:: AFINSQ_1 semantic presentation
theorem Th1: :: AFINSQ_1:1
for
b1 being
Nat holds
b1 in b1 + 1
theorem Th2: :: AFINSQ_1:2
for
b1,
b2 being
Nat st
b1 <= b2 holds
b1 = b1 /\ b2
theorem Th3: :: AFINSQ_1:3
for
b1,
b2 being
Nat st
b1 = b1 /\ b2 holds
b1 <= b2 by Th2;
theorem Th4: :: AFINSQ_1:4
theorem Th5: :: AFINSQ_1:5
theorem Th6: :: AFINSQ_1:6
theorem Th7: :: AFINSQ_1:7
:: deftheorem Def1 defines len AFINSQ_1:def 1 :
theorem Th8: :: AFINSQ_1:8
theorem Th9: :: AFINSQ_1:9
theorem Th10: :: AFINSQ_1:10
theorem Th11: :: AFINSQ_1:11
theorem Th12: :: AFINSQ_1:12
theorem Th13: :: AFINSQ_1:13
theorem Th14: :: AFINSQ_1:14
theorem Th15: :: AFINSQ_1:15
theorem Th16: :: AFINSQ_1:16
theorem Th17: :: AFINSQ_1:17
theorem Th18: :: AFINSQ_1:18
theorem Th19: :: AFINSQ_1:19
:: deftheorem Def2 defines <% AFINSQ_1:def 2 :
:: deftheorem Def3 defines <%> AFINSQ_1:def 3 :
:: deftheorem Def4 defines ^ AFINSQ_1:def 4 :
theorem Th20: :: AFINSQ_1:20
theorem Th21: :: AFINSQ_1:21
theorem Th22: :: AFINSQ_1:22
theorem Th23: :: AFINSQ_1:23
theorem Th24: :: AFINSQ_1:24
theorem Th25: :: AFINSQ_1:25
theorem Th26: :: AFINSQ_1:26
theorem Th27: :: AFINSQ_1:27
theorem Th28: :: AFINSQ_1:28
theorem Th29: :: AFINSQ_1:29
theorem Th30: :: AFINSQ_1:30
theorem Th31: :: AFINSQ_1:31
theorem Th32: :: AFINSQ_1:32
theorem Th33: :: AFINSQ_1:33
Lemma24:
for b1, b2, b3, b4 being set st [b1,b2] in {[b3,b4]} holds
( b1 = b3 & b2 = b4 )
:: deftheorem Def5 defines <% AFINSQ_1:def 5 :
theorem Th34: :: AFINSQ_1:34
:: deftheorem Def6 defines <% AFINSQ_1:def 6 :
:: deftheorem Def7 defines <% AFINSQ_1:def 7 :
registration
let c1,
c2 be
set ;
cluster <%a1,a2%> -> Relation-like Function-like ;
coherence
( <%c1,c2%> is Function-like & <%c1,c2%> is Relation-like )
;
let c3 be
set ;
cluster <%a1,a2,a3%> -> Relation-like Function-like ;
coherence
( <%c1,c2,c3%> is Function-like & <%c1,c2,c3%> is Relation-like )
;
end;
registration
let c1,
c2 be
set ;
cluster <%a1,a2%> -> Relation-like Function-like T-Sequence-like finite ;
coherence
( <%c1,c2%> is finite & <%c1,c2%> is T-Sequence-like )
;
let c3 be
set ;
cluster <%a1,a2,a3%> -> Relation-like Function-like T-Sequence-like finite ;
coherence
( <%c1,c2,c3%> is finite & <%c1,c2,c3%> is T-Sequence-like )
;
end;
theorem Th35: :: AFINSQ_1:35
theorem Th36: :: AFINSQ_1:36
theorem Th37: :: AFINSQ_1:37
theorem Th38: :: AFINSQ_1:38
theorem Th39: :: AFINSQ_1:39
theorem Th40: :: AFINSQ_1:40
theorem Th41: :: AFINSQ_1:41
theorem Th42: :: AFINSQ_1:42
theorem Th43: :: AFINSQ_1:43
theorem Th44: :: AFINSQ_1:44
theorem Th45: :: AFINSQ_1:45
:: deftheorem Def8 defines ^omega AFINSQ_1:def 8 :
theorem Th46: :: AFINSQ_1:46
theorem Th47: :: AFINSQ_1:47
theorem Th48: :: AFINSQ_1:48