:: BVFUNC_8 semantic presentation

theorem Th1: :: BVFUNC_8:1
for b1 being non empty set
for b2, b3, b4, b5 being Element of Funcs b1,BOOLEAN holds b2 'imp' ((b3 '&' b4) '&' b5) = ((b2 'imp' b3) '&' (b2 'imp' b4)) '&' (b2 'imp' b5)
proof end;

theorem Th2: :: BVFUNC_8:2
for b1 being non empty set
for b2, b3, b4, b5 being Element of Funcs b1,BOOLEAN holds b2 'imp' ((b3 'or' b4) 'or' b5) = ((b2 'imp' b3) 'or' (b2 'imp' b4)) 'or' (b2 'imp' b5)
proof end;

theorem Th3: :: BVFUNC_8:3
for b1 being non empty set
for b2, b3, b4, b5 being Element of Funcs b1,BOOLEAN holds ((b2 '&' b3) '&' b4) 'imp' b5 = ((b2 'imp' b5) 'or' (b3 'imp' b5)) 'or' (b4 'imp' b5)
proof end;

theorem Th4: :: BVFUNC_8:4
for b1 being non empty set
for b2, b3, b4, b5 being Element of Funcs b1,BOOLEAN holds ((b2 'or' b3) 'or' b4) 'imp' b5 = ((b2 'imp' b5) '&' (b3 'imp' b5)) '&' (b4 'imp' b5)
proof end;

theorem Th5: :: BVFUNC_8:5
for b1 being non empty set
for b2, b3, b4 being Element of Funcs b1,BOOLEAN holds ((b2 'imp' b3) '&' (b3 'imp' b4)) '&' (b4 'imp' b2) = ((((b2 'imp' b3) '&' (b3 'imp' b4)) '&' (b4 'imp' b2)) '&' (b3 'imp' b2)) '&' (b2 'imp' b4)
proof end;

theorem Th6: :: BVFUNC_8:6
for b1 being non empty set
for b2, b3 being Element of Funcs b1,BOOLEAN holds b2 = (b2 '&' b3) 'or' (b2 '&' ('not' b3))
proof end;

theorem Th7: :: BVFUNC_8:7
for b1 being non empty set
for b2, b3 being Element of Funcs b1,BOOLEAN holds b2 = (b2 'or' b3) '&' (b2 'or' ('not' b3))
proof end;

theorem Th8: :: BVFUNC_8:8
for b1 being non empty set
for b2, b3, b4 being Element of Funcs b1,BOOLEAN holds b2 = ((((b2 '&' b3) '&' b4) 'or' ((b2 '&' b3) '&' ('not' b4))) 'or' ((b2 '&' ('not' b3)) '&' b4)) 'or' ((b2 '&' ('not' b3)) '&' ('not' b4))
proof end;

theorem Th9: :: BVFUNC_8:9
for b1 being non empty set
for b2, b3, b4 being Element of Funcs b1,BOOLEAN holds b2 = ((((b2 'or' b3) 'or' b4) '&' ((b2 'or' b3) 'or' ('not' b4))) '&' ((b2 'or' ('not' b3)) 'or' b4)) '&' ((b2 'or' ('not' b3)) 'or' ('not' b4))
proof end;

theorem Th10: :: BVFUNC_8:10
for b1 being non empty set
for b2, b3 being Element of Funcs b1,BOOLEAN holds b2 '&' b3 = b2 '&' (('not' b2) 'or' b3)
proof end;

theorem Th11: :: BVFUNC_8:11
for b1 being non empty set
for b2, b3 being Element of Funcs b1,BOOLEAN holds b2 'or' b3 = b2 'or' (('not' b2) '&' b3)
proof end;

theorem Th12: :: BVFUNC_8:12
for b1 being non empty set
for b2, b3 being Element of Funcs b1,BOOLEAN holds b2 'xor' b3 = 'not' (b2 'eqv' b3)
proof end;

theorem Th13: :: BVFUNC_8:13
for b1 being non empty set
for b2, b3 being Element of Funcs b1,BOOLEAN holds b2 'xor' b3 = (b2 'or' b3) '&' (('not' b2) 'or' ('not' b3))
proof end;

