:: TRANSGEO semantic presentation
theorem Th1: :: TRANSGEO:1
canceled;
theorem Th2: :: TRANSGEO:2
theorem Th3: :: TRANSGEO:3
canceled;
theorem Th4: :: TRANSGEO:4
:: deftheorem Def1 defines \ TRANSGEO:def 1 :
scheme :: TRANSGEO:sch 1
s1{
F1()
-> non
empty set ,
P1[
set ,
set ] } :
ex
b1 being
Permutation of
F1() st
for
b2,
b3 being
Element of
F1() holds
(
b1 . b2 = b3 iff
P1[
b2,
b3] )
provided
E3:
for
b1 being
Element of
F1() ex
b2 being
Element of
F1() st
P1[
b1,
b2]
and E4:
for
b1 being
Element of
F1() ex
b2 being
Element of
F1() st
P1[
b2,
b1]
and E5:
for
b1,
b2,
b3 being
Element of
F1() st
P1[
b1,
b2] &
P1[
b3,
b2] holds
b1 = b3
and E6:
for
b1,
b2,
b3 being
Element of
F1() st
P1[
b1,
b2] &
P1[
b1,
b3] holds
b2 = b3
theorem Th5: :: TRANSGEO:5
canceled;
theorem Th6: :: TRANSGEO:6
canceled;
theorem Th7: :: TRANSGEO:7
canceled;
theorem Th8: :: TRANSGEO:8
canceled;
theorem Th9: :: TRANSGEO:9
theorem Th10: :: TRANSGEO:10
canceled;
theorem Th11: :: TRANSGEO:11
Lemma3:
for b1 being non empty set
for b2, b3, b4 being Permutation of b1 st b2 * b3 = b2 * b4 holds
b3 = b4
Lemma4:
for b1 being non empty set
for b2, b3, b4 being Permutation of b1 st b2 * b3 = b4 * b3 holds
b2 = b4
theorem Th12: :: TRANSGEO:12
canceled;
theorem Th13: :: TRANSGEO:13
theorem Th14: :: TRANSGEO:14
canceled;
theorem Th15: :: TRANSGEO:15
canceled;
theorem Th16: :: TRANSGEO:16
theorem Th17: :: TRANSGEO:17
theorem Th18: :: TRANSGEO:18
theorem Th19: :: TRANSGEO:19
theorem Th20: :: TRANSGEO:20
theorem Th21: :: TRANSGEO:21
:: deftheorem Def2 defines is_FormalIz_of TRANSGEO:def 2 :
theorem Th22: :: TRANSGEO:22
canceled;
theorem Th23: :: TRANSGEO:23
theorem Th24: :: TRANSGEO:24
theorem Th25: :: TRANSGEO:25
theorem Th26: :: TRANSGEO:26
for
b1 being non
empty set for
b2,
b3 being
Permutation of
b1 for
b4 being
Relation of
[:b1,b1:] st ( for
b5,
b6,
b7,
b8,
b9,
b10 being
Element of
b1 st
[[b7,b8],[b5,b6]] in b4 &
[[b5,b6],[b9,b10]] in b4 &
b5 <> b6 holds
[[b7,b8],[b9,b10]] in b4 ) & ( for
b5,
b6,
b7 being
Element of
b1 holds
[[b5,b5],[b6,b7]] in b4 ) &
b2 is_FormalIz_of b4 &
b3 is_FormalIz_of b4 holds
b2 * b3 is_FormalIz_of b4
definition
let c1 be non
empty set ;
let c2 be
Permutation of
c1;
let c3 be
Relation of
[:c1,c1:];
pred c2 is_automorphism_of c3 means :
Def3:
:: TRANSGEO:def 3
for
b1,
b2,
b3,
b4 being
Element of
a1 holds
(
[[b1,b2],[b3,b4]] in a3 iff
[[(a2 . b1),(a2 . b2)],[(a2 . b3),(a2 . b4)]] in a3 );
end;
:: deftheorem Def3 defines is_automorphism_of TRANSGEO:def 3 :
for
b1 being non
empty set for
b2 being
Permutation of
b1 for
b3 being
Relation of
[:b1,b1:] holds
(
b2 is_automorphism_of b3 iff for
b4,
b5,
b6,
b7 being
Element of
b1 holds
(
[[b4,b5],[b6,b7]] in b3 iff
[[(b2 . b4),(b2 . b5)],[(b2 . b6),(b2 . b7)]] in b3 ) );
theorem Th27: :: TRANSGEO:27
canceled;
theorem Th28: :: TRANSGEO:28
theorem Th29: :: TRANSGEO:29
theorem Th30: :: TRANSGEO:30
theorem Th31: :: TRANSGEO:31
theorem Th32: :: TRANSGEO:32
for
b1 being non
empty set for
b2 being
Permutation of
b1 for
b3 being
Relation of
[:b1,b1:] st ( for
