:: TRANSLAC semantic presentation

definition
let c1 be AffinSpace;
attr a1 is Fanoian means :Def1: :: TRANSLAC:def 1
for b1, b2, b3, b4 being Element of a1 st b1,b2 // b3,b4 & b1,b3 // b2,b4 & b1,b4 // b2,b3 holds
LIN b1,b2,b3;
end;

:: deftheorem Def1 defines Fanoian TRANSLAC:def 1 :
for b1 being AffinSpace holds
( b1 is Fanoian iff for b2, b3, b4, b5 being Element of b1 st b2,b3 // b4,b5 & b2,b4 // b3,b5 & b2,b5 // b3,b4 holds
LIN b2,b3,b4 );

notation
let c1 be AffinSpace;
synonym c1 satisfies_Fano for Fanoian c1;
end;

Lemma2: for b1 being AffinSpace
for b2, b3, b4, b5 being Element of b1 st LIN b2,b3,b4 & b2 <> b3 & b2 <> b4 & b3 <> b4 & not LIN b2,b3,b5 holds
ex b6 being Element of b1 st
( LIN b5,b2,b6 & b5 <> b6 & b2 <> b6 )
proof end;

Lemma3: for b1 being AffinSpace
for b2, b3, b4, b5, b6 being Element of b1 st LIN b2,b3,b4 & b2 <> b3 & b2 <> b4 & b3 <> b4 & not LIN b2,b3,b5 & LIN b2,b3,b6 holds
ex b7 being Element of b1 st
( LIN b5,b6,b7 & b5 <> b7 & b6 <> b7 )
proof end;

Lemma4: for b1 being AffinSpace
for b2, b3, b4, b5, b6 being Element of b1 st LIN b2,b3,b4 & b2 <> b3 & b2 <> b4 & b3 <> b4 & not LIN b2,b3,b5 & b5 <> b6 & b5,b6 // b2,b3 holds
ex b7 being Element of b1 st
( LIN b5,b6,b7 & b5 <> b7 & b6 <> b7 )
proof end;

theorem Th1: :: TRANSLAC:1
canceled;

theorem Th2: :: TRANSLAC:2
for b1 being AffinSpace st ex b2, b3, b4 being Element of b1 st
( LIN b2,b3,b4 & b2 <> b3 & b2 <> b4 & b3 <> b4 ) holds
for b2, b3 being Element of b1 st b2 <> b3 holds
ex b4 being Element of b1 st
( LIN b2,b3,b4 & b2 <> b4 & b3 <> b4 )
proof end;

theorem Th3: :: TRANSLAC:3
canceled;

theorem Th4: :: TRANSLAC:4
for b1 being AffinPlane
for b2, b3, b4, b5 being Element of b1 st b1 satisfies_Fano & b2,b3 // b4,b5 & b2,b4 // b3,b5 & not LIN b2,b3,b4 holds
ex b6 being Element of b1 st
( LIN b3,b4,b6 & LIN b2,b5,b6 )
proof end;

Lemma7: for b1 being AffinPlane
for b2, b3, b4, b5 being Element of b1 st not LIN b2,b3,b4 & b2,b3 // b4,b5 & b4 <> b5 holds
( not LIN b4,b5,b2 & not LIN b3,b2,b5 & not LIN b5,b4,b3 )
proof end;

Lemma8: for b1 being AffinPlane
for b2, b3, b4, b5 being Element of b1 st not LIN b2,b3,b4 & b2,b3 // b4,b5 & b2,b4 // b3,b5 holds
( not LIN b4,b5,b2 & not LIN b3,b2,b5 & not LIN b5,b4,b3 )
proof end;

theorem Th5: :: TRANSLAC:5
for b1 being AffinPlane
for b2, b3, b4 being Element of b1
for b5 being Permutation of the carrier of b1 st b5 is_Tr & not LIN b2,b5 . b2,b3 & b2,b5 . b2 // b3,b4 & b2,b3 // b5 . b2,b4 holds
b4 = b5 . b3
proof end;

theorem Th6: :: TRANSLAC:6
for b1 being AffinPlane holds
( b1 satisfies_des iff for b2, b3, b4, b5, b6, b7 being Element of b1 st not LIN b2,b3,b4 & not LIN b2,b3,b5 & b2,b3 // b4,b6 & b2,b3 // b5,b7 & b2,b4 // b3,b6 & b2,b5 // b3,b7 holds
b4,b5 // b6,b7 )
proof end;

theorem Th7: :: TRANSLAC:7
for b1 being AffinPlane
for b2 being Element of b1 ex b3 being Permutation of the carrier of b1 st
( b3 is_Tr & b3 . b2 = b2 )
proof end;

Lemma12: for b1 being AffinPlane
for b2, b3, b4 being Element of b1 st b2 <> b3 holds
ex b5 being Element of b1 st
( ( not LIN b2,b3,b4 & b2,b3 // b4,b5 & b2,b4 // b3,b5 ) or ( LIN b2,b3,b4 & ex b6, b7 being Element of b1 st
( not LIN b2,b3,b6 & b2,b3 // b6,b7 & b2,b6 // b3,b7 & b6,b7 // b4,b5 & b6,b4 // b7,b5 ) ) )
proof end;

Lemma13: for b1 being AffinPlane
for b2, b3, b4 being Element of b1 st b2 <> b3 holds
ex b5 being Element of b1 st
( ( not LIN b2,b3,b5 & b2,b3 // b5,b4 & b2,b5 // b3,b4 ) or ( LIN b2,b3,b5 & ex b6, b7 being Element of b1 st
( not LIN b2,b3,b6 & b2,b3 // b6,b7 & b2,b6 // b3,b7 & b6,b7 // b5,b4 & b6,b5 // b7,b4 ) ) )
proof end;

