:: BVFUNC_6 semantic presentation

theorem Th1: :: BVFUNC_6:1
for b1 being non empty set
for b2, b3 being Element of Funcs b1,BOOLEAN holds b2 'imp' (b3 'imp' (b2 '&' b3)) = I_el b1
proof end;

theorem Th2: :: BVFUNC_6:2
for b1 being non empty set
for b2, b3 being Element of Funcs b1,BOOLEAN holds (b2 'imp' b3) 'imp' ((b3 'imp' b2) 'imp' (b2 'eqv' b3)) = I_el b1
proof end;

theorem Th3: :: BVFUNC_6:3
for b1 being non empty set
for b2, b3 being Element of Funcs b1,BOOLEAN holds (b2 'or' b3) 'eqv' (b3 'or' b2) = I_el b1
proof end;

theorem Th4: :: BVFUNC_6:4
for b1 being non empty set
for b2, b3, b4 being Element of Funcs b1,BOOLEAN holds ((b2 '&' b3) 'imp' b4) 'imp' (b2 'imp' (b3 'imp' b4)) = I_el b1
proof end;

theorem Th5: :: BVFUNC_6:5
for b1 being non empty set
for b2, b3, b4 being Element of Funcs b1,BOOLEAN holds (b2 'imp' (b3 'imp' b4)) 'imp' ((b2 '&' b3) 'imp' b4) = I_el b1
proof end;

theorem Th6: :: BVFUNC_6:6
for b1 being non empty set
for b2, b3, b4 being Element of Funcs b1,BOOLEAN holds (b4 'imp' b2) 'imp' ((b4 'imp' b3) 'imp' (b4 'imp' (b2 '&' b3))) = I_el b1
proof end;

theorem Th7: :: BVFUNC_6:7
for b1 being non empty set
for b2, b3, b4 being Element of Funcs b1,BOOLEAN holds ((b2 'or' b3) 'imp' b4) 'imp' ((b2 'imp' b4) 'or' (b3 'imp' b4)) = I_el b1
proof end;

theorem Th8: :: BVFUNC_6:8
for b1 being non empty set
for b2, b3, b4 being Element of Funcs b1,BOOLEAN holds (b2 'imp' b4) 'imp' ((b3 'imp' b4) 'imp' ((b2 'or' b3) 'imp' b4)) = I_el b1
proof end;

theorem Th9: :: BVFUNC_6:9
for b1 being non empty set
for b2, b3, b4 being Element of Funcs b1,BOOLEAN holds ((b2 'imp' b4) '&' (b3 'imp' b4)) 'imp' ((b2 'or' b3) 'imp' b4) = I_el b1
proof end;

theorem Th10: :: BVFUNC_6:10
for b1 being non empty set
for b2, b3 being Element of Funcs b1,BOOLEAN holds (b2 'imp' (b3 '&' ('not' b3))) 'imp' ('not' b2) = I_el b1
proof end;

theorem Th11: :: BVFUNC_6:11
for b1 being non empty set
for b2, b3, b4 being Element of Funcs b1,BOOLEAN holds ((b2 'or' b3) '&' (b2 'or' b4)) 'imp' (b2 'or' (b3 '&' b4)) = I_el b1
proof end;

theorem Th12: :: BVFUNC_6:12
for b1 being non empty set
for b2, b3, b4 being Element of Funcs b1,BOOLEAN holds (b2 '&' (b3 'or' b4)) 'imp' ((b2 '&' b3) 'or' (b2 '&' b4)) = I_el b1
proof end;

theorem Th13: :: BVFUNC_6:13
for b1 being non empty set
for b2, b3, b4 being Element of Funcs b1,BOOLEAN holds ((b2 'or' b4) '&' (b3 'or' b4)) 'imp' ((b2 '&' b3) 'or' b4) = I_el b1
proof end;

theorem Th14: :: BVFUNC_6:14
for b1 being non empty set
for b2, b3, b4 being Element of Funcs b1,BOOLEAN holds ((b2 'or' b3) '&' b4) 'imp' ((b2 '&' b4) 'or' (b3 '&' b4)) = I_el b1
proof end;