b4,
b5,
b6,
b7,
b8,
b9 being
Element of
b1 st
[[b6,b7],[b4,b5]] in b3 &
[[b4,b5],[b8,b9]] in b3 &
b4 <> b5 holds
[[b6,b7],[b8,b9]] in b3 ) & ( for
b4,
b5,
b6 being
Element of
b1 holds
[[b4,b4],[b5,b6]] in b3 ) &
b3 is_symmetric_in [:b1,b1:] &
b2 is_FormalIz_of b3 holds
b2 is_automorphism_of b3
theorem Th33: :: TRANSGEO:33
:: deftheorem Def4 defines is_DIL_of TRANSGEO:def 4 :
theorem Th34: :: TRANSGEO:34
canceled;
theorem Th35: :: TRANSGEO:35
definition
let c1 be non
empty AffinStruct ;
attr a1 is
CongrSpace-like means :
Def5:
:: TRANSGEO:def 5
( ( for
b1,
b2,
b3,
b4,
b5,
b6 being
Element of
a1 st
b1,
b2 // b5,
b6 &
b5,
b6 // b3,
b4 &
b5 <> b6 holds
b1,
b2 // b3,
b4 ) & ( for
b1,
b2,
b3 being
Element of
a1 holds
b1,
b1 // b2,
b3 ) & ( for
b1,
b2,
b3,
b4 being
Element of
a1 st
b1,
b2 // b3,
b4 holds
b3,
b4 // b1,
b2 ) & ( for
b1,
b2 being
Element of
a1 holds
b1,
b2 // b1,
b2 ) );
end;
:: deftheorem Def5 defines CongrSpace-like TRANSGEO:def 5 :
for
b1 being non
empty AffinStruct holds
(
b1 is
CongrSpace-like iff ( ( for
b2,
b3,
b4,
b5,
b6,
b7 being
Element of
b1 st
b2,
b3 // b6,
b7 &
b6,
b7 // b4,
b5 &
b6 <> b7 holds
b2,
b3 // b4,
b5 ) & ( for
b2,
b3,
b4 being
Element of
b1 holds
b2,
b2 // b3,
b4 ) & ( for
b2,
b3,
b4,
b5 being
Element of
b1 st
b2,
b3 // b4,
b5 holds
b4,
b5 // b2,
b3 ) & ( for
b2,
b3 being
Element of
b1 holds
b2,
b3 // b2,
b3 ) ) );
Lemma16:
for b1 being CongrSpace holds the CONGR of b1 is_reflexive_in [:the carrier of b1,the carrier of b1:]
Lemma17:
for b1 being CongrSpace holds the CONGR of b1 is_symmetric_in [:the carrier of b1,the carrier of b1:]
theorem Th36: :: TRANSGEO:36
canceled;
theorem Th37: :: TRANSGEO:37
theorem Th38: :: TRANSGEO:38
theorem Th39: :: TRANSGEO:39
theorem Th40: :: TRANSGEO:40
:: deftheorem Def6 defines positive_dilatation TRANSGEO:def 6 :
theorem Th41: :: TRANSGEO:41
canceled;
theorem Th42: :: TRANSGEO:42
:: deftheorem Def7 defines negative_dilatation TRANSGEO:def 7 :
theorem Th43: :: TRANSGEO:43
canceled;
theorem Th44: :: TRANSGEO:44
theorem Th45: :: TRANSGEO:45
theorem Th46: :: TRANSGEO:46
theorem Th47: :: TRANSGEO:47
theorem Th48: :: TRANSGEO:48
theorem Th49: :: TRANSGEO:49
:: deftheorem Def8 defines dilatation TRANSGEO:def 8 :
theorem Th50: :: TRANSGEO:50
canceled;
theorem Th51: :: TRANSGEO:51
theorem Th52: :: TRANSGEO:52
theorem Th53: :: TRANSGEO:53
theorem Th54: :: TRANSGEO:54
theorem Th55: :: TRANSGEO:55
theorem Th56: :: TRANSGEO:56
theorem Th57: :: TRANSGEO:57
theorem Th58: :: TRANSGEO:58
theorem Th59: :: TRANSGEO:59
theorem Th60: :: TRANSGEO:60
theorem Th61: :: TRANSGEO:61
for
b1 being
OAffinSpace for
b2,
b3,
b4,
b5 being
Element of
b1 holds
( not
b2,
b3 '||' b4,
b5 or
b2,
b4 '||' b3,
b5 or ex
b6 being
Element of
b1 st
(
LIN b2,
b4,
b6 &
LIN b3,
b5,
b6 ) )
theorem Th62: :: TRANSGEO:62
theorem Th63: :: TRANSGEO:63
theorem Th64: :: TRANSGEO:64
theorem Th65: :: TRANSGEO:65
:: deftheorem Def9 defines translation TRANSGEO:def 9 :
theorem Th66: :: TRANSGEO:66
canceled;
theorem Th67: :: TRANSGEO:67
theorem Th68: :: TRANSGEO:68
canceled;
