:: EUCLMETR semantic presentation
:: deftheorem Def1 defines Euclidean EUCLMETR:def 1 :
:: deftheorem Def2 defines Pappian EUCLMETR:def 2 :
:: deftheorem Def3 defines Desarguesian EUCLMETR:def 3 :
:: deftheorem Def4 defines Fanoian EUCLMETR:def 4 :
:: deftheorem Def5 defines Moufangian EUCLMETR:def 5 :
:: deftheorem Def6 defines translation EUCLMETR:def 6 :
definition
let c1 be
OrtAfSp;
attr a1 is
Homogeneous means :
Def7:
:: EUCLMETR:def 7
for
b1,
b2,
b3,
b4,
b5,
b6,
b7 being
Element of
a1 st
b1,
b2 _|_ b1,
b3 &
b1,
b4 _|_ b1,
b5 &
b1,
b6 _|_ b1,
b7 &
b2,
b4 _|_ b3,
b5 &
b2,
b6 _|_ b3,
b7 & not
b1,
b6 // b1,
b2 & not
b1,
b2 // b1,
b4 holds
b4,
b6 _|_ b5,
b7;
end;
:: deftheorem Def7 defines Homogeneous EUCLMETR:def 7 :
for
b1 being
OrtAfSp holds
(
b1 is
Homogeneous iff for
b2,
b3,
b4,
b5,
b6,
b7,
b8 being
Element of
b1 st
b2,
b3 _|_ b2,
b4 &
b2,
b5 _|_ b2,
b6 &
b2,
b7 _|_ b2,
b8 &
b3,
b5 _|_ b4,
b6 &
b3,
b7 _|_ b4,
b8 & not
b2,
b7 // b2,
b3 & not
b2,
b3 // b2,
b5 holds
b5,
b7 _|_ b6,
b8 );
theorem Th1: :: EUCLMETR:1
for
b1 being
OrtAfSp for
b2,
b3,
b4 being
Element of
b1 st not
LIN b2,
b3,
b4 holds
(
b2 <> b3 &
b3 <> b4 &
b2 <> b4 )
theorem Th2: :: EUCLMETR:2
theorem Th3: :: EUCLMETR:3
theorem Th4: :: EUCLMETR:4
for
b1 being
OrtAfSp for
b2,
b3,
b4 being
Element of
b1 st
LIN b2,
b3,
b4 holds
(
LIN b2,
b4,
b3 &
LIN b3,
b2,
b4 &
LIN b3,
b4,
b2 &
LIN b4,
b2,
b3 &
LIN b4,
b3,
b2 )
theorem Th5: :: EUCLMETR:5
theorem Th6: :: EUCLMETR:6
for
b1 being
OrtAfPl for
b2,
b3,
b4,
b5,
b6 being
Element of
b1 st not
LIN b2,
b3,
b4 &
b5,
b2 _|_ b3,
b4 &
b5,
b3 _|_ b2,
b4 &
b6,
b2 _|_ b3,
b4 &
b6,
b3 _|_ b2,
b4 holds
b5 = b6
theorem Th7: :: EUCLMETR:7
for
b1 being
OrtAfPl for
b2,
b3,
b4,
b5 being
Element of
b1 st
b2,
b3 _|_ b4,
b5 &
b3,
b4 _|_ b2,
b5 &
LIN b2,
b3,
b4 & not
b2 = b4 & not
b2 = b3 holds
b3 = b4
theorem Th8: :: EUCLMETR:8
theorem Th9: :: EUCLMETR:9
Lemma16:
for b1 being OrtAfPl holds
( PAP_holds_in b1 iff Af b1 satisfies_PAP' )
theorem Th10: :: EUCLMETR:10
Lemma18:
for b1 being OrtAfPl holds
( DES_holds_in b1 iff Af b1 satisfies_DES' )
theorem Th11: :: EUCLMETR:11
theorem Th12: :: EUCLMETR:12
Lemma20:
for b1 being OrtAfPl holds
( des_holds_in b1 iff Af b1 satisfies_des' )
