:: DIRORT semantic presentation
theorem Th1: :: DIRORT:1
for
b1 being
RealLinearSpace for
b2,
b3 being
VECTOR of
b1 st
Gen b2,
b3 holds
( ( for
b4,
b5,
b6,
b7,
b8 being
Element of
(CESpace b1,b2,b3) holds
(
b4,
b4 '//' b6,
b8 &
b4,
b6 '//' b8,
b8 & (
b4,
b6 '//' b5,
b7 &
b4,
b6 '//' b7,
b5 & not
b4 = b6 implies
b5 = b7 ) & (
b4,
b6 '//' b5,
b7 &
b4,
b6 '//' b5,
b8 & not
b4,
b6 '//' b7,
b8 implies
b4,
b6 '//' b8,
b7 ) & (
b4,
b6 '//' b5,
b7 implies
b6,
b4 '//' b7,
b5 ) & (
b4,
b6 '//' b5,
b7 &
b4,
b6 '//' b7,
b8 implies
b4,
b6 '//' b5,
b8 ) & ( not
b4,
b5 '//' b6,
b7 or
b6,
b7 '//' b4,
b5 or
b6,
b7 '//' b5,
b4 ) ) ) & ( for
b4,
b5,
b6 being
Element of
(CESpace b1,b2,b3) ex
b7 being
Element of
(CESpace b1,b2,b3) st
(
b6 <> b7 &
b6,
b7 '//' b4,
b5 ) ) & ( for
b4,
b5,
b6 being
Element of
(CESpace b1,b2,b3) ex
b7 being
Element of
(CESpace b1,b2,b3) st
(
b6 <> b7 &
b4,
b5 '//' b6,
b7 ) ) )
theorem Th2: :: DIRORT:2
for
b1 being
RealLinearSpace for
b2,
b3 being
VECTOR of
b1 st
Gen b2,
b3 holds
( ( for
b4,
b5,
b6,
b7,
b8 being
Element of
(CMSpace b1,b2,b3) holds
(
b4,
b4 '//' b6,
b8 &
b4,
b6 '//' b8,
b8 & (
b4,
b6 '//' b5,
b7 &
b4,
b6 '//' b7,
b5 & not
b4 = b6 implies
b5 = b7 ) & (
b4,
b6 '//' b5,
b7 &
b4,
b6 '//' b5,
b8 & not
b4,
b6 '//' b7,
b8 implies
b4,
b6 '//' b8,
b7 ) & (
b4,
b6 '//' b5,
b7 implies
b6,
b4 '//' b7,
b5 ) & (
b4,
b6 '//' b5,
b7 &
b4,
b6 '//' b7,
b8 implies
b4,
b6 '//' b5,
b8 ) & ( not
b4,
b5 '//' b6,
b7 or
b6,
b7 '//' b4,
b5 or
b6,
b7 '//' b5,
b4 ) ) ) & ( for
b4,
b5,
b6 being
Element of
(CMSpace b1,b2,b3) ex
b7 being
Element of
(CMSpace b1,b2,b3) st
(
b6 <> b7 &
b6,
b7 '//' b4,
b5 ) ) & ( for
b4,
b5,
b6 being
Element of
(CMSpace b1,b2,b3) ex
b7 being
Element of
(CMSpace b1,b2,b3) st
(
b6 <> b7 &
b4,
b5 '//' b6,
b7 ) ) )
definition
let c1 be non
empty AffinStruct ;
attr a1 is
Oriented_Orthogonality_Space-like means :
Def1:
:: DIRORT:def 1
( ( for
b1,
b2,
b3,
b4,
b5 being
Element of
a1 holds
(
b1,
b1 '//' b3,
b5 &
b1,
b3 '//' b5,
b5 & (
b1,
b3 '//' b2,
b4 &
b1,
b3 '//' b4,
b2 & not
b1 = b3 implies
b2 = b4 ) & (
b1,
b3 '//' b2,
b4 &
b1,
b3 '//' b2,
b5 & not
b1,
b3 '//' b4,
b5 implies
b1,
b3 '//' b5,
b4 ) & (
b1,
b3 '//' b2,
b4 implies
b3,
b1 '//' b4,
b2 ) & (
b1,
b3 '//' b2,
b4 &
b1,
b3 '//' b4,
b5 implies
b1,
b3 '//' b2,
b5 ) & ( not
b1,
b2 '//' b3,
b4 or
b3,
b4 '//' b1,
b2 or
b3,
b4 '//' b2,
b1 ) ) ) & ( for
b1,
b2,
b3 being
Element of
