environ 
vocabularies HIDDEN, FUNCT_1, RELAT_1, SETFAM_1, XBOOLE_0, SUBSET_1, PARTFUN1, FUNCOP_1, TARSKI, FUNCT_2, ZFMISC_1, MEMBER_1, FUNCT_4, PBOOLE, NAT_1, SETLIM_2;
notations HIDDEN, TARSKI, ZFMISC_1, XBOOLE_0, SUBSET_1, SETFAM_1, RELAT_1, FUNCT_1, ORDINAL1, PARTFUN1, FUNCT_2, FUNCT_4, FUNCOP_1;
definitions TARSKI, XBOOLE_0, RELAT_1, FUNCT_1, FUNCOP_1;
theorems TARSKI, FUNCOP_1, FUNCT_1, RELAT_1, XBOOLE_0, XBOOLE_1, FUNCT_2, PARTFUN1, FUNCT_4, ZFMISC_1, SETFAM_1;
schemes FUNCT_1, CLASSES1, XBOOLE_0;
registrations XBOOLE_0, FUNCT_1, ORDINAL1, RELSET_1, FUNCOP_1, FUNCT_4, RELAT_1;
constructors HIDDEN, SETFAM_1, FUNCOP_1, ORDINAL1, RELSET_1, PARTFUN1, FUNCT_4;
requirements HIDDEN, BOOLE, SUBSET;
equalities XBOOLE_0;
expansions TARSKI, XBOOLE_0, RELAT_1, FUNCT_1;
definition
let I be    
set ;
coherence 
I --> {} is   ManySortedSet of I
 ;
correctness 
;
let X, 
Y be   
ManySortedSet of 
I;
existence 
 ex b1 being   ManySortedSet of I st 
 for i being    object   st i in I holds 
b1 . i = (X . i) \/ (Y . i)
 
uniqueness 
 for b1, b2 being   ManySortedSet of I  st (  for i being    object   st i in I holds 
b1 . i = (X . i) \/ (Y . i) ) & (  for i being    object   st i in I holds 
b2 . i = (X . i) \/ (Y . i) ) holds 
b1 = b2
 
commutativity 
 for b1, X, Y being   ManySortedSet of I  st (  for i being    object   st i in I holds 
b1 . i = (X . i) \/ (Y . i) ) holds 
 for i being    object   st i in I holds 
b1 . i = (Y . i) \/ (X . i)
 ;
idempotence 
 for X being   ManySortedSet of I
  for i being    object   st i in I holds 
X . i = (X . i) \/ (X . i)
 ;
existence 
 ex b1 being   ManySortedSet of I st 
 for i being    object   st i in I holds 
b1 . i = (X . i) /\ (Y . i)
 
uniqueness 
 for b1, b2 being   ManySortedSet of I  st (  for i being    object   st i in I holds 
b1 . i = (X . i) /\ (Y . i) ) & (  for i being    object   st i in I holds 
b2 . i = (X . i) /\ (Y . i) ) holds 
b1 = b2
 
commutativity 
 for b1, X, Y being   ManySortedSet of I  st (  for i being    object   st i in I holds 
b1 . i = (X . i) /\ (Y . i) ) holds 
 for i being    object   st i in I holds 
b1 . i = (Y . i) /\ (X . i)
 ;
idempotence 
 for X being   ManySortedSet of I
  for i being    object   st i in I holds 
X . i = (X . i) /\ (X . i)
 ;
existence 
 ex b1 being   ManySortedSet of I st 
 for i being    object   st i in I holds 
b1 . i = (X . i) \ (Y . i)
 
uniqueness 
 for b1, b2 being   ManySortedSet of I  st (  for i being    object   st i in I holds 
b1 . i = (X . i) \ (Y . i) ) & (  for i being    object   st i in I holds 
b2 . i = (X . i) \ (Y . i) ) holds 
b1 = b2
 
symmetry 
 for X, Y being   ManySortedSet of I  st (  for i being    object   st i in I holds 
X . i meets Y . i ) holds 
 for i being    object   st i in I holds 
Y . i meets X . i
 ;
symmetry 
 for X, Y being   ManySortedSet of I  st (  for i being    object   st i in I holds 
X . i misses Y . i ) holds 
 for i being    object   st i in I holds 
Y . i misses X . i
 ;
 
end;
 
Lm1: 
 for I being    set 
  for X, Y being   ManySortedSet of I  st X c= Y & Y c= X holds 
X = Y