Lemma14: for b1 being AffinPlane
for b2, b3, b4, b5, b6, b7, b8, b9, b10 being Element of b1 st b1 satisfies_des & b2 <> b3 & LIN b2,b3,b4 & b2,b3 // b5,b6 & b2,b3 // b7,b8 & b2,b5 // b3,b6 & b2,b7 // b3,b8 & b5,b6 // b4,b9 & b7,b8 // b4,b10 & b5,b4 // b6,b9 & b7,b4 // b8,b10 & not LIN b2,b3,b5 & not LIN b2,b3,b7 & not LIN b5,b6,b7 holds
b9 = b10
proof end;

theorem Th8: :: TRANSLAC:8
for b1 being AffinPlane
for b2, b3, b4, b5 being Element of b1 st ( for b6, b7, b8 being Element of b1 st b6 <> b7 & LIN b6,b7,b8 & not b8 = b6 holds
b8 = b7 ) & b2,b3 // b4,b5 & b2,b4 // b3,b5 & not LIN b2,b3,b4 holds
b2,b5 // b3,b4
proof end;

Lemma16: for b1 being AffinPlane
for b2, b3, b4, b5, b6, b7, b8, b9, b10 being Element of b1 st b1 satisfies_des & b2 <> b3 & LIN b2,b3,b4 & b2,b3 // b5,b6 & b2,b3 // b7,b8 & b2,b5 // b3,b6 & b2,b7 // b3,b8 & b5,b6 // b4,b9 & b7,b8 // b4,b10 & b5,b4 // b6,b9 & b7,b4 // b8,b10 & not LIN b2,b3,b5 & not LIN b2,b3,b7 holds
b9 = b10
proof end;

Lemma17: for b1 being AffinPlane
for b2, b3, b4, b5, b6, b7 being Element of b1 st b2 <> b3 & LIN b2,b3,b4 & b2,b3 // b5,b6 & b2,b5 // b3,b6 & b5,b6 // b4,b7 & not LIN b2,b3,b5 holds
( b5 <> b6 & LIN b2,b3,b7 )
proof end;

Lemma18: for b1 being AffinPlane
for b2, b3, b4, b5, b6, b7, b8, b9, b10 being Element of b1 st b1 satisfies_des & b2 <> b3 & LIN b2,b3,b4 & b2,b3 // b5,b6 & b2,b3 // b7,b8 & b2,b5 // b3,b6 & b2,b7 // b3,b8 & b5,b6 // b4,b9 & b5,b4 // b6,b9 & b7,b8 // b10,b9 & b7,b10 // b8,b9 & not LIN b2,b3,b5 & not LIN b2,b3,b7 holds
b4 = b10
proof end;

Lemma19: for b1 being AffinPlane
for b2, b3 being Element of b1 st b1 satisfies_des & b2 <> b3 holds
ex b4 being Permutation of the carrier of b1 st
( b4 is_Tr & b4 . b2 = b3 )
proof end;

theorem Th9: :: TRANSLAC:9
for b1 being AffinPlane
for b2, b3 being Element of b1 st b1 satisfies_des holds
ex b4 being Permutation of the carrier of b1 st
( b4 is_Tr & b4 . b2 = b3 )
proof end;

theorem Th10: :: TRANSLAC:10
for b1 being AffinPlane st ( for b2, b3 being Element of b1 ex b4 being Permutation of the carrier of b1 st
( b4 is_Tr & b4 . b2 = b3 ) ) holds
b1 satisfies_des
proof end;

theorem Th11: :: TRANSLAC:11
for b1 being AffinPlane
for b2 being Element of b1
for b3, b4 being Permutation of the carrier of b1 st b3 is_Tr & b4 is_Tr & not LIN b2,b3 . b2,b4 . b2 holds
b3 * b4 = b4 * b3
proof end;

theorem Th12: :: TRANSLAC:12
for b1 being AffinPlane
for b2, b3 being Permutation of the carrier of b1 st b1 satisfies_des & b2 is_Tr & b3 is_Tr holds
b2 * b3 = b3 * b2
proof end;

theorem Th13: :: TRANSLAC:13
for b1 being AffinPlane
for b2 being Element of b1
for b3, b4 being Permutation of the carrier of b1 st b3 is_Tr & b4 is_Tr & b2,b3 . b2 // b2,b4 . b2 holds
b2,b3 . b2 // b2,(b3 * b4) . b2
proof end;

theorem Th14: :: TRANSLAC:14
for b1 being AffinPlane
for b2 being Permutation of the carrier of b1 st b1 satisfies_Fano & b1 satisfies_des & b2 is_Tr holds
ex b3 being Permutation of the carrier of b1 st
( b3 is_Tr & b3 * b3 = b2 )
proof end;

theorem Th15: :: TRANSLAC:15
for b1 being AffinPlane
for b2 being Permutation of the carrier of b1 st b1 satisfies_Fano & b2 is_Tr & b2 * b2 = id the carrier of b1 holds
b2 = id the carrier of b1
proof end;

theorem Th16: :: TRANSLAC:16
for b1 being AffinPlane
for b2, b3, b4 being Permutation of the carrier of b1 st b1 satisfies_des & b1 satisfies_Fano & b2 is_Tr & b3 is_Tr & b4 is_Tr & b2 = b3 * b3 & b2 = b4 * b4 holds
b3 = b4
proof end;