:: DIRAF semantic presentation
definition
let c1 be non
empty set ;
let c2 be
Relation of
[:c1,c1:];
func lambda c2 -> Relation of
[:a1,a1:] means :
Def1:
:: DIRAF:def 1
for
b1,
b2,
b3,
b4 being
Element of
a1 holds
(
[[b1,b2],[b3,b4]] in a3 iff (
[[b1,b2],[b3,b4]] in a2 or
[[b1,b2],[b4,b3]] in a2 ) );
existence
ex b1 being Relation of [:c1,c1:] st
for b2, b3, b4, b5 being Element of c1 holds
( [[b2,b3],[b4,b5]] in b1 iff ( [[b2,b3],[b4,b5]] in c2 or [[b2,b3],[b5,b4]] in c2 ) )
uniqueness
for b1, b2 being Relation of [:c1,c1:] st ( for b3, b4, b5, b6 being Element of c1 holds
( [[b3,b4],[b5,b6]] in b1 iff ( [[b3,b4],[b5,b6]] in c2 or [[b3,b4],[b6,b5]] in c2 ) ) ) & ( for b3, b4, b5, b6 being Element of c1 holds
( [[b3,b4],[b5,b6]] in b2 iff ( [[b3,b4],[b5,b6]] in c2 or [[b3,b4],[b6,b5]] in c2 ) ) ) holds
b1 = b2
end;
:: deftheorem Def1 defines lambda DIRAF:def 1 :
for
b1 being non
empty set for
b2,
b3 being
Relation of
[:b1,b1:] holds
(
b3 = lambda b2 iff for
b4,
b5,
b6,
b7 being
Element of
b1 holds
(
[[b4,b5],[b6,b7]] in b3 iff (
[[b4,b5],[b6,b7]] in b2 or
[[b4,b5],[b7,b6]] in b2 ) ) );
:: deftheorem Def2 defines Lambda DIRAF:def 2 :
theorem Th1: :: DIRAF:1
canceled;
theorem Th2: :: DIRAF:2
canceled;
theorem Th3: :: DIRAF:3
canceled;
theorem Th4: :: DIRAF:4
Lemma3:
for b1 being OAffinSpace
for b2, b3, b4, b5 being Element of b1 st b2,b3 // b4,b5 holds
b4,b5 // b2,b3
theorem Th5: :: DIRAF:5
for
b1 being
OAffinSpace for
b2,
b3,
b4,
b5 being
Element of
b1 st
b2,
b3 // b4,
b5 holds
(
b3,
b2 // b5,
b4 &
b4,
b5 // b2,
b3 &
b5,
b4 // b3,
b2 )
theorem Th6: :: DIRAF:6
for
b1 being
OAffinSpace for
b2,
b3,
b4,
b5,
b6,
b7 being
Element of
b1 st
b2 <> b3 &
b4,
b5 // b2,
b3 &
b2,
b3 // b6,
b7 holds
b4,
b5 // b6,
b7
theorem Th7: :: DIRAF:7
theorem Th8: :: DIRAF:8
for
b1 being
OAffinSpace for
b2,
b3,
b4,
b5 being
Element of
b1 st
b2,
b3 // b4,
b5 &
b2,
b3 // b5,
b4 & not
b2 = b3 holds
b4 = b5
theorem Th9: :: DIRAF:9
for
b1 being
OAffinSpace for
b2,
b3,
b4 being
Element of
b1 holds
(
b2,
b3 // b2,
b4 iff (
b2,
b3 // b3,
b4 or
b2,
b4 // b4,
b3 ) )
:: deftheorem Def3 defines Mid DIRAF:def 3 :
theorem Th10: :: DIRAF:10
canceled;
theorem Th11: :: DIRAF:11
theorem Th12: :: DIRAF:12
theorem Th13: :: DIRAF:13
theorem Th14: :: DIRAF:14
theorem Th15: :: DIRAF:15
theorem Th16: :: DIRAF:16
theorem Th17: :: DIRAF:17
theorem Th18: :: DIRAF:18
theorem Th19: :: DIRAF:19
for
b1 being
OAffinSpace for
b2,
b3,
b4,
b5 being
Element of
b1 st
b2 <> b3 &
Mid b2,
b3,
b4 &
Mid b2,
b3,
b5 & not
Mid b3,
b4,
b5 holds
Mid b3,
b5,
b4
theorem Th20: :: DIRAF:20
for
b1 being
OAffinSpace for
b2,
b3,
b4,
b5 being
Element of
b1 st
b2 <> b3 &
Mid b2,
b3,
b4 &
Mid b2,
