:: BVFUNC25 semantic presentation

theorem Th1: :: BVFUNC25:1
for b1 being non empty set
for b2, b3 being Element of Funcs b1,BOOLEAN holds 'not' (b2 'imp' b3) = b2 '&' ('not' b3)
proof end;

theorem Th2: :: BVFUNC25:2
for b1 being non empty set
for b2, b3 being Element of Funcs b1,BOOLEAN holds (('not' b2) 'imp' ('not' b3)) 'imp' (b3 'imp' b2) = I_el b1
proof end;

theorem Th3: :: BVFUNC25:3
for b1 being non empty set
for b2, b3 being Element of Funcs b1,BOOLEAN holds b2 'imp' b3 = ('not' b3) 'imp' ('not' b2)
proof end;

theorem Th4: :: BVFUNC25:4
for b1 being non empty set
for b2, b3 being Element of Funcs b1,BOOLEAN holds b2 'eqv' b3 = ('not' b2) 'eqv' ('not' b3)
proof end;

theorem Th5: :: BVFUNC25:5
for b1 being non empty set
for b2, b3 being Element of Funcs b1,BOOLEAN holds b2 'imp' b3 = b2 'imp' (b2 '&' b3)
proof end;

theorem Th6: :: BVFUNC25:6
for b1 being non empty set
for b2, b3 being Element of Funcs b1,BOOLEAN holds b2 'eqv' b3 = (b2 'or' b3) 'imp' (b2 '&' b3)
proof end;

theorem Th7: :: BVFUNC25:7
for b1 being non empty set
for b2 being Element of Funcs b1,BOOLEAN holds b2 'eqv' ('not' b2) = O_el b1
proof end;

theorem Th8: :: BVFUNC25:8
for b1 being non empty set
for b2, b3, b4 being Element of Funcs b1,BOOLEAN holds b2 'imp' (b3 'imp' b4) = b3 'imp' (b2 'imp' b4)
proof end;

theorem Th9: :: BVFUNC25:9
for b1 being non empty set
for b2, b3, b4 being Element of Funcs b1,BOOLEAN holds b2 'imp' (b3 'imp' b4) = (b2 'imp' b3) 'imp' (b2 'imp' b4)
proof end;

theorem Th10: :: BVFUNC25:10
for b1 being non empty set
for b2, b3 being Element of Funcs b1,BOOLEAN holds b2 'eqv' b3 = b2 'xor' ('not' b3)
proof end;

theorem Th11: :: BVFUNC25:11
for b1 being non empty set
for b2, b3, b4 being Element of Funcs b1,BOOLEAN holds b2 '&' (b3 'xor' b4) = (b2 '&' b3) 'xor' (b2 '&' b4)
proof end;

theorem Th12: :: BVFUNC25:12
for b1 being non empty set
for b2, b3 being Element of Funcs b1,BOOLEAN holds b2 'eqv' b3 = 'not' (b2 'xor' b3)
proof end;

theorem Th13: :: BVFUNC25:13
for b1 being non empty set
for b2 being Element of Funcs b1,BOOLEAN holds b2 'xor' b2 = O_el b1
proof end;

theorem Th14: :: BVFUNC25:14
for b1 being non empty set
for b2 being Element of Funcs b1,BOOLEAN holds b2 'xor' ('not' b2) = I_el b1
proof end;

theorem Th15: :: BVFUNC25:15
for b1 being non empty set
for b2, b3 being Element of Funcs b1,BOOLEAN holds (b2 'imp' b3) 'imp' (b3 'imp' b2) = b3 'imp' b2
proof end;

theorem Th16: :: BVFUNC25:16
for b1 being non empty set
for b2, b3 being Element of Funcs b1,BOOLEAN holds (b2 'or' b3) '&' (('not' b2) 'or' ('not' b3)) = (('not' b2) '&' b3) 'or' (b2 '&' ('not' b3))
proof end;

