:: BVFUNC10 semantic presentation
theorem Th1: :: BVFUNC10:1
Lemma1:
for b1 being non empty set
for b2, b3, b4 being Element of Funcs b1,BOOLEAN holds ((b2 '&' ('not' b3)) 'or' (b3 '&' ('not' b4))) 'or' (b4 '&' ('not' b2)) '<' ((b3 '&' ('not' b2)) 'or' (b4 '&' ('not' b3))) 'or' (b2 '&' ('not' b4))
theorem Th2: :: BVFUNC10:2
Lemma2:
for b1 being non empty set
for b2, b3, b4 being Element of Funcs b1,BOOLEAN holds ((b2 'or' ('not' b3)) '&' (b3 'or' ('not' b4))) '&' (b4 'or' ('not' b2)) '<' ((b3 'or' ('not' b2)) '&' (b4 'or' ('not' b3))) '&' (b2 'or' ('not' b4))
theorem Th3: :: BVFUNC10:3
theorem Th4: :: BVFUNC10:4
theorem Th5: :: BVFUNC10:5
theorem Th6: :: BVFUNC10:6
Lemma3:
for b1 being non empty set
for b2, b3, b4, b5 being Element of Funcs b1,BOOLEAN holds (((b2 'imp' b4) '&' (b3 'imp' b5)) '&' (b2 'or' b3)) '&' ('not' (b4 '&' b5)) '<' (((b4 'imp' b2) '&' (b5 'imp' b3)) '&' (b4 'or' b5)) '&' ('not' (b2 '&' b3))
theorem Th7: :: BVFUNC10:7
theorem Th8: :: BVFUNC10:8
theorem Th9: :: BVFUNC10:9
theorem Th10: :: BVFUNC10:10
theorem Th11: :: BVFUNC10:11
theorem Th12: :: BVFUNC10:12
theorem Th13: :: BVFUNC10:13
theorem Th14: :: BVFUNC10:14
theorem Th15: :: BVFUNC10:15
Lemma4:
for b1 being non empty set
for b2, b3, b4 being Element of Funcs b1,BOOLEAN holds (((('not' b2) '&' b3) '&' b4) 'or' ((b2 '&' ('not' b3)) '&' b4)) 'or' ((b2 '&' b3) '&' ('not' b4)) '<' (b2 'or' b3) '&' ('not' ((b2 '&' b3) '&' b4))
theorem Th16: :: BVFUNC10:16
theorem Th17: :: BVFUNC10:17
theorem Th18: :: BVFUNC10:18
theorem Th19: :: BVFUNC10:19
theorem Th20: :: BVFUNC10:20
theorem Th21: :: BVFUNC10:21
theorem Th22: :: BVFUNC10:22
theorem Th23: :: BVFUNC10:23
theorem Th24: :: BVFUNC10:24
theorem Th25: :: BVFUNC10:25
theorem Th26: :: BVFUNC10:26
theorem Th27: :: BVFUNC10:27