b3,
b5 & not
Mid b2,
b4,
b5 holds
Mid b2,
b5,
b4
theorem Th21: :: DIRAF:21
for
b1 being
OAffinSpace for
b2,
b3,
b4,
b5 being
Element of
b1 st
Mid b2,
b3,
b4 &
Mid b2,
b5,
b4 & not
Mid b2,
b3,
b5 holds
Mid b2,
b5,
b3
:: deftheorem Def4 defines '||' DIRAF:def 4 :
theorem Th22: :: DIRAF:22
canceled;
theorem Th23: :: DIRAF:23
theorem Th24: :: DIRAF:24
theorem Th25: :: DIRAF:25
Lemma16:
for b1 being OAffinSpace
for b2, b3, b4, b5, b6, b7 being Element of b1 st b2 <> b3 & b2,b3 '||' b4,b5 & b2,b3 '||' b6,b7 holds
b4,b5 '||' b6,b7
theorem Th26: :: DIRAF:26
theorem Th27: :: DIRAF:27
for
b1 being
OAffinSpace for
b2,
b3,
b4,
b5 being
Element of
b1 st
b2,
b3 '||' b4,
b5 holds
(
b2,
b3 '||' b5,
b4 &
b3,
b2 '||' b4,
b5 &
b3,
b2 '||' b5,
b4 &
b4,
b5 '||' b2,
b3 &
b4,
b5 '||' b3,
b2 &
b5,
b4 '||' b2,
b3 &
b5,
b4 '||' b3,
b2 )
theorem Th28: :: DIRAF:28
for
b1 being
OAffinSpace for
b2,
b3,
b4,
b5,
b6,
b7 being
Element of
b1 st
b2 <> b3 & ( (
b2,
b3 '||' b4,
b5 &
b2,
b3 '||' b6,
b7 ) or (
b2,
b3 '||' b4,
b5 &
b6,
b7 '||' b2,
b3 ) or (
b4,
b5 '||' b2,
b3 &
b6,
b7 '||' b2,
b3 ) or (
b4,
b5 '||' b2,
b3 &
b2,
b3 '||' b6,
b7 ) ) holds
b4,
b5 '||' b6,
b7
theorem Th29: :: DIRAF:29
theorem Th30: :: DIRAF:30
theorem Th31: :: DIRAF:31
theorem Th32: :: DIRAF:32
:: deftheorem Def5 defines LIN DIRAF:def 5 :
theorem Th33: :: DIRAF:33
canceled;
theorem Th34: :: DIRAF:34
theorem Th35: :: DIRAF:35
for
b1 being
OAffinSpace for
b2,
b3,
b4 being
Element of
b1 holds
( not
b2,
b3,
b4 is_collinear or
Mid b2,
b3,
b4 or
Mid b3,
b2,
b4 or
Mid b2,
b4,
b3 )
Lemma25:
for b1 being OAffinSpace
for b2, b3, b4 being Element of b1 st b2,b3,b4 is_collinear holds
( b2,b4,b3 is_collinear & b3,b2,b4 is_collinear )
theorem Th36: :: DIRAF:36
for
b1 being
OAffinSpace for
b2,
b3,
b4 being
Element of
b1 st
b2,
b3,
b4 is_collinear holds
(
b2,
b4,
b3 is_collinear &
b3,
b2,
b4 is_collinear &
b3,
b4,
b2 is_collinear &
b4,
b2,
b3 is_collinear &
b4,
b3,
b2 is_collinear )
theorem Th37: :: DIRAF:37
theorem Th38: :: DIRAF:38
for
b1 being
OAffinSpace for
b2,
b3,
b4,
b5,
b6 being
Element of
b1 st
b2 <> b3 &
b2,
b3,
b4 is_collinear &
b2,
b3,
b5 is_collinear &
b2,
b3,
b6 is_collinear holds
b4,
b5,
b6 is_collinear
theorem Th39: :: DIRAF:39
theorem Th40: :: DIRAF:40
theorem Th41: :: DIRAF:41
for
b1 being
OAffinSpace for
b2,
b3,
b4,
b5,
b6 being
Element of
b1 st
b2 <> b3 &
b4,
b5,
b2 is_collinear &
b4,
b5,
b3 is_collinear &
b2,
b3,
b6 is_collinear holds
b4,
b5,
b6 is_collinear
theorem Th42: :: DIRAF:42
theorem Th43: :: DIRAF:43
theorem Th44: :: DIRAF:44
canceled;
theorem Th45: :: DIRAF:45
for
b1 being
OAffinSpace for
b2 being non
empty AffinStruct st
b2 = Lambda b1 holds
for
b3,
b4,
