:: BVFUNC_7 semantic presentation

theorem Th1: :: BVFUNC_7:1
for b1 being non empty set
for b2, b3 being Element of Funcs b1,BOOLEAN holds (b2 'imp' b3) '&' (('not' b2) 'imp' b3) = b3
proof end;

theorem Th2: :: BVFUNC_7:2
for b1 being non empty set
for b2, b3 being Element of Funcs b1,BOOLEAN holds (b2 'imp' b3) '&' (b2 'imp' ('not' b3)) = 'not' b2
proof end;

theorem Th3: :: BVFUNC_7:3
for b1 being non empty set
for b2, b3, b4 being Element of Funcs b1,BOOLEAN holds b2 'imp' (b3 'or' b4) = (b2 'imp' b3) 'or' (b2 'imp' b4)
proof end;

theorem Th4: :: BVFUNC_7:4
for b1 being non empty set
for b2, b3, b4 being Element of Funcs b1,BOOLEAN holds b2 'imp' (b3 '&' b4) = (b2 'imp' b3) '&' (b2 'imp' b4)
proof end;

theorem Th5: :: BVFUNC_7:5
for b1 being non empty set
for b2, b3, b4 being Element of Funcs b1,BOOLEAN holds (b2 'or' b3) 'imp' b4 = (b2 'imp' b4) '&' (b3 'imp' b4)
proof end;

theorem Th6: :: BVFUNC_7:6
for b1 being non empty set
for b2, b3, b4 being Element of Funcs b1,BOOLEAN holds (b2 '&' b3) 'imp' b4 = (b2 'imp' b4) 'or' (b3 'imp' b4)
proof end;

theorem Th7: :: BVFUNC_7:7
for b1 being non empty set
for b2, b3, b4 being Element of Funcs b1,BOOLEAN holds (b2 '&' b3) 'imp' b4 = b2 'imp' (b3 'imp' b4)
proof end;

theorem Th8: :: BVFUNC_7:8
for b1 being non empty set
for b2, b3, b4 being Element of Funcs b1,BOOLEAN holds (b2 '&' b3) 'imp' b4 = b2 'imp' (('not' b3) 'or' b4)
proof end;

theorem Th9: :: BVFUNC_7:9
for b1 being non empty set
for b2, b3, b4 being Element of Funcs b1,BOOLEAN holds b2 'imp' (b3 'or' b4) = (b2 '&' ('not' b3)) 'imp' b4
proof end;

theorem Th10: :: BVFUNC_7:10
for b1 being non empty set
for b2, b3 being Element of Funcs b1,BOOLEAN holds b2 '&' (b2 'imp' b3) = b2 '&' b3
proof end;

theorem Th11: :: BVFUNC_7:11
for b1 being non empty set
for b2, b3 being Element of Funcs b1,BOOLEAN holds (b2 'imp' b3) '&' ('not' b3) = ('not' b2) '&' ('not' b3)
proof end;

theorem Th12: :: BVFUNC_7:12
for b1 being non empty set
for b2, b3, b4 being Element of Funcs b1,BOOLEAN holds (b2 'imp' b3) '&' (b3 'imp' b4) = ((b2 'imp' b3) '&' (b3 'imp' b4)) '&' (b2 'imp' b4)
proof end;

theorem Th13: :: BVFUNC_7:13
for b1 being non empty set
for b2 being Element of Funcs b1,BOOLEAN holds (I_el b1) 'imp' b2 = b2
proof end;

theorem Th14: :: BVFUNC_7:14
for b1 being non empty set
for b2 being Element of Funcs b1,BOOLEAN holds b2 'imp' (O_el b1) = 'not' b2
proof end;

theorem Th15: :: BVFUNC_7:15
for b1 being non empty set
for b2 being Element of Funcs b1,BOOLEAN holds (O_el b1) 'imp' b2 = I_el b1
proof end;

theorem Th16: :: BVFUNC_7:16
for b1 being non empty set
for b2 being Element of Funcs b1,BOOLEAN holds b2 'imp' (I_el b1) = I_el b1
proof end;

theorem Th17: :: BVFUNC_7:17
for b1 being non empty set
for b2 being Element of Funcs b1,BOOLEAN holds b2 'imp' ('not' b2) = 'not' b2
proof end;

theorem Th18: :: BVFUNC_7:18
for b1 being non empty set
for b2, b3, b4 being Element of Funcs b1,BOOLEAN holds b2 'imp' b3 '<' (b4 'imp' b2) 'imp' (b4 'imp' b3)
proof end;

theorem Th19: :: BVFUNC_7:19
for b1 being non empty set
for b2, b3, b4 being Element of Funcs b1,BOOLEAN holds b2 'eqv' b3 '<' (b2 'eqv' b4) 'eqv' (b3 'eqv' b4)
proof end;

theorem Th20: :: BVFUNC_7:20
for b1 being non empty set
for b2, b3, b4 being Element of Funcs b1,BOOLEAN holds b2 'eqv' b3 '<' (b2 'imp' b4) 'eqv' (b3 'imp' b4)
proof end;

theorem Th21: :: BVFUNC_7:21
for b1 being non empty set
for b2, b3, b4 being Element of Funcs b1,BOOLEAN holds b2 'eqv' b3 '<' (b4 'imp' b2) 'eqv' (b4 'imp' b3)
proof end;

theorem Th22: :: BVFUNC_7:22
for b1 being non empty set
for b2, b3, b4 being Element of Funcs b1,BOOLEAN holds b2 'eqv' b3 '<' (b2 '&' b4) 'eqv' (b3 '&' b4)
proof end;

theorem Th23: :: BVFUNC_7:23
for b1 being non empty set
for b2, b3, b4 being Element of Funcs b1,BOOLEAN holds b2 'eqv' b3 '<' (b2 'or' b4) 'eqv' (b3 'or' b4)
proof end;

theorem Th24: :: BVFUNC_7:24
for b1 being non empty set
for b2, b3 being Element of Funcs b1,BOOLEAN holds b2 '<' ((b2 'eqv' b3) 'eqv' (b3 'eqv' b2)) 'eqv' b2
proof end;

theorem Th25: :: BVFUNC_7:25
for b1 being non empty set
for b2, b3 being Element of Funcs b1,BOOLEAN holds b2 '<' (b2 'imp' b3) 'eqv' b3
proof end;

theorem Th26: :: BVFUNC_7:26
for b1 being non empty set
for b2, b3 being Element of Funcs b1,BOOLEAN holds b2 '<' (b3 'imp' b2) 'eqv' b2
proof end;

theorem Th27: :: BVFUNC_7:27
for b1 being non empty set
for b2, b3 being Element of Funcs b1,BOOLEAN holds b2 '<' ((b2 '&' b3) 'eqv' (b3 '&' b2)) 'eqv' b2
proof end;