theorem Th17: :: BVFUNC25:17
for b1 being non empty set
for b2, b3 being Element of Funcs b1,BOOLEAN holds (b2 '&' b3) 'or' (('not' b2) '&' ('not' b3)) = (('not' b2) 'or' b3) '&' (b2 'or' ('not' b3))
proof end;

theorem Th18: :: BVFUNC25:18
for b1 being non empty set
for b2, b3, b4 being Element of Funcs b1,BOOLEAN holds b2 'xor' (b3 'xor' b4) = (b2 'xor' b3) 'xor' b4
proof end;

theorem Th19: :: BVFUNC25:19
for b1 being non empty set
for b2, b3, b4 being Element of Funcs b1,BOOLEAN holds b2 'eqv' (b3 'eqv' b4) = (b2 'eqv' b3) 'eqv' b4
proof end;

theorem Th20: :: BVFUNC25:20
for b1 being non empty set
for b2 being Element of Funcs b1,BOOLEAN holds ('not' ('not' b2)) 'imp' b2 = I_el b1
proof end;

theorem Th21: :: BVFUNC25:21
for b1 being non empty set
for b2, b3 being Element of Funcs b1,BOOLEAN holds ((b2 'imp' b3) '&' b2) 'imp' b3 = I_el b1
proof end;

theorem Th22: :: BVFUNC25:22
for b1 being non empty set
for b2 being Element of Funcs b1,BOOLEAN holds b2 'imp' (('not' b2) 'imp' b2) = I_el b1
proof end;

theorem Th23: :: BVFUNC25:23
for b1 being non empty set
for b2 being Element of Funcs b1,BOOLEAN holds (('not' b2) 'imp' b2) 'eqv' b2 = I_el b1
proof end;

theorem Th24: :: BVFUNC25:24
for b1 being non empty set
for b2, b3 being Element of Funcs b1,BOOLEAN holds b2 'or' (b2 'imp' b3) = I_el b1
proof end;

theorem Th25: :: BVFUNC25:25
for b1 being non empty set
for b2, b3, b4 being Element of Funcs b1,BOOLEAN holds (b2 'imp' b3) 'or' (b4 'imp' b2) = I_el b1
proof end;

theorem Th26: :: BVFUNC25:26
for b1 being non empty set
for b2, b3 being Element of Funcs b1,BOOLEAN holds (b2 'imp' b3) 'or' (('not' b2) 'imp' b3) = I_el b1
proof end;

theorem Th27: :: BVFUNC25:27
for b1 being non empty set
for b2, b3 being Element of Funcs b1,BOOLEAN holds (b2 'imp' b3) 'or' (b2 'imp' ('not' b3)) = I_el b1
proof end;

theorem Th28: :: BVFUNC25:28
for b1 being non empty set
for b2, b3 being Element of Funcs b1,BOOLEAN holds ('not' b2) 'imp' (('not' b3) 'eqv' (b3 'imp' b2)) = I_el b1
proof end;

theorem Th29: :: BVFUNC25:29
for b1 being non empty set
for b2, b3, b4 being Element of Funcs b1,BOOLEAN holds (b2 'imp' b3) 'imp' (((b2 'imp' b4) 'imp' b3) 'imp' b3) = I_el b1
proof end;

theorem Th30: :: BVFUNC25:30
for b1 being non empty set
for b2, b3 being Element of Funcs b1,BOOLEAN holds b2 'imp' b3 = b2 'eqv' (b2 '&' b3)
proof end;

theorem Th31: :: BVFUNC25:31
for b1 being non empty set
for b2, b3 being Element of Funcs b1,BOOLEAN holds
( ( b2 'imp' b3 = I_el b1 & b3 'imp' b2 = I_el b1 ) iff b2 = b3 )
proof end;

theorem Th32: :: BVFUNC25:32
for b1 being non empty set
for b2 being Element of Funcs b1,BOOLEAN holds b2 = ('not' b2) 'imp' b2
proof end;

