:: BVFUNC10 semantic presentation

theorem Th1: :: BVFUNC10:1
for b1 being non empty set
for b2, b3, b4 being Element of Funcs b1,BOOLEAN holds ((b2 '&' b3) 'or' (b3 '&' b4)) 'or' (b4 '&' b2) = ((b2 'or' b3) '&' (b3 'or' b4)) '&' (b4 'or' b2)
proof end;

Lemma1: for b1 being non empty set
for b2, b3, b4 being Element of Funcs b1,BOOLEAN holds ((b2 '&' ('not' b3)) 'or' (b3 '&' ('not' b4))) 'or' (b4 '&' ('not' b2)) '<' ((b3 '&' ('not' b2)) 'or' (b4 '&' ('not' b3))) 'or' (b2 '&' ('not' b4))
proof end;

theorem Th2: :: BVFUNC10:2
for b1 being non empty set
for b2, b3, b4 being Element of Funcs b1,BOOLEAN holds ((b2 '&' ('not' b3)) 'or' (b3 '&' ('not' b4))) 'or' (b4 '&' ('not' b2)) = ((b3 '&' ('not' b2)) 'or' (b4 '&' ('not' b3))) 'or' (b2 '&' ('not' b4))
proof end;

Lemma2: for b1 being non empty set
for b2, b3, b4 being Element of Funcs b1,BOOLEAN holds ((b2 'or' ('not' b3)) '&' (b3 'or' ('not' b4))) '&' (b4 'or' ('not' b2)) '<' ((b3 'or' ('not' b2)) '&' (b4 'or' ('not' b3))) '&' (b2 'or' ('not' b4))
proof end;

theorem Th3: :: BVFUNC10:3
for b1 being non empty set
for b2, b3, b4 being Element of Funcs b1,BOOLEAN holds ((b2 'or' ('not' b3)) '&' (b3 'or' ('not' b4))) '&' (b4 'or' ('not' b2)) = ((b3 'or' ('not' b2)) '&' (b4 'or' ('not' b3))) '&' (b2 'or' ('not' b4))
proof end;

theorem Th4: :: BVFUNC10:4
for b1 being non empty set
for b2, b3, b4 being Element of Funcs b1,BOOLEAN st b4 'imp' b2 = I_el b1 & b4 'imp' b3 = I_el b1 holds
b4 'imp' (b2 'or' b3) = I_el b1
proof end;

theorem Th5: :: BVFUNC10:5
for b1 being non empty set
for b2, b3, b4 being Element of Funcs b1,BOOLEAN st b2 'imp' b4 = I_el b1 & b3 'imp' b4 = I_el b1 holds
(b2 '&' b3) 'imp' b4 = I_el b1
proof end;

theorem Th6: :: BVFUNC10:6
for b1 being non empty set
for b2, b3, b4, b5, b6, b7 being Element of Funcs b1,BOOLEAN holds (((b2 'imp' b3) '&' (b4 'imp' b5)) '&' (b6 'imp' b7)) '&' ((b2 'or' b4) 'or' b6) '<' (b3 'or' b5) 'or' b7
proof end;

Lemma3: for b1 being non empty set
for b2, b3, b4, b5 being Element of Funcs b1,BOOLEAN holds (((b2 'imp' b4) '&' (b3 'imp' b5)) '&' (b2 'or' b3)) '&' ('not' (b4 '&' b5)) '<' (((b4 'imp' b2) '&' (b5 'imp' b3)) '&' (b4 'or' b5)) '&' ('not' (b2 '&' b3))
proof end;

theorem Th7: :: BVFUNC10:7
for b1 being non empty set
for b2, b3, b4, b5 being Element of Funcs b1,BOOLEAN holds (((b2 'imp' b4) '&' (b3 'imp' b5)) '&' (b2 'or' b3)) '&' ('not' (b4 '&' b5)) = (((b4 'imp' b2) '&' (b5 'imp' b3)) '&' (b4 'or' b5)) '&' ('not' (b2 '&' b3))
proof end;

theorem Th8: :: BVFUNC10:8
for b1 being non empty set
for b2, b3, b4, b5 being Element of Funcs b1,BOOLEAN holds (b2 'or' b3) '&' (b4 'or' b5) = (((b2 '&' b4) 'or' (b2 '&' b5)) 'or' (b3 '&' b4)) 'or' (b3 '&' b5)
proof end;

theorem Th9: :: BVFUNC10:9
for b1 being non empty set
for b2, b3, b4, b5, b6 being Element of Funcs b1,BOOLEAN holds (b2 '&' b3) 'or' ((b4 '&' b5) '&' b6) = (((((b2 'or' b4) '&' (b2 'or' b5)) '&' (b2 'or' b6)) '&' (b3 'or' b4)) '&' (b3 'or' b5)) '&' (b3 'or' b6)
proof end;

theorem Th10: :: BVFUNC10:10
for b1 being non empty set
for b2, b3, b4, b5 being Element of Funcs b1,BOOLEAN holds ((b2 'imp' b3) '&' (b3 'imp' b4)) '&' (b4 'imp' b5) = ((b2 'imp' ((b3 '&' b4) '&' b5)) '&' (b3 'imp' (b4 '&' b5))) '&' (b4 'imp' b5)
proof end;

theorem Th11: :: BVFUNC10:11
for b1 being non empty set
for b2, b3, b4, b5 being Element of Funcs b1,BOOLEAN holds ((b2 'imp' b4) '&' (b3 'imp' b5)) '&' (b2 'or' b3) '<' b4 'or' b5
proof end;

