
j2)
c= Y ) ) holds
for
i,
j being
Element of
NAT st
i in Seg n &
j in Seg m holds
F * (
i,
j)
c= Y