:: VALUAT_1 semantic presentation
:: deftheorem Def1 defines Valuations_in VALUAT_1:def 1 :
theorem Th1: :: VALUAT_1:1
canceled;
theorem Th2: :: VALUAT_1:2
:: deftheorem Def2 defines boolean-valued VALUAT_1:def 2 :
:: deftheorem Def3 defines 'not' VALUAT_1:def 3 :
:: deftheorem Def4 defines '&' VALUAT_1:def 4 :
:: deftheorem Def5 defines 'not' VALUAT_1:def 5 :
:: deftheorem Def6 defines '&' VALUAT_1:def 6 :
:: deftheorem Def7 defines FOR_ALL VALUAT_1:def 7 :
theorem Th3: :: VALUAT_1:3
canceled;
theorem Th4: :: VALUAT_1:4
canceled;
theorem Th5: :: VALUAT_1:5
canceled;
theorem Th6: :: VALUAT_1:6
canceled;
theorem Th7: :: VALUAT_1:7
theorem Th8: :: VALUAT_1:8
:: deftheorem Def8 defines *' VALUAT_1:def 8 :
:: deftheorem Def9 defines 'in' VALUAT_1:def 9 :
:: deftheorem Def10 defines interpretation VALUAT_1:def 10 :
definition
let c1 be non
empty set ;
let c2 be
interpretation of
c1;
let c3 be
Element of
CQC-WFF ;
func Valid c3,
c2 -> Element of
Funcs (Valuations_in a1),
BOOLEAN means :
Def11:
:: VALUAT_1:def 11
ex
b1 being
Function of
CQC-WFF ,
Funcs (Valuations_in a1),
BOOLEAN st
(
a4 = b1 . a3 &
b1 . VERUM = (Valuations_in a1) --> TRUE & ( for
b2,
b3 being
Element of
CQC-WFF for
b4 being
bound_QC-variable for
b5 being
Nat for
b6 being
CQC-variable_list of
b5 for
b7 being
QC-pred_symbol of
b5 holds
(
b1 . (b7 ! b6) = b6 'in' (a2 . b7) &
b1 . ('not' b2) = 'not' (b1 . b2) &
b1 . (b2 '&' b3) = (b1 . b2) '&' (b1 . b3) &
b1 . (All b4,b2) = FOR_ALL b4,
(b1 . b2) ) ) );
correctness
existence
ex b1 being Element of Funcs (Valuations_in c1),BOOLEAN ex b2 being Function of CQC-WFF , Funcs (Valuations_in c1),BOOLEAN st
( b1 = b2 . c3 & b2 . VERUM = (Valuations_in c1) --> TRUE & ( for b3, b4 being Element of CQC-WFF
for b5 being bound_QC-variable
for b6 being Nat
for b7 being CQC-variable_list of b6
for b8 being QC-pred_symbol of b6 holds
( b2 . (b8 ! b7) = b7 'in' (c2 . b8) & b2 . ('not' b3) = 'not' (b2 . b3) & b2 . (b3 '&' b4) = (b2 . b3) '&' (b2 . b4) & b2 . (All b5,b3) = FOR_ALL b5,(b2 . b3) ) ) );
uniqueness
for b1, b2 being Element of Funcs (Valuations_in c1),BOOLEAN st ex b3 being Function of CQC-WFF , Funcs (Valuations_in c1),BOOLEAN st
( b1 = b3 . c3 & b3 . VERUM = (Valuations_in c1) --> TRUE & ( for b4, b5 being Element of CQC-WFF
for b6 being bound_QC-variable
for b7 being Nat
for b8 being CQC-variable_list of b7
for b9 being QC-pred_symbol of b7 holds
( b3 . (b9 ! b8) = b8 'in' (c2 . b9) & b3 . ('not' b4) = 'not' (b3 . b4) & b3 . (b4 '&' b5) = (b3 . b4) '&' (b3 . b5) & b3 . (All b6,b4) = FOR_ALL b6,(b3 . b4) ) ) ) & ex b3 being Function of CQC-WFF , Funcs (Valuations_in c1),BOOLEAN st
( b2 = b3 . c3 & b3 . VERUM = (Valuations_in c1) --> TRUE & ( for b4, b5 being Element of CQC-WFF
