environ
vocabularies HIDDEN, STRUCT_0, BINOP_1, XBOOLE_0, ZFMISC_1, SUBSET_1, EQREL_1, FUNCT_1, PBOOLE, XXREAL_2, CAT_1, LATTICES, CARD_1;
notations HIDDEN, TARSKI, XBOOLE_0, ZFMISC_1, CARD_1, STRUCT_0, BINOP_1;
definitions ;
theorems ZFMISC_1, SUBSET_1;
schemes ;
registrations XBOOLE_0, SUBSET_1, CARD_1, STRUCT_0;
constructors HIDDEN, BINOP_1, STRUCT_0;
requirements HIDDEN, SUBSET, BOOLE, NUMERALS;
equalities STRUCT_0;
expansions STRUCT_0;
Lm1:
for uu, nn being BinOp of (bool {})
for x, y being Element of LattStr(# (bool {}),uu,nn #) holds x = y
Lm2:
for n being BinOp of (bool {})
for x, y being Element of \/-SemiLattStr(# (bool {}),n #) holds x = y
Lm3:
for n being BinOp of (bool {})
for x, y being Element of /\-SemiLattStr(# (bool {}),n #) holds x = y
Lm4:
for n, u being BinOp of (bool {}) holds LattStr(# (bool {}),n,u #) is Lattice
Lm5:
for n, u being BinOp of (bool {}) holds LattStr(# (bool {}),n,u #) is 0_Lattice
Lm6:
for n, u being BinOp of (bool {}) holds LattStr(# (bool {}),n,u #) is 1_Lattice