:: CSSPACE3 semantic presentation
:: deftheorem Def1 defines the_set_of_l1ComplexSequences CSSPACE3:def 1 :
theorem Th1: :: CSSPACE3:1
Lemma3:
CLSStruct(# the_set_of_l1ComplexSequences ,(Zero_ the_set_of_l1ComplexSequences ,Linear_Space_of_ComplexSequences ),(Add_ the_set_of_l1ComplexSequences ,Linear_Space_of_ComplexSequences ),(Mult_ the_set_of_l1ComplexSequences ,Linear_Space_of_ComplexSequences ) #) is Subspace of Linear_Space_of_ComplexSequences
by CSSPACE:13;
registration
cluster CLSStruct(#
the_set_of_l1ComplexSequences ,
(Zero_ the_set_of_l1ComplexSequences ,Linear_Space_of_ComplexSequences ),
(Add_ the_set_of_l1ComplexSequences ,Linear_Space_of_ComplexSequences ),
(Mult_ the_set_of_l1ComplexSequences ,Linear_Space_of_ComplexSequences ) #)
-> Abelian add-associative right_zeroed right_complementable ComplexLinearSpace-like ;
coherence
( CLSStruct(# the_set_of_l1ComplexSequences ,(Zero_ the_set_of_l1ComplexSequences ,Linear_Space_of_ComplexSequences ),(Add_ the_set_of_l1ComplexSequences ,Linear_Space_of_ComplexSequences ),(Mult_ the_set_of_l1ComplexSequences ,Linear_Space_of_ComplexSequences ) #) is Abelian & CLSStruct(# the_set_of_l1ComplexSequences ,(Zero_ the_set_of_l1ComplexSequences ,Linear_Space_of_ComplexSequences ),(Add_ the_set_of_l1ComplexSequences ,Linear_Space_of_ComplexSequences ),(Mult_ the_set_of_l1ComplexSequences ,Linear_Space_of_ComplexSequences ) #) is add-associative & CLSStruct(# the_set_of_l1ComplexSequences ,(Zero_ the_set_of_l1ComplexSequences ,Linear_Space_of_ComplexSequences ),(Add_ the_set_of_l1ComplexSequences ,Linear_Space_of_ComplexSequences ),(Mult_ the_set_of_l1ComplexSequences ,Linear_Space_of_ComplexSequences ) #) is right_zeroed & CLSStruct(# the_set_of_l1ComplexSequences ,(Zero_ the_set_of_l1ComplexSequences ,Linear_Space_of_ComplexSequences ),(Add_ the_set_of_l1ComplexSequences ,Linear_Space_of_ComplexSequences ),(Mult_ the_set_of_l1ComplexSequences ,Linear_Space_of_ComplexSequences ) #) is right_complementable & CLSStruct(# the_set_of_l1ComplexSequences ,(Zero_ the_set_of_l1ComplexSequences ,Linear_Space_of_ComplexSequences ),(Add_ the_set_of_l1ComplexSequences ,Linear_Space_of_ComplexSequences ),(Mult_ the_set_of_l1ComplexSequences ,Linear_Space_of_ComplexSequences ) #) is ComplexLinearSpace-like )
by CSSPACE:13;
end;
Lemma4:
CLSStruct(# the_set_of_l1ComplexSequences ,(Zero_ the_set_of_l1ComplexSequences ,Linear_Space_of_ComplexSequences ),(Add_ the_set_of_l1ComplexSequences ,Linear_Space_of_ComplexSequences ),(Mult_ the_set_of_l1ComplexSequences ,Linear_Space_of_ComplexSequences ) #) is ComplexLinearSpace
;
Lemma5:
ex b1 being Function of the_set_of_l1ComplexSequences , REAL st
for b2 being set st b2 in the_set_of_l1ComplexSequences holds
b1 . b2 = Sum |.(seq_id b2).|
:: deftheorem Def2 defines cl_norm CSSPACE3:def 2 :
registration
let c1 be non
empty set ;
let c2 be
Element of
c1;
let c3 be
BinOp of
c1;
let c4 be
Function of
[:COMPLEX ,c1:],
c1;
let c5 be
Function of
c1,
REAL ;
cluster CNORMSTR(#
a1,
a2,
a3,
a4,
a5 #)
-> non
empty ;
coherence
not CNORMSTR(# c1,c2,c3,c4,c5 #) is empty
by STRUCT_0:def 1;
end;
theorem Th2: :: CSSPACE3:2
canceled;
theorem Th3: :: CSSPACE3:3
canceled;
theorem Th4: :: CSSPACE3:4
theorem Th5: :: CSSPACE3:5
theorem Th6: :: CSSPACE3:6
theorem Th7: :: CSSPACE3:7
definition
func Complex_l1_Space -> non
empty CNORMSTR equals :: CSSPACE3:def 3
CNORMSTR(#
the_set_of_l1ComplexSequences ,
(Zero_ the_set_of_l1ComplexSequences ,Linear_Space_of_ComplexSequences ),
(Add_ the_set_of_l1ComplexSequences ,Linear_Space_of_ComplexSequences ),
(Mult_ the_set_of_l1ComplexSequences ,Linear_Space_of_ComplexSequences ),
cl_norm #);
coherence
CNORMSTR(# the_set_of_l1ComplexSequences ,(Zero_ the_set_of_l1ComplexSequences ,Linear_Space_of_ComplexSequences ),(Add_ the_set_of_l1ComplexSequences ,Linear_Space_of_ComplexSequences ),(Mult_ the_set_of_l1ComplexSequences ,Linear_Space_of_ComplexSequences ),cl_norm #) is non empty CNORMSTR
;
end;
:: deftheorem Def3 defines Complex_l1_Space CSSPACE3:def 3 :
theorem Th8: :: CSSPACE3:8
theorem Th9: :: CSSPACE3:9
Lemma13:
for b1 being Complex
for b2 being Complex_Sequence
for b3 being Real_Sequence st b2 is convergent & b3 is convergent holds
for b4 being Real_Sequence st ( for b5 being Nat holds b4 . b5 = |.((b2 . b5) - b1).| + (b3 . b5) ) holds
( b4 is convergent & lim b4 = |.((lim b2) - b1).| + (lim b3) )
:: deftheorem Def4 defines dist CSSPACE3:def 4 :
:: deftheorem Def5 defines CCauchy CSSPACE3:def 5 :
theorem Th10: :: CSSPACE3:10
theorem Th11: :: CSSPACE3:11