:: TRANSLAC semantic presentation
definition
let c1 be
AffinSpace;
attr a1 is
Fanoian means :
Def1:
:: TRANSLAC:def 1
for
b1,
b2,
b3,
b4 being
Element of
a1 st
b1,
b2 // b3,
b4 &
b1,
b3 // b2,
b4 &
b1,
b4 // b2,
b3 holds
LIN b1,
b2,
b3;
end;
:: deftheorem Def1 defines Fanoian TRANSLAC:def 1 :
for
b1 being
AffinSpace holds
(
b1 is
Fanoian iff for
b2,
b3,
b4,
b5 being
Element of
b1 st
b2,
b3 // b4,
b5 &
b2,
b4 // b3,
b5 &
b2,
b5 // b3,
b4 holds
LIN b2,
b3,
b4 );
Lemma2:
for b1 being AffinSpace
for b2, b3, b4, b5 being Element of b1 st LIN b2,b3,b4 & b2 <> b3 & b2 <> b4 & b3 <> b4 & not LIN b2,b3,b5 holds
ex b6 being Element of b1 st
( LIN b5,b2,b6 & b5 <> b6 & b2 <> b6 )
Lemma3:
for b1 being AffinSpace
for b2, b3, b4, b5, b6 being Element of b1 st LIN b2,b3,b4 & b2 <> b3 & b2 <> b4 & b3 <> b4 & not LIN b2,b3,b5 & LIN b2,b3,b6 holds
ex b7 being Element of b1 st
( LIN b5,b6,b7 & b5 <> b7 & b6 <> b7 )
Lemma4:
for b1 being AffinSpace
for b2, b3, b4, b5, b6 being Element of b1 st LIN b2,b3,b4 & b2 <> b3 & b2 <> b4 & b3 <> b4 & not LIN b2,b3,b5 & b5 <> b6 & b5,b6 // b2,b3 holds
ex b7 being Element of b1 st
( LIN b5,b6,b7 & b5 <> b7 & b6 <> b7 )
theorem Th1: :: TRANSLAC:1
canceled;
theorem Th2: :: TRANSLAC:2
theorem Th3: :: TRANSLAC:3
canceled;
theorem Th4: :: TRANSLAC:4
for
b1 being
AffinPlane for
b2,
b3,
b4,
b5 being
Element of
b1 st
b1 satisfies_Fano &
b2,
b3 // b4,
b5 &
b2,
b4 // b3,
b5 & not
LIN b2,
b3,
b4 holds
ex
b6 being
Element of
b1 st
(
LIN b3,
b4,
b6 &
LIN b2,
b5,
b6 )
Lemma7:
for b1 being AffinPlane
for b2, b3, b4, b5 being Element of b1 st not LIN b2,b3,b4 & b2,b3 // b4,b5 & b4 <> b5 holds
( not LIN b4,b5,b2 & not LIN b3,b2,b5 & not LIN b5,b4,b3 )
Lemma8:
for b1 being AffinPlane
for b2, b3, b4, b5 being Element of b1 st not LIN b2,b3,b4 & b2,b3 // b4,b5 & b2,b4 // b3,b5 holds
( not LIN b4,b5,b2 & not LIN b3,b2,b5 & not LIN b5,b4,b3 )
theorem Th5: :: TRANSLAC:5
theorem Th6: :: TRANSLAC:6
for
b1 being
AffinPlane holds
(
b1 satisfies_des iff for
b2,
b3,
b4,
b5,
b6,
b7 being
Element of
b1 st not
LIN b2,
b3,
b4 & not
LIN b2,
b3,
b5 &
b2,
b3 // b4,
b6 &
b2,
b3 // b5,
b7 &
b2,
b4 // b3,
b6 &
b2,
b5 // b3,
b7 holds
b4,
b5 // b6,
b7 )
theorem Th7: :: TRANSLAC:7
Lemma12:
for b1 being AffinPlane
for b2, b3, b4 being Element of b1 st b2 <> b3 holds
ex b5 being Element of b1 st
