:: BVFUNC_5 semantic presentation

theorem Th1: :: BVFUNC_5:1
for b1 being non empty set
for b2, b3 being Element of Funcs b1,BOOLEAN holds
( ( b2 = I_el b1 & b3 = I_el b1 ) iff b2 '&' b3 = I_el b1 )
proof end;

theorem Th2: :: BVFUNC_5:2
for b1 being non empty set
for b2, b3 being Element of Funcs b1,BOOLEAN st b2 = I_el b1 & b2 'imp' b3 = I_el b1 holds
b3 = I_el b1
proof end;

theorem Th3: :: BVFUNC_5:3
for b1 being non empty set
for b2, b3 being Element of Funcs b1,BOOLEAN st b2 = I_el b1 holds
b2 'or' b3 = I_el b1
proof end;

theorem Th4: :: BVFUNC_5:4
canceled;

theorem Th5: :: BVFUNC_5:5
for b1 being non empty set
for b2, b3 being Element of Funcs b1,BOOLEAN st b3 = I_el b1 holds
b2 'imp' b3 = I_el b1
proof end;

theorem Th6: :: BVFUNC_5:6
for b1 being non empty set
for b2, b3 being Element of Funcs b1,BOOLEAN st 'not' b2 = I_el b1 holds
b2 'imp' b3 = I_el b1
proof end;

theorem Th7: :: BVFUNC_5:7
for b1 being non empty set
for b2 being Element of Funcs b1,BOOLEAN holds 'not' (b2 '&' ('not' b2)) = I_el b1
proof end;

theorem Th8: :: BVFUNC_5:8
for b1 being non empty set
for b2 being Element of Funcs b1,BOOLEAN holds b2 'imp' b2 = I_el b1
proof end;

theorem Th9: :: BVFUNC_5:9
for b1 being non empty set
for b2, b3 being Element of Funcs b1,BOOLEAN holds
( b2 'imp' b3 = I_el b1 iff ('not' b3) 'imp' ('not' b2) = I_el b1 )
proof end;

theorem Th10: :: BVFUNC_5:10
for b1 being non empty set
for b2, b3, b4 being Element of Funcs b1,BOOLEAN st b2 'imp' b3 = I_el b1 & b3 'imp' b4 = I_el b1 holds
b2 'imp' b4 = I_el b1
proof end;

theorem Th11: :: BVFUNC_5:11
for b1 being non empty set
for b2, b3 being Element of Funcs b1,BOOLEAN st b2 'imp' b3 = I_el b1 & b2 'imp' ('not' b3) = I_el b1 holds
'not' b2 = I_el b1
proof end;

theorem Th12: :: BVFUNC_5:12
for b1 being non empty set
for b2 being Element of Funcs b1,BOOLEAN holds (('not' b2) 'imp' b2) 'imp' b2 = I_el b1
proof end;

theorem Th13: :: BVFUNC_5:13
for b1 being non empty set
for b2, b3, b4 being Element of Funcs b1,BOOLEAN holds (b2 'imp' b3) 'imp' (('not' (b3 '&' b4)) 'imp' ('not' (b2 '&' b4))) = I_el b1
proof end;

theorem Th14: :: BVFUNC_5:14
for b1 being non empty set
for b2, b3, b4 being Element of Funcs b1,BOOLEAN holds (b2 'imp' b3) 'imp' ((b3 'imp' b4) 'imp' (b2 'imp' b4)) = I_el b1
proof end;

theorem Th15: :: BVFUNC_5:15
for b1 being non empty set
for b2, b3, b4 being Element of Funcs b1,BOOLEAN st b2 'imp' b3 = I_el b1 holds
(b3 'imp' b4) 'imp' (b2 'imp' b4) = I_el b1
proof end;

theorem Th16: :: BVFUNC_5:16
for b1 being non empty set
for b2, b3 being Element of Funcs b1,BOOLEAN holds b3 'imp' (b2 'imp' b3) = I_el b1
proof end;

theorem Th17: :: BVFUNC_5:17
for b1 being non empty set
for b2, b3, b4 being Element of Funcs b1,BOOLEAN holds ((b2 'imp' b3) 'imp' b4) 'imp' (b3 'imp' b4) = I_el b1
proof end;

theorem Th18: :: BVFUNC_5:18
for b1 being non empty set
for b2, b3 being Element of Funcs b1,BOOLEAN holds b3 'imp' ((b3 'imp' b2) 'imp' b2) = I_el b1
proof end;

theorem Th19: :: BVFUNC_5:19
for b1 being non empty set
for b2, b3, b4 being Element of Funcs b1,BOOLEAN holds (b4 'imp' (b3 'imp' b2)) 'imp' (b3 'imp' (b4 'imp' b2)) = I_el b1
proof end;

theorem Th20: :: BVFUNC_5:20
for b1 being non empty set
for b2, b3, b4 being Element of Funcs b1,BOOLEAN holds (b3 'imp' b4) 'imp' ((b2 'imp' b3) 'imp' (b2 'imp' b4)) = I_el b1
proof end;

theorem Th21: :: BVFUNC_5:21
for b1 being non empty set
for b2, b3, b4 being Element of Funcs b1,BOOLEAN holds (b3 'imp' (b3 'imp' b4)) 'imp' (b3 'imp' b4) = I_el b1
proof end;

theorem Th22: :: BVFUNC_5:22
for b1 being non empty set
for b2, b3, b4 being Element of Funcs b1,BOOLEAN holds (b2 'imp' (b3 'imp' b4)) 'imp' ((b2 'imp' b3) 'imp' (b2 'imp' b4)) = I_el b1
proof end;