theorem Th15: :: BVFUNC_6:15
for b1 being non empty set
for b2, b3 being Element of Funcs b1,BOOLEAN st b2 '&' b3 = I_el b1 holds
b2 'or' b3 = I_el b1
proof end;

theorem Th16: :: BVFUNC_6:16
for b1 being non empty set
for b2, b3, b4 being Element of Funcs b1,BOOLEAN st b2 'imp' b3 = I_el b1 holds
(b2 'or' b4) 'imp' (b3 'or' b4) = I_el b1
proof end;

theorem Th17: :: BVFUNC_6:17
for b1 being non empty set
for b2, b3, b4 being Element of Funcs b1,BOOLEAN st b2 'imp' b3 = I_el b1 holds
(b2 '&' b4) 'imp' (b3 '&' b4) = I_el b1
proof end;

theorem Th18: :: BVFUNC_6:18
for b1 being non empty set
for b2, b3, b4 being Element of Funcs b1,BOOLEAN st b4 'imp' b2 = I_el b1 & b4 'imp' b3 = I_el b1 holds
b4 'imp' (b2 '&' b3) = I_el b1
proof end;

theorem Th19: :: BVFUNC_6:19
for b1 being non empty set
for b2, b3, b4 being Element of Funcs b1,BOOLEAN st b2 'imp' b4 = I_el b1 & b3 'imp' b4 = I_el b1 holds
(b2 'or' b3) 'imp' b4 = I_el b1
proof end;

theorem Th20: :: BVFUNC_6:20
for b1 being non empty set
for b2, b3 being Element of Funcs b1,BOOLEAN st b2 'or' b3 = I_el b1 & 'not' b2 = I_el b1 holds
b3 = I_el b1
proof end;

theorem Th21: :: BVFUNC_6:21
for b1 being non empty set
for b2, b3, b4, b5 being Element of Funcs b1,BOOLEAN st b2 'imp' b3 = I_el b1 & b4 'imp' b5 = I_el b1 holds
(b2 '&' b4) 'imp' (b3 '&' b5) = I_el b1
proof end;

theorem Th22: :: BVFUNC_6:22
for b1 being non empty set
for b2, b3, b4, b5 being Element of Funcs b1,BOOLEAN st b2 'imp' b3 = I_el b1 & b4 'imp' b5 = I_el b1 holds
(b2 'or' b4) 'imp' (b3 'or' b5) = I_el b1
proof end;

theorem Th23: :: BVFUNC_6:23
for b1 being non empty set
for b2, b3 being Element of Funcs b1,BOOLEAN st (b2 '&' ('not' b3)) 'imp' ('not' b2) = I_el b1 holds
b2 'imp' b3 = I_el b1
proof end;

theorem Th24: :: BVFUNC_6:24
canceled;

theorem Th25: :: BVFUNC_6:25
for b1 being non empty set
for b2, b3 being Element of Funcs b1,BOOLEAN st b2 'imp' ('not' b3) = I_el b1 holds
b3 'imp' ('not' b2) = I_el b1
proof end;

theorem Th26: :: BVFUNC_6:26
for b1 being non empty set
for b2, b3 being Element of Funcs b1,BOOLEAN st ('not' b2) 'imp' b3 = I_el b1 holds
('not' b3) 'imp' b2 = I_el b1
proof end;

theorem Th27: :: BVFUNC_6:27
for b1 being non empty set
for b2, b3 being Element of Funcs b1,BOOLEAN holds b2 'imp' (b2 'or' b3) = I_el b1
proof end;

theorem Th28: :: BVFUNC_6:28
for b1 being non empty set
for b2, b3 being Element of Funcs b1,BOOLEAN holds (b2 'or' b3) 'imp' (('not' b2) 'imp' b3) = I_el b1
proof end;

theorem Th29: :: BVFUNC_6:29
for b1 being non empty set
for b2, b3 being Element of Funcs b1,BOOLEAN holds ('not' (b2 'or' b3)) 'imp' (('not' b2) '&' ('not' b3)) = I_el b1
proof end;

theorem Th30: :: BVFUNC_6:30
for b1 being non empty set
for b2, b3 being Element of Funcs b1,BOOLEAN holds (('not' b2) '&' ('not' b3)) 'imp' ('not' (b2 'or' b3)) = I_el b1
proof end;