for b6 being bound_QC-variable
for b7 being Nat
for b8 being CQC-variable_list of b7
for b9 being QC-pred_symbol of b7 holds
( b3 . (b9 ! b8) = b8 'in' (c2 . b9) & b3 . ('not' b4) = 'not' (b3 . b4) & b3 . (b4 '&' b5) = (b3 . b4) '&' (b3 . b5) & b3 . (All b6,b4) = FOR_ALL b6,(b3 . b4) ) ) ) holds
b1 = b2;
end;
:: deftheorem Def11 defines Valid VALUAT_1:def 11 :
Lemma13:
for b1 being Element of CQC-WFF
for b2 being non empty set
for b3 being interpretation of b2 holds
( Valid VERUM ,b3 = (Valuations_in b2) --> TRUE & ( for b4 being Nat
for b5 being CQC-variable_list of b4
for b6 being QC-pred_symbol of b4 holds Valid (b6 ! b5),b3 = b5 'in' (b3 . b6) ) & ( for b4 being Element of CQC-WFF holds Valid ('not' b4),b3 = 'not' (Valid b4,b3) ) & ( for b4 being Element of CQC-WFF holds Valid (b1 '&' b4),b3 = (Valid b1,b3) '&' (Valid b4,b3) ) & ( for b4 being bound_QC-variable holds Valid (All b4,b1),b3 = FOR_ALL b4,(Valid b1,b3) ) )
theorem Th9: :: VALUAT_1:9
canceled;
theorem Th10: :: VALUAT_1:10
canceled;
theorem Th11: :: VALUAT_1:11
canceled;
theorem Th12: :: VALUAT_1:12
canceled;
theorem Th13: :: VALUAT_1:13
theorem Th14: :: VALUAT_1:14
theorem Th15: :: VALUAT_1:15
theorem Th16: :: VALUAT_1:16
theorem Th17: :: VALUAT_1:17
theorem Th18: :: VALUAT_1:18
canceled;
theorem Th19: :: VALUAT_1:19
theorem Th20: :: VALUAT_1:20
theorem Th21: :: VALUAT_1:21
theorem Th22: :: VALUAT_1:22
theorem Th23: :: VALUAT_1:23
theorem Th24: :: VALUAT_1:24
theorem Th25: :: VALUAT_1:25
:: deftheorem Def12 defines |= VALUAT_1:def 12 :
theorem Th26: :: VALUAT_1:26
canceled;
theorem Th27: :: VALUAT_1:27
theorem Th28: :: VALUAT_1:28
theorem Th29: :: VALUAT_1:29
theorem Th30: :: VALUAT_1:30
theorem Th31: :: VALUAT_1:31
theorem Th32: :: VALUAT_1:32
theorem Th33: :: VALUAT_1:33
theorem Th34: :: VALUAT_1:34
canceled;
theorem Th35: :: VALUAT_1:35
theorem Th36: :: VALUAT_1:36
theorem Th37: :: VALUAT_1:37
:: deftheorem Def13 defines |= VALUAT_1:def 13 :
Lemma28:
for b1, b2, b3 being Element of BOOLEAN holds 'not' (('not' (b1 '&' ('not' b2))) '&' (('not' (b2 '&' b3)) '&' (b1 '&' b3))) = TRUE
theorem Th38: :: VALUAT_1:38
canceled;
theorem Th39: :: VALUAT_1:39
theorem Th40: :: VALUAT_1:40
theorem Th41: :: VALUAT_1:41
theorem Th42: :: VALUAT_1:42
theorem Th43: :: VALUAT_1:43
theorem Th44: :: VALUAT_1:44
theorem Th45: :: VALUAT_1:45
theorem Th46: :: VALUAT_1:46
theorem Th47: :: VALUAT_1:47
theorem Th48: :: VALUAT_1:48
theorem Th49: :: VALUAT_1:49
theorem Th50: :: VALUAT_1:50
theorem Th51: :: VALUAT_1:51
theorem Th52: :: VALUAT_1:52
theorem Th53: :: VALUAT_1:53
theorem Th54: :: VALUAT_1:54
theorem Th55: :: VALUAT_1:55
theorem Th56: :: VALUAT_1:56
theorem Th57: :: VALUAT_1:57
theorem Th58: :: VALUAT_1:58
theorem Th59: :: VALUAT_1:59