theorem Th14: :: BVFUNC_8:14
for b1 being non empty set
for b2 being Element of Funcs b1,BOOLEAN holds b2 'xor' (I_el b1) = 'not' b2
proof end;

theorem Th15: :: BVFUNC_8:15
for b1 being non empty set
for b2 being Element of Funcs b1,BOOLEAN holds b2 'xor' (O_el b1) = b2
proof end;

theorem Th16: :: BVFUNC_8:16
for b1 being non empty set
for b2, b3 being Element of Funcs b1,BOOLEAN holds b2 'xor' b3 = ('not' b2) 'xor' ('not' b3)
proof end;

theorem Th17: :: BVFUNC_8:17
for b1 being non empty set
for b2, b3 being Element of Funcs b1,BOOLEAN holds 'not' (b2 'xor' b3) = b2 'xor' ('not' b3)
proof end;

theorem Th18: :: BVFUNC_8:18
for b1 being non empty set
for b2, b3 being Element of Funcs b1,BOOLEAN holds b2 'eqv' b3 = (b2 'or' ('not' b3)) '&' (('not' b2) 'or' b3)
proof end;

theorem Th19: :: BVFUNC_8:19
for b1 being non empty set
for b2, b3 being Element of Funcs b1,BOOLEAN holds b2 'eqv' b3 = (b2 '&' b3) 'or' (('not' b2) '&' ('not' b3))
proof end;

theorem Th20: :: BVFUNC_8:20
for b1 being non empty set
for b2 being Element of Funcs b1,BOOLEAN holds b2 'eqv' (I_el b1) = b2
proof end;

theorem Th21: :: BVFUNC_8:21
for b1 being non empty set
for b2 being Element of Funcs b1,BOOLEAN holds b2 'eqv' (O_el b1) = 'not' b2
proof end;

theorem Th22: :: BVFUNC_8:22
for b1 being non empty set
for b2, b3 being Element of Funcs b1,BOOLEAN holds 'not' (b2 'eqv' b3) = b2 'eqv' ('not' b3)
proof end;

theorem Th23: :: BVFUNC_8:23
for b1 being non empty set
for b2, b3 being Element of Funcs b1,BOOLEAN holds 'not' b2 '<' (b2 'imp' b3) 'eqv' ('not' b2)
proof end;

theorem Th24: :: BVFUNC_8:24
for b1 being non empty set
for b2, b3 being Element of Funcs b1,BOOLEAN holds 'not' b2 '<' (b3 'imp' b2) 'eqv' ('not' b3)
proof end;

theorem Th25: :: BVFUNC_8:25
for b1 being non empty set
for b2, b3 being Element of Funcs b1,BOOLEAN holds b2 '<' ((b2 'or' b3) 'eqv' (b3 'or' b2)) 'eqv' b2
proof end;

theorem Th26: :: BVFUNC_8:26
for b1 being non empty set
for b2 being Element of Funcs b1,BOOLEAN holds b2 'imp' (('not' b2) 'eqv' ('not' b2)) = I_el b1
proof end;

theorem Th27: :: BVFUNC_8:27
for b1 being non empty set
for b2, b3 being Element of Funcs b1,BOOLEAN holds ((b2 'imp' b3) 'imp' b2) 'imp' b2 = I_el b1
proof end;

theorem Th28: :: BVFUNC_8:28
for b1 being non empty set
for b2, b3, b4, b5 being Element of Funcs b1,BOOLEAN holds (((b2 'imp' b4) '&' (b3 'imp' b5)) '&' (('not' b4) 'or' ('not' b5))) 'imp' (('not' b2) 'or' ('not' b3)) = I_el b1
proof end;

theorem Th29: :: BVFUNC_8:29
for b1 being non empty set
for b2, b3, b4 being Element of Funcs b1,BOOLEAN holds (b2 'imp' b3) 'imp' ((b2 'imp' (b3 'imp' b4)) 'imp' (b2 'imp' b4)) = I_el b1
proof end;