theorem Th69: :: TRANSGEO:69
theorem Th70: :: TRANSGEO:70
theorem Th71: :: TRANSGEO:71
theorem Th72: :: TRANSGEO:72
Lemma42:
for b1 being OAffinSpace
for b2, b3 being Element of b1
for b4 being Permutation of the carrier of b1 st b4 is_Tr & not LIN b2,b4 . b2,b3 holds
( b2,b3 // b4 . b2,b4 . b3 & b2,b4 . b2 // b3,b4 . b3 )
Lemma43:
for b1 being OAffinSpace
for b2, b3 being Element of b1
for b4 being Permutation of the carrier of b1 st b4 is_Tr & b2 <> b4 . b2 & LIN b2,b4 . b2,b3 holds
b2,b4 . b2 // b3,b4 . b3
Lemma44:
for b1 being OAffinSpace
for b2, b3 being Element of b1
for b4 being Permutation of the carrier of b1 st b4 is_Tr & Mid b2,b4 . b2,b3 & b2 <> b4 . b2 holds
b2,b3 // b4 . b2,b4 . b3
Lemma45:
for b1 being OAffinSpace
for b2, b3 being Element of b1
for b4 being Permutation of the carrier of b1 st b4 is_Tr & b2 <> b4 . b2 & b3 <> b4 . b2 & Mid b2,b3,b4 . b2 holds
b2,b3 // b4 . b2,b4 . b3
Lemma46:
for b1 being OAffinSpace
for b2, b3 being Element of b1
for b4 being Permutation of the carrier of b1 st b4 is_Tr & b2 <> b4 . b2 & LIN b2,b4 . b2,b3 holds
b2,b3 // b4 . b2,b4 . b3
theorem Th73: :: TRANSGEO:73
theorem Th74: :: TRANSGEO:74
theorem Th75: :: TRANSGEO:75
theorem Th76: :: TRANSGEO:76
theorem Th77: :: TRANSGEO:77
theorem Th78: :: TRANSGEO:78
theorem Th79: :: TRANSGEO:79
theorem Th80: :: TRANSGEO:80
theorem Th81: :: TRANSGEO:81
canceled;
theorem Th82: :: TRANSGEO:82
theorem Th83: :: TRANSGEO:83
:: deftheorem Def10 defines dilatation TRANSGEO:def 10 :
theorem Th84: :: TRANSGEO:84
canceled;
theorem Th85: :: TRANSGEO:85
theorem Th86: :: TRANSGEO:86
theorem Th87: :: TRANSGEO:87
theorem Th88: :: TRANSGEO:88
theorem Th89: :: TRANSGEO:89
theorem Th90: :: TRANSGEO:90
theorem Th91: :: TRANSGEO:91
theorem Th92: :: TRANSGEO:92
for
b1 being
AffinSpace for
b2,
b3,
b4,
b5 being
Element of
b1 holds
( not
b2,
b3 // b4,
b5 or
b2,
b4 // b3,
b5 or ex
b6 being
Element of
b1 st
(
LIN b2,
b4,
b6 &
LIN b3,
b5,
b6 ) )
theorem Th93: :: TRANSGEO:93
theorem Th94: :: TRANSGEO:94
theorem Th95: :: TRANSGEO:95
theorem Th96: :: TRANSGEO:96
theorem Th97: :: TRANSGEO:97
for
b1 being
AffinSpace for
b2,
b3,
b4,
b5,
b6 being
Element of
b1 st not
LIN b2,
b3,
b4 &
b2,
b3 // b4,
b5 &
b2,
b3 // b4,
b6 &
b2,
b4 // b3,
b5 &
b2,
b4 // b3,
b6 holds
b5 = b6
:: deftheorem Def11 defines translation TRANSGEO:def 11 :
theorem Th98: :: TRANSGEO:98
canceled;
theorem Th99: :: TRANSGEO:99
theorem Th100: :: TRANSGEO:100
theorem Th101: :: TRANSGEO:101
canceled;
theorem Th102: :: TRANSGEO:102
theorem Th103: :: TRANSGEO:103
theorem Th104: :: TRANSGEO:104
theorem Th105: :: TRANSGEO:105
:: deftheorem Def12 defines collineation TRANSGEO:def 12 :
theorem Th106: :: TRANSGEO:106
canceled;
theorem Th107: :: TRANSGEO:107
theorem Th108: :: TRANSGEO:108
theorem Th109: :: TRANSGEO:109
theorem Th110: :: TRANSGEO:110
theorem Th111: :: TRANSGEO:111
theorem Th112: :: TRANSGEO:112
theorem Th113: :: TRANSGEO:113
theorem Th114: :: TRANSGEO:114
theorem Th115: :: TRANSGEO:115
theorem Th116: :: TRANSGEO:116
theorem Th117: :: TRANSGEO:117