b5,
b6 being
Element of
b1 for
b7,
b8,
b9,
b10 being
Element of
b2 st
b3 = b7 &
b4 = b8 &
b5 = b9 &
b6 = b10 holds
(
b7,
b8 // b9,
b10 iff
b3,
b4 '||' b5,
b6 )
theorem Th46: :: DIRAF:46
for
b1 being
OAffinSpace for
b2 being non
empty AffinStruct st
b2 = Lambda b1 holds
( ex
b3,
b4 being
Element of
b2 st
b3 <> b4 & ( for
b3,
b4,
b5,
b6,
b7,
b8 being
Element of
b2 holds
(
b3,
b4 // b4,
b3 &
b3,
b4 // b5,
b5 & (
b3 <> b4 &
b3,
b4 // b5,
b6 &
b3,
b4 // b7,
b8 implies
b5,
b6 // b7,
b8 ) & (
b3,
b4 // b3,
b5 implies
b4,
b3 // b4,
b5 ) ) ) & not for
b3,
b4,
b5 being
Element of
b2 holds
b3,
b4 // b3,
b5 & ( for
b3,
b4,
b5 being
Element of
b2 ex
b6 being
Element of
b2 st
(
b3,
b5 // b4,
b6 &
b4 <> b6 ) ) & ( for
b3,
b4,
b5 being
Element of
b2 ex
b6 being
Element of
b2 st
(
b3,
b4 // b5,
b6 &
b3,
b5 // b4,
b6 ) ) & ( for
b3,
b4,
b5,
b6 being
Element of
b2 st
b5,
b3 // b3,
b6 &
b3 <> b5 holds
ex
b7 being
Element of
b2 st
(
b4,
b3 // b3,
b7 &
b4,
b5 // b6,
b7 ) ) )
definition
let c1 be non
empty AffinStruct ;
canceled;attr a1 is
AffinSpace-like means :
Def7:
:: DIRAF:def 7
( ( for
b1,
b2,
b3,
b4,
b5,
b6 being
Element of
a1 holds
(
b1,
b2 // b2,
b1 &
b1,
b2 // b3,
b3 & (
b1 <> b2 &
b1,
b2 // b3,
b4 &
b1,
b2 // b5,
b6 implies
b3,
b4 // b5,
b6 ) & (
b1,
b2 // b1,
b3 implies
b2,
b1 // b2,
b3 ) ) ) & not for
b1,
b2,
b3 being
Element of
a1 holds
b1,
b2 // b1,
b3 & ( for
b1,
b2,
b3 being
Element of
a1 ex
b4 being
Element of
a1 st
(
b1,
b3 // b2,
b4 &
b2 <> b4 ) ) & ( for
b1,
b2,
b3 being
Element of
a1 ex
b4 being
Element of
a1 st
(
b1,
b2 // b3,
b4 &
b1,
b3 // b2,
b4 ) ) & ( for
b1,
b2,
b3,
b4 being
Element of
a1 st
b3,
b1 // b1,
b4 &
b1 <> b3 holds
ex
b5 being
Element of
a1 st
(
b2,
b1 // b1,
b5 &
b2,
b3 // b4,
b5 ) ) );
end;
:: deftheorem Def6 DIRAF:def 6 :
canceled;
:: deftheorem Def7 defines AffinSpace-like DIRAF:def 7 :
for
b1 being non
empty AffinStruct holds
(
b1 is
AffinSpace-like iff ( ( for
b2,
b3,
b4,
b5,
b6,
b7 being
Element of
b1 holds
(
b2,
b3 // b3,
b2 &
b2,
b3 // b4,
b4 & (
b2 <> b3 &
b2,
b3 // b4,
b5 &
b2,
b3 // b6,
b7 implies
b4,
b5 // b6,
b7 ) & (
b2,
b3 // b2,
b4 implies
b3,
b2 // b3,
b4 ) ) ) & not for
b2,
b3,
b4 being
Element of
b1 holds
b2,
b3 // b2,
b4 & ( for
b2,
b3,
b4 being
Element of
b1 ex
b5 being
Element of
b1 st
(
b2,
b4 // b3,
b5 &
b3 <> b5 ) ) & ( for
b2,
b3,
b4 being
Element of
b1 ex
b5 being
Element of
b1 st
(
b2,
b3 // b4,
b5 &
b2,
b4 // b3,
b5 ) ) & ( for
b2,
b3,
b4,
b5 being
Element of
b1 st
b4,
b2 // b2,
b5 &
b2 <> b4 holds
ex
b6 being
Element of
b1 st
(
b3,
b2 // b2,
b6 &
b3,
b4 // b5,
b6 ) ) ) );
theorem Th47: :: DIRAF:47
for
b1 being
AffinSpace holds
( ex
b2,
b3 being
Element of
b1 st