theorem Th33: :: BVFUNC25:33
for b1 being non empty set
for b2, b3 being Element of Funcs b1,BOOLEAN holds b2 'imp' ((b2 'imp' b3) 'imp' b2) = I_el b1
proof end;

theorem Th34: :: BVFUNC25:34
for b1 being non empty set
for b2, b3 being Element of Funcs b1,BOOLEAN holds b2 = (b2 'imp' b3) 'imp' b2
proof end;

theorem Th35: :: BVFUNC25:35
for b1 being non empty set
for b2, b3 being Element of Funcs b1,BOOLEAN holds b2 = (b3 'imp' b2) '&' (('not' b3) 'imp' b2)
proof end;

theorem Th36: :: BVFUNC25:36
for b1 being non empty set
for b2, b3 being Element of Funcs b1,BOOLEAN holds b2 '&' b3 = 'not' (b2 'imp' ('not' b3))
proof end;

theorem Th37: :: BVFUNC25:37
for b1 being non empty set
for b2, b3 being Element of Funcs b1,BOOLEAN holds b2 'or' b3 = ('not' b2) 'imp' b3
proof end;

theorem Th38: :: BVFUNC25:38
for b1 being non empty set
for b2, b3 being Element of Funcs b1,BOOLEAN holds b2 'or' b3 = (b2 'imp' b3) 'imp' b3
proof end;

theorem Th39: :: BVFUNC25:39
for b1 being non empty set
for b2, b3 being Element of Funcs b1,BOOLEAN holds (b2 'imp' b3) 'imp' (b2 'imp' b2) = I_el b1
proof end;

theorem Th40: :: BVFUNC25:40
for b1 being non empty set
for b2, b3, b4, b5 being Element of Funcs b1,BOOLEAN holds (b2 'imp' (b3 'imp' b4)) 'imp' ((b5 'imp' b3) 'imp' (b2 'imp' (b5 'imp' b4))) = I_el b1
proof end;

theorem Th41: :: BVFUNC25:41
for b1 being non empty set
for b2, b3, b4 being Element of Funcs b1,BOOLEAN holds (((b2 'imp' b3) '&' b2) '&' b4) 'imp' b3 = I_el b1
proof end;

theorem Th42: :: BVFUNC25:42
for b1 being non empty set
for b2, b3, b4 being Element of Funcs b1,BOOLEAN holds (b2 'imp' b3) 'imp' ((b4 '&' b2) 'imp' b3) = I_el b1
proof end;

theorem Th43: :: BVFUNC25:43
for b1 being non empty set
for b2, b3, b4 being Element of Funcs b1,BOOLEAN holds ((b2 '&' b3) 'imp' b4) 'imp' ((b2 '&' b3) 'imp' (b4 '&' b3)) = I_el b1
proof end;

theorem Th44: :: BVFUNC25:44
for b1 being non empty set
for b2, b3, b4 being Element of Funcs b1,BOOLEAN holds (b2 'imp' b3) 'imp' ((b2 '&' b4) 'imp' (b3 '&' b4)) = I_el b1
proof end;

theorem Th45: :: BVFUNC25:45
for b1 being non empty set
for b2, b3, b4 being Element of Funcs b1,BOOLEAN holds ((b2 'imp' b3) '&' (b2 '&' b4)) 'imp' (b3 '&' b4) = I_el b1
proof end;

theorem Th46: :: BVFUNC25:46
for b1 being non empty set
for b2, b3, b4 being Element of Funcs b1,BOOLEAN holds (b2 '&' (b2 'imp' b3)) '&' (b3 'imp' b4) '<' b4
proof end;

theorem Th47: :: BVFUNC25:47
for b1 being non empty set
for b2, b3, b4 being Element of Funcs b1,BOOLEAN holds ((b2 'or' b3) '&' (b2 'imp' b4)) '&' (b3 'imp' b4) '<' ('not' b2) 'imp' (b3 'or' b4)
proof end;