theorem Th13: :: EUCLMETR:13
theorem Th14: :: EUCLMETR:14
theorem Th15: :: EUCLMETR:15
theorem Th16: :: EUCLMETR:16
for
b1 being
OrtAfPl for
b2,
b3,
b4,
b5,
b6,
b7 being
Element of
b1 st not
LIN b2,
b3,
b5 &
b2 <> b4 &
b2,
b3 _|_ b2,
b4 &
b2,
b5 _|_ b2,
b6 &
b2,
b5 _|_ b2,
b7 &
b3,
b5 _|_ b4,
b6 &
b3,
b5 _|_ b4,
b7 holds
b6 = b7
theorem Th17: :: EUCLMETR:17
for
b1 being
OrtAfPl for
b2,
b3,
b4,
b5 being
Element of
b1 st not
LIN b2,
b3,
b5 &
b2 <> b4 holds
ex
b6 being
Element of
b1 st
(
b2,
b5 _|_ b2,
b6 &
b3,
b5 _|_ b4,
b6 )
Lemma24:
for b1 being RealLinearSpace
for b2, b3, b4 being VECTOR of b1 holds
( (b2 - b4) - (b3 - b4) = b2 - b3 & (b2 + b4) - (b3 + b4) = b2 - b3 )
Lemma25:
for b1 being RealLinearSpace
for b2, b3 being VECTOR of b1 st Gen b2,b3 holds
for b4, b5, b6 being Real holds
( PProJ b2,b3,((b4 * b2) + (b5 * b3)),(((b6 * b5) * b2) + ((- (b6 * b4)) * b3)) = 0 & (b4 * b2) + (b5 * b3),((b6 * b5) * b2) + ((- (b6 * b4)) * b3) are_Ort_wrt b2,b3 )
theorem Th18: :: EUCLMETR:18
theorem Th19: :: EUCLMETR:19
for
b1 being
RealLinearSpace for
b2,
b3,
b4,
b5 being
VECTOR of
b1 st
Gen b2,
b3 &
0. b1 <> b4 &
0. b1 <> b5 &
b4,
b5 are_Ort_wrt b2,
b3 holds
ex
b6 being
Real st
for
b7,
b8 being
Real holds
(
(b7 * b2) + (b8 * b3),
((b6 * b8) * b2) + ((- (b6 * b7)) * b3) are_Ort_wrt b2,
b3 &
((b7 * b2) + (b8 * b3)) - b4,
(((b6 * b8) * b2) + ((- (b6 * b7)) * b3)) - b5 are_Ort_wrt b2,
b3 )
Lemma28:
for b1 being RealLinearSpace
for b2, b3 being VECTOR of b1
for b4, b5, b6, b7 being Real holds ((b4 * b2) + (b5 * b3)) - ((b6 * b2) + (b7 * b3)) = ((b4 - b6) * b2) + ((b5 - b7) * b3)
Lemma29:
for b1 being RealLinearSpace
for b2, b3 being VECTOR of b1 st Gen b2,b3 holds
for b4, b5, b6, b7 being Real st (b4 * b2) + (b6 * b3) = (b5 * b2) + (b7 * b3) holds
( b4 = b5 & b6 = b7 )
theorem Th20: :: EUCLMETR:20
canceled;
theorem Th21: :: EUCLMETR:21
theorem Th22: :: EUCLMETR:22
for
b1 being
OrtAfPl for
b2,
b3,
b4,
b5,
b6,
b7,
b8 being
Element of
b1 st
b2,
b3 _|_ b2,
b4 &
b2,
b5 _|_ b2,
b6 &
b2,
b7 _|_ b2,
b8 &
b3,
b5 _|_ b4,
b6 &
b3,
b7 _|_ b4,
b8 & not
b2,
b7 // b2,
b3 & not
b2,
b3 // b2,
b5 &
b2 = b4 holds
b5,
b7 _|_ b6,
b8
theorem Th23: :: EUCLMETR:23
theorem Th24: :: EUCLMETR:24