theorem Th12: :: BVFUNC10:12
for b1 being non empty set
for b2, b3, b4 being Element of Funcs b1,BOOLEAN holds (((b2 '&' b3) 'imp' ('not' b4)) '&' b2) '&' b4 '<' 'not' b3
proof end;

theorem Th13: :: BVFUNC10:13
for b1 being non empty set
for b2, b3, b4, b5, b6, b7 being Element of Funcs b1,BOOLEAN holds ((b2 '&' b3) '&' b4) 'imp' ((b5 'or' b6) 'or' b7) = ((('not' b5) '&' ('not' b6)) '&' b4) 'imp' ((('not' b2) 'or' ('not' b3)) 'or' b7)
proof end;

theorem Th14: :: BVFUNC10:14
for b1 being non empty set
for b2, b3, b4 being Element of Funcs b1,BOOLEAN holds ((b2 'imp' b3) '&' (b3 'imp' b4)) '&' (b4 'imp' b2) = ((b2 '&' b3) '&' b4) 'or' ((('not' b2) '&' ('not' b3)) '&' ('not' b4))
proof end;

theorem Th15: :: BVFUNC10:15
for b1 being non empty set
for b2, b3, b4 being Element of Funcs b1,BOOLEAN holds (((b2 'imp' b3) '&' (b3 'imp' b4)) '&' (b4 'imp' b2)) '&' ((b2 'or' b3) 'or' b4) = (b2 '&' b3) '&' b4
proof end;

Lemma4: for b1 being non empty set
for b2, b3, b4 being Element of Funcs b1,BOOLEAN holds (((('not' b2) '&' b3) '&' b4) 'or' ((b2 '&' ('not' b3)) '&' b4)) 'or' ((b2 '&' b3) '&' ('not' b4)) '<' (b2 'or' b3) '&' ('not' ((b2 '&' b3) '&' b4))
proof end;

theorem Th16: :: BVFUNC10:16
for b1 being non empty set
for b2, b3, b4 being Element of Funcs b1,BOOLEAN holds (((b2 'or' b3) '&' (b3 'or' b4)) '&' (b4 'or' b2)) '&' ('not' ((b2 '&' b3) '&' b4)) = (((('not' b2) '&' b3) '&' b4) 'or' ((b2 '&' ('not' b3)) '&' b4)) 'or' ((b2 '&' b3) '&' ('not' b4))
proof end;

theorem Th17: :: BVFUNC10:17
for b1 being non empty set
for b2, b3, b4 being Element of Funcs b1,BOOLEAN holds (b2 'imp' b3) '&' (b3 'imp' b4) '<' b2 'imp' (b3 '&' b4)
proof end;

theorem Th18: :: BVFUNC10:18
for b1 being non empty set
for b2, b3, b4 being Element of Funcs b1,BOOLEAN holds (b2 'imp' b3) '&' (b3 'imp' b4) '<' (b2 'or' b3) 'imp' b4
proof end;

theorem Th19: :: BVFUNC10:19
for b1 being non empty set
for b2, b3, b4 being Element of Funcs b1,BOOLEAN holds (b2 'imp' b3) '&' (b3 'imp' b4) '<' b2 'imp' (b3 'or' b4)
proof end;

theorem Th20: :: BVFUNC10:20
for b1 being non empty set
for b2, b3, b4 being Element of Funcs b1,BOOLEAN holds (b2 'imp' b3) '&' (b3 'imp' b4) '<' b2 'imp' (b3 'or' ('not' b4))
proof end;

theorem Th21: :: BVFUNC10:21
for b1 being non empty set
for b2, b3, b4 being Element of Funcs b1,BOOLEAN holds (b2 'imp' b3) '&' (b3 'imp' b4) '<' b3 'imp' (b4 'or' b2)
proof end;

theorem Th22: :: BVFUNC10:22
for b1 being non empty set
for b2, b3, b4 being Element of Funcs b1,BOOLEAN holds (b2 'imp' b3) '&' (b3 'imp' b4) '<' b3 'imp' (b4 'or' ('not' b2))
proof end;

theorem Th23: :: BVFUNC10:23
for b1 being non empty set
for b2, b3, b4 being Element of Funcs b1,BOOLEAN holds (b2 'imp' b3) '&' (b3 'imp' b4) '<' (b2 'imp' b3) '&' (b3 'imp' (b4 'or' b2))
proof end;

theorem Th24: :: BVFUNC10:24
for b1 being non empty set
for b2, b3, b4 being Element of Funcs b1,BOOLEAN holds (b2 'imp' b3) '&' (b3 'imp' b4) '<' (b2 'imp' (b3 'or' ('not' b4))) '&' (b3 'imp' b4)
proof end;

theorem Th25: :: BVFUNC10:25
for b1 being non empty set
for b2, b3, b4 being Element of Funcs b1,BOOLEAN holds (b2 'imp' b3) '&' (b3 'imp' b4) '<' (b2 'imp' (b3 'or' b4)) '&' (b3 'imp' (b4 'or' b2))
proof end;

theorem Th26: :: BVFUNC10:26
for b1 being non empty set
for b2, b3, b4 being Element of Funcs b1,BOOLEAN holds (b2 'imp' b3) '&' (b3 'imp' b4) '<' (b2 'imp' (b3 'or' ('not' b4))) '&' (b3 'imp' (b4 'or' b2))
proof end;

theorem Th27: :: BVFUNC10:27
for b1 being non empty set
for b2, b3, b4 being Element of Funcs b1,BOOLEAN holds (b2 'imp' b3) '&' (b3 'imp' b4) '<' (b2 'imp' (b3 'or' ('not' b4))) '&' (b3 'imp' (b4 'or' ('not' b2)))
proof end;