theorem Th23: :: BVFUNC_5:23
for b1 being non empty set
for b2, b3 being Element of Funcs b1,BOOLEAN st b2 = I_el b1 holds
(b2 'imp' b3) 'imp' b3 = I_el b1
proof end;

theorem Th24: :: BVFUNC_5:24
for b1 being non empty set
for b2, b3, b4 being Element of Funcs b1,BOOLEAN st b4 'imp' (b3 'imp' b2) = I_el b1 holds
b3 'imp' (b4 'imp' b2) = I_el b1
proof end;

theorem Th25: :: BVFUNC_5:25
for b1 being non empty set
for b2, b3, b4 being Element of Funcs b1,BOOLEAN st b4 'imp' (b3 'imp' b2) = I_el b1 & b3 = I_el b1 holds
b4 'imp' b2 = I_el b1
proof end;

theorem Th26: :: BVFUNC_5:26
for b1 being non empty set
for b2, b3, b4 being Element of Funcs b1,BOOLEAN st b4 'imp' (b3 'imp' b2) = I_el b1 & b3 = I_el b1 & b4 = I_el b1 holds
b2 = I_el b1
proof end;

theorem Th27: :: BVFUNC_5:27
for b1 being non empty set
for b2, b3 being Element of Funcs b1,BOOLEAN st b2 'imp' (b2 'imp' b3) = I_el b1 holds
b2 'imp' b3 = I_el b1
proof end;

theorem Th28: :: BVFUNC_5:28
for b1 being non empty set
for b2, b3, b4 being Element of Funcs b1,BOOLEAN st b2 'imp' (b3 'imp' b4) = I_el b1 holds
(b2 'imp' b3) 'imp' (b2 'imp' b4) = I_el b1
proof end;

theorem Th29: :: BVFUNC_5:29
for b1 being non empty set
for b2, b3, b4 being Element of Funcs b1,BOOLEAN st b2 'imp' (b3 'imp' b4) = I_el b1 & b2 'imp' b3 = I_el b1 holds
b2 'imp' b4 = I_el b1
proof end;

theorem Th30: :: BVFUNC_5:30
for b1 being non empty set
for b2, b3, b4 being Element of Funcs b1,BOOLEAN st b2 'imp' (b3 'imp' b4) = I_el b1 & b2 'imp' b3 = I_el b1 & b2 = I_el b1 holds
b4 = I_el b1
proof end;

theorem Th31: :: BVFUNC_5:31
for b1 being non empty set
for b2, b3, b4, b5 being Element of Funcs b1,BOOLEAN st b2 'imp' (b3 'imp' b4) = I_el b1 & b2 'imp' (b4 'imp' b5) = I_el b1 holds
b2 'imp' (b3 'imp' b5) = I_el b1
proof end;

theorem Th32: :: BVFUNC_5:32
for b1 being non empty set
for b2, b3 being Element of Funcs b1,BOOLEAN holds (('not' b2) 'imp' ('not' b3)) 'imp' (b3 'imp' b2) = I_el b1
proof end;

theorem Th33: :: BVFUNC_5:33
for b1 being non empty set
for b2, b3 being Element of Funcs b1,BOOLEAN holds (b2 'imp' b3) 'imp' (('not' b3) 'imp' ('not' b2)) = I_el b1
proof end;

theorem Th34: :: BVFUNC_5:34
for b1 being non empty set
for b2, b3 being Element of Funcs b1,BOOLEAN holds (b2 'imp' ('not' b3)) 'imp' (b3 'imp' ('not' b2)) = I_el b1
proof end;

theorem Th35: :: BVFUNC_5:35
for b1 being non empty set
for b2, b3 being Element of Funcs b1,BOOLEAN holds (('not' b2) 'imp' b3) 'imp' (('not' b3) 'imp' b2) = I_el b1
proof end;

theorem Th36: :: BVFUNC_5:36
for b1 being non empty set
for b2 being Element of Funcs b1,BOOLEAN holds (b2 'imp' ('not' b2)) 'imp' ('not' b2) = I_el b1
proof end;

theorem Th37: :: BVFUNC_5:37
for b1 being non empty set
for b2, b3 being Element of Funcs b1,BOOLEAN holds ('not' b2) 'imp' (b2 'imp' b3) = I_el b1
proof end;

theorem Th38: :: BVFUNC_5:38
for b1 being non empty set
for b2, b3, b4 being Element of Funcs b1,BOOLEAN holds 'not' ((b2 '&' b3) '&' b4) = (('not' b2) 'or' ('not' b3)) 'or' ('not' b4)
proof end;

theorem Th39: :: BVFUNC_5:39
for b1 being non empty set
for b2, b3, b4 being Element of Funcs b1,BOOLEAN holds 'not' ((b2 'or' b3) 'or' b4) = (('not' b2) '&' ('not' b3)) '&' ('not' b4)
proof end;

theorem Th40: :: BVFUNC_5:40
for b1 being non empty set
for b2, b3, b4, b5 being Element of Funcs b1,BOOLEAN holds b2 'or' ((b3 '&' b4) '&' b5) = ((b2 'or' b3) '&' (b2 'or' b4)) '&' (b2 'or' b5)
proof end;

theorem Th41: :: BVFUNC_5:41
for b1 being non empty set
for b2, b3, b4, b5 being Element of Funcs b1,BOOLEAN holds b2 '&' ((b3 'or' b4) 'or' b5) = ((b2 '&' b3) 'or' (b2 '&' b4)) 'or' (b2 '&' b5)
proof end;