a1 ex
b4 being
Element of
a1 st
(
b3 <> b4 &
b3,
b4 '//' b1,
b2 ) ) & ( for
b1,
b2,
b3 being
Element of
a1 ex
b4 being
Element of
a1 st
(
b3 <> b4 &
b1,
b2 '//' b3,
b4 ) ) );
end;
:: deftheorem Def1 defines Oriented_Orthogonality_Space-like DIRORT:def 1 :
for
b1 being non
empty AffinStruct holds
(
b1 is
Oriented_Orthogonality_Space-like iff ( ( for
b2,
b3,
b4,
b5,
b6 being
Element of
b1 holds
(
b2,
b2 '//' b4,
b6 &
b2,
b4 '//' b6,
b6 & (
b2,
b4 '//' b3,
b5 &
b2,
b4 '//' b5,
b3 & not
b2 = b4 implies
b3 = b5 ) & (
b2,
b4 '//' b3,
b5 &
b2,
b4 '//' b3,
b6 & not
b2,
b4 '//' b5,
b6 implies
b2,
b4 '//' b6,
b5 ) & (
b2,
b4 '//' b3,
b5 implies
b4,
b2 '//' b5,
b3 ) & (
b2,
b4 '//' b3,
b5 &
b2,
b4 '//' b5,
b6 implies
b2,
b4 '//' b3,
b6 ) & ( not
b2,
b3 '//' b4,
b5 or
b4,
b5 '//' b2,
b3 or
b4,
b5 '//' b3,
b2 ) ) ) & ( for
b2,
b3,
b4 being
Element of
b1 ex
b5 being
Element of
b1 st
(
b4 <> b5 &
b4,
b5 '//' b2,
b3 ) ) & ( for
b2,
b3,
b4 being
Element of
b1 ex
b5 being
Element of
b1 st
(
b4 <> b5 &
b2,
b3 '//' b4,
b5 ) ) ) );
theorem Th3: :: DIRORT:3
canceled;
theorem Th4: :: DIRORT:4
theorem Th5: :: DIRORT:5
theorem Th6: :: DIRORT:6
theorem Th7: :: DIRORT:7
canceled;
theorem Th8: :: DIRORT:8
:: deftheorem Def2 defines _|_ DIRORT:def 2 :
definition
let c1 be
Oriented_Orthogonality_Space;
let c2,
c3,
c4,
c5 be
Element of
c1;
pred c2,
c3 // c4,
c5 means :
Def3:
:: DIRORT:def 3
ex
b1,
b2 being
Element of
a1 st
(
b1 <> b2 &
b1,
b2 '//' a2,
a3 &
b1,
b2 '//' a4,
a5 );
end;
:: deftheorem Def3 defines // DIRORT:def 3 :
for
b1 being
Oriented_Orthogonality_Space for
b2,
b3,
b4,
b5 being
Element of
b1 holds
(
b2,
b3 // b4,
b5 iff ex
b6,
b7 being
Element of
b1 st
(
b6 <> b7 &
b6,
b7 '//' b2,
b3 &
b6,
b7 '//' b4,
b5 ) );
definition
let c1 be
Oriented_Orthogonality_Space;
attr a1 is
bach_transitive means :
Def4:
:: DIRORT:def 4
for
b1,
b2,
b3,
b4,
b5,
b6,
b7,
b8 being
Element of
a1 st
b1,
b2 '//' b4,
b5 &
b7,
b8 '//' b4,
b5 &
b7,
b8 '//' b3,
b6 & not
b7 = b8 & not
b4 = b5 holds
b1,
b2 '//' b3,
b6;
end;
:: deftheorem Def4 defines bach_transitive DIRORT:def 4 :
for
b1 being
Oriented_Orthogonality_Space holds
(
b1 is
bach_transitive iff for
b2,
b3,
b4,
b5,
b6,
b7,
b8,
b9 being
Element of
b1 st
b2,
b3 '//' b5,
b6 &
b8,
b9 '//' b5,
b6 &
b8,
b9 '//' b4,
b7 & not
b8 = b9 & not
b5 = b6 holds
b2,
b3 '//' b4,
b7 );
definition
let c1 be
Oriented_Orthogonality_Space;
attr a1 is