theorem Th31: :: BVFUNC_6:31
for b1 being non empty set
for b2, b3 being Element of Funcs b1,BOOLEAN holds ('not' (b2 'or' b3)) 'imp' ('not' b2) = I_el b1
proof end;

theorem Th32: :: BVFUNC_6:32
for b1 being non empty set
for b2 being Element of Funcs b1,BOOLEAN holds (b2 'or' b2) 'imp' b2 = I_el b1
proof end;

theorem Th33: :: BVFUNC_6:33
for b1 being non empty set
for b2, b3 being Element of Funcs b1,BOOLEAN holds (b2 '&' ('not' b2)) 'imp' b3 = I_el b1
proof end;

theorem Th34: :: BVFUNC_6:34
for b1 being non empty set
for b2, b3 being Element of Funcs b1,BOOLEAN holds (b2 'imp' b3) 'imp' (('not' b2) 'or' b3) = I_el b1
proof end;

theorem Th35: :: BVFUNC_6:35
for b1 being non empty set
for b2, b3 being Element of Funcs b1,BOOLEAN holds (b2 '&' b3) 'imp' ('not' (b2 'imp' ('not' b3))) = I_el b1
proof end;

theorem Th36: :: BVFUNC_6:36
for b1 being non empty set
for b2, b3 being Element of Funcs b1,BOOLEAN holds ('not' (b2 'imp' ('not' b3))) 'imp' (b2 '&' b3) = I_el b1
proof end;

theorem Th37: :: BVFUNC_6:37
for b1 being non empty set
for b2, b3 being Element of Funcs b1,BOOLEAN holds ('not' (b2 '&' b3)) 'imp' (('not' b2) 'or' ('not' b3)) = I_el b1
proof end;

theorem Th38: :: BVFUNC_6:38
for b1 being non empty set
for b2, b3 being Element of Funcs b1,BOOLEAN holds (('not' b2) 'or' ('not' b3)) 'imp' ('not' (b2 '&' b3)) = I_el b1
proof end;

theorem Th39: :: BVFUNC_6:39
for b1 being non empty set
for b2, b3 being Element of Funcs b1,BOOLEAN holds (b2 '&' b3) 'imp' b2 = I_el b1
proof end;

theorem Th40: :: BVFUNC_6:40
for b1 being non empty set
for b2, b3 being Element of Funcs b1,BOOLEAN holds (b2 '&' b3) 'imp' (b2 'or' b3) = I_el b1
proof end;

theorem Th41: :: BVFUNC_6:41
for b1 being non empty set
for b2, b3 being Element of Funcs b1,BOOLEAN holds (b2 '&' b3) 'imp' b3 = I_el b1
proof end;

theorem Th42: :: BVFUNC_6:42
for b1 being non empty set
for b2 being Element of Funcs b1,BOOLEAN holds b2 'imp' (b2 '&' b2) = I_el b1
proof end;

theorem Th43: :: BVFUNC_6:43
for b1 being non empty set
for b2, b3 being Element of Funcs b1,BOOLEAN holds (b2 'eqv' b3) 'imp' (b2 'imp' b3) = I_el b1
proof end;

theorem Th44: :: BVFUNC_6:44
for b1 being non empty set
for b2, b3 being Element of Funcs b1,BOOLEAN holds (b2 'eqv' b3) 'imp' (b3 'imp' b2) = I_el b1
proof end;

theorem Th45: :: BVFUNC_6:45
for b1 being non empty set
for b2, b3, b4 being Element of Funcs b1,BOOLEAN holds ((b2 'or' b3) 'or' b4) 'imp' (b2 'or' (b3 'or' b4)) = I_el b1
proof end;

theorem Th46: :: BVFUNC_6:46
for b1 being non empty set
for b2, b3, b4 being Element of Funcs b1,BOOLEAN holds ((b2 '&' b3) '&' b4) 'imp' (b2 '&' (b3 '&' b4)) = I_el b1
proof end;

theorem Th47: :: BVFUNC_6:47
for b1 being non empty set
for b2, b3, b4 being Element of Funcs b1,BOOLEAN holds (b2 'or' (b3 'or' b4)) 'imp' ((b2 'or' b3) 'or' b4) = I_el b1
proof end;