( ( not LIN b2,b3,b4 & b2,b3 // b4,b5 & b2,b4 // b3,b5 ) or ( LIN b2,b3,b4 & ex b6, b7 being Element of b1 st
( not LIN b2,b3,b6 & b2,b3 // b6,b7 & b2,b6 // b3,b7 & b6,b7 // b4,b5 & b6,b4 // b7,b5 ) ) )
Lemma13:
for b1 being AffinPlane
for b2, b3, b4 being Element of b1 st b2 <> b3 holds
ex b5 being Element of b1 st
( ( not LIN b2,b3,b5 & b2,b3 // b5,b4 & b2,b5 // b3,b4 ) or ( LIN b2,b3,b5 & ex b6, b7 being Element of b1 st
( not LIN b2,b3,b6 & b2,b3 // b6,b7 & b2,b6 // b3,b7 & b6,b7 // b5,b4 & b6,b5 // b7,b4 ) ) )
Lemma14:
for b1 being AffinPlane
for b2, b3, b4, b5, b6, b7, b8, b9, b10 being Element of b1 st b1 satisfies_des & b2 <> b3 & LIN b2,b3,b4 & b2,b3 // b5,b6 & b2,b3 // b7,b8 & b2,b5 // b3,b6 & b2,b7 // b3,b8 & b5,b6 // b4,b9 & b7,b8 // b4,b10 & b5,b4 // b6,b9 & b7,b4 // b8,b10 & not LIN b2,b3,b5 & not LIN b2,b3,b7 & not LIN b5,b6,b7 holds
b9 = b10
theorem Th8: :: TRANSLAC:8
for
b1 being
AffinPlane for
b2,
b3,
b4,
b5 being
Element of
b1 st ( for
b6,
b7,
b8 being
Element of
b1 st
b6 <> b7 &
LIN b6,
b7,
b8 & not
b8 = b6 holds
b8 = b7 ) &
b2,
b3 // b4,
b5 &
b2,
b4 // b3,
b5 & not
LIN b2,
b3,
b4 holds
b2,
b5 // b3,
b4
Lemma16:
for b1 being AffinPlane
for b2, b3, b4, b5, b6, b7, b8, b9, b10 being Element of b1 st b1 satisfies_des & b2 <> b3 & LIN b2,b3,b4 & b2,b3 // b5,b6 & b2,b3 // b7,b8 & b2,b5 // b3,b6 & b2,b7 // b3,b8 & b5,b6 // b4,b9 & b7,b8 // b4,b10 & b5,b4 // b6,b9 & b7,b4 // b8,b10 & not LIN b2,b3,b5 & not LIN b2,b3,b7 holds
b9 = b10
Lemma17:
for b1 being AffinPlane
for b2, b3, b4, b5, b6, b7 being Element of b1 st b2 <> b3 & LIN b2,b3,b4 & b2,b3 // b5,b6 & b2,b5 // b3,b6 & b5,b6 // b4,b7 & not LIN b2,b3,b5 holds
( b5 <> b6 & LIN b2,b3,b7 )
Lemma18:
for b1 being AffinPlane
for b2, b3, b4, b5, b6, b7, b8, b9, b10 being Element of b1 st b1 satisfies_des & b2 <> b3 & LIN b2,b3,b4 & b2,b3 // b5,b6 & b2,b3 // b7,b8 & b2,b5 // b3,b6 & b2,b7 // b3,b8 & b5,b6 // b4,b9 & b5,b4 // b6,b9 & b7,b8 // b10,b9 & b7,b10 // b8,b9 & not LIN b2,b3,b5 & not LIN b2,b3,b7 holds
b4 = b10
Lemma19:
for b1 being AffinPlane
for b2, b3 being Element of b1 st b1 satisfies_des & b2 <> b3 holds
ex b4 being Permutation of the carrier of b1 st
( b4 is_Tr & b4 . b2 = b3 )
theorem Th9: :: TRANSLAC:9
theorem Th10: :: TRANSLAC:10
theorem Th11: :: TRANSLAC:11
theorem Th12: :: TRANSLAC:12
theorem Th13: :: TRANSLAC:13
theorem Th14: :: TRANSLAC:14
theorem Th15: :: TRANSLAC:15
theorem Th16: :: TRANSLAC:16