right_transitive means :
Def5:
:: DIRORT:def 5
for
b1,
b2,
b3,
b4,
b5,
b6,
b7,
b8 being
Element of
a1 st
b1,
b2 '//' b4,
b5 &
b4,
b5 '//' b7,
b8 &
b3,
b6 '//' b7,
b8 & not
b7 = b8 & not
b4 = b5 holds
b1,
b2 '//' b3,
b6;
end;
:: deftheorem Def5 defines right_transitive DIRORT:def 5 :
for
b1 being
Oriented_Orthogonality_Space holds
(
b1 is
right_transitive iff for
b2,
b3,
b4,
b5,
b6,
b7,
b8,
b9 being
Element of
b1 st
b2,
b3 '//' b5,
b6 &
b5,
b6 '//' b8,
b9 &
b4,
b7 '//' b8,
b9 & not
b8 = b9 & not
b5 = b6 holds
b2,
b3 '//' b4,
b7 );
definition
let c1 be
Oriented_Orthogonality_Space;
attr a1 is
left_transitive means :
Def6:
:: DIRORT:def 6
for
b1,
b2,
b3,
b4,
b5,
b6,
b7,
b8 being
Element of
a1 st
b1,
b2 '//' b4,
b5 &
b4,
b5 '//' b7,
b8 &
b1,
b2 '//' b3,
b6 & not
b1 = b2 & not
b4 = b5 holds
b3,
b6 '//' b7,
b8;
end;
:: deftheorem Def6 defines left_transitive DIRORT:def 6 :
for
b1 being
Oriented_Orthogonality_Space holds
(
b1 is
left_transitive iff for
b2,
b3,
b4,
b5,
b6,
b7,
b8,
b9 being
Element of
b1 st
b2,
b3 '//' b5,
b6 &
b5,
b6 '//' b8,
b9 &
b2,
b3 '//' b4,
b7 & not
b2 = b3 & not
b5 = b6 holds
b4,
b7 '//' b8,
b9 );
:: deftheorem Def7 defines Euclidean_like DIRORT:def 7 :
:: deftheorem Def8 defines Minkowskian_like DIRORT:def 8 :
theorem Th9: :: DIRORT:9
theorem Th10: :: DIRORT:10
theorem Th11: :: DIRORT:11
theorem Th12: :: DIRORT:12
for
b1 being
Oriented_Orthogonality_Space holds
(
b1 is
left_transitive iff for
b2,
b3,
b4,
b5,
b6,
b7 being
Element of
b1 st
b2,
b3 // b6,
b7 &
b2,
b3 '//' b4,
b5 &
b2 <> b3 holds
b6,
b7 '//' b4,
b5 )
theorem Th13: :: DIRORT:13
for
b1 being
Oriented_Orthogonality_Space holds
(
b1 is
bach_transitive iff for
b2,
b3,
b4,
b5,
b6,
b7 being
Element of
b1 st
b2,
b3 '//' b5,
b6 &
b5,
b6 // b4,
b7 &
b5 <> b6 holds
b2,
b3 '//' b4,
b7 )
theorem Th14: :: DIRORT:14
for
b1 being
Oriented_Orthogonality_Space st
b1 is
bach_transitive holds
for
b2,
b3,
b4,
b5,
b6,
b7 being
Element of
b1 st
b2,
b3 // b4,
b5 &
b4,
b5 // b6,
b7 &
b4 <> b5 holds
b2,
b3 // b6,
b7
theorem Th15: :: DIRORT:15
theorem Th16: :: DIRORT:16
theorem Th17: :: DIRORT:17
theorem Th18: :: DIRORT:18
theorem Th19: :: DIRORT:19
for
b1 being
Oriented_Orthogonality_Space st
b1 is
bach_transitive holds
(
b1 is
right_transitive iff for
b2,
b3,
b4,
b5,
b6,
b7 being
Element of
b1 st
b2,
b3 '//' b6,
b7 &
b4,
b5 '//' b6,
b7 &
b6 <> b7 holds
b2,
b3 // b4,
b5 )
theorem Th20: :: DIRORT:20