b2 <> b3 & ( for
b2,
b3,
b4,
b5,
b6,
b7 being
Element of
b1 holds
(
b2,
b3 // b3,
b2 &
b2,
b3 // b4,
b4 & (
b2 <> b3 &
b2,
b3 // b4,
b5 &
b2,
b3 // b6,
b7 implies
b4,
b5 // b6,
b7 ) & (
b2,
b3 // b2,
b4 implies
b3,
b2 // b3,
b4 ) ) ) & not for
b2,
b3,
b4 being
Element of
b1 holds
b2,
b3 // b2,
b4 & ( for
b2,
b3,
b4 being
Element of
b1 ex
b5 being
Element of
b1 st
(
b2,
b4 // b3,
b5 &
b3 <> b5 ) ) & ( for
b2,
b3,
b4 being
Element of
b1 ex
b5 being
Element of
b1 st
(
b2,
b3 // b4,
b5 &
b2,
b4 // b3,
b5 ) ) & ( for
b2,
b3,
b4,
b5 being
Element of
b1 st
b4,
b2 // b2,
b5 &
b2 <> b4 holds
ex
b6 being
Element of
b1 st
(
b3,
b2 // b2,
b6 &
b3,
b4 // b5,
b6 ) ) )
by Def7, REALSET2:def 7;
theorem Th48: :: DIRAF:48
theorem Th49: :: DIRAF:49
for
b1 being non
empty AffinStruct holds
( ( ex
b2,
b3 being
Element of
b1 st
b2 <> b3 & ( for
b2,
b3,
b4,
b5,
b6,
b7 being
Element of
b1 holds
(
b2,
b3 // b3,
b2 &
b2,
b3 // b4,
b4 & (
b2 <> b3 &
b2,
b3 // b4,
b5 &
b2,
b3 // b6,
b7 implies
b4,
b5 // b6,
b7 ) & (
b2,
b3 // b2,
b4 implies
b3,
b2 // b3,
b4 ) ) ) & not for
b2,
b3,
b4 being
Element of
b1 holds
b2,
b3 // b2,
b4 & ( for
b2,
b3,
b4 being
Element of
b1 ex
b5 being
Element of
b1 st
(
b2,
b4 // b3,
b5 &
b3 <> b5 ) ) & ( for
b2,
b3,
b4 being
Element of
b1 ex
b5 being
Element of
b1 st
(
b2,
b3 // b4,
b5 &
b2,
b4 // b3,
b5 ) ) & ( for
b2,
b3,
b4,
b5 being
Element of
b1 st
b4,
b2 // b2,
b5 &
b2 <> b4 holds
ex
b6 being
Element of
b1 st
(
b3,
b2 // b2,
b6 &
b3,
b4 // b5,
b6 ) ) ) iff
b1 is
AffinSpace )
by Def7, REALSET2:def 7;
theorem Th50: :: DIRAF:50
theorem Th51: :: DIRAF:51
:: deftheorem Def8 defines 2-dimensional DIRAF:def 8 :
theorem Th52: :: DIRAF:52
canceled;
theorem Th53: :: DIRAF:53
theorem Th54: :: DIRAF:54
for
b1 being non
empty AffinStruct holds
(
b1 is
AffinPlane iff ( ex
b2,
b3 being
Element of
b1 st
b2 <> b3 & ( for
b2,
b3,
b4,
b5,
b6,
b7 being
Element of
b1 holds
(
b2,
b3 // b3,
b2 &
b2,
b3 // b4,
b4 & (
b2 <> b3 &
b2,
b3 // b4,
b5 &
b2,
b3 // b6,
b7 implies
b4,
b5 // b6,
b7 ) & (
b2,
b3 // b2,
b4 implies
b3,
b2 // b3,
b4 ) ) ) & not for
b2,
b3,
b4 being
Element of
b1 holds
b2,
b3 // b2,
b4 & ( for
b2,
b3,
b4 being
Element of
b1 ex
b5 being
Element of
b1 st
(
b2,
b4 // b3,
b5 &
b3 <> b5 ) ) & ( for
b2,
b3,
b4 being
Element of
b1 ex
b5 being
Element of
b1 st
(
b2,
b3 // b4,
b5 &
b2,
b4 // b3,
b5 ) ) & ( for
b2,
b3,
b4,
b5 being
Element of
b1 st
b4,
b2 // b2,
b5 &
b2 <> b4 holds
ex
b6 being
Element of
b1 st
(
b3,
b2 // b2,
b6 &
b3,
b4 // b5,
b6 ) ) & ( for
b2,
b3,
b4,
b5 being
Element of
b1 st not
b2,
b3 // b4,
b5 holds
ex
b6 being
Element of
b1 st
(
b2,
b3 // b2,
b6 &
b4,
b5 // b4,
b6 ) ) ) )
by Def7, Def8, REALSET2:def 7;