:: FINSEQ_8 semantic presentation
theorem Th1: :: FINSEQ_8:1
theorem Th2: :: FINSEQ_8:2
theorem Th3: :: FINSEQ_8:3
theorem Th4: :: FINSEQ_8:4
theorem Th5: :: FINSEQ_8:5
:: deftheorem Def1 defines smid FINSEQ_8:def 1 :
theorem Th6: :: FINSEQ_8:6
theorem Th7: :: FINSEQ_8:7
theorem Th8: :: FINSEQ_8:8
theorem Th9: :: FINSEQ_8:9
theorem Th10: :: FINSEQ_8:10
theorem Th11: :: FINSEQ_8:11
definition
let c1 be non
empty set ;
let c2,
c3 be
FinSequence of
c1;
func ovlpart c2,
c3 -> FinSequence of
a1 means :
Def2:
:: FINSEQ_8:def 2
(
len a4 <= len a3 &
a4 = smid a3,1,
(len a4) &
a4 = smid a2,
(((len a2) -' (len a4)) + 1),
(len a2) & ( for
b1 being
Nat st
b1 <= len a3 &
smid a3,1,
b1 = smid a2,
(((len a2) -' b1) + 1),
(len a2) holds
b1 <= len a4 ) );
existence
ex b1 being FinSequence of c1 st
( len b1 <= len c3 & b1 = smid c3,1,(len b1) & b1 = smid c2,(((len c2) -' (len b1)) + 1),(len c2) & ( for b2 being Nat st b2 <= len c3 & smid c3,1,b2 = smid c2,(((len c2) -' b2) + 1),(len c2) holds
b2 <= len b1 ) )
uniqueness
for b1, b2 being FinSequence of c1 st len b1 <= len c3 & b1 = smid c3,1,(len b1) & b1 = smid c2,(((len c2) -' (len b1)) + 1),(len c2) & ( for b3 being Nat st b3 <= len c3 & smid c3,1,b3 = smid c2,(((len c2) -' b3) + 1),(len c2) holds
b3 <= len b1 ) & len b2 <= len c3 & b2 = smid c3,1,(len b2) & b2 = smid c2,(((len c2) -' (len b2)) + 1),(len c2) & ( for b3 being Nat st b3 <= len c3 & smid c3,1,b3 = smid c2,(((len c2) -' b3) + 1),(len c2) holds
b3 <= len b2 ) holds
b1 = b2
end;
:: deftheorem Def2 defines ovlpart FINSEQ_8:def 2 :
for
b1 being non
empty set for
b2,
b3,
b4 being
FinSequence of
b1 holds
(
b4 = ovlpart b2,
b3 iff (
len b4 <= len b3 &
b4 = smid b3,1,
(len b4) &
b4 = smid b2,
(((len b2) -' (len b4)) + 1),
(len b2) & ( for
b5 being
Nat st
b5 <= len b3 &
smid b3,1,
b5 = smid b2,
(((len b2) -' b5) + 1),
(len b2) holds
b5 <= len b4 ) ) );
theorem Th12: :: FINSEQ_8:12
:: deftheorem Def3 defines ovlcon FINSEQ_8:def 3 :
theorem Th13: :: FINSEQ_8:13
:: deftheorem Def4 defines ovlldiff FINSEQ_8:def 4 :
:: deftheorem Def5 defines ovlrdiff FINSEQ_8:def 5 :
theorem Th14: :: FINSEQ_8:14
theorem Th15: :: FINSEQ_8:15
theorem Th16: :: FINSEQ_8:16
theorem Th17: :: FINSEQ_8:17
theorem Th18: :: FINSEQ_8:18
:: deftheorem Def6 defines separates_uniquely FINSEQ_8:def 6 :
theorem Th19: :: FINSEQ_8:19
:: deftheorem Def7 defines is_substring_of FINSEQ_8:def 7 :
theorem Th20: :: FINSEQ_8:20
theorem Th21: :: FINSEQ_8:21
theorem Th22: :: FINSEQ_8:22
theorem Th23: :: FINSEQ_8:23
:: deftheorem Def8 defines is_preposition_of FINSEQ_8:def 8 :
theorem Th24: :: FINSEQ_8:24
theorem Th25: :: FINSEQ_8:25
theorem Th26: :: FINSEQ_8:26
theorem Th27: :: FINSEQ_8:27
:: deftheorem Def9 defines is_postposition_of FINSEQ_8:def 9 :
theorem Th28: :: FINSEQ_8:28
theorem Th29: :: FINSEQ_8:29
theorem Th30: :: FINSEQ_8:30
theorem Th31: :: FINSEQ_8:31
theorem Th32: :: FINSEQ_8:32
theorem Th33: :: FINSEQ_8:33
theorem Th34: :: FINSEQ_8:34
:: deftheorem Def10 defines instr FINSEQ_8:def 10 :
:: deftheorem Def11 defines addcr FINSEQ_8:def 11 :
:: deftheorem Def12 defines is_terminated_by FINSEQ_8:def 12 :
theorem Th35: :: FINSEQ_8:35